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CHAPTER I

Introduction and Background

In this thesis, we will study three separate problems, all dealing with different

aspects of the optimal stopping and control of stochastic processes. We give general

introductions and background information here, and refer the reader to the individual

sections for more detailed introductions to the subject matter.

The first problem belongs to theoretical mathematical finance, and takes up the

question of how stable exponential utility maximization is with respect to market

perturbations. The problem of utility maximization in mathematical finance has a

long history, dating from the work of Merton in [37]. In the abstract, the problem

can be stated as follows: an agent has initial wealth x0, and available to him is a

set X (x0) of random variables, which model the possible terminal wealths which he

may attain through investing in some risky assets. Typically, each XT ∈ X (x0) has

the form

(1.1) XT = x0 +

∫ T

0

HudSu,

which models the gains from trading on the asset S with the trading strategy H. S

is a stochastic process, and so the integral in (1.1) is an Itô Integral. The agent’s
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goal is to choose X̂T ∈ X (x0) so that

(1.2) E
[
U
(
X̂T

)]
= sup

XT∈X (x0)

E [U (XT )] .

Here U : R → R is a function which quantifies the agent’s attitude towards risk. It

is always increasing and concave, so that the agent always prefers more wealth to

less, and prefers a deterministic payoff to a random one if their expected payoffs are

the same.

As in any optimization problem, the first questions to ask concern existence and

uniqueness of an optimizer in (1.2). In the papers [37], [29], [34], [50], these questions

are answered in the affirmative for all reasonable market models and utility functions.

The next question one might ask concerns the stability of the problem: if the inputs,

or parameters of the optimization problem change slightly, then will the output of

the problem, the maximal expected utility, also change by a small amount? There

are many questions to ask in this direction, and stability properties with respect to

time horizon, information structure, and utility function have been studied in [57],

[31], and [56]. Here we study a particularly natural question in this vein, namely the

stability with respect to perturbations in the market. More precisely, suppose that

there exists a sequence of markets, parametrized by their minimal martingales Zn.

When Zn
T → Z∞T , we seek sufficient conditions ensuring that for all x ∈ Dom(U),

(1.3) un(x)︸ ︷︷ ︸
sup

XT∈Xn(x)
E[U(XT )]

→ u∞(x).︸ ︷︷ ︸
sup

XT∈X∞(x)
E[U(XT )]

This problem was first studied in [36] for utility functions on R+, like power utilities.

There, a condition known as V -compactness was shown to be a sufficient condition

for stability. Let V be the convex dual of U :

V (y) , sup
x∈Dom(U)

U(x)− xy.
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The V -compactness hypothesis states that

{V (Zn
T ) : n ≥ 0} is uniformly integrable.

Here, we attempt to extend (1.3) to utility functions on R, working with the

typical example of exponential utility. We show that with some mild strengthening

of V -compactness, we can ensure stability in this setting with respect to market

perturbations. Our arguments make heavy use of the bmo-theory of martingales,

which has a natural role in implying the existence of near optimal wealth processes

with nice regularity properties. To prove our main Theorem II.5, our basic strategy

is to bootstrap from the continuity results of [36] by establishing conditions under

which the utility of the optimal wealth process can be approximated, uniformly over

markets, by the utility of wealth processes which are bounded from below. This

allows us to build stability results for utility functions on R from their analogs for

utilities on R+, as in [36].

The second problem in this thesis comes from mathematical statistics. It involves

an extension of the classical sequential analysis problem, found in [55], from a single

channel of statistical information to multiple independent channels, subject to the

restriction that only one channel can be observed at a time. In the most classical

formulation of the sequential analysis problem, an agent in discrete time monitors a

channel of information, represented by a sequence of independent random variables

X1, X2, . . . .

The agent must decide between two possible statistical hypotheses about the Xi:

either

H0 : Xi ∼ Q0 holds for each i or H1 : Xi ∼ Q1 holds for each i,
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where Q0 and Q1 represent two distinct, but equivalent distributions. In a typical

example, Q0 may correspond to a N(0, 1) random variable, and Q1 to a N(1, 1)

random variable. The sequential analysis problem is usually formulated in terms of

the posterior probability,

πt , P (H1|Ft) .

Here πt represents the posterior likelihood that H1 is satisfied, given the observed

values of {Xi : i ≤ t}. The technical device which makes this comparison possi-

ble is Bayes’ Theorem, which gives a formula for updating the posterior after each

observation:

πn+1 =
πnq1(Xn+1)

πnq1(Xn+1) + (1− πn)q0(Xn+1)
,

where q0 and q1 are the respective density functions of the Xi’s under Q0 and Q1.

Thanks to this reformulation, the sequential analysis problem can be restated as

an optimal stopping problem on {πn}n≥0. When πn is sufficiently large, we should

accept H1, and when it is sufficiently small, we should accept H0. The exact optimal

thresholds for accepting either hypothesis can be computed using optimal stopping

theory.

In continuous time, suppose that our agent now observes a standard one-dimensional

Brownian Motion, and must decide whether or not it has a known non-zero drift. In

this case, the posterior probability πt of non-zero drift follows the stochastic differ-

ential equation (SDE)

(1.4) dπt = πt(1− πt)dWt, π0 = π̂,

and the sequential analysis problem becomes one of optimal stopping on (1.4).

The formulations above both correspond to a single channel. Suppose instead

that there is an infinite number of channels, and that our objective is only to find
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any channel, as soon as possible, which satisfies H1. From a practical viewpoint,

this formulation captures many physical problems well. Typical examples include

screening for an open frequency on which to broadcast, searching for extraterrestrial

radio signals in different sectors of space, or determining the source of a chemical or

biological attack after it is known that such an attack has occurred.

This multi-channel search problem was studied in discrete time in [35]. Here,

we tackle the continuous time version, finding analytical expressions for the value

function and optimal threshold, which quantifies the confidence level one should

attain before accepting H1 for the channel under inspection. These expressions can

be evaluated efficiently, and may lead to efficient implementations as approximate

solutions in discrete time.

The end goal of our analysis is an SDE with a reflecting boundary at π̂ ∈ (0, 1):

(1.5) dπrt = πrt (1− πrt )dWt + At, π
r
0 = π̂,

whereAt is an increasing process, starting from zero, which satisfies
∫∞

0
(πrs − π̂) dAs =

0. Here, the reflecting boundary at π̂ captures the ability of the agent to switch to a

new channel at any time when it seems H1 is unlikely, which corresponds to replacing

a current posterior value πt < π̂ with π̂, the prior probability of H1 in each channel.

The agent’s objective is to find a stopping time τ and observation strategy Φ (de-

termining which channel will be viewed at a given moment in time) which minimizes

some linear combination of

E
[
1− πΦ

τ

]
and E [τ ] ,

the former modeling the probability of false alarm, and the latter capturing the

amount of time spent in observation. The choice of Φ behaves like an impulse control

on the process πΦ, but the filtration of observed information additionally depends
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on the choice of Φ. After we establish the equivalence of our search problem to

an optimal stopping problem on (1.5), we use a verification theorem to deduce the

explicit form of our value function, (3.23).

The last problem in this thesis also comes from mathematical statistics. Instead of

determining which of two statistical hypotheses a channel satisfies, we are confronted

with a channel whose signal’s statistical properties change abruptly at an unknown

disorder time. From the observed signal, we must sound the alarm as soon as possible

after the disorder starts, while avoiding penalties for sounding the alarm prematurely.

Furthermore, and this is the aspect of the problem which we investigate, information

about the channel is scarce, in the sense that we have a finite number of observation

rights, which we must adaptively choose how to allocate.

Problems in this field, known as quickest detection or online change-point analy-

sis, have been studied for much of the twentieth century. The mathematical theory

of quickest detection begins with [52], who studied a Bayesian formulation of the

problem in discrete time, in which the disorder time possesses some prior probabil-

ity distribution. To describe this original problem more precisely, we suppose that

on some probability space we have a random variable Θ taking nonnegative integer

values, modeling the disorder time, and a sequence of independent random variables

Z1, Z2, . . . modeling the observations. Conditionally on the set {Θ = i}, the ran-

dom variables Z1, Z2, . . . , Zi−1 have the distribution P0, and the random variables

Zi, Zi+1, . . . have the distribution P1, where P0 and P1 are distinct but equivalent

probabilities. The random variable Θ is supposed to have a geometric distribution.

With probability π, Θ = 0, and P (Θ = n) = (1 − π)(1 − p)n−1p, for some constant

p between zero and one.

Let F be the filtration generated by Z1, Z2, . . .. For a F-stopping time τ , the risk
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is

ρπ(τ) , P π(τ < Θ) + cE
[
(τ −Θ)+] .

Here, P π(τ < Θ) represents the probability of false alarm, E
[
(τ −Θ)+] is the ex-

pected delay time, and c is a positive constant which weighs the relative importance

of these two terms. The goal in the quickest detection problem is to find a stopping

time τ which minimizes the collective risk ρπ(τ).

The first formulation of a quickest detection problem in continuous time is also

found in [52]. Here, one observes a process X with dXt = dBt + α1{t≥Θ}dt, where

Bt is a standard Brownian motion, and α is constant. Θ is a random variable which

is zero with probability π, and with probability 1− π it is exponentially distributed

with parameter λ. Both Bt and Θ are not directly observable. As in the discrete-time

formulation, the goal is to estimate the value of Θ as a result of observing X. Our

objective is to minimize a weighted average of the probability of false alarm and the

detection delay time. The set over which we optimize is the set of stopping times for

the filtration generated by X.

As in the sequential analysis problem, quickest detection is often formulated as

an optimal stopping problem. In place of the posterior process, we use the closely

related odds process

Φt ,
P (Θ ≤ t|Ft)
P (Θ > t|Ft)

.

In the classical, full information setting of [52], Φt satisfies the SDE

dΦc
t = λ (1 + Φc

t) dt+ αΦc
tdWt.

In contrast, we consider here a model in which the channel X is not observed

continuously, and instead we must adaptively choose n discrete points in time when

X should be observed. For modeling purposes, this formulation is a natural one. For
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example, if a battery-powered sensor array is placed in a remote location, we must

conserve energy by taking observations infrequently, so that the sensor can operate

for an extended amount of time. In general, it is often the case that observation

rights are in finite supply because of constraints on energy, funding, or time.

In a discrete observation model, new information comes in only when an obser-

vation is made, and the posterior process should reflect this. We refer the reader to

(4.1) for the exact definition, but the basic structure of the posterior process is one

of deterministic evolution between observations, along with random jumps induced

by observations. This piece-wise deterministic structure allows for a recursive, jump-

operator based approach to the problem. Essentially, we may compute the value

function for n observations, vn, by a deterministic optimization involving the value

function for n − 1 observations. vn−1. In one model which we consider, this takes

the form

(1.6) vn(φ) = inf
t≥0

∫ t

0

e−λs
(

Φs −
λ

c

)
ds+ e−λtKvn−1(t, φ),

where K is an operator encoding the random result of an observation.

In contrast to [15], we consider a model in which observation times are cho-

sen adaptively, as opposed to deterministically, which may realize large efficiency

gains. We consider two models of observation rights, one in which all n observations

are immediately available, and one in which these n rights arrive sporadically from

an independent Poisson process. Each problem requires a different jump-operator

framework to solve. In particular, (1.6) corresponds to the “Lump Sum” observation

problem, while the “Stochastic Arrival Rate” problem involves three separate jump

operators; this is necessary because the agent faces three separate scenarios:

• All observation rights have been received (in this case, the jump operator is very
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similar to (1.6))

• Observation rights are still arriving, and the agent has observation rights stock-

piled, and so can observe at any time

• Observation rights are still arriving, but the agent has no observation rights

stockpiled, and so cannot observe until one arrives

Additionally, we study asymptotics as the number of observation rights tends to

infinity, and use the theory of Extended Weak Convergence from [1] to prove the

convergence of the discrete observation value functions to the value function of the

classical continuous observation problem of [52].
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CHAPTER II

Stability of Exponential Utility Maximization

II.1 Introduction

In this chapter we provide stability results for the problem of maximizing expected

exponential utility. We give conditions under which convergence of markets implies

the convergence of optimal terminal wealths as well as their expected utility. Specif-

ically, for markets of the form S = M +
∫
λd〈M〉, our regularity condition consists

of two complementary hypotheses: the first, the familiar V -compactness assumption

of [36], is used to establish lower semi-continuity, while the second, a new condition

related to a local bmo hypothesis, is used to establish upper semi-continuity. Both

the V -compactness and local bmo conditions originally arose as consequences of our

original regularity condition, a uniform bound on the bmo2 norm of λ · M . This

type of hypothesis is a natural one in mathematical finance and has, for example,

appeared in [18] and [24], where it was used in connection with establishing closed-

ness properties of the space of attainable terminal wealths. In the current setting,

the bmo hypothesis allows us to find wealth processes which are simultaneously near

optimal and bounded from below. This is useful because the optimal wealth process

is in general unbounded, meaning that it may go arbitrarily far into the red. With

this approximation result in hand, we may use the stability results of [36] for utility
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functions on R+ to obtain convergence under bmo regularity. From there, we can

prove our most general continuity result, which builds upon the bmo arguments to

establish upper semi-continuity.

In comparison with [36], dealing with the stability problem for utility functions on

R+, our regularity assumption is of course stronger than the notion of V -compactness

alone, since we impose the additional local bmo condition. We will show, however,

that this condition is not especially stringent, and that on some level it is already

implicit in the setting of [36]: indeed, the basic purpose of the assumption is to

guarantee that over all markets, the optimal expected utility E
[
U
(
X̂n
T

)]
may be

uniformly approximated by payoffs of the form E
[
U
(
X̂

(n,k)
T

)]
, with the processes

X̂(n,k) satisfying sup
0≤t≤T

U−
(
X̂

(n,k)
t

)
∈ L∞. For utility functions defined on (0,∞),

this property is guaranteed as soon as there is V -compactness.

In comparison with two other extant stability results in the literature, we see that

our regularity hypothesis is weaker than in either of those papers, although they

provide additional convergence results that are beyond the scope of this article. In

[22], the stability of quadratic BSDE’s is studied with respect to, among other things,

perturbation of the driver. From the natural connection between this class of BSDE’s

and exponential utility maximization (see [38]), the results from [22] allow one to

recover stability results about exponential utility maximization, but only under the

more restrictive assumption of a uniform bound on λ ·M in the Hardy Space H∞,

i.e. ||λ ·M ||H∞ , ||λ2 · 〈M〉T ||L∞ . Additionally, it is assumed that the filtration is

continuous.

In [60], very strong convergence results are obtained in a narrow class of utility

maximization problems, with equilibrium problems in mind. In order to use PDE

methods, the setting is exclusively Markov, and the assumptions on market conver-
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gence are quite stringent: given a sequence (λn)n=1,...,∞ of drift parameters, essen-

tially λn(t)→ λ∞(t) in L∞([0, T ]). These strong hypotheses are necessary to deduce

quantitative estimates about the stability of exponential utility maximization.

Here, we take a different approach. We consider simply the continuity of ex-

ponential utility maximization in a general filtration, and are interested in finding

minimal regularity conditions under which continuity will hold true. The outline

of the chapter is as follows. In Section II.2, we provide the necessary background

definitions to state our main result. In Section II.3, we present some preliminaries

on the theory of bmo martingales. In Section II.4, we apply this theory to give a

proof of an intermediate result. In Section II.5, we prove the main results of the

chapter, using the results of Section II.4 to establish upper semi-continuity. Finally,

in Section II.6, we discuss our second assumption in the context of [36] and discuss

its economic significance, in connection with the opportunity process of [41] and [40];

the necessity of the first assumption is also addressed. We close with two appendices,

Appendix A and Appendix B, which contain auxiliary results.

II.2 Setup and Main Results

Let (Ω,F , P, (Ft)t∈[0,T ]) be a filtered probability space satisfying the usual con-

ditions. We assume that FT = F . Let M be a continuous local martingale, and

let

Λ ,

{
λ : λ is a predictable process satisfying

∫ T

0

λ2
ud〈M〉u <∞

}
.

For λ ∈ Λ, define

(2.1) Sλt ,Mt +

∫ t

0

λud〈M〉u,

where 〈M〉 = (〈M〉t)t∈[0,T ] denotes the quadratic variation of the local martingale M .

Along with a numéraire bond, identically equal to 1, each Sλ defines a stock market,
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in which Sλ is interpreted as the discounted price of a tradeable asset.

We let Sn ,M +
∫
λn d〈M〉, n = 1, . . . ,∞, describe a sequence of markets, and

Zn , E(−λn ·M)

= exp

(
−
∫ ·

0

λndM − 1

2

∫ ·
0

(λn)2d〈M〉
)

is the nth minimal martingale measure.

In the exponential utility maximization problem, an agent with utility function

U(x) , − exp(−x) seeks to maximize E [U(x+XT )] over a set of admissible wealth

processes X that start from initial capital zero. We set V (y) , y log y− y for y > 0,

so that V is the convex dual of U . To define our regularity assumptions, we need

the notion of bmo martingales.

Definition II.1. Let 1 ≤ p < ∞. A not necessarily continuous martingale R is in

bmop, with ||R||bmop = r, if there is a minimal constant r such that

E [|RT −Rτ−|p | Fτ ]
1
p ≤ r,

for all stopping times τ taking values in [0, T ]. We will occasionally abbreviate bmo1

to bmo.

For p = 2, if ||R||bmo2 <∞, then ||R||bmo2 also has the representation

ess sup
τ

E [〈R〉T − 〈R〉τ− | Fτ ]
1
2 .

The equivalence of this representation is derived from considering the martingale

R2 − 〈R〉.

Now we can state our two-pronged regularity assumption on a sequence of markets:

Assumption II.2. [Regularity Assumption 1: V -compactness] The set

{V (Zn
T ) : n ∈ N} is uniformly integrable.
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Assumption II.3. [Regularity Assumption 2] There exists a sequence of stopping

times (τj) ↑ T such that sup
n
||(λn ·M)τj ||bmo2 <∞ for each j.

We continue on with our description of the utility maximization problem. In

comparison to utilities on R+, defining the right notion of admissibility is more

complicated when U is finite-valued over the whole real line. We state here the most

common definition of admissibility at this level of generality, for which we refer to

[51]. Let Mn denote the set of equivalent local martingale measures for Sn.

Definition II.4. For any n, let H be predictable and Sn-integrable. We say that

H · Sn ∈ An if H · Sn is a Q-martingale for every Q ∈ Mn with finite entropy, that

is, E
[
V
(
dQ
dP

)]
<∞.

The primal value function un, n = 1, . . . ,∞, is defined as

un(x) , sup
X∈An

E [U(x+XT )] , x ∈ R.

In the stability problem for utility maximization, we seek assumptions on the pro-

cesses Zn that ensure the convergence of un(·) towards u∞(·). We can now state the

main results of the chapter:

Theorem II.5. Suppose that Zn
T → Z∞T in probability, Z∞ is a martingale, and that

Assumptions II.2 and II.3 are satisfied. Then un(·)→ u∞(·) pointwise, hence locally

uniformly.

Theorem II.6. Suppose that Zn
T → Z∞T in probability, Z∞ is a martingale, and that

Assumptions II.2 and II.3 are satisfied. Then for all x the optimal terminal wealths

X̂n
T (x) converge to X̂∞T (x) in probability as n→∞.

A crucial intermediate step in establishing these theorems lies in first establishing

them under a stronger bmo-type hypothesis. This is the main intermediate theorem:

we remark that under these assumptions, Z∞ is automatically a martingale.
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Theorem II.7. Suppose that Zn
T → Z∞T in probability and that sup

n
||λn ·M ||bmo2 <

∞. Then un(·)→ u∞(·) pointwise, hence locally uniformly.

II.3 BMO Preliminaries

Definition II.8. A positive martingale Y satisfies the Reverse Hölder Inequality

Rp(P) for p > 1 with constant Kp and with respect to the measure P, if there exists

minimal Kp such that

EP
[
Y p
T

Y p
τ

∣∣∣∣ Fτ] ≤ Kp

for all stopping times τ in [0, T ].

The following lemma is found in the appendix of [25], and originally in Proposi-

tions 5 and 6 of [21].

Lemma II.9. Suppose that the collection (λn ·M)n≥1 is bounded in the bmo2 norm.

Then for some p > 1 which depends only on this uniform bound, the collection

(Zn = E(λn ·M))n≥1 satisfies Rp(P) with, respectively, uniformly bounded constants

Cn
p .

Definition II.10. A positive martingale Y satisfies RLLogL with constant KLLogL if

there exists minimal KLLogL such that

E

[
V

(
YT
Yτ

) ∣∣∣∣ Fτ] ≤ KLLogL

for all stopping times τ in [0, T ].

Definition II.11. A positive càdlàg process Y satisfies condition (S) if there exist

constants 0 < c ≤ 1 ≤ C such that cY− ≤ Y ≤ CY−.

The following proposition is mostly in the literature:
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Proposition II.12. Let R be a martingale such that Y = E(R) is a strictly positive

martingale. Then R ∈ bmo2 and there exists h > 0 such that ∆R ≥ h − 1 if and

only if Y satisfies RLLogL and condition (S). The constants KLLogL and C of Y can

be bounded as a function of ||R||bmo2.

Proof. In the (⇐) direction, Lemma 2.2 of [25] establishes that R ∈ bmo2. Now

dY = Y−dR and ∆Y = Y−∆R. By the first inequality of condition (S), (c− 1)Y− ≤

Y − Y− = Y−∆R, implying that ∆R ≥ c− 1 > −1.

Now the (⇒) direction. Since R is in bmo2 it is locally bounded; indeed, for

n ∈ N, let τn = inf{t : ∆Rt ≥ n} ∧ T , and let r , ||R||bmo2 . Then ||Rτn||bmo2 ≤ r, so

that

(∆Rτn)2 = ∆〈R〉τn

= E [〈R〉τn − 〈R〉τn− | Fτn ]

≤ r,

so that the jumps of R are bounded in magnitude by
√
r. This implies that R is

locally bounded. Then ∆Y = Y−∆R ≤
√
rY−. Hence Y ≤ Y−+

√
rY−. Additionally,

∆R ≥ h− 1 implies that

Y − Y− = ∆Y

Y−∆R

≥ Y−(h− 1),

so Y ≥ hY−. This establishes condition (S), with C = 1 +
√
r, which is bounded as

a function of ||R||bmo2 .

By Lemma II.9, Y satisfies the reverse Hölder inequality for some p > 1. Since

x log x ≤ K ′xp for some constant K ′, it follows that Y satisfies RLLogL. Additionally,

it is evident that Lemma II.9 also implies that Y satisfies RLLogL with constant

KLLogL only depending on ||R||bmo2 .
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Definition II.13. For each market n, let Ẑn be the minimal entropy martingale

measure. Its existence and uniqueness is established in Theorem 2.2 of [50].

The next lemma is precisely Lemma 3.1 of [17]. We give a proof for the reader’s

convenience.

Lemma II.14. For any n, if Zn satisfies RLLogL, with constant K, then Ẑn satisfies

RLLogL with a constant less than or equal K.

Proof. By hypothesis, E
[
ZnT
Znτ

log
ZnT
Znτ

∣∣∣Fτ] ≤ K for all stopping times τ less than than

or equal to T . Suppose that Ẑn does not satisfy RLLogL with a constant less than or

equal K. Then there exists ε > 0, a stopping time σ less than or equal to T , and a

set A ∈ Fσ with P (A) > 0 such that

E

[
Ẑn
T

Ẑn
σ

log
Ẑn
T

Ẑn
σ

∣∣∣Fσ] ≥ K + ε

on the set A. Let Z̃n
t , 1{t<σ}Ẑ

n
t + 1{t≥σ}

(
1A

Znt
Znσ
Ẑn
σ + 1AcẐ

n
t

)
for t ∈ [0, T ]. Then

Z̃n is the density process of an element of Mn and satisfies Z̃n
T = 1AẐ

n
σ
ZnT
Znσ

+ 1AcẐ
n
T .

Thus,

Z̃n
T log Z̃n

T = 1AcẐ
n
T log Ẑn

T + 1A

(
Ẑn
σ

Zn
T

Zn
σ

log
Zn
T

Zn
σ

+ Ẑn
σ

Zn
T

Zn
σ

log Ẑn
σ

)
.

Therefore,

E
[
Z̃n
T log Z̃n

T |Fσ
]
− E

[
Ẑn
T log Ẑn

T |Fσ
]

= 1A

(
Ẑn
σE

[
Zn
T

Zn
σ

log
Zn
T

Zn
σ

∣∣Fσ]+ Ẑn
σ log Ẑn

σ − E
[
Ẑn
T log Ẑn

T |Fσ
])

= 1AẐ
n
σ

(
E

[
Zn
T

Zn
σ

log
Zn
T

Zn
σ

∣∣Fσ]− E [Ẑn
T

Ẑn
σ

log
Ẑn
T

Ẑn
σ

∣∣Fσ])
≤ −ε1AẐn

σ .

Taking expectations, this contradicts the fact that Ẑn
T has minimal entropy.
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We now show that the bmo2 hypothesis of (II.7) implies the V -compactness con-

dition of Assumption II.2, which plays a prominent role in [36]. The next proposition

is proven for continuous martingales in [32].

Proposition II.15. Suppose sup
n
||λn ·M ||bmo2 < ∞. Then there exists p > 1 such

that sup
n

E [(Zn
T )p] <∞.

Proof. By the conditional form of Jensen’s inequality, the norm || · ||bmo1 ≤ || · ||bmo2 .

Let R be an arbitrary element of bmo2, and let n(R) = 2||R||bmo1 +||R||2bmo2
. Without

loss of generality, we assume that ||R||bmo2 > 0, and show that the Lp norm of E(R)T

has an upper bound that only depends on n(R) for some p > 1.

Let δ = exp(−pn(R)) < 1 (so log 1/δ = pn(R)), and let τ = inf{t : E(R)t > λ}

for λ > 1. Considering time τ− instead of τ and arguing as in [32], we obtain the

inequality P (E(R)T/E(R)τ− ≥ δ | Fτ ) ≥ 1− 1
2p

; indeed,

P (E(R)T/E(R)τ− < δ | Fτ )

= P (1/δ < E(R)τ−/E(R)T | Fτ )

= P

(
pn(R) < Rτ− −RT +

1

2
(〈R〉T − 〈R〉τ−) | Fτ

)
≤ 1

2pn(R)
E [2|RT −Rτ−|+ (〈R〉T − 〈R〉τ−) | Fτ ]

≤ n(R)

2pn(R)

=
1

2p
,

with the first inequality following from Markov’s inequality. This implies that

P (E(R)T/E(R)τ− ≥ δ | Fτ ) ≥ 1− 1
2p

.

By Proposition II.12, E(R) satisfies the upper bound of condition (S) with a

constant C whose size is controlled by n(R), and we have E(R)τ− ≥ 1
C
E(R)τ ≥ 1

C
λ
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on {τ <∞}. This yields P
(
E(R)T ≥ δλ

C
| Fτ

)
≥ 2p−1

2p
1{τ<∞}. Thus,

E
[
E(R)T1{E(R)T>λ}

]
≤ E

[
E(R)T1{τ<∞}

]
= E

[
E(R)τ1{τ<∞}

]
≤ E

[
CE(R)τ−1{τ<∞}

]
≤ CλP (τ <∞)

≤ 2Cλp

2p− 1
P

(
E(R)T ≥

δλ

C

)
,

where the equality above follows from the optional sampling theorem.

Take the inequality E
[
E(R)T1{E(R)T>λ}

]
≤ 2Cλp

2p−1
P
(
E(R)T ≥ δλ

C

)
, multiply both

sides by (p− 1)λp−2 and integrate with respect to λ from 1 to ∞:∫ ∞
1

(p− 1)λp−2E
[
E(R)T1{E(R)T>λ}

]
dλ(2.2)

≤
∫ ∞

1

(p− 1)λp−2 2Cλp

2p− 1
P

(
E(R)T ≥

δλ

C

)
dλ.(2.3)

Applying Fubini’s Theorem to the left hand side (2.2), we get∫ ∞
1

(p− 1)λp−2E
[
E(R)T1{E(R)T>λ}

]
dλ

= E

[∫ ∞
1

(p− 1)λp−2E(R)T1{E(R)T>λ}dλ

]
= E

[
E(R)T

∫ ∞
1

(p− 1)λp−21{E(R)T>λ}dλ

]
= E

[
E(R)T1{E(R)T>1}

∫ E(R)T

1

(p− 1)λp−2dλ

]
= E

[
E(R)T

(
E(R)p−1

T − 1
)

1{E(R)T>1}
]
.

After a similar computation for the right hand side (2.3), this yields

E
[
(E(R)pT − E(R)T )1{E(R)T>1}

]
≤ 2C(p− 1)

2p− 1
E

[((
C

δ
E(R)T

)p
− 1

)
1{E(R)T>

δ
C
}

]
.
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Grouping the terms with E(R)pT together on the left hand side, we obtain(
1− 2C(p− 1)

2p− 1

Cp

δp

)
E
[
E(R)pT1{E(R)T>1}

]
≤ E [E(R)T ]− 2C(p− 1)

2p− 1
E
[
1{E(R)T>

δ
C
}

]
≤ 1,

for any p > 1. Hence, by choosing p close enough to 1 so that 2C(p−1)
2p−1

Cp

δp
< 1, we

establish an upper bound for E[E(R)pT ] which depends only on n(R). Note that the

choice of C depends on n(R).

Corollary II.16. Suppose that sup
n
||λn ·M ||bmo2 < ∞. Then {V (Zn

T ) : n ∈ N} is

uniformly integrable.

Proof. By Proposition II.15, sup
n
E[(Zn

T )p] <∞ for some p > 1. As xp̃/V (x)→∞ as

x→∞, for any p̃ > 1, the claim follows from the de la Vallée-Poussin criterion.

We make one last digression to the theory of bmo martingales. Specifically, we

need the bmo theory of weighted norm inequalities. The following theorem is stated

as Theorem 2.16 of [19] without mentioning that the constant Cp in (2.4) can be

chosen as the same constant associated with the reverse Hölder inequality. For this

fact, we refer to Proposition 2 of [21]. For a càdlàg process Y , let Y ∗ , sup
t∈[0,T ]

|Yt| ∈

FT .

Proposition II.17. Let Y = E(R) be a continuous martingale and dQ
dP

= YT . Then

if Y satisfies Rp(P ) with constant Cp, then for each Q-martingale X and q = p
p−1

,

(2.4) λqP (X∗ > λ) ≤ CpE [|XT |q] .

II.4 Approximation of Optimal Wealth

In [50], U is approximated by auxiliary utility functions defined on a half axis.

For k ∈ N, we define utility functions U (k) as follows: U (k) = U on [−k,∞), U(x) ≥
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U (k)(x) > −∞ for x > −k − 1, and lim
x↓−k−1

U (k)(x) = −∞. Each U (k) is assumed C1,

concave, satisfying the Inada conditions, and having reasonable asymptotic elasticity.

For details on these assumptions, see [50]. V (k) is the convex conjugate of U (k). Since

U (k) ≤ U , V (k) ≤ V .

For n = 1, . . . ,∞, vn is the dual value function associated to V in market number

n:

(2.5) vn(y) , inf
Q∈Mn

E

[
V

(
y
dQ
dP

)]
, y > 0.

For n = 1, . . . ,∞ and k ∈ N, v(n,k) is the dual value function associated to V (k) in

market number n:

v(n,k)(y) , inf
Y ∈Yn

E
[
V (k)(yYT )

]
, y > 0,

where Yn is the set of supermartingale deflators for Sn:

Definition II.18. Yn is the set of càdlàg processes Y such that Y0 = 1 and Y (H ·Sn)

is a supermartingale whenever H is predictable, Sn-integrable, such that H · Sn is

bounded from below by a constant.

Let Anb be the set of wealth processes H · Sn where H is predictable and Sn-

integrable, and H · Sn is bounded from below by a constant. The value functions

u(n,k) are defined as follows:

u(n,k)(x) , sup
X∈Anb

E
[
U (k)(x+XT )

]
, x > −k − 1.

By a shift on the real line (see [50]), one can identify the value functions v(n,k), u(n,k)

with an equivalent optimization problem which uses a utility function Ũ (k) defined

on R+. We copy verbatim this procedure here.

Let Ũ (k)(x) , U (k)(x − (k + 1)), which is finitely valued for x > 0. Then Ũ (k) is

a utility function of the type encountered in [34], and so there is a unique optimal
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solution X
(n,k)

(x) = x+H(n,k) · Sn to the optimization problem

ũ(n,k)(x) , sup
X∈Anb

E
[
Ũ (k)(XT )

]
, x > −k − 1.

Then, for x > −k− 1, X̂(n,k)(x) , X
(n,k)

(x+ k+ 1)− (k+ 1) is the optimal solution

to the optimization problem

u(n,k)(x) = sup
X∈Anb

E
[
U (k)(x+XT )

]
, x > 0.

It follows that u(n,k)(x) = ũ(n,k)(x + k + 1) for x > −k − 1. Let Ṽ (k) be the convex

conjugate of Ũ (k). Then the convex conjugate ṽ(n,k) of ũ(n,k) has the form

ṽ(n,k)(y) = inf
Y ∈Yn

E
[
Ṽ (k)(yYT )

]
= E

[
Ṽ (k)

(
yỸ

(n,k)
T

)]
, y > 0;

Here, Ỹ (n,k) = Ỹ (n,k)(y) is the dual minimizer, which in general depends on y; the

existence of such minimizers is established in [34]. We also have

(2.6) V (k)(y) = Ṽ (k)(y) + (k + 1)y

and v(n,k)(y) = ṽ(n,k)(y) + (k + 1)y. The main result of [36] implies that for each

k, lim
n→∞

ũ(n,k) = ũ(∞,k) under the Ṽ k-compactness condition: {Ṽ k(Zn
T ) : n ∈ N} is

uniformly integrable.

Lemma II.19. Suppose that Zn
T → Z∞T in probability and {Zn

T : n ∈ N} is V -

compact. Then for each k, lim
n→∞

u(n,k)(x) = u(∞,k)(x).

Proof. For each k, V (k) ≤ V and V (k) is bounded from below, so {V (k)(Zn
T ) : n ∈

N} is uniformly integrable. Since V (x)/x → ∞ as x → ∞, it is also true that

{Zn
T : n ∈ N} is uniformly integrable. Given the form of Ṽ (k) in (2.6), it now

follows that {Ṽ (k)(Zn
T ) : n ∈ N} is uniformly integrable. Hence the main theorem

of [36] implies that ũ(n,k)(x) → ũ(∞,k)(x) as n → ∞. It immediately follows that

u(n,k)(x)→ u(∞,k)(x) as n→∞.
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Lemma II.20. Suppose that v∗(y) , sup
n

vn(y) < ∞ for all y > 0. Then for all

x ∈ R, u∗(x) , sup
n

un(x) < 0.

Proof. By passing to a subsequence, we can assume that un(0) → u∗(0). For each

n, un(x) = exp(−x)un(0), and similarly for u∗(x). Hence, un → u∗ locally uniformly

and u∗ is concave. Let v be the convex dual of u∗. Since vn and un are convex

duals, then limn v
n exists and is the convex dual of u∗, and hence is equal to v. By

definition, v ≤ v∗. Suppose that for some x, u∗(x) = 0. Then u∗ ≡ 0. But, if u∗ ≡ 0,

then it would be that v(y) = sup
x∈R

[u∗(x)− xy] ≡ ∞, which contradicts the finiteness

of v∗(y). Thus, u∗(x) is bounded away from zero.

