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Materials and Methods 
 

 Tetrahedrite synthesis:  Cu12-x(Fe,Zn)2-xSb4S13 samples were synthesized by direct 

reaction of the starting elements- Cu(99.99 %, Alfa-Aesar), Sb(99.9999 %, Alfa-Aesar), and S, 

Zn, Fe (99.999%, Alfa-Aesar) . The elements were weighed out in stoichiometric proportions 

using a high-precision Mettler balance; typical charges were on the order of 5 grams total, 

with individual element masses weighed out with an accuracy of 0.0005 g (0.5 mg). The 

stoichiometric proportions of the elements were placed into quartz ampoules of inside 

diameter 10 mm and wall thickness 0.5 mm.  The ampoules were evacuated of air using a 

turbo molecular pump; typical final pressures were <10-5 Torr. The ampoules were sealed 

under dynamic vacuum using an oxygen/methane torch and provided with a small quartz hook 

on the top.  A wire was attached to this hook and the ampoules were suspended in a vertical 

Thermolyne tube furnace at room temperature. The furnace was heated at 0.3 ºC min-1 to 650 

ºC and held at that temperature for 12 hours. Subsequently, the furnace was cooled to room 

temperature at the rate of 0.4 ºC min-1. 

Natural tetrahedrite mineral: A natural specimen of tetrahedrite (photograph, Figure S1) 

was obtained from a mineral dealer[S1].  This specimen, which is identified as tetrahedrite 

from its geological characteristics, originated from Casapalca region of Peru. It also contained 

small regions of quartz (small white crystals, Figure S1), and pyrite (not shown in Figure S1).  
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As we describe below, this specimen is actually a solid solution of tetrahedrite (Cu12Sb4S13) 

and tennantite (Cu12As4S13).   

Pellet consolidation: The reacted material was placed into a stainless steel vial and ball 

milled for five minutes in a SPEX sample preparation machine. These ball-milled powders 

were then cold pressed into a pellet and re-ampouled under vacuum for annealing for two 

weeks at 450 ºC.  The final product after annealing was ball milled for 30 minutes into fine 

powders and hot-pressed under argon atmosphere at 80 MPa pressure and 430 ºC for 30 

minutes. All the hot pressed samples used in this study were greater than 98% theoretical 

density, as measured using the Archimedes method.  We synthesized two batches each of 

Cu12-xZn2-xSb4S13 and Cu12-xFe2-xSb4S13 samples.  We would like to stress that the high 

temperature thermoelectric property results presented in this article were all gathered from 

the same pellet for each of the compositions.  We also synthesized a pellet using the natural 

mineral as source material (designated sample N), and another pellet by mixing natural 

mineral powder with synthetic Cu12Sb4S13 powder in a 1:1 weight ratio (designated sample 

N/S).  These latter two samples were ball milled and hot-pressed using the same procedure as 

described above. 

X-ray characterization: X-ray diffraction analysis of all of the synthesized specimens 

was performed by using a Rigaku Miniflex II bench-top X-ray diffractometer (Cu Kα 

radiation), and the results analyzed using a Jade software package.  For each sample a small 

amount of hot-pressed material was powdered, spread on a microscope slide, and placed in 

the x-ray beam.  Figure S2 shows results of x-rays scans on representative Cu12-xZn2-xSb4S13 

and Cu12-xFe2-xSb4S13 samples, respectively.  All peaks index to the tetrahedrite crystal 

structure, and we see no evidence of any other phases in our samples.  Figure S3 displays the 

x-ray scan for sample N, the pure synthetic Cu12Sb4S13, and for sample N/S. For the natural 

mineral sample N, we see peaks corresponding only to the tetrahedrite structure, but shifted to 

higher angle with respect to the synthetic Cu12Sb4S13 sample.  From electron microprobe 
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results (below) we conclude that this shift is due to the substantial amount of As on the Sb site 

in sample N.  The x-ray scan for sample N/S also indicates that this sample is single phase and 

of the tetrahedrite crystal structure.  The peaks are located midway between that of sample N 

and the pure Cu12Sb4S13 sample, indicating that a solid solution has been formed during the 

hot pressing process. 

