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ABSTRACT 

 A core research concern in the field of environmental justice is to understand how 

exposure to industrial toxins varies by race/ethnic and class. However, as the field has 

evolved there have been dramatic declines in air pollution, the toxicity levels of these 

pollutants, and shifts in the residential settlement patterns of racial and economic groups 

in the United States.  Current work in this field has rarely taken these trends over time 

into account.  Because environmental justice theories in this area are based on the 

manufacturing industry and how it puts some populations at risk more than others, to 

understand how toxic emissions from these industries are changing over time is important 

for evaluating the continued usefulness of current theory.  This dissertation addresses 

these limitations by examining the annual exposure for the years 1995 to 2004 of non-

Hispanic whites (herein referred to as whites), African-Americans and Hispanics across 

the United States to 572 industrial chemicals weighted by their toxicity to human health.   

 The first essay provides a foundational understanding for how pollution exposure has 

changed for different racial/ethnic and socio-economic groups across the U.S. from 1995 

to 2004.  Results indicate that pollution exposure is declining over time for every socio-

demographic group.  However, there remains a gap between African-Americans and 

whites, with African-Americans having greater pollution exposure than whites, and 

Hispanics having similar exposures to that of whites.  Interestingly, Hispanics were 

shown to be exposed to smaller total amounts of pollution, but more toxic substances.  

Within race/ethnic groups, households with higher income have greater protection from 

toxic substances.  However, between races, African-Americans with a higher income and 

education still have greater exposure than whites and Hispanics with lower incomes.  

 The second essay assesses the links between racial residential segregation and 

pollution exposure, and how this association is changing over time. I use relative 

centralization, an alternative measure of segregation than has the one most frequently 

used and one that more precisely captures the clustering of African-Americans around the 

central city, a spatial pattern that is argued to be at the base of unequal exposure to 

industrial toxins by race/ethnic in the U.S.  Results show that racial segregation of 

metropolitan areas is significantly related to pollution exposure of block groups in these 

areas; however this association is decreasing over time. This paper also tests hypotheses 
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from the literature about the dynamics of industrial pollution exposure in central cities 

and outside these areas. I show that counter to what has been previously theorized, central 

city locations have higher pollution exposure than areas central cities, and block groups 

with larger proportions of African-Americans outside cities experience greater industrial 

toxin exposure than areas with larger proportions of whites.  

 The third essay examines how the concentration of poverty in a metropolitan area is 

related to the toxic pollution exposure of block groups located within it.  Findings 

demonstrate that those metro areas with greater poverty segregation have on average 

higher rates of toxic pollution exposure. In addition, those block groups with greater 

proportions of impoverished residents are more likely to have greater exposure to 

industrial toxins in metro areas with higher levels of poverty segregation.  

 Together these three essays contribute to the environmental justice literature by 

examining how exposure to industrial toxins has changed across the continental United 

States in the 1995 to 2004 decade for different racial and socioeconomic groups.  Insights 

about the role of the central city, and poverty concentration, are drawn out by bringing 

the concepts of racial and economic segregation to this investigation.  Results 

demonstrate the need to take into account secular changes in industrial pollution and the 

spatial patterning of different demographic groups while developing environmental 

justice theory and executing analyses.  
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CHAPTER 1 

Introduction 

 

 

 The environmental justice field studies the unequal exposure to environmental risk by 

race and social class.  This body of scholarship has grown dramatically since the 1980s, 

particularly studies investigating the racial and economic inequality associated with 

exposure to air pollution.  However, since this time there have been dramatic changes in 

air pollution and racial and economic segregation that have not yet been adequately 

incorporated into empirical research.  This dissertation addresses this limitation by 

examining how declining trends in industrial air toxins emissions from the mid-1990s to 

mid-2000s may have differentially benefitted U.S. residents, depending on the racial and 

economic segregation of their communities.  The primary focus of this collection of 

papers is to understand the relationship between racial and economic segregation in the 

United States and the evolution of differential pollution exposure from 1995-2004. 

Collectively, this work has implications for environmental justice scholars interested in 

how exposure to industrial pollution varies by race and class over time, for sociologists 

interested in the relationship between community level inequality and its manifestation of 

individual risk, as well as for policy-makers interested in eliminating differential 

exposure to toxic substances that have been theorized to have a hand in health inequality 

by race in the U.S. 

 

Motivating Theories in the Field of Environmental Justice 

 A large share of the environmental justice literature investigates whether industrial 

facilities are disproportionately located in poor and predominately minority communities. 

Theories to explain environmental inequalities rely heavily on sociological, political 

science, and economic scholarship.  The theories that have developed to explain unequal 

environmental risk by race and class are reviewed here to illustrate the theoretical 

grounding of this dissertation and the body of literature that motivated it.  I break these 
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theories down into three complementary categories: rational choice, sociopolitical, and 

racial discrimination theories. 

 Those theories I group in the rational choice category are based on Adam Smith’s 

classical microeconomics theory, which holds that individual behavior can be explained 

by the fact that agents act according to their perceived self-interests.  In keeping with this 

theory, it would be economically rational for industry actors to establish polluting 

facilities in areas that have cheaper land values, which are often in predominately 

minority and low-income communities (Pastor, Sadd and Hipp 2001).  It would also be 

rational for residents of these areas who have the economic ability to move away from a 

polluting industry, concentrating in these communities poorer or minority residents who 

do not have the option to move.  Most studies using rational choice theory focus on 

whether polluting facilities are placed in impoverished and predominately minority areas, 

or rather if areas that these industries moved into took on these characteristics after the 

facility moved in.  

 The results from these examinations have been mixed. Some scholars have found that 

polluting facilities were placed in areas with higher percentages of minority and low-

income populations (Been 1994; Pastor, Sadd and Hipp 2001), while others found no 

evidence for disproportionate siting (Been 1994; Oakes, Anderton and Anderson 1996).  

Moreover, some studies have shown that the proportion of minority residents in 

communities around polluting facilities increased after siting (Been 1994; Mitchell, 

Thomas, and Cutter 1999; Stretesky and Hogan 1998), while in some cases it did not 

(Been and Gupta 1997; Oakes, Anderton and Anderson 1996; Pastor, Sadd and Hipp 

2001).  The only known study to utilize individual-level data showed that some of the 

differential exposure of pollution experienced by African-Americans is due to variation 

in the propensity for African-Americans to move to, and stay in, more polluted areas 

(Crowder and Downey 2010).  

 The second category of environmental justice theories can be classified as 

sociopolitical.  They are based on the idea that industries deciding where to locate take 

the path of least political and economic resistance.  This argument is based on the 

assumption that low income people and minorities represent the path of least resistance, 

meaning it is these communities that are politically and economically vulnerable and 
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unlikely to successfully resist siting proposals.  Empirical studies have shown support for 

this idea.  One of the earliest examples is provided by Hamilton (1995), who examined 

expansion decisions for 84 commercial hazardous waste facilities and found all zip codes 

of the surrounding areas had factors associated with vulnerable populations (e.g., 

percentage of voter turnout and renters). Pastor, Sadd and Hipp (2001) also found 

supportive evidence in their longitudinal study of toxic storage and disposal facilities in 

Los Angeles County.  They found that areas with high turn-over of minority residents, 

areas they assumed to be less politically organized and invested, were more likely to 

receive a polluting facility.  

 The final category of theories is based on the idea that unequal exposure to 

environmental risk can be explained by racial discrimination, which is broken down into 

overt and institutional discrimination.  The overt discrimination perspective holds that 

minority communities are intentionally targeted for environmental hazards because of 

beliefs in racial superiority and/or an intention to protect whites from environmental 

harms.  Bullard (1990: p.103) exemplifies this perspective by arguing that African-

American communities are targeted for local unwanted land uses because they are 

considered “sacrifice zones”.  Pulido  (2000) gives this overt discrimination argument a 

broader perspective by arguing that environmental inequalities result from ‘white 

privilege’, a form of racism she describes as a social order intent on preserving the 

privilege of white people above all other groups, providing them with greater social, 

political and economic opportunity.  Although this type of racial discrimination does not 

require that whites intentionally discriminate, Pulido  (2000) argues that whites are 

consciously aware of such privilege and fight when it is threatened.  

 Reviewing the evidence for theories of overt discrimination can be problematic for 

the reasons expounded on by Pulido  (2000), who notes that previous court decisions 

require proof of an industry’s intention to racially discriminate.  So while scholars can 

demonstrate that industries are disproportionately located in disadvantaged 

neighborhoods, they often cannot show the motivations behind firm’s decision.  This 

does not mean that there has been no supportive evidence for this model.  In fact, 

Stretesky and Hogan (1998) presented a communication to the state of California that 
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suggested low socioeconomic areas be targeted for placement of LULUs.   However, this 

type of evidence is rare.  

 Without direct testimony that specific neighborhoods are targets, researchers are left 

to surmise how institutional discrimination contributes to environmental inequities.  For 

example, Stretesky and Hogan (1998: p283) argue that the results of their longitudinal 

analysis of 53 Superfund sites in Florida, “provide us with evidence that indirect 

discrimination may be largely responsible for the environmental injustice observed.”  

They showed that the number of African-Americans in areas surrounding Superfund sites 

has been increasing over years, which they suggest is resultant from housing 

discrimination, because as they state, “these results imply that in 1990 blacks have fewer 

choices in deciding where they will live than in 1980” (Stretesky and Hogan 1998: p281). 

While studies investigating housing discrimination, industrial zoning, and other forms of 

institutional discrimination have all shown general support for the institutional Racial 

Discrimination model, these studies often point to a web of social issues that create 

environmental injustices which are often hard to untangle and address (Pulido  2000; 

Stretesky and Hogan 1998).   

  

Urban Sociology 

 At the foundation of this dissertation is an idea presented in the urban sociology 

literature which holds that during the Great Migration in the early 1900’s United States, 

central cities were hubs of industrial manufacturing providing low skilled jobs for 

African-Americans migrating from the South (Farley, Danziger and Holzer 2000).  This 

historical fact made African-Americans particularly vulnerable to economic shifts in 

manufacturing (Wilson 1996) and also to the pollution from these facilities (Downey 

2005).  As deindustrialization moved job opportunities outside of the central city.  

Residential segregation limited African-Americans from following these jobs and these 

historically industrial areas became increasingly impoverished, thereby concentrating 

African-Americans in polluted and economically nonviable areas (Wilson 1996;  Downey 

2005; Smith 2009). 

 After Civil Rights legislation made overt housing discrimination illegal, a socially 

mobile black middle class began moving out of the central cities (Wilson 1987). 
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However, Quillian (1999) showed that as this group moved outside of the city, whites 

responded by moving even further out into suburban areas, creating a gradient of 

vulnerability out from the central city.  This left lower income African-Americans located 

in the historically industrial urban center, middle-class African-Americans located just 

outside the city, lower-income whites further out, and upper-class whites located the 

furthest away from the city.  

 What does it mean for environmental inequality that African-Americans, regardless 

of their income, tend to live closer to cities, the historic hubs of America’s manufacturing 

industries, than whites?  The consequences of deindustrialization are that as America’s 

economy moved away from its reliance on manufacturing over what historical period?, 

the number of functioning industrial facilities in the U.S. declined (Sugrue1996).  Does 

this mean that the pollution risk in America’s cities has also declined?  Some have argued 

that because changes in the U.S. economy in the 1970’s and 1980’s caused job 

opportunities to move from cities to suburbs
1
, newer facilities were built outside of the 

city, reducing city residents’ exposure to pollution and making racial segregation 

perversely protective for African-Americans (Downey 2005).  An alternative scenario is 

that older industrial facilities are choosing to be grandfathered out of newer 

environmental regulations which require factories to adhere to stricter environmental 

protection practices.  Thus, the older and dirtier facilities in U.S. cities are exposing those 

living there to greater risk than their suburban counterparts (Robertson 1995).   

 

Understanding Dynamics 

 Previous work in the environmental justice literature has been important in helping us 

understand that broader structural inequality, like racial and economic segregation, are 

related to pollution exposure.  However the nuances of this association and how it has 

changed over time have yet to be examined. This primary goal of this dissertation is to 

better understand the association between pollution and segregation in the United States 

over the past decade.  The project is designed to address the following limitations in the 

environmental justice literature. 

                                                           
1
 This argument is based on the sociological concept of “spatial mismatch” (See Mouw 2000 for a recent 

empirical test of this concept).  
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 The first limitation addressed is the lack of a dynamic and historical view of the 

segregation-pollution association in current environmental justice research. Research has 

shown that racial segregation has declined over recent decades while economic 

segregation has increased (Watson 2009; Farrell 2008). Moreover, new environmental 

regulations and deindustrialization since the 1970’s has led to a broad decline in air 

pollution across the nation in the past several decades (Kahn 1999; EPA 2012a).  

However, we are unsure if the benefits of these changes are occurring equally for all 

population groups.  Previous work has shown that there are class- and race-based 

disparities in the enforcement of environmental policies (Konisky and Schario 2010). If 

those areas that are predominately white and wealthy are more likely to have enforcement 

of environmental regulations over the past several decades, then it is possible that 

pollution risk has become increasingly concentrated in America’s marginalized 

communities.  Moreover, environmental policy analysts suggest that grandfather 

loopholes in environmental regulations have allowed older facilities to opt out of stricter 

pollution controls, providing an incentive to continue operating older dirtier industries in 

the central city.  Without longitudinal examination of pollution trends and how they differ 

spatially and for different demographics, these possibilities remain unexplored.  

