
Graph Partitioning-Based Coordination Methods for

Large-Scale Multidisciplinary Design Optimization

Problems

Zhoujie Lu

⇤

Joaquim R. R. A. Martins

†

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI

This paper presents an algorithmic framework that expedites the overall convergence of
multidisciplinary design optimization problems through a three-step process: partitioning,
reordering and coordination. Calculations of any complexity, as well as coupling informa-
tion are represented by digraphs with weighted nodes and edges. A partition algorithm
divides the MDO problems into multilevel nested clusters of calculations with minimal loss
of information while maintaining balanced loads among assigned CPU nodes. The feedback
loops within the clusters are further minimized by a reordering algorithm. A new multi-
level hybrid multidisciplinary design feasible and individual design feasible coordination
method is presented that allows a dynamic MDO architecture based on the computational
cost and coupling strength. In addition, this paper describes a real-time visualization for
MDO problems with weighted design structure matrix and graph representation. The re-
sults of a scalable multidisciplinary design analysis and optimization problem are presented.

I. Introduction

The intricacy of engineering systems has increased at a tremendous pace over the last two hundred
years. To e�ciently and e↵ectively manage hundreds and thousands of analyses and disciplines within the
design process remains a challenging task. The increasing size of engineering projects has thankfully been
accompanied by an exponential increase in computing power, as dictated by Moore’s law. However, to
take full advantage of this growth in computing power, it is necessary to develop new design optimization
algorithms and methods that e�ciently handle large-scale problems by utilizing parallel computation, since
Moore’s law has been increasingly dependent on multi-core processors.1

Multidisciplinary design optimization (MDO) has taken the systems engineering design process to another
level by enforcing the quantification of every single aspect of the design, considering all the couplings between
the various modules or disciplines, and solving an optimization problem in order to yield the best possible
design.2–4 Various MDO architectures have been developed, many of which decompose the problem and are
amenable to parallelization.5–7 However, there is still no MDO architecture that is dynamically created and
scales well for large-scale multilevel nested problems.8

In order to address such challenges, a procedure to solve large-scale multidisciplinary design optimization
problems is presented in this paper; the procedure consists three steps: III.A partitioning, III.B reordering,
and III.C coordination. An algorithmic framework is developed that enforces this three-step procedure.
Within the framework, a graph handling module dynamically maps the sensitivity and iteration cost of the
problem to the digraph before the partition step. In addition, a real-time visualization module displays the
weighted design structure matrix (WDSM) and the partitioned digraph at each iteration. These methods

⇤PhD Candidate, Department of Aerospace Engineering, University of Michigan, AIAA Student Member
†Associate Professor, Department of Aerospace Engineering, University of Michigan, AIAA Senior Member

1

12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM
17 - 19 September 2012, Indianapolis, Indiana

AIAA 2012-5522

Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

has been applied to scalable analytical multidisciplinary problems. The results shows a significant reduction
in computational cost for large-scale problems, and the total computational cost scales well with the number
of CPU nodes used.

This paper is organized as follows. Section II describes the MDO representation method that maps the
coupling strengths and iteration costs to a weighted digraph. In addition, the visualization of MDO problems
with WDSM and digraphs is described in this section. Section III discusses the partitioning, reordering, and
coordination methods in detail. The multilevel hybrid multidisciplinary design feasible (MDF) and individual
design feasible (IDF) coordination methods are presented in Section III.C. Section IV presents the results of
applying the framework to a scalable analytical MDO test problem.

II. Representation of Multidisciplinary Design Optimization Problems

One of the challenges in multidisciplinary design optimization is to visualize problems involving large-
scale complex systems, and to identify the nested structures as well as the interconnections of disciplines or
computations. In this section, weighted digraphs are introduced to represent MDO problems. This provides
a mathematically sound graph representation of the connections within the system, and provides solid ground
for applying graph partitioning techniques. Two visualization methods for MDO problems are discussed in
this section.

II.A. Graph Representation

The basis for this framework is built on graph theory, which was first introduced by Leonhard Euler in
1736, with the famous Seven Bridges of Königsberg problem.9 The original problem was to find a path
through the city of Königsberg that would cross each bridge once and only once among all seven bridges.
Over the last centuries, the concept of graph theory was generalized by Cauchy10 and L’Huillier11 and is
widely used in various fields and applications,12 including load balancing for parallel computing using graph
partitioning,13 network problems,14 and scheduling problems.15 This section describes the representation of
multidisciplinary design analysis and optimization problems with weighted digraphs.