Microprobe analysis of natural mineral: In order to determine the composition of the 

natural specimen, energy-dispersive X-ray electron spectroscopy (EDS) analysis was 

performed on several pieces of the sample previously identified as single phase tetrahedrite by 

x-ray diffraction.  A representative result is shown in Figure S4.  For the results shown here, 

if we scale the atomic constituents to a semimetal content of 4.00, the average composition of 

this portion of the mineral specimen is Cu10.2Fe1.4As3.7Sb0.3S13.3.   Across the series of sample 

regions probed, the composition deviated from that shown in Figure S4 by about 10 %.  On 

the basis of these results, together with the x-ray analysis, we conclude that sample N, the 

natural tetrahedrite mineral, is a solid solution of tetrahedrite (Cu12Sb4S13) and tennantite 

(Cu12As4S13), with a Fe substitution level of approximately x = 1 – 1.5.  On the basis of the x-

ray results, Figure S3, we conclude that by mixing pure Cu12Sb4S13 powder with powder from 

the natural crystal N, we can effectively “dilute” the Fe content in the sample.  From the shift 

in the x-ray peaks we estimate that the composition of the diluted sample is approximately 

Cu11.3Fe0.7Sb2.2As1.8S13.  This puts this sample right in the range for optimal thermoelectric 

performance. 

Thermal and electrical characterization: High temperature (373K-673K) Seebeck 

coefficient and electrical resistivity were measured in an Ulvac ZEM-3 system under argon. 

Typical specimen sizes for this measurement are 3x3x8 mm3 with measurement performed 

along the long dimension. The thermal diffusivity (D) and heat capacity (Cp) from 373K to 

673K were measured using the laser flash method (Netzsch, LFA 457) and differential 

scanning calorimetry (Netzsch, DSC200F3) respectively. The data were also confirmed 
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independently in a second laboratory using an Anter Flashline 5000 thermal diffusivity 

apparatus and a Netzsch 404C Pegasus calorimeter. Examples of data for heat capacity and 

thermal diffusivity are shown in Figures S5 and S6, respectively.  The samples used for heat 

capacity and diffusivity measurements were from adjacent sections of the same pellets as 

those used for high temperature resistivity and Seebeck coefficient.  The high temperature 

thermal conductivity was calculated using κ=D*Cp*density.  Density measurements were 

performed using the Archimedes method with de-ionized water as the suspending fluid.   We 

checked the Seebeck measurements by also measuring a bismuth telluride Seebeck standard 

sample (NIST SRM-3451), and found differences between our measurements and the 

calibration values of no more than 3 % over the range 300 – 573 K.  The thermoelectric power 

factor for the Zn-substituted samples as well as that for specimens N and N/S are shown in 

Figure S7. 

Theory details: Density-functional theory (DFT) calculations were performed with the 

projector-augmented wave (PAW) method as implemented in the highly efficient Vienna Ab 

Initio Simulation Package (VASP)28. Our self-consistent calculations used regular Monkhorst-

Pack k-point meshes of 10 ×10×10 and a plane wave cutoff energy of 450 eV. The Perdew-

Becke-Ernzerhof (PBE) exchange-correlation (xc) functional30 was used to obtain the band 

structure shown in Figure 2; atom-decomposed electronic density-of-states over a wider 

energy range is shown in Figure S8. The calculated equilibrium lattice parameter was 10.403 

Å, which compares well with the experimental value of 10.364 Å and presents a slight 

overestimation that is common for the PBE functional. To test the validity of the PBE 

functional, separate calculations were performed using the LDA+U method31 with U values of 

4 and 8 eV, as well as with the Heyd-Scuseria-Ernzerhof (HSE06) range-separated hybrid 

exchange functional32. The band structure near the Fermi level was found to be qualitatively 

unchanged w.r.t. the choice of the xc functional. Phonon dispersion curves were calculated 

using an in-house DFT linear response code. Optimized norm-conserving pseudopotentials 
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were generated for Cu 3d104s1, Sb 5s25p3, and S 3s23p4 valence configurations. Electronic 

wave functions were expanded in plane wave basis with a 680 Ry cutoff energy and the 

Brillouin zone was sampled on a regular 8 ×8×8 k point mesh. Dynamical matrices were 

calculated on a regular 2×2×2 k point grid and interatomic force constants were obtained via 

inverse Fourier transform; these force constants were then used to interpolate phonon 

dispersion throughout the Brillouin zone. Phonon mode Grüneisen parameters were obtained 

by taking finite differences between phonon frequencies calculated at two lattice parameters 

separated by 2%. These results were verified against the phonon frequencies calculated using 

the DFT force constant method on 236-atom supercells of Cu12Sb4S13, obtained with the 

VASP code. Both methods produced phonon frequencies that were in excellent agreement 

with each other, typically differing by a only few per cent.  

