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In this paper, a multi-level optimization algorithm is presented. The algorithm 
constructs a system level objective function that drives all disciplines toward each 
discipline’s optimal point while satisfying all necessary discipline constraints and the system 
level constraints. Mathematical convergence of the system level optimization is demonstrated. 
Communication among the system and the discipline level optimizations is facilitated by the 
new algorithm. An analytical example, which has a non-convex Pareto front with coupled 
disciplines, is solved for highlighting the main capabilities of the new algorithm, and a ship 
design optimization analysis is conducted. The latter demonstrates how the new algorithm 
can be used for analyzing a complex engineering system. 

Nomenclature 
Design parameter  

ρ: a vector of discipline objective function input values, which are functions of x .  
𝜌(𝑥𝑝): design parameter on pth iteration of the system level optimization. 

 
Design Variable  

x : a vector of input variables that the optimizer is changing to minimize the objective function.  

jx : the jth variable of x .  

( )x i : the ith discipline design variable. 
px : design variable on pth iteration of the system level optimization 

Optimal Point  
*( )x i : a point where ith discipline achieves its optimal value  
* ( )px i : optimal point at ith

 discipline on pth iteration of the system level optimization 
Objective Function  

( )if x : the function at ith discipline mapping n →   that the optimizer is minimizing (or maximizing).  
*( ( ))if x i : the ith

 discipline optimal objective function value 

( )sysf x : system level objective function. 

Inequality/Equality Constraints  
( )ig x and ( )ih x : inequality/equality for the ith discipline optimization. 

( )sysg x and ( )sysh x : inequality/equality for the system level optimization. 

Plausible Reduction Range  
𝑝𝑟𝑟𝑖 = max �𝑓𝑖�𝑥∗(𝑗)� − 𝑓𝑖�𝑥∗(𝑖)��   ∀ 𝑗\𝑖  where 𝑥∗(𝑗) is the optimal point for jth

 discipline. 
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Upper/Lower Bound  
              ub&lb: a vector of upper/lower bound for design variable x . 

[𝑢𝑏𝑖
𝑝=min �𝑥𝑝 − 𝛼

𝑝
𝑅𝑥
𝑝 , 𝑢𝑏𝑠𝑠𝑠� & 𝑙𝑏𝑖

𝑝= max (𝑥𝑝 + 𝛼
𝑝
𝑅𝑥
𝑝, 𝑙𝑏𝑠𝑠𝑠)]:  upper/lower bound for ith

 discipline on 

pth iteration of the system level optimization. (∝ = a constant) 

𝑅𝑥
𝑝 = max(𝑥∗𝑝(𝑖) − 𝑥∗𝑝(𝑗): 𝑖 ≠ 𝑗,∀ 𝑖,∀ 𝑗): the maximum difference of each design variable across the 

optimal discipline value. 

𝑢𝑏𝑠𝑠𝑠&𝑙𝑏𝑠𝑠𝑠: a collection of largest initial lower bound (smallest upper bound) of each design variable. 
Weight  

iw : positive weights for ith discipline for the system level objective function. 

I. Introduction 
General information on engineering design optimization is presented in Refs. 1-5. In fields, in which complex 

engineering systems are designed – such as naval architecture,6-9 automotive engineering,10,11 mechanical 
engineering, 12-14 and in biomedical engineering,15 it is of particular interest to automatically synthesize the 
conflicting objectives from several disciplines into the search for one overall, globally optimum design.16-19 From 
the design optimization methods considered and proposed in the literature, Multi-discipline Design Optimization 
(MDO) was widely recognized at an early stage by many on the cutting edge of engineering design as the key to the 
future. 20, 21 This recognition stems from the requirement to synthesize several complex and computationally 
intensive disciplines into a single resultant design that comprises the optimum from the perspective of an equally 
complex top-level objective function.12, 22-26 For guidance in using MDO, papers outline the steps in creating an 
MDO framework,27 discussing the characteristics of existing frameworks, 28, 29, 34 and applying MDO in various 
disciplines.18 Multi-level optimization algorithms, like the ones presented in Refs. 30-32 provide a systematic way 
of organizing the solution and the flow of information between the separate multiple discipline and system level 
optimizations. 

Multi-Level System (MLS) design comprises an approach in guiding the decision making process for designing a 
complex system where mutually competing objectives and disciplines need to be considered and evaluated. 
Mathematical relationships between the design variables and the multiple discipline performance objectives are 
developed adaptively as the various design considerations are evaluated and as the design evolves.33 These 
relationships are employed for rewarding performance improvement during the decision making process by 
allocating more resources and influence to the disciplines that exhibit the greatest improvement. The 
interdependency, the implied relationships, the implied variables, and the interactions that are present in a complex 
system are captured during the decision making process. 