 The second major limitation of current research on segregation and pollution is the 

lack of integration of the empirical realities of the urbanization process of American 

cities that has motivated spatial patterns of pollution and people.  Sociologist Thomas 

Sugrue(1996) argues that in order to understand urban inequality we must grapple with 

how the history of a city both constrains and opens up possibilities in the present. This 

call for a perspective on process should be heeded by those studying segregation and 

pollution.  Scholars need to keep an eye to the broader trends their findings are located 

within.  Recent work has taken steps towards this by incorporating the urban sociology 

literature dealing with concentrated poverty. 

 The environmental justice literature has borrowed from the urban sociology literature 

examining the increase in concentrated poverty in America’s central cities during the 

1970s and 80s.  A chief argument in this literature is posed by Wilson (1997) who 

contends that the rise of concentrated poverty in America’s central cities was due 

primarily to deindustrialization.  He notes that during the great migration in the early 
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1900’s, southern African-Americans were disproportionately drawn to manufacturing 

jobs in industrializing cities (Farley, Danziger and Holzer 2000).  Wilson argued this 

historical fact made African-Americans particularly vulnerable to these economic shifts.    

These migrations patterns would also mean that historically large communities of 

African-Americans would have settled in central cities, nearer to their primary 

employment locations, now aging industrial facilities. Previous work has shown that 

racial segregation, often in the presence of poverty, is an important indicator of pollution 

exposure (Lopez 2002; Morello-Frosch and Jesdale 2006).  However, none of these 

studies have examined poverty segregation separately from racial segregation or the role 

of the central city in these relationships. Moreover, few to none have examined how these 

processes change over time.  In order to understand the causes of unequal exposure to 

environmental risk it is important to give each contributing process separate examination 

as well as taking into account their trajectories over time.  

 

Three Papers on Social Stratification and Industrial Pollution Exposure 

 All of these environmental justice theories are grounded in the realities of 

manufacturing and residential settlement patterns. However, there have been large scale 

declines in U.S. manufacturing with disparate impacts on communities (Helper et al. 

2010).  To investigate the potential connections between trends of industrial pollution 

exposure and racial and economic segregation I analyze data from the Environmental 

Protection Agency’s (EPA) Risk Screening Environmental Indicators Geographic 

Microdata (RSEI-GM).  These are annual estimates of 572 industrial toxins for the years 

1995 to 2004.  These data are modeled using climate and molecular information to 

determine which areas they expose and then weighted by their toxicity to human health to 

provide a comparable assessment of risk for over 100,000 block groups across the 

continental United States.   

 Chapter 2: “Changing Exposures to Industrial Toxins in the U.S. from 1995 to 2004,” 

provides the foundation work for understanding how pollution to industrial toxins has 

changed over the examined decade.  This work provides estimated exposures for the 

average African-American, Hispanic, and white American living in the U.S. during this 

time period, as well as for the average household making over $50,000 annually (middle 
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to upper class) or less than $50,000 (lower class). Results show that there have been large 

scale declines in industrial pollution experienced by all groups. However, the relative 

burdens have remained stable.  While Hispanics and whites share similar exposure 

patterns, African-Americans consistently have higher exposure levels.  For example, 

when broken down by income, results show that upper and lower-class African-

Americans experience greater pollution exposure than lower class white and Hispanics.  

 Chapter 3: “The Changing Dynamics of Racial Residential Segregation and Pollution: 

Unexamined Trends” examines how communities with different levels of racial 

residential segregation are being affected differently over time.  Using repeated measures 

for over 100,000 block groups in 320 metropolitan areas, I use multilevel models to 

determine if a metropolitan area’s racial residential segregation level is related to their 

levels of pollution exposure in 1995 and the rate of decline over the following decade.  I 

find that those metropolitan areas with higher levels of racial segregation start out with 

higher exposure to pollution.  However, the association between a metropolitan area’s 

racial segregation and average exposure of areas within it is significantly declining over 

time.  This paper also tests hypotheses developed in the environmental justice literature 

as to whether the relative pollution exposure of areas within and outside of the central 

city are changing over time, as well as examining differences in exposure rates between 

African-Americans and whites living outside of the central city.  Results show that living 

in a central city is positively associated with toxicity-weighted pollution exposure.  In 

addition, African-Americans outside of the central city are exposed to more pollution 

than whites in these areas.   This contradicts current predictions that suggest outside of 

the central city, African-Americans are more likely to have less pollution exposure than 

whites.  This paper contributes to the literature by examining how declining rates of 

racial segregation relate to declining rates of pollution exposure. 

 Chapter 4: “Poverty Segregation and Pollution Exposure: Evaluating the 

Concentration of Poverty” is an examination of how a metropolitan area’s level of 

concentrated poverty is related to the pollution exposure of block groups in that metro 

area in the mid-1990s, and how this association may have varied over the ensuing decade.  

This paper helps to address limitations of current research that integrates the concept of 

concentrated poverty in the urban sociology literature with environmental justice research 
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by more precisely measuring the concept of concentrated poverty and determining how 

changes in this measure over time relate to pollution exposure. Results show that poverty 

segregation is strongly related to exposure.  In addition, block groups with the highest 

proportion of those living in poverty experience significantly greater rates of pollution 

exposure and this is especially true for those located in metropolitan areas with high rates 

of poverty segregation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

CHAPTER 2 

 

Changing Exposures to Industrial Toxins in the U.S. from 1995 to 2004 
 

Abstract 

 

This study investigates trends in exposure to industrial toxins from 1995 to 2004 for 

different racial and income groups in the United States. Demographic data on race and 

income is interpolated from the 1990, 2000 and 2010 censuses to provide annual 

population estimates at the block group level.  Using geographic methods these data are 

overlaid with modeled air pollution exposure for 572 industrial chemicals, weighted by 

their toxicity to human health for every 1 kilometer square in the continental United 

States.  Results suggest that there are two stories when it comes to recent industrial 

pollution exposure trends in the U.S.  First, absolute exposure to industrial toxins is 

declining for everyone.  However, important differences by race and income remain.  

Hispanics are exposed to lesser amounts of pollution than whites, but are breathing in 

more toxic substances.  African-Americans experienced larger absolute declines in 

exposure over the time period compared to whites and Hispanics, but still experience on 

average 1.7 times more toxic weighted pollution than whites. These results suggest that 

the benefits of broad declines in pollution exposure from industry did not greatly reduce 

the relative burden of African-Americans compared to whites.  

 

Introduction 

The environmental justice (EJ) field began as an academic discipline in the early 

1980’s as a response to protesters arguing that their predominately impoverished, 

African-American communities were being targeted for the dumping of toxic substances 

(see Taylor 2000 for a review of the history).  These claims set off a wave of quantitative 

research aimed at documenting this phenomenon ( UCC 1987; Bullard 1990; Been 1994). 

The field has grown substantially since this time. Yet quantitative EJ scholars have been 

focused on determining the relative importance of race verses class leaving broader 

trends in changes in pollution and population unexamined. 

For example, since the field began there have been large declines in industrial, 

air-borne toxins (Kahn 1997; EPA 2012a).  However, to date there has been no research 

investigating if these declines are experienced equally amongst different racial and 

socioeconomic groups across America. This raises the question: have these declines 

mitigated the racial environmental inequality that was apparent at the birth of the 

environmental justice field?  Furthermore, there have been dramatic demographic shifts 

in the United States since the field began, most centrally a booming Hispanic population 

(Guzmán 2000) and a growing black middle class (Frey 2003).  How have these changes 
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in sociodemographic composition of the U.S. population altered pollution exposure 

inequalities?  Existing longitudinal studies give us some insight into how exposure to 

industrial air pollution has changed over time for different racial and socioeconomic 

groups.  However, because no longitudinal studies focus on comparing trends in 

industrial pollution exposure across racial and socioeconomic groups, readers of this 

research are unclear if the broad declines in pollution exposure affect social groups 

differently.  In addition, no known studies cover the whole of the continental United 

States.  Rather, most longitudinal studies focus only on metropolitan areas across the U.S.   

Furthermore, current research has faced measurement limitations due to a lack of 

data on pollution exposure and the resulting analyses have been restrictive.  For example, 

a typical EJ analysis would determine whether a census area (e.g., census tract) has a 

polluting facility located in it, and then determine how the demographic characteristics of 

residents of those tracts differ from those residents of tracts without a facility.  This 

seems a reasonable approach until the irregularity of census boundaries and the fact that 

they vary dramatically in size are taken into account.  An analysis by Mohai and Saha 

(2006) found tracts range from 0.85 square miles to 916.5 square miles.  This could mean 

that the demographics of one side of an oddly shaped polygon might be starkly different 

than those nearer to the facility.  In addition, Mohai and Saha (2006) found that that 

roughly 71% of all facilities lay within a half a mile from their census block border.  This 

would mean that the population located within the census boundary might not be the most 

exposed. Rather in those cases some residents in the neighboring tract would be among 

the more exposed, yet most approaches would code these individuals as unexposed. 

Standard methods also do not take into account that there are multiple facilities and 

chemicals contributing to individuals’ exposure and that being located near one polluting 

facility may not be equally as toxic as being near another facility.  Because facilities 

cluster in space, and emit various amounts and toxicities of chemicals, these assumptions 

could lead to erroneous conclusions.  

 This paper contributes to the literature by determining how the average exposure to 

industrial air toxins has changed from 1995 to 2004 for individuals of different racial and 

socioeconomic groups in the United States. This analysis uses a longer time period of 

observation, larger land area coverage, more refined geographic unit of analysis, and 
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more precise estimates of pollution exposure than previous EJ studies.  This study gives 

us needed insights into how exposure to industrial pollution is changing over time for 

previously unexamined social groups. Such work is necessary in order to understand if 

diverse populations are benefiting equally from the broad declines in pollution reported to 

be associated with deindustrialization and stricter environmental regulation (Kahn 1997; 

Maasoumi  and Millimet 2005).    

 

Background 

Trends in Pollution Exposure by Race/Ethnicity and Income 

 The consequences of the spatial clustering of African-Americans in America’s central 

cities have been a primary sociological area of study for decades (DuBois 1996(1899); 

Park 1915; Hawley 1971).  One such effect under study has been African-Americans’ 

exposure to industrial pollution from manufacturing facilities, with much research finding 

that people of color have greater pollution exposure than whites (Pastor, Sadd and Hipp 

2001; Bullard et al. 2007; Lopez 2002; Morello-Frosch and Jesdale 2006).  Studies that 

have investigated longitudinal changes in air pollution exposure consistently report 

declines nationwide (Kahn 1997; 1999; Maasoumi  and Millimet 2005).  Economists 

have termed the declines in pollution exposure due to deindustrialization the “silver 

lining” of deindustrialization (Kahn 1999).  No known prior studies have investigated if 

these large scale declines in industrial pollution have been felt equally across 

demographic groups.  Some researchers have hypothesized that the large scale 

decommissioning of industrial plants associated with deindustrialization have decreased 

African Americans’ exposure to industrial pollution (Downey 2005).   

White Americans, on the other hand, have had different spatial settlement 

patterning than African-Americans.  Reflecting levels of racial segregation, non-Hispanic 

whites are more concentrated in the suburbs compared to African-Americans (Charles 

2003). The racial residential settlement patterns of whites in the suburbs and African-

Americans in the cities were the basis of Kain’s (1968) spatial mismatch theory, which 

holds that as manufacturing has declined in the U.S., jobs have moved further away from 

the cities towards the suburbs.  This effect of deindustrialization has been shown to 
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provide suburban residents with better access to jobs and limited access to central city 

African-American residents (Farley, Danzinger and Holzer 2000; Massey and Denton 

1993; Mouw 2000; Sugrue1996).  Downey (2005) argues this theory can be applied to 

the environmental justice literature and reasons that as job opportunities moved from 

cities to suburbs, any new factories being built would be placed away from the cities, 

thereby increasing exposure of suburban populations. This leads Downey (2005) to 

hypothesize that over time, whites will become more exposed to air pollution while 

African-Americans will become less exposed. Thus, the ratio of average exposure for 

African-Americans relative to whites may be decreasing, at the same time absolute 

exposures for all groups would be going down.  

 Like African-Americans, the Hispanic population in the U.S. is extremely urbanized, 

with over 90% living in metro areas in the year 2000 ( Kandel and Cromartie 2004).
2
  

Thus their exposure to industrial is expected to be similar to that of African-Americans. 

