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Deletions at 2p16.3 involving exons of NRXN1 are associated

with susceptibility for autism and schizophrenia, and similar

deletions have been identified in individuals with developmental

delay and dysmorphic features. We have identified 34 probands

with exonic NRXN1 deletions following referral for clinical

microarray-based comparative genomic hybridization. To

more firmly establish the full phenotypic spectrum associated

with exonic NRXN1 deletions, we report the clinical features of

27 individuals withNRXN1 deletions, who represent 23 of these

34 families.The frequencyof exonicNRXN1deletions amongour

postnatally diagnosed patients (0.11%) is significantly higher
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than the frequency among reported controls (0.02%; P¼
6.08� 10�7), supporting a role for these deletions in the develop-

ment of abnormal phenotypes. Generally, most individuals with

NRXN1 exonic deletions have developmental delay (particularly

speech), abnormal behaviors, and mild dysmorphic features. In

our cohort, autism spectrum disorders were diagnosed in 43%

(10/23), and 16% (4/25) had epilepsy. The presence of NRXN1

deletions in normal parents and siblings suggests reduced pen-

etrance and/or variable expressivity, whichmay be influenced by

genetic, environmental, and/or stochastic factors. The pathoge-

nicity of thesedeletionsmayalsobeaffectedby the locationof the

deletion within the gene. Counseling should appropriately rep-

resent this spectrum of possibilities when discussing recurrence

risks or expectations for a child found to have a deletion in

NRXN1. � 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Neurexins are neuronal cell-surface proteins that function as cell-

adhesionmolecules and receptors. Theymediate synapse formation

through interactions with neuroligins, leucine-rich repeat trans-

membrane neuronal proteins (LRRTMs), and glutamate receptor

delta 2 (GluRd2) and function at both glutamatergic and GABAer-

gic synapses [Scheiffele et al., 2000; Dean et al., 2003; Boucard et al.,

2005; Ko et al., 2009; de Wit et al., 2009; Siddiqui et al., 2010;

Uemura et al., 2010]. Humans have threeNRXN genes that encode

over 1,000 isoforms generated from alternative splicing of two

different transcripts from each gene, the longer a-neurexins and
the shorter b-neurexins [Ullrich et al., 1995; Rowen et al., 2002;

Tabuchi and Sudhof, 2002]. The protein isoforms share a common

C-terminal transmembrane domain and short cytoplasmic tail.

They differ in the extracellular portion, which consists of six

laminin/neurexin/sex hormone-binding globulin (LNS) domains

and three intervening epidermal growth factor-like (EGF) domains

in a-neurexins and only a single LNS domain in b-neurexins; these
extracellular domains are responsible for binding with NRXN’s

interacting partners [Sudhof, 2008]. The various isoforms interact

differently with other proteins, and their expression is controlled

spatially and temporally in the brain as well as being dependent on

neuronal depolarization [Ichtchenko et al., 1995;Ullrich et al., 1995;

Patzke and Ernsberger, 2000; Boucard et al., 2005; Chih et al., 2006;

Koehnke et al., 2010; Siddiqui et al., 2010; Iijima et al., 2011; Rozic

et al., 2011]. Because of their role in signaling, neurexins are thought

to play a central role in the brain’s ability to process information.

Heterozygous partial deletions, as well as other mutations and

disruptions, of NRXN1 have been reported in association with

susceptibility for neurocognitive disabilities, such as autism spec-

trum disorders (ASDs) [Feng et al., 2006; Szatmari et al., 2007; Kim

et al., 2008; Yan et al., 2008; Bucan et al., 2009; Glessner et al., 2009;

Guilmatre et al., 2009; Gauthier et al., 2011; Sanders et al., 2011;

Soysal et al., 2011; Duong et al., 2012; Gai et al., 2012; Hedges et al.,

2012; Liu et al., 2012], intellectual disability (ID) [Friedman et al.,

2006; Zahir et al., 2008; Guilmatre et al., 2009; Ching et al., 2010;

Wisniowiecka-Kowalnik et al., 2010; Gregor et al., 2011; Schaaf

et al., 2012], and schizophrenia [Kirov et al., 2008; Vrijenhoek et al.,

2008; Walsh et al., 2008; Guilmatre et al., 2009; Kirov et al., 2009;

Need et al., 2009; Rujescu et al., 2009; Ikeda et al., 2010;Magri et al.,

2010; Shah et al., 2010; Gauthier et al., 2011; Levinson et al., 2011;

Muhleisen et al., 2011; Stewart et al., 2011; Duong et al., 2012]

(Table I). Although multiple studies have shown a significantly

higher frequency of NRXN1 defects in patient populations in

comparison to control populations, NRXN1 alterations have also

been identified in normal parents and healthy controls [Feng et al.,

2006; Bucan et al., 2009; Kirov et al., 2009; Need et al., 2009; Rujescu

et al., 2009; Zweier et al., 2009; Ching et al., 2010; Gregor et al., 2011;

Levinson et al., 2011; Sanders et al., 2011; Gai et al., 2012; Hedges

et al., 2012; Schaaf et al., 2012]. This suggests variable expression or

reduced penetrance with other genetic and/or environmental fac-

tors influencing the ultimate phenotype and degree of neurocog-

nitive disabilities. Furthermore, homozygous disruption of

NRXN1-a in humans causes a severe Pitt–Hopkins-like phenotype

including severe ID, absent speech, stereotypies, and autistic fea-

tures; epilepsy and hyperpnea are also seen in some [Zweier et al.,

2009; Harrison et al., 2011; Duong et al., 2012]. Mouse models

recapitulate some of this phenotype; mice lacking Nrxn1-a have

decreased excitatory synapses, impaired sensorimotor gating,

increased grooming behavior, and impaired nest building and

parenting ability but have unaffected learning, memory, and social

interactions [Geppert et al., 1998; Etherton et al., 2009].