Let

x+ X̂n , x+ X̂n(0) = X̂n(x)

be the optimal wealth process in market n from initial capital x. This special form

for the optimal wealth processes is due to the wealth homogeneity of the exponential

utility. Let T be the set of [0, T ]-valued stopping times.

Proposition II.21. Suppose that sup
n
||λn ·M ||bmo2 < ∞. Then {exp(−X̂n

τ ) : n ∈

N, τ ∈ T } is uniformly integrable.

Proof. Recall Ẑn is the density of the minimal entropy martingale measure for Sn,

which we denote by Q̂n. From Theorem 2.2 of [50], X̂n is a true Q̂n-martingale for

each n. From Theorem 2.2 of [50] again, we have cne
−X̂n

T = Ẑn
T for some constant cn.

Taking conditional expectations under Q̂n via Bayes’ rule, and using the fact that
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X̂n is a Q̂n-martingale, we obtain

log cn − X̂n
τ

= EQ̂n
[
log cn − X̂n

T |Fτ
]

= EQ̂n
[
log Ẑn

T |Fτ
]

= E

[
Ẑn
T

Ẑn
τ

log Ẑn
T

∣∣∣∣∣ Fτ
]

= E

[
Ẑn
T

Ẑn
τ

(
log

Ẑn
T

Ẑn
τ

+ log Ẑn
τ

) ∣∣∣∣∣ Fτ
]

= E

[
Ẑn
T

Ẑn
τ

log
Ẑn
T

Ẑn
τ

∣∣∣∣∣ Fτ
]

+ log Ẑn
τ .

Exponentiating the previous inequality, we obtain

exp(−X̂n
τ )

=
1

cn
Ẑn
τ exp

(
E

[
Ẑn
T

Ẑn
τ

log
Ẑn
T

Ẑn
τ

|Fτ

])
≤ 1

cn
eK̂

n
LLogL+1Ẑn

τ ,

where K̂n
LLogL is the RLLogL constant of Ẑn. According to Proposition II.12 and

Lemma II.14, sup
n
K̂n
LLogL <∞. By Corollary II.16, v∗(y) <∞, and so Lemma II.20

implies that u∗ < 0. Note that cn = −un(0). Thus, inf
n
cn > 0, so that sup

n

1
cn
<∞.

We may then write

(2.7) exp(−X̂n
τ ) ≤ CẐn

τ

for some constant C, so that the inequality is valid for all n and all τ . In what

follows we will show that the right-hand-side of (2.7) is uniformly integrable, which

completes the proof. Since sup
n

E
[
V (Ẑn

T )
]
< ∞ (thanks to V -compactness and

Lemma II.14) and V (x)/x → ∞ as x → ∞, the de la Vallée-Poussin criterion

implies that {Ẑn
T : n ∈ N} is uniformly integrable. Since each Ẑn is a martingale,

this extends to the uniform integrability of {Ẑn
τ : n ∈ N, τ ∈ T }.
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Remark II.22. In the literature (see [26]), admissible wealth processes are sometimes

defined directly to be those satisfying the conclusion of Proposition II.21, i.e. having

uniformly integrable utility over all stopping times.

For i ∈ Z, let τ̂ (n,i) , inf{t : X̂n
t = i}, and let X̂(n,i) , (X̂n)τ̂

(n,i)
=
(
X̂n
τ̂ (n,i)∧t

)
t∈[0,T ]

.

Lemma II.23. Suppose that sup
n
||λn · M ||bmo2 < ∞. Then for each i ∈ N, the

collection {(X̂(n,i))∗ : n ∈ N} is bounded in probability.

Remark II.24. The conclusions of Lemma II.23 and Proposition II.21 will be shown

to be sufficient for obtaining continuity of the utility maximization problems. Given

the strength of the bmo hypothesis, it is natural to ask whether these conditions

are also necessary. In Appendix A, it is shown that the conclusion of Lemma II.23

is indeed necessary. The conclusion of Proposition II.21, however, is not, and it in

fact may fail within a single market. We give an example of this in Appendix B.

Note that this market, and indeed all continuous markets, still satisfy the local bmo

hypothesis of Assumption II.3.

Proof. Let Qn be the probability measure associated to the minimal martingale Zn,

which is continuous. By Corollary II.16, each Qn has finite entropy. Theorem 1 of

[51] implies that X̂n is a Qn-martingale for each n. Then it is also true that X̂(n,i) is

a Qn-martingale for each n. Since sup
n
||λn ·M ||bmo2 < ∞, Lemma II.9 implies that

there exists a p > 1 such that each Zn satisfies the Reverse Hölder inequality Rp(P )

with uniformly bounded constant Cp.
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By Proposition II.17, for q = p
p−1

,

λqP
(

(X̂(n,i))∗ > λ
)

≤ CpE
[∣∣∣X̂(n,i)

T

∣∣∣q]
≤ Cp

(
iq + CiE

[
exp

(
−X̂(n,i)

T

)])
≤ Cp(i

q + C̃i),

for constants Ci, C̃i independent of n, with the third inequality a consequence of

Proposition II.21.

Proposition II.25. Suppose sup
n
||λn ·M ||bmo2 <∞. Then u(n,k) → un as k →∞,

uniformly over the markets n.

Remark II.26. As indicated by Proposition II.34 in Appendix A, the uniform ap-

proximation condition given above is both necessary and sufficient for convergence

of the utility maximization problem.

Proof. Let ε > 0. Fix i ∈ N large enough so that 0 > − exp(−i) > −ε. Then

un(0) ≥ E
[
U(X̂

(n,i)
T )

]
> un(0)− ε for all n ∈ N.

(2.8)

For k ∈ N, let X̂(n,i,−k) , (X̂n)τ̂
(n,−k)∧τ̂ (n,i)

= (X̂(n,i))τ̂
(n,−k)

. We claim that

(2.9) lim
k→∞

sup
n∈N

P
(
τ̂ (n,−k) < τ̂ (n,i)

)
= 0.

Indeed, Lemma II.23 implies that the collection {(X̂(n,i))∗ : n ∈ N} is bounded in

probability. Therefore, lim
k→∞

sup
n

P ((X̂(n,i))∗ ≥ k) = 0. But P (τ̂ (n,−k) < τ̂ (n,i)) ≤

P ((X̂(n,i))∗ ≥ k), which establishes (2.9). We next claim that

(2.10) lim
k→∞

sup
n

∣∣∣∣E [U(X̂
(n,i)
T )

]
− E

[
U(X̂

(n,i,−k)
T )

] ∣∣∣∣ = 0.
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Let ε2 > 0. Write

E
[
U(X̂

(n,i,−k)
T )

]
= E

[
U(X̂

(n,i)
T )1{τ̂ (n,−k)≥τ̂ (n,i)} + U(X̂

(n,i,−k)
T )1{τ̂ (n,−k)<τ̂ (n,i)}

]
= E

[
U(X̂

(n,i)
T )− U(X̂

(n,i)
T )1{τ̂ (n,−k)<τ̂ (n,i)} + U(X̂

(n,i,−k)
T )1{τ̂ (n,−k)<τ̂ (n,i)}

]
.

According to Proposition II.21, the set {exp(−X̂n
τ ) : n ∈ N, τ ∈ T } is uniformly

integrable, which immediately implies that the set {exp(−X̂(n,i)
T ), exp(−X̂(n,i,−k)

T ) :

n, k ∈ N} is uniformly integrable. Therefore, there exists δ = δ(ε2) > 0 such that

for any set A, P (A) < δ implies that max
{
E[U(X̂

(n,i)
T )1A], E[U(X̂

(n,i,−k)
T )1A]

}
< ε2.

According to (2.9), there exists k0 ∈ N such that for k ≥ k0 and all n ∈ N, the sets

{τ̂ (n,−k) < τ̂ (n,i)} have probability less than δ. Therefore, for k ≥ k0 and all n ∈ N,

max
{
E
[
U(X̂

(n,i)
T )1{τ̂ (n,−k)<τ̂ (n,i)}

]
, E
[
U(X̂

(n,i,−k)
T )1{τ̂ (n,−k)<τ̂ (n,i)}

]}
< ε2. Thus, for

k ≥ k0 and all n ∈ N, we have∣∣∣∣E [U(X̂
(n,i)
T )

]
− E

[
U(X̂

(n,i,−k)
T )

] ∣∣∣∣ < 2ε2,

and (2.10) is established. Then (2.8) and (2.10) imply that

(2.11) lim
k→∞

sup
n∈N

∣∣∣∣ un(0)− E
[
U(X̂

(n,i,−k)
T )

] ∣∣∣∣ ≤ ε.

Since X̂(n,i,−k) > −k − 1, by definition, u(n,k)(0) ≥
[
U(X̂

(n,i,−k)
T )

]
. Then (2.11) and

the fact that u(n,k) ≤ un imply that for any ε > 0,

(2.12) lim
k→∞

sup
n∈N
|un(0)− u(n,k)(0)| ≤ ε,

implying that lim
k→∞

sup
n∈N
|u(n,k)(0) − un(0)| = 0, i.e. that u(n,k) → un as k → ∞,

uniformly over n.
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II.4.1 Proof of the intermediate theorem

Proof of Theorem II.7. It follows from Corollary II.16 and Lemma II.19 that for each

k, lim
n→∞

u(n,k) = u(∞,k). Proposition II.25, on the other hand, states that lim
k→∞

u(n,k) =

un, uniformly over n. These facts together imply that lim
n→∞

un = u∞.

II.5 Proofs of the Main Theorems

We establish the main Theorem II.5 in pieces, establishing lower semi-continuity

and upper semi-continuity separately. The proof of lower semi-continuity is the easier

of the two, and indeed is not dependent on the special structure of the exponential

utility function.

Lemma II.27. Suppose that Zn
T → Z∞T in probability and that {Zn

T : n ∈ N} is V -

compact, i.e. Assumption II.2 holds. Then u∞(x) ≤ lim inf
n→∞

un(x).

Proof. As in the proof of Lemma II.19, the V -compactness of {Zn
T : n ∈ N} implies

that this set is also V (k)-compact, where V (k) is the dual of the “truncated” utility

function U (k) ≤ U , defined at the beginning of Section II.4. By Lemma II.19 and

the main theorem of [36], lim
n→∞

u(n,k)(x) = u(∞,k)(x) for each k ∈ N. By Step 1 of

Theorem 2.2 of [50], un(x) = sup
k∈N

u(n,k)(x) for each n. Therefore

lim inf
n→∞

un(x) = lim inf
n→∞

sup
k∈N

u(n,k)(x)

≥ sup
k∈N

lim inf
n→∞

u(n,k)(x)

= sup
k∈N

u(∞,k)(x)

= u∞(x).

We now establish upper semi-continuity.
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Proposition II.28. Suppose that there exists a sequence of stopping times (τj) ↑

T such that for each j, sup
n
||(λn · M)τj ||bmo < ∞, i.e. Assumption II.3 holds.

Additionally, suppose that V (Z∞T ) ∈ L1 and Z∞ is a martingale. Then u∞(x) ≥

lim inf
n→∞

un(x).

Proof. For j, n = 1, . . . ,∞, let un,j denote the indirect utility arising from trading

in market n up until time τj, where un = un,∞. Since all trading opportunities

arising on [0, τj) are also available over the whole time period [0, T ], we know that

un,j ≤ un,j+1 ≤ un,∞. We claim that in addition,

(2.13) u∞,j ↑ u∞

as j → ∞. As Z∞ is a martingale and V is convex, V (Z∞) is a submartingale

(whose terminal value is integrable). As V is bounded from below, this implies

that V (Z∞) is of Class D, as defined, in [20], p.11, for example. In particular, the

set
{
V
(
Z∞τj

)
: j ∈ N

}
is uniformly integrable. In the context of Lemma II.27, set

Zj , (Z∞)τj , so that Z∞τj = Zj
T . So, applying Lemma II.27 to the sequence {Zj}, it

follows that u∞ ≤ lim inf
j→∞

u∞,j. As u∞,j ≤ u∞,j+1 ≤ u∞, (2.13) now follows.

We now claim that for each j < ∞, un,j → u∞,j. First, Zn
T → Zn

∞ in L1 by

Scheffe’s Lemma, and hence Zn → Z∞ in ucp, which follows by applying Doob’s

weak L1 inequality. In particular, Zn
τj
→ Z∞τj in probability. We are now in the

setting of Theorem II.7: considering τj as our terminal time, we have Zn
τj
→ Z∞τj

in probability. Note that Theorem II.7 can be applied to the terminal time τj ≤ T

by considering, for example, (Zn)τj defined on the time interval [0, T ]. So, applying

Theorem II.7, we deduce that for each j <∞, un,j → u∞,j.

Next, we claim that

(2.14) lim inf
n→∞

un ≥ u∞.
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First choose ε > 0 and J = J(ε) sufficiently large so that u∞,J ≥ u∞−ε. Next choose

N = N(J) such that, for n ≥ N , |un,J − u∞,J | < ε. The triangle inequality implies

that |un,j − u∞| < 2ε. Since un ≥ un,j, it follows that for n ≥ N , un ≥ u∞ − 2ε. In

other words, lim infn→∞ u
n ≥ u∞, and (2.14) is established.

We now obtain:

Proof of Theorem II.5. By Lemma II.27, the mapping is lower semi-continuous, and

by Proposition II.28, the mapping is upper semi-continuous. Together, these imply

the theorem.

Proof of Theorem II.6. As before, for each k ∈ N, let X̂n,k
T be the optimal terminal

wealth in the nth market that satisfies the constraint X̂n,k
T > −k. By Step 7 in the

proof of Theorem 2.2 of [50], we know that as k → ∞, U(X̂n,k
T ) → U(X̂n

T ) in L1

for each n ∈ N. As a consequence of Proposition II.25, E[U(X̂n,k
T )] ↑ E[U(X̂n

T )] as

k → ∞, and the convergence is uniform over n. As U(·) is nonpositive, Scheffe’s

Lemma then implies that U(X̂n,k
T ) → U(X̂n

T ) in L1 as k → ∞, uniformly over n.

L1 convergence being stronger than L0 convergence, we also have that U(X̂n,k
T ) →

U(X̂n
T ) in probability as k →∞, uniformly over n. Since X̂n,k

T → X̂∞,kT in probability

as n → ∞ for all k, then by Lemma 3.10 of [36], it follows that U(X̂n
T ) → U(X̂∞T )

in probability. Since U is bounded from above, we need a little more work to show

that X̂n
T → X̂∞T in probability.

We claim now that {X̂n
T}n∈N is bounded in probability. Note that ZnX̂n is a

martingale, so E[Zn
T X̂

n
T ] = 0. By Proposition II.21, {U(X̂n

T )}n∈N is uniformly inte-

grable, and V -compactness implies that {V (Zn
T )}n∈N is uniformly integrable. The

duality relationship Zn
T X̂

n
T ≥ U(X̂n

T ) − V (Zn
T ) now implies that the negative parts

{(Zn
T X̂

n
T )−}n∈N are uniformly integrable. Hence {Zn

T X̂
n
T}n∈N is bounded in L1, and
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also in L0. But Zn
T → Z∞T in probability, and Z∞T is strictly positive. Hence {Zn

T}n∈N

is bounded away from zero in probability, and it follows that {X̂n
T}n∈N is bounded in

probability.

Suppose now that X̂n
T does not converge to X̂∞T in probability. Then there exists

an ε > 0 such that for infinitely many n, P (|X̂n
T − X̂∞T | > ε) > ε. Now, choose a

compact set K such that P (X̂n
T 6∈ K) < ε

4
for all n. Then

P
(
|X̂n

T − X̂∞T | > ε, and X̂n
T , X̂

∞
T ∈ K

)
> ε

2
. For x, y ∈ K, there exists a constant

c > 0 such that |U(x)− U(y)| > c|x− y|, due to the fact that U ′(x) is positive and

bounded away from zero on the compact set K. Thus, it follows that for infinitely

many n, P (|U(X̂n
T ) − U(X̂∞T )| > cε) > ε

2
, contradicting the fact that U(X̂n

T ) →

U(X̂∞T ) in probability.

II.6 On Assumptions II.2 and II.3

II.6.1 Comparison of II.3 with the Half-Line setting

Recall that in addition to the V -compactness assumption II.2, we required As-

sumption II.3, which has no direct analog in [36]. Reviewing Proposition II.21,

one sees that the purpose of this assumption was to ensure that (locally) the set{
exp

(
−X̂n

τ

)
: n ∈ N, τ ∈ T

}
is uniformly integrable. More precisely, when we say

locally, we mean that there exists a sequence of stopping times τj ↑ T such that{
exp

(
−X̂n

τ∧τj

)
: n ∈ N, τ ∈ T

}
is uniformly integrable for each j.

Indeed, Assumption II.3 could be weakened so that it is exactly this condition:

let Cj , ess sup
τj≥τ∈T ,n∈N

E
[
Znτj
Znτ

log
Znτj
Znτ
|Fτ
]
, which is uniformly bounded thanks to As-

sumption II.3 and Proposition II.12. We have, as in the proof of Proposition II.21,

for τ ≤ τj, the duality relationship
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(2.15) exp(−X̂n
τ ) =

1

cn
Ẑn
τ exp

(
E

[
Ẑn
τj

Ẑn
τ

log
Ẑn
τj

Ẑn
τ

|Fτ

])
.︸ ︷︷ ︸

≤ 1
cn
Ẑnτ exp(Cj) by Assumption II.3

Now, the actual structural condition we need to prove our main results is that{
exp

(
−X̂n

τ∧τj

)
: n ∈ N, τ ∈ T

}
is uniformly integrable. By V -compactness, the set

{Ẑn
τ : τ ∈ T , n ∈ N} is uniformly integrable, as in Proposition II.21. Therefore, from

considering (2.15), we see that Assumption II.3 implies the uniform integrability

of
{

exp
(
−X̂n

τ∧τj

)
: n ∈ N, τ ∈ T

}
; additionally, we see that Assumption II.3 is a

slightly stronger hypothesis than the required property of uniform integrability of{
exp

(
−X̂n

τ∧τj

)
: n ∈ N, τ ∈ T

}
for each j.

This uniform integrability condition is useful because it allows for processes X̂n,k

such that lim
k→∞

E
[
− exp

(
−X̂n,k

T

)]
= E

[
− exp

(
−X̂n

T

)]
, uniformly over n, and

sup
0≤t≤T,n∈N

exp
(
−X̂n,k

t

)
∈ L∞. Here, we show that, in the setting of utility maximiza-

tion with a utility function Ũ defined on R+, this uniform approximation property

is already implied by the Ṽ -compactness assumption, with Ṽ the conjugate of Ũ .

The proof of this fact is interesting because it mirrors, in our opinion, the essential

technical step of [36], Corollary 3.4.

Proposition II.29. In the setting of [36], let {Zn : n = 1, 2, . . . ,∞} define a Ṽ -

compact sequence of markets with Zn
T → Z∞T in probability. Fix an initial wealth

x0 , and let X̃n be the optimal wealth process starting from x0 in the nth market.

Then there exist wealth processes X̃n,k, each defined in the nth market, such that

E
[
Ũ
(
X̃n,k
T

)]
→ E

[
Ũ
(
X̃n
T

)]
as k →∞, uniformly over all n, and

sup
0≤t≤T,n∈N

Ũ−
(
X̃n,k
t

)
∈ L∞.
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Proof. The proposition uses a simple construction, inspired by [36]. Given X̃n, define

X̃n,k ,
1

k
x0 +

k − 1

k
X̃n.

In other words, the wealth process X̃n,k follows the optimal trajectory, except that

a small portion is set aside and left in the riskless asset. The concavity of Ũ implies

that

1

k
Ũ(x0) +

k − 1

k
E
[
Ũ
(
X̃n
T

)]
(2.16)

≤ E
[
Ũ
(
X̃n,k
T

)]
≤ E

[
Ũ
(
X̃n
T

)]
.

Since Ṽ -compactness implies that the collection
{
Ũ
(
X̃n
T

)
: n ∈ N

}
is bounded in

L1, the uniform approximation property is established in (2.16). Next, each wealth

process X̃n is strictly positive, and therefore X̃n,k > 1
k
. Consequently

sup
0≤t≤T,n∈N

Ũ−
(
X̃n,k
t

)
< Ũ−

(
1

k

)
.

II.6.2 Economic interpretation of Assumption II.3

Consider a generic market with dynamics S = M +
∫
λd〈M〉 and associated

minimal martingale measure Z = E(−λ·M). In this market, consider the opportunity

process Lexpt , introduced in [40], and used in [41]. It is the utility value process

normalized by the optimal wealth process, and it exists as a consequence of the

homogeneity of power and exponential utilities, and their associated optimal wealth

processes. In the notation of [40], the opportunity process Lexpt satisfies

Vt(θ) = exp(−Gt(θ))L
exp
t ,
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where Vt(θ) represents the indirect utility arising from following the trading strategy

θ up to time t, and Gt(θ) is the wealth resulting from trading according to θ up to

time t. As the name suggests, Lexpt describes how much utility can be attained per

unit of wealth. Then equation (6.6) of [40] establishes a relationship between Lexp

and Ẑ:

(2.17) − log(Lexpt ) = E

[
V

(
ẐT

Ẑt

)
|Ft

]
.

Frequently in this chapter, we have concerned ourselves with the size of the right

hand side of (2.17): specifically, the bmo hypothesis has been used to establish a

uniform upper bound on this term over t. This implies that the value processes Lexpt

are uniformly bounded away from zero. In economic terms, this puts a constraint on

how attractive the investment opportunities can be in our sequence of markets. If

the opportunity process is close to zero, this means that an optimal investing agent

is relatively unconcerned with having very negative wealth, in that Lexpt counteracts

the size of exp(−Gt(θ)) (note that we wish to maximize Vt(θ), which is negative).

Note, however, that in (2.17), what matters is the RLLogL constant KLLogL(Ẑ)

for the optimal dual variable Ẑ, while our regularity Assumption II.3 involves the

RLLogL constant KLLogL(Z) for Z, the minimal martingale measure. By Lemma

II.14, we know that KLLogL(Ẑ) ≤ KLLogL(Z). More interesting is the claim that

the sizes of KLLogL(Ẑ) in fact control the sizes of KLLogL(Z), a result which we will

establish in Proposition II.30 below. Thus, the RLLogL constants bind the sizes of

the minimal entropy martingale and minimal martingale in a substantive way. In

general, the dual object we are interested in is the minimal entropy martingale, while

the dual object which we can describe most explicitly is the minimal martingale. The

claim above, however, implies that the ostensibly more restrictive act of placing a

regularity assumption on the minimal martingales is essentially equivalent to placing
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one on the minimal entropy martingales, both implying control over the size of the

opportunity process.

Proposition II.30. Let Sn, n ≥ 1, describe a sequence of markets, with minimal

martingales Zn and minimal entropy martingales Ẑn. Then

sup
n

KLLogL(Zn) <∞ if and only if sup
n

KLLogL(Ẑn) <∞.

Proof. The “⇒” direction is trivial, given Lemma II.14. We therefore address the

“⇐” condition. Write Ẑn = E(R̂n) = E(−λn ·M+L̂n), where L̂n is a local martingale

orthogonal to M . Thus, 〈R̂n〉 = 〈−λ ·M〉+ 〈L̂n〉. As a consequence,

|| − λ ·M ||bmo2 ≤ ||R̂n||bmo2 .

According to the proof of Lemma II.9, found in Propositions 5 and 6 of [21],

there exists an increasing function f : R+ → R+ such that for a continuous martin-

gale M , ||M ||bmo2 ≤ x implies that KLLogL(E(M)) ≤ f(x). Therefore, for each n,

KLLogL(Zn) ≤ f(||λn ·M ||bmo2) ≤ f(||R̂n||bmo2). Taking suprema over n, we have

sup
n

KLLogL(Zn) ≤ sup
n

f(||R̂n||bmo2) , R∗ <∞,

with the finite constant R∗ existing by hypothesis.

II.6.3 On Assumption II.2

Here, we illustrate the necessity of the V -compactness hypothesis with a few

examples.

Lemma II.31. Suppose that Zn
T → Z∞T in probability and that {Zn

T : n ∈ N ∪ {∞}}

is V -compact. Additionally, suppose that Z∞T = Ẑ∞T , i.e. the terminal values of

the minimal martingale measure and minimal entropy martingale measure coincide.

Then lim
n→∞

vn(y) = v∞(y). Hence, lim
n→∞

un(x) = u∞(x).
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Proof. Thanks to Lemma II.27, it suffices to show that lim sup
n→∞

vn(y) ≤ v∞(y). By

hypothesis, E[V (yZn
T )]→ E[V (yZ∞T )] = v∞(y) as n→∞. But vn(y) ≤ E[V (yZn

T )].

Therefore, lim sup
n→∞

vn(y) ≤ lim
n→∞

E[V (yZn
T )] = v∞(y). The last claim in the lemma,

that un → u∞, follows from the duality between vn and un, see Proposition 3.9 of

[36].

Corollary II.32. Suppose that Zn
T → Z∞T in probability and that the limiting market

is complete. Then lim
n→∞

un(x) = u∞(x) if and only if {Zn
T : n ∈ N} is V -compact.

Proof. For the “if” direction, note that in a complete market there is only one

equivalent martingale measure, and hence trivially the minimal martingale mea-

sure and minimal entropy martingale must agree. Therefore, by Lemma II.31,

lim
n→∞

un(x) = u∞(x). The “only if” direction is identical to the proof of Proposi-

tion 2.13 of [36].

Remark II.33. We also note that there are examples of incomplete markets where the

minimal martingale and minimal entropy martingale agree; in these cases it is also

clear that V -compactness is necessary and sufficient. This is the case in a market

when one tries to hedge an option written on a non-tradeable asset using a geometric

Brownian motion correlated with that asset; see e.g. Section 4 of [28].

Appendix A Continuity and Uniform Approximation

In this appendix, we address the first claim made in Remark II.24. Its proof

requires a bit of preparatory work.

Proposition II.34. un → u∞ if and only if u(n,k) → un as k →∞, uniformly over

n.

Proof. The “⇐ ” implication was the content of Theorem II.7. For the other direc-
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tion, let N∗ be the space {1, 2, . . . ,∞}, whose topology is the one point compactifi-

cation of N with the discrete topology; the open sets of N∗ are the finite subsets of

N and cofinite subsets containing ∞. This space is compact.

For each k ∈ N, the map n 7→ u(n,k)(0) is continuous by Lemma II.19. By

construction, u(n,k) ≤ u(n,k+1) for all n, k, and u(n,k) → un as k → ∞ for all n.

Therefore, supposing that n 7→ un(0) is continuous, we apply Dini’s Theorem to get

the desired result.

Lemma II.35. Suppose that un → u∞. Then X̂n
T → X̂∞T in probability. Further-

more, U(X̂n
T )→ U(X̂∞T ) in L1.

Proof. The proof of the first claim is identical to Lemma 3.10 of [36], which establishes

the result in the positive wealth case. The second claim follows from Scheffe’s Lemma.

Let d(·, ·) be a metric whose topology is associated with the one corresponding to

convergence in probability, i.e.

d(Xn, X)→ 0 if and only if P (|Xn −X| > ε)→ 0 for all ε > 0.

Recall that X̂(n,k) is the optimal wealth process in market n satisfying the con-

straint X̂(n,k) > −k.

Lemma II.36. Suppose that un → u∞. Then

lim
k→∞

sup
n

d
(
X̂

(n,k)
T , X̂n

T

)
= 0.

Proof. On p. 708, Step 2 of [50], it is established that, for fixed n, d
(
Ỹ

(n,k)
T , Ŷ n

T

)
→ 0

as k →∞; recall that Ŷ n is the minimal dual variable arising from utility maximiza-

tion with U : R → R in the nth market, and Ỹ (n,k) is the minimal dual variable
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arising from utility maximization in the nth market with Ũ (k) : R+ → R, as defined

in Section 4. For details, we refer the reader to [50]. A careful reading of this proof

yields the fact that the rate of this convergence, for each n, is governed by the rate

at which v(n,k) converges to vn. The hypothesis that un → u is equivalent, by Propo-

sition II.34, to the uniform convergence of u(n,k) to un as k → ∞, over all n. By a

standard duality argument, this is equivalent to v(n,k) converging to vn as k → ∞,

uniformly over all n. Applying a standard argument based on optimality and strict

convexity (see Lemma 3.6 of [34]), it therefore follows that

lim
k→∞

sup
n

d
(
Ỹ

(n,k)
T , Ŷ n

T

)
= 0.

By duality, we have U (k)′(X̂
(n,k)
T ) = u(n,k)′(0)Ỹ

(n,k)
T , and the lemma follows.

Corollary II.37. Suppose that un → u∞. Then

lim
k→∞

sup
n
||U(X̂

(n,k)
T )− U(X̂n

T )||L1 = 0.

Proof. The result follows by applying Lemma II.36 and Proposition II.34, along with

Scheffe’s Lemma.

Corollary II.38. Suppose un → u∞. Then the set {U(X̂
(n,k)
T ) : n, k} is uniformly

integrable.

Proof. The result follows by applying Lemma II.35 and Corollary II.37.

Lemma II.39. Suppose that un → u∞. Then

(2.18) lim
k→∞

sup
n

d
(

(X̂(n,k) − X̂n)∗, 0
)

= 0.

Proof. Suppose that (2.18) does not hold. Then, there exists a sequence (nm, km)m≥1

and α > 0 such that

P
(

(X̂(nm,km) − X̂nm)∗ > α
)
> α

38



for each m. Let τm = inf{t ≥ 0 : X̂
(nm,km)
t ≥ X̂nm

t + α} ∧ T , and let τ̃m = inf{t ≥

0 : X̂
(nm,km)
t ≤ X̂nm

t − α} ∧ T . It must be the case that either P (τm < T ) > α
2

or

P (τ̃m < T ) > α
2
. The treatment of each contingency is similar, and so without loss of

generality, we assume that P (τm < T ) > α
2
. Consider the concatenated wealth pro-

cess X̃nm
t , X̂

(nm,km)
t∧τm +(X̂nm

t∨τm−X̂nm
τm ). For any Q ∈Mn with finite entropy, X̂(nm,km)

and X̂nm are Q-martingales, since they are admissible wealth processes in the sense

of Definition II.4. Since the concatenation of martingales yields a martingale, X̃nm

is a Q-martingale for any Q ∈Mn with finite entropy, so this concatenated strategy

is still admissible. On the set {τm < T}, X̃nm
T ≥ α+ X̂nm

T , and on the set {τm < T}c,

X̃nm
T = X̂

(nm,km)
T . As in the proof of Theorem II.6, for any ε > 0, there is a compact

subset K = K(ε) of R such that

(2.19) max
{
P (X̂nm

T − α 6∈ K), P (X̂
(nm,km)
T − α 6∈ K)

}
< ε

for all m, and U ′(x) ≥ c = c(ε) for x ∈ K. We will fix some ε < α
2
.

Thus,

E
[
U
(
X̃nm
T

)]
≥ E

[
1{τm<T}U

(
X̂nm
T + α

)]
+ E

[
1{τm=T}U

(
X̂

(nm,km)
T

)]
≥ E

[
1{τm<T}U

′
(
X̂nm
T + α

)
· α
]

+ E
[
1{τm<T}U

(
X̂nm
T

)]
+ E

[
1{τm=T}U

(
X̂

(nm,km)
T

)]
.

By Corollary II.37, we have

E
[
1{τm<T}U

(
X̂nm
T

)]
+ E

[
1{τm=T}U

(
X̂

(nm,km)
T

)]
→ E

[
U
(
X̂nm
T

)]
,

as m→∞.

From (2.19), we know that U ′
(
X̂nm
T + α

)
≥ c up to a set of measure ε. We then

have

lim inf
m→∞

(
E
[
U
(
X̃nm
T

)]
− E

[
U
(
X̂nm
T

)])
≥
(α

2
− ε
)
cα > 0.

This, however, contradicts the optimality of X̂nm
T when m is sufficiently large.
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Now we can prove the main result of this section.

Proposition II.40. Suppose that un → u∞. Then for each i > 0, the set {(X̂(n,i))∗ :

n ∈ N} is bounded in probability.

Proof. It is true by construction that for each k,

{
inf

0≤t≤T
X̂

(n,k)
t : n ∈ N

}
is bounded

in probability, since X̂(n,k) > −k. To conclude, it only remains to apply Lemma

II.39.

Appendix B Uniformly Integrable Wealth Processes: A Brief Coun-
terexample

The next proposition is based directly from an example of [49], which can be

easily modified to fit the setting of this chapter. It addresses the second claim made

in Remark II.24.

Proposition II.41. There exists a single market for which the optimal wealth process

(X̂t)0≤t≤T does not have {exp(−X̂τ ) : τ ∈ T } uniformly integrable.

Proof. Consider the example introduced on p. 13 of [49]. In that market, it is shown

on p. 19 that the optimal wealth process X̂ satisfies lim
t↑T

E[− exp(−X̂t)] = −∞. This

clearly is not possible if {exp(−X̂τ ) : τ ∈ T } is uniformly integrable.
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CHAPTER III

Quickest Search over Brownian Channels

III.1 Introduction

In [35], the following problem is studied: consider countably many sequences

{Y i
k : k = 1, 2, . . .}, i = 1, . . .. For each i, {Y i

k : k = 1, 2, . . .} are random variables

which obey one of two hypotheses: under H0, the Y i
k are i.i.d. and Y i

k ∼ Q0, k =

1, 2, . . ., and under H1, the Y i
k are i.i.d. and Y i

k ∼ Q1, k = 1, 2, . . ., where Q0 and

Q1 are two distinct, but equivalent, distributions. At each discrete time k, one can

take one of three actions: stop sampling and choose a channel which is believed to

satisfy H1, continue observation of the current channel, or continue observation in a

new channel. Over all possible observation strategies and their associated stopping

times τ , our goal is to minimize P (Hsτ = H0) + cE[τ ], where here Hsτ is the true

condition of the channel observed at time τ , and c represents the cost of making one

observation.

The authors of [35] solve the problem above, in the sense that they find an optimal

observation strategy and stopping time, both of which can be computed as hitting

times of an underlying posterior process. In this same paper, the authors ask for a

solution to the corresponding problem in continuous time, and it is this task which

we take up. In the quickest search problem in continuous time, the basic object of
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study is a sequence of observable processes ξit = θit + Bi
t, i ∈ N, where each Bi is

an independent Brownian Motion and each θi is an independent Bernoulli random

variable. For some prior π̂ ∈ (0, 1) and each i, Pπ̂(θi = 1) = π̂, and Pπ̂(θi = 0) = 1−π̂.

We say that ξi satisfies hypothesis H0 if θi = 0 and ξi satisfies hypothesis H1 if θi = 1.

The general objective in the quickest search problem is to find, as quickly as possible,

a process ξi which satisfies H1. Observing any process for t units of time incurs a cost

of ct, where c > 0 is a constant. One may observe only one ξi at a time, but one can

instantaneously change between observed processes at any time. In discrete time,

the problem may be approximated by a finite horizon version solvable by backwards

induction, but this method is not available in continuous time. Instead, the problem

is solved by formulating it as a free boundary ordinary differential equation.