The new MLS algorithm that is presented in this paper constructs a system level objective function that drives all 
disciplines toward each discipline’s optimal point while satisfying all necessary discipline constraints and the system 
level constraints. A Euclidean distance to a Utopia point is utilized for defining the system level objective function. 
Using a Euclidean distance to the Utopia point as a goodness of fit has been used by MDO researchers.35, 36 Given a 
proper scaling, this approach can find a non-convex Pareto front, which a typical weighted sum approach cannot 
find.13 The algorithm presented in this paper facilitates the communication among system and discipline level 
optimizers, and it updates the system level and discipline level optimization statements as the system level 
optimization progresses. An iterative computation of objective functions not only ensures that the converged point 
does not violate any constraints, but it also enables the algorithm to handle any interdependencies that are present in 
the disciplines. 

The structure and the work flow of the MLS algorithm are presented first. Mathematical convergence of the 
system level optimization is demonstrated, and an analytical mathematical example is solved to highlight the new 
algorithm’s main capabilities that are described above. Finally, a general ship design optimization analysis is 
conducted where multiple disciplines are considered.  
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II. Operation and Mathematical Formulation of the MLS Algorithm 
Some of their key capabilities of the MLS algorithm are: the ability to converge on a non-convex Pareto front, 

compliance of the system-level solution with all discipline-level constraints, and the ability to capture the 
interdependency among disciplines. The flow of operations in the MLS algorithm is presented in Fig. 1. The 
optimizers iterate the process until the convergence is achieved at the system level.  
 

Figure 1. Flow of operations in the MLS algorithm. 
 

The following steps are taken during the optimization process.  
1. The system level optimization minimizes the scaled Euclidean distance to the Utopia point.   
2. At each iteration of the system level optimization, the design parameters (ρ), the upper bound (ub), the 

lower bound (lb), and the starting point (xp) of the discipline level optimizations are updated.  
3. The discipline level optimizations are conducted, and the discipline level results are being used to update 

the system level objective function. 
4. The system level optimization continues until convergence is achieved. 

 
The algorithm is a multi-level structure with one system-level optimizer and many discipline-level optimizers. 

The flow chart of the MLS algorithm is presented in Fig. 2. The detailed description of algorithm is presented in 
subsequent sections. 

1. System Level 
Optimizer 

2. Update ρ, ub, lb, 
and starting points 
(xp) for discipline 

level optimizations 

3. Discipline Level 
Optimizations 

4. Update System 
Level Objective 

Function 
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Figure 2. Flow chart of the MLS algorithm. 
  

During each iteration of the system level optimization, the system level optimizer launches the discipline level 
optimizers and provides each one of them updated values for the upper bound (ub), lower bound (lb), design 
parameters (ρ), and the starting point of each discipline level optimization (xp). Then, each discipline optimizer 
identifies its new optimum with updated optimization statements. Finally, the algorithm feeds the information from 
the discipline level to the system level to update the system level optimization. In general, the changing values of the 
design parameters cause each discipline level optimization to converge on different solution every time the 
discipline analysis is conducted. The discipline level and the system level optimization statements are presented next.  
 

A. Discipline level optimization statement 
Each discipline has its own objective function (𝑓𝑖(𝑥)), inequality constraint (𝑔𝑖(𝑥)), equality constraint (ℎ𝑖(𝑥)), 

and upper/lower bound (𝑢𝑏𝑖, 𝑙𝑏𝑖). It is assumed that each discipline level optimization statement satisfies conditions 
A1-A6, such that each discipline statement is considered to be well-formulated for a gradient-based optimizer. 37-41  
 

min�𝑓𝑖(𝑥)�  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑥) ≤ 0 ,ℎ𝑖(𝑥) = 0 

𝑙𝑏𝑖  ≤ 𝑥 ≤ 𝑢𝑏𝑖 
 
A1. 𝑓𝑖(𝑥) is bounded below 
A2. 𝑓𝑖(𝑥) is second-derivative continuous (i.e., the gradient and Hessian are continuous) 
A3. 𝑔𝑖(𝑥) is second-derivative continuous (i.e., the gradient and Hessian are continuous) 
A4. ℎ𝑖(𝑥) is second-derivative continuous (i.e., the gradient and Hessian are continuous) 
A5. |𝑔𝑖(𝑥)| < ∞ & |ℎ𝑖(𝑥)| < ∞ for  {𝑥: 𝑙𝑏𝑖  ≤ 𝑥 ≤ 𝑢𝑏𝑖} 
A6. There exists a feasible solution  
 

