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Using a NASA database of state-to-state transition rates for N+N2, master equation
studies are performed for various nonequilibrium heat bath conditions. In these master
equation studies, relaxation of the rotational and vibrational modes, time variation of
chemical composition, reaction rate coefficients, and average rotational and vibrational
energy losses due to dissociation are each considered in strong and weak nonequilibrium
conditions. A system of master equations is coupled with one-dimensional flow equations
to analyze the relaxation of N2 in post-normal shock flows. From the results of master
equations and the post-normal shock calculations, it is recommended that the rotational
nonequilibrium of N2 should be treated as a nonequilibrium mode in hypersonic re-entry
calculations.

Nomenclature

τ Relaxation time, sec
ẽ Average energy per particle, erg
D Dissociation energy of N2, erg
E Energy per mole, erg/mol
e Energy per particle, erg
ge Multiplicity of electronic states
hf Species formation energy, erg/mol
k Boltzmann constant, erg/K
K(i, j),K(i, c) State-to-state transition rates for bound-bound and -free transitions, cm3sec−1

Kf ,Kr Dissociation and recombination rate coefficient, respectively, cm3sec−1,cm6sec−1

Kp(i, c) Predissociation rates, sec−1

m Species mass, g
n Number density, cm−3

Na Avogadro number, mol−1

t Time, sec
T, Tr, Tv Translational, rotational, and vibrational temperatures, respectively, K
u Velocity, cm/sec
V Volume, cm−3

v, J Vibrational and rotational states, respectively
x Distance from normal shock, cm

Subscripts

N,N2 Atomic and molecular Nitrogen
Eq Equilibrium states
i, j Rovibration states
MW Millikan-White value
r, v Rotational and vibrational modes, respectively
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Symbols

ε Sysmetric factor
γ Rovibrational or species concentration, mol/g
h̄ Planck constant, erg − sec
ρ Density, g/cm3

ξ Degree of freedom

I. Introduction

In the aerodynamic design of hypersonic vehicles, the prediction of the surface pressure and heat flux on
the re-entry module are important. In predicting these surface properties, an accurate thermochemical

nonequilibrium model for hypersonic CFD is needed. The widely used model is the two-temperature and
multi-temperature models.1 In these models, it is assumed that the translational and rotational modes are
in equilibrium and these are treated as a trans-rotational temperature, while the other energy modes are
treated as nonequilibrium temperatures. However, in recent studies of the high-temperature and strong-
nonequilibrium gases, uncertainties were observed for these assumptions of the previous thermochemical
models.

In H2 mixture gases, the rotational and vibrational relaxations in the electronic ground state of H2 were
studied by using the complete sets of state-to-state rates for rotational and vibrational energy transitions
by Kim et al.2, 3 and Kim and Boyd.4 In these works, it was observed that the rotational relaxation at low
temperature is faster than the relaxation of the vibrational mode. However, at high temperatures above
10,000K, the rotational and vibrational relaxation times are almost identical. In the analysis of post-normal
shock and nozzle expanding flows, the rotational mode of H2 exists in a state of nonequilibrium and the
calculated rotational temperatures in these applications are close to the vibration temperatures.

For N2+N2, the pioneering works by Parker5 and Lordi and Mates6 presented the effective rotational
collision numbers and these were confirmed by the experiments below 1500K.7, 8 However, the limitations on
the high-temperature behavior were demonstrated by shock-tube experiments by Sharma and Gillespie9 and
by Fujita et al.10 From the results of Parker and Lordi and Mates, the rotational effective collision number is
of the order of 10. This effective collision number of the rotational mode is much smaller than the vibrational
mode and it suggests that the rotational mode can be treated as an equilibrium state. However, in the shock-
tube experiments,9, 10 the measured rotational temperature is close to the vibrational temperature. In the
work by Park,11 the behavior of the rotational mode at high temperatures above 90, 000K were studied
by using existing state-to-state rotational transition rates, which were derived from quantum calculations12

and experimental data13, 14 taken at temperatures equal to or below 1500K. In this work, it was observed
that the calculated rotational relaxation time is larger than the vibrational relaxation time at temperatures
above 12,000 K. However, this work is believed to be only incomplete because vibration-rotation coupling is
modeled empirically.