In some ID/developmental delay (DD) and ASD cohorts, indi-

viduals with NRXN1 deletions have been reported with a wide

variety of additional phenotypic findings, including prominent

speech delays, hypotonia, epilepsy, skeletal abnormalities, heart

defects, and dysmorphic features [Zahir et al., 2008; Ching et al.,

2010; Wisniowiecka-Kowalnik et al., 2010; Gregor et al., 2011;

Hedges et al., 2012; Schaaf et al., 2012]. While some correlation

may exist between the specific isoform impactedby the deletion and

the phenotype [Rujescu et al., 2009; Ching et al., 2010;

Wisniowiecka-Kowalnik et al., 2010; Schaaf et al., 2012], pheno-

typic variability among individuals with similar deletions has

prevented clear genotype–phenotype correlations. Additionally,

as most reported NRXN1 deletions have been part of large pop-

ulation screenings of individuals with ASDs or schizophrenia, this
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TABLE I. Exonic NRXN1 Deletions in Published Cohorts

Reference Population
Only a
exons

a and b
exons

Unspecified
location

Total
tested

Frequency
of exonic
deletions

(%)
ID cohorts

Ching et al. [2010] Clinical aCGH cases 7h 2 0 3,540 0.25
Gregor et al. [2011] Severe ID; PTHS-like 1 0 0 45 2.22
Friedman et al. [2006] Idiopathic ID, normal karyotype 1 0 0 100 1.00
Wisniowiecka-Kowalnik
et al. [2010]

Clinical aCGH cases 1 1 0 9,000 0.02

Guilmatre et al. [2009] Idiopathic ID, normal karyotype 1 0 0 247 0.40
Schaaf et al. [2012] Clinical aCGH cases 8i 3i 0 8,051 0.14
This study Clinical postnatal aCGH cases 27i 2i 0 25,610 0.11
Sum of ID cohorts 46 8 0 46,593 0.12

ASD cohorts
Bucan et al. [2009] AGRE multiplex families 4 0 1 912 0.55

ACC cohort: ASD cases 0 0 4 859 0.47
Gai et al. [2012] AGRE families, mostly multiplex 2 0 0 689 0.29
Guilmatre et al. [2009] ASD cases (mostly autism) 2 0 0 260 0.77
Sanders et al. [2011]a SSC simplex ASD families 3 0 0 1,124 0.27
Glessner et al. [2009] ACC cohort: ASD cases 0 0 3 859 0.35

AGRE families, mostly multiplex 3 0 0 778 0.39
Szatmari et al. [2007] AGP families 0 1 0 173 0.58
Sum of ASD cohortsb 9 1 5 3,328 0.45

Schizophrenia cohorts
Guilmatre et al. [2009] Schizophrenia/schizoaffective disorder 1 1 0 236 0.85
Walsh et al. [2008] Schizophrenia/schizoaffective disorder 0 0 0 150 0

Childhood-onset schizophrenia 0 1 0 83 1.20
Magri et al. [2010] Schizophrenia cases 1 0 0 172 0.58
Kirov et al. [2008] Schizophrenia cases 1 0 0 93 1.08
Kirov et al. [2009] Schizophrenia/schizoaffective disorder 1 0 0 471 0.21
Vrijenhoek et al. [2008]c Schizophrenia cases 3 0 0 846 0.35
Need et al. [2009]d Schizophrenia cases 0 0 3 1,073 0.28
Stewart et al. [2011] NIMH cases with schizophrenia & epilepsy 1 0 0 235 0.43
Ikeda et al. [2010] Japanese schizophrenia cases 0 0 0 519 0
Levinson et al. [2011] Schizophrenia/schizoaffective disorder 9 1 0 3,945 0.25
ISC [2008] Schizophrenia cases 3 0 0 3,391 0.09
Rujescu et al. [2009] Schizophrenia cases 5j 0 0 2,977 0.17
Sum of Schizophrenia cohortse 23 3 3 12,944 0.22

Control cohorts
Zweier et al. [2009] Healthy controls 0 0 0 667 0
Guilmatre et al. [2009] Psychiatrically screened controls 0 0 0 236 0
Glessner et al. [2009] CHOP pediatric controls 0 0 0 2,519 0
Magri et al. [2010] Psychiatrically screened controls 0 0 0 160 0
Kirov et al. [2008] Non-schizophrenia controls: individuals with

congenital anomalies, malformations, or ALS
0 0 0 372 0

Kirov et al. [2009]f WTCCC study adult controls 2 0 0 2,792 0.07
Vrijenhoek et al. [2008]c Dutch psychiatrically screened controls 0 0 0 706 0
Stewart et al. [2011] NIMH psychiatrically screened controls 0 0 0 191 0
Ikeda et al. [2010] Japanese psychiatrically screened controls 0 0 0 513 0
Levinson et al. [2011] Psychiatrically screened controls 1 0 0 3,611 0.03
ISC [2008] Mostly unscreened adult controls 1 0 0 3,181 0.03
Rujescu et al. [2009] Unscreened European controls 5 0 0 33,746 0.01
Muhleisen et al. [2011] Unscreened adult controls 0 0 0 94 0

