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This paper describes an autonomous framework for determining a robotic manipulator’s 

optimal actions in real-time when interacting in close physical proximity to a human in a 

shared workspace environment.  This framework allows the robot to purposefully choose to 

avoid physical and mental conflicts with a human companion while each agent performs 

tasks to complete their respective, separately-assigned goals.  We pose scenarios in which the 

human does not need to divert attention to internally model the robot’s behavior, or track or 

acknowledge the robot’s actions during operations.  The robot is meant to unobtrusively 

‘work around’ the human rather than directly collaborate on task completion.  The 

distinction of this work is in its use of human intent prediction (HIP) as a key factor in robot 

action selection for task-level planning.  We choose to model HIP with a Markov Decision 

Process (MDP).  Human state data is input into the HIP MDP policy that then outputs the 

predicted human intent, which we define as the best-matched or most-likely in-progress and 

future action-choice(s) that the human is or will be pursuing to complete mission goals.  

Predicted human intent is then used by a second MDP to determine the optimal policy with 

respect to the robot’s action-choice.  We present an autonomous framework that integrates 

the HIP MDP and robot action-choice (RAC) MDP to support autonomous close-proximity 

operations and propose offline and online (scaled) formulations of the two MDPs.  During 

real-time policy execution, once the optimal action for the robot to take is determined, it is 

passed to the robot’s path planner to be translated from a task-level command to a 

trajectory and motion primitives, which are then given to a low-level controller to enact.  We 

evaluate our HIP MDP in simulation, and find that the policy output from our system is 

consistent and smooth across small changes in parameter values. 

Nomenclature 

γi, ϕi, φi, αi
j, 
βi

j 
= known constants for all i and j 

A  = set of actions for the MDP, { }anA ,...,2,1=  

A
i
  = history of recently executed actions in state i, { } AaaaaA i

k

i

n

iii

h
∈= ,,...,, 21 . 

Bz,k  = ),,|1( k

iij

z aFsgp = , the probability of a goal objective j

zg  completing by execution of the action 

ak and having high-priority interruptive goal flags F
i
 in state s

i
  

���  = environmental data, ��� = ��, �� 
E    = object k status in environment, � = 	 
� ,� … , 
��

� �, where nl  is the number of tracked objects 

 

F
i
  = set of binary flags for high-priority interruptive goal states (on/off) in state i, { }i

n

iii

f
fffF ,...,, 21=  

G
i
  = set of binary flags indicating goal status (complete/incomplete) in state i, { }i

n

iii

g
gggG ,...,, 21=  

Ht, t+T  = recorded time history of human actions from the last change in model policy 

L    = list of object locations, � = 	 
�� ,��� … , 
���
��� �, where nl is the number of objects being tracked 

M    = discretized safety metric, obtained via calculations involving danger metric and spatial zones Z 
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Pz  = )|1(
ij

z Agp = , the probability of a goal objective 
j

zg  completing given an action history i
A  

Pz,x  = ),|1( x

ij

z aAgp = , the probability of goal objective 
j

zg  being or becoming 1 (completed) due to 

occurrences of action xa  in action history i
A  of state is  

R(s
i
)  = reward function for state s

i
 

S  = set of MDP states { }sn
sssS ,...,,

21= , where { }iiii
FAGs ,,=  

T(s
i
, ak, s

j
)  = ( )k

ij
assp ,| , probability of transitioning from state s

i
 to s

j
 by executing action ak 

xx
hh &vv

,   = position and velocity of the human agent’s wrist, where [ ] [ ]yxxyxx
hhhhhh
&&&vv

== ,  


��
���

   = location of object k, 
��
��� = � 
�

��� ��
��� ��

��� � 
i

X    = subset of current and/or future-predicted action-choices 

Z  = set of spatial zones for the MDP, { }znZ ,...,2,1=  

i
Z   = history of recently visited zones in state i, { } ZzzzZ

i

k

iii ∈= ,, 21  

I. Introduction 

uman-robot collaboration scenarios often practically assume the agents’ workspaces have little to no overlap.  

However, this is an extremely conservative measure that can constrain a mission compared to what would be 

possible if workspaces could be safely and effectively shared.  Modern sensor systems can now enable robots to 

reliably sense nearby humans or, more generally, moving objects in real-time with enough accuracy to support safe 

close-proximity operations.  Further, this information can be integrated into the robot’s decision-making processes 

to allow the robot to customize its reactions based on its companion’s activities.  Specifically, we propose a two-step 

robot decision-making process for proximity operations.  First, the robot predicts the intent of its human companion 

based on a priori knowledge and real-time observations.  Second, the robot uses this intent prediction along with its 

own task-level goals to select the optimal next action or action sequence.  Selected actions are then executed and the 

cycle repeats. 