 Zn- and Fe-substituted compounds. We investigated the energetics of Fe and Zn 

substitution on both the trigonal 12e and tetrahedral 12d sites; the tetrahedral sites were 

preferred by more than 0.4 eV per substitutional atom. The substitution sites for 

Cu10Zn2Sb4S13 were determined by picking the lowest-energy configuration among all 

symmetry-inequivalent substitutional pairs on the tetrahedral 12d sites. The calculated band 

structure of Cu10Zn2Sb4S13 is shown in Figure S9, showing that introduction of Zn leads to 

complete filling of the valence band states and semiconducting behavior. Spin-polarized band 

structure for Cu11FeSb4S13 is shown in Figure S10. We find that the majority-spin eg and t2g 

states are approximately 3 eV below the valence band maximum (VBM), while the minority-

spin states fall into the band gap just above the VBM, but below the conduction band states of 

Cu12Sb4S13.  This is happens due to exchange splitting between the Fe majority- and minority-

spin states of approximately 3 eV. Fe is found to be in the s0d5 high-spin configuration, 

corresponding to the Fe3+ ionic state. Minority-spin eg states lie just above the Fermi level and 

are slightly split due to deviations from perfect tetrahedral symmetry on the 12d sites. 
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 Phonons of Cu12Sb4S13: We calculated the energy versus phonon mode displacement 

curves for the unstable triply degenerate zone-center optical mode at i40 cm-1 in Figure 4. The 

resulting energy curve is shown in Figure S11, showing that this mode exhibits double-well 

structure with symmetrically placed minima at Cu displacements of approximately 0.3 Å 

away from the planar 12e sites. Full structural relaxation starting from the atomic 

configurations corresponding to these minima resulted in total energy lowering by 80 meV 

per formula unit, leading to a crystal structure with P1 symmetry. We hypothesize that 

significant structural disorder may be induced by freezing-in of those displacements at low 

temperatures, while at the same time leading to highly anharmonic vibrations and possible 

anharmonic stabilization of the cubic structure at high temperatures. The calculate phonon 

densities-of-states at two volumes (equilibrium volume and expanded by 6%) are shown in 

Figure S12. The unstable modes show strong frequency shifts towards harmonic stabilization 

upon increasing volume, manifesting in high Grüneisen parameters of more than 10 for the 

TA branches at zone boundaries (see Figure 4). 

 

Reference 

[S1]. Stefano Fine Minerals, Ann Arbor, Michigan, USA 
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Figure S1.  Photograph of a natural mineral specimen (left) identified geologically as 

tetrahedrite.  The vast majority of the rock (dark grey regions) is tetrahedrite but inclusions of 

quartz (light colored regions) and pyrite (not shown) are also visible.  The image at right 

shows a portion of the specimen in cross-section after cutting with a diamond saw. 
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Figure S2. X-ray diffraction patterns for a) Cu12-xZn2-xSb4S13 and b) Cu12-xFe2-xSb4S13 samples.  

Also shown is an x-ray pattern for a natural mineral tetrahedrite specimen.  All peaks index to 

the tetrahedrite phase, and no additional peaks due to second phases are detected.  
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Figure S3. X-ray spectra of a pure synthetic Cu12Sb4S13 (bottom), a pellet synthesized from 

natural mineral tetrahedrite/tennantite (sample N, top), and a pellet synthesized by mixing 

powders of the mineral and pure Cu4Sb12S13 in a 1:1 weight ration and hot pressing (sample 

N/S, middle).  Sample N/S is single phase tetrahedrite structure with x-ray peaks midway 

between that of the two precursor powders, indicating the formation of a solid solution.  