However, unlike the African-American population, which is concentrated in the South 

and Midwest, the Hispanic population is largely located in the Southwestern United 

States (Kandel and Cromartie 2004).  This means this population’s exposure to industrial 

toxins, and the resulting changes in this due to deindustrialization, may differ from those 

of African-Americans.  Specifically, I hypothesize that this group is less exposed to 

industrial toxins more generally, and declines in this exposure will be minimal compared 

to African-Americans.  This is because African-Americans are more likely to live in areas 

more affected by deindustrialization in the time period under examination.   The 

Brookings Institute (Wial and Friedhoff 2006) found that deindustrialization was more 

extensive in Indiana, Wisconsin, Michigan and southern states during the period 1980-

2005.  Sixty-one percent of the African-American population resided in these areas in 

2000, whereas only 35% of the Hispanic population was located here. 3   

                                                           
2 

It is important to note that classifying the “Hispanic” population is often problematic due to their 

heterogeneity in socioeconomic, immigrant status and residential patterning.  Nonetheless, due to space 

constraints, teasing out these differences will have to be left for another paper. Therefore, in this paper I use 

the 2000 U.S. Census classification of Hispanic or Latino as “a person of Cuban, Mexican, Puerto Rican, 

South or Central American, or other Spanish culture or origin regardless of race.” 
3
 These numbers were calculated from the total number of Hispanics and African-Americans living in the 

U.S. South and the mentioned states, divided by the total number of Hispanics or Black or African-

American alone population in the census (McKinnon 2001; Guzmán 2001). 
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 In addition to providing temporal trends in pollution exposure for different racial 

groups, this paper also contributes to the literature by providing evidence of exposure for 

racial groups broken down by socioeconomic status. There have been major demographic 

shifts across the United States in recent years that EJ research has yet to fully consider.  

For example the black middle class has grown substantially (Marsh et al. 2007; Frey 

2003; Farley and Frey 1994). Frey’s indicator of middle-class status, an average 

household income of $50k or above, can be used to assess this group’s growth and size in 

the most recent census, as well as where they stand in comparison to non-Hispanic whites 

and Hispanics.  In 2010 roughly 36% of African-American households had an average 

household income of $50k. This is up from 27.4% in 2000, but still below the 56% of 

non-Hispanic whites and 41% of Hispanics.
4
   

 The current EJ discourse holds that the more economic wherewithal someone has the 

less likely they will be subject to pollution exposure.  This would suggest that as more 

African-Americans attain the economic status of middle-class they would be less exposed 

to industrial toxins.  Thus, I hypothesize that within racial groups, those with higher 

incomes will be more protected from environmental toxins.  However, within income 

categories I still hypothesize there will be differences by race, so that African-Americans 

and Hispanics will be more exposed than whites in the same income brackets.  Such an 

expectation arises from Logan and Stults’ (2011) analysis of all metropolitan areas in 

2005-2009.  Using ACS data, he found that, “[t]he average affluent black or Hispanic 

household lives in a poorer neighborhood than the average lower-income white resident.” 

Thus even the more affluent African-American and Hispanics are more likely to have 

poor neighbors than whites of similar standing.  If impoverished individuals are more 

likely to breathe in toxins, this would mean that those middle-class African-Americans 

and Hispanics living nearby will experience greater amounts of exposure than whites of 

similar socioeconomic standing. 

 

 

 

                                                           
4
 Data were calculated using American Community Survey’s 2010 five-year estimates accessed through 

Social Explorer variable “Household Income In The Past 12 Months.”  
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Prior Longitudinal Environmental Justice Studies: Key Limitations 

 Current EJ studies that have taken a longitudinal perspective have not focused on how 

exposure is changing over time, rather they have primarily set out to investigate whether 

the demographics around a polluting facility changed once a facility moved into the area.  

While these studies are informative for evaluating whether the unequal distribution of 

pollution can be explained by demographic transitions around facilities, they are less 

helpful in determining answers to the policy relevant question: how has exposure to 

industrial toxins changed over time for individuals of different racial and socioeconomic 

groups?  These studies are limited in answering this question for a few reasons.  

 The first is that much of current research has focused mainly on metropolitan areas, 

leaving out possibly important variations in pollution exposure.  Fully 80.7% of the U.S. 

population was located in metro areas in 2010 (Census 2010), and Bullard et al. (2007) 

found that 83% of commercial hazardous waste facilities operating in the U.S. in 2000 

were located in metropolitan areas.  These studies would signify that metropolitan areas 

would be the most important spaces to study if we want to understand pollution exposure.  

However, Atlas (2002, p.372) found that for the 100 largest, large-quantity-generators 

(LQG) of hazardous waste, “most of these LQGs did not have substantial numbers of 

people nearby.”   This would imply rural areas need to be included in analyses that 

attempt to determine how pollution exposure varies by race and class. Excluding spaces 

outside of metro areas makes it difficult to assess how deindustrialization and the 

suburbanization of jobs have affected pollution exposure trends because of a lack of 

representation of less urban areas.  In order to evaluate empirical evidence on how such 

trends might have affected exposure differently, a larger spatial area needs to be taken 

into account than just metro areas.  To rectify this, this study uses estimates of pollution 

exposure for every 1km
2
 in the contiguous United States that has been aggregated to the 

block group level.  This is a larger area and more refined geographic unit analysis than 

previous studies have presented.  

 To overcome limitations presented by a lack of data on exposure to pollution, recent 

studies have begun to use modeled pollution data that take into account the toxicity of 

chemicals and estimates of where these chemicals are located in the environment.  One of 

the most comprehensive spatial studies to date used pollution estimates for 1 km
2
 grid 
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cells aggregated up to the census tract level (Downey et al. 2008).  Looking at the 

pollution exposure experienced in the year 2000 in 329 metropolitan areas, Downey and 

his co-authors found that while African-Americans were likely to be the most polluted 

group in 32.5% of metro areas, whites were actually the most polluted group in 4.3% of 

these areas. This supports findings from earlier work done on a smaller sample of metro 

areas that showed environmental inequality varies across the United States (Downey 

2007).  Such work demonstrates the need to take into account a broader spatial and 

temporal view. This paper extends analyses in all of those directions as well as 

considering how the changing social demography of the United States complicates the 

picture.  

 Another limitation of current longitudinal EJ research is that they often do not take 

into account the complication of wind patterns.  One well known example where this 

limitation would pose a problem can be found in the South Basin of California, which is 

considered to have some of the worst air quality in the country (Brajer and Hall 1992).  

The greater Los Angeles area is sandwiched between the ocean on the west and 

mountains on the east.  The ocean breeze pushes the smog up against the mountain, 

where it settles and disproportionately showers pollution on the population who resides at 

the base of the mountains.  Eastern Los Angeles counties have been shown to have twice 

the average increase risk of premature death due to pollution exposure than their 

wealthier and more westerly counterparts (Brajer and Hall 1992).  Common methods in 

EJ research would conclude that those areas to the west, where the polluting facilities are 

located, would have the most exposed population.  However, when wind patterns are 

taken into account the most polluted population would be determined to be those 

downwind.  

 Finally, researchers rarely have had the data to accurately consider the toxicity of 

chemicals and exposure to multiple chemicals.  Rather, many assume being near one 

facility is equivalent to being near another facility, even though these facilities might vary 

in the toxicity of the pollution they are putting in the air.  Assuming equal toxicity 

between pollutants neglects the overwhelming evidence that some chemicals (e.g. 

asbestos) are much worse for human health than others (National Cancer Institute 2009).  

In addition, industries concentrate in areas in order to minimize the cost of doing business 
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(Weber 1909; Hawley 1971).  This clustering of pollution sources means that individuals 

are being exposed to multiple chemicals at once. As argued by Kim and colleagues 

(2009, p.565) “[i]t is becoming increasingly evident that the incidence of 

neurodevelopmental toxicity is dependent on co-exposure to multiple neurotoxicants.”  

To effectively evaluate exposure to pollution in order to understand health and health 

inequalities such complexities need to be measured. For these reasons current 

longitudinal studies that determine exposure to only one, or a handful, of toxins are likely 

to grossly underestimate pollution, and thereby health risk, experienced by communities. 

The present study is designed to overcome the above limitations by using geographic 

information systems (GIS) software to overlay census block group data with estimates of 

exposure to 572 industrial toxins. 

Because both deindustrialization and environmental regulation affect racial 

groups differently my hypotheses for trends in exposure over time varies by demographic 

group.  More specifically, I expect that African-Americans will experience a greater 

decline in air pollution exposure from industrial sources than whites, due to their denser 

populations in urban centers, historically a primary location for manufacturing facilities 

(Sugrue1996), but places that have lost industrial facilities over recent decades.  

 

Data and Methods 

Pollution Exposure Data 

 Pollution data were obtained from the U.S. Environmental Protection Agency’s 

(EPA) Risk Screening Environmental Indicators Geographic Microdata (RSEI-GM). The 

RSEI-GM database is made up of Toxic Release Inventory (TRI) data that has been 

modeled in order to estimate the risk these chemicals pose to the population.  The EPA 

models the fate of TRI chemicals in the environment using information about the amount 

of chemical a facility released measured in micrograms per cubic meter (μ/mg
3
), 

molecular weight, rate of decay, as well as the source of the release (e.g., smokestack 

height, valve leak, etc.), wind patterns, temperature, and topography around a facility. 

The final product is an estimate of the yearly amount of chemical estimated to be in the 

air over a 101 km by 101 km square around each facility.  This 101 km by 101 km square 
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is further broken down into 1 km
2
 grid cells. Each of these grid cells is assigned a value 

for the total summed amount of a specific chemical estimated to be in the air for the 

whole year. The amount of 572 chemicals from multiple facilities landing in each 1 km
2
 

grid cell that makes up the contiguous Unites States have been estimated.  This type of 

modeling is referred to as plume modeling and provides a potentially more accurate 

picture of pollution exposure than the simple proximity measures described above 

(Chakraborty and Armstrong 1997).   

 In addition to geographic modeling, the RSEI-GM database has also calculated the 

health risk of the chemicals being modeled.  The effect a chemical is expected to have on 

public health is determined by peer-reviewed studies completed by both EPA and 

external scientists.
5 

 Using this literature, chemicals are assigned a toxicity weight with 

the goal of making different chemicals comparable to one another on a common metric 

(EPA 2007).  Factors that are used to assign toxicity weights are: the number of potential 

chronic human health effects associated with a chemical, the severity of these effects, and 

the potency of the chemical (EPA 2007).   

 The RSEI-GM database weights the estimated amount (or concentration) of a 

chemical expected to be in a grid cell by its toxicity to create a “toxic concentration” 

value.  This toxic concentration value can be summed across multiple chemicals that are 

estimated to be in the air above each of the 1 km
2
 grid cells.  The total toxic concentration 

is the major indicator of pollution exposure used in this study and is derived by equation 

1 below.  

 

In this equation TC= the total toxic concentration (sum of the toxicity weighted amount 

of chemicals) of one 1 km
2
 grid cell, Ti = toxicity weight of chemical i, Ci = 

concentration of chemical i and N is the number of chemicals falling in the grid cell. The 

toxicity weight of chemical i, is multiplied by the concentration (amount) of chemical i 

landing in a cell, this process is repeated across all N chemicals and then these values are 

                                                           
5
 Such as the EPA's Integrated Risk Information System (IRIS), EPA Office of Pesticide Programs' 

Toxicity Tracking Reports (OPP), Agency for Toxic Substances and Disease Registry final, and other 

sources.  

(eq. 1) 

http://www.epa.gov/iris
http://www.atsdr.cdc.gov/toxpro2.html
http://www.atsdr.cdc.gov/toxpro2.html
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summed.  Total toxic concentration values are available for every grid cell in the 

contiguous U.S.
6
 for every year between 1988 and 2007 (see EPA 2009 p19-20 for a 

more detailed description of this process). 

Limitations and Restrictions of RSEI-GM data 

  Because RSEI-GM is based on TRI data, the limitations and restrictions associated 

with TRI affect these data as well.
7
  For example, the list of chemicals for which facilities 

are required to report emissions to the TRI changes over time.  For those studying trends 

it is critical to constrain the summed scores to include the consistent set of chemicals 

across years. This will help ensure that any changes observed over time are not the result 

of a new chemical coming under observation that might create an apparent jump in toxic 

concentration (EPA 2012b).
 
  In 1995 the EPA added 286 chemicals to the list of those 

that facilities were required to report their emissions.  The EPA has made changes to the 

required reportable chemical list in: 1988, 1991, 1995,1998, 2000 and 2001, with varying 

number of changes each time. When changes are made the EPA publishes a list of “core 

chemicals,” identifying chemicals that were not added, removed, or for which the method 

of reporting changed drastically from a specific year onward.   Because these analyses in 

this paper use data from 1995 to 2004, I have used the core chemicals for 1995 to create 

measures for all the years.  However, as some of the chemicals added to the list after 

1995 have been linked to environmental health disparities (e.g., lead and mercury) they 

are of specific concern and should be considered in future research. To evaluate the 

implications of differences in sets of chemicals considered, I have calculated trends with 

1998, 2000 and 2001 core chemicals and find similar patterns (see Appendix A).  