K
th

 Discipline 2
nd

 Discipline 

System Level Objective Function (𝑓𝑠𝑠𝑠(𝑥)) 

Design Parameter 
Updater 1

st
 Discipline 

  xp 

x
p
,ρ,ub1,lb1 

x*p(1) 

… 

… 

x
p
,ρ,ub2,lb2 

x
p
,ρ,ubk,lbk 

ρ 

x*p(2) x*p(k) 
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B. System level optimization statement 

The system level objective function (𝑓𝑠𝑠𝑠) is a scaled Euclidean distance to the Utopia point. Each discipline is 
scaled by its Plausible Reduction Range (prr) and the weights assigned to each discipline (wi). prr is the maximum 
difference of each discipline’s optimal objective function value �𝑓𝑖�𝑥∗(𝑖)�� and the function evaluated at all other 
discipline’s optimal points �𝑓𝑖�𝑥∗(𝑗)��.   

 
𝑝𝑟𝑟𝑖 = max �𝑓𝑖�𝑥∗(𝑗)� − 𝑓𝑖�𝑥∗(𝑖)��   ∀ 𝑗\𝑖  where 𝑥∗(𝑗) is the optimal point for jth

 discipline. 
 
This type of scaling is shown to find a non-convex Pareto front. 13 By assigning various weights in the system 

level objective function, the algorithm can control the convergence on the Pareto front. 
The inequality constraint (𝑔𝑠𝑠𝑠(𝑥)) and equality constraint (ℎ𝑠𝑠𝑠(𝑥)) represent the combination of all discipline 

level constraints. In this manner, the system level optimum �𝑓𝑠𝑠𝑠(𝑥∗)�will satisfy all the constraints from all the 
disciplines. Repeating constraints are included only once in 𝑔𝑠𝑠𝑠(𝑥) and ℎ𝑠𝑠𝑠(𝑥). 
 

min �𝑓𝑠𝑠𝑠(𝑥)�  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑠𝑠𝑠(𝑥) ≤ 0 ,ℎ𝑠𝑠𝑠(𝑥) = 0 

𝑙𝑏𝑠𝑠𝑠  ≤ 𝑥 ≤ 𝑢𝑏𝑠𝑠𝑠 
 
where as  

𝑓𝑠𝑠𝑠 = 𝑒
�∑ 𝑤𝑖�

𝑓𝑖(𝑥)−𝑓𝑖(𝑥∗(𝑖))
𝑝𝑟𝑟𝑖

�
2

𝑘
𝑖=1 �

 

𝑔𝑠𝑠𝑠(𝑥) =  �
𝑔1(𝑥)
⋮

𝑔𝑘(𝑥)
�   and ℎ𝑠𝑠𝑠(𝑥) =  �

ℎ1(𝑥)
⋮

ℎ𝑘(𝑥)
�  

 

III. Convergence of MLS Algorithm 
To demonstrate convergence on the system level optimization, the conditions (A1-A6), which guarantee 

convergence of each discipline level optimization, must also hold for the system level. These conditions are:  
 
S1. 𝑓𝑠𝑠𝑠(𝑥) is bounded below. 
S2. 𝑓𝑠𝑠𝑠(𝑥) is second-derivative continuous (i.e., the gradient and Hessian are continuous). 
S3. 𝑔𝑠𝑠𝑠(𝑥)is second-derivative continuous (i.e., the gradient and Hessian are continuous). 
S4. ℎ𝑠𝑠𝑠(𝑥) is second-derivative continuous (i.e., the gradient and Hessian are continuous). 
S5. �𝑔𝑠𝑠𝑠(𝑥)� < ∞ & �ℎ𝑠𝑠𝑠(𝑥)� < ∞ for  {𝑥: 𝑙𝑏𝑠𝑠𝑠  ≤ 𝑥 ≤ 𝑢𝑏𝑠𝑠𝑠}. 
 

This section demonstrates that if A1-A6 are true, then the system level optimization satisfies property S1-S5.  
 
S1. 𝑓𝑠𝑠𝑠 is bounded below. 

𝑓𝑠𝑠𝑠 = 𝑒�
∑ 𝑤𝑖(

𝑓𝑖(𝑥)−𝑓𝑖(𝑥∗(𝑖))
𝑝𝑟𝑟𝑖

)2𝑘
𝑖=1 � 

�𝑓𝑠𝑠𝑠� ≥ 𝑒0 = 1. Thus, it is bounded below. 
 