(Continued )
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can introduce an ascertainment bias into phenotypic character-

ization, and the full phenotypic implications of these deletions need

to be explored further. Here, we report the identification of 34

probands with deletions limited to NRXN1 exons, tested in our

laboratory using microarray-based comparative genomic hybrid-

ization (aCGH), and describe the clinical characterization of 27

individuals from 23 of these 34 families with NRXN1 deletions,

adding to the published phenotypic spectrum.

MATERIALS AND METHODS

Patient Ascertainment
From February 2008 through June 2012 we tested 30,065 (prenatal

and postnatal) patients submitted to Signature Genomic Labora-

tories from the United States and abroad using oligonucleotide-

based aCGH platforms that provide coverage over NRXN1. The

most common indications for study were ID, DD, and/or multiple

congenital anomalies. Clinicians were contacted to provide clinical

information about their patients carrying exonicNRXN1deletions.

Either de-identified clinical information was supplied, or informed

consent for publication of clinical information and photographs

was obtained, according to a protocol approved by the Institutional

Review Board-Spokane.

Microarray-Based Comparative Genomic
Hybridization
All 2p16.3 deletions were characterized by aCGH using various

whole-genome, oligonucleotide-based platforms, depending on

the time of testing. Microarray analysis was performed using a

105K-feature platform (SignatureChipOS v1.0, custom-designed

by Signature Genomics, manufactured by Agilent Technologies,

Santa Clara, CA) or one of two versions of a 135K-feature platform

(SignatureChipOS v2.0 and v3.0, custom-designed by Signature

Genomics, manufactured by Roche NimbleGen, Madison, WI) as

previously described [Ballif et al., 2008; Duker et al., 2010]. Micro-

array analysis using the SignatureChipOS v3.0 uses a new design

with targeted coverage of 245 known genetic syndromes and

over 980 gene regions of functional significance (http://www.

signaturegenomics.com/disorders_tested.html). Over NRXN1,

versions 1–3 of the arrays have an average probe spacing of 71,

32.5, and 10 kb, respectively, and a minimum deletion detection

threshold of 284, 130, and 40 kb, respectively (Fig. 1).

All genomic coordinates are according to the UCSCMarch 2006

build of the human genome (hg18). NRXN1 exons are numbered

according to the a1 isoform (NM_004801.4), and genomic

coordinates of the exons were obtained from the NCBI

Consensus Coding Sequence database (CCDS 54360.1). This

most recent alignment differs from that described in earlier case

reports [Kim et al., 2008; Zahir et al., 2008; Rujescu et al., 2009;

Zweier et al., 2009; Ching et al., 2010; Gregor et al., 2011;

Hedges et al., 2012; Schaaf et al., 2012] in that exon 5was reassigned

to genomic sequence near exon 4, instead of being near exon 6

(Fig. 1).

Fluorescence In Situ Hybridization (FISH)
For individuals with exonicNRXN1deletions,metaphase FISHwas

performed to visualize the deletions using previously described

methods [Traylor et al., 2009]. When available, parental samples

were also tested by FISH; for deletions too small to be visualized by

FISH, parental samples were tested using aCGH.

TABLE I. (Continued)

Reference Population
Only a
exons

a and b
exons

Unspecified
location

Total
tested

Frequency
of exonic
deletions

(%)
Bucan et al. [2009] CHOP pediatric controls 0 0 0 1,070 0

Neurologically normal NINDS adult controls 0 0 0 418 0
ACC controls (CHOP pediatric controls) 0 0 0 1,051 0

Shaikh et al. [2009] CHOP healthy pediatric controls 0 0 0 2,026 0
Cooper et al. [2011] Adult controls 5 0 0 8,328 0.06
Sum of control cohortsg 12 0 0 53,171 0.02

ACC, Autism Case-Control; aCGH, microarray-based comparative genomic hybridization; AGP, Autism Genome Project; AGRE, Autism Genetic Resource Exchange; ALS, amyotrophic lateral sclerosis;
ASD, autism spectrum disorder; CHOP, Children’s Hospital of Philadelphia; ID, intellectual disability; ISC, International Schizophrenia Consortium; NIMH, National Institute of Mental Health;
NINDS, National Institute of Neurological Disorders and Stroke; PTHS, Pitt–Hopkins syndrome; SSC, Simons Simplex Collection; WTCCC, Wellcome Trust Case Control Consortium.
aThis study only identified de novo abnormalities.
bSum only includes the AGRE and ACC cohorts as reported by Bucan et al. [2009].
cMost of these cases and controls were also screened in the study by Rujescu et al. [2009].
dIncludes the Aberdeen samples studied by the ISC [2008].
eSum only includes the subsets of the populations in Need et al. [2009] and Rujescu et al. [2009] that had not been previously reported.
fThese controls were also screened in the study by Cooper et al. [2011].
gExcluding the overlapping controls noted above, excluding the controls in the study byKirov et al. [2008] due to phenotypic similarities with our case cohort, and including only the CHOPpediatric controls
reported by Shaikh et al. [2009].
hExcludes three cases with a deletion in intron 5 predicted to only impact a minor exon, which is not part of any RefSeq transcripts.
iOnly including single individuals from tested sibling pairs.
jExcludes one deletion that was predicted to impact only exon 5; as this exon has been newly aligned to genomic sequence close to exon 4, the deletion is now predicted to be intronic.
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FIG. 1. Overview of exonic NRXN1 deletions. At the top of the figure is a partial idiogram showing chromosome band 2p16.3, with genomic coordinates