 In addition to accounting for changes over time in the required reportable chemicals, I 

also address misreporting errors in the data.   Because the TRI are reported by facilities 

rather than detected by monitoring in the atmosphere, there is a possibility of human 

error.  This often takes the form of moving a decimal place over in the reported amount 

                                                           
6
 Note not all grid cells have been estimated to have pollution in them. Only those grid cells that are within 

101 kilometers of TRI facilities are in this model. Thus those cells outside of these areas have an estimated 

pollution value of zero, even though there might be other sources of pollution in these areas that are not 

captured by the TRI data. 
7
 For a thorough explanation of the limitations of the RSEI  data see the Political Economy Resource 

Institute’s webpage “How Accurate are the RSEI Data on Toxic Air Pollution?” at: 

http://www.peri.umass.edu/accurate/ 
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of a chemical that was released.  The consortium of RSEI-GM users are provided with a 

list of facilities which have incorrectly filled out their forms submitted to the TRI.  I 

follow the practice of researchers in this group and remove those facilities with unreliable 

data for the year of misreporting (Pastor 2008). 

 While those errors corrected by facilities can be accounted for, there is also the error 

associated with misreported data that is not recognized and reported to the EPA.  The 

non-profit organization The Environmental Integrity Project compared measured data 

against reported data in Texas for the year 2000.  They conclude that the TRI 

underestimates pollution from the petrochemical industry by four to five times (EIP 

2004).  The only other known analysis comparing detected exposure data with reported 

RSEI data was completed for nine to fifteen schools in the state of Michigan.  The RSEI-

GM version 2.1.5, the same version of data used in this paper, was generally not 

significantly different between the five chemicals examined from the 2002 RSEI and the 

2002 air monitoring stations estimates at one and two kilometers (Lee, Mohai and Kweon 

2010).
8
 This means that the results provided in this paper are likely to be underestimating 

pollution exposures. 

 

Demographic Data 

 Demographic measures were determined for all block groups in the continental United States 

(N=206,746).
9 
 I used 1990, 2000 and 2010 Census data obtained from Social Explorer, 

professional version (2012).  These data were then interpolated using Equation 2 below to obtain 

annual estimates for different racial and socioeconomic groups in census block groups.  

 

In equation 2, yai3 is the population of racial group a for census block group i in year 3; yai2 and 

yai1 are the populations for racial group a in census block group i for the census years I am using 

                                                           
8
 The authors report Pearson correlations between RSEI-GM 2002 estimates for 1,2 and 3 km around 9-15 

Michigan schools and 2002 air quality monitoring data for Chromium, Cobalt, Lead, Manganese and 

Nickel.  These were not significantly different from one another at the 1 and 2km radii but Chromium and 

Nickel were mildly significant at 3km. 
9
 The number of block groups outside the continental U.S., and thus the pollution dataset, are:  Alaska (N= 

533), Hawaii (N=646) and Puerto Rico (N=2477) for a total of 4,522 block groups taken out of the data per 

year.   

http://environmentalintegrity.org/pdf/publications/TRIFINALJune_22.pdf
http://environmentalintegrity.org/pdf/publications/TRIFINALJune_22.pdf
http://www.chemicalright2know.org/files/Presentations/November_2/Breakout_Session_1_-_Air_Toxics_-_Louise_-_1pm/Lee_Sangyun_and_Mohai_Paul_-_Comparing_TRI_Emission_Estimates_with_the_National_Air_Toxics_Assessment.pdf
http://www.chemicalright2know.org/files/Presentations/November_2/Breakout_Session_1_-_Air_Toxics_-_Louise_-_1pm/Lee_Sangyun_and_Mohai_Paul_-_Comparing_TRI_Emission_Estimates_with_the_National_Air_Toxics_Assessment.pdf
http://www.socialexplorer.com/pub/home/home.aspx
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to interpolate.  The value x3 is the year that I am interpolating for and will thus take on the value 

of the years between censuses (1991-1999 and 2001-2009). The value of x1 and x2 are the census 

years which data were collected and between which I am interpolating (where x2 > x1).  Using 

equation 2, I obtained annual block group-level population estimates for the following racial 

categories: (1) non-Hispanic African-American (herein referred to as African American) (2) 

white (herein referred to as white) and (3) Hispanic origin individuals of any race.
10

    

 Household income data, broken down by race, were also obtained for census block 

groups from the U.S. Census via Social Explorer.  Using Frey’s (2003) indicators, 

household incomes were broken down into a dichotomous variable  (1) high income:  

those making $50,000 or above and (2) low income: those making less than $50,000.  

However, unlike data on race, these data are not available for 100 percent of the 

population; rather one in every six households receives a long-form from the census 

requesting these data.  This one in six household statistic holds true for the 1990 and 

2000 censuses, however, in 2010 the U.S. Census Bureau moved collecting these long-

form data from the decennial census to the American Community Survey (ACS).  The 

ACS process of collecting data differs from that used by the U.S. Census.  Unlike the 

U.S. Census, the ACS doesn’t collect data at one point in time.  The sample size is 

smaller than the one in six persons collected by the long-form decennial census and in 

order to protect privacy of individuals the ACS uses values derived from several years of 

smaller aggregated samples.  For example, the ACS 2010 estimates were created from 

data collected in the years 2006 to 2010.
11

   

Merging Data and Determining Average Exposure 

 Recall that the RSEI-GM data are made up of 1 km
2
 grid cells; the total number of 

RSEI-GM grid cells that make up the continental United States is 14,249,226.
 
 Using GIS 

I overlaid these grid cells with state block group shapefiles from the U.S. Census 

                                                           
10

 All of these racial categories refer to those of only one race. In addition, the racial categories 

Asian/Pacific Islander, Native American and ‘Other’ are not included here as the sample size of these 

groups was so small that slight fluctuations of pollution exposure in these groups were magnified and not 

generalizable.  
11

 Roughly 1.9 million households were interviewed each year from 2006-2010.  As there were 116 million 

households in the U.S. in 2010, roughly 8.2% of the population is represented in the ACS 2010 samples.  
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Bureau.
12

 I then determined the percentage of the block group covered by the grid cell, by 

calculating the area of the block group and then intersecting it with RSEI grid cells. 

Figure 1 shows an example; the solid line outlines a block group in Madison, Wisconsin.  

The dashed line is a RSEI-GM grid cell.  In this instance the grid cell has a toxic 

concentration value of five.
13

  I then calculated the area of the block group and the area 

that the RSEI grid cell intersected (or overlaid) with that block group. Dividing the 

intersected area with the block group area it was determined that this grid cell took up 

40% of the block group, and thus it contributed a toxicity of two (5 *0.40) to the block 

group’s total toxic concentration.
14

  Figure 1 shows only one RSEI grid cell for clarity.  

In reality, the whole of the block group is covered by grid cells, each contributing their 

own weighted toxicity to the block group.  Once the pollution exposure for all grid cells 

are weighted according to the amount of space they took up in a block group, they were 

then summed up to the 2000 census boundaries.     

 The process described above yielded pollution exposure scores for every block group 

in the contiguous U.S. (N= 207,612)
15

 for the years 1995 to 2004.  Pollution estimates 

were aggregated up to 2000 census block group boundaries.  However, demographic data 

obtained for the 1990 and 2010 Censuses were associated with the boundaries for their 

respective years.  These boundaries were overlaid with 2000 boundaries, and using the 

same weighting system described above, demographics of the block group were weighted 

according to the proportion they took up of the 2000 boundary.  For example, if a 1990 

block group covered 40% of a 2000 block group and the 1990 population was 50 

individuals, then the 1990 population would be weighted by 0.40 (50 *0.40)  and then 

aggregated up to the new 2000 boundary to equal 20 individuals who resided within the 

2000 boundary of that block group.   

                                                           
12

 GIS shapefiles were obtained from: http://www.census.gov/geo/www/cob/bdy_files.html and a RSEI 

grid cell shapefile from ABT Associates on 8/13/2011 via Professor Michael Ash, Professor of Economics 

and Public Policy and Chair of Economics at the University of Massachusetts, Amherst. 
13

 Note these values are rounded for this heuristic.  
14

 It’s important to remember that these scores that have magnitude relative to one another. The total 

amount of pollution that landed in this grid cell was weighted by the toxicity of the pollution in order to 

make the score comparable to scores for other cells. A score of two is meaningful in reference to other 

scores which may have larger or smaller magnitude. The range of these values is from 0 to roughly 110,000 

with an average of 9.7, indicating a highly skewed distribution. 

15 The total number of block groups in the 2000 Census was 211,268. Because I only have pollution 

estimates for the contiguous U.S. I excluded Alaska (N= 533), Hawaii (N=646) and Puerto Rico (2477). 

http://www.census.gov/geo/www/cob/bdy_files.html
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 Once every block group had an estimated pollution score for the years 1995 to 2004, 

and was merged with the corresponding year’s interpolated demographic data, I was able 

to determine average exposure for each demographic group.  For example, if the block 

group in Figure 1 had an aggregated estimated exposure of 10 in the year 1995, and the 

total interpolated population for that year was 75 individuals (25 white, 25 African-

Americans and 25 Hispanics) then I would have a data frame with 75 observations, each 

having a toxic concentration of ten associated with it, and 25 having a race variable coded 

as white, 25 African-American and 25 Hispanic.  Once the data were reshaped from 

block groups to individuals I was able to determine an average exposure for individuals 

in each demographic group by summing the individuals’ associated pollution score across 

racial and economic groups and then dividing by the total number of individuals in that 

group in the U.S. as a whole. All statistical analyses were performed in STATA 12.1.  

 

Results 

 Figure 2 shows the average amount of industrial toxins experienced by individuals in 

different racial groups for the years 1995 to 2004.  African-Americans experience the 

highest absolute amount of pollution at a maximum of 0.080 μ/mg
3
 in the year 1995 

down to 0.008 μ/mg
3
.  Whites stay consistently in the middle ground, ranging across the 

years from 0.023 – 0.003 μ/mg
3
 and Hispanics are consistently the least exposed group 

ranging from 0.008-0.001 μ/mg
3
.
16

 
 
These results show the large degree to which the 

amount of pollution has declined across the U.S. over this period. Whites experienced 

8.79 times less pollution (0.023 μ/mg
3
/0.003 μ/mg

3
) in 2004 than in 1995, Hispanics 

almost 6 times less (0.008 μ/mg
3
/0.001 μ/mg

3
)
 
and African-Americans 9.67 times less 

(0.079 μ/mg
3
/0.008 μ/mg

3
). 

                                                           
16

 These results were calculated without the outlier of Miami-Dade County. This county was considered an 

outlier for this analysis because it had an overabundance of the chemical Phenol being produced from 

1996-2001 (RTK 2012).  This chemical rose to one of the top four chemicals released in this city in 1996, 

its amounts rose slowly to peak in 1998 as the third most released chemical in the county and then arched 

downward to become absent from the release list in 2001. Because this chemical is not considered highly 

toxic in the RSEI database its contribution to the health risk is minimal and therefore does not affect the 

results for health risk. However, because it was released in such large amounts it was able to skew the data 

for this one county and because of the dense Hispanic population there skewed the estimated amount of 

pollution this group was exposed to.  Analyses not broken down for Hispanic population are not as affected 

by this outlier and thus the remaining analyses in this dissertation include these counties. 
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 When I weight the chemical concentrations in Figure 2 by their toxicity to human 

health we see a similar picture for African-Americans (see Figure 3 below).
17

  In addition 

to the burden of greater amounts of pollution, African-Americans also consistently suffer 

from the greatest health risk from industrial toxins. Hispanics are generally exposed to 

smaller amounts of pollution than whites (Figure 2). However, when these amounts are 

weighted by their toxicity to human health, their risk is equivalent to whites. This means 

that although they are exposed to smaller amounts of pollution than whites, they are 

generally exposed to more toxic substances. The most striking take away from these 

results is that there are clearly two stories taking place. While the average amount of 

toxins and associated health risk experienced by African-Americans and whites is 

declining, the relative amount and risk is staying roughly the same.  

 Subtracting the average amount of toxic concentration experienced by African-

Americans and Hispanics from the average amount of toxic concentration experienced by 

whites tells the story (Figures 4 and 5). The absolute difference between whites and 

African-Americans posed by industrial pollution has sharply declined, with a slope of -

3.49.  The absolute difference between Hispanics and whites has decreased very slightly, 

with a slope of -0.13. While the absolute risk from industrial toxins has declined over all, 

the relative risk is such that African-Americans are still over one and a half more exposed 

than whites (Figure 5); with an average difference in slope over the years equal to 

roughly zero (-0.04).   Similarly, the relative difference between Hispanics and whites has 

remained unchanged from 1995 to 2004 with a slope also equal to roughly zero (-0.01).   

 Figure 6 shows how income differences within racial groups relate to pollution 

exposure. Recall that the high income category is those households making $50,000 a 

year or more, and the low income category were those households making less.
18

 As 

expected, those with lower income are at greater risk for exposure to industrial toxins. 

Interestingly, the larger difference in exposure is between income groups rather than 

ethnic groups. Low-income Hispanics’ and low-income whites’ exposure profiles are 

more similar to each other than the low and high income groups of a given ethnic group.   

                                                           
17

 Note that because these are population data any difference found between groups is statistically 

significant. 
18

 These results were also replicated with poverty status by race with the same substantive results. These are 

available upon request.  
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Low income whites have a greater rate of decline in exposure than the other groups in 

Figure 5, with a slope of -3.33.  Low-income Hispanics have the next fastest rate of 

decline with a slope of -2.96. The high income categories experienced a slower rate of 

decline from a lower base level in 1995.    