S2. 𝑓𝑠𝑠𝑠, ∇𝑓𝑠𝑠𝑠, and  ∇2𝑓𝑠𝑠𝑠 are continuous. 

(i) 𝑓𝑠𝑠𝑠 is continuous  (𝑓𝑠𝑠𝑠 maps n →  ) 

𝑓𝑠𝑠𝑠 = 𝑒�
∑ 𝑤𝑖(

𝑓𝑖(𝑥)−𝑓𝑖(𝑥∗(𝑖))
𝑝𝑟𝑟𝑖

)2𝑘
𝑖=1 � 

Define 𝑐𝑖 = 𝑤𝑖
𝑝𝑟𝑟𝑖

2 > 0 to simplify the notation 
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𝑓𝑠𝑠𝑠 = 𝑒�∑ 𝐶𝑖�𝑓𝑖(𝑥)−𝑓𝑖(𝑥∗(𝑖))�
2𝑘

𝑖=1 �  
 
Step 1. 
𝑓𝑖�𝑥∗(𝑖)� is a constant, and 𝑓𝑖(𝑥) is a continuous function. 
Thus, 𝑓𝑖(𝑥) − 𝑓𝑖�𝑥∗(𝑖)� is a continuous function.  
Subsequently, (𝑓𝑖(𝑥) − 𝑓𝑖�𝑥∗(𝑖)�)2  is also continuous. 
 
Step 2. 

𝒆∑ 𝐶𝑖�𝑓𝑖(𝑥)− 𝑓𝑖(𝑥∗(𝑖))�
2𝑘

𝑖=1 =  �
�∑ 𝐶𝑖�𝑓𝑖(𝑥) − 𝑓𝑖(𝑥∗(𝑖))�2𝑘

𝑖=1 �
𝑚

𝑚!

∞

𝑚=0

 

The summation of converging sequence of continuous function is also continuous.  
Therefore, 𝑓𝑠𝑠𝑠 is continuous. 

 

(ii) ∇𝑓𝑠𝑠𝑠 is continuous  (∇𝑓𝑠𝑠𝑠 maps n n→  ) 
∇𝑓𝑠𝑠𝑠 =  �𝑓𝑠𝑠𝑠 �∑ 2𝐶𝑖�𝑓𝑖(𝑥) − 𝑓𝑖(𝑥∗(𝑖))� 𝜕𝑓𝑖(𝑥)

𝜕𝑥1
𝑘
𝑖=1 �… 𝑓𝑠𝑠𝑠 �∑ 2𝐶𝑖�𝑓𝑖(𝑥) − 𝑓𝑖(𝑥∗(𝑖))� 𝜕𝑓𝑖(𝑥)

𝜕𝑥𝑛
𝑘
𝑖=1 ��   

𝑓𝑠𝑠𝑠 is continuous by S2 (i).  
𝑓𝑖(𝑥)  and 𝜕𝑓𝑖(𝑥)

𝜕𝑥𝑗
 are continuous by A2. 

Subsequently, ∑ 2𝐶𝑖�𝑓𝑖(𝑥) − 𝑓𝑖(𝑥∗(𝑖))� 𝜕𝑓𝑖(𝑥)
𝜕𝑥𝑗

𝑘
𝑖=1  is continuous.  

All columns of ∇𝑓𝑠𝑠𝑠are continuous.   
Therefore, ∇𝑓𝑠𝑠𝑠 is continuous. 
 

(iii) ∇2𝑓𝑠𝑠𝑠 is continuous  

(∇2𝑓𝑠𝑠𝑠maps n n n×→  ) 

∇2𝑓𝑠𝑠𝑠 =  

⎣
⎢
⎢
⎡
𝜕∇𝑓𝑠𝑦𝑠
𝜕𝑥1

 
⋮

  𝜕∇𝑓𝑠𝑦𝑠
𝜕𝑥𝑛

 ⎦
⎥
⎥
⎤
     

for each j ∈  [1 … n] 

𝜕∇𝑓𝑠𝑠𝑠
𝜕𝑥𝑗

=  �
𝜕𝑓𝑠𝑠𝑠
𝜕𝑥𝑗

�� 2𝐶𝑖�𝑓𝑖(𝑥) − 𝑓𝑖(𝑥∗(𝑖))�
𝜕𝑓𝑖(𝑥)
𝜕𝑥1

𝑘

𝑖=1

� +  𝑓𝑠𝑠𝑠 �� 2𝐶𝑖
𝜕𝑓𝑖(𝑥)
𝜕𝑥𝑗

∙
𝜕𝑓𝑖(𝑥)
𝜕𝑥1

 
𝑘

𝑖=1

�

+ 𝑓𝑠𝑠𝑠 �� 2𝐶𝑖�𝑓𝑖(𝑥) − 𝑓𝑖(𝑥∗(𝑖))�
𝜕2𝑓𝑖(𝑥)