 

 

 

 

 



 Submitted to  

10 

 

 

 

 

 

 

 

 

 

 

\ 

 

Element Weight% Atomic% 
        
S K 29.22 46.21 
Fe K 5.29 4.80 
Cu L 44.09 35.19 
As L 18.75 12.69 
Sb L 2.66 1.11 
   
Totals 100.00  

 

Figure S4. Representative result of energy-dispersive X-ray analysis of the natural specimen 

labeled N.  Top: SEM image of region probed; middle: output spectrum from the microprobe; 

bottom: relative weight and atomic percentages of Cu, Fe, As, Sb, and S. 



 Submitted to  

11 

0

0.2

0.4

0.6

0.8

1

300 400 500 600 700 800

Temperature (K)

Sp
ec

ifi
c 

H
ea

t (
J 

g-2
 K

-1
)

 

 

Figure S5. Specific heat capacity of Zn-substituted (solid circles: x = 0; solid squares: x = 

0.5; solid triangles: x = 1.0; diamonds: x = 1.5) synthetic tetrahedrite specimens, sample N 

(open circles), a natural tetrahedrite specimen, and sample N/S (open triangles) synthesized 

from a mixture of the natural mineral powder and Cu12Sb4S13 powder.   The full line 

represents the Dulong-Petit value for Cu12Sb4S13.   



 Submitted to  

12 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Thermal diffusivity of Zn-substituted (solid circles: x = 0; solid squares: x = 0.5; 

solid triangles: x = 1.0; diamonds: x = 1.5) synthetic tetrahedrite specimens, sample N (open 

circles), a natural tetrahedrite specimen, and sample N/S (open triangles) synthesized from a 

mixture of the natural mineral powder and Cu12Sb4S13 powder. 
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Figure S7. Thermoelectric power factor of Zn-substituted (circles, x = 0; squares, x = 0.5, 

triangles, x = 1.0, diamonds, x = 1.5) synthetic tetrahedrite.  Also shown are the power factors 

of sample N (open circles), synthesized from the natural mineral specimen, and sample 

N/S(open triangles) synthesized from a mixture of the natural mineral powder and Cu12Sb4S13 

powder..  
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Figure S8. Calculated electronic band structure and density-of-states for Cu12Sb4S13. The 

position of the Fermi level is denoted by a red dashed line.  
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Fi

gure S9. Calculated electronic band structure and density-of-states for Cu10Zn2Sb4S13. Zn 

atoms substitute on the tetrahedrally coordinated Cu sites and are found to be in the Zn2+ state. 

All the states in the valence band are fully filled and the Fermi level, marked by a dashed red 

line, falls in the middle of the band gap.  
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(b) 
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Figure S10. Calculated electronic band structure and density-of-states (DOS) for 

Cu11FeSb4S13. Fe atom substitutes on a tetrahedrally coordinated Cu site. (a) Band dispersion 

for the majority spin states. (b) Band dispersion for the minority spin states. (c) Atom-

decomposed electronic DOS. Majority-spin Fe eg and t2g states are, respectively, at 

approximately -3 and -2.5 eV relative to the Fermi level, which is shown as a dashed red line. 

The minority spin states are just above the Fermi level; eg states are slightly split by crystal 

field effects due to deviations from tetrahedral symmetry on the Cu sites. Iron is found to be 

in the high-spin d5 configuration of Fe3+. Calculations were carried out using the exchange-

correlation functional of Perdew, Becke, and Ernzerhof [Perdew, J. P., Burke, K., and 

Ernzerhof, M. Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 

3865-3868 (1996)]. 

 

(c) 
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Figure S11. Total energy versus Cu displacement obtained by following the eigenvector of 

the unstable zone-center optical mode. Inset shows the pattern of atomic displacements for the 

three-fold coordinated Cu and its neighboring sulfur atoms. The arrow denotes the energy 

lowering obtained by fully relaxing all structural degrees of freedom starting with the atomic 

configuration at the minimum on the total energy versus displacement curve. 
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Figure S12. Calculated phonon density-of-states at the equilibrium volume V0 (blue lines) and 

at V=1.06 V0 (green lines); harmonically unstable imaginary phonon frequencies are shown as 

negative values. It is seen that the unstable branches involving out-of-plane vibrations of the 

three-fold coordinated Cu atoms are stabilized by lattice expansion, while the higher-lying 

optical branches exhibit normal mode softening with increasing volume. Instabilities at the 

zone boundaries of the TA branches (double-peak structure at i20 cm-1) are shifted to positive 

frequencies by 6% volume expansion. 

 

 