In order to describe the MDO problems with the graphs, a set of mappings between the properties of
the problems and the properties of the graphs is developed. A graph can be defined as an ordered pair
G = (V,E) consisting of a set V of vertices or nodes together with a set E of edges or lines, which are two-
element subsets of V . For the MDO problems, each node of the graph is chosen to represent to a calculation,
an analysis, or a discipline with inputs and outputs that connect to other nodes. Each edge of the graph
corresponds to the coupling strength or sensitivity between nodes. In order to fully describe the dependence
between nodes of the MDO problems, digraphs are used to di↵erentiate feed-forward and feed-backward of
the data flows and respective sensitivities. A directed graph or digraph is a pair G = (V,E), such that the
set E is ordered pairs of nodes, called arcs, or directed edges. With a directed graph, the structure of the
problems can be constructed of any complexity or nesting structure.

In addition to the directed graph representation, weighted edges and weighted nodes in digraphs are
necessary to capture the other information within the MDO problems. A weighted graph is defined as a pair
G = (V,E), such that each edge in E and each node in V is associated with a positive weight. In the content
of MDO, the weight of nodes is always positive, which corresponds to the computational time or iteration
cost involved in each node. The node weights are initialized to unity at the first iteration and are updated
based on the computational cost of the corresponding node at each consecutive iteration. The weight of the
edges corresponds to the summation of the normalized sensitivity of inputs with respect to the outputs of
the connected node. The normalization provides uniform and positive sensitivities for the comparison of all
edges in the digraph.

The total edge weight of a node i is calculated as:

W

E

(V
i

) =
nX

j=1

W

E

(E
ij

) (1)

2

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

where W

E

indicates the weight of the edges, E
ij

denotes the edge between node i and node j, and n is the
total number of edge pairs. W

E

(V
i

) provides an indication of the degree of node i, which shows the coupling
of node i relative to other nodes. Such indication provides an estimate of the importance of node i , which
helps to identify node clusters within the graph.

The total edge weight for graph G is defined as:

W

E

(G) =
mX

i=1

W

E

(V
i

) (2)

where V

i

denotes the node i, and m is the total number of nodes. In addition, the total node weight for
graph G is given by:

W

V

(G) =
mX

i=1

W

V

(V
i

) (3)

where W

V

indicates the total weight of nodes. W

E

(G) and W

V

(G) provide a comparison between the
problems of similar type. In general, the problems with large W

E

(G) is more coupled thus di�cult to
converage, while large W

V

(G) indicates the problem has higher computational cost. The ratio of W
E

(G)
before and after partitioning shows the amount of coupling information that is lost due to the partitioning
step.

II.B. Graph Visualization

Large-scale MDO problems are generally considered di�cult to visualize the coupling between the analyses.
In order to visualize the e↵ectiveness of the proposed algorithms, two approaches are developed and discussed
in this section: graph method and weighted design structure matrix. The two approaches are described in
the following sections.

II.B.1. Graph Method

The graph visualization routine is implemented to directly plot the weighted digraphs of the MDO problems.
To maximize the information shown in the digraph, the size of nodes is proportional to the node weights
which represents the computational cost; the line thickness of the edges indicates the edge weights which
represents the sensitivities. In addition, the di↵erent colors show the partitions or the clusters of the systems.
The partition method is discussed in more detail in Section III. The gray dashed edge line indicates the cut
edge due to partitioning.

This visualization can be dynamically updated at each iteration to provide a realtime feedback to practi-
tioners. The visualization routine is implemented in Python with object-oriented programming. Additional
libraries such as NetworkX16 are used to handles the graph manipulation, and GraphViz17 to provides graph
plotting routines. The spring method is used to minimize the crossed edges in the plot. An example of a
problem with 20 disciplines is shown in Figure 1(a).

II.B.2. Weighted Design Structure Matrix (WDSM)

The graph method is generally more suitable for small-scale problems. For large-scale highly coupled sys-
tems, the graph visualization becomes less readable and eventually ine↵ective. Therefore, in order to visualize
systems with large number of nodes and edges, the weighted design structure matrix (WDSM) is preferable.
Steward18 first proposed the design structure matrix (DSM) to illustrate the coupling between design ele-
ments or tasks in systems engineering. DSM was further generalized to the visualization any data or process
flow. It can also be viewed as the transpose of a square adjacency matrix constructed using graph theory.

Lambe and Martins19 proposed eXtended Design Structure Matrix (XDSM) to denote the data and
process flow for multidisciplinary design analysis and optimization problems, which provides critical insight
of the structure of MDO problem. In this paper, WDSM is presented that includes the weight of nodes
and edges into the DSM. WDSM focuses on the interaction or the coupling between nodes and is problem

3

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

(a) Graph method (b) Weighted design structure matrix

Figure 1. The visualization of a MDO problem with 20 nodes

dependent, while XDSM focuses on the data and process of a MDO architecture and is problem independent.
XDSM is also used to visualize the coordination methods in this paper.