𝜕𝑥1𝜕𝑥𝑗
 

𝑘

𝑖=1

�   ⋯  
𝜕𝑓𝑠𝑠𝑠
𝜕𝑥𝑗

�� 2𝐶𝑖�𝑓𝑖(𝑥) − 𝑓𝑖(𝑥∗(𝑖))�
𝜕𝑓𝑖(𝑥)
𝜕𝑥𝑗

𝑘

𝑖=1

�

+  𝑓𝑠𝑠𝑠 �� 2𝐶𝑖 �
𝜕𝑓𝑖(𝑥)
𝜕𝑥𝑗

�
2

 
𝑘

𝑖=1

�

+ 𝑓𝑠𝑠𝑠 �� 2𝐶𝑖�𝑓𝑖(𝑥) − 𝑓𝑖(𝑥∗(𝑖))�
𝜕2𝑓𝑖(𝑥)
𝜕𝑥𝑗

2  
𝑘

𝑖=1

�  ⋯  
𝜕𝑓𝑠𝑠𝑠
𝜕𝑥𝑗

�� 2𝐶𝑖�𝑓𝑖(𝑥) − 𝑓𝑖(𝑥∗(𝑖))�
𝜕𝑓𝑖(𝑥)
𝜕𝑥𝑛

𝑘

𝑖=1

�

+  𝑓𝑠𝑠𝑠 �� 2𝐶𝑖
𝜕𝑓𝑖(𝑥)
𝜕𝑥𝑗

∙
𝜕𝑓𝑖(𝑥)
𝜕𝑥𝑛

 
𝑘

𝑖=1

� + 𝑓𝑠𝑠𝑠 �� 2𝐶𝑖�𝑓𝑖(𝑥) − 𝑓𝑖(𝑥∗(𝑖))�
𝜕2𝑓𝑖(𝑥)
𝜕𝑥𝑗𝜕𝑥𝑛

 
𝑘

𝑖=1

��  
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𝑓𝑠𝑠𝑠, 𝜕𝑓𝑠𝑦𝑠
𝜕𝑥𝑗

 is continuous by S2(i) and S2(ii). 

𝑓𝑖(𝑥), 𝜕𝑓𝑖(𝑥)
𝜕𝑥𝑗

, 𝜕
2𝑓𝑖(𝑥)
𝜕𝑥𝑖𝜕𝑥𝑗

  are continuous by A2.  

All rows of ∇2𝑓𝑠𝑠𝑠 are continuous.  
Therefore ∇2𝑓𝑠𝑠𝑠  is continuous. 

 
S3 & S4. 𝒈𝒔𝒚𝒔(𝒙) is second derivative continuous, and 𝒉𝒔𝒚𝒔(𝒙) is second derivative continuous. 
𝑔𝑠𝑠𝑠(𝑥) and ℎ𝑠𝑠𝑠(𝑥) are the collection of second derivative continuous discipline level inequality and equality 
constraints 𝑔𝑖(𝑥) and ℎ𝑖(𝑥). By A3 and A4, 𝑔𝑖(𝑥) and ℎ𝑖(𝑥) are second derivative continuous.  
Therefore, 𝑔𝑠𝑠𝑠(𝑥) and ℎ𝑠𝑠𝑠(𝑥) are second derivative continuous. 
 
S5. �𝑔𝑠𝑠𝑠(𝑥)� < ∞ and �ℎ𝑠𝑠𝑠(𝑥)� < ∞ for {𝑥: 𝑙𝑏𝑠𝑠𝑠  ≤ 𝑥 ≤ 𝑢𝑏𝑠𝑠𝑠} 
 𝑔𝑠𝑠𝑠(𝑥) and ℎ𝑠𝑠𝑠(𝑥) are the collection of second derivative continuous discipline level inequality and equality 
constraints 𝑔𝑖(𝑥) and ℎ𝑖(𝑥). 𝑔𝑖(𝑥) and ℎ𝑖(𝑥) are bounded for  {𝑥: 𝑙𝑏𝑖  ≤ 𝑥 ≤ 𝑢𝑏𝑖}.  
 