For N+N2, a complete set of state-to-state transition rates was recently calculated by Jaffe et al.15, 16

at NASA Ames Research Center. The quasi-classical trajectory (QCT) method was adopted to calculate
these transition rates based on the new N3 potential energy surfaces.15 In the present work, thermochemical
nonequilibrium of the rotational and vibrational modes for N+N2 is studied by master equation calculations
with these recent state-to-state transition rates. The master equation studies are performed in various
heating and cooling conditions to observe the rotational and vibration behavior in strong-nonequilibrium and
high-temperature cases. By coupling the one-dimensional flow equations and a system of master equations,
thermochemical nonequilibrium calculations for post-normal shock flows are also performed for various re-
entry conditions of the Earth.

II. Master equation study for bound-bound transitions

For N+N2, the database of state-to-state transition rates were constructed for 9,390 rovibrational states
of the electronic ground-state of N2 by Jaffe et al.15, 16 In these 9,390 rovibrational states, truly bound
and quasi-bound states were included. The QCT method was adopted to evaluate these cross sections
and rate coefficients for bound-bound, bound-free, and exchange reactions including the predissociation of
quasi-bound states. The database for the N+N2 system comprises more than 23 million reactions and these
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Table 1. Initial heat bath conditions for bound-bound transitions.

Case T (K) Tr = Tv(K)

C1 4,000 1,000

C2 6,000 1,000

C3 8,000 1,000

C4 10,000 1,000

C5 15,000 1,000

C6 20,000 1,000

C7 25,000 1,000

C8 30,000 1,000

C9 40,000 1,000

C10 50,000 1,000
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Figure 1. Relaxations of rotational and vibrational temperatures and normalized average energies.

transition rate coefficients were evaluated for translational temperatures of 7, 500K, 10, 000K, 12, 500K,
15, 000K, 20, 000K, and 25, 000K. In the present work, these transition rate coefficients are extended up to
a translational temperature of 50, 000K in order to analyze high-temperature conditions.

By using the database of the transition rates of N+N2, a system of master equations is constructed to
model the relaxations of the rotational and vibrational modes. In this section, the bound-free transition
and predissociation are excluded, because the relaxations of the rotational and vibrational modes are mainly
produced by the bound-bound transitions. The master equations with this assumption is defined as,

dni

dt
=

∑
j

K(i, j)nx

[
Qi

Qj
nj − ni

]
, (1)

where nx is the number density of the colliding species. The rovibrational partition function Qi is defined as

Qi = εge(2J + 1)gsexp
(
− ei
kT

)
. (2)

In N2, the nuclear spin degeneracy gs is 6 when J has an even number and 3 when it is an odd number. The
principle of detailed balance between the forward and backward rates is invoked under equilibrium, which
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Figure 2. Normalized number density distributions for C4 case.

leads to
K(i, j)Qi = K(j, i)Qj . (3)

Then, the system of the master equations are constructed by Eq. (1) for all 9,390 rovibrational states of N2.
In integrating the system of master equations, an explicit time integration method is adopted, because

the time cost of inverting the matrix of the N2 system is too expensive. In the explicit time integration, for
the first five steps, the system of equations is integrated by a 4th order Runge-Kutta-Gill method.17 After
the 5th step, it is integrated by the Adams-Bashforth-Moulton predictor-corrector method18 that increases
the accuracy from 6th order to 11th order. After each step of integration, the calculated ni values are
modified to conserve mass by distributing the incurred error proportionately to their values. In table 1, the
initial heat bath conditions are tabulated. The temperature range from 4, 000K to 50, 000K is studied for
weak and strong nonequilibrium conditions. For all cases, the initial number densities of N and N2 are set
to a constant of 5× 1017cm−3 and an isothermal condition is applied in these heat bath calculations.