In the literature, there has been a large amount of research into quickest search

problems, although the majority of it has been in discrete time. Since the focus of

this chapter is a continuous time problem, we refer the reader to the references in [35]

for an excellent description of the discrete-time literature, as well as [58] for a multi-

channel quickest detection problem in discrete time. The continuous time literature is

sparser, but there are several papers addressing a problem similar to ours. The three

papers [59], [45], and [33] all consider the quickest search variant in which there are

a finite number of channels, and exactly one channel satisfies H1. For comparison,

in the problem we study, there are infinitely many channels and no knowledge of

how many channels satisfy H1. Also in continuous time, in [16], the authors study

a multi-channel problem where all channels are observed simultaneously: here the

goal is to find the common intensity rate of a collection of Poisson processes. In [10],

two Poisson channels are observed simultaneously to determine the one in which

disruption occurs first. Other problems involving multiple stopping times include

42



[14] and [13], although our problem is closer in spirit to a multiple switching problem

than one of multiple stopping.

The technical details of continuous time formulations are somewhat subtle, and

indeed, in the three papers closest to ours, [59], [45], and [33] , each purports to fix

an error in the previous one. For example, in [59], an optimal switching strategy

is described in the following way: consider N diffusions γnt , 1 ≤ n ≤ N , which are

supposed to represent the posterior for each channel, and take the strategy that when

γit is largest among the N processes, observe channel i. The inherent problem in such

a strategy is that when, for example, γit = γjt , the sign of γis−γjs will oscillate infinitely

many times when s is in a neighborhood of t. So, such a strategy would necessarily

switch between channels i and j infinitely many times in that neighborhood, and

this is physically unfeasible.

Indeed, even in the discrete time case, certain technical details have not been

completely developed. To rigorously describe the set of all observation strategies in

our problem, one must talk of different filtrations, since by choosing which channel to

observe at different times, we are modulating the exact information which we receive.

Therefore, one of the aims of this chapter is describe a continuous time quickest search

problem in a mathematically rigorous way. At the same time, however, we can obtain

a closed form analytic solution to our quickest search problem, both for the value

function and the optimal stopping time, and so from a practical perspective, our

results may be useful in the discrete time case if calculating the solution to that

problem is too expensive. The theory of extended weak convergence, in [1], provides

a possible way to translate insights from continuous time optimal stopping back to

discrete time.

The outline of this chapter is as follows: we will first describe how problems in
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continuous time sequential analysis can be formulated as optimal stopping problems,

using the building block of the one channel problem. Much of this material is derived

from parts of [43], Chapter 6, and [53], Chapter 4. We will then state an optimal

stopping/switching problem which models our quickest detection problem. Its basic

feature is that it involves many different filtrations, corresponding to the different

ways in which one may observe the processes. We show how this problem may be

reduced to an impulse control/stopping problem with a single filtration and a single

Brownian Motion, so that the tools of optimal stopping may be applied.

Let us describe this impulse control/stopping problem more closely, since here the

exact structure of the problem is evident. Consider a sequence of channels which all

have prior probability π̂ of satisfying H1. By observing one channel at the time, the

posterior process of precisely one of these channels will evolve in time according to

a stochastic differential equation, and all the rest will simply stay at π̂. The goal

of the agent is essentially to find some channel and some time when the respective

posterior process is very close to 1, ensuring that H1 is almost certainly satisfied.

Given this goal, the agent, when faced with a posterior which has dropped below

π̂, will want to immediately move on to the next channel. The agent must take a

finite time to react, so after some amount of time ε, or more realistically, when the

posterior process hits the level π̂ − ε, he switches channels, and the effect of this is

that the posterior process is reset to π̂. These are the impulse controls available to

the agent: at any time, he can move “his” posterior process back to π̂. Now, in the

limit, the agent ideally wants to react as quickly as possible, which means ε ↓ 0. In

this limit, we show that these impulsed processes converge in an appropriate sense

to a diffusion with reflecting boundary at π̂, so that the original problem may be

stated as an optimal stopping problem on this reflected process.
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Finally, we solve this optimal stopping problem using a standard verification the-

orem. Using the results derived thus far, we outline ε-optimal algorithms for the

quickest search problem, and provide some computations of optimal threshold levels

for different parameters.

III.2 From Sequential Analysis to Optimal Stopping

Let (Ω,F , Pπ̂) be a probability space supporting a Brownian Motion B and an

independent Bernoulli random variable θ, with Pπ̂(θ = 1) = π̂. We consider two

statistical hypotheses

H1 : θ = 1, and H0 : θ = 0,

which have respective prior probabilities π̂ and 1 − π̂. We let ξt = θt + Bt model

the observed process, with induced filtration Fξ =
(
F ξt
)
t≥0

. We will find it useful

to write Pπ̂ = π̂P1 + (1 − π̂)P0, where under P1, ξt is a Brownian Motion with unit

drift, and under P0 it is a standard Brownian Motion with zero drift.

Based on the continuous observation of ξ, our goal is to choose a sequential decision

rule (τ, d), where τ is a Fξ stopping time, and d is F ξτ -measurable and equal to one

or zero. Taking d = 1 models accepting H1 at time τ , and taking d = 0 models

accepting H0. The goal is to minimize the risk function

(3.1) V (π) , inf
(τ,d)

Eπ
[
τ + a1{d=0,θ=1} + b1{d=1,θ=0}

]
,

where a and b are used to weight the importance of each misidentification. Let

πt , Pπ̂(θ = 1|F ξt ) be the posterior process, which models our belief that H1 is

satisfied in the current channel, based on observations up to time t, F ξt . Given a

stopping time τ , the choice of whether to set d = 0 or d = 1 is completely described

by the value of πτ . For c = b
a+b

, if πτ ≤ c, d = 0, and d = 1 otherwise. Therefore,
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(3.1) may be restated as an optimal stopping problem on πt:

V (π) = inf
τ
Eπ [τ + aπτ ∧ b(1− πτ )] .

We have reduced the sequential analysis problem to one of optimal stopping, but

it remains to understand the time dynamics of the posterior process πt. To that end,

we introduce the odds process

Φt ,
dP1

dP0

∣∣∣
Fξt

(ω).

By an application of Bayes’ rule, Φt can be calculated, and is equal to exp
{
ξt − t

2

}
.

From [53], p. 181, the posterior process πt satisfies

πt = π̂
dP1

d[π̂P1 + (1− π̂)P0]

∣∣∣
Fξt

(ω);

using this equation, we can relate πt to Φt.

We have

πt =
π̂

1−π̂Φt

1 + π̂
1−π̂Φt

.

Now Φt clearly satisfies dΦt = Φtdξt by Itô’s Lemma. We have a formula for πt in

terms of Φt, so using Itô’s Lemma again, we derive

(3.2) dπt = −(πt)
2(1− πt)dt+ πt(1− πt)dξt

with initial condition π0 = π̂. Consider the process Wt , ξt −
∫ t

0
Eπ̂[θ|F ξs ]ds = ξt −∫ t

0
πsds. This process is immediately seen to be a martingale, and it has continuous

paths by construction. It is clear that 〈W 〉t = t, and so Lévy’s Theorem implies that

W is a Brownian Motion.

We may therefore rewrite (3.2) as

(3.3) dπt = πt(1− πt)dWt, π0 = π̂.

The optimal stopping problem on (3.3) will play a central role in our analysis.
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III.3 Reduction to a Problem with a Single Filtration

Let Ωi, i ∈ N, denote C[0,∞). We consider a sequence of independent Brownian

Motions W 1,W 2, . . ., defined canonically as the coordinate process on ΩN = Ω1 ×

Ω2×· · · : for (ω1, ω2, . . .) ∈ ΩN, W i
t (ω

1, ω2, . . .) = ωit. Let F be the filtration generated

by the canonical coordinate process. Let PN denote the product measure of Wiener

measures on ΩN.

We define, for each i, and for any random time φ independent of W i, the process

πi,φ satisfying

(3.4) dπi,φt = πi,φt (1− πi,φt )dW i
t , for t ≥ φ, πi,φφ = π̂.

The value πi,φt represents the posterior probability, based on observing the history

of Channel i from time φ up until time t, that Channel i satisfies H1. Although

φ here is arbitrary, it will always be, for our purposes, a switching time between

two channels. We will take these stochastic differential equations as our main object

of study. Now, given that the single channel sequential analysis problem involves

the optimal stopping of a single copy of the SDE (3.3), it stands to reason that a

multi channel problem should involve a sequence of the processes in (3.4) which are

concatenated together according to the way in which we observe each channel. We

describe this procedure now.

Let F(1) be the filtration on ΩN generated by W 1, which coincides with the filtra-

tion generated by π1 , π1,0. We let T (1) be the set of F(1)-stopping times.

Let S be the set of admissible switching controls, which will determine the set of

times when the currently observed channel is changed. Elements of S will consist

of sequences of increasing random times {φ1, φ2, . . .} with φ1 = 0. The time φi,

i ≥ 2, may be interpreted as the time when observation of Channel i− 1 stops and
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observation of Channel i begins. The main property that each φi should have is

that it should be measurable with respect to the information gathered before it: our

decision to switch should be based on what we have seen thus far. In order to make

this precise, we will define elements of S inductively: given the first n switching

times φ1, φ2, . . . , φn, we will define an allowed (n + 1)st switching time. First, the

base case. We let φ1 = 0.

The first possible switching time φ2 is any strictly positive F(1)-stopping time. So,

given φ2, we define the process π(2),φ2 as follows:

π
(2),φ2

t = π1
t 1{t<φ2} + π2,φ2

t 1{t≥φ2}.

The process π(2),φ2 generates a filtration F(2),φ2 . We let T (2),φ2 denote the set of

F(2),φ2-stopping times.

Now, we define what the switching time φ3 may look like, given that φ2 has already

been chosen. Such a switching time is any φ3 ∈ T (2),φ2 such that φ3 > φ2. Given φ2

and φ3, we define the process π(3),φ2,φ3 as follows:

π
(3),φ2,φ3

t = π
(2),φ2

t 1{t<φ3} + π3,φ3
t 1{t≥φ3}.

The process π(3),φ2,φ3 generates a filtration F(3),φ2,φ3 , and T (3),φ2,φ3 denotes the

set of F(3),φ2,φ3-stopping times. Proceeding in this way, we define, for each n ∈

N, π(n),φ2,...,φn ,F(n),φ2,...,φn , and T (n),φ2,...,φn . These are, respectively, the posterior

process, filtration, and stopping times which result from switching channels at times

φ2, φ3, . . . , φn.

Definition III.1. Let Φ = {φ1, φ2, . . .} be a sequence of random times such that

φi > φi−1 on the set {φi−1 < ∞}, and such that limi φi = ∞. We say that Φ is an

admissible switching control, writing Φ ∈ S, if φ1 = 0, φ2 ∈ T (1), and for n ≥ 2,

φn ∈ T (n−1),φ2,...,φn−1 .
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Each Φ = {φ1, φ2, . . .} ∈ S induces an observed posterior process πΦ, defined as

follows:

(3.5) πΦ
t = π

(n),φ2,...,φn
t on the set {φn ≤ t < φn+1}.

Intuitively, in comparison with (3.4), πΦ
t represents the posterior probability that

at time t, the channel currently being observed under the observation strategy Φ

satisfies hypothesis H1. If the same channel was always observed, πΦ would behave

exactly like π1,φ=0. As it is, when the channel is switched, the effect on the posterior

is a sudden jump back to the original level π̂.

The process πΦ induces the filtration FΦ along with T Φ, the set of FΦ-stopping

times. We define the value function as follows:

Vπ̂ , inf
Φ∈S

V Φ
π̂

, inf
Φ∈S

inf
τ∈T Φ

E[cτ + (1− πΦ
τ )].

(3.6)

Note that in the value function (3.6), there is only a (1 − πt) term, instead of

πt ∧ (1− πt). This reflects the fact that instead of deciding whether a single channel

satisfies H1 or H0, one is looking only for a channel which satisfies H1. Now, the Φ

also induces a process WΦ, which is defined as follows on ΩN:

(3.7) WΦ
t (ω1, ω2, . . .) , ω1

t on the set {t < φ2},

and for n ≥ 2

(3.8) WΦ
t (ω1, ω2, . . .) , WΦ

φn−(ω1, ω2, . . .) + (ωnt −ωnφn) on the set {φn ≤ t < φn+1}.

We prove the following standard fact:

Lemma III.2. For each Φ ∈ S, WΦ is a Brownian Motion.
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Proof. We first prove that WΦ is a martingale. Note that WΦ
t can be written as

WΦ
t =

∞∑
i=1

(
W i
t∧φi+1

−W i
t∧φi

)
.

Additionally,

E[(WΦ
t )2] =

∞∑
i=1

E

[(
W i
t∧φi+1

−W i
t∧φi

)2
]

=
∞∑
i=1

(E[t ∧ φi+1]− E[t ∧ φi])

= t,

since limi φi =∞. Therefore, by the Dominated Convergence Theorem,

E[WΦ
t |Fs] = E

[
∞∑
i=1

(
W i
t∧φi+1

−W i
t∧φi

)
|Fs

]

=
∞∑
i=1

(
W i
s∧φi+1

−W i
s∧φi

)
= WΦ

s ,

the second inequality following from Optional Sampling and the fact that each W i

is a martingale. Since 〈W i〉t = t for all t, a.s., it follows that 〈WΦ〉t = t for all t,

a.s. It is also clear by construction that WΦ has continuous paths. Thus by Lévy’s

characterization of Brownian Motion, WΦ is a Brownian Motion for each Φ ∈ S.

The process πΦ has continuous paths, with the exception of jump times at φ2, φ3, . . ..

Lemma III.3. πΦ
t = π̂ +

∫ t
0
πΦ
s (1− πΦ

s )dWΦ
s +

∑∞
i=1(π̂ − πΦ

φi−)1{t≥φi}

Proof. By (3.5) and (3.4), on {φn ≤ t < φn+1}, πΦ
t = πΦ

φn
+
∫ t
φn
πΦ
s

(
1− πΦ

s

)
dW n

s .

Furthermore, on {φn ≤ t < φn+1}, WΦ
t − WΦ

φn
= W n

t − W n
φn

by construction of

WΦ. Using the locality of stochastic integration (see [46], the Corollary on p. 62),

this implies that πΦ
t = πΦ

φn
+
∫ t
φn
πΦ
s (1 − πΦ

s )dWΦ
s . In particular, πΦ

φn+1− = πΦ
φn

+
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∫ φn+1

φn
πΦ
s (1− πΦ

s )dWΦ
s . Finally, ∆πΦ

φn
, πΦ

φn
− πΦ

φn− = π̂− πΦ
φn−. Then, on {φn ≤ t <

φn+1},

πΦ
t = πΦ

φn +

∫ t

φn

πΦ
s (1− πΦ

s )dWΦ
s

= πΦ
φn− + ∆πΦ

φn +

∫ t

φn

πΦ
s (1− πΦ

s )dWΦ
s

= πΦ
φn−1

+

∫ φn

φn−1

πΦ
s (1− πΦ

s )dWΦ
s + πΦ

φn − π
Φ
φn− +

∫ t

φn

πΦ
s (1− πΦ

s )dWΦ
s

= πΦ
φn−1

+

∫ t

φn−1

πΦ
s (1− πΦ

s )dWΦ
s + π̂ − πΦ

φn−

Now, if we repeated apply this procedure, reducing the index n by one each time,

we obtain, on {φn ≤ t < φn+1},

πΦ
0 +

∫ t

0

πΦ
s (1− πΦ

s )dWΦ
s +

n∑
i=1

(π̂− πΦ
φi−) = π̂+

∫ t

0

πΦ
s (1− πΦ

s )dWΦ
s +

n∑
i=1

(π̂− πΦ
φi−).

Let Ω be another copy of the canonical space C[0,∞) with coordinate process

W t and filtration F generated by W . Let P denote Wiener measure on this space.

Also, let T denote the set of F-stopping times. We would like to reduce the original

problem Vπ̂ to one where everything uses the same Brownian Motion (W ) and same

filtration (F).

Lemma III.4. Let Φ ∈ S. For any FΦ-stopping time τ , there exists a τ ∈ T

such that WΦ
·∧τ and W ·∧τ are identically distributed as processes. Conversely, for any

τ ∈ T , there exists a FΦ-stopping time τ such that WΦ
·∧τ and W ·∧τ are identically

distributed as processes.

Proof. Let Φ ∈ S, and let τ ∈ T Φ. We have a mapping WΦ : ΩN → Ω which is

defined according to (3.7) and (3.8). Since τ ∈ T Φ, it is in particular measurable

with respect to the filtration FΦ generated by WΦ on ΩN. This implies that for any

ω ∈ Ω, τ is constant on (WΦ)−1(ω).
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Thus, we define τ : Ω → R as follows. For ω ∈ Ω, choose any ω ∈ (WΦ)−1(ω),

and set τ(ω) , τ(ω). From the discussion in the above paragraph, this definition is

well-defined.

We claim that τ is an F-stopping time. For t ∈ R, we have

{ω : τ(ω) ≤ t} = {ω : τ(ω) ≤ t for ω ∈ (WΦ)−1(ω)}

= WΦ ({ω : τ(ω) ≤ t}) .

Since τ ∈ T Φ, the set {ω : τ(ω) ≤ t} ∈ FΦ
t . By construction, the mapping WΦ :

ΩN → Ω takes FΦ
t -measurable sets into F t-measurable sets. Therefore, τ ∈ T .

Next, we claim that WΦ
·∧τ and W ·∧τ are distributed identically as processes. As

before, this is essentially a tautology. Let A ∈ F∞. We have

{ω : W ·∧τ(ω)(ω) ∈ A} = {ω : WΦ
·∧τ(ω)(ω) ∈ A for ω ∈ (WΦ)−1(ω)}

= WΦ
(
{ω : WΦ

·∧τ(ω)(ω) ∈ A}
)
.

Thus, P ({ω : W ·∧τ(ω) ∈ A}) = P
(
WΦ

(
{ω : WΦ

·∧τ(ω)(ω) ∈ A}
))

. Since WΦ is a

Brownian Motion, the measure PΦ which WΦ induces on Ω agrees with P . Thus,

P ({ω : W ·∧τ(ω) ∈ A}) = PΦ
(
WΦ

(
{ω : WΦ

·∧τ(ω)(ω) ∈ A}
))

= PN ({ω : WΦ
·∧τ(ω)(ω) ∈ A}

)
.

Thus, W ·∧τ and WΦ
·∧τ are identically distributed.

Conversely, suppose that τ is an F-stopping time. Define τ : ΩN → R by τ =

τ ◦WΦ. We claim that τ is a stopping time. Let t ∈ R. Then

{ω : τ(ω) ≤ t} = {ω : τ(WΦ(ω)) ≤ t}

= (WΦ)−1 ({ω : τ(ω) ≤ t}) .

Since τ is an F-stopping time, the set {ω : τ(ω) ≤ t} ∈ F t, and

(WΦ)−1 ({ω : τ(ω) ≤ t}) ∈ FΦ
t . So, τ ∈ T Φ.
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Now we claim that WΦ
·∧τ and W ·∧τ are identically distributed as processes. Let

A ∈ F∞.

{ω : WΦ
·∧τ(ω) ∈ A} = {ω : W ·∧τ(ω)(ω) ∈ A for ω such that WΦ(ω) = ω}

= (WΦ)−1
(
{ω : W ·∧τ(ω)(ω) ∈ A}

)
.

As before,

PN ({ω : WΦ
·∧τ(ω) ∈ A}

)
= PN ((WΦ)−1

(
{ω : W ·∧τ(ω)(ω) ∈ A}

))
= PΦ

(
{ω : W ·∧τ(ω)(ω) ∈ A}

)
= P

(
{ω : W ·∧τ(ω)(ω) ∈ A}

)
,

and so the processes are identically distributed.

Lemma III.5. For each Φ ∈ S, there exists a sequence of F-stopping times Φ =

{φ1 = 0, φ2, . . .} such that for

(3.9) πΦ
t , π̂ +

∫ t

0

πΦ
s (1− πΦ

s )dW s +
∞∑
i=1

(π̂ − πΦ
φi−

)1{t≥φi},

πΦ is identically distributed with πΦ.

Proof. Let NΦ be the simple point process on ΩN which jumps at the FΦ-stopping

times φ1, φ2, . . .. Let Φ = {φ1, φ2, . . .} be a sequence of F-stopping times whose

existence is guaranteed by Lemma III.4, and let N be the simple point process

on Ω which jumps at the F-stopping times φ1, φ2, . . .. According to Lemma III.4,

(WΦ, NΦ) and (W,N) are identically distributed as processes. Let f(x) = x(1− x)

and let g(x) = π̂ − x. Then πΦ and πΦ satisfy the SDE’s

dπΦ
t = f(πΦ

t )dWΦ
t + g(πΦ

t−)dNΦ
t ,

and

dπΦ
t = f(πΦ

t )dW t + g(πΦ
t−)dN t.
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Note that if πΦ starts inside the interval (0, 1), then it stays there for all time,

and similarly for πΦ. On the interval (0, 1), f(x) is bounded and Lipschitz, and the

same goes for g(x). By Theorem 9.1 of [27] (see p. 245− 6), the above SDE’s have

uniqueness in law. Consequently, πΦ and πΦ are identically distributed.

The converse is proven similarly using Lemma III.4.

Lemma III.6. Let Φ = {φ1, φ2, . . .} be a collection of F-stopping times which in-

crease to infinity, and let Φ induce πΦ as in (3.9). Then there exists Φ ∈ S such

that πΦ is identically distributed to πΦ.

Lemma III.7. We have

(3.10) Vπ̂ = inf
Φ∈S

inf
τ∈T

E[cτ + (1− πΦ
τ )],

where S is the set of all sequences Φ = {φ1, φ2, . . .} of F-stopping times which in-

crease to infinity.

Proof. Denote by V π̂ the right side of (3.10). Let Φ ∈ S, and consider the optimal

stopping problem inf
τ∈T Φ

E[cτ+(1−πΦ
τ )]. By Lemma III.5, the process πΦ

t is distributed

identically to πΦ. According to Lemma 2.3 of [39], the value function associated to the

optimal stopping of a process in its natural filtration depends only on that process’s

distribution. Therefore inf
τ∈T Φ

E[cτ + (1− πΦ
τ )] = inf

τ∈T
E[cτ + (1− πΦ

τ )] ≥ V π̂. Taking

the infimum over all Φ ∈ S, we obtain

Vπ̂ ≥ V π̂.

Now, let Φ ∈ S. By Lemma III.6, there exists Φ ∈ S such that πΦ is identically

distributed with πΦ. So, using the same reasoning as above and taking the infimum

over all Φ, we obtain

V π̂ ≥ Vπ̂.
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III.4 Working with the New Problem, and Reduction to an Optimal
Stopping Problem

From now on, we will drop the overline notation, and simply write S,Φ, πt,W,F, T ,

for, respectively, the set of allowed switching strategies, an arbitrary switching strat-

egy, the posterior process, the single Brownian Motion W , the filtration induced by

W , and the stopping times for that filtration.

Let π0 denote the posterior process when there is no switching. In other words,

π0 satisfies the SDE dπ0
t = π0

t (1 − π0
t )dWt along with π0 = π̂. We next define the

reflected process πr with boundary at π̂:

(3.11) dπrt = πrt (1− πrt )dWt + dAt,

where At is continuous, non-decreasing, flat off of πr = π̂, A0 = 0.

We also have an optimal stopping problem associated with πr:

(3.12) V r
π̂ , inf

τ∈T
E[cτ + (1− πrτ )]

Lemma III.8. V r
π̂ ≤ Vπ̂.

Proof. Let Φ = {φ1, φ2, . . .} ∈ S. Fix i; we will show that πrt ≥ πΦ
t on [φi, φi+1). By

construction, πΦ
φi

= π̂, and on the interval [φi, φi+1), the dynamics of πΦ are described

by the diffusion dπΦ
t = πΦ

t (1−πΦ
t )dWt. Let π0,φi be the un-switched diffusion starting

from π0,φi
φi

= π̂, so that π0,φi = πΦ on [φi, φi+1). Note that, by construction, πrφi ≥ π̂.

Then (3.11) and the comparison theorem for SDE’s (i.e. Theorem 54 p. 324 of [46])

imply that πr ≥ π0,φi on [φi, φi+1), and so πr ≥ πΦ on [φi, φi+1). It now follows that

πrt ≥ πΦ
t for all t, a.s. Consequently, for any τ ∈ T , E[(1 − πrτ )] ≤ E[(1 − πΦ

τ )],

implying that V r
π̂ ≤ Vπ̂.
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Following [48], p. 146, we give the Skorokhod representation of πr. Given a

process Y and π̂ ∈ R, the Skorokhod representation consists in finding a process X

and an increasing process A such that X = Y +A, X ≥ π̂, and
∫∞

0
(Xs− π̂)dAs = 0,

i.e. A only increases when X = π̂.

Let σ(x) = (1− x)x, and let Y solve the SDE

Yt , π̂ +

∫ t

0

σ(Ys + As(Y ))dWs,(3.13)

At(Y ) , sup
0≤s≤t

{
(Ys − π̂)−

}
.(3.14)

As in [48], the SDE (3.13)-(3.14) does in fact have a unique strong solution. Then,

if we set Xt , Yt + At(Y ), it is clear that πr = X.

Let ε > 0. We outline a parametrized family of switching strategies (impulse

controls). Let Φε denote the strategy that switches channels whenever the observed

posterior process hits the level π̂−ε. Φε induces the process πε, starting from πε0 = π̂,

which diffuses according to dπεt = πεt(1− πεt)dWt on (π̂ − ε, 1). When it reaches the

level π̂ − ε, it is instantaneously brought back to π̂ (i.e. switched). We wish to give

a Skorokhod type representation of πε. Consider the SDE

(3.15) Y ε
t , π̂ +

∫ t

0

σ(Y ε
s + Aεs(Y

ε))dWs,

where

(3.16) Aεs(Y
ε) , ε

⌊
1

ε
sup

0≤s≤t

{
(Y ε

s − π̂)−
}⌋

.

Note that Aεs(·) is not even continuous with respect to the uniform norm on continu-

ous paths. Therefore, the standard theory does not imply that the SDE (3.15)-(3.16)

has a strong solution. We can, however, show that a solution exists by a piecewise

construction.
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Lemma III.9. For each ε > 0, the SDE (3.15)-(3.16) has a strong solution. More-

over, for Xε
t = Y ε

t + Aεt(Y
ε), Xε = πε.

Proof. Consider the SDE

(3.17) Y 1
t = Y ε,1

t , π̂ +

∫ t

0

σ(Y ε,1
s )dWs.

As σ(·) is Lipschitz and bounded on the interval (0, 1), it is known (see Theorem

11.5 of [48]) that (3.17) has a strong solution. Let τ ε,0 , 0, and τ ε,1 , inf{t ≥ 0 :

Y ε,1
t = π̂ − ε}. Note that on the random time interval [0, τ ε,1), Y ε,1 solves the SDE

(3.15). For t ≥ τ ε,1, consider next the SDE

(3.18) Y ε,2
t , Y ε,1

τε,1 +

∫ t

τε,1
σ(Y ε,2

s + ε)dWs.

As before, (3.18) has a strong solution. Let τ ε,2 , inf{t ≥ τ ε,1 : Y ε,2
t = π̂− 2ε}. Then

on [τ ε,1, τ ε,2), Y ε,2 solves (3.15). Arguing inductively, we define Y ε,n
t , for t ≥ τ ε,n−1,

by

(3.19) Y ε,n
t , Y ε,n−1

τε,n−1 +

∫ t

τε,n−1

σ(Y ε,n
s + (n− 1)ε)dWs,

which has a strong solution as before, and the stopping time τ ε,n , inf{t ≥ τ ε,n−1 :

Y ε,n = π̂ − nε}. Defining the process Y ε by Y ε
t , Y ε,n

t for t ∈ [τ ε,n−1, τ ε,n), n ≥ 1, it

is apparent that Y ε solves the SDE (3.15).

For the last claim, that Xε = πε, note that when Aε(Y ε) is constant, dXε
t =

σ(Y ε
t + Aεt(Y

ε))dWt = σ(Xε
t )dWt. The times when Aε(Y ε) jumps (by ε) correspond

to the impulses from π̂ − ε to π̂.

Lemma III.10. For any t, ε > 0, we have E [(Y − Y ε)∗2t ] ≤ 8te32tε2. In particular,

for any t ≥ 0, (Y − Y ε)∗t → 0 in L2 as ε→ 0.
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Proof. Let K be the Lipschitz constant of σ(·) on (0, 1). Write

E(Y ε − Y )∗2t

= E

[(
π̂ +

∫ t

0

σ(Y εs +Aεs(Y
ε))dWs − π̂ −

∫ t

0

σ(Ys +As(Y ))dWs

)∗2]

= E

[(
σ(Y ε· +Aε· (Y

ε)) ·W − σ(Y ε· +A·(Y
ε)) ·W + σ(Y ε· +A·(Y

ε)) ·W − σ(Y· +A·(Y )) ·W
)∗2
t

]
≤ E

[([
σ(Y ε· +Aε· (Y

ε)) ·W − σ(Y ε· +A·(Y
ε)) ·W

]∗
t

+
[
σ(Y ε· +A·(Y

ε)) ·W − σ(Y· +A·(Y )) ·W
]∗
t

)2
]

≤ 2E
[[

(σ(Y ε· +Aε· (Y
ε))− σ(Y ε· +A·(Y

ε))) ·W
]∗2
t

]
+2E

[[
(σ(Y ε· +A·(Y

ε))− σ(Y· +A·(Y ))) ·W
]∗2
t

]
, (1) + (2),

with the second inequality above following from (a + b)2 ≤ 2a2 + 2b2. Next, using

the Burkholder-Davis-Gundy Inequality for the first inequality below and the K-

Lipschitzness of σ(·) for the second,

(1) ≤ 2C2E

∫ t

0

(σ(Y ε
s + Aεs(Y

ε))− σ(Y ε
s + As(Y

ε)))2 ds

≤ 2C2K
2E

∫ t

0

(Y ε
s + Aεs(Y

ε)− Y ε
s − As(Y ε))2ds

≤ 2C2K
2ε2t;

the last inequality follows from the fact that for a given path ω, sup
0≤s≤t

|As(ω) −

Aεs(ω)| ≤ ε. The constant C2 is a universal constant arising from the Burkholder-

Davis-Gundy Inequality. The L2 version used above actually can be proven using

Doob’s L2-inequality for martingales, and from this the explicit formula C2 = 4 can

be derived. For details, see p. 14 of [30].

Next, we note that A·(·) is Lipschitz continuous with respect to the uniform norm

on continuous paths, with Lipschitz constant 1. Applying this fact for the third

inequality below, Burkholder-Davis-Gundy Inequality for the first inequality, the K-

Lipschitz continuity of σ(·) for the second inequality, and Fubini’s Theorem in the
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last inequality, we obtain

(2) ≤ 2C2E

∫ t

0

(σ(Y ε
s + As(Y

ε))− σ(Ys + As(Y )))2 ds

≤ 2C2K
2E

∫ t

0

(Y ε
s + As(Y

ε)− Ys + As(Y ))2ds

≤ 8C2K
2E

∫ t

0

(Y ε
s − Ys)2ds

≤ 8C2K
2

∫ t

0

E(Y ε − Y )∗2s ds.

For each ε > 0, define f ε : R+ → R+ by f ε(s) = E(Y ε − Y )∗2s . According to the

above reasoning, f ε(t) ≤ 2C2K
2tε2 + 8C2K

2
∫ t

0
f ε(s)ds. By Gronwall’s Lemma, it

follows then that f ε(t) ≤ 2C2K
2tε2e8C2K2t. Since all processes in question live in the

interval (0, 1), we may assume that K = 1. Therefore, f ε(t) ≤ 8te32tε2. In particular,

for fixed t, (Y ε − Y )∗t → 0 in L2 as ε→ 0.

Corollary III.11. For any t, ε ≥ 0, E [(πε − πr)∗2t ] ≤ 16te32tε2 + ε. In particular, as

ε→ 0, (πε − πr)∗t → 0 in L2.

Proof. Write πrt = Yt + At(Y ) and πεt = Y ε
t + Aεt(Y

ε). We have shown in Lemma

III.10 that (Y ε − Y )∗t → 0 in L2 as ε → 0. Therefore, it suffices to show that

(A·(Y )− Aε· (Y ε))∗t → 0 in L2 as ε→ 0. So, for any s ≥ 0,

|As(Y )− Aεs(Y ε)| ≤ |As(Y )− As(Y ε)|+ |As(Y ε)− Aεs(Y ε)|

≤ (Y − Y ε)∗s + ε,

where we have used the Lipschitz continuity of As(·) with respect to the uniform

norm. Therefore, (A·(Y )−Aε· (Y ε))∗t ≤ (Y − Y ε)∗t + ε, which converges to 0 in L2 as

ε→ 0. The quantitative estimate is also clear.

Lemma III.12. V r
π̂ = Vπ̂

Proof. In light of Lemma III.8, it suffices to show that V r
π̂ ≥ Vπ̂. Without loss

of generality, we assume that V r
π̂ < ∞; otherwise, there is nothing to show. Let
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{τn : n ∈ N} be a sequence of stopping times such that E[cτn + (1− πrτn)] ↓ V r
π̂ . Fix

δ > 0, and choose n sufficiently large so that E
[
cτn + (1− πrτn)

]
< V r

π̂ + δ.

Next, we note that the processes πr and πε are all bounded, so that in particular,

they are uniformly of Class D. Therefore, for a suitably large t, it is the case that

max
{
E
[
πrτn1{τn>t}

]
, E
[
πετn1{τn>t}

]}
< δ for each ε > 0. By Corollary III.11, for ε

sufficiently small,
∣∣E [πrτn1{τn≤t}

]
− E

[
πετn1{τn≤t}

]∣∣ < δ. Thus,

∣∣V r
π̂ − E

[
cτn + (1− πετn)

]∣∣
≤
∣∣V r
π̂ − E

[
cτn + (1− πrτn)

]∣∣+
∣∣E [cτn + (1− πrτn)

]
− E

[
cτn + (1− πετn)

]∣∣
=
∣∣V r
π̂ − E

[
cτn + (1− πrτn)

]∣∣+
∣∣E [πrτn]− E [πετn]∣∣

< δ +
∣∣E [πrτn1{τn>t}

]
− E

[
πετn1{τn>t}

]∣∣+
∣∣E [πrτn1{τn≤t}

]
− E

[
πετn1{τn≤t}

]∣∣
< δ + 2δ + δ

= 4δ.

Since Vπ̂ ≤ V Φε

π̂ ≤ E
[
cτn + (1− πετn)

]
, it now follows that Vπ̂ ≤ V r

π̂ .

III.5 Optimal Stopping of the Reflected Diffusion

We wish to relate the optimal stopping problem V r
π̂ = inf

τ∈T
E[cτ + (1− πrτ )] to an

ODE with a free boundary. First, we look for f : [π̂, 1] → R and π∗ ∈ (π̂, 1) that

satisfy:

(3.20)
1

2
[x(1− x)]2

d2f

dx2
= −c, π̂ < x < π∗,

(3.21) f(x) = 1− x, π∗ ≤ x ≤ 1,

(3.22) f ′(π̂) = 0, f ′(π∗) = −1.

Notice in particular that we require f to be C1 at π̂ and π∗; π∗ must be chosen

to ensure that this happens.
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Lemma III.13. The problem (3.20),(3.21),(3.22) has a unique solution, for precisely

one π∗ ∈ [π̂, 1).