By definition (𝑙𝑏𝑖  ≤ 𝑙𝑏𝑠𝑠𝑠  ≤  𝑢𝑏𝑠𝑠𝑠 ≤ 𝑢𝑏𝑖)  
Therefore, �𝑔𝑠𝑠𝑠(𝑥)� < ∞ and �ℎ𝑠𝑠𝑠(𝑥)� < ∞ are bounded for {𝑥: 𝑙𝑏𝑠𝑠𝑠  ≤ 𝑥 ≤ 𝑢𝑏𝑠𝑠𝑠}. 

IV. Analytical Example 
To demonstrate the performance of the MLS algorithm, the authors solved a multi-discipline optimization 

example that was based on the Sellar Problem 43.  The original optimization statement of the Sellar problem is  
 

min�𝑓𝑜𝑏𝑗(𝑧1, 𝑧2, 𝑥1,𝑦1,𝑦2) = 𝑥12 + 𝑧2 + 𝑦1 + 𝑒−𝑠2�  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 𝑔1(𝑥) =
𝑦2
24

− 1 ≤ 0  

𝑔2(𝑥) = 1 −
𝑦1

3.16
≤ 0 

𝑦1(𝑧1, 𝑧2, 𝑥1,𝑦2) = 𝑧12 + 𝑥1 + 𝑧2 − 0.2𝑦2 
𝑦2(𝑧1, 𝑧2,𝑦1) = �𝑦1 + 𝑧1 + 𝑧2 

[−10  0  0] ≤ [𝑧1, 𝑧2, 𝑥1] ≤ [10  10  10] 
 

In the past, the Sellar problem has been used in Refs. 43 for demonstrating the performance of a Collaborative 
Optimization (CO) algorithm. Due to the interdependency between fobj, y1, and y2, a sub-optimization is solved with 
the CO. MLS algorithm defines three disciplines with the functions of the Sellar problem. Each discipline 
optimization is solved as a separate CO.  

 
The original Sellar problem is used as the first discipline in the MLS example. The construction remains the 

same in the other two disciplines optimization statements, but functions y1 and y2 comprise each objective functions 
respectively. Within each discipline optimization, y1 and y2 are evaluated by solving a sub-optimization problem 
which minimizes the Error between estimate of y1 and y2 and the corresponding final values. 

 
 
 
The MLS algorithm uses information from the discipline level optimizations to update the system level 

optimization. This algorithm can also be used for evaluating the Pareto front by assigning various weights to the 
system level objective function.  

Table 1 summarizes MLS optimization statement based on the Sellar problem. It lists all disciplines objective 
functions, a system level objective function, inequality constraints, and upper and lower bounds of design variables. 
prry1 is several orders of magnitude smaller than the other prrs. Therefore, only small change can be identified in y1. 

( ) ( )2 2* *
1 1 2 2Error y y y y= − + − * 2

1 1 1 2 20.2y z x z y= + + − *
2 1 1 2y y z z= + +
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Upper bound (ub) , lower bound (lb), inequality constraints (g(x)), and equality constraints (h(x)) are identical for all 
discipline-level and a system-level optimization for this problem.  

 
Table 1. Definitions of MLS Optimization based on the Sellar problem. 

First Discipline 
(original objective function) Second Discipline (y1) Third Discipline (y2) 

 
 

subject to 

 

2

1

1
24( ) 0

1
3.16

y

g x
y

 − 
= ≤ 
 + 
 

 

( )h x =∅  
     lb(z1,z2,x1)  = [ -10   0    0  ]  
     ub(z1,z2,x1) = [  10  10  10  ] 

 
 

subject to 
2

1

1
24( ) 0

1
3.16

y

g x
y

 − 
= ≤ 
 + 
 

 

( )h x =∅  
         lb(z1,z2,x1)  = [ -10   0    0  ]  
        ub(z1,z2,x1)  = [  10  10  10 ] 

 
 

subject to
 

2

1

1
24( ) 0

1
3.16

y

g x
y

 − 
= ≤ 
 + 
 

 

( )h x =∅  
         lb(z1,z2,x1)  = [ -10   0    0  ]  
        ub(z1,z2,x1)  = [  10  10  10 ] 

[ ]*( ) 1.97 0 0x obj ≈  
*( ( )) 3.18objf x obj ≈  

12.69objprr ≈  

 [ ]*(1) 1.78 0.34 0.43x ≈  

 *
1( (1)) 3.16y x ≈  

1
0.04yprr ≈  

[ ]*(2) 0 0 4.25x =  

 
*

2 ( (2)) 1.83y x ≈  
2

3.79yprr ≈  

System Level 

𝑓𝑠𝑠𝑠 = 𝑒𝑥𝑝�𝑤𝑜𝑏𝑗 �
𝑓𝑜𝑏𝑗(𝑥)− 𝑓𝑜𝑏𝑗(𝑥∗(𝑜𝑏𝑗))