corresponding to the hg18 build of the human genome. The three major NRXN1 transcripts are shown in blue, with vertical pink dashes representing

the locations of oligonucleotide probes on the three array versions used. A–E: Horizontal bars represent deletions, with solid bars depicting the
minimum deletion sizes and the dashed lines extending through gaps in coverage to show the maximum deletion sizes. Black bars correspond to

deletions that likely abolish gene function by either removing the promoter region ofNRXN1-a or through a frameshift. Green bars represent in-frame

deletions. Orange bars have an uncertain effect on the reading frame. Blue barsmay or may not be exonic; exons fall within the gap between deleted

and nondeleted probes on the array. Purple bars truncate the 30 end of the gene. Numbers in parentheses correspond to Patient numbers in this
article. Deletions were identified in (A) the clinical aCGH cohort reported here, (B) individuals with intellectual disability (ID)/developmental delay

(DD), (C) individuals with autism spectrum disorders (ASD), (D) individuals with schizophrenia, and (E) control cohorts.
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TABLE II. Possible Exonic NRXN1-Specific Deletions Identified in Our Clinical aCGH Cohort

Patient Sex
Age at
testing

Indication for
study Inheritance

Other
abnormality Platform

Genomic coordinates
(hg18)

Deleted exons
(potentially
deleted)

50 deletions involving only NRXN1-a
1 M 4 y DD DN None OS v1 chr2: 51079673–51459761 1–2 (1–5)
2 M 4 y DD, muscle weakness Unk None OS v2 chr2: 51020497–51178152 1–2 (1–5)
3 M 3 y DD, epilepsy Unk arr 5q14.2q14.3

(82692609–
88073704)� 1a

OS v2 chr2: 51020497–51178152 1–2 (1–5)

4 M 23 y ASD Pat None OS v2 chr2: 50989149–51675291 1–5
5a M 23 y DD, epilepsy Mat None OS v1 chr2: 50996352–51555511 1–5
5b M 20 y DD, DF None
6 M 10 y DD, DF, short stature Pat None OS v2 chr2: 50989149–51354094 1–5
7 M 11 y DD Unk None OS v2 chr2: 50788065–51318184 1–5
8 M 2 y DD (language and motor) Unk None OS v2 chr2: 50989149–51211695 1–5
9 M 6 y DD, DF DN None OS v2 chr2: 50900500–51211695 1–5
10 F 8 y PDD Unk None OS v3c chr2: 50990905–51189246 1–5
11 M Prenatal Cystic hygroma, hydrops,

micrognathia
Pat None OS v2 chr2: 50989149–51178152 1–5

12 M 13 y Mild ID, HL Mat None OS v1 chr2: 50890607–51167934 1–5
13 M 7 y DD, epilepsy Unk None OS v2 chr2: 50928021–51157870 1–5
14 F 0 m CHD Pat None OS v2 chr2: 50900500–51157870 1–5
15 F 12 y Epilepsy Unk None OS v3 chr2: 50999149–51130917 1–5
16 F 5 y DD/ID, hypotonia, DF Unk None OS v2 chr2: 50928021–51124577 1–5
17 M 6 y DD Unk None OS v2 chr2: 50900500–51124577 1–5
18 M 56 y Severe ID, PDD Unk None OS v2 chr2: 50664886–51250425 1–8 (1–9)
19 M 22 y DD, ASD Unk None OS v2 chr2: 50900500–51020557 3–5
20 F 0 m MCA Unk None OS v2 chr2: 50900500–51049751 3–5
21 M 21 m DD, DF Pat arr 11q14.1

(84007950–
84169251)� 1 patb

OS v3c chr2: 51020434–51109974 2 (1–2)

22 M 6 y DD, ASD Unk arr 10q11.22q11.23
(49062854–

52062367)� 3b

OS v2 chr2: 50989209–51084499 3–5 (1–5)

23 M Prenatal Cystic hygroma, shortened
upper limbs, fetal demise

Pat None OS v2 chr2: 50989149–51084499 3–5 (1–5)

24 F 12 y Hypotonia, encephalopathy Unk None OS v1 chr2: 50835616–51079733 3–5 (1–5)
25 F 9 y Multiple disabilities DN arr 13q12.12

(22464761–
23808883)� 1 patb

OS v1 chr2: 50629393–51079733 3–9 (1–17)