Proof. One may verify directly that the function ΨA,B(x) , 2c(1−2x) log x
1−x +Ax+

B , Ψ(x) + Ax + B, for constants A and B, is the general solution of (3.20). We

will show that the boundary conditions are satisfied for precisely one π∗, A, and B.

The condition f ′(π̂) = 0 forces A = −Ψ′(π̂) = −2c

[
2π̂−2(π̂−1)π̂ log( π̂

1−π̂ )−1

(π̂−1)π̂

]
. Since

Ψ(x) + Ax is strictly concave and Ψ′(x) + A is continuous on [π̂, 1), Ψ′(π̂) + A = 0,

and lim
x↑1

Ψ(x) +Ax = −∞ (so lim
x↑1

Ψ′(x) +A = −∞), it follows that there is a unique

π∗ ∈ (π̂, 1) such that Ψ′(π∗) + A = −1. Define B so that B satisfies the equality

1 − π∗ = ΨA,B(π∗) = Ψ(π∗) + Aπ∗ + B. Taking f(x) = ΨA,B(x) for x ∈ [π̂, π∗) and

f(x) = 1− x for x ∈ [π∗, 1] yields the unique solution to (3.20),(3.21),(3.22).

Our candidate for the value function is therefore

(3.23) f(x) ,


2c(1− 2x) log x

1−x + Ax+B if π̂ ≤ x ≤ π∗

1− x if π∗ ≤ x ≤ 1

with

A = −2c

[
2π̂ − 2(π̂ − 1)π̂ log

(
π̂

1−π̂

)
− 1

(π̂ − 1)π̂

]
,

(3.24) π∗ satisfying 2c

[
2π∗ − 2(π∗ − 1)π∗ log

(
π∗

1−π∗
)
− 1

(π∗ − 1)π∗

]
+ A = −1,

B satisfying 1− π∗ = 2c(1− 2π∗) + Aπ∗ +B.

Remark III.14. It is interesting to consider the dependence of π∗ on π̂. Note that

A(π̂) , −Ψ′(π̂) is increasing as a function of π̂, since Ψ(x) is concave. Rewriting

(3.24) as

(3.25) Find π∗(π̂) such that Ψ′(π∗(π̂)) = −1− A(π̂),
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we see that the left hand side of (3.25) must be decreasing in π̂, and this corresponds

to π∗(π̂) increasing in π̂. This reflects the fact that, as the prior probability of

success in each channel increases, we should become more selective in accepting H1

for a given channel.

For each x ∈ [π̂, 1], we set V r
π̂ (x) = inf

τ∈T
Ex [cτ + (1− πrτ )], where the expectation

Ex[·] denotes expectation under the probability Px, i.e. Px(π
r
0 = x) = 1. We now

claim that f(x) is equal to the value function V r
π̂ (x). Consider the set D , {f ∈

C2
b ([π̂, 1)) : f ′(π̂) = 0}. The infinitesimal generator Lr of πr satisfies, for f ∈ D,

Lrf(x) = 1
2
x2(1− x)f ′′(x).

Lemma III.15. For f(x) as above, V r
π̂ (x) = f(x).

Proof. We wish to apply a verification theorem for optimal stopping problems, The-

orem 10.4.1 of [42], p. 225. We must check that f(x) defined by (3.20),(3.21),(3.22)

satisfies the nine hypotheses of that theorem. Note that several inequalities are re-

versed because our problem involves a minimization over all stopping times. Let

G = [π̂, 1], and let D = {x ∈ G : f(x) < 1− x}.

(i) f ∈ C1(G): This is true by construction.

(ii) f(x) ≤ 1 − x on G: At π∗, f(π∗) = 1 − π∗. Since f(x) is concave down,

f(x) ≤ 1− x for x ∈ [π̂, π∗], and by construction f(x) = 1− x on [π∗, 1].

(iii) Ex
[∫∞

0
1{π∗}(π

r
s)ds

]
= 0: This follows from the fact that the speed measure

of πrs is mr(dx) , dx
x2(1−x)2 . Now, i.e. Proposition 3.10 of [47], p. 307 may be

applied.

(iv) ∂D is Lipschitz: This is trivial in the one-dimensional problem here.

(v) f ∈ C2(G\{π∗}) and the second order derivatives of f are bounded near π∗: For
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x ∈ (π̂, π∗), f ′′(x) = −2c
x2(1−x)2 , which is bounded on (π̂, π∗), and for x ∈ (π∗, 1),

f ′′(x) = 0.

(vi) Lrf + c ≥ 0 on G \D: For x ∈ G \D, Lrf + c = 0 + c ≥ 0.

(vii) Lrf + c = 0 on D: For x ∈ D, Lrf + c = 1
2
x2(1− x)2

(
−2c

x2(1−x)2

)
+ c = 0.

(viii) τD , inf{t > 0 : πrt 6∈ D} < ∞, Px-a.s. for each x ∈ G: Using the same

argument as in (iii), Proposition 3.10 of [47] implies that Ex[τD] <∞ for each

x ∈ G.

(ix) The family {πrτ : τ ≤ τD, τ ∈ T } is Px-uniformly integrable for any x ∈ G: This

is immediate, using the fact that πr is bounded.

Having checked all the hypotheses of the verification theorem, we deduce that

f(x) = V r
π̂ (x).

III.6 A Rough Algorithm for Quickest Search

Using the methods of the previous sections, we can describe near optimal algo-

rithms for quickly finding a channel which satisfies hypothesis H1. We outline a

procedure below for finding an ε-optimal strategy.

(1) Fix ε > 0.

(2) For given values of c, π̂, calculate the threshold π∗ = π∗(c, π̂) via Lemma III.10.

Let τ , inf{t ≥ 0 : πrt = π∗} be defined for any version of πr.

(3) Choose t > 0 sufficiently large so that P (τ > t) < ε
4
. This can be done, for

example, by calculating E[τ ] via the speed measure of πr.

(4) Choose ε2 sufficiently small so that 16te32tε22 + ε2 <
ε
2
.
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(5) Adopt the switching strategy Φε2 , in which the observed channel is switched

whenever the posterior level hits π̂ − ε2.

(6) The switching strategy Φε2 induces the observed Brownian Motion W = WΦε2 .

Using W , construct the solution to the SDE Yt = π̂+
∫ t

0
σ(Ys+As(Y ))dWs, and

set Xt = Yt + At(Y ). Let τ ∗ = inf{t ≥ 0 : Xt = π∗}.

(7) At time τ ∗, accept hypothesis H1 for the channel which is currently being ob-

served.

Applying the reasoning of Lemmas III.10 and III.12, we may deduce that this obser-

vation/stopping strategy will be ε-optimal.

III.7 Numerical Results

In this section, we illustrate our previous results by computing the optimal thresh-

old level for various levels of the observation cost c and prior π̂. The data below,

which can be found in Appendix A, is directly calculated from the value function

established in Section III.5. We first plot the threshold levels against the observation

cost c, when the prior π̂ is fixed. As indicated by Tables 3.1 and 3.2 below, for fixed

π̂, π∗(c) decreases with c. This is not surprising, because the higher the running cost

for observations, the lower one’s standards will be for accepting the hypothesis that

a channel satisfies H1.

Next, we plot the threshold levels against the prior π̂, when the observation cost

c is fixed. As indicated by Tables 3.3 and 3.4 below, for fixed c, π∗(π̂) increases with

π̂. This fact was proven analytically in Remark III.14.
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Appendix A Tables of Data

Table 3.1: Optimal thresholds π∗(c), for π̂ = .5.

c π∗(c) c π∗(c)
.0025 .995 .05 .865
.005 .989 .06 .840
.01 .977 .07 .815
.02 .950 .08 .793
.03 .922 .09 .773
.04 .893 .1 .755

Table 3.2: Optimal thresholds π∗(c), for π̂ = .75.

c π∗(c) c π∗(c)
.0025 .995 .05 .911
.005 .990 .06 .899
.01 .979 .07 .889
.02 .959 .08 .879
.03 .941 .09 .871
.04 .925 .1 .864

Table 3.3: Optimal thresholds π∗(π̂), for c = .01

π̂ π∗(π̂) π̂ π∗(π̂)
.025 .704 .5 .977
.05 .951 .6 .978
.1 .968 .7 .979
.2 .973 .8 .980
.3 .975 .9 .982
.4 .976 .95 .985

Table 3.4: Optimal thresholds π∗(π̂), for c = .03

π̂ π∗(π̂) π̂ π∗(π̂)
.025 .041 .5 .922
.05 .164 .6 .930
.1 .690 .7 .937
.2 .867 .8 .946
.3 .898 .9 .960
.4 .913 .95 .972
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CHAPTER IV

Quickest Detection with Discretely Controlled Observations

IV.1 Introduction

In this chapter, we study a quickest detection problem with imperfect informa-

tion. Since their original formulation, there has been an extensive literature on

quickest detection problems which modify or generalize the classical assumptions of

[52]. We mention a few of these papers, although it is impossible to describe the

entire literature on the subject. In [11], the deterministic drift term α received af-

ter disorder is replaced with a random variable. In [12], the “linear” penalty for

delay, E
[
(τ −Θ)+], is replaced with an exponential one, E

[
e(τ−Θ)+ − 1

]
. In [23],

the continuous time problem is solved on a finite time horizon, in comparison with

the classical infinite horizon case. In continuous time, it is also natural to study a

Poisson process whose intensity rate suddenly changes, and this problem, known as

Poisson disorder, has been extensively studied in, for example, [44], [9], [8], and [7].

In all of the above problems, there is perfect observation. Another interesting

generalization of the quickest detection problem occurs when we place restrictions on

our ability to make observations. The literature on this problem is relatively sparser,

but there is a strand of research from the 1960’s and 1970’s in which observations are

available at all times, but must be purchased. In [2], the costly information quickest
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detection problem for Brownian Motions is first studied; solutions are not obtained,

but some qualitative properties of the value function are established. In [6], the

author studies a problem with both costly information and imperfect observations;

again, no explicit solutions are found. Finally, in [3], a more thorough analysis of a

costly information problem is attempted, but there is a problem with the author’s

analysis: when the process X is not continuously observed, the posterior process (e.g.

πt , P
(
Θ ≤ t|FXt

)
) ceases to become a sufficient statistic, and the time elapsed

since an observation was last made must also be tracked. More recently, in [4], a

minimax problem is studied in discrete time, where the expected detection delay is

minimized subject to constraints on false alarm probability and expected number of

observations taken before the disorder time, and in [5] the same problem is studied

in a Bayesian framework.

Alternatively, one may formulate a quickest detection problem in which observa-

tions of the process X can be made only at discrete time periods, and such that the

agent possesses, no matter what, a fixed amount of observation rights. For example,

we could imagine a remote battery powered sensor which has enough power to make

a fixed number of observations and must be active for an extended amount of time.

Such a problem was first studied in [15], in which it is assumed that observations

fall on a grid which is determined exogenously. If observations can be made only

at discrete time periods, it makes sense to consider the case when there is control

over when observations can be used: if observations are a limited resource, then

the judicious use of them should increase efficiency significantly. In such a scenario,

the observation times will no longer be exogenously given, but will be determined

adaptively within the problem as part of the optimal strategy. In [15], an infinite

sequence of of observation times is given. If we allow the controller to choose when
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observations are made, it does not make sense to allow him infinitely many obser-

vation rights, because as we will see, such a problem is degenerate, and equivalent

to the classical continuously observed case. Therefore, if observation times can be

chosen, there must be some limit on how they can be spent. In this chapter, we

therefore study such a problem: an agent seeks to determine when a disorder occurs,

but his ability to observe is constrained. In the first variant of the problem, we

assume that the agent receives a lump sum of n observation rights which he may use

as he sees fit. In the second variant, we assume that an independent Poisson process

regulates the times at which new observation rights become available.

We now outline the structure of the chapter. In Section IV.2, we formulate the

lump sum n-observation problem, and establish the theoretical existence of optimal

strategies. In Section IV.3, we demonstrate that as n→∞, this n-observation prob-

lem converges to the classical continuous observation problem. In Section IV.4, we

formulate the stochastic arrival rate n-observation problem, and establish the theo-

retical existence of optimal strategies. In Sections IV.5 and IV.6, we give a numerical

algorithm for computing the value functions and optimal strategies in the lump sum

n-observation problem, and illustrate some results from the implementation of this

algorithm. In Section IV.7, we describe a heuristic algorithm for computing the value

functions and optimal strategies in the stochastic arrival rate problem, and illustrate

a result from a partial implementation of this algorithm. Sections IV.8, IV.9, and

IV.10 contain the technical proofs of the results in Sections IV.2, IV.4, and IV.3.

Finally, Appendix A establishes the dynamics of the posterior process under discrete

observations, and Appendix B contains source code for our algorithms in Octave and

for graphing the data in R.
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IV.2 The Lump Sum n-Observation Problem: Setup, Existence of Opti-
mal Strategies

Our basic setup is a probability space (Ω,F , P ′), which supports a Wiener process

X = {Xt}t≥0 and an independent random variable Θ, which has the same distribution

as before: with probability p it is zero, and with probability 1− p it is exponentially

distributed with parameter λ.

In [9], observation times are determined exogenously, and therefore the informa-

tion flow is a fixed aspect of the problem. In contrast, when the agent must decide

when to make observations, the information flow is itself variable. In other words,

the filtration is dependent on the observation strategy used. We therefore have to

be somewhat technical in our definition of observation strategies. We will now in-

ductively define elements in the set of allowed observation strategies, denoted by

On.

Definition IV.1. We say that a sequence of random variables Ψ = {ψ1, ψ2, . . . , ψn} ∈

On if ψ1 ≤ ψ2 ≤ · · · ≤ ψn, ψ1 deterministic, and for 1 ≤ j ≤ n, ψj ∈

m σ(Xψ1 , . . . , Xψj−1
, ψ1, . . . , ψj−1), i.e. ψj is measurable with respect to the sigma al-

gebra generated by Xψ1 , . . . , Xψj−1
, ψ1, . . . , ψj−1. We set ψ0 = 0, and for convenience

take ψn+1 =∞.

For each Ψ ∈ On, let FΨ
ψj

= σ(Xψ1 , . . . , Xψj , ψ1, . . . , ψj). Ψ generates a continuous

time filtration FΨ = (FΨ
t )t≥0 in the following way. We say that A ∈ FΨ

t if and only

if for each 1 ≤ j ≤ n, A∩{ψj ≤ t} ∈ FΨ
ψj

. Intuitively, this just means that the set A

is known at time t if, for any j, it is known at the time of the jth observation when

this observation comes before t. Let T Ψ be the set of FΨ-stopping times which are

a.s. finite.

Let ΦΨ be the conditional odds-ratio ratio process that the disorder has occurred,
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supposing that the observation strategy Φ has been used. In other words

ΦΨ
t ,

P (Θ ≤ t|FΨ
t )

P (Θ > t|FΨ
t )
.

The posterior process ΦΨ can be calculated recursively by the following formula,

starting from ΦΨ
0 = p

1−p : for more details, please see Appendix A, which follows the

derivation on p.32-33 of [9].

(4.1) ΦΨ
t =


ϕ(t− ψn−1,Φ

Ψ
ψn−1

) if ψn−1 ≤ t < ψn

j
(

∆ψn,Φ
Ψ
ψn−1

,
∆Xψn√

∆ψn

)
if t = ψn,

where ∆ψn = ψn − ψn−1, ∆Xψn = Xψn −Xψn−1 , ϕ(t, φ) = eλt(φ+ 1)− 1, and

j(∆t, φ, z)

= exp

{
αz
√

∆t+

(
λ− α2

2

)
∆t

}
φ+

∫ ∆t

0

λ exp

{(
λ+

αz√
∆t

)
u− α2u2

2∆t

}
du.

According to Lemma 3.1 of [9], the minimum Bayes risk equals Rn(p) = 1− p +

(1− p)cVn(p/(1− p)), where

Vn(φ) , inf
Ψ∈On

inf
τ∈T Ψ

Eφ

[∫ τ

0

e−λt
(

ΦΨ
t −

λ

c

)
dt

]
,(4.2)

and the expectation Eφ[·] is with respect to a probability measure P under which

X is a standard Weiner process and ΦΨ
0 = φ. Consequently, (4.2) is the problem we

will focus on.

Proposition IV.2. Let Ψ ∈ On, and let τ be an FΨ-stopping time. Then for each

0 ≤ j ≤ n, τ1{ψj≤τ<ψj+1} and {ψj ≤ τ < ψj+1} are both FΨ
ψj

-measurable.

Proof. The proof is done by a basic modification of Proposition 3.1 and Theorem 3.2

of [15]. The essential property here is that between observations, there is no flow of

new information.

70



Define

T Ψ
o ,

{
τ ∈ T Ψ : for ω ∈ Ω with τ(ω) ≤ ψn(ω), τ(ω) = ψj(ω) for some 0 ≤ j ≤ n

}
,

i.e., those FΨ-stopping times that do not stop between observations. The following

proposition says that, in contrast with [9], it is never optimal to stop between obser-

vations: if one has a total of n observations at their disposal, he may as well use all

of them.

Proposition IV.3. Vn(φ) = inf
Ψ∈On

inf
τ∈T Ψ

o

Eφ
[∫ τ

0
e−λt

(
ΦΨ
t − λ

c

)
dt
]
.

Proof. See Section IV.8.

Note that for each Ψ, ΦΨ evolves deterministically between observations. This

means that between observations, there is no additional information being accrued.

Therefore, upon making an observation, one may as well determine in that instant

when to make the next observation, as opposed to waiting to see what happens ε

seconds in the future; no additional information is gained by waiting. Therefore, the

problem is amenable to study by the recursive use of jump operators. We lay out

this strategy now.

For bounded w : R+ → R, define the operators

(4.3) Kw(t, φ) ,
∫ ∞
−∞

w(j(t, φ, z))
exp(−z2/2)√

2π
dz,

(4.4) Jw(t, φ) ,
∫ t

0

e−λu
(
ϕ(u, φ)− λ

c

)
du+ 1{t>0}e

−λtKw(t, φ),

and

(4.5) J0w(φ) , inf
t≥0

Jw(t, φ).

Set v0(φ) , J00. Inductively define the value functions, for j ≥ 1,

vj(φ) , J0vj−1(φ).
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Let 0 ≤ k ≤ n, and let Ψk = {ψk1 , . . . , ψkk} ∈ Ok. We set

(4.6) On(Ψk) ,
{

Ψ = {ψ1, . . . , ψn} ∈ On : ψi = ψki , 1 ≤ i ≤ k
}
.

These are the observation strategies whose first k observation times agree with those

in Ψk. We define the following conditional value functions:

γnk (Ψk) , ess inf
Ψ∈On(Ψk)

ess inf
τ∈T Ψ

o ,τ≥ψkk
E

[∫ τ

ψkk

e−λ(t−ψkk)

(
ΦΨ
t −

λ

c

)
dt
∣∣FΨk

ψkk

]
.

Propositions IV.4 and IV.5 allow us to describe the optimization problem in terms

of functions defined by the jump operator J0. It also establishes that the optimization

problem is Markov.

Proposition IV.4. For any n, 0 ≤ k ≤ n, and Ψk ∈ Ok,

γnk (Ψk) ≥ vn−k

(
ΦΨk

ψkk

)
.

Proof. See Section IV.8.

Proposition IV.5. For any n, 0 ≤ k ≤ n, and Ψk ∈ Ok,

γnk (Ψk) ≤ vn−k

(
ΦΨk

ψk

)
.

Hence, γnk (Ψk) = vn−k

(
ΦΨk

ψk

)
. In particular, Vn(φ) = vn(φ).

Proof. See Section IV.8.

For 0 ≤ k < n and ε ≥ 0, define

hεn−k(φ) , min{s ≥ 0 : Jvn−k(s, φ) ≤ J0vn−k(φ) + ε}.

These functions are used to construct the near optimal strategies needed for the proof

of Proposition IV.5, but we must show that they are measurable. Note that in the

definition of hεn−k, we require the first time s such that Jvn−k(s, φ) ≤ J0vn−k(φ) + ε.
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If we simply required any such ε-optimal time, we could use a Measurable Selection

Theorem, as in [54], to imply the measurability of hεn−k. Such a theorem, however,

would provide only abstract existence. For computational reasons it is preferable to

take the first optimal time.

Lemma IV.6. For 0 ≤ k < n and ε ≥ 0, ψ̂k+1 , ψkk + hεn−k

(
ΦΨk

ψkk

)
is a stopping

time, i.e. it is measurable with respect to FΨk

ψkk
.

Proof. See Section IV.8.

Corollary IV.7. Fix n ≥ 1 and ε ≥ 0. Consider the observation strategy Ψ̂ε ,

Ψ̂ε(φ) , {ψ̂ε1, . . . , ψ̂εn}, defined inductively by ψ̂ε1 , hεn(φ), and for 2 ≤ j ≤ n,

ψ̂εj , ψ̂εj−1 + hεn−j

(
ΦΨ̂ε

ψ̂εj−1

)
. Let τ̂ ε(ω) , inf{ψ̂εj(ω) : ψ̂εj(ω) = ψ̂εj+1(ω), 0 ≤ j ≤ n −

1}∧
(
ψ̂εn(ω) + t∗0

(
ΦΨ̂ε

ψ̂εn
(ω)
))
∈ T Ψ̂ε

o , where t∗0(φ) is defined to satisfy ϕ(t∗0(φ), φ) = λ
c
.

Then

Vn(φ) ≥ Eφ

[∫ τ̂ε

0

e−λt
(

ΦΨ̂ε − λ

c

)
dt

]
− nε.

IV.3 Convergence to the Continuous Observation Problem

In this section, we will show the extended weak convergence of a discretized quick-

est detection problem to the (classical) continuous observation quickest detection

problem, as formulated in [43], Chapter 4. In all of these problems, the cost functional

has the same form, while the dynamics of the underlying odds processes capture the

effect of different observation procedures. The theory of extended weak convergence,

as developed by Aldous in [1], provides a metric under which convergence of optimal

stopping problems and their value functions are guaranteed.

To be more precise, we will show that in a sequence of discrete-time problems,

the odds processes Φ̃n
t extended weak converge to the continuous observation odds
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process Φc
t . We consider two discrete time problems which are essentially equiva-

lent, one of which fits the model of [15]. Studying these problems will give upper

bounds for the value function of our (adaptive) n-observation problem because they

are more restrictive with respect to admissible observation and stopping strategies:

in our n-observation problem, there is complete freedom over both observation and

stopping times, whereas in [15] there is freedom over the stopping time but obser-

vations are confined to a preset grid. As we will see, the value function vc(φ) in

the continuous observation problem always gives a lower bound for our value func-

tions vn(φ). Therefore, we can construct a sequence of functions {ṽDn }n≥1 such that

ṽDn (φ) ≥ vn(φ) ≥ vc(φ) and ṽDn (φ)→ vc(φ), which suffices to show that vn(φ) ↓ vc(φ).

IV.3.1 Review of the Continuous Observation Problem and Comparison to the Lump
Sum n-Observation Problem

As before, Let X be a standard Brownian motion which gains drift α at the

unobservable time Θ, satisfying P (Θ = 0) = p, P (Θ ∈ dt|Θ > 0) = e−λt. Let Fc be

the filtration generated by X, and Sc the set of associated stopping times. In the

quickest detection problem with continuous observation, the minimization problem

is

Rc(p) , inf
τ∈Sc

P (τ < Θ) + cE[(τ −Θ)+].

For details on this problem, see [43], Chapter 4. Here, P and E refer to a probability

measure under which P (Θ = 0) = p. As in Proposition 2.1 of [9], we may write

Rc(p) = 1− p+ (1− p)cvc
(

p

1− p

)
,

where vc

(
p

1−p

)
= vc(φ) = inf

τ∈Sc
E
[∫∞

0

(
Φc
t − λ

c

)
dt
]
, and Φc

t is the odds process under

continuous observation. The dynamics of Φc
t are given by the following stochastic

differential equation, whose derivation is in [43]:
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dΦc
t , λ(1 + Φc

t)dt+ αΦc
tdWt,

with W a standard Brownian Motion. The quickest detection problem is therefore

reformulated as an optimal stopping problem on the diffusion Φc. The following

proposition is intuitively clear, since continuous observation is certainly preferable

to being limited to a finite set of observation times. Recall the value function vn(φ)

of Section IV.2.

Proposition IV.8. For each n, vn(φ) ≥ vc(φ).

Proof. Let n ≥ 0 be fixed. Let Ψ = {ψ1, . . . , ψn} be an admissible observation

strategy, as described in Section IV.2. Ψ induces the filtration FΨ, along with its set

of stopping times SΨ. As in [15], the optimal stopping problem associated with the

observation strategy Ψ is

RΨ(p) , inf
τ∈SΨ

RΨ
τ (p),

where RΨ
τ (p) = P (τ < Θ) + cE[(τ − Θ)+]. By definition,

(
FΨ
t

)
t≥0

= FΨ ⊂ Fc =

(F ct )t≥0, in the sense that FΨ
t ⊂ F ct for each time t. It follows then that SΨ ⊂ Sc.

Therefore, RΨ(p) ≥ Rc(p). Writing RΨ(p) = 1 − p + (1 − p)cvΨ

(
p

1−p

)
, it follows

that vΨ

(
p

1−p

)
≥ vc

(
p

1−p

)
. Let On denote the set of all admissible n-observation

strategies. Then

vn(φ) = inf
Ψ∈On

vΨ(φ) ≥ vc(φ).

IV.3.2 Defining the Discretized Problem, and the Convergence Result

We will define two closely related processes, Φ̃n, and Φ̃D,n. Let ∆t = 1
n
. The

process Φ̃n will be defined on the grid points {0,∆t, 2∆t, . . .}, and then it will be

extended to R+ as a piecewise constant function. Let {Z1, Z2, . . .} be a sequence of
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i.i.d N(0, 1) random variables. We define Φ̃n and Φ̃D,n recursively, so that they only

differ in between grid points.

Definition IV.9. Define the process Φ̃n:

Φ̃n
0 = φ,

Φ̃n
k∆t = j

(
∆t, Zk, Φ̃

n
(k−1)∆t

)
for k ∈ N,

Φ̃n
t = Φ̃n

(k−1)∆t for (k − 1)∆t ≤ t < k∆t.

Definition IV.10. Define the process Φ̃D,n:

Φ̃D,n
0 = φ,

Φ̃D,n
k∆t = j

(
∆t, Zk, Φ̃

D,n
(k−1)∆t

)
for k ∈ N,

Φ̃D,n
t = ϕ

(
λ(t− (k − 1)∆t), Φ̃D,n

(k−1)∆t

)
for (k − 1)∆t ≤ t < k∆t,

where ϕ
(
λ(t− (k − 1)∆t), Φ̃D,n

(k−1)∆t

)
= eλ(t−(k−1)∆t)

(
Φ̃D,n

(k−1)∆t + 1
)
− 1. We remark

that the dynamics of Φ̃D,n are precisely those of our n-observation problem when

observations are taken every 1
n

units of time. Since the gaps between observations are

deterministic, they are also the typical example of the model in [15]. The dynamics

of Φ̃n are modified to make computations more tractable. Notice also that Φ̃n and

Φ̃D,n induce the same filtration. We take F̃n to be the (continuous time) natural

filtration generated by Φ̃n
t , and T̃ n the set of F̃n-stopping times. We set

ṽDn (φ) , inf
τ∈T̃ n

E

[∫ τ

0

e−λs
(

Φ̃D,n
s − λ

c

)
ds

]
.

To properly state our result, we need the concept of extended weak convergence,

from [1]. We state the definition for the sake of completeness, but we will essentially

only need the fact that extended weak convergence implies convergence of optimal

stopping problems.
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Definition IV.11. Let (X,F) be a random process, considered as a random element

in D(R+), the set of càdlàg paths on R+. For each t, there exists a conditional

distribution Zt for X, given Ft, and Zt may be viewed as a random element of

P(D(R+)), the set of probabilities on D(R+). It is a fact (see Theorem 13.1 of [1])

that these Zt can be combined to form a càdlàg process taking values in P(D(R+)).

This process Z is referred to as the prediction process. For processes (Xn,Fn) and

(X,F), we say that Xn extended converges to X, writing Xn V X, if the associated

prediction processes Zn converge weakly to Z, i.e. weak convergence of their induced

measures on P(D(R+)).

Our principal interest in extended weak convergence is derived from the following

(in a slightly weakened form) theorem in [1]. Let γ : [0,∞) × R → R be bounded

and continuous. Given a process (X,F), let TL denote its stopping times bounded in

size by L, and define

Γ(L) , sup
T∈TL

E [γ(T,XT )] .

Proposition IV.12. [Theorem 17.2, (Aldous)] Suppose (Xn,Fn) V (X∞,F∞). Sup-

pose (X∞,F∞) is quasi left continuous (or continuous), and suppose that F∞ is the

usual filtration for X∞. Then Γn(L)→ Γ∞(L).

Our goal, therefore, is to show that Φ̃n V Φc. The following two results from [1]

yield a feasible strategy for establishing extended weak convergence to a diffusion.

The effectiveness of this method lies in the fact that the (complicated) limiting

process never needs to be directly studied; this is the basic property of establishing

weak convergence. The message of these two Propositions is the following: the

standard way that one shows weak convergence is Proposition IV.13, but in fact

weak convergence is strictly weaker than the conditions in this Proposition. On the
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other hand, it turns out that these conditions are exactly equivalent to extended

weak convergence. Thus, by following the “standard” method for establishing weak

convergence, one obtains the more powerful extended weak convergence for free.

Proposition IV.13 (Theorem 8.22, (Aldous)). Let a(x) > 0 and b(x) be bounded

continuous functions and let x0 ∈ R. Let X be the diffusion with drift b(x) and

variance a(x), and X0 = x0. Let (Xn,Fn) be a sequence of processes. Suppose that

for all L > 0

(a) Xn
0 ⇒ X0

(b) E

[
sup
t≤L

(
Xn
t −Xn

t−
)2
]
→ 0 as n→∞.

Suppose also that for each n, there exist Nn
t and N n

t adapted to Fn such that for

all L > 0

(c) (Mn,Fn) is a martingale, where Mn
t = Xn

t −
∫ t

0
b(Xn

s )ds−Nn
t

(d) (Sn,Fn) is a martingale, where Snt = (Mn
t )2 −

∫ t
0
a(Xn

s )ds−N n
t

(e) sup
T∈T nL

E
[
(Nn

T )2]→ 0 as n→∞

(f) sup
T∈T nL

E [|N n
T |]→ 0 as n→∞,

where T nL is the set of Fn-stopping times bounded by L. Then Xn ⇒ X (i.e., weak

convergence).

Proposition IV.14 (Proposition 21.17, (Aldous)). Let (Y n,Fn) be a sequence of

processes, and X the diffusion with drift b(x) and variance a(x). In order that

Y n V X (i.e. extended weak convergence), it is necessary and sufficient that there

exist Xn adapted to Fn such that

(i) sup
t≤L
|Xn

t − Y n
t | → 0 in probability
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(ii) (Xn,Fn) satisfies the hypotheses of Proposition IV.13.

Proposition IV.15. As n→∞, Φ̃n
t V Φc

t

Proof. The proof consists of checking the six conditions in Proposition IV.13, which

necessitates establishing some moment inequalities on Φ̃n. We refer the reader to

Section IV.9.

Corollary IV.16. As n→∞, Φ̃D,n V Φc.

Proof. Let gn(φ) = e
λ
n (φ+ 1)− 1− φ = (φ+ 1) ·O

(
1
n

)
.

Note that

sup
0≤t≤L

|Φ̃n
t − Φ̃D,n

t | = gn

(
max

0≤k≤kmax
Φ̃n

k
n

)
.

As in the proof of Proposition IV.15, Φ̃n is a submartingale, and so by Doob’s L2

Inequality,

E

[
sup

0≤t≤L
|Φ̃n

t − Φ̃D,n
t |2

]
= O

(
1

n2

)
E

[(
1 + Φ̃n

T

)2
]
.

Using the moment bounds on Φ̃n established in Section IV.9, we see that this last

quantity above is O
(

1
n2

)
. Now, we can see that Condition (i) in Proposition IV.14

is satisfied. Applying it with Proposition IV.15, we deduce the Corollary.

Corollary IV.17. As n→∞, ṽDn (φ)→ vc(φ) and vn(φ)→ vc(φ).

Proof. First, note that for any ε > 0, there exists a L = L(ε) such that for all n,

ṽDn (φ) > inf
τ∈T̃ n,τ≤L

E

[∫ τ

0

e−λs
(

Φ̃D,n
s − λ

c

)
ds

]
− ε,

and the same type of inequality holds true for vc(φ). This is because the running

reward function at time s is greater than −λ
c
e−λs, as Φ̃D,n and Φc are nonnegative.

Therefore, the value functions ṽDn and vc are uniformly approximated by problems

where the allowed stopping times are uniformly bounded. Therefore, to show that
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ṽDn converges to vc, we may assume that all stopping times are bounded by some

constant L.

Now, we cannot apply Proposition IV.12 directly, since the value functions ṽDn and

vc are optimal stopping problems, not on Φ̃D,n and Φc, but on their time integrals.

Fortunately, there is a simple way to work around this technical difficulty, using one

last result from [1].

Lemma IV.18. Let H : D(R)→ D(R) be a continuous mapping such that if f(u) =

g(u) for u ≤ t then (Hf)(t) = (Hg)(t). Then if (Xn,Fn) V (X∞,F∞) and Y n =

H(Xn), (Y n,Fn) V (Y ∞,F∞).

For H defined by (Hf)(t) =
∫ t

0
f(s)ds, it is clear that the conditions of Lemma

IV.18 are satisfied, at the very least when H is restricted to continuous paths. There-

fore,
∫ ·

0
Φ̃D,n
s ds V

∫ ·
0

Φc
sds. Therefore, by Proposition IV.12, we have ṽDn → vc. In

computing vDn , we take bLnc observations, so vDn ≥ vbLnc ≥ vc. By the monotonicity

of vn with respect to n, it follows that vn → vc.

IV.4 The Stochastic Arrival Rate n-Observation Problem: Setup, Exis-
tence of Optimal Strategies

We will consider two subcases of this problem. First, we assume that a total of

n observation rights arrive via a Poisson process. Second, we assume that the rates

arrive indefinitely from a Poisson process. The second case will be addressed as a

limiting case of the former. Suppose that, in addition to supporting a Wiener process

X and the random variable Θ, the space (Ω, P ) supports an independent, completely

observable Poisson process {Nt}t≥0 with arrival rate µ > 0. Let η1 ≤ η2 ≤ · · · denote

the increasing sequence of jumps times of N . For convenience, take η0 = 0. We will

define the set of allowed observation strategies for both the “n total observation
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rights” problem and for the infinite observation rights problem. When we consider

the “n total observation rights” problem, we will stop N after n arrivals, and assume

that ηn+1 = ∞. As before, we will first define the set of admissible observation

strategies.

Definition IV.19. For a sequence of random variables ψ1 ≤ ψ2 ≤ · · · ≤ ψn, we say

Ψ = {ψ1, . . . , ψn} is an admissible observation strategy in the stochastic arrival rate

n-observation problem, written Ψ ∈On, if

ψj ∈ m σ(Xψ1 , . . . , Xψj−1
, ψ1, . . . , ψj−1, η1, . . . , ηj) and ψj ≥ ηj

for each 1 ≤ j ≤ n. For convenience, we will always set ψ0 = 0 for any Ψ.