The WDSM is also dynamically updated at each iteration. The diagonal entries in WDSM are denoted
by squares and the sizes are proportional to the node weights, which correspond to the computational cost of
each calculation. The o↵-diagonal entries are marked by circles and the sizes indicate the coupling strength
between the nodes. The same as in the graph visualization, the color denotes the partitions or clusters and
the gray color indicates partition cuts. The sequence of nodes in WDSM is reordered to show the clusters
of each partitions.

An example of 20 disciplines is shown in Figure 1(b). The WDSM contains the same information as
the graph method. However, it is a clearer representation for large-scale highly-coupled MDO problems,
and it is easier to identify clusters and the e↵ectiveness of the partitioning step. The WDSM shows a
significant advantage in the visualization of large-scale nested systems, while the graph method provides
intuitive visualization for small-scale systems.

III. Partitioning, Reordering and Coordination Methods

The algorithm proposed in this paper consists of three steps: III.A partitioning, III.B reordering, and
III.C coordination. The partitioning step clusters nodes into k subsets, while minimizing the weight of the
cut edges and balancing the partition loads. The reordering step further reorganizes the sequence of the
nodes within each clusters to minimize the feedback loops. Finally, the coordination step superimposes a
multilevel hybrid MDF-IDF architecture based on the partitioning information. Each of the three steps is
discussed in the following sections.

III.A. Partitioning

The graph partitioning problem has been extensively studied over the last 20 years. There are two main
types of partitioning algorithms: iterative improvement methods and global methods. The most widely used
iterative method is Kernighan–Lin (KL) algorithm,20 which solves a graph bisection problem to achieve par-
titioning. Fiduccia and Mattheyses21 later modified the KL algorithm to handle weighted edges and nodes.
Other variations of local search methods extended KL algorithm to achieve various functionalities.22–24

Global methods, such as spectral-based methods,25–27 network-based methods,28 and hybrid genetic algo-
rithms,29,30 formulate the k-way partitioning problem as a global optimization problem and solve for the

4

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

optimal partitioning to avoid converging to a local optimal partitioning. The global methods are generally
used as the initial partitioning for iterative improvement algorithms.

Karypis and Kumar31,32 developed a software package for partitioning called METIS. They implemented
a multilevel k-way partitioning algorithm with three steps. They first coarsen the graph by collapsing edges
and combining vertices. Then, the coarsened graph is partitioned using multilevel bisection methods. Finally,
the graph is uncoarsened and refined using global KL refinement algorithm.

For the work presented in this paper, a Python wrapper for METIS is developed based on the previous
work by Kloeckner.33 The graph is handled by NetworkX and converted to METIS for partitioning. In order
to achieve multilevel optimal clusters, a top level iterator is developed to determine the optimal number of
clusters at each level that allows the minimal amount of cut edge weights.

To initialize the algorithm, edge weights are computed at the starting point of the optimization. Since
the sensitivities are often computed in gradient-based optimization, the sensitivities are re-used to update
the edge weights without any additional computation cost. If the problem was originally constructed to
solve with nongradient-based optimizers, finite-di↵erence,34 complex-step35 or adjoint methods36 can be
used to compute the necessary sensitivities; however, it is significantly more costly and may compromise
the benefit of the proposed methods. The methods presented in this paper would also work without the
sensitivity information to some extend, but the partition and coordination algorithms would be significantly
less e↵ective without the sensitivities taken into account.

Since the computational cost of the partitioning algorithms are each analysis of interest, the partitioning
is solved multiply times to obtain an optimal clustering. We solved the problems with di↵erent number
of partitions and record the weight of cut edge. Then, the optimal partition number with minimum cut
edge weight is chosen. The partitions shown in Figure 1 are obtained using the algorithm described above.
Figure III.A shows an example of partitioning a large-scale problem into two-level clusters.

(a) Static optimization before partitioning (b) Multilevel optimization after partitioning

Figure 2. Partitioning of a large-scale optimization problem

III.B. Reordering

The ordering or the sequencing of a cluster of iterative computations, such as Gauss–Seidel iterations,
strongly a↵ects the rate of convergence. Therefore, in order to further expedite the convergence of MDO
problems after the partitioning step, it is preferable to reorder the computations within each cluster. The
objective of the reordering step is to minimize the feedback loop by changing the execution sequence of the

5

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

computations. Rogers proposed DeMAID37,38 which uses a generic algorithm to perform reordering of tasks.
However, using generic algorithm to perform sequencing for each cluster of computations is too costly for the
purposes of this paper. For large-scale design optimization problems, the cost of the reordering is equivalent
to solving thousands of sequencing problems at each iteration. Thus, following the similar idea of Rogers,37

an simpler iterative reordering algorithm is developed by examining the total node weights on the upper and
lower triangle of the DSM.