 Figure 7 demonstrates that African-Americans of high income have exposure levels 

that never fall far below those of whites in the lower income category.  Moreover, 

African-Americans of low income clearly experience greater absolute levels of risk than 

all other groups discussed thus far, reaching a risk of over 1.5 relative to high income 

whites in 1996.  The absolute difference between these groups has declined, moving from 

a roughly 40 point difference between groups in 1995 to a ten point difference in 2004.  

However, the relative difference has not budged much (Figure 5).  Although the slope is 

roughly zero (-0.084), low-income African-Americans experienced almost two and a half 

times
19

 as much exposure as high-income whites in 1995 to 1.9 times more exposure in 

2004.  Similarly, within income categories, high-income African-Americans experience 

1.53 times more exposure than high-income whites in 1995 and this stays roughly the 

same ending at 1.45 in 2004. Likewise, in 1995 low-income African-Americans were 

1.81 times more exposed than whites of similar income in 2004 this declined to 1.35, the 

second greatest amount of change in these groupings, with a slope of -0.080. 

 The sensitivity analyses presented in figure 8 in Appendix A shows the average toxic 

pollution exposure for African-Americans, whites and Hispanic using chemicals that 

were consistently reported from 1998 onward (aka: 1998 core chemicals).  These results 

consistently show African-Americans with the most pollution exposure and Hispanics 

and whites having similar exposures with Hispanics averages fluctuating around whites.  

The Hispanics fluctuations could be due to the fact that this population is densely 

populated in specific areas in California where there are also high levels of toxic 

pollution. The reported emissions in these areas are not known to have not been corrected 

with the EPA and thus are possibly accidental releases and should therefore remain in the 

data.  The same interpretation holds for figures 9 and 10, which graph averages based on 

2000 and 2001 core chemicals respectively. Figures 11 through 13 graph averages based 

on core chemicals for each income group. Low income African-Americans consistently 

                                                           
19

 This ratio was 2.38 in 1995 and 2.51 in 1996. 
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have the highest exposure for each set of core chemicals. However, the group with the 

next lowest exposure is often low income whites. The fluctuations in these results make it 

hard to identify a consistent pattern for which racial/income group is exposed to the most 

toxic pollution. Future exploration into possible outliers is necessary to untangle these 

findings.  

 

Discussion 

 The results presented in this paper provide novel evidence for the evolution of 

environmental inequalities in America. These analyses utilize a longer time span, finer 

geographic resolution, more complete coverage of the continental United States, and 

better measures of exposure to industrial toxins, than previous longitudinal, national-level 

studies.  From these analyses we can see that the absolute exposure to health risk from 

industrial toxins is declining for all racial groups. The average amount of, and health risk 

from, industrial toxins for all Americans in the continental U.S. was halved during the 

period 1995 to 2004.  The declines in air pollution seen across the U.S. since the 1970s 

have been linked to both deindustrialization and environmental regulation (Kahn 1997; 

1999).   

 Although the absolute exposure and health risk of all racial groups declined over the 

time period examined, there were differences by race. African-Americans had the most 

dramatic absolute decline in exposure to industrial toxins. The amount of pollution they 

were exposed to, as measured in micrograms per cubic meter, declined by almost tenfold. 

Similarly, when these pollutants were weighted by toxicity, African-Americans’ exposure 

decreased by over half from 1995 to 2004. While the cause of this decline was not 

examined, these results are consistent with the hypothesis the African-Americans will 

experience greater declines than other racial groups because of their over representation 

in areas affected by deindustrialization (Downey 2005). 

 Compared to African Americans, Hispanics were consistently exposed to one and a 

half times less risk. Although not tested directly here, this is congruous with the 

hypothesis that Hispanics are less exposed to industrial toxins generally due to their 

smaller populations in historically industrial regions of the U.S., like the Midwest. Future 

work should consider how these results might vary if regional and ethnic group 
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differences are considered. Interestingly, although Hispanics were exposed to smaller 

amounts of pollution than whites, when these pollutants were weighted by their toxicity 

their exposure was equivalent to whites. This means that although Hispanics are exposed 

to smaller amounts of pollution than whites they are exposed to more toxic substances. 

This finding points to an interesting area for future research. Perhaps those facilities in 

Hispanic neighborhoods are less likely to have strict enforcement of pollution controls 

laws in their neighborhoods and are thereby exposed to more accidental releases. This 

theory is consistent with findings from Lynch, Stretesky and Burns (2004) who found 

that the mean penalties levied against petroleum refineries for violating the Clean Air 

Act, the Clean Water Act, and/or the Resource Conservation and Recovery Act were 

significantly greater in non-Hispanic tracts as compared to Hispanic tracts.  

 When results were broken down by both race and income, Hispanics, African-

Americans and whites of lower income were exposed to more industrial toxins than those 

of higher incomes in their same racial group.  This is consistent with the hypothesis that 

those of high income will be better protected from pollution than those of a lower 

income.  However, comparing across racial groups, African-Americans in higher income 

categories had a similar exposure profile to whites of the low income category.  In fact, 

African-Americans of the high income group were on average 1.14 times more exposed 

than whites of lower income.   

 While these findings are novel and add considerably to our understanding of the 

evolution of inequality in pollution exposure, the study has some important limitations. 

One of the most central limitations of these data is that they do not include mobile 

sources of pollution.  This is of concern because research suggests that mobile sources 

also contribute to racial health disparities (Morello-Frosch and Jesdale, 2006).  This 

concern is particularly warranted in research investigating differential exposure by race, 

as highways have been used in American history to segregate residential locations based 

on race and income, thereby spatially clustering individuals and their exposure to 

airborne toxins ( Venkatesh  2000).   However, this paper’s focus is specifically on 

exposure to toxins from industrial sources. This paper seeks to update and expand upon 

previous national-level examinations, which have primarily focused on exposure from 

industry. These data are well suited to address this goal.  Although mobile sources are 
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outside of this paper’s scope, past studies of mobile sources suggest that inclusion of this 

additional data would magnify the differences shown here.  Roads with a large number of 

mobile sources of pollution, like trucks, will be spatially correlated with industry as these 

are the paths mainly used for transporting to and from industrial facilities (Hawley 1971).  

Nonetheless, future research should consider these patterns using a variety of pollution 

sources.  

 The results of this paper raise some questions for future research.  First, why is 

absolute exposure between African-Americans and whites declining sharply while 

relative exposure is staying roughly the same?   In addition, why are African-Americans 

of higher income not as protected as whites of similar income? Finally, why are 

Hispanics exposed to less amounts of pollution, but more toxic substances? To answer 

these questions, EJ scholars would do well to examine the larger social structures 

determining pollution exposure patterns.  For example, are the barriers of racial 

segregation still preventing middle-class African-Americans from utilizing their greater 

socioeconomic position to access cleaner air?   

 There have only been a handful of cross-sectional studies that have investigated the 

segregation-pollution relationship and results tend to be mixed, with earlier studies 

showing a positive association between a metropolitan area’s segregation levels and 

unequal distribution of pollution exposure (Lopez 2002; Morello-Frosch and Jesdale 

2006) and later studies concluding that segregation rates explain little of the difference  in 

environmental exposure experienced by different racial groups (Downey 2007; Downey 

et al. 2008).  However, few to none of these studies investigated how these results might 

vary when taking into account different socioeconomic characteristics of the different 

racial groups, or change over time in pollution and segregation levels.   
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FIGURES 

 

Figure 2.1:  Example of a RSEI-GM grid cell (thin line) overlaid with a Census    

Block Group (thicker line) 
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Figure 2.2: Estimated Amount (μ/mg3) of Air Toxins Experienced by Different  

               Racial Groups  
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Figure 2.3: Estimated Toxic Concentration from Exposure to Industrial Air Toxins  

               Experienced by Different Racial Groups  
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Figure 2.4: Absolute Difference in Estimated Health Risk from Industrial Toxins for    

African-Americans and Hispanics When Compared to Whites 
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Figure 2.5:  Relative Difference in Estimated Health Risk from Industrial Toxins for  

                    African-Americans and Hispanics When Compared to whites 
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Figure 2.6:  Average Estimated Health Risk from Industrial Toxins for Hispanics 

and Whites Broken Down by High (over 50K) and Low (less 50K) 

Income Groups  
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Figure 2.7:  Average Estimated Health Risk from Industrial Toxins for African 

American Households and non-Hispanic White Households in High 

(over 50K) and Low (less 50K) Income Groups 
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Appendix A 

 

 

Figure 2.8: Estimated Toxic Concentration from Exposure to Industrial Air Toxins   

                    Experienced by Different Racial Groups with 1998 Core Chemicals 
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Figure 2.9: Estimated Toxic Concentration from Exposure to Industrial Air Toxins   

                    Experienced by Different Racial Groups with 2000 Core Chemicals 
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Figure 2.10: Estimated Toxic Concentration from Exposure to Industrial Air Toxins 

Experienced by Different Racial Groups with 2001 Core Chemicals 
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Figure 2.11: Average Estimated Health Risk from Industrial Toxins for African-

Americans, Hispanics and whites.  Broken down by High (over 50K) 

and Low (less 50K) Income Groups for 1998 Core Chemicals 
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Figure 2.12: Average Estimated Health Risk from Industrial Toxins for African-

Americans, Hispanics and whites.  Broken Down by High (over 50K) 

and Low (less 50K) Income Groups for 2000 Core Chemicals 
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Figure 2.13: Average Estimated Health Risk from Industrial Toxins for African-

Americans, Hispanics and whites.  Broken down by High (over 50K) 

and Low (less 50K) Income Groups for 2001 Core Chemicals 
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CHAPTER 3 

  

The Changing Dynamics of Racial Residential Segregation  

and Pollution in the United States: Unexamined Trends  

 
 

Abstract 

Current research investigating the relationship between racial segregation and pollution 

exposure has not yet considered important temporal trends in both explanatory and 

outcome variables.  Moreover, past studies have generally used the dissimilarity index to 

capture segregation, but this measure captures only one dimension of segregation.  This 

paper addresses these limitations by using annual repeated measures on the pollution 

exposure of block groups in 320 metropolitan areas from 1995 to 2004. Exposure data for 

572 industrial chemicals were obtained from the Environmental Protection Agency’s 

(EPA) Risk Screening Environmental Indicator data.  These data have been 

geographically modeled to determine exposure paths and weighted for toxicity to human 

health.   Segregation is measured using an indicator of centralization, relative 

centralization, and these results are compared with results from the typically-used 

dissimilarity index.  Results show that racial segregation of African-Americans in a 

metropolitan area was positively and significantly associated with industrial pollution 

exposure at the block group level, however this association is decreasing significantly 

over time.  This paper also tests hypotheses about how pollution exposure changed inside 

and outside of the central city, showing that block groups located in the central city have 

significantly higher rates of toxic pollution.  In addition, outside of the central city, block 

groups with greater proportions of African-American residents experience more pollution 

exposure than block groups outside the city with greater proportions of whites. 

 

Introduction 

 The concept of “segregation” plays an important role in the environmental justice 

literature, which focuses on social disparities in exposure to environmental risk.   

Scholars have theorized that the institutional discrimination in housing and zoning 

policies that has led to racial residential segregation (Brodkin 1998) has also put poor and 

minority communities in the United States at greater risk for exposure to industrial toxins 

and environmental harms more generally (Taylor 2009; Maantay 2002; Pulido  2000; 

Stretesky and Hogan 1998).   Importantly, levels of both racial segregation and industrial 

pollution have changed in recent decades in the United States, but much of the current 

empirical literature uses cross-sectional data on both segregation and industrial air 
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pollution.   The present paper is among the few to use data from multiple recent years to 

assess whether the segregation-pollution association is changing over time.  

 According to the U.S. Environmental Protection Agency’s (EPA) National Air Toxics 

Assessment (NATA), the contribution of industry to the United States’ total air pollution 

exposure is significant.  In 2005 the EPA estimated that industrial toxins contributed 

almost 26% to the nation’s neurological risk, almost 6% to the nation’s cancer risk, and 

over 1% to the nation’s respiratory risk.
20

   However, underneath these exposure statistics 

are trends that have been relatively unexamined in the environmental justice literature.  In 

1990 the EPA began collecting data on Hazardous Air Pollutants (HAP) in order to 

implement the U.S. Clean Air Act.  From 1990 to 2004 the EPA found that, “air toxics 

emissions declined by approximately 42 percent from all sources” (EPA 2005).  Despite 

these striking declines in pollution emissions, quantitative environmental justice work has 

not taken into account these trends over time.  Overlooking the temporal aspect of 

pollution exposure in such a mutable environment makes it difficult to draw conclusions 

about if and how exposure to industrial toxins varies for racial/ethnic groups living in 

differentially-segregated communities. 

 This problem becomes especially challenging when changing patterns of racial 

segregation are also considered. Although recent studies show that African-Americans 

are still the most segregated racial/ethnic group (Iceland and Nelson 2008), racial 

segregation between blacks and whites has declined over the past four decades (Farrell 

2008; Timberlake and Iceland 2007; Frey and Myers 2005; Iceland 2004).  Census data 

shows that from 1970 to 2009, black isolation fell below 50 percent; that is, the typical 

African American in a U.S. metropolitan area no longer lives in a neighborhood that is 

majority black (Iceland et al. 2010).  Current research investigating the relationship 

between segregation and pollution has not yet taken account of these changes in 

segregation. 