Definition IV.20. For Ψ = {ψ1, ψ2, . . .}, we say that Ψ is an admissible observation

strategy in the stochastic arrival rate infinite observation problem, written Ψ ∈O∞,

if for each n, {ψ1, . . . , ψn} ∈On.

Using the same construction as in the previous section, each Ψ ∈On, 1 ≤ n ≤ ∞,

induces a continuous time filtration F̃Ψ = (F̃Ψ
t )t≥0 which is built up from the discrete

observations made at times ψi. We take FΨ = F̃Ψ ∨ FN , FN being the filtration

generated by the Poisson process N . Each Ψ induces the set T Ψ of FΨ-stopping

times and the observed posterior process ΦΨ defined by (4.1).

Take 1 ≤ n ≤ ∞. As before, according to Lemma 3.1 of [9], the minimum Bayes

risk equals Rn(p) = 1− p+ (1− p)cVn(p/(1− p)), where

Vn(φ) , inf
Ψ∈On

inf
τ∈T Ψ

Eφ

[∫ τ

0

e−λt
(

ΦΨ
t −

λ

c

)
dt

]
,(4.7)

and the expectation Eφ[·] is with respect to a probability measure P under which X

is a standard Weiner process and ΦΨ
0 = φ. Hence, we will focus on solving (4.7).
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We will first specialize to the case where n < ∞. As in the previous section, in

considering the problem Vn, we can optimize over a smaller set of stopping times

than T Ψ.

Definition IV.21. Let Ψ ∈On, and let τ ∈ T Ψ. We say that τ ∈ T Ψ
s if {ψi < τ <

ψi+1} ∩ {ψi ≥ ηi+1} = ∅, for each 0 ≤ i ≤ n− 1.

Note that {ψi ≥ ηi+1} represents the scenarios when, after making observation i,

the agent has additional observation rights stockpiled. Therefore, a stopping time

τ ∈ T Ψ
s is one that does not stop while there are unused observation rights. As in

Section IV.2, we have

Proposition IV.22. Vn(φ) = inf
Ψ∈On

inf
τ∈T Ψ

s

Eφ
[∫ τ

0
e−λt

(
ΦΨ
t − λ

c

)
dt
]
.

Proof. Let Ψ ∈ On, and τ ∈ T Ψ. First, note that every stopping time τ ∈ T Ψ

satisfies {ψ0 < τ < ψ1} ∩ {ψ0 ≥ η1} = ∅, simply because {ψ0 ≥ η1} = ∅, η1

being a strictly positive random variable. The proof now is essentially identical

to that of Proposition IV.2. As before, if we were to stop the game while having

unused observation rights, we could construct a new observation strategy which

adds in an additional observation at that stopping time, without changing the value

received.

Now, we will define some operators, which have analogs in the lump sum n-

observation problem. Let ΛF ⊂ R2
+ denote the set of feasible values of the state

process (t,Φt). Precisely:

ΛF =
{

(y, φ) : y ≥ 0, φ ≥ eλy − 1
}
.

Here y represents the time since the last observation. In the absence of observations,

the trajectory of the state process follows the path (t, eλt(φ+ 1)− 1), starting from

φ at time zero. Since φ ≥ 0 at time zero, all trajectories must lie in ΛF .
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Recall the operator K from (4.3). We will extend it as follows: for w : ΛF → R

bounded, define

(4.8) Kw(t, φ) ,
∫ ∞
−∞

w(0, j(t, φ, z))
exp(−z2/2)√

2π
dz.

In the next two operators, the “0” superscript stands for “no observations stockpiled”.

We define, for w : ΛF → R bounded,

J0w(t, y, φ)

,
∫ ∞

0

µe−µu
(∫ u∧t

0

e−λr
(
ϕ(r, φ)− λ

c

)
dr + e−λu1{t>u}w(y + u, ϕ(u, φ))

)
du,

(4.9)

(4.10) J0
0w(y, φ) , inf

t≥0
J0w(t, y, φ).

Let us explain the operator J0. It describes the situation in which the agent has no

observations stockpiled, the posterior is φ, and y units of time have passed since the

last observation was made. Faced with this scenario, he stops at time t, which may

be prior to the arrival time u of the next observation right, or after it. An agent will

be left with no observations stockpiled only if he has just used an observation, so for

these operators y will effectively be zero. For subsequent operators, we will consider

scenarios where y is positive, and so for this reason we keep the notation consistent.

Next we define jump operators J+ and J+
0 , corresponding to the scenario when the

agent has stockpiled observation rights after he has either just made an observation

or received an observation right. We define, for w1, w2 : ΛF → R bounded,

J+(w1, w2)(t, y, φ)(4.11)

,
∫ ∞

0

µe−µu

(∫ u∧t

0

e−λr
(
ϕ(r, φ)− λ

c

)
dr

+e−λt1{t<u}Kw1 (y + t, ϕ(−y, φ)) + e−λu1{u≤t}w
2(y + u, ϕ(u, φ))

)
du,
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(4.12) J+
0 (w1, w2)(y, φ) , inf

t≥0
J+(w1, w2)(t, y, φ).

From Proposition IV.22, we have seen that it is never optimal for an agent to stop

while he has unused observation rights. Therefore, if he has observation rights stock-

piled, the agent either observes immediately (t = 0), which is equivalent to stopping,

or chooses his next observation time t > 0. If u is the next arrival time of an addi-

tional observation right, then his next observation time t may be either prior to or

after the arrival of the next observation right. Here of the two continuation functions

w1 and w2, w1 corresponds to this former scenario, and w2 to the latter. The vari-

able y denotes the amount of time that has passed since the agent has last made an

observation, which may be nonzero if an observation right has arrived more recently

than the last time an observation was made.

We will need one more pair of operators, corresponding to the times when all n

observation rights have been received. Note that this scenario explains why the “lump

sum n observation rights” problem is essentially embedded in this one. Therefore,

note the similarity between Je, Je0 , defined below, and J, J0, defined in (4.5). The

main difference consists in allowing y to be nonzero, allowing for the possibility that

time has elapsed since the last observation. We define, for w : ΛF → R bounded,

(4.13) Jew(t, y, φ) ,
∫ t

0

e−λr
(
ϕ(r, φ)− λ

c

)
dr + e−λtKw(y + t, ϕ(−y, φ)),

(4.14) Je0w(y, φ) , inf
t≥0
Jew(t, y, φ).

Fix 1 ≤ n < ∞. Set vnn,n+1(y, φ) , 0. For 0 ≤ k ≤ n, set vnn,k(y, φ) ,

Je0v
n
n,k+1(y, φ). The superscript “n” corresponds to n total observation rights, while

the subscript “n,k” corresponds to n observation rights received and k observations

used. Note that when there are n observation rights arriving stochastically, it is
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the case that once all of these n observations have arrived, we essentially revert

to the lump sum problem. We now define vnn−1,n−1(y, φ) , J0
0v

n
n,n−1(y, φ) and, for

0 ≤ k < n− 1, vnn−1,k(y, φ) , J+
0 (vnn−1,k+1,v

n
n,k)(y, φ). Proceeding inductively in this

way, we define

vnj,j(y, φ) , J0
0 (vnj+1,j)(y, φ), 0 ≤ j ≤ n,

vnj,k(y, φ) , J+
0 (vnj,k+1,v

n
j+1,k)(y, φ), 0 ≤ k < j ≤ n.

The function vnj,k(y, φ) is a value function, representing the value when there are n

total observation rights, of which j have been received and k ≤ j spent, the current

posterior level is φ, and y units of time have elapsed since the last observation was

made. Note that by definition of J0
0 , vnj,j ≤ 0, 0 ≤ j ≤ n. From this and the definition

of J+
0 , it also follows that vnj,k ≤ 0 for all j and k. We illustrate the relationship

85



between the value functions and the jump operators through the following figures.

Figure 4.1: Schematic of Stochastic Arrival Problem, n = 4
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Figure 4.2: Recursive Computation of Value Functions, n = 4
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Fix 0 ≤ k ≤ n, and let Ψk = {ψk1 , . . . , ψkk} ∈ Ok, from Definition IV.19. We set,

for k ≤ j ≤ n,

On
j,k(Ψ

k) ,
{

Ψ = {ψ1, . . . , ψn} ∈On : ψi = ψki , 1 ≤ i ≤ k and ψk+1 ≥ ηj
}
.

Intuitively, On
j,k(Ψ

k) consists of the observation strategies one can pursue after ob-

serving at ψk1 , . . . , ψ
k
k , and refraining from observing next until ηj. Note that the last

requirement ψk+1 ≥ ηj is vacuous when j = k, k + 1. We let, for 0 ≤ k ≤ n and

k ≤ j ≤ n,

γnj,k(Ψ
k) , ess inf

Ψ∈On
j,k(Ψk)

ess inf
τ∈T Ψ

s ,τ≥ψkk∨ηj
E

[∫ τ

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ
t −

λ

c

)
dt
∣∣FΨk

ψkk∨ηj

]
.

Note that the “reference” time above is ψkk ∨ ηj. We are in a scenario where j

observation rights have been received and k spent; if ψkk > ηj, we arrived at this

state from “j observation rights received, k − 1 observations spent”, and if ηj > ψkk ,

we arrived at this state from “j − 1 observations received, k observations spent”.

Proposition IV.23. For any n, 0 ≤ k ≤ j ≤ n and Ψk = {ψk1 , . . . , ψkk} ∈Ok,

(4.15) γnj,k(Ψ
k) ≥ vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
on the set {ψkk < ηj+1}.

Proof. See Section IV.10.

For the proof of the other inequality, we will need to construct some optimal

stopping times, describing when one should either observe the process or stop and

accept the change hypothesis. We will do this inductively, with the help of some

auxiliary functions. Set snn,n(y, φ) = snn,n(φ) , t∗0(φ), defined by

(4.16) t∗0(φ) =
1

λ
log

(
c+ λ

c(φ+ 1)

)
∨ 0.
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For 0 ≤ k < n, define onn,k(y, φ) , inf
{
s ≥ 0 : Jevnn,k+1(s, y, φ) = Je0v

n
n,k+1(y, φ)

}
.

We define, for 0 ≤ j < n,

snj,j(y, φ) , inf
{
s ≥ 0 : J0vnj+1,j(s, y, φ) = J0

0v
n
j+1,j(y, φ)

}
and, for 0 ≤ j < n, 0 ≤ k < j,

onj,k(y, φ) , inf
{
s ≥ 0 : J+

(
vnj,k+1,v

n
j+1,k

)
(s, y, φ) = J+

0

(
vnj,k+1,v

n
j+1,k

)
(y, φ)

}
.

The notation “s” and “o” stands for, respectively, stop, and observe. This is

in line with the reasoning that one should stop only when there are no available

observation rights, i.e. j = k.

For Ψk = {ψk1 , . . . , ψkk} ∈ Ok, we define the “action times” (either stopping or

making an observation) τ̂nj,k, k ≤ j ≤ n. Set

τ̂nn,k = τ̂nn,k(Ψ
k)

, ψkk ∨ ηn + onn,k

(
ψkk ∨ ηn − ψkk ,ΦΨk

ψkk∨ηn

)
,

and we will inductively define, on the set {ψkk < ηj+1}, k < j < n,

τ̂nj,k = τ̂nj,k(Ψk)

,

ψ
k
k ∨ ηj + onj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψk
k
∨ηj

)
if ψkk ∨ ηj + onj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψk
k
∨ηj

)
< ηj+1

τ̂nj+1,k(Ψk) if ψkk ∨ ηj + onj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψk
k
∨ηj

)
≥ ηj+1

and

τ̂nk,k = τ̂nk,k(Ψ
k)

,


ψkk + snk,k

(
ΦΨk

ψkk

)
if ψkk + snj,k

(
ΦΨk

ψkk

)
< ηk+1

τ̂nk+1,k(Ψ
k) if ψkk + snk,k

(
ΦΨk

ψkk

)
≥ ηk+1.

Proposition IV.24. For any n, 0 ≤ k ≤ j ≤ n and Ψk = {ψk1 , . . . , ψkk} ∈ Ok, on

the set {ψkk < ηj+1},

(4.17) γnj,k(Ψ
k) ≤ vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
.
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Hence, γnj,k(Ψ
k) = vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
. Furthermore, on the set {ψjj < ηj+1},

(4.18) vnj,j

(
0,ΦΨj

ψjj

)
= E

[∫ τ̂nj,j∧ηj+1

ψjj

e−λ(s−ψjj )

(
ϕ
(
s− ψjj ,ΦΨj

ψjj

)
− λ

c

)
ds

+ e−λ(ηj+1−ψjj )1{τ̂nj,j>ηj+1}v
n
j+1,j

(
ηj+1 − ψjj , ϕ

(
ηj+1 − ψjj ,ΦΨj

ψjj

))
|FΨj

ψjj

]
,

and for k < j, on the set {ψkk < ηj+1},

vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψk
k
∨ηj

)
(4.19)

= E

[∫ τ̂nj,k∧ηj+1

ψk
k
∨ηj

e−λ(s−ψkk∨ηj)
(
ϕ
(
s− ψkk ∨ ηj ,ΦΨk

ψk
k
∨ηj

)
− λ

c

)
ds

+e−λ(τ̂nj,k−ψ
k
k∨ηj)1{τ̂n

j,k
<ηj+1}Kv

n
j,k+1

(
τ̂nj,k − ψkk , ϕ

(
−(ψkk ∨ ηj − ψkk),ΦΨk

ψk
k
∨ηj

))
+e−λ(ηj+1−ψkk∨ηj)1{ηj+1≤τ̂nj,k}v

n
j+1,k

(
ηj+1 − ψkk , ϕ

(
ηj+1 − ψkk ∨ ηj ,ΦΨk

ψk
k
∨ηj

)) ∣∣FΨk

ψk
k
∨ηj

]
.

In particular, Vn(φ) = vn0,0(φ).

Proof. See Section IV.10.

As a consequence of Proposition IV.24, we may inductively describe the optimal

observation strategies and stopping times, which are as follows. Consider a given

instant of time, when an observation has just been spent or an observation right has

just been received. Let j be the number of observation rights received, k ≤ j be

the number of observation rights used, let φ be the current value of the posterior

process, and let y be the amount of time elapsed since the last time an observation

was made.

Corollary IV.25. The following observation/stopping strategy is optimal. Suppose

that an observation has just been made or an observation right has just been received.

Observation Strategy

(1) If k = j, there are no available observation rights. Wait until time ηj+1, incre-

ment j by 1, and proceed to (2) with the appropriate changes to φ, y.
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(2) If k < j, calculate τ̂nj,k, which is a function of j, k, φ, y, and the current time.

If τ̂nj,k < ηj+1, spend an observation right at time τ̂nj,k, and increment k by 1. If

k+1 < j, proceed to (2) and if k+1 = j, proceed to (1), making the appropriate

changes to φ and y. Otherwise, if τ̂nj,k ≥ ηj+1, increment j by 1, and proceed to

(2) with the appropriate changes to φ and y.

Stopping Strategy If k = j and τ̂nj,j < ηj+1, stop the game at time τ̂nj,j. If

τ̂nj,j ≥ ηj+1, increment j by 1 and proceed to Observation Strategy (2). The game is

never stopped when k < j.

Remark IV.26. In the corollary above, we say that the agent optimally stops the game

only when he has no spare observation rights. This is essentially a formalism. One

can envision a scenario in which the agent makes an observation, and notices that

the posterior is at a very high level, indicating that it is very likely that the disorder

has occurred. The agent will want to stop the game immediately. In our setup, the

agent, if he has spare observation rights, will exercise them all instantaneously to get

to the point where he has no observation rights remaining, after which he will stop

the game.

IV.4.1 The Infinite Horizon Problem

We consider now the subcase of the stochastic arrival problem in which observa-

tion rights continue to arrive indefinitely. The following proposition says that the

value function in the infinite arrival problem is approximated uniformly by the value

function in the n arrival problem, as n goes to infinity. Since the strategy space for

the n arrival problem is contained within the strategy space for the infinite arrival

problem, it therefore follows that we may use optimal strategies in the n arrival

problem to find near optimal strategies in the infinite arrival problem.
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Proposition IV.27. The value functions Vn(φ) converge to V∞(φ) as n → ∞,

uniformly over φ. More precisely, 0 ≤ V∞ − Vn ≤ 1
c

(
µ

µ+λ

)n+1

.

Proof. The inequality V∞ ≤ Vn is an immediate consequence of the fact that On is

naturally included in O∞, i.e. for any element Ψ of On, there is an element Ψ̃ of

O∞ such that the first n observation times of Ψ̃ coincide with those of Ψ.

For the second inequality, let Ψ = {ψ1, ψ2, . . .} be an arbitrary element of O∞.

By definition, it must be the case that ψn+1 ≥ ηn+1, and that {ψ1, . . . , ψn} is an

element of On. Noting that for all Ψ, the posterior process ΦΨ is positive, it follows

that

(4.20) V∞ − Vn ≥ E

[∫ ∞
ηn+1

e−λs
−λ
c
ds

]
=

1

c
E
[
e−ληn+1

]
.

Now, ηn+1, being the sum of n + 1 independent exponential random variables with

parameter µ, has the Erlang distribution ηn+1 ∼ Erlang(n+ 1, µ), which has Laplace

transform f ∗(s) =
(

µ
µ+s

)n+1

. It therefore follows that the right hand side of (4.20)

above is equal to 1
c

(
µ

µ+λ

)n+1

, which tends to zero as n→∞.

Remark IV.28. A similar argument may be used to show the convergence of vn0,0(0, φ)

( n total observations arriving stochastically, of which none have yet arrived) to vn(φ),

(n total observations, all of which are available), as the arrival rate µ→∞. Suppose

that for some φ, t∗n(φ), the optimal time to make the first observation in the lump

sum n-observation problem, is strictly positive. Using the cumulative distribution

of an Erlang random variable, it is easily calculated that the probability that all n

observation rights arrive before time t∗n(φ) is

1−
n−1∑
k=0

1

k!
e−µt

∗
n(φ)(µt∗n(φ))k.

When n and φ are fixed, so that t∗n(φ) is fixed, this expression converges to 1 al-

most exponentially fast as µ → ∞. If all observation rights arrive before time
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t∗n(φ), then the stochastic arrival of the observation rights imposes no restriction

on observation strategies vis-a-vis the scenario in which all n-observation rights are

available all along, because the agent has received all observation rights by the time

he wishes to make even a single observation. Therefore, with probability at least

1 −
∑n−1

k=0
1
k!
e−µt

∗
n(φ)(µt∗n(φ))k the strategy that one would pursue in the Lump Sum

n-observation problem is also feasible in the stochastic arrival rate problem. This

implies that for fixed n and φ, vn0,0(0, φ) should converge at least almost exponentially

fast to vn(φ) as µ → ∞. Note that a uniform rate of convergence over all φ is not

guaranteed. When t∗n(φ) is very close to zero, it becomes increasingly important to

have observation rights immediately available. Additionally, this argument does not

hold uniformly over all n as n → ∞. In fact, the convergence rate of v∞0,0(0, φ) to

vc(φ) as a function of µ will be comparable to the convergence of vn(φ) to vc(φ) as a

function of n, which is rather slow (see Table 4.1). This is because, in any finite time

interval, the expected number of received observation rights will be proportional to

the arrival rate µ.

IV.5 An Algorithm for the Lump Sum n-Observation Problem

In this section, we explicitly describe an algorithm for computing the value func-

tions v0, v1, . . . , vN , as well as the boundaries which determine when observations

should be made. We give a rigorous construction which shows how solutions may

be constructed up to any specified error tolerance. Actual code, in which certain

heuristics are used to speed up implementation, will be given in Appendix B. We

have the following main result in this section, giving worst case error bounds:

Proposition IV.29. Fix a positive integer N . Then in O(N
6

ε3
) function evaluations,

we may uniformly approximate v0(φ), v1(φ), . . . , vN(φ) to within ε.
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We note that in the process of calculating the value functions, we also determine

the boundaries which determine the optimal observation behavior. We outline the

steps of the algorithm in Subsection IV.5.1. In Subsection IV.5.2, we justify the error

bounds of Step 2 of the algorithm. In Subsection IV.5.3, we explain the error bounds

of Step 3, as well as explaining how an upper bound φ may be constructed. Finally,

in Subsection IV.5.4, we give error bounds for iterating Steps 2 and 3 multiple times.

IV.5.1 Pseudo-code for the Algorithm

Here we outline the steps of the algorithm. Subsequent parts of this section will

explain why such an algorithm works to uniformly approximate the value functions.

(1) Fix N , the total number of observations. Discretize the φ variable into φ0 =

0, φ1, . . . , φJ = φ, and set all value functions equal to zero for φ ≥ φ.

(2) The function v0(φ) can be analytically computed. Fix φj, and approximately

minimize t 7→ Jv0(t, φj) by computing Jw(ti, φj), for t0 = 0, t1, . . . , tK = T a

discretization of t, and T an upper bound on the size of optimal t, established

in Lemma IV.32. Let the minimizer be t̂∗n(φj).

(3) Having computed above an approximation to v1(φj), interpolate these values

in a piecewise constant fashion to obtain a function v̂1(φ) which approximates

v1(φ).

(4) Let the collection of points (t̂∗n(φj), ϕ(t̂∗n(φj), φj)) define the observation barrier.

(5) Repeat Steps 2, 3, except now minimizing t 7→ Jv̂1(t, φ), to obtain an approxi-

mation v̂2(φ) to v2(φ).

(6) Continue this procedure until v̂N(φ) is computed.
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IV.5.2 Minimizing t 7→ Jw(t, φ) for φ Fixed

Lemma IV.30. For each n ≥ 0, −1
c
≤ Vn(φ) ≤ 0 for all φ.

Proof. According to Proposition IV.5, Vn = vn, where v−1 ≡ 0, and for n ≥ 0,

vn = J0vn−1. Here J0 is the jump operator defined in Section IV.2. Note that 0

clearly satisfies the conclusion of the lemma. Therefore, it suffices to establish the

inductive step: if −1
c
≤ vn ≤ 0, then −1

c
≤ J0vn ≤ 0. The upper bound follows from

J0vn(φ) ≤ Jvn(0, φ) = 0. For the lower bound, calculate that for any t,

Jvn(t, φ)

=

∫ t

0

e−λu
(
ϕ(u, φ)− λ

c

)
du+ e−λtKvn(t, φ)

≥
∫ t

0

e−λu
(
ϕ(u, φ)− λ

c

)
du+ e−λt

(
−1

c

)
≥
∫ t

0

e−λu
(
−λ
c

)
du+ e−λt

(
−1

c

)
=
−1

c
.

Taking the infimum over all t yields J0vn(φ) ≥ −1
c

.

Lemma IV.31. For each n ≥ 0, vn(φ) is concave and increasing in φ.

Proof. Follows by definition, and the fact that an infimum of concave functions is

again concave.

Lemma IV.32. For T , 1
λ

(
1 + λ

c

)
+ 1

c
and each n,

vn(φ) = J0vn−1(φ)

= inf
0≤t≤T

∫ t

0

e−λu
(
ϕ(u, φ)− λ

c

)
du+ e−λtKvn−1(t, φ).

In other words, the optimal time t∗ can be assumed to be less than or equal to T .
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Proof. Note that∫ t

0

e−λu
(
ϕ(u, φ)− λ

c

)
du =

∫ t

0

[
φ+ 1− e−λu

(
1 +

λ

c

)]
du

= (φ+ 1)t+
1

λ

(
1 +

λ

c

)
(e−λt − 1)

≥ t− 1

λ

(
1 +

λ

c

)
.

It follows therefore, that for t ≥ 1
λ

(
1 + λ

c

)
+ 1

c
= T , Jvn(t, φ) ≥ 0 for any n. Here

we have used the uniform lower bound for vn established in Lemma IV.30. By the

upper bound in that Lemma, vn ≤ 0, so it is sufficient to minimize Jvn(t, φ) over

t ∈ [0, T ].

Lemma IV.33. Let || · ||Lip denote the Lipschitz norm. For each n ≥ 0, ||vn||Lip ≤

T + ||vn−1||Lip.

Proof. Take φ1 < φ2. We have, using Lemma IV.32 for the first inequality,

|vn(φ1)− vn(φ2)| ≤ sup
0≤t≤T

∣∣∣∣∫ t

0

[
e−λu

(
ϕ(u, φ1)− λ

c

)
− e−λu

(
ϕ(u, φ2)− λ

c

)]
du

∣∣∣∣
+ sup

0≤t≤T

∣∣e−λt (Kvn−1(t, φ1)−Kvn−1(t, φ2))
∣∣ .

We treat these two terms on the right hand side separately. We calculate that the

first term is actually equal to

sup
0≤t≤T

∣∣∣∣∫ t

0

(φ1 − φ2)du

∣∣∣∣ = T |φ1 − φ2|.

To calculate the second term, fix t ∈ [0, T ]. Then∣∣∣∣∣e−λt
∫ ∞
−∞

(
vn−1(j(t, φ1, z))− vn−1(j(t, φ2, z))

)e−z2/2

√
2π

dz

∣∣∣∣∣
≤ ||vn−1||Lip e−λt

∫ ∞
−∞
|j(t, φ1, z)− j(t, φ2, z)|

e−z
2/2

√
2π

dz

= ||vn−1||Lipe−λt|φ1 − φ2|
∫ ∞
−∞

eαz
√
t+(λ−α2/2)t e

−z2/2

√
2π

dz

= ||vn−1||Lipe−λt|φ1 − φ2|eλt

= ||vn−1||Lip|φ1 − φ2|,
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where the first equality uses the definition of j(t, φ, z), in Section IV.2. It now follows

that |vn(φ1)− vn(φ2)| ≤ (T + ||vn−1||Lip) |φ1 − φ2|.

Lemma IV.34. The mapping t 7→ Jvn(t, φ) is 1
2
-Hölder continuous. In particular,

| d
dt
Jvn(t, φ)| ≤ φ+ a+ b||vn||Lipt−1/2, for constants

a =

(
1 +

λ

c
+

1

c

)
e−λt,

b =

(
φ

(
1

2
αC1 + λ

)
+ λ+

1

2λ
C1

)
.

Proof. We calculate that

d

dt
Jvn(t, φ) = φ+ 1− e−λt

(
1 +

λ

c

)
+ e−λt

d

dt
Kvn(t, φ)− λe−λtKvn(t, φ).

Using |vn| ≤ 1
c
, this implies that

(4.21)

∣∣∣∣ ddtJvn(t, φ)

∣∣∣∣ ≤ φ+ e−λt
(

1 +
λ

c
+

1

c

)
+

∣∣∣∣e−λt ddtKvn(t, φ)

∣∣∣∣ .
Taking a =

(
1 + λ

c

)
e−λt + 1

c
, it therefore suffices to bound the last term on the right

hand side above. So,∣∣∣∣e−λt ddtKvn(t, φ)

∣∣∣∣ =

∣∣∣∣∣e−λt ddt
∫ ∞
−∞

vn(j(t, φ, z))
e−z

2/2

√
2π

dz

∣∣∣∣∣
=

∣∣∣∣∣e−λt
∫ ∞
−∞

v′n(j(t, φ, z))
dj

dt

e−z
2/2

√
2π

dz

∣∣∣∣∣
≤ e−λt||vn||Lip

∫ ∞
−∞

∣∣∣∣∣djdt e−z
2/2

√
2π

∣∣∣∣∣ dz,
(4.22)

with the exchange of derivatives and integrals in the second equality justified by the

fact that v′n is bounded, established in Lemma IV.33. We now examine more closely

the integrand in the last line above. We calculate that
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dj

dt
=

(
1

2
αzt−1/2 + (λ− α2/2)

)
exp

{
αz
√
t+ (λ− α2/2)t

}
φ(4.23)

+ λ exp
{
αz
√
t+ (λ− α2/2)t

}
(4.24)

+

∫ t

0

λ

(
−1

2
αzut−3/2 +

1

2
α2u2t−2

)
exp

{(
λ+

αz√
t

)
u− α2u2

2t

}
du,(4.25)

and here the first term above came from differentiating the first term of j, and the

second and third terms came from differentiating the second term of j. We label

these terms in (4.23) (A1), (A2), (A3). Then∫ ∞
−∞
|(A1)| e−z2/2/

√
2π = eλtφ

∫ ∞
−∞

∣∣∣∣12αzt−1/2 + (λ− α2/2)

∣∣∣∣ e−(z−α
√
t)2/2/

√
2πdz

≤ eλtφ

∫ ∞
−∞

(
1

2
αt−1/2

∣∣∣z − α√t∣∣∣+ λ

)
e−(z−α

√
t)2/2/

√
2πdz

= eλtφ

(
1

2
αt−1/2C1 + λ

)
,

with C1 a universal constant equal arising from the expectation of the absolute value

of a standard normal r.v. The second term can be treated similarly, yielding∫ ∞
−∞
|(A2)|e−z2/2/

√
2πdz ≤ λeλt.

For the third term, we have, using Fubini’s Theorem for the first inequality,∫ ∞
−∞
|(A3)| e

−z2

√
2π

dz = λ

∫ t

0

∫ ∞
−∞

1

2
αut−3/2eλu

∣∣∣∣z − αu√
t

∣∣∣∣ e−(z−αu/
√
t)2/2

√
2π

dzdu

= λ
1

2
αt−3/2

∫ t

0

ueλu
∫ ∞
−∞

∣∣∣∣z − αu√
t

∣∣∣∣ e−(z−αu/
√
t)2/2

√
2π

dzdu

= λ
1

2
αt−3/2C1

∫ t

0

ueλudu

≤ λ
1

2
αt−3/2C1

eλt(λt− 1) + 1

λ2
.

This has absolute value less than or equal to λ1
2
αt−3/2C1

eλtt
λ

= λ1
2
αt−1/2C1

eλt

λ
.

Plugging these three estimates into (4.22), we obtain:
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∣∣∣∣e−λt ddtKvn(t, φ)

∣∣∣∣
≤ e−λt||vn||Lip

∫ ∞
−∞

∣∣∣∣∣djdt e−z
2/2

√
2π

∣∣∣∣∣ dz
≤ e−λt||vn||Lip

(
eλtφ

(
1

2
αt−1/2C1 + λ

)
+ λeλt + λ

1

2
αt−1/2C1

eλt

λ

)
= b||vn||Lipt−1/2,(4.26)

with b =
(
φ
(

1
2
αC1 + λ

)
+ λ+ 1

2
αC1

)
.

Using the Hölder continuity established above, we can do a trivial discretization

to find ε-optimal times.

Corollary IV.35. Fix φ > 0. For 0 ≤ φ ≤ φ, one may find t∗(φ, ε) such that

Jvn(t∗(φ, ε), φ) < min
0≤t≤T

Jvn(t, φ)+ε by making ||vn||Lip·O( 1
ε2

) evaluations of Jvn(·, φ).

Proof. Discretize [0, T ] into N equally spaced points t1, . . . , tN , where N =
⌈
M
ε2

⌉
, and

M is derived from the Hölder constant established in Lemma IV.34; for example, we

may take M , φ+a+ b||vn||Lip, with a = 1 + λ
c

+ 1
c

and b =
(
φ
(

1
2
αC1

)
+ λ+ 1

2λ
C1

)
.

Then, choose t∗(φ, ε) ∈ arg min
1≤i≤N

Jvn(ti, φ). By Lemma IV.34,∣∣∣∣ min
1≤i≤n

Jvn(ti, φ)− min
0≤t≤T

Jvn(t, φ)

∣∣∣∣ ≤ ε, so t∗(ε, φ) must be ε-optimal.

We will uniformly approximate vn by a function v̂n, but we do not know a priori

what Lipschitz properties the approximation v̂n−1 has, only that it is close to vn−1.

Therefore we need Corollary IV.37 and Lemma IV.36 to estimate J0v̂n(φ).

Lemma IV.36. Suppose that ||w1 − w2||L∞ < ε. Then ||J0w1 − J0w2||L∞ < ε and

|Jw1(t, φ)− Jw2(t, φ)| < ε for all t, φ ≥ 0.

Proof. The proof follows by noticing that

Jw1(t, φ)− Jw2(t, φ) = e−λt
∫ ∞
−∞

[w1(j(t, z, φ))− w2(j(t, z, φ))] e−z
2/2/
√

2πdz,

98



which is bounded in size by ε for all t and φ.

Corollary IV.37. Suppose that w : R+ → R is a function such that ||w−vn||L∞ < ε1.

Fix φ > 0. For 0 ≤ φ ≤ φ, one may find t∗∗(φ, ε) such that∣∣∣∣Jw(t∗∗(φ, ε), φ)− min
0≤t≤T

Jvn(t, φ)

∣∣∣∣ < ε+ 3ε1

by making ||vn||Lip ·O( 1
ε2

) evaluations of Jw(·, φ).

Proof. Perform the same discretization as in Corollary IV.37, and let t∗∗(φ, ε) ∈

arg min
1≤i≤N

Jw(ti, φ). Since ||w − vn||L∞ < ε1, Lemma IV.36 implies that

|Jw(t, φ)− Jvn(t, φ)| < ε1 for any t, φ ≥ 0. then Lemma IV.34 implies that∣∣∣∣Jvn(t∗∗(φ, ε))− inf
0≤t≤T

Jvn(t, φ)

∣∣∣∣ < ε+ 2ε1.

Using ||w − vn||L∞ < ε1 again,

|Jvn(t∗∗(φ, ε))− Jw(t∗∗(φ, ε))| < ε1.

Therefore, ∣∣∣∣Jw(t∗∗(φ, ε))− inf
0≤t≤T

Jvn(t, φ)

∣∣∣∣ < ε+ 3ε1.

IV.5.3 Approximating J0vn(φ) over all φ, for Fixed n

Lemma IV.38. Fix n ≥ 0, and suppose that w : R+ → R satisfies ||w − vn||L∞ <

ε1. Then using ||vn||Lip||vn+1||LipO
(

1
ε3

)
evaluations of Jw(t, φ), we can construct a

function Ĵ0w such that ||Ĵ0w(φ)− J0vn(φ)||L∞ < ε+ 3ε1.

Proof. Following Section 4.4 of [53], the function vc(φ) can be explicitly computed,

and in fact we can construct φ such that vc(φ) = 0. By Proposition IV.8, vn(φ) ≥

vc(φ), and vn is increasing and nonnegative, so it follows that vn(φ) = 0 for φ ≥ φ
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for all n ≥ 0. Therefore, we set Ĵ0w(φ) = 0 for φ ≥ φ. So from now on, we assume

that 0 ≤ φ ≤ φ. Discretize [0, φ] into R =
⌈
||vn+1||Lip

ε

⌉
points φ1, . . . , φR, with φ1 = 0

and φR = φ. Using Corollary IV.37, for each i, we may, given w, in ||vn||LipO
(

1
ε2

)
function evaluations calculate Ĵ0w(φi) such that |Ĵ0w(φi) − J0vn(φi)| < ε + 3ε1 for

1 ≤ i ≤ R. For φi ≤ φ < φi+1, 1 ≤ i ≤ R − 1, set Ĵ0w(φ) = Ĵ0w(φi). We have, for

φi ≤ φ < φi+1,

|Ĵ0w(φ)− J0vn(φ)| = |Ĵ0w(φi)− J0vn(φ)|

≤ |Ĵ0w(φi)− J0vn(φi)|+ |J0vn(φi)− J0vn(φ)|

≤ (ε+ 3ε1) + ε,

where the second ε term above is derived from the Lipschitzness of J0vn = vn+1,

established in Lemma IV.33. Since each point i requires ||vn||LipO
(

1
ε2

)
function

evaluations, computing the approximations for all R ≈ ||vn+1||Lip
ε

points requires

||vn||Lip||vn+1||LipO
(

1
ε3

)
function evaluations.