Other deletions only in NRXN1-a
26 F 15 m DD Unk arr 3p12.3

(76485892–
79401678)� 1b

OS v1 chr2: 50629393–50996412 6–10 (3–17)

27 M Prenatal Abnormal ultrasound Unk None OS v3 chr2: 50680324–50921132 6–8
28a M 11 y ASD DN None OS v2 chr2: 50503145–50865069 6–17
29 M 12 y DF, ASD Mat None OS v3 chr2: 50480647–50600362 13–17
30 F 5 y PDD Unk None OS v3 chr2: 50680324–50720466 6–8
31 F 5 y Encephalopathy Unk None OS v3 chr2: 50620135–50650670 9 (9–11)
32 F 3 m MCA Unk None OS v2 chr2: 50702475–50825788 6 (6–8)

Deletions of NRXN1-a and NRXN1-b exons
33a F 6 y DD Unk None OS v1 chr2: 50271164–50936973 6–18
33b M 7 y Autism None
34a F 15 y DD, ASD Unk None OS v2 chr2: 50118810–50179711 19–20
34b F 7 y ADHD None

(Continued )
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RESULTS

Molecular Analysis

Among the 30,065 patients tested on oligonucleotide-based arrays,

35 have deletions limited to exons ofNRXN1, including three pairs

of affected siblings. Two additionalNRXN1 deletions were initially

identified in patients tested on bacterial artificial chromosome-

based arrays (Patients 10 and 21). These deletions were subse-

quently better characterized using oligonucleotide-based aCGH;

however, these two patients are not included in calculations of the

frequency of NRXN1 deletions ascertained by oligonucleotide-

based aCGH. Finally, three additional patients’ deletions may or

may not includeNRXN1 exons, due to the exons’ presence in a gap

between deleted and non-deleted oligonucleotide probes (in

Patients 35–37; Fig. 1). Five patients have secondary copy number

alterations of unclear clinical significance, while a sixth has a

clinically significant 5q14 deletion including MEF2C (Table II).

Among the 34 unrelated exonicNRXN1deletions, themajority (25;

in Patients 1–25) are clustered over the 50 region and first four

coding exons (2–5), which are part of only NRXN1-a transcripts.

While those deletions including the transcription start site of

NRXN1-a are predicted to abolish expression of this isoform,

deletions involving only exons 3–5 are predicted to result in an

in-frame deletion. We found seven deletions (in Patients 26–32)
limited to exons specific toNRXN1-a in the middle of the gene; at

least three of these are also predicted to be in-frame. Only two

unrelated deletions (in Patients 33 and 34) involve the 30 end of

the gene, interrupting the NRXN1-b transcript in addition to

NRXN1-a; one of these deletions, present in two siblings, is also

predicted to be in-frame (in Patients 34a,b; Fig. 1).

Inheritance of the exonicNRXN1deletionswas determined in 13

families. Of these, four deletions (31%) are apparently de novo, and

nine (69%) are inherited, three maternally and six paternally

(Table II). An additional two sets of affected siblings have the

same NRXN1 deletion, but parental samples were not available for

testing. Additionally, one healthy mother was identified to have an

exonicNRXN1deletion (involving exons 1–2 and potentially exons
1–5), which was not present in her affected child.

Among the 3,247 probands tested on the v3.0 oligonucleotide-

based array, which has the densest coverage overNRXN1, ten have

deletions limited to intron 5 of the gene. A single patient tested on

the v2.0 oligonucleotide-based array also has a deletion limited to

this intron (data not shown). These were excluded from further

clinical analysis due to unknown effects on gene expression and

protein function.

Clinical Analysis
The indications for study in the 37 individuals with exonicNRXN1

deletions vary and include ID/DD, congenital anomalies, and

epilepsy. Approximately one-third (10/31) of probands older

than 1 year were referred with an ASD. Ages at testing varied,

ranging from prenatal (three samples referred for ultrasound

anomalies) to 56 years (a man with severe ID who lives in a group

home) (Table II).

Detailed clinical information is given for 27 patients, including

three sets of siblings (identical twins 28a,b, two affected brothers

and their healthy sister 5a–c, and maternal half-sisters 34a,b;

Table III). Deletions in these 27 individuals range in size from

40 to 586 kb, and only the deletions in Patients 34a,b include

NRXN1-b exons. There is wide phenotypic variability among

patients, but at least four features are shared by the majority

(Table IV). Of the 24 patients older than 3 months, 21 have DD;

Patient 5c has dyslexia but normal development and is an A/B

student, and Patients 30 and 34b have behavioral issues but normal

development. Speech delays are prominent, with three patients

older than 2 years showing absent or minimal speech. Of the

24 patients older than 3 months, 19 have abnormal behaviors, of

whom 10 have confirmed diagnoses of ASD. Twenty patients

have some degree of dysmorphic features (Fig. 2). Eight parents

of these patients also carry theNRXN1 deletion, including amother

with bipolar disease, a mother with a short attention span, a father

with learning disabilities and short stature, a father with type 1

diabeteswho is otherwise healthy, and at least three healthy parents;

one carrier father holds an advanced degree. In one family (5a–c),
the healthy mother carries the deletion, while the father has a

TABLE II. (Continued)