 In addition to ignoring change over time, research on segregation and pollution has 

not considered whether the association varies if different measures of segregation are 

used.  There are currently 19 measures of segregation that are widely used in the racial 

                                                           
20

 The percentage of major sources contribution to the total risk was calculated from the EPA’s National 

Air Toxics Assessment 2005 data. 

http://www.epa.gov/ttn/atw/nata2005/05pdf/nata2005_factsheet.pdf
javascript:void(0);
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segregation literature (Census 2013).  Factor analyses have shown that these measures 

reflect five different dimensions of segregation:  clustering, exposure, concentration, 

centralization, and evenness.  Because the majority of the literature investigating 

pollution and segregation has used some version of the dissimilarity index (DI), a 

measure of evenness, the rest of these dimensions have gone largely unexamined.  This 

omission is particularly important because other dimensions may be more theoretically 

important for the study of how air pollution is disproportionately borne by African-

Americans compared to whites.  For example, the urban sociology literature suggests that 

America’s manufacturing firms, and thus the associated industrial pollution, have 

historically been located in central cities.  Because some measures of segregation more 

explicitly capture residence in the “central city” than others, an evaluation of these 

different measures of segregation is warranted, as is inclusion of information about 

central city location in analyses.  

 A final limitation of prior research is inadequate attention to spatial associations in 

data that capture pollution exposure and segregation. Both measures are inherently 

spatial, as is the association between them.  Industrial air pollution comes from a 

stationary source in the environment.  Thus air emissions of pollution by facilities will 

expose those individuals living closer to them to greater risk from the toxicity of these 

emissions than those living further away.  Segregation is also inherently spatial.  It is a 

characteristic of a larger area, such as a metropolitan area, that reflects the spatial pattern 

of individual units that make up that area, such as census block groups.  If both the 

dependent variable, pollution exposure, and the primary explanatory variable, 

segregation, are generated by spatial processes, then we cannot assume the errors are 

uncorrelated. The assumption needed for ordinary least squares linear regression of 

independent observations is violated, because the errors associated with one observation 

are correlated with errors of another observation. Correlated errors are a property of 

processes that are varying continuously over space, like pollution exposure from a 

stationary source.   Thus a major assumption of linear regression models is violated, 

although this has been the primary method in current research used to determine how 

pollution and segregation are related across America.   This paper overcomes such 

limitations by using multilevel models that account for the dependence of observations on 
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the same block group over time, with estimated spatial correlations that account for the 

spatial dependence of census block groups closer or further away from one another. 

 This paper contributes to the environmental justice literature in three primary ways: 

by taking into account changes in pollution over time, changes in segregation over time, 

and the spatial relationship of these measures.  In addition, I explore the robustness of the 

association between segregation and pollution by empirically assessing a variety of 

segregation measures. The larger aim of this paper is to determine if and how the block 

group level exposure to industrial toxins varies by the segregation level of a metropolitan 

area in the mid-1990s United States, and if this relationship changes over the subsequent 

decade. I also compare how conclusions might vary when using the dissimilarity index – 

the most commonly used measure - to a segregation measure that captures the 

concentration of African-Americans in the central city, a measure of segregation that is 

more theoretically consistent with the literature investigating how pollution is related to 

segregation. Finally, I examine how being located in the central city affects a block 

group’s exposure to industrial toxins and how this relationship changes over time.  

 

Background 

Prior Studies of Segregation and Pollution Exposure 

 Research examining the link between pollution exposure and segregation has thus far 

been largely cross-sectional and yielded mixed results.  Lopez (2002) compared 1990 

EPA Air Toxics Data and the dissimilarity index of 44 U.S. metropolitan areas with 

populations greater than one million.  His rationale for using the Dissimilarity Index was 

that it is one of the most common used measures of segregation and he limited his study 

to metro areas because they best reflect local housing markets and function as coherent 

economic and social units.  He used ordinary least square regression to predict the net 

difference score, a measurement he developed that represents the probability that a 

randomly chosen African-American is living in a census tract with a higher amount of air 

toxins than a white person. He found a positive association between a metropolitan area’s 

dissimilarity index and unequal distribution of pollution exposure by race.   
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 Morello-Frosch and Jesdale (2006) also found segregation was positively associated 

with increasing environmental risk.  However, they used different measures and a larger 

sample, looking across the United States.  Their dependent variable was tract level 

estimates of the cancer risk posed by 188 hazardous air pollutants listed in the Clean Air 

Act, including diesel particulate matter, obtained from the EPA’s 1990 National Air 

Toxics data.  They linked this data with the multigroup Dissimilarity Index of 309 

metropolitan areas.  This variable is version of the typical Dissimilarity Index that has 

been adjusted to apply to multiple racial/ethnic groups. They found that segregation 

amplified cancer risks for all racial groups, and the racial disparity seen in cancer risk 

widened with increasing levels of segregation.   

 More recently, scholars have come to different conclusions. Using 2000 census data, 

and 2000 RSEI-GM data, Downey et al. (2008) linked the average toxic concentration for 

329 metropolitan areas with dissimilarity index measures.  The authors concluded that 

segregation explained very little of the variance in pollution exposure (Downey et al. 

2008).  This study expanded on Downey’s previous work (2007) which examined the 

cross-sectional relationship between environmental inequality and segregation in 61 of 

the largest metro areas in the U.S.  His results showed that those cities with the highest 

degree of segregation were not the same cities with the largest racial disparities in 

pollution exposure.   

 With only a few studies investigating the relationship between pollution and 

segregation, and their subsequent mixed results, scholars are left to question if these 

discrepant findings be explained by the fact that the relationship between pollution and 

segregation levels has changed over time.  The fact that on the whole later studies 

concluded racial segregation was not a significant indicator of environmental pollution 

risk, while the earlier studies did, leads to the following hypothesis: 

Hypothesis 1: The relationship between pollution exposure and metropolitan level 
segregation has declined over time.  

 

 Downey (2005) offers one of the few papers to test sociological theories that might 

explain why racial segregation is related to pollution exposure.  In this paper he used 

1970, 1980 and 1990 census data to test explanatory models of changes in environmental 
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inequality in and around the city of Detroit, Michigan.  He concludes that over time, 

racial segregation has actually reduced the proximity of African-Americans to pollution 

sources, perversely protecting African-Americans from toxic exposures.  Being limited to 

one metropolitan area, he did not measure racial segregation at the metropolitan area 

level, but instead calculated changes in the African-American population of census tracts 

over time.  He tests the hypothesis that pollution exposure, and change in exposure, will 

be positively associated with the change in the number of resident African-Americans 

over time.  If this is true, he argues, this suggests that segregation is preventing African-

Americans from living in more industrial areas outside of the central city, thereby 

exposing them to greater pollution outside of the central city.  He created a measure of 

exposure by breaking up census tracts (N=416) into 25 by 25 meter cells.  He then 

calculated the distance to the nearest transportation equipment, chemical, primary metal, 

and fabricated metal facility within a quarter of a mile from the center of these cells, as 

well as how many of these types of facilities were in this radius.   

 Downey’s (2005) results showed that over time, the number of facilities declined or 

remained constant in tracts with greater percentages of African-Americans.  He theorized 

that racial segregation prevented African-Americans from moving into Warren, the most 

heavily industrialized suburb in Downey’s data, thereby protecting African-Americans 

from pollution exposure.  While these results were informative, they were based on the 

city of Detroit, which has had a unique combination of being consistently one of the most 

segregated areas in the country and has an economy based on automotive manufacturing 

that migrated dramatically to suburban areas over this period.   The present analyses test 

these theories on data for the entire United States.  

Urban Underclass Literature 

 Downey’s (2005) theories are based on the sociological literature dealing with the 

development of the U.S. “urban underclass”.  This literature addresses how the legacy of 

deindustrialization and segregation has affected Americans’ economic well-being.  

Scholars argue that the historical processes of racially-discriminatory lending, locations 

of receiving communities during the great migration of African Americans northward, 

and deindustrialization, all have spatial patterns which still affect the life chances of 
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individuals today.  Lessons from this literature are directly applicable to the 

understanding of environmental inequality (Smith 2009; Downey 2005) and its evolution. 

 Brodkin (1998) argues the passage of the GI Bill during WWII ushered in America’s 

modern era of segregation.  The GI Bill provided low interest loans to veterans to 

purchase new homes in America’s rapidly developing suburbs.  While these suburban 

neighborhoods were available to whites, they were not readily available to returning 

black veterans (Lieberson 1980).  This allowed whites to leave more historically 

industrial urban centers, segregating African-Americans in these more toxic areas. 

Scholars have argued that the interaction of these industrial settlement patterns with 

segregation and deindustrialization have had profound impacts on the opportunities of 

individuals (Wilson 1987; Massey and Denton 1993; Mouw 2000), which have also been 

argued to be related to individuals’ exposure to air pollution (Downey 2005).   

 These spatial patterns undergird one of the most applicable aspects of the urban 

poverty literature, ‘spatial mismatch theory’.  Spatial mismatch theory is based on the 

idea that racial prejudice in housing markets (Brodkin 1998; Lieberson 1980) and the 

expansion of transportation routes out of the central city (Kasarda 1972) allowed for the 

outmigration of white residents from historically industrial centers in the central city.  

Furthermore, as America’s economy deindustrialized, businesses followed this white 

flight away from the city towards the suburbs (Kain 1968). These processes have been 

shown to socially, physically, and economically isolate African-Americans in America’s 

central cities because the jobs they need are not located in the places where they reside 

(Mouw 2000; Sugrue1996) and have also been applied to environmental justice analysis 

(Downey 2005).  Downey (2005) argued that as job opportunities moved from cities to 

the suburbs, any new industrial facilities being built would follow other businesses and 

locate in the suburbs. This process would thereby increase the exposure of suburban 

populations to air pollution relative to central city areas.  This leads to the following 

hypotheses: 

Hypothesis 2:   Block groups located outside of the central city will experience higher 
exposure over the period examined to toxic pollution than block groups 
inside central cities during the period examined.  
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Hypothesis 3:    The difference between the pollution exposure of block groups located 
outside of the central city compared to those located inside will be 
increasing over time.  

 Downey (2005) further theorized that these economic patterns of industry might be 

affecting the relative exposure to toxins for different racial groups. Wilson (1987; 1997) 

argued that after Civil Rights legislation made overt discrimination in the housing 

markets illegal, middle-class African-Americans moved out from the central cities, 

concentrating African-American poverty in the central cities.  Massey and Denton (1993) 

argued that middle-class African-Americans moving out from the central cities were 

unable to fully integrate into surrounding white communities, and Quillian (1999) found 

support for this showing that as middle-class African-Americans moved into white 

neighborhoods, whites with the economic ability moved even further out.  Downey 

(2005) theorized that because middle-class African-Americans moving out of the central 

city were unable to fully integrate into white neighborhoods, and industry was following 

white populations out of the central city, racial segregation was perversely protecting 

African-Americans.  This leads to the following hypotheses: 

Hypothesis 4:   For block groups outside of the central city, those with larger proportions 
of African-American residents will experience lower exposure to toxic 
pollution than block groups with larger proportions of whites over the 
time period examined.  

 

Data and Methods 

Pollution Exposure Data 

 I use data from the Environmental Protection Agency’s Risk Screening 

Environmental Indicators Geographic Microdata (RSEI-GM).  This data is thought to 

provide the most “realistic information on potential human health effects from air 

pollutants that has been available” (Ash and Fetter 2004: 447).  The following analyses 

are completed on data from the year 1995 to 2004.  During these years facilities required 

to report the Toxic Release Inventory, the information which these data are modeled, had 

a standardized way to report their releases.  From 1995 to 2004 the EPA allowed less 
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polluting, smaller facilities to file a “Form A”
21

 (EPA 2013).  A form A is a less precise 

form which facilities are allowed to choose from a range of preset categories representing 

their annual emissions and the EPA lists the midpoint of this range. This makes data from 

the smaller industries less reliable than larger ones.  After the year 2004, larger, more 

polluting industries were also allowed to use this form which would make their data less 

reliable after this point, so I restrict the data to the years 1995 to 2004.  In addition, when 

aggregated RSEI data for the year 1998 is much greater than the other years so I have 

taken this outlier year out for the following analyses.  

 Because reporting requirements change every few years, the following analyses only 

utilize those 572 chemicals that were consistently monitored for the years 1995 to 2004.
22

  

RSEI data models the emission routes of over 600 toxic chemicals from a variety of 

manufacturing, mining, utility operations, hazardous waste treatment, and disposal 

facilities, as well as from chemical distributors and federal facilities. The EPA uses 

information on the velocity at which chemicals are emitted into the environment, weather 

patterns, and properties of the chemicals to estimate where these particles exist in a 101 

by 101 kilometer square around reporting facilities in the continental United States.  

These 101 by 101 kilometer squares are further broken down into one by one kilometer 

grid cells.  