IV.5.4 Approximating vn(φ), for all 0 ≤ n ≤ N

Proof of Proposition IV.29. The function v0(φ) may be computed analytically. Ac-

cording to Lemma IV.38, we may compute a function v̂1(φ) such that

||v̂1(φ)− v1(φ)||L∞ <
ε

N

in ||v0||Lip||v1||LipO
(
N3

ε3

)
function evaluations. Applying Lemma IV.38 again, we

construct v̂2(φ) satisfying ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣v̂2(φ)− J0v1(φ)︸ ︷︷ ︸

v2(φ)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L∞

<
ε

N
+

ε

N

in ||v1||Lip||v2||LipO
(
N3

ε3

)
function evaluations. Arguing inductively in this way, we

see that we may compute v̂N(φ) satisfying

||v̂N(φ)− vN(φ)||L∞ <
Nε

N
= ε
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in

O

(
N3

ε3

)N−1∑
i=0

||vi||Lip||vi+1||Lip

function evaluations. By Lemma IV.33, ||vi||Lip ≤ iT . Therefore

O

(
N3

ε3

)N−1∑
i=0

||vi||Lip||vi+1||Lip = O

(
N3

ε3

)N−1∑
i=0

i2T

≤ O

(
N3

ε3

)
N3T

= O

(
N6

ε3

)
.
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IV.6 Numerical Results for the Lump Sum n-Observation Problem

IV.6.1 Comparison to the Continuous Value Function
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Figure 4.3: Value function vn(φ) for 0 ≤ n ≤ 9, and continuous observation value function vc(φ),
λ = .1, c = .01, α = 1.
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Figure 4.4: Bayesian Risk Associated with Total Number of Observations, λ = .1, c = .01, α = 1.
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Table 4.1: Effect of Observation Size on Value Functions at φ = 0

Observations (n) vn(0) vc(0) vn(0)− vc(0) log(vn(0)−vc(0))
log(n+1) − log(v0(0)− vc(0)), n ≥ 1

0 -76.021 -98.237 22.216
1 -82.586 -98.237 15.651 -.505
2 -85.755 -98.237 12.482 -.525
3 -87.410 -98.237 10.827 -.518
4 -88.392 -98.237 9.845 -.506
5 -89.024 -98.237 9.213 -.491
6 -89.455 -98.237 8.782 -.477
7 -89.762 -98.237 8.475 -.463
8 -89.990 -98.237 8.247 -.451
9 -90.163 -98.237 8.074 -.440
10 -90.299 -98.237 7.938 -.429

As expected, the value functions vn(φ) are all concave and increasing, and between

−1
c

= 100 and 0. Furthermore, as n increases, the value functions decrease. From

Figure 4.3, it is not immediately obvious whether lim
n→∞

vn = vc, although the results

of Section IV.3 prove that this is the case. In any case, the convergence rate is quite

slow, as demonstrated by Table 4.1.
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IV.6.2 Comparison to Dayanik’s Discrete Observation Model

In this subsection, we compare the value functions of the lump sum n-observation

problem with those found in Dayanik’s model of discrete observation, [15]. More

precisely, we consider models of one or five total observation rights, and specify fixed

time intervals at which observations will be made. In Figures 4.5 and 4.6, it is not

surprising that the value function from our n observation problem is smallest, but

the efficiency gap can be quite large, especially for higher values of φ when it can

be crucial to make an observation quickly. Furthermore, we can see that the value

functions associated to fixed observation schedules have widely varying performance

on different levels of φ, and one which performs well for one value of φ may do

quite poorly at another. Therefore, it is hard to achieve good performance using

fixed observation strategies. This should not be surprising: our value function is

the concave hull of the value functions corresponding to deterministic observation

schedules. The difference is magnified with more observations, as flexibility becomes

more important.
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IV.6.3 Depiction of Observation Boundaries
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Figure 4.7: Observation Boundaries, λ = .1, c = .01, α = 1
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Figure 4.8: Observation Boundaries, λ = .1, c = .01, α = 1.
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The observation boundary for v0 is of course identically equal to a horizontal line

at 10 = λ
c
. Without any observations, the posterior process is perpetually increasing,

and so the observation boundary (which is really a stopping boundary here) should

always stop when φ is equal to λ
c
. Note furthermore that the boundary does not

depend on the time since the last observation: since there will never be any more

observations made, there is time homogeneity.

In the rest of the observation boundaries, we notice two general trends: first, the

curves are decreasing in n for large values of time, and second, they are increasing

in n for small values of time. The former phenomenon reflects the idea that if an

agent has more observations, than he should be more willing to use them, which

corresponds to the barrier being easier to get to, and hence lower. At small time

values, however, the barriers are increasing. This reflects the fact that as one has

more observations, one is less willing to “give up” and stop. For example, when one

has only a single observation and the odds process is above 20, an optimally acting

agent knows that he only hurts himself by waiting, and so will observe immediately

at time zero (which is equivalent to stopping the game). With more observations,

however, the agent is willing to wait a little bit and see how things will go, and for

this reason, the curves increase at small times.

A natural question is whether, as the observations increase, do the curves tend

to infinity for very small values of time? In fact, the observation boundaries are

uniformly bounded for all n and t. One may deduce this fact by comparing the

discrete observation value functions with the continuous observation value function.

In Figure 4.3, one sees that the continuous value function is zero for φ ≥ φ (here

φ ≈ 55, and φ can be explicitly computed: it is the optimal threshold level for

stopping in the continuous observation problem, ). This implies that every discrete
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observation value function is also zero for φ ≥ φ. Therefore, one always wants to

observe immediately at such φ values. It follows then that all observation boundaries

from Figures 4.7 and 4.8 will be bounded from above by φ.

IV.7 Numerics for the Stochastic Arrival Rate Problem

IV.7.1 A Heuristic Algorithm for the Stochastic Arrival Rate n-Observation Problem

Here we outline a computational algorithm for solving the stochastic arrival rate

problem. The infinite horizon problem is a limiting case of this one. As discussed be-

fore, the lump sum n-observation problem is essentially embedded into this problem,

so it should be of no surprise that this problem must be solved first.

(1) Fix the total number of observations N . Discretize φ into φ0 = 0, φ1, . . . , φJ = φ

as before, and set all value functions equal to zero for φ ≥ φ. Compute the

(approximations to) value functions v̂NN,j(0, φ), 0 ≤ j ≤ N , as in the previous

section, as well as the optimal times t̂∗,NN,j (φ).

(2) We have computed v̂NN,j(0, φ), the approximation to vNN,j(0, φ). For y, t ≥ 0 such

that (y + t, ϕ(t, φ)) ∈ ΛF , define v̂NN,j(y + t, ϕ(t, φ)) by

(4.27) e−λ(y+t)v̂NN,j(y + t, ϕ(t, φ)) ={
v̂NN,j(0, ϕ(−y, φ))−

∫ y+t

0
e−λr

(
ϕ(r − y, φ)− λ

c

)
dr if y + t < t̂∗,NN,j (ϕ(−y, φ))

e−λ(y+t)Kv̂NN,j+1(y + t, ϕ(−y, φ)) if y + t ≥ t̂∗,NN,j (ϕ(−y, φ))

(3) Fix φj. Discretize time into t0 = 0, t1, . . . , tK = T , for an appropriately chosen

upper bound T , as in Lemma IV.32. Compute v̂NN−1,N−1(0, φj) by minimizing

J0v̂NN,N−1(ti, 0, φj) over the ti. Let t̂∗,NN−1,N−1(φj) be the minimizing ti.

(4) Interpolate to find a function v̂NN−1,N−1(0, φ) which approximates vNN−1,N−1(0, φ),

and a stopping boundary t̂∗,NN−1,N−1(φ).
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(5) Fix φj. As in Step 3, compute v̂NN−1,N−2(0, φj) by minimizing

J+(v̂NN−1,N−1, v̂
N
N,N−2)(ti, 0, φj) over the ti. Let t̂∗,NN−1,N−2(φj) be the minimizing

ti.

(6) Interpolate to find a function v̂NN−1,N−2(0, φ) which approximates vNN−1,N−2(0, φ),

and an observation boundary t̂∗,NN−1,N−2(φ).

(7) Repeat Steps 5 and 6 to compute v̂NN−1,j(0, φ) and t̂∗,NN−1,j(φ) for 0 ≤ j ≤ N − 2.

(8) We now need to repeat the analog of Step 2. For y, t ≥ 0 such that (y +

t, ϕ(t, φ)) ∈ ΛF , inductively define v̂NN−1,j(y + t, ϕ(t, φ), 0 ≤ j ≤ N − 2, by

e−λ(y+t)e−µ(y+t)v̂NN−1,j(y + t, ϕ(t, φ)) =



v̂NN−1,j(0, ϕ(−y, φ)) if y + t < t̂∗,NN−1,j(ϕ(−y, φ))

−
∫∞
0
µe−µu

(∫ u∧(y+t)
0 e−λr

(
ϕ(r − y, φ) − λ

c

)
dr

−1{u≤y+t}e
−λuv̂NN−1,j+1(y + u, ϕ(u, φ))

)
du

e−λ(y+t)e−µ(y+t)Kv̂NN−1,j+1(y + t, ϕ(−y, φ)) if y + t ≥ t̂∗,NN−1,j(ϕ(−y, φ))

(9) Repeat steps 3 through 8 for each 0 ≤ n ≤ N − 2, computing v̂Nn,j, 0 ≤ j ≤ n

and their associated optimal times t̂∗,nn,j(φ).

IV.7.2 Discussion of the Heuristic

1. The formula in Step (2) comes from a dynamic programming principle. In a

simplified version (with y = 0), the dynamic programming principle says that

for t ≤ t̂∗,NN,j (φ),

vNN,j(0, φ) =

∫ t

0

e−λr
(
ϕ(r, φ)− λ

c

)
dr + e−λtvNN,j(t, ϕ(t, φ)) :

in other words, if it is not optimal to make an observation before time t, then

by waiting until time t no utility is lost, and the only difference between the

value functions at the two times is the exponential discounting and the running

cost lost between them. On the other hand, for all t > t̂∗,NN,j (φ), we assume
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that it is optimal to immediately observe, hence the term e−λtKvNN,j+1(t, φ) in

(4.27), describing the expected value after an observation is made. This step is

a heuristic because we have not shown that the optimal observation behavior

has this simple strategy. It is in theory possible, although unlikely in practice,

that, when starting at t = 0 the optimal observation time is t̂∗,NN,j (φ), but when

starting at some t1 > t̂∗,NN,j (φ), the optimal observation time is not t1, but some

other t2 > t1. Numerical evidence suggests that this is not the case, but we do

not have a proof of this fact.

2. In Step 3, The J0
0 operator is applied in the case when the agent has no spare

observation rights. If he must wait to receive an observation, then even in that

first instant when he receives this right, a positive amount of time has passed

since the last observation was made. Therefore, we need information about the

value function, i.e. vNN,N−1(·, ·), when its first argument is positive: this explains

the necessity of Step 2. Similar considerations apply to the calculation in Step

5.

3. The derivation of Step 8 is similar to that of Step 2, except that whereas in

Step 2, we took the dynamic programming principle with all observation rights

received, here we use the dynamic programming principle when there are still

observation rights receiving. For example, dynamic programming implies that

for t ≤ t∗,NN−1,j(φ),

vNN−1,j(0, φ) =

∫ ∞
0

µe−µ

(∫ u∧t

0

e−λr
(
ϕ(r, φ)− λ

c

)
dr

+ 1{t<u}e
−λtvNN−1,j(t, ϕ(t, φ)) + 1{u≤t}e

−λuvNN,j(u, ϕ(u, φ))

)
du.

From this equation, we can solve for vNN−1,j(t, ϕ(t, φ)) to obtain the formula used
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in Step 8.

4. In Step 3, the minimum of a function is calculated by an exhaustive search

on grid points. Numerical evidence suggests that J0v̂NN,N−1(t, 0, φ) is actually

convex as a function of t, which would allow for much more efficient ways of

finding its minimum. The same holds true for the minimization in Step 5. We

currently do not have analytic proofs of these facts. We note that this reasoning

can additionally be applied to the minimization of Jvn(·, φ) in the lump sum

n-observation problem.

111



IV.7.3 Numerical Results for the Stochastic Arrival Rate n-Observation Problem
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Figure 4.9: v1
1,1(φ),v1

1,0(φ), and v1
0,0(φ) for different arrival rates µ; λ = .1, c = .01, α = 1.

Concerning Figure 4.9, we make a few basic observations. First, it should be clear

that v1
1,1, corresponding to the case where the single observation right has been used,

is the worst-performing value function, and v1
1,0, corresponding to the case where

the observation right has been received but not used, is the best-performing. We

also expect v1
0,0, as the arrival parameter µ varies, to interpolate between these two

extreme curves, so that v1
0,0 resembles v1

1,0 when µ is large, and v1
1,1 when µ is small.

Furthermore, the gap between v1
0,0 and v1

1,0 is smallest when φ is small. This reflects

the fact that when φ is small, an optimally acting agent, even if he had an observation

right in hand, would wait to exercise it. As a consequence, having to wait to receive

such a right is a less stringent constraint than when φ is large, in which case it is

important to make an observation relatively quickly.
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IV.8 Proofs from Section IV.2

Proof of Proposition IV.3. Let Ψ = {ψ1, . . . , ψn} ∈ On, and let τ ∈ T Ψ. Supposing

that τ ≥ ψk, we will show how to modify Ψ to yield an observation strategy Ψ̃ under

which τ is a FΨ̃-stopping time that does not stop between ψk and ψk+1. By induc-

tively following the same procedure, this allows us to construct an observation strat-

egy Ψ′ such that τ ∈ T Ψ′
o and Eφ

[∫ τ
0
e−λt

(
ΦΨ
t − λ

c

)
dt
]

= Eφ
[∫ τ

0
e−λt

(
ΦΨ′
t − λ

c

)
dt
]
.

This will establish the lemma.

The basic method is to just add in an observation whenever τ stops between

observations; if a stop is made between observations, there are always “spare ob-

servations”. Let A = {ψk < τ < ψk+1}. According to Proposition IV.2, A ∈ FΨ
ψk

,

or A ∈ σ
(
{Xψi , ψi}1≤i≤k

)
. Define ψ̃1 = ψ1, . . . , ψ̃k = ψk, ψ̃k+1 = 1Aτ + 1Acψk+1,

and for k + 2 ≤ j ≤ n, ψ̃j = 1Aψj−1 + 1Acψj. With A ∈ σ
(
{Xψi , ψi}1≤i≤k

)
=

σ

({
Xψ̃i

, ψ̃i

}
1≤i≤k

)
, the following claim will imply that for each k + 1 ≤ j ≤ n,

ψ̃j ∈ m σ(Xψ̃1
, . . . , Xψ̃j−1

, ψ̃1, . . . , ψ̃j−1).

This fact is obvious for j = 1, . . . , k, as ψ̃j = ψj for j ≤ k. Set Ψ̃ , {ψ̃1, . . . , ψ̃n}.

Claim IV.39. Let Let k + 1 ≤ j ≤ n. Let X ∈ FΨ
ψj−1

and let Y ∈ FΨ
ψj

. Then

[A ∩X] ∪ [Ac ∩ Y ] ∈ F Ψ̃
ψ̃j

.

Proof Of Claim. Write 1X = x ({Xψi , ψi : 1 ≤ i ≤ j − 1}),

1Y = y ({Xψi , ψi : 1 ≤ i ≤ j}), 1A = a
(
{Xψi , ψi}1≤i≤k

)
, where x, y, and a are all

Borel functions with respective domains R2(j−1),R2j, and R2k.
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Then

1A1X + 1Ac1Y

= 1Ax ({Xψi , ψi : 1 ≤ i ≤ j − 1})

+1Acy ({Xψi , ψi : 1 ≤ i ≤ j})

= 1Ax
(
Xψ1 , ψ1, {1AXψi−1

+ 1AcXψi , 1Aψi−1 + 1Acψi : 3 ≤ i ≤ j}
)

+1Acy
(
Xψ1 , ψ1, 1AXτ + 1AcXψ2 , 1Aτ + 1Acψ2,

{1AXψi−1
+ 1AcXψi , 1Aψi−1 + 1Acψi : 3 ≤ i ≤ j}

)
= a

(
{Xψi , ψi}1≤i≤k

)
x
(
Xψ1 , ψ1, {1AXψi−1

+ 1AXψi , 1Aψi−1 + 1Acψi : 3 ≤ i ≤ j}
)

+
(

1− a
(
{Xψi , ψi}1≤i≤k

))
y
(
Xψ1 , ψ1, 1AXτ + 1AcXψ2 , 1Aτ + 1Acψ2,

{1AXψi−1
+ 1AcXψi , 1Aψi−1 + 1Acψi : 3 ≤ i ≤ j}

)
∈ mF Ψ̃

ψ̃j
.

Having concluded the proof of the claim, we have shown that the observation

strategy Ψ̃ is admissible, or Ψ̃ ∈ On. By construction, τ does not stop between ψ̃k

and ψ̃k+1.

We have to check that τ is a FΨ̃-stopping time. Let t > 0. Then {τ ≤ t} ∈ F Ψ̃
t if

and only if {τ ≤ t} ∩ {ψ̃j ≤ t} ∈ F Ψ̃
ψ̃j

for each 1 ≤ j ≤ n. This is clear for 1 ≤ j ≤ k

as ψ̃j = ψj for 1 ≤ j ≤ k and τ is a FΨ-stopping time. For j = k + 1, we work on A

and Ac separately. We must show

{τ ≤ t} ∩ {ψ̃k+1 ≤ t} ∈ F Ψ̃
ψ̃k+1

.

Invoking the claim, it is sufficient to show that

(4.28) {τ ≤ t} ∩ {ψ̃k+1 ≤ t} ∩ A ∈ FΨ
ψk
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and

(4.29) {τ ≤ t} ∩ {ψ̃k+1 ≤ t} ∩ Ac ∈ FΨ
ψk+1

.

To show (4.28), note that on the set A, ψ̃k+1 = τ , and so {τ ≤ t}∩{ψ̃k+1 ≤ t}∩A =

{τ ≤ t} ∩ A. Since τ is a FΨ-stopping time, greater than or equal to ψk, it follows

that {τ ≤ t} = {τ ≤ t} ∩ {ψk ≤ t} ∈ FΨ
ψk

. To show (4.29), note that on the set Ac,

ψ̃k+1 = ψk+1, so {τ ≤ t} ∩ {ψ̃k+1 ≤ t} ∩ Ac = {τ ≤ t} ∩ {ψk+1 ≤ t} ∩ Ac ∈ FΨ
ψk+1

,

noting that τ is a FΨ stopping time and A ∈ FΨ
ψk

.

Now, fix j ≥ k + 2. We may write

{τ ≤ t} ∩ {ψ̃j ≤ t} =
[
A ∩ {τ ≤ t} ∩ {ψj−1 ≤ t}

]
∪
[
Ac ∩ {τ ≤ t} ∩ {ψj ≤ t}

]
.

Since τ is a FΨ-stopping time, we know that {τ ≤ t} ∩ {ψj−1 ≤ t} ∈ FΨ
ψj−1

and

{τ ≤ t} ∩ {ψj ≤ t} ∈ FΨ
ψj

. Therefore, {τ ≤ t} ∩ {ψ̃j ≤ t} ∈ F Ψ̃
ψj

, again by Claim

IV.39.

Finally, note that Eφ
[∫ τ

0
e−λt

(
ΦΨ
t − λ

c

)
dt
]

= Eφ
[∫ τ

0
e−λt

(
ΦΨ̃
t − λ

c

)
dt
]

because

ΦΨ = ΦΨ̃ a.s. on the random time interval [0, τ).

Proof of Proposition IV.4. Fix n ≥ 0. We proceed by backwards induction, so con-

sider the base case k = n, and take Ψn = {ψn1 , . . . , ψnn} ∈ On. We will prove equality

here. We must show that

v0

(
ΦΨn

ψnn

)
= ess inf

Ψ∈On(Ψn)
ess inf

τ∈T Ψ
o ,τ≥ψnn

E

[∫ τ

ψnn

e−λ(t−ψnn)

(
ΦΨ
t −

λ

c

)
dt
∣∣FΨn

ψnn

]
= ess inf

τ∈T Ψn ,τ≥ψnn
E

[∫ τ

ψnn

e−λ(t−ψnn)

(
ΦΨn

t −
λ

c

)
dt
∣∣FΨn

ψnn

]
,

the second inequality following from the fact that we can observe a total of n times,

so that On(Ψn) is a singleton, and equal to Ψn.
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Recall

(4.30) t∗0(φ) =
1

λ
log

(
c+ λ

c(φ+ 1)

)
∨ 0.

A simple calculation confirms that J00(φ) = J0(t∗(φ), φ).

According to Proposition IV.2, there is a one-to-one correspondence between {τ ∈

T Ψn : τ ≥ ψnn} and the set {ψnn + Rn : Rn ≥ 0, Rn ∈ mFΨn

ψnn
}. So, take τ ∗ =

ψnn + t∗0(ΦΨn

ψnn
) ∈ {τ ∈ T Ψn : τ ≥ ψnn}. Thus,

ess inf
τ∈T Ψn ,τ≥ψnn

E

[∫ τ

ψnn

e−λ(t−ψnn)

(
ΦΨn

t −
λ

c

)
dt
∣∣FΨn

ψnn

]
≤ E

[∫ τ∗

ψnn

e−λ(t−ψnn)

(
ΦΨn

t −
λ

c

)
dt
∣∣FΨn

ψnn

]
.

According to (4.1), the process ΦΨn

t is increasing for t ≥ ψnn, and if t∗0(ΦΨn

t ) > 0,

then ψnn+t∗0(ΦΨn

ψnn
) is the unique time t ≥ ψnn when ΦΨn

t − λ
c

changes sign from negative

to positive. If t∗0(ΦΨn

t ) = 0, then ΦΨn

t is always greater than λ/c. Therefore,

ess inf
τ∈T Ψn ,τ≥ψnn

E

[∫ τ

ψnn

e−λ(t−ψnn)

(
ΦΨn

t −
λ

c

)
dt
∣∣FΨn

ψnn

]
≥ E

[∫ τ∗

ψnn

e−λ(t−ψnn)

(
ΦΨn

t −
λ

c

)
dt
∣∣FΨn

ψnn

]
,

the inequality holding at the pointwise level. It therefore follows that γnn(Ψn) =

v0(ΦΨn

ψnn
).

Now, for the inductive step, suppose that γnk+1(Ψk+1) ≥ vn−k−1

(
ΦΨk+1

ψk+1
k+1

)
for all

Ψk+1 = {ψk+1
i }1≤i≤k+1 ∈ Ok+1. Let Ψk = {ψki }1≤i≤k ∈ Ok. We wish to show that

γnk (Ψk) ≥ vn−k

(
Ψk
ψkk

)
.

Let Ψ̃ ∈ On(Ψk), and write Ψ̃ = {ψk1 , . . . , ψkk , ψ̃k+1, . . . , ψ̃n}. Without loss of gener-

ality, we assume that ψ̃k+1 > ψkk .

Then
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ess inf
τ∈T Ψ̃

o ,τ≥ψkk

E

[∫ τ

ψk
k

e−λ(t−ψkk)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣FΨk

ψk
k

]

= min

{
0, ess inf
τ∈T Ψ̃

o ,τ≥ψ̃k+1

E

[∫ ψ̃k+1

ψk
k

e−λ(t−ψkk)

(
ΦΨ̃
t −

λ

c

)
dt+

∫ τ

ψ̃k+1

e−λ(t−ψkk)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣FΨk

ψk
k

]}

= min

{
0, E

[∫ ψ̃k+1

ψk
k

e−λ(t−ψkk)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣FΨk

ψk
k

]

+ ess inf
τ∈T Ψ̃

o ,τ≥ψ̃k+1

E

[∫ τ

ψ̃k+1

e−λ(t−ψkk)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣FΨk

ψk
k

]}

≥ min

{
0,

∫ ψ̃k+1−ψkk

0

e−λt
(
ϕ
(
t,ΦΨk

ψk
k

)
− λ

c

)
dt+ e−(ψ̃k+1−ψkk)E

[
vn−k−1

(
ΦΨ̃
ψ̃k+1

) ∣∣FΨk

ψk
k

]}

by the inductive hypothesis, where we have used the fact that ψ̃k+1 is FΨk

ψkk
-measurable

as well as the deterministic dynamics of ΦΨ̃ in between jumps. Next,

min

{
0,

∫ ψ̃k+1−ψkk

0

e−λt
(
ϕ
(
t,ΦΨk

ψk
k

)
− λ

c

)
dt+ e−(ψ̃k+1−ψkk)E

[
vn−k−1

(
Ψ̃ψ̃k+1

) ∣∣FΨk

ψk
k

]}

= min

{
0,

∫ ψ̃k+1−ψkk

0

e−λt
(
ϕ
(
t,ΦΨk

ψk
k

)
− λ

c

)
dt

+e−(ψ̃k+1−ψkk)E

vn−k−1

j
ψ̃k+1 − ψkk ,ΦΨk

ψk
k
,
Xψ̃k+1

−Xψk
k√

ψ̃k+1 − ψkk

∣∣FΨk

ψk
k

}

= min

{
0,

∫ ψ̃k+1−ψkk

0

e−λt
(
ϕ
(
t,ΦΨk

ψk
k

)
− λ

c

)
dt+ e−(ψ̃k+1−ψkk)Kvn−k−1

(
ψ̃k+1 − ψkk ,ΦΨk

ψk
k

)}
= min

{
0, Jvn−k−1

(
ψ̃k+1 − ψkk ,ΦΨk

ψk
k

)}
,

noting that ψ̃k+1−ψkk > 0 and that
X
ψ̃k+1

−X
ψk
k√

ψ̃k+1−ψkk
has standard normal distribution, in-

dependent of FΨk

ψkk
. Finally, min

{
0, Jvn−k−1

(
ψ̃k+1 − ψkk ,ΦΨk

ψkk

)}
≥ J0vn−k−1

(
ΦΨk

ψkk

)
=

vn−k

(
ΦΨk

ψkk

)
.

This establishes that

ess inf
τ∈T Ψ̃

o ,τ≥ψkk
E

[∫ τ

ψkk

e−λ(t−ψkk)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣FΨk

ψkk

]
≥ vn−k

(
ΦΨk

ψkk

)
.

Taking the infimum over all Ψ̃ ∈ On(Ψk), we obtain that γnk (Ψk) ≥ vn−k

(
Ψk
ψkk

)
.

Proof. The “ ≥ ” inequality has been established in Proposition IV.4, and it suffices

to show that γnk (Ψk) ≤ vn−k(Φ
Ψk

ψk
). As in Proposition IV.4, we proceed by reverse

induction, and note that the base case has already been established in Proposition
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IV.4. Therefore, we assume that γnk+1(Ψk+1) = vn−k−1

(
ΦΨk+1

ψk+1
k+1

)
for all Ψk+1 ∈ Ok+1.

Let Ψk ∈ Ok. We wish to show that γnk (Ψk) ≤ vn−k

(
ΦΨk

ψkk

)
. Recall the functions

h0
n−k(φ) = min{s ≥ 0 : Jvn−k(s, φ) ≤ J0vn−k(φ)},

and the stopping times ψ̂k+1 , ψkk + h0
n−k

(
ΦΨk

ψkk

)
. Note that we can use a minimum

above instead of an infimum because Jvn−k(s, φ) is lower semi-continuous in s, as

vn−k is nonpositive. Write Ψ̂k+1 =
{
ψk1 , . . . , ψ

k
k , ψ̂k+1

}
.

Then

γnk (Ψk) = ess inf
Ψ∈On(Ψk)

ess inf
τ∈T Ψ

o ,τ≥ψkk
E

[∫ τ

ψk
k

e−λ(t−ψkk)

(
ΦΨ
t −

λ

c

)
dt
∣∣FΨk

ψk
k

]

≤ ess inf
Ψ∈On(Ψ̂k+1)

ess inf
τ∈T Ψ

o ,τ≥ψkk
E

[∫ τ

ψk
k

e−λ(t−ψkk)

(
ΦΨ
t −

λ

c

)
dt
∣∣FΨk

ψk
k

]

= min

{
0, E

[∫ ψ̂k+1

ψk
k

e−λ(t−ψkk)

(
ΦΨ
t −

λ

c

)
dt

+ ess inf
Ψ∈On(Ψ̂k+1)

ess inf
τ∈T Ψ

o ,τ≥ψ̂k+1

∫ τ

ψ̂k+1

e−λ(t−ψkk)

(
ΦΨ
t −

λ

c

)
dt
∣∣FΨk

ψk
k

]}

= min

{
0, E

[∫ ψ̂k+1

ψk
k

e−λ(t−ψkk)

(
ΦΨ̂k+1

t − λ

c

)
dt+ e−(ψ̂k+1−ψkk)γnk+1

(
ΦΨ̂k+1

ψ̂k+1

) ∣∣FΨk

ψk
k

]}

= min

{
0, E

[∫ ψ̂k+1−ψkk

0

e−λt
(
ϕ(t,ΦΨk

ψk
k

)− λ

c

)
dt+ e−(ψ̂k+1−ψkk)vn−k−1

(
ΦΨ̂k+1

ψ̂k+1

) ∣∣FΨk

ψk
k

]}
,

with the last equality following from the inductive hypothesis and the deterministic

evolution of ΦΨk in between jumps. It now follows, using an argument similar to

that at the end of the proof of Proposition IV.4, that

min

{
0, E

[∫ ψ̂k+1−ψkk

0

e−λt
(
ϕ(t,ΦΨk

ψkk
)− λ

c

)
dt+ e−(ψ̂k+1−ψkk)vn−k−1

(
ΦΨ̂k+1

ψ̂k+1

) ∣∣FΨk

ψkk

]}

= J0vn−k−1

(
ΦΨk

ψkk

)
= vn−k

(
ΦΨk

ψkk

)
,

with the first equality above by definition of ψ̂k+1 and h0
n−k. It follows then that

γnk (Ψk) ≤ vn−k(Φ
Ψk

ψk
),

and the equality now follows.
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Proof of Lemma IV.6. We claim that hεn−k(φ) is lower semi-continuous. This would

imply that hεn−k(φ) is Borel-measurable, which will in turn imply that ψ̂k+1 is a

stopping time.

Let φi → φ∞ in R+, and let si = hεn−k(φi). Note that J0vn−k(·) is bounded, and

that

lim
s→∞

inf
φ≥0

Jvn−k(s, φ) = +∞.

Therefore, we may assume that the sequence {si}i≥0 is bounded. It follows then that

lim inf
i→∞

si = s∞ < ∞. It is straightforward to see that Jvn−k(·, ·) and J0vn−k(·) are

continuous in their arguments. Therefore,

Jvn−k(s∞, φ∞) ≤ lim inf
i→∞

Jvn−k(si, φi)

≤ lim
i→∞

J0vn−k(φi) + ε

= J0vn−k(φ∞) + ε.

Thus,

hεn−k(φ∞) ≤ s∞

= lim inf
i→∞

si

= lim inf
i→∞

hεn−k(φi),

establishing lower semi-continuity.

IV.9 Proofs from Section IV.3

IV.9.1 Estimates for the Second Moment of Φ̃nt

Lemma IV.40. Let Z be a standard normal random variable. Then for t > 0 and

φ ≥ 0, E[j(t, Z, φ)] = eλt(φ+ 1)− 1.

Proof. We may write

E[j(t, Z, φ)] =

∫ ∞
−∞

(
eαz
√
t+(λ−α2/2)tφ+

∫ t

0

λe
λu+αz√

t
u−α

2

2t
u2

)
e−z

2/2/
√

(2π)dz.
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The integral of the first term is calculated by completing the square and equals eλtφ.

The integral of the second term is calculated by switching the order of integration

and completing the square, yielding eλt − 1.

Corollary IV.41. Let n and k be positive integers. Then

E
[
Φ̃n

k
n

∣∣Fnk−1
n

]
= e

λ
n

(
Φ̃n
k−1
n

+ 1
)
− 1.

Proof. Apply Lemma IV.40 with t = 1
n
, using the fact that Φ̃n

k
n

= j
(

1
n
, Zk, Φ̃

n
k−1
n

)
,

with Zk independent of Fnk−1
n

.

Lemma IV.42. Let Z be a standard normal random variable. Then for φ ≥ 0 and

t > 0,

E[j(t, Z, φ)2] ≤ φ2e2λt+α2t + 2φeλt
λ

λ+ α2

(
eλt+α

2t − 1
)

+ eα
2t
(
eλt − 1

)2
.

Proof. We start by expanding E [j(t, Z, φ)2] into three terms:

E
[
j(t, Z, φ)2

]
=

∫ ∞
−∞

φ2e2αz
√
t+2(λ−α2/2)te−z

2/2/
√

(2π)dz

}
(1)

+ 2φ

∫ ∞
−∞

eαz
√
t+(λ−α2/2)t

(∫ t

0

λe
λu+αz√

t
u−α

2

2t
u2

du

)
e−z

2/2/
√

2πdz

}
(2)

+

∫ ∞
−∞

(∫ t

0

λe
λu+αz√

t
u−α

2

2t
u2

du

)(∫ t

0

λe
λw+αz√

t
w−α

2

2t
w2

dw

)
e−z

2/2/
√

2πdz

}
(3)

We calculate each of these terms separately. (1) is the simplest, and by completing

the square, we can calculate its value to be φ2e2λteα
2t. We have

(2) = 2φ

∫ t

0

λeλteλueα
2u

(∫ ∞
−∞

e
−
(
z−αu√

t
−α
√
t
)2
/2
/
√

2πdz

)
du

= 2φeλt
∫ t

0

λeλueα
2udu

= 2φeλt
λ

λ+ α2

(
eλt+α

2t − 1
)
.
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Now, the third term we cannot calculate exactly, but we give an upper bound for

it which will be good enough:

(3) =

∫ t

0

∫ t

0

λeλueλwe
α2uw
t

(∫ ∞
−∞

e
−
(
z−αu√

t
−αw√

t

)2
/2
/
√

2πdz

)
dudw

=

∫ t

0

∫ t

0

λeλueλwe
α2uw
t dudw

≤
∫ t

0

∫ t

0

λeλueλweα
2tdudw

= eα
2t
(
eλt − 1

)2
,

where in the inequality above, we have the used the fact that uw ≤ t2 for u,w ∈ [0, t].

Combining (1), (2), and (3), we deduce the lemma.

Corollary IV.43. Let n and k be positive integers. Then

E

[(
Φ̃nk
n

)2 ∣∣Fnk−1
n

]
≤
(

Φ̃nk−1
n

)2

e
1
n

(2λ+α2) + 2Φ̃nk−1
n
e
λ
n

λ

λ+ α2

(
e

1
n

(λ+α2) − 1
)

+ e
α2

n

(
e
λ
n − 1

)2

.

Proof. Apply Lemma IV.42, as Lemma IV.40 is used in the proof of Corollary IV.41.