Previous work shows that human action recognition is possible through the use of Markov Decision Processes 

(MDPs)
1-9

, while human intent can be determined with partially-observable MDPs (POMDPs)
10-12

.  In this paper we 

utilize a MDP to simplify computational overhead, and go one step further to predicting future human intent for 

robot decision-making, as well.  There has been similar work recently in robotic action-choice done in a 

collaborative setting, using MDPs to learn and help deconflict collaborative activities by learning and agreeing to a 

common task assignment distribution between a human and robot via agreement on a shared mental model (SMM), 

when both of the agents are capable of performing all actions in a collaborative task in an overlapping workspace, 

and would like to share the work.
13

  Our research explores an alternative direction – a more simplified task model 

that does not require direct human-robot collaboration for task accomplishment, but a more complex constraint to 

minimize overhead for the human by eliminating all robot supervision and communication demands, with a focus on 

safety.  In this paper we describe a general approach for translating a specific proximity operations scenario – 

environment, goals, constraints, agents, actions, and sensory input – into a domain model that a robot can understand 

and use.  Our representations below correspond to a simple example scenario that is discussed in more detail in our 

previous work.
14

 

We propose a two-step decision process that allows a robot to determine the locally-optimal action-choice for 

overall human-robot team efficiency and productivity with constraints imposed to maintain a minimum level of 

safety, where safety translates to collision avoidance in this work.  We describe the information transfer between 

architectural modules and specifics of the MDP models required for human intent prediction (HIP) and action 

choice.  We describe an approach to transform sensor data to a form useful for robot decision-making and then 

briefly discuss how the action-choice output is handled once calculated.  We present results from a HIP MDP for a 

simulation-based case study of a space-based human robot interaction (HRI) scenario in which the robot and human 

have distinct but physically-overlapping tasks to complete. 

II. Problem Statement, Assumptions, Definitions, and Simplifications 

To enable locally-efficient team operations that meet a guaranteed minimum level of safety (avoiding conflict 

and collision between agents), the robot must sense its human companion, process sensed information to extract the 

human’s current state, predict the human’s intent, and then use that prediction to inform the robot’s action choice.  

H
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In order to do this, we propose the following hypotheses, and explain their supporting basis in our application space.  

Assumptions required to simplify the problem in this paper are also stated. 

 

1. A robot can predict companion intent by identifying actions based on sensor observations without relying on 

explicit communication, then recognizing those observed actions as part of a sequence. 

In a space environment, the most-likely structured action sequences would be known in-advance for EVA 

operations.  For IVA collaboration, action sequences are less certain as the human is less restricted in the 

environment – no EVA suit limiting motion, a wider visual field and tactile cues, and so forth.  However, long-term 

observation of a human companion’s behavior could inform the prediction of action sequences. 

We choose to restrict our human state data to observable (sensed) positions and motions to focus on interaction 

cases without explicit communication (e.g. verbal communication, physical gestures).  We also simplify our human 

model by not including the human’s model of the robot state, as such state features would not be directly observable 

thus would require our MDP to become partially-observable.  Machine learning can be used to determine bundles of 

motion-trajectories – or discrete zones in physical space – that correspond to each observable and modeled action 

sequence a human companion can execute. 

In addition to assuming a closed world and full observability, we assume that the robot has sufficient memory to 

store an n-action history, for a finite but potentially large n.  This state history allows the robot to best estimate the 

specific goal-directed action sequence its human companion is executing.  We assume that human subject data exists 

for specifying the relevant human model parameters, or that a process exists for observing the human to iteratively 

improve parameter estimates, and that we can calculate viable models and procedures or policies offline prior to 

online use.  We assume that this offline-calculated information can be stored in an online-searchable database so that 

updates – changes in what previously-calculated information is selected for use – can be made in real-time when 

necessary, and that a mechanism exists for performing these updates in a timely fashion.  We discuss an update 

process for this in Ref. 15. 

 

2. The use of predicted companion intent results in improved real-time robot action-choices over those made 

without it, when the relative worth of the intent data is known and both are supplied to a procedure derived from a 

‘good-enough’ domain model. 

We define ‘improved robot action-choice’ as the optimal choice for the goal completion needs of the entire 

human-robot team, rather than only the robot’s own goal completion needs, assuming that robot tasks do not have 

higher-priority than human tasks.  In our HRI scenario, the robot is meant to ‘work around’ the human to minimize 

the human’s overhead, so this assumption is valid.  From previous human subject testing, we have determined that, 

in our ground-based scenario, the inclusion of the robot in shared-workspace operations without explicit 

communications did not significantly reduce human productivity, even when only minimal conflict-avoidance 

algorithms were used for ‘intelligent’ task-selection.
14,16

  This implies that so long as the robot causes only minimal 

interference or conflict with the human, the human would be expected to have similar productivity as if the robot 

was not there, so any additional goals accomplished by the robot would improve overall team productivity. 

We assume that the inclusion of predicted intent, when it is consistent and trustworthy enough to be usable, will 

not make the action-choice less optimal than the use of current state data alone.  Generally, the addition of more and 

better data to a model or process that can include a measure of data trustworthiness will improve the results. 

 

3. If the human’s actions can be classified as rational with divergence within a known bounded uncertainty, a 

model can be found with parameters that will give a ‘good-enough’ fit, and a minimum level of safety can be 

assured in-advance of robot operations. 