𝑝𝑟𝑟𝑜𝑏𝑗
�
2

+𝑤𝑠1 �
𝑦1(𝑥) − 𝑦1(𝑥∗(1))

𝑝𝑟𝑟𝑠1
�
2

+ 𝑤𝑠1 �
𝑦2(𝑥) − 𝑦2(𝑥∗(2))

𝑝𝑟𝑟𝑠2
�
2

� 
subject to 

 

2

1

1
24( ) 0

1
3.16

sys

y

g x
y

 − 
= ≤ 
 + 
 

 

 

( )sysh x =∅  

[ ] [ ]10 0 0 10 10 10sys syslb x ub= − ≤ ≤ =  
 

 
To assess the performance of the MLS algorithm, a Monte Carlo (MC) simulation was conducted. 248625 

numbers of Monte Carlo simulations were considered, and the simulation resulted 176883 feasible points and a 
Pareto front with 113 non-dominated points. In Table 2, The MLS algorithm result is compared with published data 
using a Collaborative Optimization (CO) of the original objective function. 44  

 
Table 2. Results Comparison between Published Data 

  z1 z2 x1 fobj y1 y2 Note 
Published Data using CO 1.978 0.000 0.000 3.183 3.160 3.756 - 

MLS 1.551 0.000 1.419 5.209 3.160 3.329 Equal weights for fobj , y1, and y2  

Change in Value  
(% of prr) - - - 15.96% -1.16% -11.25% - 

 

22
1 2 1

y

obj
x z y ef −= + + + 2

1 1 2 1 2 1 1 2 2( , , , ) 0.2y z z x y z x z y= + + − 2 1 2 1 1 1 2( , , )y z z y y z z= + +

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

55
 



 
 

9 
American Institute of Aeronautics and Astronautics 

 

The new MLS algorithm performs as authors has expected. The value of fobj increases with the MLS algorithm 
because the algorithm no longer solely minimizes fobj. The value of y2 decreases by 11% of prry1 . The value of y1 
decreases by less than 10-4. As mentioned above, small reduction in the y2 can be attributed to small prry2.  

 
Fig. 3 shows the 3-dimensional numerical Pareto front of the Sellar problem and the converged points in relation 

to the Pareto front. The converged points are in neighbor of the Pareto front identified by the MC simulation. This 
shows that the algorithm converges on the Pareto front.  

 

Figure 3. Numerical Pareto front of the Sellar Problem. 

Fig. 4 is a 2-dimensional projection of the numerical Pareto front of fobj and y2. As mentioned above the range of 
y1 axis is orders of magnitude smaller than that of fobj. 

 

Figure 4. Numerical Pareto front of the Sellar Problem y1 vs. fobj. 
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Fig. 5 highlights the main capabilities of the MLS algorithm. The 2-dimensional projection of the numerical 
Pareto front of fobj and y2 shows the non-convexity of the Pareto front and tradeoff between fobj and y2. The MLS 
algorithm is capable of controlling convergence on the Pareto front while CO can only converge onto fobj minimum. 

 

Figure 5. Numerical Pareto front of the Sellar Problem fobj vs. y2. 

Fig. 6 is a 2-dimensional projection of the numerical Pareto front of y2 and y1. 

 

Figure 6. Numerical Pareto front of the Sellar Problem y2 vs. y1.  

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

55
 



 
 

11 
American Institute of Aeronautics and Astronautics 

 

V. Ship Analysis. 
To demonstrate how the new algorithm can be used for analyzing a complex engineering system, a design 

analysis is performed for a general cargo ship. This analysis contains multiple objectives, but the interdependency 
and the tradeoff of these objectives cannot be easily identified because of complex relationship between design 
variables and the objectives. The objectives are associated with the lightship weight (LW), the transportation cost 
(TC), and the annual cargo (AC). 42 The optimization statement is written to minimize LW and TC and to maximize 
AC, which is equivalent to minimization of negative AC. Table 3 defines objective functions, design variables, 
inequality constraints, and various parameters that are required to compute objective functions. The problem has six 
design variables: Length (L), Beam (B), Depth (D), Draft (T), Block Coefficient (CB), and Ship Speed (Vk), and 
eight inequality constraints. The system level objectives function is expressed as: 