Since we are interested in the limit as n → ∞, we we also set down asymptotic

versions of Lemma IV.42 and Corollary IV.43.

Lemma IV.44. Let φ ≥ 0, and Z a standard normal random variable. Then as

t ↓ 0,

E
[
j(t, Z, φ)2

]
= φ2(1 + 2λt+ α2t+O(t2)) + φ(2λt+O(t2)) +O(t2).

Proof. By examining the proof of Lemma IV.42, we can see that E [j(t, Z, φ)2] =

φ2e2λteα
2t+2φeλt λ

λ+α2

(
eλt+α

2t − 1
)

, plus a positive third term, which can be bounded

from above by eα
2t
(
eλt − 1

)2
. Note that this term

eα
2t
(
eλt − 1

)2
= (1 + α2t+O(t2))(λt+O(t2))2

= O(t2).
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So, we are left with the first two terms. We have

φ2e2λteα
2t = φ2(1 + 2λt+O(t2))(1 + α2t+O(t2))

= φ2(1 + 2λt+ α2t+O(t2)),

and

2φeλt
λ

λ+ α2

(
eλt+α

2t − 1
)

= 2φ(1 + λt+O(t2))
λ

λ+ α2
(λt+ α2t+O(t2))

= 2φ(t+O(t2)).

Corollary IV.45. Let k be a positive integer. As n→∞,

E

[(
Φ̃nk
n

)2 ∣∣Fnk−1
n

]
=
(

Φ̃nk−1
n

)2
(

1 +
2λ

n
+
α2

n
+O

(
1

n2

))
+ Φ̃nk−1

n

(
2λ

n
+O

(
1

n2

))
+O

(
1

n2

)
.

IV.9.2 Proving Proposition IV.15 by Establishing the Conditions of Proposition IV.13

We verify the six conditions of Proposition IV.13 separately. First note that

Condition (a) is satisfied by construction. We will defer (b) until last.

Conditions (c), (e). First, we will construct the process Nn
t . This is essentially done

by Doob Decomposition. We set Nn
0 = 0. First, we will define Nn at grid points

{ 1
n
, 2
n
, . . .}, and then extend to all of R+. We construct Nn on the grid points

inductively: for k ≥ 1,

Nn
k
n

−Nn
k−1
n

, E

[
Φ̃n

k
n

− Φ̃n
k−1
n

−
∫ k

n

k−1
n

b(Φ̃n
s )ds|Fnk−1

n

]

= E

[
Φ̃n

k
n

− Φ̃n
k−1
n

− 1

n
λ
(

1 + Φ̃n
k−1
n

)
|Fnk−1

n

]
,

(4.31)

using b(x) = λ(1 + x), as well as the fact that Φ̃n
s = Φ̃n

k−1
n

for k−1
n
≤ s < k

n
by

construction. Now by Corollary IV.43,
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E
[
Φ̃n

k
n

∣∣Fnk−1
n

]
= e

λ
n

(
Φ̃n
k−1
n

+ 1
)
− 1

=

(
1 +

λ

n
+
λ2

n2
+ · · ·

)(
Φ̃n
k−1
n

+ 1
)
− 1

=

(
1 +

λ

n
+O

(
1

n2

))(
Φ̃n
k−1
n

+ 1
)
− 1.

(4.32)

Therefore, plugging (4.32) in (4.31),

Nn
k
n

−Nn
k−1
n

=

(
1 +

λ

n
+O

(
1

n2

))(
Φ̃n
k−1
n

+ 1
)
− 1− Φ̃n

k−1
n

− 1

n
λ
(

1 + Φ̃n
k−1
n

)
=

(
λ2

n2
+
λ3

n3
+ · · ·

)(
Φ̃n
k−1
n

+ 1
)

= O

(
1

n2

)(
Φ̃n
k−1
n

+ 1
)
.

(4.33)

This defines Nn on all grid points. Next, for k−1
n
≤ t < k

n
,

Nn
t −Nn

k−1
n

, E

[
−
∫ t

k−1
n

b(Φ̃n
s )ds

∣∣Fnk−1
n

]

=

(
k − 1

n
− t
)
λ
(

1 + Φ̃n
k−1
n

)
,

using as before the forms of b(x) and Φ̃n
t in between grid points.

We have now defined Nn
t for all t ≥ 0, and by construction, (b) is satisfied. The

goal now is to show that Condition (e) is satisfied by the Nn’s as n → ∞. We

start with some observations about the process Nn. Recall the fixed L > 0 from

Proposition IV.13. We let kmax = kmax(n) , Ln.

(1) For all n, the sequence N
n
, {Nn

0 , N
n
1
n

, Nn
2
n

, . . .}, is increasing: Note that from

(4.33)

Nn
k
n

−Nn
k−1
n

=

(
λ2

n2
+
λ3

n3
+ · · ·

)(
Φ̃n
k−1
n

+ 1
)
≥ 0.

As a consequence of this fact, the maximum of E
[
N
n

T

]
over all of its stopping

times T is equal to E
[
N
n
kmax
n

]
.
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(2) For any k, Nn
t −Nn

k−1
n

=
(
k−1
n
− t
)
λ
(

1 + Φ̃n
k−1
n

)
for k−1

n
≤ t < k

n
. This is a neg-

ative term whose magnitude is maximized when t approaches k
n
. Furthermore,

Nn
k
n
− − N

n
k−1
n

= −λ
n

(
1 + Φ̃n

k−1
n

)
. Since Nn

k
n

is always nonnegative, this implies

that

(4.34) inf
0≤t≤L

Nn
t ≥ min

1≤k≤kmax
− λ

n

(
1 + Φ̃n

k−1
n

)
.

Note that
{

Φ̃n
k
n

: 0 ≤ k ≤ kmax

}
is a submartingale, as seen in (4.32), and so its

negative is a supermartingale. Therefore, by Doob’s inequality,

(4.35) E

[(
min

1≤k≤kmax
− λ

n

(
1 + Φ̃n

k−1
n

))2
]
≤ 2

λ2

n2
E

[(
1 + Φ̃n

kmax
n

)2
]
.

We iteratively apply Corollary IV.43 to estimate the size of Φ̃n
k
n

, deducing that

(4.36) E

[(
Φ̃n

k
n

)2
]
� (φ2 + φ)e

k
n

(2λ+α2).

In particular, for all n and for k less than or equal to kmax(n) = Ln and fixed φ, the

above quantity is uniformly bounded over all k. It follows from (4.34), (4.35), and

(4.36), therefore, that || inf
0≤t≤L

Nn
t ||L2 = O

(
1
n

)
. We find, therefore, that

sup
T∈T nL

E
[
(Nn

T )2] = E

[(
Nn

kmax
n

)2
]

+O

(
1

n2

)
.

It remains to control the size of this last term. Recall from (4.33) thatNn
k
n

−Nn
k−1
n

=

O
(

1
n2

) (
Φ̃n
k−1
n

+ 1
)

. Iterating this formula over 1 ≤ k ≤ kmax, we have

Nn
kmax
n

= O

(
1

n2

) kmax∑
k=1

(
Φ̃n
k−1
n

+ 1
)

= O

(
1

n2

) kmax∑
k=1

(
Φ̃n
k−1
n

)
+O

(
1

n

)
,

using kmax = Ln. Squaring both sides of this equation and taking expectations, we
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deduce by (4.36) and Hölder’s Inequality that

E

[(
Nn

kmax
n

)2
]

= O

(
1

n4

)
(kmax(n))2e2L(2λ+α2) +O

(
1

n3

)
kmax(n)eL(2λ+α2) +O

(
1

n2

)
= O

(
1

n4

)
(Ln)2e2L(2λ+α2) +O

(
1

n3

)
(Ln)eL(2λ+α2) +O

(
1

n2

)
= O

(
1

n2

)
.

This establishes Condition (e).

We next address Conditions (d) and (f).

Conditions (d) and (f). First, we will construct the process N n
t . The procedure

mimics the one in the construction of Nn
t . We write

Snk
n

− Snk−1
n

=
(
Mn

k
n

)2

−
(
Mn

k
n

)2

−
∫ k

n

k−1
n

a(Φ̃n
s )ds

=
(
Mn

k
n

)2

−
(
Mn

k
n

)2

− α2

n

(
Φ̃n
k−1
n

)2

,

(4.37)

using the fact that a(x) = α2x2, and that Φ̃n
s = Φ̃n

k−1
n

for k−1
n
≤ s < k

n
. We set

N n
0 = 0. We first define N n on the grid points { 1

n
, 2
n
, . . .}. Define

N n
k
n

−N n
k−1
n

, E
[
Snk
n

− Snk−1
n

∣∣Fnk−1
n

]
= E

(Φ̃n
k
n

−
∫ k

n

0

b(Φ̃n
s )ds−Nn

k
n

)2 ∣∣Fnk−1
n


− E

(Φ̃n
k−1
n

−
∫ k−1

n

0

b(Φ̃n
s )ds−Nn

k−1
n

)2 ∣∣Fnk−1
n


− α2

n

(
Φ̃n
k−1
n

)2

.

(4.38)

We can expand the first term in (4.38) as

E

[(
Φ̃nk−1

n
+
(

Φ̃nk
n
− Φ̃nk−1

n

)
−
∫ k−1

n

0

b(Φ̃ns )ds−
∫ k

n

k−1
n

b(Φ̃ns )ds−Nn
k−1
n
−
(
Nn
k
n
−Nn

k−1
n

))2∣∣Fnk−1
n

]
,
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or

E

[((
Φ̃nk−1

n
−
∫ k−1

n

0

b(Φ̃ns )ds−Nn
k−1
n

)
+
(

Φ̃nk
n
− Φ̃nk−1

n

)
−
∫ k

n

k−1
n

b(Φ̃ns )ds−
(
Nn
k
n
−Nn

k−1
n

))2∣∣Fnk−1
n

]
.

This is designed to cancel with the second term in (4.38). After some algebraic

manipulation, we arrive at

Nn
k
n
−Nn

k−1
n

= 2

(
Φ̃nk−1

n
−
∫ k−1

n

0

b(Φ̃ns )ds−Nn
k−1
n

)
E

[(
Φ̃nk
n
− Φ̃nk−1

n

)
−
∫ k

n

k−1
n

b(Φ̃ns )ds−
(
Nn
k
n
−Nn

k−1
n

) ∣∣Fnk−1
n

]

+ E

[((
Φ̃nk
n
− Φ̃nk−1

n

)
−
∫ k

n

k−1
n

b(Φ̃ns )ds−
(
Nn
k
n
−Nn

k−1
n

))2 ∣∣Fnk−1
n

]

− α2

n

(
Φ̃nk−1

n

)2

.

In the first term of the right hand side above, the conditional expectation is zero,

by definition of Nn. So we have

Nn
k
n
−Nn

k−1
n

= E

[((
Φ̃nk
n
− Φ̃nk−1

n

)
−
∫ k

n

k−1
n

b(Φ̃ns )ds−
(
Nn
k
n
−Nn

k−1
n

))2 ∣∣Fnk−1
n

]
− α2

n

(
Φ̃nk−1

n

)2

= E

[(
Φ̃nk
n
−
(

Φ̃nk−1
n

+
λ

n

(
1 + Φ̃nk−1

n

)
+
(
Nn
k
n
−Nn

k−1
n

)))2 ∣∣Fnk−1
n

]
− α2

n

(
Φ̃nk−1

n

)2

.

We will now expand this term above. Recall the useful facts that E
[
Φ̃n

k
n

|Fnk−1
n

]
=

e
λ
n

(
Φ̃n
k−1
n

+ 1
)
− 1, and that Nn

k
n

is Fnk−1
n

-measurable. We have

Nn
k
n
−Nn

k−1
n

= E

[(
Φ̃nk
n

)2 ∣∣Fnk−1
n

]
− 2

(
Φ̃nk−1

n
+
λ

n

(
1 + Φ̃nk−1

n

)
+
(
Nn
k
n
−Nn

k−1
n

))
E
[
Φ̃nk
n
|Fnk−1

n

]
+

(
Φ̃nk−1

n
+
λ

n

(
1 + Φ̃nk−1

n

)
+
(
Nn
k
n
−Nn

k−1
n

))2

− α2

n

(
Φ̃nk−1

n

)2

.

(4.39)

The second term on the right hand side of (4.39) is equal to

(4.40) −2

(
Φ̃n
k−1
n

+
λ

n

(
1 + Φ̃n

k−1
n

)
+
(
Nn

k
n

−Nn
k−1
n

))(
e
λ
n

(
Φ̃n
k−1
n

+ 1
)
− 1
)
.

According to Equations (4.33) and (4.36),
(
Nn

k
n

−Nn
k−1
n

)
= O

(
1
n2

) (
Φ̃n
k−1
n

+ 1
)

, uni-

formly over all k ≤ kmax(n). Then (4.40) becomes

−2

[
Φ̃n
k−1
n

+
λ

n

(
1 + Φ̃n

k−1
n

)
+O

(
1

n2

)(
Φ̃n
k−1
n

+ 1
)] [

e
λ
n

(
Φ̃n
k−1
n

+ 1
)
− 1
]
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= −2

[
Φ̃
n
k−1
n

+
λ

n

(
1 + Φ̃

n
k−1
n

)
+O

(
1

n2

)(
Φ̃
n
k−1
n

+ 1

)][
Φ̃
n
k−1
n

+
λ

n

(
Φ̃
n
k−1
n

+ 1

)
+O

(
1

n2

)(
Φ̃
n
k−1
n

+ 1

)]
.

As we can see, this term partially cancels with the third term in Equation (4.39).

In doing so, we obtain

Nn
k
n
−Nn

k−1
n

= E

[(
Φ̃nk
n

)2 ∣∣Fnk−1
n

]
−
(

Φ̃nk−1
n

+
λ

n

(
1 + Φ̃nk−1

n

))2

− α2

n

(
Φ̃nk−1

n

)2

+O

(
1

n2

)(
Φ̃nk−1

n

)2

= E

[(
Φ̃nk
n

)2 ∣∣Fnk−1
n

]
−
(

Φ̃nk−1
n

)2
(

1 +
2λ

n

)
− 2λ

n
Φ̃nk−1

n
+O

(
1

n2

)((
Φ̃nk−1

n

)2

+ Φ̃nk−1
n

+ 1

)
.

(4.41)

From Corollary IV.45, we have

E

[(
Φ̃nk
n

)2 ∣∣Fnk−1
n

]
=
(

Φ̃nk−1
n

)2
(

1 +
2λ

n
+
α2

n
+O

(
1

n2

))
+ Φ̃nk−1

n

(
2λ

n
+O

(
1

n2

))
+O

(
1

n2

)
,

and this perfectly cancels out with the second and third terms in (4.41). We are

ultimately left with

(4.42) N n
k
n

−N n
k−1
n

= O

(
1

n2

)((
Φ̃n
k−1
n

)2

+ Φ̃n
k−1
n

+ 1

)
.

Before pursuing this line of reasoning further, let us defineN n
t between grid points.

For k−1
n
≤ t < k

n
,

N n
t −N n

k−1
n

, E

[
−
∫ t

k−1
n

a(Φ̃n
s )ds|Fnk−1

n

]

=

(
k − 1

n
− t
)
α2
(

Φ̃n
k−1
n

)2

,

using a(x) = α2x2 as well as the the fact that Φ̃n
s = Φ̃n

k−1
n

for k−1
n
≤ s < k

n
.

As in the proof of Parts (c) and (e), we may show, using the submartingality of{
Φ̃n

k
n

: k = 0, 1, . . .
}

, that the L1 norm

∣∣∣∣∣∣∣∣ inf
0≤k≤kmax(n)

− α2

n

(
Φ̃n
k−1
n

)2
∣∣∣∣∣∣∣∣
L1

� 1
n
||Φ̃n

kmax
n

||L2 ,

which is O
(

1
n

)
. Therefore, in attempting to establish (e), we may ignore any possible

times in between grid points {0, 1
n
, . . .}. Consequently, we consider the discrete-time

process

NN
, {N n

0 ,N n
1
n
, . . . ,N n

kmax
n

},

127



with associated bounded stopping times T NL , and we must show

sup
τ∈T NL

E[|NN
T |]→ 0 as n→∞.

According to (4.42), for any k,∣∣∣N n
k
n

∣∣∣ = O

(
1

n2

) k∑
j=1

((
Φ̃n
k−1
n

)2

+ Φ̃n
k−1
n

+ 1

)
.

Therefore, noting that Φ̃n
k
n

is always nonnegative

sup
0≤k≤kmax

∣∣∣N n
k
n

∣∣∣ = O

(
1

n2

) kmax∑
j=1

((
Φ̃n
k−1
n

)2

+ Φ̃n
k−1
n

+ 1

)
.

Now, since
{

Φ̃n
k
n

}
k≥0

is also a submartingale and kmax = Ln, it follows that

E

[
sup

0≤k≤kmax

∣∣∣N n
k
n

∣∣∣] = O

(
1

n2

)
E

[
kmax∑
j=1

((
Φ̃n
k−1
n

)2

+ Φ̃n
k−1
n

+ 1

)]

≤ O

(
1

n2

)
(Ln)E

[(
Φ̃n
kmax
n

)2

+ Φ̃n
kmax
n

+ 1

]
= O

(
1

n

)
.

Condition (b). First, we claim that E
[
(j(t, Z, φ)− φ)2] = O(t)φ2 as t → 0, for Z

a standard normal random variable. Supposing that this claim is established, then

applied conditionally, it entails that

E

[(
Φ̃n

k
n

− Φ̃n
k−1
n

)2

|Fnk−1
n

]
= O

(
1

n

)(
Φ̃n
k−1
n

)2

,

and this will establish (b), given our control over the L2 norm of sup
0≤k≤Ln

∣∣∣Φ̃n
k
n

∣∣∣. So,

let us address the claim.

We have

E
[
(j(t, Z, φ)− φ)2] = E[j(t, Z, φ)2]− 2φE[j(t, Z, φ)] + φ2

= φ2 (1 +O(t))− 2φ(φ+O(t)) + φ2

= O(t)φ2;
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here, we have used Lemma IV.44 for the first term, and Lemma IV.40 for the second

term.

IV.10 Proofs from Section IV.4

Proof of Proposition IV.23. The proof will be by backwards induction on j. For ref-

erence, the reader should see Figures 4.1 and 4.2: we will use backwards induction

on the columns in Figure 4.1, and in each column, we will use backwards induction

on the elements of the column. First, the base case, where we will prove equality.

Suppose that j = n and 0 ≤ k ≤ n. Let Ψk = {ψk1 , . . . , ψkk} ∈Ok. As mentioned be-

fore, the Poisson process N is assumed to be stopped at ηn, so that ηn+1 =∞. Since

all observation rights have arrived by the time ηj when j = n, we have remaining

a total of n− k observation rights, with no restrictions on when they may be used.

Therefore, following the proof of Proposition IV.4 with slight modifications, we may

establish that for each 0 ≤ k ≤ n, γnn,k(Ψ
k) = vnn,k

(
ψkk ∨ ηn − ψkk ,ΦΨk

ψkk∨ηn

)
.

We next tackle the inductive step. Suppose then that

γnj+1,k(Ψ
′k) ≥ vnj+1,k

(
ψ′kk ∨ ηj+1 − ψ′kk ,ΦΨ′k

ψ′kk ∨ηj+1

)
holds for all 0 ≤ k ≤ j + 1 and any Ψ′k ∈ Ok, on the set {ψ′kk < η(j+1)+1}. We

wish to show that γnj,k(Ψ
k) ≥ vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
holds for all 0 ≤ k ≤ j

and any Ψk ∈ Ok, on the set {ψkk < ηj+1}. To establish this, we will proceed with

another round of backwards induction, this time on k, starting from k = j. So, we

fix Ψj = {ψj1, . . . , ψ
j
j} ∈ Oj. Let Ψ̃ = {ψj1, . . . , ψ

j
j , ψ̃j+1, . . . , ψ̃n} ∈ On

j,j(Ψ
j). Note

that since Ψ̃ ∈On, it is the case that ψjj ≥ ηj, so that ψjj ∨ ηj = ψjj . We have, with
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all arguments taking place on the set {ψjj < ηj+1},

ess inf
τ∈T Ψ̃

s ,τ≥ψjj
E

[∫ τ

ψjj

e−λ(t−ψjj )

(
ΦΨ̃
t −

λ

c

)
dt
∣∣FΨj

ψjj

]
(4.43)

= ess inf
τ∈T Ψ̃

s ,τ≥ψjj
E

[∫ ηj+1∧τ

ψjj

e−λ(t−ψjj )

(
ΦΨ̃
t −

λ

c

)
dt

+1{τ>ηj+1}

∫ τ∨ηj+1

ηj+1

e−λ(t−ψjj )

(
ΦΨ̃
t −

λ

c

)
dt
∣∣FΨj

ψjj

]
.

For each such τ above, τ ∨ ηj+1 is an element of T Ψ̃ which is greater than ηj+1 =

ψjj ∨ ηj+1. Therefore, the right hand side of (4.43) above is greater than or equal to

ess inf
τ∈T Ψ̃

s ,τ≥ψjj
E

[∫ ηj+1∧τ

ψjj

e−λ(t−ψjj )

(
ΦΨ̃
t −

λ

c

)
dt+ 1{τ>ηj+1}e

−λ(ηj+1−ψjj )γnj+1,j(Ψ
j)
∣∣FΨj

ψjj

]
,

which by the (initial) induction hypothesis is greater than or equal to

ess inf
τ∈T Ψ̃

s ,τ≥ψjj
E

[∫ ηj+1∧τ

ψjj

e−λ(t−ψjj )

(
ΦΨ̃
t −

λ

c

)
dt(4.44)

+1{τ>ηj+1}e
−λ(ηj+1−ψjj )vnj+1,j

(
ηj+1 − ψjj , ϕ

(
ηj+1 − ψjj ,ΦΨj

ψjj

)) ∣∣FΨj

ψjj

]
.

Now, recall that ηj+1 − ψjj is independent of FΨk

ψjj
and exponentially distributed

with parameter µ, on the set {ψjj < ηj+1}. Additionally, from Theorem 3.2 of [15],

it can be seen that for some nonnegative random random variable Rj ∈ mFΨj

ψjj
,

1{τ>ηj+1} = 1{Rj>ηj+1−ψjj}
, and τ1{τ≤ηj+1} = (ψjj + Rj)1{Rj≤ηj+1−ψjj}

. Using the deter-

ministic dynamics of ΦΨj in between observations, (4.44) becomes

ess inf
Rj∈mFΨj

ψ
j
j

,Rj≥0

∫ ∞
0

µe−µu
[∫ Rj∧u

0

e−λt
(
ϕ

(
t,ΦΨj

ψ
j
j

)
− λ

c

)
dt+ 1{Rj>u}e

−λuvnj+1,j

(
u, ϕ

(
u,ΦΨj

ψ
j
j

))]
du,

which is equal to

ess inf
Rj∈mFΨj

ψ
j
j

,Rj≥0

J0vnj+1,j

(
Rj, 0,Φ

Ψj

ψjj

)
≥ J0

0v
n
j+1,j

(
0,ΦΨj

ψjj

)

= vnj,j

(
0,ΦΨj

ψjj

)
.

This implies that

ess inf
τ∈T Ψ̃

s ,τ≥ψjj
E

[∫ τ

ψjj

e−λ(t−ψjj )

(
ΦΨ̃
t −

λ

c

)
dt
∣∣FΨk

ψjj

]
≥ vnj,j

(
0,ΦΨj

ψjj

)
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on the set {ψjj < ηj+1}. Taking the infimum over all Ψ̃ ∈ On
j,j(Ψ

j), we obtain that

γnj,j(Ψ
j) ≥ vnj,j

(
0,ΦΨj

ψjj

)
on {ψjj < ηj+1}, which establishes the base case in the

second induction.

We now proceed to the inductive step in the second induction. Our hypothesis is

that γnj,k+1

(
Ψk+1

)
≥ vnj,k+1

(
ψk+1
k+1 ∨ ηj − ψ

k+1
k+1,Φ

Ψk+1

ψk+1
k+1∨ηj

)
holds for all Ψk+1 ∈ Ok+1

on the set
{
ψk+1
k+1 < ηj+1

}
. We wish to show that for any Ψk = {ψk1 , . . . , ψkk} ∈ Ok,

it is the case that

γnj,k(Ψ
k) ≥ vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
on {ψkk < ηj+1}.

So, let Ψ̃ = {ψk1 , . . . , ψkk , ψ̃k+1, . . . , ψ̃n} ∈On
j,k(Ψ

k). We write, on the set {ψkk < ηj+1},

ess inf
τ∈T Ψ̃

s ,τ≥ψkk∨ηj
E

[∫ τ

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ̃
t −

λ

c

) ∣∣F Ψ̃
ψkk∨ηj

]

= min

{
0, ess inf

τ∈T Ψ̃
s ,τ≥ψ̃k+1∧ηj+1

E

[∫ ψ̃k+1∧ηj+1

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ̃
t −

λ

c

)
dt

+

∫ τ

ψ̃k+1∧ηj+1

e−λ(t−ψkk∨ηj)
(

ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]}
,

using the fact that τ ∈ T Ψ
s , i.e. it does not stop the game between observations while

there are remaining observation rights. This then equals

min

{
0, E

[∫ ψ̃k+1∧ηj+1

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]

+ ess inf
τ∈T Ψ̃

s ,τ≥ψ̃k+1∧ηj+1

E

[∫ τ

ψ̃k+1∧ηj+1

e−λ(t−ψkk∨ηj)
(

ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]}

= min

{
0, E

[∫ ψ̃k+1∧ηj+1

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]

+ ess inf
τ∈T Ψ̃

s ,τ≥ψ̃k+1∧ηj+1

E

[
1{ψ̃k+1<ηj+1}

∫ τ

ψ̃k+1

e−λ(t−ψkk∨ηj)
(

ΦΨ̃
t −

λ

c

)
dt

+1{ηj+1≤ψ̃k+1}

∫ τ

ηj+1

e−λ(t−ψkk∨ηj)
(

ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]}
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≥ min

{
0, E

[∫ ψ̃k+1∧ηj+1

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]
(4.45)

+ ess inf
τ∈T Ψ̃

s ,τ≥ψ̃k+1∧ηj+1

E

[
1{ψ̃k+1<ηj+1}

∫ τ

ψ̃k+1

e−λ(t−ψkk∨ηj)
(

ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]

+ ess inf
τ∈T Ψ̃

s ,τ≥ψ̃k+1∧ηj+1

E

[
1{ηj+1≤ψ̃k+1}

∫ τ

ηj+1

e−λ(t−ψkk∨ηj)
(

ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]}
,

which we claim is equal to

min

{
0, E

[∫ ψ̃k+1∧ηj+1

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]
(4.46)

+ ess inf
τ∈T Ψ̃

s ,τ≥ψ̃k+1

E

[
1{ψ̃k+1<ηj+1}

∫ τ

ψ̃k+1

e−λ(t−ψkk∨ηj)
(

ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]

+ ess inf
τ∈T Ψ̃

s ,τ≥ηj+1

E

[
1{ηj+1≤ψ̃k+1}

∫ τ

ηj+1

e−λ(t−ψkk∨ηj)
(

ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]}
.

It is trivially true that (4.45) ≤ (4.46), since its infimums are over a larger set

of stopping times. We claim that the other inequality also holds. To see this, let

τ ≥ ψ̃k+1 ∧ ηj+1 be given. Consider τ ′ = τ1{ψ̃k+1<ηj+1} +∞1{ηj+1≤ψ̃k+1}, which is a

stopping time greater than ψ̃k+1 and takes the same value as τ on the set 1{ψ̃k+1<ηj+1}.

The existence of such a τ ′ implies that minimizing over {τ ∈ T Ψ̃
s : τ ≥ ψ̃k+1 ∧ ηj+1}

is equivalent to minimizing over {τ ∈ T Ψ̃
s : τ ≥ ψ̃k+1}, on the set {ψ̃k+1 < ηj+1}. A

similar procedure may be done for stopping times on the set 1{ηj+1≤ψ̃k+1}, to establish

the equality of (4.45) and (4.46).

Next, conditioning the second and third terms of (4.46) on, respectively, F Ψ̃
ψ̃k+1∨ηj

and F Ψ̃
ψ̃k∨ηj+1

, and using the definition of γnj,k+1(Ψ̃), γnj+1,k(Ψ̃), we obtain

(4.46)

≥ min

{
0, E

[∫ ψ̃k+1∧ηj+1

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]
+E

[
1{ψ̃k+1<ηj+1}e

−λ(ψ̃k+1−ψkk∨ηj)γnj,k+1(Ψ̃)
∣∣F Ψ̃

ψkk∨ηj

]
+E

[
1{ηj+1≤ψ̃k+1}e

−λ(ηj+1−ψkk∨ηj)γnj+1,k(Ψ̃)
∣∣F Ψ̃

ψkk∨ηj

]}
,
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where we have used the fact that ψ̃k+1 ≥ ηj (so ψ̃k+1 ∨ ηj = ψ̃k+1) for the second

term, and the fact that we are on the set {ψkk < ηj+1} for the third term, so that

ψkk ∨ ηj+1 = ηj+1. Now, applying the induction hypothesis, this is greater than or

equal to

min

{
0, E

[∫ ψ̃k+1∧ηj+1

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]
+E

[
1{ψ̃k+1<ηj+1}e

−λ(ψ̃k+1−ψkk∨ηj)vnj,k+1

(
ψ̃k+1 − ψ̃k+1,Φ

Ψ̃
ψ̃k+1

) ∣∣F Ψ̃
ψkk∨ηj

]
+E

[
1{ηj+1≤ψ̃k+1}e

−λ(ηj+1−ψkk∨ηj)vnj+1,k

(
ψkk ∨ ηj+1 − ψkk ,ΦΨ̃

ψkk∨ηj+1

) ∣∣F Ψ̃
ψkk∨ηj

]}
,

equal to

min

{
0, E

[∫ ψ̃k+1∧ηj+1

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣F Ψ̃

ψkk∨ηj

]
(4.47)

+E
[
1{ψ̃k+1<ηj+1}e

−λ(ψ̃k+1−ψkk∨ηj)vnj,k+1

(
0,ΦΨ̃

ψ̃k+1

) ∣∣F Ψ̃
ψkk∨ηj

]
+E

[
1{ηj+1≤ψ̃k+1}e

−λ(ηj+1−ψkk∨ηj)vnj+1,k

(
ηj+1 − ψkk ,ΦΨ̃

ηj+1

) ∣∣F Ψ̃
ψkk∨ηj

]}
.

Now we make some observations. First, on the set {ψkk < ηj+1}, ηj+1 − ψkk ∨ ηj

is independent of F Ψ̃
ψkk∨ηj

, and conditioned on this sigma algebra, is distributed as

an exponential random variable with parameter µ. Second, between ψkk ∨ ηj and

ψ̃k+1 ∧ ηj+1, ΦΨ̃ has deterministic dynamics described by (4.1). Third, for some

nonnegative F Ψ̃
ψkk∨ηj

-random variable Rj,k, ψ̃k+1 = ψkk ∨ ηj + Rj,k, 1{ψ̃k+1<ηj+1} =

1{Rj,k<ηj+1−ψkk∨ηj}
, and 1{ψ̃k+1≥ηj+1} = 1{Rj,k≥ηj+1−ψkk∨ηj}

. Fourth, we note that, based

upon (4.1) and arguing as in Proposition IV.4,
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E
[
vnj,k+1

(
0,ΦΨ̃

ψ̃k+1

)
|F Ψ̃

ψkk∨ηj

]
= Kvnj,k+1

(
ψ̃k+1 − ψkk ,ΦΨk

ψkk

)
= Kvnj,k+1

(
(ψ̃k+1 − ψkk ∨ ηj) + (ψkk ∨ ηj − ψkk),ΦΨk

ψkk

)
= Kvnj,k+1

(
(ψ̃k+1 − ψkk ∨ ηj) + (ψkk ∨ ηj − ψkk), ϕ

(
−(ψkk ∨ ηj − ψkk),ΦΨ̃

ψkk∨ηj

))
.

Therefore,

(4.47)

= min

{
0,

∫ ∞
0

µe−λu

[∫ Rj,k∧u

0

e−λt
(
ϕ
(
t,ΦΨ̃

ψkk∨ηj

)
− λ

c

)
dt

+1{Rj,k<u}e
−λRj,kKvnj,k+1

(
Rj,k + (ψkk ∨ ηj − ψkk), ϕ

(
−(ψkk ∨ ηj − ψkk),ΦΨ̃

ψkk∨ηj

))
+1{u≤Rj,k}e

−λuvnj+1,k

(
u+ (ψkk ∨ ηj − ψkk), ϕ

(
u,ΦΨ̃

ψkk∨ηj

))]
du

}
,

which is equal to

min
{

0, J+
(
vnj,k+1,v

n
j+1,k

) (
Rj,k, ψ

k
k ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)}
≥ J+

0

(
vnj,k+1,v

n
j+1,k

) (
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
= vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
.

We have shown that

ess inf
τ∈T Ψ̃

s ,τ≥ψkk∨ηj
E

[∫ τ

ψkk∨ηj
e−λ(t−ψkk∨ηj)

(
ΦΨ̃
t −

λ

c

)
dt
∣∣FΨk

ψkk∨ηj

]
≥ vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
on {ψkk < ηj+1}.

Thus, after taking the infimum over all Ψ̃ ∈On
j,k(Ψ

k), we deduce that

γnj,k(Ψ
k) ≥ vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
on {ψkk < ηj+1},

as claimed.
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Proof of Proposition IV.24. As in Proposition IV.23, the proof is handled by a double

backwards induction, first on the number of observation rights received j, and then

on the number of observation rights spent, k. The proof of the base case, j =

n, corresponds to times when all possible observation rights have been received,

and so as before, this case is handled essentially identically as in Proposition IV.5.

Therefore, we move on to the inductive step. Suppose that the result has been

proven for j + 1 observation rights received; we will prove it for j. Now comes a

second induction, on k, so we will take up the base case of this, and take k = j. So,

let Ψj ∈Oj. We have

γnj,j(Ψ
j)(4.48)

= ess inf
Ψ∈On

j,j(Ψ
j)

ess inf
τ∈T Ψ

s ,τ≥ψjj
E

[∫ τ

ψjj

e−λ(t−ψjj )

(
ΦΨ
t −

λ

c

)
dt
∣∣FΨj

ψjj

]

≤ E

[∫ τ̂nj,j∧ηj+1

ψjj

e−λ(t−ψjj )

(
ϕ
(
s− ψjj ,ΦΨj

ψjj

)
− λ

c

)
ds
∣∣FΨj

ψjj

]
(4.49)

+ ess inf
Ψ∈On

j+1,j(Ψ
j)

ess inf
τ∈T Ψ

s ,τ≥ηj+1

E

[
1{τ̂nj,j≥ηj+1}

∫ τ

ηj+1

e−λ(t−ψjj )

(
ΦΨ
t −

λ

c

)
dt
∣∣FΨj

ψjj

]
,

where we have used the following facts:

(a) The j + 1st observation can not be made prior to the arrival time ηj+1 of the

j + 1st arrival time, so ΦΨ evolves deterministically between ψjj and ηj for all

Ψ ∈On
j,j(Ψ

j).