 The EPA weights the amount of the chemical in this grid cell by its toxicity to human 

health using epidemiological evidence to make chemicals commensurate across health 

outcomes (EPA 2009).
 23

   This process creates a unitless score of pollution exposure for 

each 1 kilometer square that makes them comparable across types of polluting facilities 

and areas.  Because some facilities have been found to have incorrectly reported their 

emissions to the EPA, I have followed the standard of the consortium of researchers 

using these data to leave out those facilities with unreliable data, which make up 1.9 

percent of the total 50,368 number of facilities. 

                                                           
21 These regulations were in place until the 2005 reporting year, however because facilities report for the 

year prior a 2005 reporting year means 2004 emissions data. 

22 Trends in these data were consistent for other years of “core chemicals” (1998, 2000, and 2001). 
23 These weights take into account the severity of a chemical’s health effects and its potency. For further 

information on how these weights were developed see: 

www.epa.gov/oppt/rsei/pubs/technical_appendixa_toxicity.pdf 
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 To address the hypotheses outlined previously, I constructed measures of annual toxic 

pollution exposure score at the block group level for ten years: 1995 to 2004.   I have 

overlaid 1990, 2000 and 2010 block group boundaries with these one kilometer square 

RSEI-GM grid cells and then determined the proportion that each grid cell makes up of a 

block group. I then weight the toxicity of this grid cell by this proportion and aggregate it 

up to the block group level.   This gives me my dependent variable, the annual toxic 

pollution exposure score of a block group from 1995 to 2004.  The values for the 

pollution measures are highly skewed to the right, so a base-10 log of this score is used, 

making the dependent variable more normally distributed.  The data are made up of over 

1.5 million time period observations for over 150,000 block groups.   On aggregate, 

pollution exposure estimates for the year 1998 were much greater than the other years 

examined, this outlier year was removed from the following analyses.  

 I standardized 1990 and 2010 census block groups to 2000 census block group 

boundaries. Standardizing block groups is potentially important as boundaries change to 

some extent with every census.  Overlaying 1990, 2000 and 2010 block groups in Arc 

GIS 10.1 I determined the proportion that each 1990 and 2010 block group made up of 

the 2000 block group.  I then apply these weights to census data and aggregate them up to 

the 2000 block group boundaries.  This procedure gives me 1990 and 2010 census data in 

the year 2000 block group boundaries.  Once all three censuses were standardized I then 

linearly interpolated the following population data for the census block group: the 

number of African-Americans, whites, the total population, and population of racial 

groups that did not fall into the above mentioned categories (Hispanic, Asian-Pacific 

Islander, Native American).  The rate of change in each block group from the year 1990 

to the year 2000 was applied linearly to each year of census data from 1995 to 1999.  

Year 2000 census data was used for the year 2000.  Then the rate of change of block 

group population from the year 2000 to 2010 was linearly applied to census data from 

2001 to 2004.   

Segregation Measures 

 As noted above, residential discriminating has historically confined African-

Americans to declining central cities (Quillian 1999; Massey and Denton 1993).  
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Moreover, much of the sociological theory cited to explain how and why segregation is 

related to pollution exposure relies on the concept of how centralized African-Americans 

are to the central city compared to whites (Downey 2005).   Therefore, the following 

analyses use the relative centralization measure as a measure of residential segregation. 

This measure captures the degree to which African-Americans are spatially located near 

the central business district of a metropolitan area compared to whites. 

 The most basic version of this measure is just the percentage of the African-American 

population in a MSA that is located in the central business district.  The proportion of 

African-Americans in the center is calculated as the total number of African-Americans 

living in the center, divided by the total number of African-Americans in the metropolitan 

area.  Such a measure, however, does not indicate the actual distribution of African-

Americans compared to any other group.  To obtain a measure of this the relative 

centralization measure must be calculated.  

 The relative centralization measure represents the relative share of the African-

American population that would have to move to match the relative centralization of 

whites in the MSA (Massey 1998).  The score varies from negative one to positive one, 

with positive values indicating that African-Americans are closer to the center of the 

MSA’s central business district and negative values representing the opposite.  This is 

calculated using equation 1 below. 

 
 

In equation 1, m is equal to the total number of block groups that make up a MSA ranked 

by their increasing distance from the central business district.
24

 X is the total population 

of African-Americans in a block group and Y is the total population of whites in a block 

group, summed over all block groups.   

 Results from models using relative centralization as a measure of racial segregation 

are compared to models using the dissimilarity index, the typical measure of segregation 

used in studies of this kind.  The dissimilarity index is a measure of how evenly 

distributed the African-American population is within a metropolitan area.  This index 

                                                           
24

  The census defines a central city as the largest place(s) in a metro area (US Census 2012). 

(eq.1) 
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ranges from zero to one, with a one representing complete segregation and a zero 

representing total even distribution of African-American populations within block 

groups. This measures is calculated using equation 2 below, where xi equals the African-

Americans population of the ith block group; X equals the total population of African-

Americans in the MSA; yi equals the white population of the ith block group, and Y 

equals the total white population of the MSA.  The absolute values of these percentages 

are summed across N, the total number of block groups in a MSA. 

 

 
∑     

  

 

 

   
 - 
  

 
   

 

 

Central City Location 

 Information on which block groups were within the central city was determined by 

overlaying central city boundaries from the US census with 2000 census block group 

boundaries obtained from the U.S. Census Bureau (Census 2001;Census 2012).  Those 

block groups located within the central city were coded as one, those that fell outside as 

zero.    

 

Models 

 Multilevel models are appropriate for repeated measures on a unit, like these annual 

block group measures of pollution, because they take into account the correlated structure 

of observations in the estimation of standard errors.  Serial observations made on the 

same census unit are likely to be correlated.  The observations in these data are clustered 

so that each block group, standardized to 2000 census block group boundaries as 

discussed above, has one measure of pollution exposure for each year between 1995 and 

2004. The Intraclass Correlation Coefficient gives the amount of variability in the 

dependent variable arising from the clustering of annual observations within a block 

group.  The Intraclass Correlation Coefficient was determined using STATA 12.0 and 

showed that 15% of the variability in the observations comes from the fact that they are 

repeated measures on the same block group. The p-value of the likelihood ratio test, 

(eq.2) 
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which was <0.001, demonstrates the need for a multilevel model that will account for 

repeated observations on the same block group.   

 The following two-level multilevel model was specified where all level 1 variables 

are time varying so that the dependent variable, LOGTC, is the log of the toxic pollution 

exposure score of block group i, at time point t;  1i (seg) is the time varying segregation 

level of the metropolitan area;  2i(year) is year centered on 1995, so that zero equals year 

1995;  3i(popden) is the time-varying population density of the block group which allows 

me to control for the fact that population density has been negatively and significantly 

associated with pollution values from these data (Ash and Fetter 2004).  Level 2 

equations display the fixed effects for these parameters and includes a random intercept 

(b0i) for each block group within MSA.   To address the fact that block group 

observations are correlated with one another across space a spatial power covariance 

structure was specified was specified in SAS 9.3 using the ProcMixed statement. The 

covariance of block groups (covbg) is equal to  the estimated covariance of how block 

groups are associated with one another across space ( 2
(b0i)) which is multiplied by a 

matrix made up of estimated spatial power covariance for block groups ( bg) to the power 

of the distance between block groups to one another.  This distance is based on the 

latitude and longitude of the block group centroid, e.g. block group 1 and 2 would be 

specified as:  bg
d 1,2

.   In addition the fact that these data are repeated observations on the 

same block group means that the observation of block group 1 at time 1 is likely to be 

associated with observation of block group 1 at time 2.  To address this an autoregressive 

lag (AR1) covariance structure was specified so that the covariance of the residuals 

(cov(eti)) is equal to the variance of these residuals ( 2
residuals) multiplied by a ten by ten 

matrix where    is equal to the estimated covariance between time periods for each block 

group to a power of year minus one.  
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Level 1: LOGTCti= 0i +  1i (seg)+  2i(year) +  3i(popden) + eti 

Level 2:   0i  =  00 + b0i 

      1i=  10 

      2i=  20 

                  3i=  30 

 

Mixed Model: LOGTCti =  00 +  10(seg) +  20(year)  +  30(popden) +  b0i +  eti 

 

Where: 

Spatial Power Covariance Structure: 

 

 

             Covbg=  2
(b0i) *  

 

 

Residuals Covariance Structure- Autoregressive Lag: 

  

 cov(eti) =  2
residuals *      

 

 

 

 

 

 

 

 Equation three specifies the simplest model specified in the following analysis. I 

expand on equation three above by including  4 which is the coefficient associated with 

an indicator of the location of a block group in the center of a city (where 1=center and 

0=outside of center).  This allows me to test Downey’s (2005) hypotheses that block 

groups outside of the central city will have higher pollution exposures than those inside.  

If this is the case then the relationship between central city and pollution exposure will be 

negative and statistically significant.  In order to test Downey’s (2005) hypothesis that 

pollution exposure is increasing in the block groups located outside the city compared to 
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(eq.3) 
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those inside, I included an interaction term  5 that multiplies the central city indicator 

(1=center, 0=outside) with the centered year variable (e.g. year 1995 =0).  If Downey is 

correct, and pollution exposure is increasing for the areas outside of the city, then when 

an interaction term between year and central city is included, we should see that the 

coefficient for year is positive and significantly different from zero.  This positive effect 

would mean that pollution exposure would be increasing in those areas outside of the 

city. 

 Finally, to test the idea that African-Americans living outside of central cities have 

less pollution exposure than whites, as well as determining how the proportion of 

African-Americans in a block group relates to pollution exposure in these models, I have 

run a model with only those block groups located outside of the central city, as well as 

including the following variables:  6 is the coefficient associated with the proportion of a 

block group’s population that is African-American and  7 is the coefficient associated 

with the proportion of non-white, non-African-Americans in the block group. This last 

variable allows me to make sure the omitted/comparison group is made up of white 

Americans, allowing me to test the hypothesis that those block groups outside of the 

central city with greater percentages of African-Americans are more exposed to industrial 

toxins than those block groups with fewer African Americans.  

Results 

 Table 1, model 1, clarifies the changing relationship between racial segregation and 

toxic pollution exposure using yearly observations on block group level pollution 

exposure.  The coefficient for segregation in model 1 shows that the effect of segregation 

on pollution exposure in the year 1995 is 1.433.  A one unit increase in the segregation 

measure means that when a MSA’s African-American population becomes 0.01 more 

concentrated in the central city compared to whites their pollution exposure score will 

increase significantly by 1.433. The interaction term between segregation and time 

provides support for the first hypothesis, which asserts that the association between racial 

segregation and pollution has declined over time. These results illustrate that with every 

year the effect of segregation on pollution declines significantly by -0.070.  This means 
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that by the year 2004 every one unit increase in segregation will increase pollution 

exposure by only 0.803 (1.433 + (-0.070*9).  

 Further nuances of this relationship emerge from examination of Models 2 and 3, 

which include information about the proportion of African-Americans in a block group.  

The coefficient of 0.823 for the proportion of African-Americans demonstrates that 

moving to a block group with a proportion of African-Americans that is 0.01 greater, will 

increase pollution exposure by 0.823. The Akaike Information Criteria (AIC) shows that 

model 3 has a better fit than models 2 and 1.  Model 3 includes the interaction variables. 

The coefficient for segregation in this model tells us that the main effect of segregation in 

the year 1995, when the proportion of African-Americans in a block group is zero is 

0.720. The main effect for year tells us that when there is no segregation in an MSA and 

the proportion of African-Americans is zero the effect of year on pollution exposure 

scores is -0.111.  The main effect for the proportion of African-Americans in model 3 

tells us that in year 1995, when there is no segregation in a MSA, with every 0.01 

increase in the proportion of African-Americans in a block group the pollution exposure 

score increases significantly by 1.284.  

 The interaction term for segregation and year in model 3 tell us that when there is 

zero proportion of African-Americans in a block group the relationship between the 

segregation level of a MSA and pollution exposure is decreasing significantly by -0.034 

each year. The interaction term for segregation and proportion of African-Americans in 

model 3 tell us that when year equals zero, that is in the year1995, every 0.01 increase in 

the MSA level segregation the pollution exposure of a block group decreases by -0.011 

for every 0.01 increase in the proportion of African-Americans in that block group. 

Finally, the three-way interaction tells us how the two-way interaction between 

segregation and the proportion of African-Americans in a block group is changing over 

time. We can see that it is decreasing very slightly so that every increase in year 

decreases this relationship by -0.002. 

 Models 4 through 7 help us to test the remaining hypotheses arising from Downey’s 

(2005) work. Model 4 includes information about whether a block group is located in the 

central city. Model 4 tests Downey’s hypothesis that block groups located outside of the 

central city will experience higher exposure to toxic pollution than block groups inside 
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central cities during the period examined by including a variable for whether a block 

group is located in the central city.  This hypothesis was not supported.  Results show that 

those block groups located in the central city have 0.276 greater toxic pollution scores 

than those outside of the central city, a significant difference. I have excluded the 

segregation and year interaction in these variables to facilitate interpretation of the central 

city interaction with year.  In addition, including this variable decreased the fit in these 

models as demonstrated by an increased AIC value. Model 5 tests hypothesis three, that 

the difference between the pollution exposure of block groups located outside of the 

central city compared to those located inside will be increasing over time. Although 

significant, the coefficient for the interaction between time and central city is virtually 

zero. The large sample size makes it more likely estimates will be significant. 