For a given sub-WDSM or subgraph, the objective of reordering is to maximize the node weights in
the upper triangle of the WDSM, while minimizing the node weights in the lower triangle by adjusting the
sequence of nodes. This corresponds to a more ideal sequence such that the input of a computation only
depends on the outputs of the computations that have already been executed. The method presented here
processes each node by inserting the node into a new position within the cluster to increase the objective.
The new position is determined by the edge weights on the row and column of its current position in DSM.
For example, in Figure 3(a), the edge weights in the two spaces above node 3 are empty, while the weights
in the two spaces to the left of node 3 are filled. Therefore, node 3 will be place between node 0 and node
1 in the next iteration. This process is repeated for all the nodes. The iteration terminates when the graph
converges to a stable arrangement or it reaches a maximum number of iterations. The iterative reordering
algorithm is outlined below.

Algorithm 1 Iterative Reordering Algorithm
1: for each level l in the partition do

2: for cluster j in level l do
3: i 1, Converge = False

4: while i i

max

& Converge = False do

5: for node k in cluster j do

6: Determine the new position z for node k

7: move node k to new position z

8: Store the sequence S

j

for cluster j
9: end for

10: if S

j

is stable then

11: Converge is True
12: end if

13: i i+ 1
14: end while

15: end for

16: end for

An example of reordering step with a cluster of 5 computations is shown in Figure 3. This iteration
method is e�cient in finding an improved sequence with minimum feedback loop. The computational cost
can be controlled by setting maximum iteration for each cluster. By default, the maximum iteration is set
to be proportional to the number of nodes in each cluster. For a cluster of 20 nodes, 5 iterations usually
gives a stable and improved sequencing. In addition, unlike the partitioning step, the reordering for each
cluster and each level can be computed in parallel, which further reduce the computational cost. The cost
of the reordering step is on the same order of the cost of the partitioning algorithm.

III.C. Coordination

The first two steps create an e↵ective graph partition for the MDO problems, and this last step coordinates
the partitioned clusters of computations to solve the multidisciplinary design analysis and optimization
problem with an dynamic MDO architectures. The coordination steps for Multidisciplinary Analysis (MDA)
and Multidisciplinary Optimization (MDO) are presented separately in the following sections.

6

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

(a) Intial WDSM (b) Reordered WDSM

Figure 3. Iterative reordering algorithm applied to a cluster of 5 computations

III.C.1. Multidisciplinary Design Analysis Problems

If the problem does not involve optimization, the MDA can be solved readily after partitioning with a
number of iterative methods. Currently, two methods are implemented: block Gauss–Seidel iterations or
Jacobi iterations. The Gauss–Seidel iterations converge faster than Jacobi iterations on a single processor,
while Jacobi iterations can be parallelized to take advantage of multiple cores. For a large-scale problem, a
multilevel MDA can be achieved with the partitioning algorithm by further partitioning the clusters of nodes
into sub-clusters. The number of levels is set before the partition. The optimal number of partitions, k, at
each level is determined by multiple evaluation of partitioning algorithm with di↵erent k’s to determine the
minimum cut edge weights. This is feasible since the computational cost of the partitioning algorithm is
significantly lower than the cost of the actual analysis. Other approaches include formulating the optimal k
problem as an integer optimization problem, and is not implemented in the framework. Figure 4 shows the
XDSM for a single level multidisciplinary design analysis with Gauss–Seidel iterations.

Figure 4. Single level multidisciplinary design analysis with Gauss–Seidel iterations

III.C.2. Multidisciplinary Design Optimization Problems

The coordination algorithms for the MDO problems define the interactions between clusters of nodes, which is
equivalent to defining an MDO architecture for the optimization problem. This paper is focus on coordination
algorithms that result in multilevel monolithic architectures. The monolithic approach is known for its
simplicity and faster convergence. One of the most popular monolithic architectures, such as Individual
Design Feasible (IDF), and Multidisciplinary Design Feasible (MDF),3,4, 39 are considered here. In the
monolithic approach, the MDO problem is solved as a single optimization problem. On the other hand, the

7

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

performance of distributed architectures on practical problems is still largely unknown. Studies suggest that
the distributed architectures are generally less e�cient than the monolithic architectures.41–43 Therefore,
due to the di�cult and the complex nature of the distributed architectures, only monolithic architectures
are explored in this paper.

Two key information about the partitioned problem is utilized in the coordination step: the partition
structure of the problem, and the cut edge weights and total edge weights at each level and each cluster.
After the partitioning and the reordering steps, highly coupled nodes in the MDO problem form clusters (or
a hierarchy of clusters) with minimal dependence on the nodes outside the clusters. The coupled clusters
can be identified by examining the total edge weight of the this cluster and the cut edge weight to form
this cluster. Furthermore, the total cut edge weights at each level provide quantification of the strength
of coupling that has been disconnected due to partitioning. The coordination step is constructed based on
these two piece of information about the MDO problems.