From basic control theory, we know that imperfect models can still be useful so long as the uncertainty (error) is 

characterizable and bounded below a certain threshold.  Further, if the exerted control can keep the system stable 

about the equilibrium set point at which the model parameters were identified, and the stable region is large enough, 

an adaptive controller can be used, and the controller can transition to follow the progression of system state. 

In our chosen space scenario, humans have been trained to make highly rational choices in expected ways.  

Because the human’s choices are rational, it follows that there must be a set point about which a well-structured 

model of that human’s behavior can be fitted, even if that equilibrium progresses over time.  Also, the uncertainty 

inherent in any less-than-perfect model of such an astronaut’s rational choices should be characterizable within a 

bounded error. 

Safety is defined as “the condition of being protected against physical… or other types or consequences of 

failure, damage, error, accidents, harm or any other event which could be considered non-desirable, [or otherwise] 

the control of recognized hazards to achieve an acceptable level of risk.”
17

  We categorize three different types of 
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safety in our robotics research:  mechanical system, software system, and external real-time.  The first two are 

‘internal’ faults, the third external.  Mechanical system safety failures include physical device failures and 

consequences of wear-and-tear on the joints, linkages, and so forth.  Software system safety failures include 

communication issues between devices, sensor dropout, unaccounted-for data signal lag, electrical component 

failure, loss of power, and bugs in the operational code.  We assume the first and second types of safety are assured. 

We define ‘external real-time safety’ faults as occurring during interactions of the robot with its surroundings, 

with other agents, or with itself.  This includes physical collisions with agents or the environment, occlusions, to 

being occluded.  We are interested in scheduling process difficulties resulting from aspects of this type of ‘external’ 

safety, which are generally best mitigated by prior contingencies or replanning on-the-fly, via a cognitive process. 

We consider safety a priority and guarantees can be made for real-time operations, but this is dependent on our 

models.  Unfortunately, no efficiency guarantees can be made when the human is never explicitly communicated 

with, and therefore cannot be ‘forced’ to act (or not act) in a certain manner. 

In guaranteeing a minimum level of safety, the idea of bounded-input bounded-output stability is useful.  With 

the closed-world assumption, the set of all possible input and output values are known and characterized as finite 

sets for discrete quantities, bounded and mapped to a finite set of intervals for continuous quantities.  If we can also 

characterize the update rate and the noise (measurement error) for the sensor data, and if the level of noise is not 

comparable to the level of rationality exhibited by the human, then not all modeled state possibilities are equally 

likely.  We can determine what the most likely human state and state outcomes are.  With human intent prediction, 

we do so by determining the statistics for consistency and uncertainty in each rational human action-choice, using a 

solution method that supports uncertain reasoning.  We can then plan the robot’s actions to take full advantage of 

this and choose balanced safety-efficiency tradeoffs by injecting the groundwork for it into the robot decision 

process formulation. 

With sufficient lookahead, the robot can choose actions that are either always within an acceptable risk level, or 

determine offline and in-advance all cases of unacceptable risk and then plan outcomes to avoid those bad states.  In 

this work we presume sufficient lookahead is possible through offline MDP policy optimization; in future work 

online adaptation of model parameters requiring online optimization will require further analysis of lookahead 

constraints. 

III. Problem Formulation 

Under the assumptions and simplifications above, we discuss two MDP systems that allow a robot to exploit 

knowledge of the human’s state (obtained without explicit communication) to determine a companion’s current state 

and predict their next action.  The robot then uses this information, along with self-knowledge of its own state and 

knowledge of the traversable environment, to intelligently choose its own action.  The context of this deliberative 

process is discussed below, before we focus on the main MDP formulations. 

A. Solution Architecture and Use of Markov Decision Processes 

We want the robot to act as autonomously as possible.  This requires that the robot sense and understand its 

environment and the human agent in it, predict human intent and use that intent to inform its action-choice 

procedure, and then send the proper command signals to enact the action it chose in a reasonable, safe, and timely 

manner.  To support this level of autonomous control of the robotic system, we propose a three-tier architecture 

(3T).
18-20

  At the highest level is the decision-making process, where deliberative cognition takes place;  the next 

level holds the task-selecting reactive executor where optimal policies are utilized to make the robot’s action-choice.  

The lowest level includes a local path-planner and a reactive feedback controller that interface with the robot 

hardware.  We focus on the decision-making process that creates the policies used by the reactive executor with 

consideration of the form and content of information passed between internal modules – what can and cannot be 

calculated offline for later use.  Figure 1 shows the detailed architecture. 

We use an MDP framework to capture and model uncertainty.  Although we assume fixed models in this work, 

more accurate prediction of the next human action may be achieved by accounting for specific user preferences and 

preference shifts over time.  This can be done by updating the choice of model parameters used through learning 

logic procedures that evaluate observed behaviors using implicitly communicated human action (state) data.
15

  We 

divide the problem into two separate MDPs to address the curse of dimensionality that occurs when both intent 

prediction and action selection are integrated into a single MDP.  Instead, we assume that we can break down the 

formulation into a serial chain of subproblems, with each module independent of all previous others.   