In the present work, energy-equivalent rotational and vibrational temperatures are adopted to character-
ize the rotational and vibrational modes. These energy-equivalent rotational and vibrational temperatures
can be determined by the average rotational and the vibrational energies, respectively. These average energies
are defined as

ẽr =

∑
i er(i)ni∑

i ni
, (4)

ẽv =

∑
i ev(i)ni∑

i ni
. (5)

In Fig. 1, the relaxation of the rotational and vibrational temperatures and average energies are shown
for various heat bath conditions. In figure (a), it is observed that the relaxation of the rotational mode is
discernibly faster than the relaxation of vibrational mode in the C4 case. However, the rotation relaxation
becomes similar to that of vibration when the equilibrium temperature increases. Especially, in cases C8 to
C10, the rotational and vibrational relaxations are almost identical. In figure (b), the relaxation of average
rotational and vibrational energies normalized by equilibrium values are shown. In these average energy
relaxations, similar relaxation patterns to those of the temperatures are observed. At high temperatures
above 30, 000K, the energy relaxations of the rotational and vibrational modes are almost identical.

In Fig. 2, rotational and vibrational number density distributions in each relaxation process of the C4 case
are presented. In figure (a), the vibrational number density distributions in J = 0 states are compared with
the Boltzmann distributions according to the nonequilibrium temperatures and in figure (b), the rotation
number density distributions in v = 0 are compared. The nonequilibrium distributions and Boltzmann
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Figure 3. Rotational and vibrational relaxations for N+N2.

distributions for the rotational and vibrational modes are normalized by their own equilibrium distributions.
In figures (a) and (b), for both the rotational and vibrational distributions, the results of the master equation
calculations are obviously different from the Boltzmann distributions in strong nonequilibrium conditions.
These results show that the energy-equivalent temperature model adopted in the present work has limitations
to accurately describe strong nonequilibrium distributions. However, there does not exist an alternative
model to accurately describe these nonequilibrium distributions. Also, in the low rotational and vibrational
states, where most of the number density exists, the nonequilibrium distributions agree with the Boltzmann
distributions.

In Fig. 3, the characteristic relaxation parameters of pτr and pτv calculated in the present work are
compared with Park’s model19 for N+N2. In the present work, the relaxation times of the rotational and
vibrational modes are defined by using the Landau-Teller form20 as

∂ẽr
∂t

=
ẽr(T )− ẽr

τr
, (6)

∂ẽv
∂t

=
ẽv(T )− ẽv

τv
, (7)

respectively. By equating Eqs. (6) and (7) with the results of the master equation calculations, the relaxation
time can be determined with the e-folding collision number method.11 By multiplying the pressure, one ob-
tains the characteristic rotational and vibrational relaxation parameters pτr and pτv, respectively. The figure
shows that the rotational relaxation time is faster than that of vibration initially. However, the differences of
relaxation time between the rotational and vibrational modes become small when the temperature increases.
At temperatures above 30,000K, the rotational and vibrational relaxation times are almost identical. In
comparison of vibrational relaxation with Park’s model,19 discernable differences are observed, especially
at temperatures above 2,000K. Park’s model is based on the empirical equation proposed by Millikan and
White,21 while the present results are based on the recent N3 potential energy surfaces15 calculated by an
ab-initio method.
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Table 2. Initial heat bath conditions for bound-free transitions.

Heating cases Cooling cases

Case T (K) Tr = Tv(K) Case T (K) Tr = Tv(K)

H1 6,000 1,000 C1 6,000 30,000

H2 8,000 1,000 C2 8,000 30,000

H3 10,000 1,000 C3 10,000 30,000

H4 15,000 1,000 C4 15,000 30,000

H5 20,000 1,000 C5 20,000 30,000

H6 25,000 1,000

H7 30,000 1,000

H8 40,000 1,000

H9 50,000 1,000

III. Master equation study for bound-free transitions

A system of the master equations with nonequilibrium chemical reactions can be constructed with the
state-to-state transition rate coefficients in the following form;

dni

dt
=

∑
j

K(i, j)nx

[
Qi

Qj
nj − ni

]

+K(i, c)nx

[
QiQtN2

Q2
NQ2

tN

exp

(
Di

kT

)
n2
N − ni

]

+Kp(i, c)

[
QiQtN2

Q2
NQ2

tN

exp

(
Di

kT

)
n2
N − ni

]
, (8)

dnN

dt
= 2

∑
i

K(i, c)nx

[
ni −

QiQtN2

Q2
NQ2

tN

exp

(
Di

kT

)
n2
N

]

+2
∑
i

Kp(i, c)

[
ni −

QiQtN2

Q2
NQ2

tN

exp

(
Di

kT

)
n2
N

]
, (9)

where the translational partition function Qt is defined as

Qt = V

(
mkT

h̄

)3/2

. (10)

The principle of detailed balancing relations for bound-free transitions are

K(i, c)
QiQtN2

Q2
NQ2

tN

exp

(
Di

kT

)
= K(c, i). (11)

By using Eqs. (8) and (11), a system of 9,391 master equations are constructed for 9,390 rovibrational states
of N2 and atomic species N.