Patient Sex
Age at
testing

Indication for
study Inheritance

Other
abnormality Platform

Genomic coordinates
(hg18)

Deleted exons
(potentially
deleted)

Unclear deletions (may or may not be exonic)
35 F 0 m CHD Unk None OS v2 chr2: 50825728–50989209 (3–5)
36 F 2 y DD, short stature Pat arr 22q11.23

(22080929–
23321669)� 3 patb

OS v2 chr2: 51124517–51250425 (1–2)

37 F 3 y DD, epilepsy Unk None OS v2 chr2: 51124517–51354094 (1–2)

ADHD, attention deficit/hyperactivity disorder; ASD, autism spectrum disorder; CHD, congenital heart defect; DD, developmental delay; DF, dysmorphic features; DN, de novo; F, female;
HL, hearing loss; ID, intellectual disability; M, male; m, months; Mat, maternal; MCA, multiple congenital anomalies; Pat, paternal; PDD, pervasive developmental disorder; Unk, unknown; y, years.
aThis deletion involves MEF2C and is clinically significant.
bThe clinical significance of this copy number alteration is unclear.
cCase originally ascertained on bacterial artificial chromosome-based array.
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history of learningdisabilities.Among thepatientswithout parental

testing performed, at least six have parents with learning disabilities

or psychiatric disease.

Statistical Analysis
A comparison of the frequency of exonic deletions of NRXN1 in

our postnatal patient population undergoing aCGH testing to a

sum of control individuals reported in the literature (Table I)

shows an enrichment of deletions in our postnatal patient

population (29/25,610 [excludes siblings] vs. 12/53,171; one-tailed

P¼ 6.08� 10�7, Fisher exact test; odds ratio¼ 5.0 [2.6–9.8, 95%
confidence interval]). Given the rarity of NRXN1-b deletions,

a case/control comparison for these deletions did not show a

significant enrichment, despite the fact that no such deletions

have been identified in these control cohorts (2/25,610 vs.

0/53,171; one-tailed P¼ 0.11, Fisher exact test).

DISCUSSION

We have identified exonic NRXN1-specific deletions in 0.11% of

postnatal patients referred to Signature Genomics for aCGH test-

ing. This frequency is significantly enriched when compared to

previously reported control cohorts (P¼ 6.08� 10�7), providing

additional support for the pathogenicity of these deletions. We

report detailed phenotypic features for 27 individuals with dele-

tions, adding to the publishedphenotypic spectrum seen in patients

withNRXN1 deletions (Table III). As would be predicted for a gene

that primarily has a role in neurodevelopment and neurologic

function, the major phenotypic overlap among all reported cases

is neurobehavioral, though this is subject to an ascertainment bias,

given that such phenotypes are common reasons for microarray

testing. Our data support previous reports that deletions ofNRXN1

are associated with developmental delays, abnormal behaviors, and

variable mild dysmorphic features (Table IV, Fig. 2). Given the

TABLE IV. Summary of Features Seen in Individuals with Exonic NRXN1 Deletions

Phenotypic feature a/b deletionsa

a-only deletions

Total %Previous reportsb This study
Short stature 0/6 4/20 3/23 7/49 14
Tall stature 0/6 0/20 1/23 1/49 2
Underweight/FTT 1/7 2/21 6/23 9/51 18
Overweight 0/7 1/21 2/23 3/51 6
Microcephaly 0/6 1/20 2/22 3/48 6
Macrocephaly 4/6 4/20 2/22 10/48 21
DD/ID 7/9 22/25 20/22 49/56 88
Speech delay 6/8 17/22 17/21 40/51 78
Hypotonia 2/9 12/27 10/23 24/59 41
Hearing loss 1/9 2/28 3/23 6/60 10
Seizures 5/8 8/25 4/23 17/56 30
Brain abnormalities 3/7 4/14 4/6 11/27 41
ASD diagnosis 6/9 9/22 9/21 24/52 46
Autistic features or other behavior problems 9/9 21/25 17/22 47/56 84
Strabismus 0/9 1/26 7/22 8/57 14
Dysmorphic features 4/9 18/26 19/23 41/58 71

Deep-set eyes 1/9 2/26 4/23 7/58 12
Epicanthal folds 1/9 5/26 1/23 7/58 12
Broad/low nasal bridge 0/9 5/26 6/23 11/58 19
Broad/bulbous nose 2/9 3/26 7/23 12/58 21
Midface hypoplasia 1/9 2/26 10/23 13/58 22
Wide mouth 1/9 5/26 0/23 6/58 10
Pointed chin 1/9 3/26 1/23 5/58 9
Ear anomalies 1/9 6/26 8/23 15/58 26

Cardiac defects or dysfunction 1/9 4/28 7/24 12/61 20
Skeletal anomalies 0/9 8/28 6/24 14/61 23
Renal anomalies 0/9 1/28 1/23 2/60 3
Genitourinary anomalies 0/9 2/28 4/23 6/60 10
Asthma or allergies 0/9 1/28 9/23 10/60 17