In this problem, we break our deliberation processes into three basic components: 
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• A translator 
h
T that maps raw sensor data of the human’s physical location and dynamic pose to zones in 

continuous physical space;  we simplify our problem further by assuming that these zones are unique and 

disparate, thus additionally map one-to-one to the set of (discrete, symbolic) action-states of the human, the 

translator’s output. 

• A MDP that creates a policy we call human intent prediction (HIP), which takes as input the human’s current 

action-state, the (assumed fully-observable) human’s current goal, and the current environmental state.  The 

computed policy specifies the human’s most likely next action-choice. 

• A MDP that creates a policy we call the robot action-choice (RAC), which takes as input the human’s current 

and predicted action-state, the robot’s current state, and additional environmental state data.  The computed 

policy gives the most locally-optimal action-choice for the robot to take that will satisfy the minimum safety 

constraints while maximizing system-level (team) efficiency. 

MDP deliberative process

(offline policy calculation)

Robot

task selection (reactive executor)

action determination

communication

to human (n/a)

Negotiator

Robot Action-Choice

(MDP policy)

���

path-planning, trajectory-following

low-level actuator-control behaviors


�� � , 
��� ���


� � , 
�� ���

� � �, �

!� ,� "�#
��

$�

$�

safety 

metric

%

&��� , '���

&� , '�

domain knowledge

!���� , ! � , (���� , (��� , )� � , ) ��� 

Environment
human h

object(s) l

"�#
� 

*� �, * � ,
! �

HIP (MDP 

policy)

&�� , "�#+,
��

"�#+,+-
��

 
Figure 1. Multi-layer Control Architecture for Physically-Proximal HRI with Human Intent Prediction 

 

Before operations begin, the interaction scenario is evaluated and the domain knowledge is determined to set up 

the state space used in the MDP deliberative process.  This includes the system goals and tasks, !���� , !��� , the 

system priorities and breakdown of work, (���� , (��� , and system constraints and conflicts, )� ���, ) ���.  In 

all notation, left superscript h represents the human, r represents the robot, and E represents the environment.  These 

sets of information inform the internal setup of the translator modules, 
E
T and 

h
T, shown as grey diamonds in Figure 

1, which convert the sensor data to a discrete-valued state variable form.  The translators are also informed by 

human subject data, and the 3D workspace is segmented into a finite set of zones that become discrete state feature 

values for the MDP.  The deliberative process is informed by human subject data to determine the model parameters 

for the human intent prediction (HIP) policy calculation, but the robot action-choice (RAC) policy is informed by 

translating the superset of robot and human goals, constraints, and conflicts into optimal policies.  Both HIP and 

RAC policies are calculated offline, a viable approach until online model adaptation is activated. 

During real-time operations, the system functions as follows:  the robot’s sensors read the continuous human 

state 
�� ���, 
��� ��� and environmental data ��� � ��, �� from the environment.  This data is sent to the translator 

modules which convert the sensor information into the values for the goal states !� � , ! �  and high-priority 

interruptive goal states *� � , * �  of the human and robot, respectively.  The human translator module also 

determines the current action the human is performing, "� �#
� . These are sent to the executing MDP policies.  The 

translator boxes also include physical dynamic models and supply the safety metric box with data to compute a 

danger index DI where s is the distance from the critical point to the nearest point on the person or obstacle object, 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
53

17
 



 

 

American Institute of Aeronautics and Astronautics 
 

 

6

respectively, and v is the magnitude of velocity component along the line between each of those points (called the 

approach velocity).
21,22

  The discretized safety metric M generally helps to delineate ‘closeness’ between the 

physical human and robot appendages in same or different zones.  The Negotiator box updates its internal action 

history of previously-known human action-choices, 
h
A

i
, and passes this to the HIP policy along with 

!� � , "� �#
� , *� �  as input;  the policy outputs the predicted future intent, "� �#.�

� .  (The Negotiator could repeat this 

process to build up a vector of predicted future intent states farther into the future, if we want to know more 

predicted states past "� �#.�
� .  Alternately, the HIP could be expanded, but this would add further complexity.  For 

now, we take k=0 for nh+k and nh+k+1, or as below, x

h
n =2.)  The RAC policy takes as input from the Negotiator 

"� �#
� , "� �#.�

� , *� � , * � , ! �  and outputs the most locally-optimal robot action-choice, " �#
� .  The lower layers 

take that action-choice and pick the associated pre-scripted path for the robot to follow. 

B. Deliberative Layer – Markov Decision Process Formulations 

A general discrete time stochastic dynamic programming (SDP) problem – also known as a Markov Decision 

Process (MDP) – can be described as:
23,24

 

 MDP = {T, S, As, pt(s
j
|s

i
,ak), rt(s

i
, ak)} � πt(s

i
) (1) 
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i
,ak,s

j
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i
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i
) (2) 
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 (4) 

This general form of the MDP transition probability function or tensor in Eq. (3) represents the probability that a 

human will transition to a state s
j
, when performing an action ak in a particular state s

i
. 