In the computational method, an implicit time integration method accurate to third order along the
diagonal and second order off-diagonal elements is adopted in integrating the 9,391 ordinary differential
equations of Eqs. (8) and (9). In integrating these master equations, the implicit method is more time
consuming than the explicit method. However, in chemical reacting calculations, the implicit technqieu is
required due to the matrix stiffness.

The variation in number density of nN2 and nN are calculated for heating and cooling environments
in the isothermal heat bath conditions. In table 2, these initial heat bath conditions are tabulated. The
temperatures range from 6, 000K to 50, 000K in heating cases and from 6, 000K to 20, 000K in cooling cases,
and are studied for weak and strong nonequilibrium conditions. For all cases, initial number densities of N
and N2 are set to a constant of 1× 1018cm−3.
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Figure 4. Relaxations of rotational and vibrational temperatures, normalized average energies, and species
number densities in heating conditions.
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Figure 5. Relaxations of rotational and vibrational temperatures, normalized average energies, and species
number densities in cooling conditions.

In Fig. 4, the relaxations of the rotational and vibrational temperatures, normalized average energies,
and species number densities are presented for heating cases. Except for the H4 case, most of the chemical
reactionsoccur in the rotational and vibrational nonequilibrium processes and these nonequilibrium processes
are in a quasi-steady state (QSS) of rotational and vibrational energies. During this QSS period, the rota-
tional and vibrational temperatures and energies are at almost constant values, and the chemical reactions
occur rapidly. In the QSS period, the number density rate of change on the left-hand side in Eq. (8) is much
smaller than both the sum of all incoming rates and sum of all outgoing rates on the right-hand side. This
phenomenon results in the rotational and vibrational energies maintaining near–constant values.

In Fig. 5, the relaxations of the rotational and vibrational temperatures, normalized average energies, and
species number densities by master equation calculations are shown for the cooling cases. In these figures, it
is observed that the vibrational temperature and average energy are locally increased. This is because, in this
local period, the number density of high-vibrational energy level molecules is increased due to recombination.
This local increasing phenomenon was observed in the previous thermochemical nonequilibrium studies of
H2

2−.4 From the figures (a) to (c), it is also observed that the recombination of N2 by three-body collisions
of N+N+N mostly occur when there is equilibrium of the rotational and vibrational modes.

In the results of the master equation calculations for heating and cooling conditions, the reaction rate
coefficients of dissociation and recombination are derived as follows;

− d[N2]

dt
= Kf [N2]nx, (12)

−d[N ]

dt
= 2Kr[N ]2nx. (13)
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Figure 6. Comparisons of the calculated reaction rate coefficients with the shock-tube experiments22−26 and
estimated data.27,28

In the dissociation process for heating conditions, the reaction occurs in QSS of the rotational and vibrational
modes. The dissociation reaction rate coefficients in this QSS period can be derived by solving the set of
algebraic equations by using the QSS assumption. The rate of change of ni is defined as

dni

dt
=

∑
j

K(j, i)njnx −
∑
j

K(i, j)ninx −K(i, c)ninx +K(c, i)n2
Nnx −Kp(i, c)ni +Kp(c, i)n

2
N . (14)

From the assumption of QSS of rotational and vibrational energies, the left-hand side of Eq. (14) can be set
to be zero. By using normalized populations, φi = ni/niEq, φj = nj/njEq, and φN = nN/nNEq, Eq. (14)
can be rewritten as⎡

⎣∑
j

K(i, j) +K(i, c) +
Kp(i, c)

nx

⎤
⎦φi −

∑
j

K(i, j)φj =

[
K(i, c) +

Kp(i, c)

nx

]
φ2
N . (15)

On the other hand, the sum of all ni must equal the given number density of N2; that is,∑
i

niEqφi = nN2Eq
χ. (16)