(b) For any τ ∈ T Ψ
s with τ ≥ ηj+1, we may construct the stopping time τ̃ =

τ̂nj,j1{τ̂nj,j<ηj+1} + τ1{τ̂nj,j≥ηj+1} which agrees with τ on {τ̂nj,j ≥ ηj+1}, and is an

element of T Ψ
s such that τ̃ ≥ ψjj . Therefore, the infimum over τ ≥ ψjj in (4.48)

can be replaced with the infimum over τ ≥ ηj+1 in (4.49).

After conditioning the interior of E

[
1{τ̂nj,j≥ηj+1}

∫ τ
ηj+1

e−λ(t−ψjj )
(
ΦΨ
t − λ

c

)
dt
∣∣FΨj

ψjj

]
on
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FΨj

ηj+1
, we see that (4.49) is equal, by definition, to

E

[∫ τ̂nj,j∧ηj+1

ψjj

e−λ(t−ψjj )

(
ϕ
(
s− ψjj ,ΦΨj

ψjj

)
− λ

c

)
ds+ 1{τ̂nj,j≥ηj+1}γ

n
j+1,j(Ψ

j)
∣∣FΨj

ψjj

]
,

which by the induction hypothesis is equal to

E

[∫ τ̂nj,j∧ηj+1

ψjj

e−λ(t−ψjj )

(
ϕ
(
s− ψjj ,ΦΨj

ψjj

)
− λ

c

)
ds

+ 1{τ̂nj,j≥ηj+1}v
n
j+1,j

(
ηj+1 − ψjj , ϕ

(
ηj+1 − ψjj ,ΦΨj

ψjj

)) ∣∣FΨj

ψjj

]
,

which is equal to

(4.50)

∫ ∞
0

µe−µu

[∫ snj,j

(
ΦΨj

ψ
j
j

)
∧u

0

e−λs
(
ϕ
(
s,ΦΨj

ψjj

)
− λ

c

)
ds

+ 1{
snj,j

(
ΦΨj

ψ
j
j

)
≥u
}vnj+1,j

(
u, ϕ

(
u,ΦΨj

ψjj

))]
du,

as τ̂nj,j = ψjj + snj,j

(
ΦΨj

ψjj

)
, and using the fact that on the set {ψjj < ηj+1}, ηj+1 −

ψjj is independent of FΨj

ψjj
, and distributed as an exponential random variable with

parameter µ.

Now, (4.50) is equal to J0vnj+1,j

(
snj,j

(
ΦΨj

ψjj

)
, 0,ΦΨj

ψjj

)
, which by construction of

snj,j, is equal to J0
0v

n
j+1,j

(
0,ΦΨj

ψjj

)
= vnj,j

(
0,ΦΨj

ψjj

)
.

Thus, we have established that γnj,j(Ψ
j) ≤ vnj,j

(
0,ΦΨj

ψjj

)
on the set {ψjj < ηj+1}.

In light of Proposition IV.23, these quantities are actually equal. Furthermore, since

vnj,j

(
0,ΦΨj

ψjj

)
≤ γnj,j(Ψj) ≤ (4.48) = vnj,j

(
0,ΦΨj

ψjj

)
, (4.18) is established.

We now proceed to the second inductive step. Supposing that the result has been

proven for j observation rights received and k + 1 ≤ j observation rights spent, we

will prove the result for j observation rights received and k observation rights spent.

So, let Ψk ∈Ok, and let Ψ̂k+1 = {ψk1 , . . . , ψkk , τ̂nj,k} ∈Ok+1
j,k (Ψk), with τ̂nj,k = τ̂nj,k(Ψ

k).

We have, on the set {ψkk < ηj+1},
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γnj,k(Ψk)(4.51)

= ess inf
Ψ∈On

j,k
(Ψk)

ess inf
τ∈T Ψ

s ,τ≥ψkk∨ηj
E

[∫ τ

ψk
k
∨ηj

e−λ(t−ψkk∨ηj)
(

ΦΨ
t −

λ

c

)
dt
∣∣FΨk

ψk
k
∨ηj

]

≤ E

[∫ τ̂nj,k∧ηj+1

ψk
k
∨ηj

e−λ(s−ψkk∨ηj)
(
ϕ
(
s− ψkk ∨ ηj ,ΦΨk

ψk
k
∨ηj

)
− λ

c

)
ds
∣∣FΨk

ψk
k
∨ηj

]

+ ess inf
Ψ∈On

j,k+1
(Ψ̂k+1)

ess inf
τ∈T Ψ

s ,τ≥τ̂nj,k
E

[
e−λ(τ̂nj,k−ψ

k
k∨ηj)1{τ̂n

j,k
<ηj+1}

∫ τ

τ̂n
j,k

e−λ(t−τ̂nj,k)

(
ΦΨ
t −

λ

c

)
dt
∣∣FΨk

ψk
k
∨ηj

]

+ ess inf
Ψ∈On

j+1,k
(Ψk)

ess inf
τ∈T Ψ

s ,τ≥ηj+1

E

[
e−λ(ηj+1−ψkk∨ηj)1{τ̂n

j,k
≥ηj+1}

∫ τ

ηj+1

e−λ(t−ηj+1)

(
ΦΨ
t −

λ

c

)
dt
∣∣FΨk

ψk
k
∨ηj

]
,

where we used in the first line above the deterministic evolution of ΦΨk in between

observations, and for the second and third lines, the structure of stopping times in

this problem, arguing as in (b) above. Now, (4.51) above is equal to

E

[∫ τ̂nj,k∧ηj+1

ψk
k
∨ηj

e−λ(s−ψkk∨ηj)
(
ϕ
(
s− ψkk ∨ ηj ,ΦΨk

ψk
k
∨ηj

)
− λ

c

)
ds

+e−λ(τ̂nj,k−ψ
k
k∨ηj)1{τ̂n

j,k
<ηj+1}γ

n
j,k+1(Ψ̂k+1) + e−λ(ηj+1−ψkk∨ηj)1{τ̂n

j,k
≥ηj+1}γ

n
j+1,k(Ψk)

∣∣FΨk

ψk
k
∨ηj

]
,

which by the induction hypotheses (first induction for the third term and second

induction for the second term) is equal to

E

[∫ τ̂nj,k∧ηj+1

ψkk∨ηj
e−λ(s−ψkk∨ηj)

(
ϕ
(
s− ψkk ∨ ηj,ΦΨk

ψkk∨ηj

)
− λ

c

)
ds(4.52)

+ e−λ(τ̂nj,k−ψ
k
k∨ηj)1{τ̂nj,k<ηj+1}v

n
j,k+1

(
0,ΦΨ̂k+1

τ̂nj,k

)
+ e−λ(ηj+1−ψkk∨ηj)1{τ̂nj,k≥ηj+1}v

n
j+1,k

(
(ηj+1 − ψkk ∨ ηj)

+ (ψkk ∨ ηj − ψkk), ϕ
(
ηj+1 − ψkk ∨ ηj,ΦΨk

ψkk∨ηj

))∣∣FΨk

ψkk∨ηj

]
,

We will now argue as in (4.47) and the discussion following it. Using the fact that

ηj+1−ψkk ∨ηj on the set {ψkk < ηj+1} is independent of FΨk

ψkk∨ηj
and exponentially dis-

tributed with parameter µ, and noting τ̂nj,k−ψkk∨ηj = onj,k = onj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
,
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(4.52) becomes∫ ∞
0

µe−µu

[∫ onj,k∧u

0

e−λs
(
ϕ
(
s,ΦΨk

ψkk∨ηj

)
− λ

c

)
ds

+e−λo
n
j,k1{onj,k<u}Kv

n
j,k+1

(
onj,k + (ψkk ∨ ηj − ψkk), ϕ

(
−(ψkk ∨ ηj − ψkk),ΦΨk

ψkk∨ηj

))
+e−λu1{onj,k≥u}v

n
j+1,k

(
u+ (ψkk ∨ ηj − ψkk), ϕ

(
u,ΦΨk

ψk∨ηj

))]
du,

which is equal to J+
(
vnj+1,k,v

n
j,k+1

) (
onj,k + ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
, which by construc-

tion of onj,k, is equal to

J+
0

(
vnj+1,k,v

n
j,k+1

) (
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
= vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
.

Thus, we have established that

γnj,k(Ψ
k) ≤ vnj,k

(
ψkk ∨ ηj − ψkk ,ΦΨk

ψkk∨ηj

)
on the set {ψkk < ηj+1}. Equality is now a consequence of Proposition IV.23. Exam-

ining the proof, we immediately deduce (4.19) as well.

Appendix A Posterior Dyamics

In this Appendix, we derive the recursive formula (4.1). It will be convenient

to assume that all observations occur at deterministic times, following [15]. The

reduction to this case from observations at stopping times follows immediately from

iteratively taking conditional expectations. All of the material in this appendix may

be found in [15].

On some probability space (Ω̃, F̃ , P ), suppose that X̃ is a standard Brownian

Motion which gains drift α at time Θ̃, where P (Θ̃ = 0) = π and P (Θ̃ ∈ dt|Θ > 0) =

λe−λtdt. Let 0 = t0 < t1 < · · · be a fixed infinite sequence of numbers, describing

the times at which X̃ is observed. Let

Lt(u, x0, x1, . . .) ,
∏

l≥1,tl≤t

1√
2π(tl − tl−1)

t exp

{
[xl − xl−1 − α(tl − tl−1 ∨ u)+]2

2(tl − tl−1)

}
.
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Then

P (X̃tl ∈ dxl for all l ≥ 1 s.t. tl ≤ t) = Lt(Θ̃, x0, x1, . . .)
∏

l≥1,tl≤t

dxl.

Therefore, the conditional likelihood of the observations X̃t0 , X̃t1 , . . . , given Θ̃ = u,

is

Lt(u) , Lt(u, X̃t0 , X̃t1 , . . .)

=
∏

l≥1,tl≤t

1√
2π(tl − tl−1)

t exp

{
[X̃tl − X̃tl−1

− α(tl − tl−1 ∨ u)+]2

2(tl − tl−1)

}
.

To this point, we have already assumed that such a process X̃ exists. The actual

construction starts from a standard Brownian Motion X, and is then achieved via a

change of measure. To that end, let (Ω,F , P∞) support a standard Brownian Motion

X and an independent random variable Θ with P∞(Θ = 0) = π, and P∞(Θ ∈ dt|Θ >

0) = λe−λtdt for t > 0.

Then, P∞ {Xtl ∈ dxl for all l ≥ 1, tl ≤ t} is

Lt(∞, x0, x1, . . .)
∏

l≥1,tl≤t

dxl =
∏

l≥1,tl≤t

1√
2π(tl − tl−1)

exp

{
(xl − xl−1)2

2(tl − tl−1)

}
dxl

for all t ≥ 0. Let F be the filtration obtained by observing X at fixed times 0 =

t0 < t1 < · · · , and let G = (Gt)t≥0 be the augmentation of F by σ(Θ), so that

Gt = Ft ∧ σ(Θ).

Define P on G∞, locally along the filtration, by

dP

dP∞
= Zt(Θ)

,
Lt(Θ)

Lt(∞)

= exp

{
∞∑
l=1

1{tl≤t}

[(
Xtl −Xtl−1

)
α (tl − (Θ ∨ tl−1))+

tl − tl−1
−
α2
(
(tl − (Θ ∨ tl−1))+)2

2(tl − tl−1)

]}
.

Under P , the random variables Xtl − Xtl−1
, l ≥ 1, conditionally on Θ, are inde-

pendent and Gaussian with mean α (tl − (Θ ∨ tl−1))+ and variance tl − tl−1.
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Since Z0(Θ) = 1, P and P∞ are identical on G0 = σ(Θ), so that Θ has the

same distribution under P and P∞. Under P , X has the distribution of a Brownian

Motion which gains drift α at time Θ. We will work under P for the remainder of

this Appendix.

Define the conditional odds process

(4.53) Φt ,
P (Θ ≤ t|Ft)
P (Θ > t|Ft)

=
E∞

[
Zt(Θ)1{Θ≤t}|Ft

]
E∞

[
Zt(Θ)1{Θ>t}|Ft

] ,
with the second equality following from Bayes’ Theorem. On the set {Θ > t},

(tl − (Θ ∨ tl−1))+ = (tl −Θ)+ = 0 for all l ≥ 1, tl ≤ t. Therefore, Zt(Θ)1{Θ>t} =

1{Θ>t}.

Thus,

E∞
[
Zt(Θ)1{Θ>t}|Ft

]
= P∞ (Θ > t|Ft)

= P∞(Θ > t)

= (1− π)e−λt.

So, (4.53) becomes

(4.54)
E∞

[
Zt(Θ)1{Θ≤t}|Ft

]
(1− π)e−λt

=
eλt

1− π
E∞

[
Zt(Θ)1{Θ≤t}|Ft

]
.

We will now focus on this last term in (4.54). Write

(4.55) E∞
[
Zt(Θ)1{Θ≤t}|Ft

]
= πZt(0) + (1− π)

∫ t

0

λe−λtZt(u)du.

Suppose that tn−1 ≤ t < tn for some n ≥ 1. By definition, Zt(u) = Ztn−1(u) for every

u ≥ 0, and Ztn−1(u) = 1 for every tn−1 ≤ u < tn. This implies that (4.55) is

πZtn−1(0) + (1− π)

∫ t

0

λe−λuZtn−1(u)du

= πZtn−1(0) + (1− π)

∫ tn−1

0

λe−λuZtn−1(u)du+ (1− π)

∫ t

tn−1

λe−λuZtn−1(u)du

=
1− π
eλtn−1

Φtn−1 + (1− π)
(
e−λtn−1 − e−λt

)
.
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From this, it follows that, for tn−1 ≤ t < tn, we have that (4.54) is equal to

eλ(t−tn−1)Φtn−1 + eλ(t−tn−1) − 1 = ϕ
(
t− tn−1,Φtn−1

)
,

and this establishes the first part of (4.1). We now derive the form of Φtn , condi-

tionally on Φtn−1 . Since Ztn−1(u) = 1 for u ≥ tn−1, we have

Ztn(u)

= Ztn−1(u) exp

{(
Xtn −Xtn−1

)
α (tn − (u ∨ tn−1))+

tn − tn−1
−
α2
(
(tn − (u ∨ tn−1))+)2

2(tn − tn−1)

}
, u ≥ 0.

So, (4.54) becomes

eλtn

1− π

[(
πZtn−1(0) + (1− π)

∫ tn−1

0

λe−λuZtn−1(u)du

)
exp

{(
Xtn −Xtn−1

)
α− α2

2
(tn − tn−1)

}

+ (1− π)

∫ tn

tn−1

λe−λu Ztn−1(u)︸ ︷︷ ︸
=1

exp

{(
Xtn −Xtn−1

)
α (tn − u)

tn − tn−1
− α2 (tn − u)2

2(tn − tn−1)

}
du

]
,

which is equal to

exp

{(
Xtn −Xtn−1

)
α− α2

2
(tn − tn−1)

}
eλ(tn−tn−1)Φtn−1

+

∫ tn

tn−1

λeλ(tn−u) exp

{(
Xtn −Xtn−1

)
α (tn − u)

tn − tn−1

− α2 (tn − u)2

2(tn − tn−1)

}
du.

After making the substitution w = −(tn − u) for the integral above, we see that

this is equal to the second term in (4.1).

Appendix B Source Code

Appendix B.1 Octave Code for the Lump Sum n-Observation Problem

There are four files in this section, used to calculate the value functions and

observation boundaries associated to the lump sum n-observation problem. The first

three are dependencies, and are used to respectively interpolate between grid points,

define the function j(t, z, φ), and define the zero observation value function v0(φ).
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The last file is the main script. Parameters of the problem and total observations

can be modified inside the file.

Listing IV.1: Interpolation Between Grid Points

%i n t e r p o l a t e s f u n c t i o n s , s e t s them to zero above an

upperbound

function [ y ] = i n t e r p ( invec , outvec , upperphi , x )

y = ( x <= upperphi ) .∗ interp1 ( invec , outvec , x ) ;

endfunction

Listing IV.2: Definition of j

%c a l c u l a t e s j ( t , z , ph i ) wi th parameters l a = lambda , a l =

alpha

function [ y ] = j ( t , z , phi , la , a l )

b = l a .+ a l .∗ z . / sqrt ( t ) ;

c = a l . ˆ2/ (2 .∗ t ) ;

y = exp( l a .∗ t .+ a l .∗ z .∗ sqrt ( t ) .− a l . ˆ 2 . ∗ t . / 2 ) .∗ phi .+ l a .∗

sqrt ( pi ) .∗exp(b .ˆ2 . / ( 4 .∗ c ) ) . / ( 2 . ∗ sqrt ( c ) ) . ∗ ( erf ( ( 2 . ∗ c .∗ t

.−b) . / ( 2 . ∗ sqrt ( c ) ) ) .+ erf (b . / ( 2 .∗ sqrt ( c ) ) ) ) ;

end

Listing IV.3: Definition of v0

%a n a l y t i c d e f i n i t i o n o f the 0 o b s e r v a t i o n v a l u e f u n c t i o n

function [ y ] = v0 ( phi , la , c )
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y = (1/ l a ∗ ( ( phi+1)∗ log ( ( l a+c ) /( c ∗( phi+1) ) ) + phi − l a /c )

) .∗ ( phi < l a /c ) + . . .

(0 ) .∗ (

phi >= l a /c ) ;

end

Listing IV.4: Main File for Lump Sum n-Observation Problem

%main f i l e f o r n o b s e r v a t i o n problem :

%s e t c o n s o l e to always f l u s h , so t h a t s t a t u s output shows

page output immediate ly (1 )

page sc r een output (0 )

%parameters

%r e q u i r e d f i l e s : K.m, j .m, v0 .m, i n t e r p .m,

l a = . 1 ; %lambda : e x p o n e n t i a l parameter o f d i s o r d e r time

c = . 0 1 ; %r e l a t i v e d e l a y c o s t

a l = 1 ; %alpha : d r i f t r a t e gained a f t e r d i s o r d e r

tep = . 2 ; %s t e p s i z e t f o r computing J 0 w( t , ph i )

phep = . 5 ; %s t e p s i z e f o r approximat ing v a l u e f u n c t i o n

obs = 5 ; %number o f t o t a l o b s e r v a t i o n s

%g r i d bounds

upperphi = 5.7∗ l a /c ; %v a l u e f u n c t i o n s s e t to zero f o r phi

above t h i s

t g r i d s i z e = 30/ tep + 1 ; %compute Jw( t , ph i ) over t in g r i d
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t g r i d s t a r t = 2 ;

p h i g r i d s i z e = upperphi /phep + 1 ; %opt imize Jw( t , ph i ) over

each phi in g r i d

ph ig r i d = 0 : phep : upperphi ;

%Store r e s u l t s here : each column corresponds to a s i n g l e

i t e r a t i o n

v a l u e f u n c t i o n d a t a = zeros ( p h i g r i d s i z e , obs ) ; %records

v a l u e o f v1 ( phi )

t imes data = zeros ( p h i g r i d s i z e , obs ) ; %records v a l u e o f t ˆ∗(

phi )

%run f i r s t i t e r a t i o n

for n =1: p h i g r i d s i z e %loop over p h i g r i d

phi = (n−1)∗phep ; %s e t v a l u e o f ph i in f o r loop

disp ( ” S ta r t i ng phi . . . ” )

disp (n)

temptvec = zeros (1 , t g r i d s i z e ) ; %f o r s t o r i n g Jw( t , ph i ) f o r

t in t g r i d

temptvec (1 ) = v0 ( phi , la , c ) ; %s e p a r a t e r u l e f o r c a l c u l a t i n g

at t = 0

for time = t g r i d s t a r t : t g r i d s i z e

t = ( time−1)∗ tep ; %s e t v a l u e o f t in loop

v0 comp = @( z ) v0 ( j ( t , z , phi , la , a l ) , la , c ) .∗exp(−z

. ˆ2/2 ) . / sqrt (2 .∗ pi ) ; %put v0 in a form f o r

numer ica l l y i n t e g r a t i n g
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temptvec ( time ) = ( phi + 1)∗ t + 1/ l a ∗(1+ l a /c ) ∗(exp(− l a ∗ t )

− 1) + exp(− l a ∗ t )∗quad( v0 comp , −20, 20) ; %c a l c u l a t e

Jw( t , ph i )

end

v a l u e f u n c t i o n d a t a (n , 1 ) = min( temptvec ) ; %s e t v a l u e o f

v a l u e f u n c t i o n

i f ( v a l u e f u n c t i o n d a t a (n , 1 ) == 0) %v a l u e f u n c t i o n

i n c r e a s i n g : s top a f t e r i t h i t s 0

break ;

endif

t imes data (n , 1 ) = find ( temptvec == min( temptvec ) ) ; %s e t

opt imal time

t g r i d s i z e = t imes data (n , 1 ) + 5 ;

disp ( ” Observat ion ” )

disp (1 )

disp ( ” phi i s ” )

disp ( phi )

disp ( ” value i s ” )

disp ( v a l u e f u n c t i o n d a t a (n , 1 ) )

disp ( ” bes t time i s ” )

disp ( t imes data (n , 1 ) )

i f ( n > 1)

t g r i d s t a r t = max( t imes data (n , 1 ) − ( t imes data (n−1 ,1) −

t imes data (n , 1 ) ) − 5 , 2) ; %a d a p t i v e l y c o n f i g u r e t ’ s to

search based on p r e v i o u s run through
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endif

end

%run other i t e r a t i o n s

for i t e r = 2 : obs

c u r v a l = @( x ) i n t e r p ( phigr id , v a l u e f u n c t i o n d a t a ( : , i t e r

−1) , upperphi , x ) ; %v a l u e f u n c t i o n i t e r p o l a t e d from

p e r v i o u s i t e r a t i o n

t g r i d s i z e = 30/ tep + 1 ;

t g r i d s t a r t = 2 ;

for n = 1 : p h i g r i d s i z e

phi = (n−1)∗phep ;

disp ( ” S ta r t i ng phi . . . ” )

disp (n)

temptvec = zeros (1 , t g r i d s i z e ) ;

temptvec (1 ) = c u r v a l ( phi ) ;

for time = t g r i d s t a r t : t g r i d s i z e

t = ( time−1)∗ tep ;

cur val comp = @( z ) c u r v a l ( j ( t , z , phi , la , a l ) ) .∗exp

(−z . ˆ2/2 ) . / sqrt (2 .∗ pi ) ;

temptvec ( time ) = ( phi + 1)∗ t + 1/ l a ∗(1+ l a /c ) ∗(exp(− l a ∗

t ) − 1) + exp(− l a ∗ t )∗quadcc ( cur val comp , −8, 8) ;

end

v a l u e f u n c t i o n d a t a (n , i t e r ) = min( temptvec ) ;

i f ( v a l u e f u n c t i o n d a t a (n , i t e r ) == 0)

break ;
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endif

t imes data (n , i t e r ) = find ( temptvec == min( temptvec ) ) ;

disp ( ” Observat ion ” )

disp ( i t e r )

disp ( ” phi i s ” )

disp ( phi )

disp ( ” value i s ” )

disp ( v a l u e f u n c t i o n d a t a (n , i t e r ) )

disp ( ” bes t time i s ” )

disp ( t imes data (n , i t e r ) )

t g r i d s i z e = t imes data (n , i t e r ) + 3 ;

i f ( n > 1)

t g r i d s t a r t = max( t imes data (n , i t e r ) − ( t imes data (n−1,

i t e r ) − t imes data (n , i t e r ) ) − 3 , 2) ;

endif

end

end

save v a l u e f u n c t i o n d a t a . mat v a l u e f u n c t i o n d a t a

save t imes data . mat t imes data

Appendix B.2 Octave Code for the Stochastic Arrival Rate n-Observation Problem

In this section, there is a single file, the main algorithm for the stochastic arrival

rate n-observation problem. It is only implemented for one observation right, and

all files from the lump sum n-observation problem are dependencies.
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Listing IV.5: Main File for Stochastic Arrival Rate Problem

%n−o b s e r v a t i o n a l gor i thm must be run f i r s t

qd a lg4

%parameters

mu = 1 ; %a r r i v a l r a t e f o r o b s e r v a t i o n s

obs = 1 ; %only implemented f o r one o b s e r v a t i o n r i g h t

%s t o r e data here

s t v a l u e f u n c t i o n d a t a = zeros ( obs + 1 , obs + 1 , p h i g r i d s i z e

) ;

s t t i m e s d a t a = zeros ( obs + 1 , obs + 1 , p h i g r i d s i z e ) ;

%s e t data f o r v ˆ1{1 ,1}(0 ,\ phi )

for i = 1 : p h i g r i d s i z e

s t v a l u e f u n c t i o n d a t a (1 , obs + 1 , i ) = v0 ( ( i −1)∗phep , la ,

c ) ;

end

%g e t data from n−o b s e r v a t i o n problem

for i = 2 : obs + 1

s t v a l u e f u n c t i o n d a t a ( i , obs + 1 , : ) =

v a l u e f u n c t i o n d a t a ( : , i − 1) ;

end

for i = 2 : obs + 1

s t t i m e s d a t a ( i , obs + 1 , : ) = t imes data ( : , i − 1) ;

end

%d e f i n e i n t e r p o l a t e d v ˆ1 {1 ,1}(0 , phi )
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obsva l = @( phi ) i n t e r p ( phigr id , s t v a l u e f u n c t i o n d a t a (1 ,

obs + 1 , : ) ( 1 : length ( s t v a l u e f u n c t i o n d a t a (1 , obs + 1 , : )

) ) , upperphi , phi ) ;

%d e f i n e Kvˆ1 {1 ,1}( t , ph i )

obsval comp = @( t , phi , z ) obsva l ( j ( t , z , phi , la , a l ) ) .∗exp

(−z . ˆ2/2 ) . / sqrt (2 .∗ pi ) ;

%r e s e t time g r i d

t g r i d s i z e = 30/ tep + 1 ;

t g r i d s t a r t = 2 ;

%compute v ˆ1 {0 ,0}(0 , phi ) and t ˆ{∗ ,1} {0 ,0}( phi )

for n = 1 : p h i g r i d s i z e %same p h i g r i d as n−o b s e r v a t i o n problem

phi = (n−1)∗phep ;

disp ( ” S ta r t i ng phi . . . ” )

disp (n)

temptvec = zeros (1 , t g r i d s i z e ) ;

temptvec (1 ) = 0 ; %the time ” t ” here i s a s t o p p i n g time ,

and not an o b s e r v a t i o n time , hence t a k i n g t = 0 y i e l d s 0

v a l u e ( compare wi th the n−o b s e r v a t i o n problem )

t s t a r = s t t i m e s d a t a (2 , 2 , n )∗ tep ; %r e c a l l i n g the form

of v ˆ1 {1 ,0}( y ,\ phi ) from Step $2$ o f the s t o c h a s t i c

a r r i v a l a lgor i thm , t h i s i s t ˆ{∗ ,1} {1 ,0}( phi )

for time = t g r i d s t a r t : t g r i d s i z e

t = ( time − 1)∗ tep ;

disp ( t )
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temptvec ( time ) = s t v a l u e f u n c t i o n d a t a (2 , 2 , n )∗(1−

exp(−mu∗min( t , t s t a r ) ) ) + exp(−mu∗ t ) ∗ ( ( phi + 1)∗ t

+ (1/ l a + 1/ c ) ∗(exp(− l a ∗ t ) − 1) ) + ( t > t s t a r )∗

quad(@(u) mu∗exp(−mu∗u) ∗ ( ( phi + 1)∗u + (1/ l a + 1/ c

) ∗(exp(− l a ∗u) − 1) + exp(− l a ∗u)∗quadcc (@( z )

obsval comp (u , phi , z ) , −8, 8 , . 1 ) ) , t s t a r , t ,

. 1 ) ; %implementing Step 2 o f the s t o c h a s t i c

a r r i v a l a l gor i thm

disp ( temptvec ( time ) )

i f temptvec ( time ) + .001 > temptvec ( time − 1) %stop

computing t imes once d i f f e r e n c e between

c o n s e c u t i v e t imes becomes sma l l

break ;

endif

end

s t v a l u e f u n c t i o n d a t a (2 , 1 , n ) = min( temptvec ) ;

i f s t v a l u e f u n c t i o n d a t a (2 , 1 , n ) == 0

break ;

endif

s t t i m e s d a t a (2 , 1 , n ) = min( find ( temptvec == min( temptvec

) ) ) ;

t g r i d s i z e = s t t i m e s d a t a (2 , 1 , n ) + 3 ;

%h e u r i s t i c to speed up implementat ion : minimize on ly over

t ’ s t h a t are ” c l o s e ” to where the l a s t minimizing t was

found
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i f n > 1

t g r i d s t a r t = max( s t t i m e s d a t a (2 , 1 , n ) − ( s t t i m e s d a t a

(2 , 1 , n − 1) − s t t i m e s d a t a (2 , 1 , n ) ) − 10 , 2) ;

endif

end

5

Appendix B.3 R Code for Plotting the n-Observation Value Functions

This script loads the data calculated in Listing IV.4, and plots it using the ggplot2

library in R. Parameters inside the script should be set identical to the ones in Listing

IV.4. R libraries “ggplot2” and “reshape” are also required.

Listing IV.6: Value Function Grapher

###Code f o r graphing the v a l u e f u n c t i o n data . Af ter running

, en ter p1 f o r v a l u e f u n c t i o n graphs and p f o r Bayesian

r i s k graphs .

#r e q u i r e d l i b r a r i e s

l ibrary ( ggp lot2 )

l ibrary ( reshape )

#parameters : must match t h o s e from matlab code

l a <− . 1

a l <− 1

c <− . 01
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phep <− . 02

obs = <− 5

upperphi = 5 .7∗ l a /c

p h i g r i d s i z e = upperphi/phep + 1

ph ig r i d = seq ( from=0, to = upperphi , by = phep )

#v a l u e f u n c t i o n wi th no o b s e r v a t i o n s

v0 <− function ( phi ) {

i f ( phi < lambda/c ) {

return (1/lambda∗ ( ( phi + 1)∗log ( ( lambda + c )/ ( c∗( phi + 1)

) ) + phi − lambda/c ) )

}

else return (0 )

}

#f o r graphing v0

V0 <− rep (0 , p h i g r i d s i z e )

for ( i in 1 : p h i g r i d s i z e ) {

V0 [ i ] <− v0 ( ph i g r i d [ i ] )

}

#read in d i s c r e t e o b s e r v a t i o n data ( v a l d a t ) and cont inuous

o b s e r v a t i o n ( contda )

va ldat <− read . table ( ”C: /cygwin/home/ r o s s . k r a v i t z /va l fun6

temp . mat” )
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contdat <− read . table ( ”C: /cygwin/home/ r o s s . k r a v i t z /contdat6 .

mat” )

#f o r m a t t i n g data

contdat2 <− contdat [ , 2 ]

contdat2 <− c (−98.271 , contdat2 ) #−98.271 i s v C(0) , had to

be s u p p l i e d s e p a r a t e l y

va ldat2 <− cbind ( ph igr id , V0 , valdat , contdat2 ) #combined data

#s e t column names

colnames ( va ldat2 ) [ 1 ] <− ”Odds Ratio o f Dis rupt ion ”

colnames ( va ldat2 ) [ 2 : ( obs+2) ] <− c ( 0 : obs )

colnames ( va ldat2 ) [ obs +3] <− ” Continuous ”

#format data f o r g g p l o t 2

df <− melt ( valdat2 , id=’Odds Ratio o f Dis rupt ion ’ , variable

name=’Number o f Observat ions ’ )

#p l o t a l l v a l u e f u n c t i o n s

p1 <− ggp lot ( df , aes ( ‘ Odds Ratio o f Disrupt ion ‘ , va lue ) ) +

geom l i n e ( aes ( c o l o r =‘Number o f Observations ‘ , group=‘

Number o f Observations ‘ ) )

p1 <− p1 + ylab ( ”Value” )

#p l o t Bayesian Risk formu la t ion

a l t r e p <− valdat2

#conver t g r i d from phi to p
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for ( j in 1 : p h i g r i d s i z e ) {

a l t r e p [ j , 1 ] <− va ldat2 [ j , 1 ] /(1 + valdat2 [ j , 1 ] )

}

#conver t v a l u e f u n c t i o n s to Bayesian r i s k

for ( i in 1 : ( obs+1) ) {

for ( j in 1 : p h i g r i d s i z e ) {

a l t r e p [ j , i +1] <− (1− a l t r e p [ j , 1 ] ) + (1− a l t r e p [ j , 1 ] ) ∗c∗

va ldat2 [ j , i +1]

}

}

for ( j in 1 : p h i g r i d s i z e ) {

a l t r e p [ j , obs +3] <− (1− a l t r e p [ j , 1 ] ) + (1− a l t r e p [ j , 1 ] ) ∗c∗

valdat2 [ j , obs +3]

}

#s e t column names

colnames ( a l t r e p ) [ 1 ] <− ” Pr io r Pro bab i l i t y o f Dis rupt ion ”

colnames ( a l t r e p ) [ 2 : ( obs+2) ] <− c ( 0 : obs )

colnames ( a l t r e p ) [ obs +3] <− ” Continuous ”

#format f o r g g p l o t 2

df <− melt ( a l t r ep , id=’ Pr io r Pro bab i l i t y o f Dis rupt ion ’ ,

variable name=’Number o f Observat ions ’ )

#p l o t a l l r i s k f u n c t i o n s

p <− ggp lot ( df , aes ( ‘ Pr io r Prob ab i l i t y o f Disrupt ion ‘ , va lue )

) + geom l i n e ( aes ( c o l o r =‘Number o f Observations ‘ , group=‘
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Number o f Observations ‘ ) )

p <− p + ylab ( ”Minimum Risk ” ) + xlab ( ” Pr io r Pro bab i l i t y o f

Dis rupt ion ” )
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Reprint of the second (1994) edition.

[49] Walter Schachermayer. How potential investments may change the optimal portfolio for the
exponential utility, 2000.

[50] Walter Schachermayer. Optimal investment in incomplete markets when wealth may become
negative. Ann. Appl. Probab., 11(3):694–734, 2001.

[51] Walter Schachermayer. A super-martingale property of the optimal portfolio process. Finance
Stoch., 7(4):433–456, 2003.

159



[52] Albert N. Shiryaev. On optimum methods in quickest detection problems. Theory of Proba-
bility & Its Applications, 8(1):22–46, 1963.

[53] Albert N. Shiryaev. Optimal stopping rules, volume 8 of Stochastic Modelling and Applied
Probability. Springer-Verlag, Berlin, 2008. Translated from the 1976 Russian second edition
by A. B. Aries, Reprint of the 1978 translation.

[54] Daniel H. Wagner. Survey of measurable selection theorems. SIAM J. Control Optimization,
15(5):859–903, 1977.

[55] Abraham Wald. Sequential tests of statistical hypotheses. Ann. Math. Statistics, 16:117–186,
1945.

[56] Hao Xing. Stability of the exponential utility maximization problem with respect to prefer-
ences. Pre-print. Available at arXiv.org.

[57] Hang Yu. Horizon dependence of utility optimizers in incomplete models. ProQuest LLC, Ann
Arbor, MI, 2011. Thesis (Ph.D.)–Carnegie Mellon University.

[58] Qing Zhao and Jia Ye. Quickest detection in multiple on-off processes. IEEE Trans. Signal
Process., 58(12):5994–6006, 2010.

[59] Kamil Š. Zigangirov. On a problem of optimal scanning. Teor. Verojatnost. i Primenen,
11:333–338, 1966.
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