An action-sequence, as shown above in Eq. (4), is a particular action or ordered set of actions that the human 

must perform to satisfy a goal objective gk
i
 or fk

i
.  This ordered set is an n-tuple (action) sequence, where n=pk is the 

number of actions corresponding to completing a goal.  Note that some goals may have many satisficing action-

sequences, if the actions do not need to be completed in a strict order with no interruptions in sequence.  The value 

of nh is consistent for each MDP model and chosen or otherwise optimized offline. 

The Human Intent Prediction (HIP) MDP formulation, as given in Ref. 15, is as follows: 
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Above,  
h
A

i
 is the human’s abbreviated action-choice history of nh actions, i

k

h
g  and i

k

h
f  are normal and high-

priority goal objectives, respectively, and R(
h
s

i
) is the reward function. 

The Robot Action-Choice (RAC) MDP formulation is given by: 
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γ  (8) 

The RAC process is solved similarly to the HIP MDP, but for RAC the robot must model both itself and the 

human to select the optimal action for each state.  There is no ‘action history’ required for RAC, the robot instead 

uses only the current set of ongoing and future-predicted actions to make its decision.  Above, ih
X  holds the current 

and future-predicted action-choices of the human obtained from the translator module and HIP policy, respectively, 

and are assumed to be correct.  ir
X  holds the current action that the robot is completing;  ir

X is presumed known 

with certainty.  
r
H

i
 encapsulates the relative goal priority of each of the robot’s goals.  The reward function r1, 

however, is more complex than in the HIP case.  The safety-efficiency tradeoff occurs in RAC, as RAC must 

calculate the utility of a robot action occurring and whether a particular robot action would conflict with the current 

and future actions of the human.  We use a noconflict parameter to weight the risk accordingly, or disallow the 

action completely. 

IV. Case Study: Space HRI Domain Representation 

In this paper, as in Ref. 15, we use a simple domain model with concentration and pick-and-place tasks that 

would be required for astronauts performing intravehicular activity (IVA) as well as on Earth.  Specifically, we 

model an environment in which the human is engaged in problem-solving and interacting with a control panel 

(pressing buttons) but is also able to select nutrient consumption activities, with all tasks conducted at different 

reachable worksite locations.  Our previous experiments in which a seated human executes these tasks in an 

environment shared by a fixed-based robot manipulator confirm HRI is feasible for this scenario.
16

  We hypothesize 

that our basic simulation and experimental results will translate to models of humans performing similar activities in 

IVA in space.  In our HRI scenario, the human is asked to type solutions to simple arithmetic problems as quickly 

and efficiently as possible while not overly concerning themselves with the robot’s motion.  The human is also 

asked to press buttons in response to sporadic events, as well as inserting actions to eat [chips] and drink [soda].  A 

robotic manipulator arm, operating in the same workspace, completes tasks at a fixed set of prespecified locations 

within the workspace. 

The Human Intent Prediction (HIP) MDP representation is also as given in Ref. 15.  Briefly summarized here, 

the state space is defined to be: 
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Tables 1 and 2 describe the human’s actions, goals, and the meanings of the variable status used for our domain.  

We do not explicitly differentiate between physical and mental tasks in our MDP representation, mixing actions 

such as computer work (math) with eating, drinking, and button-pushing. 

For reference, the equations that make up the domain-specific transition probabilities are given in Eq. (10) and 

Eq. (11): 
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x

hα  is a vector of weights that define the impact of an action x

h
a  in the action history on a probabilistic change 

in state, given how far back in time it occurred.  ),|1(, x

hihj

z

h

xz

h
aAgpP == is defined as the probability of goal 

objective j

z

h
g  being or becoming 1 (completed) due to occurrences of action 

h
ax in action history 

h
A

i
 of state 

h
s

i
.  

The variable q

hβ  is a group of weights that define the probability that the human choosing action 
h
ak for their next 

Table 1. Domain Representation of actions  

Discrete Value Corresponding Action 

1 eat_chips 

2 drink_soda 

3 computer_work 

4 push_button 

5 no_op 

 

Table 2. Domain Representation of goal-objectives 

Goal 

Obj. 

Discrete Value Corresponding Action 

false true 

 0 1 ?hunger? (sated) 

 0 1 ?thirst? (sated) 

 0 1 ?work_motivation? (sated) 

 0 1 ?button_1_active? 
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action will result in a goal-objective j

z

h
g  being/becoming 1 (completed) due to that action.  If a high-priority 

interrupt flag is not set, then the probability 
h
Bz,k of a choice of action 

h
ak completing a low-priority goal is added to 

the transition probability; otherwise, it is not included because the probability of completing a low-priority goal 

when a high-priority goal exists is 0. 