ASD, autism spectrum disorder; DD, developmental delay; FTT, failure to thrive; ID, intellectual disability.
aPatients 34a,b and probands previously reported [Ching et al., 2010; Wisniowiecka-Kowalnik et al., 2010; Schaaf et al., 2012].
bProbands previously reported [Zahir et al., 2008; Ching et al., 2010; Wisniowiecka-Kowalnik et al., 2010; Gregor et al., 2011; Schaaf et al., 2012] and mother previously reported [Duong et al., 2012].
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prevalence of speech delays and abnormal behaviors, it is logical

that NRXN1 has been identified as an autism susceptibility locus

[Szatmari et al., 2007; Kim et al., 2008; Bucan et al., 2009; Glessner

et al., 2009; Boone et al., 2010; Gai et al., 2012; Hedges et al., 2012],

and our data support this association with ten individuals with a

formal diagnosis of an ASD. Seizures have been reported in

approximately one-third of individuals with NRXN1 deletions

and DD (Table IV); given the presence of epilepsy in individuals

with homozygous loss of NRXN1-a [Zweier et al., 2009; Harrison

et al., 2011; Duong et al., 2012], it is reasonable that haploinsuffi-

ciency could predispose to seizures, as well. Despite NRXN1’s

widespread expression and possible roles in development outside

of the nervous system [Saito et al., 2011], congenital anomalies do

not appear to be common with NRXN1 deletions. Of those

reported, skeletal and heart anomalies are the most prevalent

(Table IV). Skeletal anomalies range from vertebral anomalies in

two previously reported individuals [Zahir et al., 2008; Ching et al.,

2010] tominorbony changes suchas those seen in sixofourpatients

(Patients 1, 6, 17, 18, 21, and 30). Heart defects, both structural and

cardiomyopathies, were present in seven of our patients (including

two sets of siblings) and in five previously reported cases [Zahir

et al., 2008; Ching et al., 2010; Schaaf et al., 2012]. In addition,

whereas nine of our patients have asthma and/or allergies, only one

other individual with a NRXN1 deletion has been reported with

asthma [Zahir et al., 2008]. Though there has been no other study

implicatingNRXN1deletionswith asthmaor allergies, some studies

suggest a connection between autism and asthma and other

inflammatory or autoimmunedisorders [Becker, 2007].Additional

studies are required to understand the potential connection

between NRXN1 deletions and congenital anomalies and

asthma.

The locationof adeletionwithinNRXN1 affects how thedeletion

impairs transcription, translation, and/or protein structure, and

this may ultimately affect phenotypic expression. Because we

sought to investigate only deletions that would negatively affect

NRXN1 function, we only considered exonic deletions to be likely

pathogenic; intronic deletionswere excluded fromclinical analyses.

Intronic deletions may not always be benign, as some studies have

shown NRXN1 intronic sequences to be important to control

proper gene splicing [Iijima et al., 2011]. Additionally, there has

been one deletion immediately upstream of the gene reported to

segregate with ASDs in a family [Ching et al., 2010]. However, this

approach of only considering exonic deletions is supported by

previous analyses that have found significant enrichment in schiz-

ophreniawhen considering exonicNRXN1 copynumber variations

(CNVs) but notwhen including intronic ones [Rujescu et al., 2009].

Amore recent study found inheritance fromunaffected parentswas

more common with intronic than with exonic deletions [Schaaf

et al., 2012]. Also, studies of other genes, such as SOX5, provide a

precedent for benign intronic variation in a disease-causing gene

[Lamb et al., 2012]. Additionally, given the high, and frequently

variable, resolution of many arrays used to study published control

FIG. 2. Features of individuals with NRXN1 deletions. A: Patient 2 at 5 years. Note broad forehead, deep-set eyes, bulbous nose, depressed columella,

and broad philtrum. B: Patient 6 at 11 years. Note mild midface hypoplasia. C,D: Patient 26 at 12 months (C) and 17 months (D). Note depressed

nasal bridge, midface hypoplasia, and short neck. E–G: Patient 29 at 12 years. Note frontal hair upsweep, flat midface, wide nasal bridge, bulbous
nose, small jaw, posteriorly rotated ears, hypoplastic nails, and tapered fingers.
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cohorts, it was not possible to conduct a meaningful case–control
comparison for intronic deletions using our aCGHpopulation; our

arrays (especially the earlier versions with less-dense NRXN1

coverage) do not have the necessary probe density to identify small

intronic deletions.

The vast majority of exonic deletions in cases, as well as all

deletions in controls, have involved onlyNRXN1-a exons (Fig. 1).

This difference is intriguing and could suggest that NRXN1-b
deletions have more severe phenotypic impacts and possibly a

tendency to lethality. Alternatively, there may be genomic insta-

bility or an increased recombination rate predisposing the 50 end of
the gene to deletions [Rujescu et al., 2009]. Because of the limited

number of cases reported in the literaturewithNRXN1-b deletions,
it is currently unclear if these deletions have a more severe

phenotypic impact (Fig. 1, Table IV), though multiple generations

in a single family have been described with such a deletion

[Wisniowiecka-Kowalnik et al., 2010], and one of two siblings

carrying such a deletion in our study has attention deficit/hyper-

activity disorder, macrocephaly, and normal intelligence. The

a- and b-isoforms interact differently with their binding partners

at the synapse [Boucard et al., 2005;Chih et al., 2006], so it is feasible

that loss of both isoforms would lead to additional loss of protein

functions. If any functional redundancy between the various

neurexin a- and b-isoforms exists, it is not complete, given the

abnormalphenotypes inmice andhumanswithhomozygous loss of

Nrxn1-a/NRXN1-a [Geppert et al., 1998; Etherton et al., 2009;