We propose a coordination method based on a multilevel hybrid MDF-IDF architecture. The problem
formulation of single-level MDF and IDF is shown in Table 1 and the corresponding XDSM diagrams19 are
shown in Figure 5. Due to the additional information obtained during the partitioning and the reordering
step, we can formulate the MDO architecture more wisely and dynamically. The hybrid architecture is de-
signed to avoid the disadvantages of choosing either MDF and IDF by enforcing di↵erent sub-architectures
at each level and/or at each cluster based on the nature of the sub-clusters. Therefore, the coordination algo-
rithm chooses to enforce MDA or to enforce the coupling of the clusters as constraints in the optimizations at
each level. The critical metrics are the cut edge weights and the total edge weights at each level. For a highly
coupled problem, the MDF architecture generally has a faster convergence than the IDF architecture. Thus,
our strategy is to choose the sub-architecture by comparing the cut edge weight of a sub-level W

E

(C
l,cut

)
with the total edge weight W

E

(G
l

). In this algorithm, !
l

is an adjustable bias parameter between 0 and 1
to determine the choice of sub-architectures at each level l. The multilevel hybrid MDF-IDF coordination
algorithm is detailed in Algorithm 2.

MDF IDF

minimize f0(x, ȳ(x, ȳ))

with respect to x

subject to c0(x, ȳ(x, ȳ)) � 0

c

i

(x0, xi

, ȳ

i

(x0, xi

, ȳ

j 6=i

)) � 0

minimize f0(x, ȳ(x, ȳt))

with respect to x, ȳ

t

subject to c0(x, ȳ(x, ȳt)) � 0

c

i

(x0, xi

, ȳ

i

(x0, xi

, ȳ

t

j 6=i

)) � 0

c

c

i

= ȳ

t

i

� ȳ

i

(x0, xi

, ȳ

t

j 6=i

) = 0
Table 1. Problem formulation of MDF and IDF

In this problem formulation, f0 is the objective function; x is the vector of design variables; ȳ is the vector
of state variables. c0 and c

i

denote the constraints. For the IDF, ȳt is the vector of target state variables,
and c

c

i

is the consistency constraint.

Algorithm 2 Multilevel Hybrid MDF-IDF Coordination Algorithm
1: for each level l in the partition do

2: Determine w

l

3: if W

E

(C
l,cut

)/W
E

(G
l

) !

l

then

4: Enforce MDA for level l with either Gauss–Seidel or Jacobi iterations
5: else

6: Establish IDF for level l
7: Add constraint and target variable to optimizer to ensure consistency within level l
8: Level l will be iterated through optimizers and does not participate convergence at local levels
9: end if

10: end for

8

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

x

y

t

x

⇤ Optimization

0
6

6!1
1

4 : x 2 : x0, xu

5 : f, c Functions
5

4

MDA

1
4

3!2
2

2 : yt
i

y

⇤
i

4 : y
i

3 : y
i

Analysis i

2
3

1

(a) Single level MDF (b) Single level IDF

Figure 5. XDSM of single level MDF and IDF

In order to visualize the process of hybrid MDF-IDF, two examples of a two-level hybrid MDF-IDF
architecture are shown in Figure 6 and Figure 7. Both examples are plotted in XDSM diagram format.
Example 1 has MDF at both levels and all clusters, which results in a nested MDF architecture. Example 2
has IDF at the top level and one MDF and one IDF at the second level for each cluster. Since IDF can not
have nested structure, the multilevel IDF will collapse into a single level IDF, as shown in this example.

With the coordination algorithm, dynamic and hybrid MDO architectures become possible. Each sub-
architecture is chosen according to the coupling strength, as well as the node weights of each sub-level
and cluster in order to expedite convergence. It is also possible to incorporate other monolithic or even
distributed architectures with a more complicated coordination strategy. Such coordination algorithms are
still under development. The goal of this three-step procedure is to allow dynamic self-organized MDO
architectures that are problem independent. The concept of self-organization is that the solution strategies
are dynamically adjusted to the properties of MDO problems.

IV. Scalable Analytical Multidisciplinary Problems

In order to study the e↵ectiveness of the three-step procedure on large scale multidisciplinary problems,
the scalable problem purposed by Tedford and Martins43 is chosen to benchmark this method and to examine
the e↵ect of increasing dimensionality. This scalable problem was designed to allow researchers to examine
the e↵ects of increasing dimensionality while keeping manageable computational requirements. This scalable
problem has the complete freedom to select the number of disciplines, the number of local and global design
variables, the number of coupling variables, and the strength of the coupling. The problem formulation is
stated as follows.

minimize z

T

z +
P

Ny

i=1 y
T

i

y

i

with respect to x, z

subject to 1� yi

Ci
 0, i = 1, ..., N

y

(4)

where N

y

is the number of computations. z is the vector of the global design variables. x is the vector
of the local design variables. y

i

is the state variable. The governing equation for the state variable y

i

is:

y

i

= C

x,i

x

i

+ C

z,i

z + C

y,i

y (5)

In order to fully examine the e↵ectiveness of this approach on di↵erent problems, the constants C

x,i

, C
z,i

,
and C

y,i

are randomly generated to simulate di↵erent coupling strength and number of design variables. All
C’s are adjusted within certain bounds to ensure stability.