For the RAC policy evaluation, we first created a baseline for comparison.  For this, we considered our human-

subject experiments discussed in Ref. 16 and elaborated upon in Ref. 14.  In these preliminary human-robot shared 

workspace experiments, a simple algorithm was used by the robot for it action-choice – a first-in-first-out (FIFO) 

queue.  Goals on the queue were removed once completed, and goals were temporarily skipped if they were 

‘blocked’ due to a physical or mental conflict with the human (e.g., the robot physically blocks the human from 

reaching a target, or visually distracts within or occludes an essential viewing area).  If a goal that has been 

previously postponed is no longer blocked, the robot immediately stops attempting to complete the lower-priority 

task set and instead executes the task set associated with completing the higher-priority goal.  If no ‘nonblocked’ 

goal is found on the queue, the manipulator arm moves to a neutral unstowed position and waits there (no-op) until a 

nonconflicting goal-seeking task activates. 

We specify a Robot Action-Choice (RAC) MDP representation for this work that parallels the conditional 

action-choice algorithm used in our original human subject experiments: 
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 (12) 

  

 

Table 3. Domain Representation of actions  

Discrete Value Corresponding Action Conflicts With 

1 press_b1 math,  

2 press_b2 eat chip,  

3 press_b3 n/a (near ) 

4 return_to_unstow n/a 

Table 4. Domain Representation of  goal-objectives 

Goal 

Obj. 

Discrete Value Corresponding Action 

false true 

 0 1 ?b1_inactive? 

 0 1 ?b2_inactive? 

 0 1 ?b3_inactive? 
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Tables 3 and 4 describe the robot’s actions and goals used for our domain;  the human’s actions and goals are the 

same as in Tables 1 and 2 above.  In Eq. (12), the k

rγ  encapsulate the activation time of each goal, which is a direct 

mapping of the relative goal priority, i.e., how long the goal has been active on the FIFO goal queue. 

Given our assumption that robot will always successfully complete an action that is executed to completion, the 

transition probability for robot action choice (RAC) MDP is 1, as shown in Eq. (13).  Further, in our RAC MDP 

formulation, we do not interrupt action.  We only set this to zero for goal states that cannot be reached by a given 

action taking place or a simple transition, but these are rare. 

 1),,( =j

k

ri sasT  (13) 

V. Simulation Results 

The results presented in this section focus on evaluation of the HIP MDP, reserving evaluation of the RAC and 

integrated HIP/RAC MDP system for future work.  We solved for the policies using value iteration over an infinite 

horizon with a discount factor of 0.95.  We evaluated the HIP MDP formulation by varying parameter values for the 

weightings of two goals at a time and looking at the action-choices output by the process, in order to gain a better 

understanding of the impact of the reward function weightings on the optimal policy output.  Our main evaluation 

metric is the percentage of an action-choice ak – the absolute number of times ak is chosen by the policy divided by 

the number of all possible states.  First, we discuss the ‘smoothness’ of the HIP output in Table 5, which is a 

refinement of the results in Ref. 15 at finer variable parameter resolution, with Fig. 2 and 3 giving visual examples.  

We remove the boundary case ‘edges’ where only one term is being rewarded from the analysis, as the data is 

unrealistic to use for weights, and unhelpful in the context of tradeoffs.  Next, we compare smoothness while 

looking at subsets of similar states and draw conclusions on the differences between this analysis and the full policy 

percent action-choice.  Finally, we compare consistency between policy action-choices, analyzing how quickly the 

individual action-choices changes over the state-subsets. 

A. HIP MDP Smoothness of Action-Choice Output – All States 

We first looked at the ‘smoothness’ of the action-choice output at a much smaller delta variation of parameter 

values than Ref. 15:  0.01 instead of 0.25 on the range of [0 1]. 

Figure 2 below is indicative of what we see across multiple MDPs:  there are local minima and maxima that look 

like ‘rough’ spikes, but overall trends emerge.  We observe continuous and smooth trends in action-choice 

percentage across changes in the parameters.  Referring back to Tables 1 and 2, note that in the Figure 2 case, 1γh

 

and
 3γh  are the reward function weights for goal 1 and goal 3:  sating hunger and work motivation, respectively.  

Looking at the parameters, action-percentages in the neighborhood of any particular point are actually very close to 

each other, despite the gradient jumps.  In Figure 2, the trend follows what we would expect to see.  The tradeoff is 

between action 1 to compete goal objective 1 (sating hunger) and action 3 to complete goal objective 3 (work 

motivation).  Comparing the curved surfaces in the lower left and upper left plots, we see that action a3 (computer 

work) use increases dramatically as the goal 3 weight increases, and similar for action a1 (eating chips) and goal 1 

weight.  We also note the tradeoff between actions, where a3 and a1 have policy preference almost directly 

proportional to the tradeoff of reward weightings, an intuitive result given that a3 has an equal chance of g3 

completion as a1 has of g1 completion (β5 = 0.25 versus β1 = 0.25). 
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Figure 2. Percentage of action-choice across all states, MDP1 policy, g1-g3 tradeoff (right axis 

h
γ1, left axis 

h
γ3) 

(from upper left, clockwise: percent-choice a1, percent-choice a2, percent choice a4, percent choice a3) 

 

Table 5 gives the summarized results. 