In Eq. (15), we drop the first equation and substitute using Eq. (16). This approach is based on the intuition
that the QSS relation is least likely to be satisfied by the rovibrational ground state of N2. Then Eq. (15)
can be rewritten as a 9, 390× 9, 390 matrix;

M
φ = 
Cφ2
N + 
Dχ. (17)

The normalized population vector 
φ can be defined by using homogeneous 
φh and particular solutions 
φp as


φ = 
φh + 
φpφ
2
N . (18)

Then, the homogeneous and particular solutions are


φh = M−1 
Dχ, (19)


φp = M−1 
C, (20)
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Figure 7. Rotational and vibrational energy losses due to dissociation.

respectively. By using the normalized populations, the rate of change of nN can be rewritten from Eq. (9)
as

dnN

dt
= 2nN2nx

∑
i

K(i, c)
Qi

Qm
[φi + φ2

N ] + 2nN2

∑
i

Kp(i, c)
Qi

Qm
[φi + φ2

N ], (21)

where Qm is the molecular partition function of N2. By using the homogeneous and particular solutions of
Eq. (18), this equation can be derived as follows;

dnN

dt
= nN2nx

∑
i

2

[
K(i, c) +

Kp(i, c)

nx

]
Qi

Qm
φi,h

−n2
Nnx

∑
i

2

[
K(i, c) +

Kp(i, c)

nx

]
Qi

Qm

nN2Eq

n2
NEq

[1− φi,p]. (22)

Then, we can define the dissociation and recombination reaction rate coefficients in the QSS as

KfQSS = 2
∑
i

[
K(i, c) +

Kp(i, c)

nx

]
Qi

Qm
φi,h, (23)

KrQSS = 2
∑
i

[
K(i, c) +

Kp(i, c)

nx

]
Qi

Qm

nN2Eq

n2
NEq

[1− φi,p]. (24)

In the master equation calculations for the cooling cases, most recombined molecules are generated in the
equilibrium states. This means that the QSS assumption for the recombination process of N+N+N is not
applicable. In the present work, the dissociation reaction rate of QSS is calculated by using Eq. (23).

In Fig. 6, the calculated reaction rate coefficients for dissociation and recombination are compared with
shock-tube22−26 and theoretically estimated data.27, 28 In the comparisons of the dissociation reaction rates
of figure (a), the present reaction rates derived from the results of the master equations by using Eq. (12)
have similar values with the reaction rates calculated by QSS assumptions. However, these reaction rates
have discernable differences with the one-way rates.1 The one-way rate in the present work is defined as

Kfone−way =

∑
iK(i, c)Qi∑

iQi
. (25)

In the one-way rates, the nonequilibrium effects of bound-bound transitions of rotational and vibrational
modes cannot be presented. This limitation makes the discernable differences between the one-way reaction
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rates and reaction rates by QSS assumption and results of master equation calculations. In the comparisons
with the shock-tube data, the present reaction rates by QSS assumption and results of master equation
calculations have similar values with the experiments by Appleton et al.24 In figure (b), the comparison of the
recombination reaction rates is presented. This figure shows that the present reaction rates of recombination
process fall within the error bar of the shock-tube experiments by Appleton et al.24

In Fig. 7, the rotational and vibrational average energy losses due to dissociation are presented. The
average energy loss in the present work is defined as

ẽxloss
=

∑
i[K(i, c)nx +Kp(i, c)]ex(i)niEq [φ

2
N − φi]∑

i[K(i, c)nx +Kp(i, c)]niEq [φ
2
N − φi]

, (26)

where x represents rotational or vibrational modes. This average energy loss is normalized by the dissociation
energy of N2. In the figure, it is observed that the normalized vibrational energy loss is about 0.8 at 10, 000K
and this value is approaches 0.5 when the temperature increases up to 50, 000K. In the normalized rotational
energy loss, the value is about 0.25 at 10, 000K and approaches 0.4 when the temperature increases. This is
because, at low temperatures, most of the dissociation occurs at high-vibrational and low-rotational energy
levels. When the temperature increases, the average dissociated energy levels move to lower vibrational and
higher rotational energy levels.