𝑓𝑠𝑠𝑠 = 𝑒𝑥𝑝 �𝑤𝐿𝑊 �
𝐿𝑊(𝑥) − 𝐿𝑊(𝑥∗(𝑙𝑤))

𝑝𝑟𝑟𝐿𝑊
�
2

+ 𝑤𝑇𝐶 �
𝑇𝐶(𝑥) − 𝑇𝐶(𝑥∗(𝑡𝑐))

𝑝𝑟𝑟𝑇𝐶
�
2

+ 𝑤𝐴𝐶 �
−𝐴𝐶(𝑥) + 𝐴𝐶(𝑥∗(𝑎𝑐))

𝑝𝑟𝑟𝐴𝐶
�
2

� 

where wLW, wTC, and wAC are the weights assigned to each one of the three disciplines. Technical details about the 
mathematical models used in this ship analysis are present in Ref. 42. and summarized in Table 3. 

Table 3. Technical background of ship example42. 
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The numerical Pareto front is constructed by the new MLS algorithm with the exhaustive permutation of [0   0.1   
0.2   0.25   0.3   0.4   0.5   0.6   0.7   0.75   0.8   0.9   1] on the system level objective function weights: wLW, wTC, and 
wAC. This permutation produces 2197(=113) system level objective functions for each initial point. The authors tested 
the algorithm with three different initial points resulting in 6591(=113 x 3) MLS optimization statements.  

Out of 6591 converged points, 4434 points are non-dominated. 2157 dominated points are expected because of 
the redundant permutation of weights and the optimization statements with different initial points converging on the 
same point on the Pareto front. The result shows that the MLS algorithm is capable and useful in identifying the 
Pareto front for general engineering design problems.  

For plotting purposes, all objective functions are non-dimensionalized, and the non-dimensionalized factors are 
10300 (t) for LW, -548000 (t/yr) for AC, and 9.93 (£/yr) for TC. The non-dimensionalized prrs are 12.068 for LW, 
9.734 for AC, and 3.294 for TC. Table 4 summarizes the results when equal weights are assigned to all three 
disciplines. The corresponding optimum is presented in the Pareto front plots as a point of reference to demonstrate 
the compromise between the mutually competing discipline objectives. 
 

Table 4. Converged Point with Equal Weights. 

L (m) B (m) D (m) T (m) CB Vk (knots) TC -AC LW 
215.39 32.31 15.73 11.71 0.75 14.00 8.53 -11.31 10.81 

 
Figs. 7-10 show the Pareto front constructed using the MLS algorithm. Fig. 7 shows a 3-dimensional scatter plot 

of non-dominated points found by the MLS algorithms. Figs. 8-10 comprise two dimensional projections of the 
Pareto front.  

Table 4 summarizes the six design variables and the objective functions when equal weights are considered in 
the definition of the system level objective function. It can be observed that assigning equal weight to each 
discipline leads to a balanced design and avoids the region of extreme values for the objective functions.  

 

 
Figure 7. Container Ship Problem Pareto Front. 
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Figure 8. Annual Cargo vs. Lightship Weight. 

 

Figure 9. Transportation Cost vs. –Annual Cargo. 
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Figure 10. Transportation Cost vs. Lightship Weight. 

Unlike single objective optimizations, which identify one optimal point, the MLS algorithm can be used for 
identifying the non-dominated set. The capability to construct the Pareto front without conducting a MC analysis is 
immensely useful during decision making processes when the interdependency and the tradeoff between multiple 
objectives are not intuitive. The successful construction of the Pareto front of the ship analysis confirms the utility of 
the MLS algorithm in general engineering design problems.  

VI. Summary 
An MLS optimization algorithm and its mathematical proof of convergence are presented. The structure of the 

algorithm is comprised by a system level optimization and multiple discipline level optimizations for simultaneously 
minimizing all discipline level objective functions. The algorithm uses the system level optimization for 
coordinating the interaction and the exchange of information among multiple discipline level optimizations. 
Mathematical convergence of the system level is proven given that the discipline level optimization problems are 
well conditioned. The Sellar problem, which has been used in the past for evaluating CO algorithms, provides the 
basis for defining a multi-level optimization problem with three discipline level CO statements. The new MLS 
algorithm is used for conducting the analysis, and the results demonstrate the capabilities of the new algorithm for 
balancing competing objectives, facilitating the exchange of information between disciplines, and being able to 
identify a non-convex Pareto front. The ship analysis demonstrates that the algorithm can be useful for solving 
general engineering design problems. 
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