The partitioning, reordering, and coordination strategy described in Section III.C.1 is applied to the scal-
able problem 4. Jacobi iteration is used to allow parallel computing capability. The computation time was

9

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

x

y

t

x

⇤ Optimization

0
14

13!1
1

12 : x 3 : x0, xi

6 : x0, xj

9 : x0, xk

13 : f, c Functions
13

12

MDA

1
12

11!2
2

2 : yt
j

, y

t

k

5 : yt
k

y

⇤
i

12 : y
i

11 : y
i

MDA i

2

4!3
3

3 : yt
i

5 : y
i

8 : y
i

4 : y
i

Analysis i

3
4

y

⇤
j

12 : y
j

11 : y
j

MDA j

5

7!6
6

6 : yt
j

8 : y
j

7 : y
j

Analysis j

6
7

y

⇤
k

12 : y
k

11 : y
k

MDA k

8

10!9
9

11
9 : yt

k

10 : y
k

Analysis k

9
10

1

Figure 6. Example 1: Two level architectures with MDF at both levels

x, y

t

y

t

i

x

⇤ Optimization

0
6

5!1
1

2, 4 : x, yt 2 : x0, xi

, y

t

j

1 : x0, xj

, y

t

i

5 : f, c, cc
j

Functions
5

2,4

y

⇤
i

4 : y
i

MDA i

1

3!2
2

4
2 : yt

i

3 : y
i

Analysis i

2
3

y

⇤
j

2 : y
j

Analysis j

1
2

1

Figure 7. Example 2: Two level architectures with IDF at level top and one MDF and one IDF at second level

10

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

(a) Scalable MDA with Jacobi iterations (b) Comparison of di↵erent MDO architecture ap-
proaches

Figure 8. Scalable multidisciplinary design problem results

plotted as the dimensionality of the problem increases. For each dimension, the problem is randomly gener-
ated and computed 50 times to ensure an accurate representation. Then, the average of the computational
time is recorded. Figure 8(a) shows the computational time of the random generated scalable problems.
As can be seen on the plot, this method achieved linear scalability. The large scale problems obtain more
consistent partitions than the small scale problems. The algorithm maintains a linear trend until a critical
point that too much partitions lead to significant loss of coupling information, and the linear systems become
very di�cult to converge with the Jacobi iterations. This study shows the importance of obtaining a optimal
number of partitions at each level of MDO problems with minimal loss of coupling information.

Multilevel hybrid MDF-IDF coordination with scalable multidisciplinary design optimization problems
is also studied. The optimization problem is constructed with pyOpt44 framework. SNOPT45 is used as
the optimizer for the problems. The optimization tolerance is 10�6. For the levels with MDF, Gauss–Seidel
iterations are used with an under-relaxation parameter of 0.7. Three approaches are investigated: static
optimization with one-level structure, self-organization approach without coordination (only using 2-level
nested MDF), and self-organizing with coordination (using 2-level hybrid MDF/IDF). The parameter ! is
adjusted to ensure an e�cient convergence. For this problem, we found that the problems converge faster if
! is biased toward MDF, i.e., ! = 0.08.

Figure 8(b) shows the comparison between the three approaches with varying problem size N

y

. Those
large-scale problems require significantly longer time to run. Therefore, we chose to plot the number of
function evaluation for each approach in order to perform a more accurate comparison. Similar to the study
of MDA, at each dimension, the scalable problem is randomly generated and computed for 50 times, and the
average number of function evaluation is plotted here. The static optimization formates the problem with
a single MDF architecture. As the dimensionality of the problem increases, the cost immediately becomes
prohibitive. By only using the self-organization approach without coordination, the computational cost is
reduced dramatically by about 70%. The savings mostly due to the use of nested structures and by allowing
high-coupled disciplines to be solved together. The number of iterations significantly reduced. Finally,
by adding the coordination method, the computational time is further improved by dynamically choosing
between MDF and IDF approach for each level and each cluster. Therefore, some clusters or computations
only need to be iterated at the top level by the optimizers. The total number of iterations for optimization
increases slightly, but the number of iterations in each level and cluster is reduced.