IV. 1-D post-normal shock flow calculations

The system of master equations are coupled with one-dimensional flow equations to analyze the ther-
mochemical nonequilibrium of N2 in 1-D post-normal shock flows. In the present work, electron collision,
radiative heating, and electronic excitation and ionization of heavy particle are ignored to observe the rota-
tional and vibrational relaxations and chemical reactions by heavy particle collisions. Pure neutral N and
N2 in the electronic ground state is considered in the flow calculations. The mass, momentum, and energy
conservation equations in the steady-state are derived as

1

ρ

dρ

dx
= − 1

u2

d

dx

(
u2

2

)
, (27)

d

dx

(
u2

2

)
= −1

ρ

dp

dx
, (28)

u
dh

dx
= 0, (29)

where, the pressure p(dyne/cm2) and enthalpy h(erg/g) are defined as

p =

N,N2∑
s

ρNaγskT, (30)

h =

N,N2∑
s

hf
sγs +

5

2
NakT

N,N2∑
s

γs + (Er + Ev)γH2 +
u2

2
, (31)

respectively. The species conservation equations of N2+N2 and N+N2 can be written as follows;

u
dγN
dx

= −2

(
dγN2

dt

)
, (32)

u
dγN2

dx
= −KfN2+N2

ρNaγ
2
N2

+KrN2+N2
ρ2N2

aγ
2
NγN2

+
∑
i

K(i, c)

[
QiQtN2

Q2
NQ2

tN

exp

(
Di

kT

)
ρNaγ

2
N − γi

]
ρNaγN

+
∑
i

Kp(i, c)

[
QiQtN2

Q2
NQ2

tN

exp

(
Di

kT

)
ρNaγ

2
N − γi

]
. (33)

In the present work, the two-temperature model of the dissociation reactionKf is adopted for N2+N2. This is
because there does not exist a model to describe the rotational nonequilibrium effect in dissociation processes
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Figure 8. Comparisions of rotational and vibrational relaxations between N+N2 and N2+N2.

for N2+N2. However, in the other reaction process for N+N2, the rotational and vibrational nonequilibrium
effects are fully considered by coupling the system of master equations. In the present work, the Kf proposed
by Baulch et al.29 is adopted and this reaction rate is KfN2+N2

= 6.1 × 10−3T−1.6
a exp(−113200/Ta). The

value for Kr is determined from the relation with the equilibrium constant as Ke = Kf/Kr. In describing
the rotation-to-vibration energy transfer by N2+N2, Park’s model11 is adopted. The rotation-to-vibration
energy transfer by N+N2 is described by coupling the system of the master equations. Then, the rotational
and vibrational energy relaxations are evaluated by using the following equations;

u
dEr

dx
=

ẽr(T )NaγN2 − Er

τr
+ fRV

Ev − ẽv(Tr)NaγN2

τMW
+ΨrDN2Na

(
dγN2

dt

)
N2+N2

+
∑
i

eri

⎡
⎢⎢⎢⎢⎢⎣

∑
j K(i, j)

[
Qi

Qj
γj − γi

]
ρNa

2γN

+K(i, c)

[
QiQtN2

Q2
N
Q2

tN

exp
(
Di

kT

)
ρNaγ

2
N − γi

]
ρNa

2γN

+Kp(i, c)

[
QiQtN2

Q2
N
Q2

tN

exp
(
Di

kT

)
ρNaγ

2
N − γi

]
Na

⎤
⎥⎥⎥⎥⎥⎦ , (34)

u
dEv

dx
= (1− fRV )fD

ẽv(T )NaγN2 − Ev

τMW + τc
+ fRV

ẽv(Tr)NaγN2 − Ev

τMW
+ΨvDN2Na

(
dγN2

dt

)
N2+N2

+
∑
i

evi

⎡
⎢⎢⎢⎢⎢⎣

∑
j K(i, j)

[
Qi

Qj
γj − γi

]
ρNa

2γN

+K(i, c)

[
QiQtN2

Q2
N
Q2

tN

exp
(
Di

kT

)
ρNaγ

2
N − γi

]
ρNa

2γN

+Kp(i, c)

[
QiQtN2

Q2
N
Q2

tN

exp
(
Di

kT

)
ρNaγ

2
N − γi

]
Na

⎤
⎥⎥⎥⎥⎥⎦ . (35)