 
As the action-percentages are calculated across all states, including those MDP representations that have no goal 

flags set for the rewarded cases, we suspected that some of the local variations were due to a lack of any driving 

force on those other states towards taking a particular action.  When we look at the other cases – MDP2 through 

MDP4 – we see this trend confirmed with similar local maxima/minima spikes across all cases, as shown in Table 5 

above.  So, we look at MDP6 next – a case with fully-defined non-zero rewards and costs for every goal parameter. 

Looking at Fig. 3, the MDP6 case, all plots look much smoother across the board than the previous MDP 

outputs, likely because the problem was underfitted before – having no weights on the other three goal terms 
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Table 5. Parameter values for HIP MDP Evaluation (single number constant and/or ranges) 
h
nh=4 α1 = [1 2 3 4], α2 = [1 2 3 4], α3 = [1 2 3 4], 

β1 = 0.25, β2 = 0.25, β3 = 0.75, β4 = 0.25, β5 = 0.75, 

 

Comments on percentage of 

action choice for each action, per 

policy 

 

eat 

reward 

 

drink 

reward 

 

math 

reward 

 

button 

reward 

 

button 

cost 

 
value 

variance 

MDP1 [0 1] 0 [0 1] 0 0 0.01 roughest looking of these; mostly 

smooth with <~4-6%  gradients of 

for actions over the entire policy; 

long gradients with the tradeoff 

slopes changing +/- across 

~=  

MDP2 [0 1] [0 1] 0 0 0 0.01 looks slightly less rough than 

MDP1, but somewhat smooth / 

continuous; gradients and range 

similar to MDP1, tradeoff slopes 

changing +/- across ~= /5 

MDP3 [0 1] 0 0 [0 1] 0 0.01 all look very smooth except in the 

range of =(0.01 0.1] 

MDP4 [0 1] 0 0 0 [0 1] 0.01 similar smoothness and range as 

MDP3 

MDP6 [0 1] [0 1] 0.75 1 1 0.01 a1 and a2 trade off at decreasing 

 similar to MDP2; a3 falls off 

nicely as  and  increase; a4 

steady at ~51.25%, a5 steady at 

~2.5%;  all are smooth 
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generally means that those terms will oscillate between possible actions so long as there are no goal 

interdependencies.  Note the bottom right image, which shows the rising-a1/lowering-a2 tradeoff quite well.  Recall 

that the drinking action is set up as satisfying both goals because sometimes people feel hungry and want to eat 

(
h
g1=0) when they are actually thirsty, so the drink action sates the hungry state.  When comparing just the tradeoff 

between actions a1 and a2, a2 is overall more preferable than a1.  This is because a2 has an equal chance of only g1 

completion as a1 (β2 = 0.25 versus β1 = 0.25), a high chance of only g2 completion (β3 = 0.75), and the same chance 

of completing both g1 and g2 together (β4 = 0.25) as a1 has of completing g1 alone (β1 = 0.25).  (For transition 

function equation details see Ref. 15.)  This is also shown in the policy:  because of the interrelationship between the 

drinking action a2 and both the hunger and thirst goals, when 1γh  and 2γh  are both high, making both goals 

considered rather important, it becomes a more efficient policy to drink (with a greater probability of satisfying both 

objectives with the given values of β) than to eat.  Similarly, when the thirst goal is not as important relative to 

hunger, the number of eating actions a1 tends to rise, but not quickly unless the thirst goal importance is ~1/5 or less 

that of hunger.  This is supporting evidence that the MDP policy is encapsulating the probabilistic meaning of the β 

choices used in the model.  Also, in the bottom-left image, as 3γh  is 0.75, a3-choice is fairly high overall for other 

not-high weightings, but starts to decrease dramatically as the other weights pass that threshold of importance (0.75). 

 

 
Figure 3. Percentage of action-choice across all states, MDP6 policy, g1-g2 tradeoff (right axis 

h
γ1, left axis 

h
γ2) 

(from upper left, clockwise: percent-choice a1, percent-choice a2, percent choice ratio a1/a2, percent choice a3) 

 

B. HIP MDP Smoothness of Action-Choice Output – Reward-Tradeoff Groups of Selected-States 

In order to confirm or refute our suspicion regarding the action-choices and rewarded states, we decided to rerun 

the same sort of calculations as above, but instead split the calculation of action-percentages across groups of those 

states where the goal state for both goals in the rewards tradeoff are zero (no rewarded goals met) or one (both 

rewarded goals met), or only one rewarded goal is equal to zero (one rewarded goal satisfied), to refine the scope of 

our comparison.  In those states, if the decision process has non-zero rewards, one would expect to see a majority of 

satisficing action-choices picked by the policy, and all local variations confined to those states that are given no 

guiding impact by the reward function.  Additionally, for states where both the rewarded goals are both satisfied, we 

would expect a much more significant amount of variation across the board. 
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Figure 4. Percentage of action-choice, selected states, MDP1 policy, g1-g3 tradeoff (right axis 

h
γ1, left axis 

h
γ3) 

(from upper left, clockwise: percent-choice a1 for {g1=0,g3=0}, percent-choice a3 for {g1=0,g3=0}, 

percent-choice a3 for {g1=1,g3=1}, percent-choice a1, for {g1=1,g3=1}) 