11

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

V. Conclusion and Future Work

A novel three-step procedure to construct a dynamic MDO architecture is discussed in this paper. The
main concept of this method is to use weighted digraph to represent MDO problems. Key information,
such as computational cost and sensitivities, is mapped to the digraph. The representing graph is then
partitioned to nested clusters of analyses or computations, while minimizing the information loss due to
partition. The reordering step construct new sequences of the analyses within each level and each cluster,
such that feedback loops are reduced. Finally, a multi-level hybrid multidisciplinary design feasible and
individual design feasible coordination method is superimposed on the partitioned problems. This approach
allows dynamic construction of a MDO architecture based on the properties of the problems. This three-step
procedure is tested with a scalable MDA and MDO problem. The results show a 70% reduction in the total
number of function evaluations. This approach proves the possibility of mixed implementation of di↵erent
MDO architectures. The future work includes: extending the coordination method with more monolithic or
even distributed architectures; and incorporating sub-optimizers into this approach.

References

1Sutter, H., “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,” Dr. Dobb’s Journal ,
Vol. 30, No. 3, March 2005.

2Alexandrov, N. M., “Multilevel Methods for MDO,” Multidisciplinary Design Optimization: State-of-the-Art , edited by
N. M. Alexandrov and M. Y. Hussaini, SIAM, Philadelphia, 1997.

3Cramer, E., Dennis, J., Frank, P., Lewis, R., and Shubin, G., “Problem formulation for multidisciplinary optimization,”
SIAM Journal on Optimization, Vol. 4, No. 4, 1994, pp. 754–776.

4Sobieszczanski-Sobieski, J. and Haftka, R., “Multidisciplinary aerospace design optimization: survey of recent develop-
ments,” Structural Optimization, Vol. 14, No. 1, 1997, pp. 1–23.

5Sobieszczanski-Sobieski, J., Agte, J. S., and Sandusky, R. R., “Bilevel Integrated System Synthesis,” AIAA Journal ,
Vol. 38, No. 1, 2000, pp. 164–172.

6Haftka, R., Sobieszczanski-Sobieski, J., and Padula, S., “On options for interdisciplinary analysis and design optimiza-
tion,” Structural Optimization, Vol. 4, 1992, pp. 65–74.

7Kroo, I. M., “MDO for Large-Scale Design,” Multidisciplinary Design Optimization: State-of-the-Art , edited by N. M.
Alexandrov and M. Y. Hussaini, SIAM, 1997, pp. 22–44.

8Tedford, N. P. and Martins, J. R. R. A., “Comparison of MDO Architectures within a Universal Framework,” Proceedings
of the 2nd AIAA Multidisciplinary Design Optimization Specialist Conference, Newport, RI, May 2006, AIAA 2006-1617.

9“Problem of Seven Bridges of Konigsberg,” Encyclopedia of GIS , edited by S. Shekhar and H. Xiong, Springer, 2008, p.
913.

10F. Harary, Graph Theory, Addison-Wesley, 1969.
11Lhuilier and Gergonne, “Géométrie. Mémoire sur la polyédrométrie; contenant une démonstration directe du théorème

d’Euler sur les polyèdres, et un examen des diverses exceptions auxquelles ce théorème est assujetti,” 1812-1813.
12Wilson, R. J. and Beineke, L. W., editors, Applications of Graph Theory, Academic Press, London, 1st ed., 1979.
13Conrad, J. M. and Agrawal, D. P., “A Graph Partitioning-Based Load Balancing Strategy for a Distributed Memory

Machine,” Proceedings of the International Conference on Parallel Processing , 1992, pp. II–74–II–81.
14Sanchis, L. A., “Multiple-Way Network Partitioning,” IEEE Transactions on Computers (TOC), Vol. C-38, No. 1, Jan.

1989, pp. 62–81.
15McCreary, C. L. and Gill, D. H., “Automatic Partitioning and Virtual Scheduling for E�cient Parallel Execution,” Tech.

Rep. CSE91-02, Auburn Univ., March 1991.
16Hagberg, A., Schult, D., and Swart, P., “NetworkX, High productivity software for complex networks,” Webová strá nka

https://networkx. lanl. gov/wiki , 2006.
17Ellson, Gansner, Koutsofios, North, and Woodhull, “Graphviz – Open Source Graph Drawing Tools,” GDRAWING:

Conference on Graph Drawing (GD), 2001.
18Steward, D., “Design structure system: A method for managing the design of complex systems,” IEEE TRANS. ENG.

MGMT., Vol. 28, No. 3, 1981, pp. 71–74.
19Lambe, A. B. and Martins, J. R. R. A., “Extensions to the Design Structure Matrix for the Description of Multidisciplinary

Design, Analysis, and Optimization Processes,” Structural and Multidisciplinary Optimization, 2012, (In press).
20Kernighan, B. and Lin, S., “An e�cient heuristic procedure for partitioning graphs,” Bell System Technical Journal ,

Vol. 49, No. 2, 1970, pp. 291–307.
21Fiduccia, C. and Mattheyses, R., “A linear-time heuristic for improving network partitions,” Papers on Twenty-five years

of electronic design automation, ACM, 1988, pp. 241–247.

