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The flamelet approach is considered a viable framework to the modeling of homogeneous 
charge compression ignition (HCCI) engines under stratified mixture conditions. However, 
there are several issues that need further improvement. In particular, accurate 
representation of the scalar dissipation rate, which is the key parameter to connect the 
physical mixing space to the reactive space, requires further investigation. This involves a 
number of aspects: (i) probability density functions, (ii) mean scalar dissipation rates, and 
(iii) conditional scalar dissipation rates, for mixture fraction (Z) and total enthalpy (H). The 
present study aims to assess the validity of existing models in HCCI environments both in 
the RANS and LES contexts, and thereby suggest alternative models to improve on the 
above three aspects. 

Nomenclature 
   Z = mixture fraction 
  H = total enthalpy 

Z  = Z scalar dissipation rate 

H  = H scalar dissipation rate 


Z  = Mean Z scalar dissipation rate 


H  = Mean H scalar dissipation rate 


ZH  = Mean Z-H cross scalar dissipation rate 

2Z   = Variance of Z 
2H   = Variance of H 
  = Mean turbulent kinetic energy dissipation rate 
  = Mean turbulent kinetic energy 
 

I. Introduction 
omogeneous charge compression ignition (HCCI) engine technology shows promises as an advanced internal 
combustion (IC) engines in favor of lower NOx and soot emissions and higher efficiencies. This has led to an 

ongoing interest in HCCI engine research for over than two decades [1,2]. Considering that the mixture field within 
the HCCI engines is nearly homogeneous, full-cycle engine simulations based on the multi-zone models have been 
conducted with success [3-6]. More recently, however, mixture stratification by exhaust gas recirculation or residual 
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gas trap has been  extensively considered as a means to achieve combustion phasing control and smoother pressure 
rise. Therefore, fundamental studies have been conducted to understand combustion characteristics under stratified 
mixture conditions [7, 8]. Ultimately, these effects must be properly accounted for in engine combustion simulations 
based on Reynolds-averaged Navier-Stokes (RANS) or large eddy simulation (LES) approaches. As a viable 
submodel for combustion processes in stratified HCCI conditions, flamelet models have been proposed as an 
improved alternative to the multizone models [9, 10].  

Unlike the name may suggest, the flamelet approach [11] should be viewed as a general framework of describing 
chemical reactions in a reduced-dimensional space in which conserved scalar variables are used as the independent 
coordinate variables. The multi-dimensional computational fluid dynamics (CFD) simulation only considers 
transport equations for velocity and nonreactive scalar variables. To accurately describe highly transient events such 
as auto-ignition encountered in HCCI engines, the representative interactive flamelet (RIF) approach [12] solves the 
unsteady flamelet equation in the reactive space in conjunction with the time integration of the CFD solver. As for 
the conserved scalar variables, the mixture fraction, Z, is commonly used as the one-dimensional conserved scalar. 
To account for the nonuniform enthalpy levels due to exhaust gas mixing and heat losses, the total enthalpy variable, 
H, can be added to construct a two-dimensional flamelet equation in the Z-H space [10]. One of the key parameters 
in the flamelet equation is the scalar dissipation rate, defined as 

2
2Z Z    (1) 

where α is the diffusivity.  For the two-dimensional flamelet approach, additional scalar dissipation rate for H needs 
to be defined as 

2
2H H    (2) 

The scalar dissipation rate is the key parameter that connects the physical transport space and the reactive space. 
At each time step of the numerical solution, at first the equations in the physical space are solved to obtain the mean 
scalar dissipation rate at stoichiometric conditions. This is then used to calculate the conditional scalar dissipation 
rate through an analytical model [13, 14]. Conditional scalar dissipation rate is further used as an input to the 
flamelet equations (in the transformed space). The output parameters from the transformed space (species mass 
fractions as a function of Z and H) are then fed into the physical space to complete one time step cycle.  

Although flamelet models have been successfully used in modeling HCCI combustion under stratified 
conditions, there still remain open issues. In particular, there still has not been a thorough study to investigate 
modeling of the scalar dissipation rate. Modeling scalar dissipation rate involves a number of aspects, the most 
important being the probability density functions, mean scalar dissipation rates, and conditional scalar dissipation 
rates for Z and H.  

Therefore, the objectives of the present study are to validate various existing models, and to propose improved 
alternatives for:  

a. Probability density functions of Z and H 
b. Mean Z and H scalar dissipation rates 
c. Conditional Z and H scalar dissipation rates 

As an a priori test, two-dimensional direct numerical simulation (DNS) of auto-ignition of a turbulent H2-air 
mixture with detailed chemistry has been used for validation [15]. DNS simulations considered four parametric 
cases in terms of mixture inhomogeneities imposed as the initial condition: 

a. Temperature inhomogeneities only (CaseA) 
b. Uncorrelated temperature and compositional inhomogeneities (CaseB) 
c. Negatively-correlated temperature and compositional inhomogeneities (CaseC) 
These cases represent vastly different combustion modes (homogeneous ignition, premixed flame propagation 

and sequential ignition). Therefore, the DNS data serve as a good reference to test the models on a multitude of 
different engine operation scenarios.  

The first section of this paper deals with the validation of the existing models for pdfs of Z and H. In the second 
section, we validate the existing model and propose a new model for mean Z and H scalar dissipation rates. Next, we 
investigate the cross scalar dissipation rates, and propose model improvements for them. Subsequently, the 
performance of the existing models in the context of LES will be examined. The key findings from this study are 
summarized in the conclusions section.  
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regime, but as soon as the ignition fronts form, it becomes non-monotonic. The reason was identified as the increase 
in local scalar dissipation rate due to differential diffusion of hydrogen from the unburned to burning region. To 
verify that differential diffusion is indeed the cause, we ran the same test cases with unity Lewis numbers for all 
species, and found the constant of proportionality to be 3.0 for both Z and H throughout the entire ignition event. 
This implies that differential diffusion plays a very crucial role in mixing, and it shold be properly accounted for in 
the the flamelet equations. The results also suggest that even with the unity Lewis number assumption for all 
species, C should be taken as 3.0 instead of 2.0 under HCCI conditions.  

The conditional scalar dissipation model development has two-fold challenges: a) To properly account for the 
scaling factor, and b) To account for the shape of the assumed function f(Z). By discarding the differential diffusion, 
the scaling factor was properly accounted for by the 1D-infinite mixing layer model. Differential diffusion was also 
found to be responsible for the skewness of scalar dissipation rates towards higher Z values. It was identified that the 
shape of the DNS profile is twin-peaked, whereas the model profile has a single peak at the center. To propose a 
suitable profile to combat this inconsistency is our future research work.  

For filter size corresponding to LES, it was revealed that turbulence is completely uncorrelated with mixing, and 
that the mean scalar dissipation rates can be safely modeled as being proportional to the corresponding scalar 
variances, the constant of proportionality turning out to be the same for Z and H. Based on this, a new model for 
cross scalar dissipation rate was proposed and it gave excellent correlations. 
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