In Park’s model,11 the fractional contribution of the rotation-to-vibration energy transfer to the total
energy transfer for N2+N2 is set to a constant of 0.4 and this value is derived from fRV = kT/(kT +1.5kT ).
In the present work, unlike Park’s model, the fractional contribution fRV is determined by

fRV =
(ξv/2)kT

(ξr/2)kT + 1.5kT
. (36)

The normalized rotational and vibrational energy losses, Ψr and Ψv are set to constants of 0.4 and 0.5,
respectively. From the results of master equation calculations in Section III, we observe that the rotational
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Figure 9. Comparisons of the present rotational and vibrational temperatures and species mole-fractions with
the shock-tube data by Sharma and Gillespie9 and AVCO32 and with the calculated results of 2-T model.

and vibrational losses approach these values. From the recent master equation studies for H2
2−,4 the energy

losses approach similar values as 0.35 and 0.5 for the rotational and vibrational modes, respectively. The
diffusion correction factor1 fD in vibration-to-translation transfer is defined as

fD =

∣∣∣∣ Ts − Tv

Ts − Tvs

∣∣∣∣
s−1

, (37)

where s is an arbitrary parameter given as 3.5×exp(−5, 000/Ts) for N2. Ts and Tvs are the translational and
vibrational temperatures immediately behind the shock wave. In Eqs. (34) and (35), the unknown variable
is the rovibrational concentration γi. Unfortunately, we cannot directly calculate γi from the state-to-state
kinetics, because of the lack of knowledge about the state-to-state transition rates for N2+N2. In the present
work, this rovibrational concentration γi is determined from the Boltzmann distributions according to the
nonequilibrium temperatures as follows;

γi =
η(i, Tr, Tv)∑
i η(i, Tr, Tv)

γN2 , (38)

η(i, Tr, Tv) = εgegsJ(J + 1)exp

[
−er(i)

kTr
− ev(i)

kTv

]
. (39)

In Fig. 8, the rotational and vibrational relaxation parameters for N+N2 and N2+N2 are compared.
In rotational relaxations for N2+N2, the rotational relaxation by Parker5 is evaluated theoretically for the
rigid-rotor model and is much faster than the rotational relaxation of Park.11 The rotational relaxation by
Park is obtained from the existing state-to-state rotational transition rate coefficients with the expression
proposed by Rahn and Palmer.30 In the present work, rotational relaxation proposed by Park is adopted
to calculate the post-normal shock flows. In the vibrational relaxations for N2+N2, the collision limited
relaxation time1 τc is added to the Millikan-White relaxation time21 τMW to account for the fact that the
vibrational excitation rates can not exceed the elastic collision rates. This collision limited relaxation time
is defined as

τc = σv

(
50, 000

T

)2

, (40)

where σv varies from ∼ 1016 to ∼ 1018cm2. The widely used value is 3.0×1017cm2. However, the vibrational
relaxation time with the collision limiting cross section of 3.0×1017cm2 is so much faster than that of Park’s
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Table 3. Freestream conditions for 1-D post-normal shock calculations.

Case p∞(Torr) T∞(K) ρ∞(g/cm3) h∞(MJ/kg) u∞(km/sec) M∞
45.5km (C1) 1.30 274 2.10x10−6 8.79 4.0 10.86

54.0km (C2) 0.43 270 7.28x10−7 18.8 6.0 16.41

63.0km (C3) 0.15 270 2.60x10−7 32.8 8.0 21.89

CEV 0.10 300 1.497x10−7 50.8 10.0 25.96
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Figure 10. Rotational and vibrational temperatures and species mole-fractions for 1-D post-normal shock
calculations.

rotational relaxation model11 above 10,000K. In the present work for N+N2 and the previous H2 studies,
the vibrational and rotational relaxation times become identical when the temperature increases. In the
present work, the collision limiting cross section is modified as a constant of 3.0 × 1018cm2 to satisfy these
relaxation patterns. This cross section is determined through comparisons with the shock-tube data of the
Millikan and White21 and Appleton.31

In the present work, a one-dimensional post-normal shock flow code is developed by using Eqs. (27) to
(40). This flow code is constructed in two-parts; in the first part, the downstream conditions are determined
by using the Rankine-Hugoniot relation for a frozen flow. In the second part, thermochemical nonequilibrium
flows are calculated by the coupled equations of the one-dimensional flow and the system of master equations.