12

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

22Vahid, F. and Le, T., “Extending the Kernighan/Lin heuristic for hardware and software functional partitioning,” Design
Automation for Embedded Systems, Vol. 2, No. 2, 1997, pp. 237–261.

23Bui, T., Heigham, C., Jones, C., and Leighton, T., “Improving the performance of the Kernighan-Lin and simulated
annealing graph bisection algorithms,” Proceedings of the 26th ACM/IEEE Design Automation Conference, ACM, 1989, pp.
775–778.

24Dhillon, I., Guan, Y., and Kulis, B., “A fast kernel-based multilevel algorithm for graph clustering,” Proceedings of the
eleventh ACM SIGKDD international conference on Knowledge discovery in data mining , ACM, 2005, pp. 629–634.

25Hagen, L. and Kahng, A., “New spectral methods for ratio cut partitioning and clustering,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, Vol. 11, No. 9, 1992, pp. 1074–1085.

26Filippone, M., Camastra, F., Masulli, F., and Rovetta, S., “A survey of kernel and spectral methods for clustering,”
Pattern recognition, Vol. 41, No. 1, 2008, pp. 176–190.

27Hendrickson, B. and Leland, R., “An improved spectral graph partitioning algorithm for mapping parallel computations,”
SIAM Journal on Scientific Computing, Vol. 16, No. 2, 1995, pp. 452–469.

28Van Den Bout, D. and Miller III, T., “Graph partitioning using annealed neural networks,” Neural Networks, IEEE
Transactions on, Vol. 1, No. 2, 1990, pp. 192–203.

29Bui, T. and Moon, B., “Genetic algorithm and graph partitioning,” Computers, IEEE Transactions on, Vol. 45, No. 7,
1996, pp. 841–855.

30Kang, S. and Moon, B., “A hybrid genetic algorithm for multiway graph partitioning,” Proceedings of the Genetic and
Evolutionary Computation Conference, Citeseer, 2000, pp. 159–166.

31Karypis, G. and Kumar, V., “METIS: A software package for partitioning unstructured graphs, partitioning meshes, and
computing fill-reducing orderings of sparse matrices,” University of Minnesota, Vol. 102, 1998.

32Karypis, G. and Kumar, V., “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM Journal
on Scientific Computing, Vol. 20, No. 1, 1999, pp. 359.

33Klockner, A., Warburton, T., and Hesthaven, J., “High-Order Discontinuous Galerkin Methods by GPU Metaprogram-
ming,” 2011.

34Chapra, S. and Canale, R., “Numerical methods for engineers,” New York , 1990.
35Martins, J., Sturdza, P., and Alonso, J., “The complex-step derivative approximation,” ACM Transactions on Mathe-

matical Software (TOMS), Vol. 29, No. 3, 2003, pp. 245–262.
36Martins, J., Alonso, J., and Reuther, J., “A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural

design,” Optimization and Engineering, Vol. 6, No. 1, 2005, pp. 33–62.
37Rogers, J., “DeMAID: A Design Manager’s Aide for Intelligent Decomposition User’s Guide,” 1989.
38Rogers, J., “DeMaid/GA-an enhanced design manager’s aid for intelligent decomposition,” AIAA Paper , Citeseer, 1996.
39Sobieszczanski-Sobieski, J., James, B., and Riley, M., “Structural optimization by generalized, multilevel decomposition,”

1985.
40Cramer, E., Dennis Jr, J., Frank, P., Lewis, R., and Shubin, G., “Problem formulation for multidisciplinary optimization,”

SIAM Journal on Optimization, Vol. 4, 1994, pp. 754.
41Perez, R. E., Liu, H. H. T., and Behdinan, K., “Evaluation of Multidisciplinary Optimization Approaches for Aircraft

Conceptual Design,” Aug. 2004, AIAA 2004-4537.
42Yi, S. I., Shin, J. K., and Park, G. J., “Comparison of MDO methods with mathematical examples,” Structural and

Multidisciplinary Optimization, Vol. 35, No. 5, 2008, pp. 391–402.
43Tedford, N. and Martins, J., “Benchmarking multidisciplinary design optimization algorithms,” Optimization and Engi-

neering , Vol. 11, No. 1, 2010, pp. 159–183.
44Perez, R. E., Jansen, P. W., and Martins, J. R. R. A., “pyOpt: a Python-Based Object-Oriented Framework for Nonlinear

Constrained Optimization,” Structural and Multidisciplinary Optimization, 2011, (In press).
45Gill, P., Murray, W., and Saunders, M., “SNOPT: An SQP algorithm for large–scale constraint optimization,” SIAM

Journal of Optimization, Vol. 12, No. 4, 2002, pp. 979–1006.

13

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

22