Zweier et al., 2009]. One study has suggested that the deletions that

involve NRXN1-b exons or NRXN1-a exons in the middle of the

gene (exons 6–17) are associated with larger head size and more

frequent seizures [Schaaf et al., 2012]. Though our sample size is

limited, our data provide some support for this; four individuals

with deletions including the middle of the gene (Patients 18, 26,

28a, and 28b) are the only ones with histories of seizures or

abnormal movements. While the two siblings with deletions of

NRXN1-b (Patients 34a,b) have macrocephaly, only one of the

seven individuals withNRXN1-a deletions including themiddle of

the gene is macrocephalic, while the rest have average or below

average head sizes. One possible explanation for this pattern of

increased phenotypic severity with deletions in the middle and 30

end of the gene is that they all disrupt NRXN1-b expression, even

though the centrally located deletions do not extend to the tran-

scription start site of the b-isoform. A second possible explanation

is a dominant negative effect. Deletion of exons 6–17 is predicted to
be in-frame. The individuals reported by Schaaf et al. [2012] with

epilepsy and deletions within the middle of the gene also had

in-frame deletions (Fig. 1), so it is possible that an altered

NRXN1-a protein that lacks one or several of its extracellular

LNS and EGF domains is produced. However, Patient 18’s deletion

extends to include the NRXN1-a promoter region, which would

lead to an absent protein product, not a protein with a dominant

negative effect.Given the severityofPatient 18’s phenotype, it is also

possible that there is amutation on the second allele or elsewhere in

the genome contributing to his disease. It has also been suggested

that alternate, minor isoforms of the gene may exert a dominant

negative effect [Rujescu et al., 2009]. Further research into these

deletions’ impacts on gene expression and protein function could

help resolve this question.

Thevariablephenotypes in individualswithNRXN1deletions, in

addition to the reduced penetrance, pose challenges for counseling

about prognosis or recurrence risks, especially when such a deletion

is identified prenatally or in a young child. One important con-

sideration when providing counseling is that the individuals

reported in the literature likely represent the severe end of a

phenotypic spectrum. Some of these individuals may have secon-

dary factors that influence their severe expression, and if aNRXN1

deletion is found in an individual with severe anomalies, it may be

appropriate to look for further etiological explanations or diag-

noses [Gregor et al., 2011]. For example, Patient 5a is likely more

severely affected than his siblings due to an anoxic brain injury,

while in other cases secondary factors could be genetic, including a

mutation in the non-deleted allele [Duong et al., 2012]. When

trying to counsel about neurodevelopmental disorders, the odds

ratios, or relative risks, from population studies may be useful. For

example, one study suggested that exonic NRXN1 deletions or

duplicationsmay give an�10-fold increased risk for schizophrenia,

which is less than that for 22q11.21 microdeletions [Rujescu et al.,

2009]. The odds ratio calculated from our postnatal patient pop-

ulation is 5.0, with a confidence interval of 2.6–9.8. This number

may have minimal utility, given the wide spectrum of phenotypes

represented in our patient population. Instead, examining the

difference between a sum of ASD cases with NRXN1 deletions in

the literature (15/3,328, 0.45%; Table I) and the reported control

cohorts (12/53,141, 0.02%) gives an odds ratio of 20.0 (9.4–42.9,
95% confidence interval, Fisher exact test), suggesting a possible

�20-fold increase in risk for an ASD when an exonic NRXN1

deletion is present. With current estimates of �1% for the prev-

alence of ASD [Fombonne, 2005; CDCP, 2009], this would lead to

an estimated �20% risk for ASD with exonic NRXN1 deletions,

though this estimate could be modified further for counseling by

other factors known to have an influence on the development of an

ASD, such as family history or sex of the child (i.e., using a starting

prevalence of ASD of 1/70 males and 1/315 females [CDCP, 2009]

gives a 29% risk formales and a 6%risk for females). Counseling for

these deletions should include a description of the phenotypic

spectrum, noting that healthy individuals may carry these deletions

and phenotypes can vary, even within the same family, like

Patients 5a–c or 34a,b described here.

In summary, we provide information on the molecular charac-

terization of NRXN1 CNVs identified in a large, clinical aCGH

testing population as well as detailed phenotypic information for a

subset. Combining these data with other reports in the literature

shows that the most common features associated with NRXN1

exonic deletions are developmental delays, especially in speech,

abnormal behaviors, and mild dysmorphic features (Table IV).

Epilepsy is present in a subset of these individuals, and the location

of the deletion may influence this manifestation. Congenital

anomalies, such as skeletal anomalies and heart defects, may be

present and may be influenced by additional factors, both genetic

and environmental. In some individuals, phenotypic manifesta-

tions may be subclinical or absent. As we continue to examine the

human genome for CNVs on an increasingly finer scale, studies

such as these are useful for establishing genotype–phenotype
correlations for small, intragenic abnormalities, which will ulti-

mately aid in improved counseling and clinical care.
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