In Fig. 9, comparisons of the present rotational and vibrational temperatures and species mole-fractions
with the shock-tube experiments by Sharma and Gillespie9 and AVCO32 and with the calculated results of
the standard 2-temperature model are presented. In the 1-D post-normal shock calculations, the ambient
pressure is set to 1.0Torr and the shock velocity is 6.2km/sec. The free-stream temperature is 300K. In
this case, the total enthalpy of the free-stream is about 20MJ/kg. In figure (a), in the present calculation,
the translational temperature behind the normal shock is about 24, 300K and the rotational and vibrational
temperatures agree well with the measured temperatures by Sharma and Gillespie. After converging to the
equilibrium temperature, where the distance is 0.3cm, the present temperature is slightly underestimated
compared to the AVCO data. This underestimation is produced from many uncertainties, like the assumption
of electronic ground state of N2 and from the omission of electrons and ionization. However, the present
results show more reasonable results for the rotational and vibrational nonequilibrium in the post-normal
shock flows than the results of the two-temperature model. In the two-temperature model, the trans-
rotational temperature behind the post-normal shock is about 21, 000K and the vibrational temperature is
signifcantly higher than measured vibrational temperature. In figure (b), it is shown that the dissociation of
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N2 rapidly occurs from 0.1cm to 0.3cm in the present calculation. This is because collision of N triggers the
dissociation of N2 much more than the collision of N2 . However, in the results from the two-temperature
model, the dissociation of N2 occurs continuously.

In Table 3, initial conditions of several post-normal shock flows are tabulated. The free-stream conditions
of cases C1 to C3 are constructed to be similar to the high-speed return conditions at altitudes from 45.5km
to 63.0km of the Earth. In the present work, the simplification of pure N2 without electronic excitation,
ionization and radiative heating is adopted to calculate the post-normal shock flows. While this is not an
accurate re-entry calculation, it is enough to observe the rotational nonequilibrium of N2 in each re-entry
condition. In the present work, the post-normal shock flow for a CEV condition is also calculated.

In Fig. 10, the temperatures and mole-fractions of the post-normal shock calculations are presented. In
the C1 case, the rotational temperature rapidly approaches the translational temperature. Hence, in the C1
case, the rotational mode can be treated to be in equilibrium with the translational energy. However, for
the C2, C3, and CEV cases, the rotational and vibrational nonequilibrium is obviously shown. In the C2
case, the rotational relaxation is slightly faster than the vibrational mode and in the C3 and CEV cases, the
rotational and vibrational relaxations are almost identical. In figure (b), it is observed that the dissociation
of N2 occurs rapidly, when the dissociated N is first generated. In figures (a) and (b), it is also observed that
the heavy particle collisions by the dissociated N more significantly affects the rotational and vibrational
relaxations of N2 than the collisions by N2 for the C3 and CEV cases.

V. Conclusion

Analyses using the master equation are performed for N+N2 with the complete sets of the state-to-state
transition rates from the NASA database. In the bound-bound transition studies, rotational nonequilibrium
is clearly observed. Especially at temperatures above 30, 000K, the relaxation rate of the rotational mode
is almost identical with that of the vibrational mode. In the bound-free transition studies, it is shown that
the dissociation of N2 occurs in the quasi-steady state of rotational and vibrational energies. However,
recombination occurs in an equilibrium of the rotational and vibrational modes. The dissociation and re-
combination rate coefficients are determined from the results of the master equation calculations and the
QSS assumption. These calculated reaction rate coefficients agree well with shock-tube experimental data.
For the energy loss due to dissociation, it is observed that the normalized rotational and vibrational energy
losses approach constants of 0.4 and 0.5, when the temperature increases. The system of master equations
are coupled with one-dimensional flow equations to analyze the relaxation of N2 in post-normal shock flows.
In the comparisons with the shock-tube experiments, the present model approximately reproduces the mea-
sured rotational and vibrational temperatures. In the post-normal shock calculations for various re-entry
conditions, the results lead to important conclusion that the rotational mode of N2 needs to be treated as a
separate nonequilibrium mode in high speed re-entry calculations.
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