 

As seen from the MDP1 policies in Figure 4, the majority of ‘noise’ in the percentage action-choice numbers 

seems to come arises from the already-satisfied goal states.  Note that the action-choice percentages in Figure 4 are 

higher than in previous results because each of these subsets is ¼ of the total number of 10,000 states.  Not shown 

above are the single-active-goal subset cases where the action-choice percentages were constant:  the {g1=0,g3=1} 

case had a1=59.92% and a3=0%, and the {g1=1,g3=0} case had a1=0% and a3=53.92%.  We also saw similar results 

for the other underfitted MDP formulations:  the single-active-goal subset cases associated with the weight-tradeoffs 

tended to have flat action-choice percentages because there was a no-contest tradeoff in the given reward.  For the 

MDP3 and MDP4 single-active-goal cases with {g1=1,f1=0}, a1 vs. a4 tradeoff (note that this state pair implies that 

the human is not hungry and the button does not need pressing), when the high-priority button-pressing goal f1 is 

weighted less than 0.1 (positive for reward, negative for cost) and the sate-hunger goal g1 is given more than 0.4 

weight, the amount of lookahead required is sufficient that the MDP policy decides the person will start to choose 

eat and button actions preemptively.  In other words, the action history seems to have a more significant impact here 

– recall from Eqn. 10 that the inclusion of more eat actions in the action history increases the probability of the 

hunger goal transitioning from active to inactive, and similar for button-pressing and its satisficing goal.  Also, for 

cases where both these goals are active, {g1=0,f1=1}, when f1 is weighted less than 0.1 (positive for reward, negative 

for cost) and the sate-hunger goal g1 is given more than 0.1 weight, the mild increase in eat action-choice is directly 

proportional to the decrease in button-pressing.  This implies that with a low reward weighting f1’s edge of having a 

transition probability of 1 to secure that reward begins to be lost – as the likelihood of g1’s transition to sated state 

increases, that state would be encountered more often and that weight would be added within the reward function 

more often.  We were also able to see this interesting near-boundary behavior with the broader delta steps. 

C. Policy Consistency – Direct Comparisons of State to Action-Choice 

Finally, we examined whether the policy action choices were consistent for individual states.  After all, 

comparing the number of times a particular action was recommended by two different policies is very different than 

being able to say that a certain percentage of the same states recommended the same action across policies.  

Quantitatively, we can compare the actions in each calculated action-policy to each other and track the changes in 
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action-choice per state (row) – which ones, when, and to what.  Visually, we can show this by plotting 2D ‘slices’ of 

the action-policy column vectors side-by-side and see when the actions shift to new integer values.  Figure 5 is 

indicative of a common result, where the policy action-choice changes seem to ‘creep’ across the columns as the 

values of the reward weights shift incrementally. 

 

 
Figure 5. Policy action-choices for all states, ak=[1 5], MDP6 policy, g1-g2 tradeoff (state number vs. 

h
γ1*100) 

(Left: slice at 1γh =[0 1] at delta=0.01, 2γh =0.04; Right: slice at 1γh =[0 1] at delta=0.01, 2γh =0.06) 

 

Figure 5 confirms that the action choices are consistent when comparing policy outcomes to other policies with 

‘similar’ weightings within the delta value variance.  It is feasible that these policies could update terms without 

drastic changes to the parameters. We could also search in the neighborhood of a nearby range of parameter 

solutions using a finer mesh for a closer-fitting solution when policy refinement is necessary.  For these HIP models 

in particular, a delta of 0.1 appears to be a good starting point about which to fine a coarse match, and then further 

refine. 

VI. Conclusions and Future Work 

We have presented a framework for supporting autonomous human-robot interaction in a close-quarters 

collaborative setting, where maintaining safety is key.  Such an environment would be present in an environment 

such as the space station.  We have discussed why we think it is a viable approach to attempt to model human 

motion, recognize the human action, and convert this knowledge into an understanding of human intent for more 

intelligent future planning and task scheduling.  We have evaluated human intent prediction (HIP) models in 

simulation and plan to integrate them into a robot’s intelligent system framework for real-time use.  We have 

discussed HIP simulation results in the context of policy consistency and sensitivity to varied reward function 

weightings. 

Future work that builds on this simulation study will involve real-world human subject testing of this approach 

applied to a comparable laboratory-based human subject experiment using a safe robotic manipulator, where we will 

evaluate the system quantitatively and qualitatively through participant performance and feedback as well as with 

the briefly-discussed safety and efficiency metrics.  We will iteratively improve the models with real human-subject 

experimental data and further test the HIP system around that parametric benchmark.  We will also be exploring the 

challenges of converting the HIP MDP formulation to a POMDP formulation, as many of the goal-state flags for the 

human are considered internal, and could not be directly sensed without invasive measures.  We will also examine 

differences that using a finite-horizon solver may have on the policy output and general human-robot operations.  

We will also conduct similar analyses of the RAC MDP alone and when integrated with the HIP MDP. 
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