Nonetheless, these findings do not provide support for the idea that over time those block 

groups outside of the central city are becoming more polluted.   

 Model 6 helps support this idea by only looking at those block groups outside of the 

central city. If pollution was in fact increasing outside of these areas, the time coefficient 

would be positive.  However, from Model 6 it can be seen that year is negatively related 

to pollution exposure in these areas. Although this model provides no comparison with 

central city block groups, it is clear that over time pollution is declining in areas outside 

of the central city. Model 6 also helps to test the final hypothesis that for block groups 

located outside of the central city, those with larger proportions of African-American 

residents will experience lower pollution exposure than those with lesser proportion of 

African-Americans.  These results do not support this hypothesis. In fact, moving to a 

block group with a 0.01 greater proportion of African-American residents will 

significantly increase one’s pollution exposure by 0.703.   

 In order to compare these results with previous research I have also run Models 1-6 

using the dissimilarity index as the measure of racial residential segregation.  These 

results can be found in Table 2.  The dissimilarity index ranges from zero to one, with 

zero representing no segregation and one representing total segregation.  The models 

show that with every one unit increase in this index increases the logged pollution 

exposure by 3.537.   Unlike the relative centralization measure, the relationship between 
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a metropolitan area’s dissimilarity index and block group exposure has an unstable 

relationship over time.  The most basic models do not show that the relationship between 

pollution and segregation is declining significantly over time.  However, when 

information about the central city is incorporated into the model the coefficients for year 

are shown to be significantly negative. Because relative centralization is based on the 

relative representation of African-Americans in the central city, and the year coefficient 

becomes significant in the dissimilarity index models when information is incorporated, 

raises the possibility that it is central city and year are negative cofounders, meaning that  

the central city is strongly positively related to pollution exposure and year is negatively 

related so that they cancel one another out and without including information about 

central city we could not observe any effect of time.  As in the relative centralization 

models in Table 1, block groups with larger proportions of African-Americans outside of 

the central city are significantly more likely to be exposed to pollution than block groups 

with larger proportions of whites.   

Discussion 

 This study moves environmental justice research toward an understanding of the 

dynamic relationship between pollution exposure and segregation.  These results show a 

significantly positive relationship between segregation and pollution exposure.  Results 

from both the relative centralization measure and dissimilarity index show that the ability 

of racial segregation to explain pollution exposure is declining over time. Such findings 

lend support that mixed results found from cross-sectional studies on pollution and 

segregation might be a result of changes in the relationship between these variables over 

time.  The fact that the dissimilarity index and relative centralization differ in their results 

on the importance of being in the central city in explaining exposure to toxins 

underscores the need to consider different measures and dimensions of segregation.  

These results support the idea that the centralization measure is capturing different 

processes that underlie the segregation and pollution relationship than the measure of 

evenness.  

 This paper also tests theories about how being located inside and outside of central 

cities might affect pollution exposure.  Results from the centralization or evenness 
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measures of segregation do not support the argument that the theorized movement of 

industry away from America’s cities has increased relative exposure to industrial toxins 

outside of these areas.  One possible explanation for the finding that pollution exposure is 

still higher in central city block groups is grandfather clauses in environmental policy.  

Grandfather clauses are loopholes put into laws that allow an already existing facility to 

opt out of stricter environmental regulations (Robertson 1995). Grandfather clauses allow 

a firm to continue using an older, more toxic facility in the central city, rather than 

outfitting a new one with more environmental-friendly technology like smoke stack 

scrubbers (Robertson 1995).
25 

  Grandfather clauses can apply to many types of 

environmental regulation.  In fact, in comments to Congress, Marcia E. Williams, 

Director of the EPA’s Office of Solid Waste and Emergency Response noted that seventy 

percent of all land-based hazard waste treatment, storage, and disposal facilities would 

fail the EPA's current siting criteria for protecting groundwater because of grandfathering 

opt outs (Garrard 1994).   

 Garrard (1994) notes that older facilities are being utilized to a greater extent than 

new facilities are being built. He demonstrates that increasingly stringent environmental 

regulation since the 1970s has incentivized companies to continue to use older facilities 

over building new ones that are subject to stricter controls and more community 

pushback.   If older facilities are able to opt out of stricter environmental regulation, and 

these are more likely to be located in the central city, we would expect that although there 

has been an overall decline in industrial pollution, central cities will still have higher 

levels of exposure to these toxins.  Future research should test this theory by 

incorporating information about the date of industrial facility establishment, their use of 

grandfather clauses and whether this varies the amount and toxicity of the pollution they 

are emitting over time.  Testing this idea would also require capturing the nuanced 

relationships between outer and inner suburbs, something that could not be captured with 

just the central city variable.  This is important because research has shown that older 

suburbs located closer to the central city are experiencing socioeconomic declines similar 

to those of the central city (Lee and Leigh 2007).  

                                                           
25

 See Robertson (1995) for a discussion how these have been applied to air pollution. 
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 Results from this paper also suggest that different dimensions of segregation might 

relate to pollution differently.  Researchers investigating pollution and segregation need 

to ensure that the measure of segregation being utilized is effectively operationalizing the 

underlying theoretical process relating exposure and race.  This might mean considering 

different dimensions of segregation as well as new measures. While the analyses 

presented here suggest that the relative centralization measure, a measure of 

centralization, was the most parsimonious variable to use in these models, this might not 

be the case with other models or at different spatial and temporal ranges.  In addition, 

segregation measures were only available at the metropolitan level for 1990 and 2000 

census data. Future research should incorporate more recent census data as well as 

considering the possible differences in measuring segregation at a county level or other 

areas.  In addition, with a consistent spatial covariance of 0.99 for the dependent variable, 

these results suggest that the assumption needed for linear regression models of 

uncorrelated errors is not supported.  Researchers need to incorporate ways to address 

such spatial relationships wherever possible.  

 As with all secondary data analysis, the limitations of the previously collected data 

are passed along.
26

  One such limitation is the lack of information on facilities that have 

closed and are no longer reporting their emissions to the EPA through the Toxic Release 

Inventory program.  It could be that facilities that are shut down are now superfund sites 

which are abandoned sites that are still toxic to the environment.  If it is correct that older 

facilities are closing down in the central cities, then the number of superfund sites in 

these areas would be greater than outside of the central cities, and the estimates provided 

in this paper would be underestimating the environmental risk posed to central city 

residents.  Moreover, these data do not include mobile sources of air pollution.  This is 

particularly important in studies of segregation and pollution, as transportation routes 

have historically been used segregate neighborhoods in the United States ( Venkatesh  

2000).  Moreover, research suggests that mobile sources contribute to racial health 

disparities (Geer, Weedon and Bell 2013;Morello-Frosch and Jesdale 200).   In addition 

the pollution exposure measure in these data takes into account the toxicity of the 

                                                           
26

 For a thorough explanation of the limitations of the RSEI data see the Political Economy Resource 

Institute’s webpage “How Accurate are the RSEI Data on Toxic Air Pollution?” at: 

http://www.peri.umass.edu/accurate/ 
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pollutants. There might be very different mechanisms at play in the pathways which 

distribute certain toxicities differently by demographics than those which would have 

been uncovered had I used the amount of pollution exposed to that was unweighted by its 

toxicity.  

 Although there have been large scale declines in industrial air pollution over recent 

decades, these results demonstrate that some areas have experienced greater declines than 

others.  Metropolitan areas with greater rates of racial segregation are on average more 

exposed to industrial toxins overall. Those areas within the central city still have higher 

exposure to toxins than areas outside the central city.   While the resurgence of the 

neighborhood effects literature has ushered in an increased focus on the effects of racial 

segregation on the deleterious effect on the health of minorities (Hayanga, Zeliadt and 

Backhus 2013; Grant et al. 2010), the pathways through which segregation affects health 

are still being uncovered (see Williams and Sternthal 2010 for a recent review of the 

literature on segregation and health).  One possible explanation is that segregated 

communities have higher levels of pollution.  Thus far this possibility has been 

understudied (Gee and Payne-Sturges 2004).  Those few studies that do investigate if 

segregated areas have higher rates of pollution have been primarily cross-sectional and 

found mixed results.  This study helps shed light on this relationship and how it might 

vary over time and for different measures of segregation.  
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Table 3.1: Descriptives 

Year 
Mean 

Segregation 
Std 

Error 

Mean 
Log 

Pollution 

Std 
Error 

Number of Block 
Groups 

White African-American 

(Percent of Total 
Pop) 

(Percent of Total 
Pop) 

Central Outside Central Outside Central Outside 

1995 0.31501 0.05 2.274 0.006 27369 128763 13.71% 60.33% 2.64% 10.28% 

1996 0.31362 0.05 2.115 0.006 27324 128494 13.53% 60.04% 2.72% 10.47% 

1997 0.31146 0.05 1.996 0.006 27355 128268 13.30% 59.58% 2.77% 10.64% 

1999 0.30992 0.05 1.793 0.006 27151 127793 12.80% 58.85% 2.85% 10.96% 

2000 0.3056 0.05 1.822 0.006 27371 128536 12.57% 58.35% 2.89% 11.10% 

2001 0.30382 0.05 1.661 0.006 27410 128351 12.39% 57.95% 2.91% 11.21% 

2002 0.30197 0.05 1.346 0.006 27425 127971 12.20% 57.46% 2.93% 11.37% 

2003 0.30019 0.05 1.067 0.006 27336 128027 11.96% 57.14% 2.95% 11.51% 

2004 0.29901 0.05 1.082 0.006 27235 127814 11.76% 56.91% 2.97% 11.66% 
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Table 3.2: Linear Mixed Model Predicting the Log of Pollution Exposure Scores for 

Block Groups with Relative Centralization as a Measure of MSA Level 

Racial Segregation between African-Americans and Whites 

 

 
Robust standard errors are given in parentheses and models control for population density.  

ƚ Stratified sample of just those block groups located outside of the central city. 

** significant at a p-value of 0.001 * significant at a p-value of 0.05 
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Table 3.3: Linear Mixed Model Predicting the Log of Pollution Exposure Scores for 

Block Groups with Dissimilarity Index as a Measure of MSA Level Racial 

Segregation between African-Americans and Whites 
 

  Robust standard errors are given in parentheses and models control for population density.  

ƚ Stratified sample of just those block groups located outside of the central city. 

** significant at a p-value of 0.001 * significant at a p-value of 0.05

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
ƚ 

         
 

 
OUTSIDE 

CITY 

Segregation  3.537 ** 3.5805 ** 2.156 ** 0.04426 ** 0.04426 ** 0.0416 ** 

 0.08063  0.08051  0.092  0.00013 
 

0.00013 
 

0.00015  

     
 

  
    

 

Year -0.00401  -0.00412  -0.049 ** -0.1103 ** -0.1103 ** -0.1077 ** 

 0.003  0.003  0.003  0.001 
 

0.001 
 

0.001 
 

     
 

 
    

 
 Segregation*Year -0.1746 ** -0.1769 ** -0.106 ** 

 
   

 
 

 0.004  0.004  0.005 
 

 
   

 
 

     
  

 
   

 
 Prop  African-Americans 

 0.5146 ** 0.516 ** 
    0.6041 ** 

   0.007  0.075      0.014 
 

   
 

 
 

      
 Prop  African-Americans * seg 

  0.015 ** 
     

 
     0.001       

 
     

 
      

 Prop  African-Americans * year 
  0.434 ** 

    -0.031 
 

     0.013      0.002 
 

     
 

      
 Prop  African-Americans * year * seg 

 -0.007 ** 
     

 
     0.000       

 Central City Location  
  

   
0.069 ** 0.067 ** 

  (1=central 0=outside) 
   

  
0.005  0.009  

  
       

      Central City Location * Year   
 

 
   

  
-0.000 

   (1=central 0=outside) 
 

 
   

  
0.002 

   
            

 Spatial Covariance  
 099 

 
0.99  0.99 

 
0.99 

 
0.99 

 AIC 6285404  6280288  6278467  6286922  6286933  5156536 
              Constant -2.0529 ** -1.9293 ** -1.834 ** -1.5981 ** -1.597 ** -1.5189 ** 

 0.016  0.016  0.018  0.011  0.013  0.012 
 Observations 1,445,205 1,445,205 1,445,205 1445205 1445205 1189114 

 N Block groups 160,586  160,586  160,586  160586  160586  132131 
 N MSA  322 

 
322 

 
322 

 
322 

 
322 

 
322 
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CHAPTER 4 

Poverty Segregation and Pollution Exposure:  

Evaluating the Concentration of Poverty 

 

Abstract 

This study is among the first to examine the changing relationship between metropolitan level 

segregation of poverty and pollution exposure at the block group level within these areas.  These 

analyses utilize air pollution data on 572 industrial chemicals which have been estimated using air 

dispersion modeling to determine their effect on over one hundred thousand block groups.  These 

estimates are weighted by their toxicity to human health to provide estimates of exposure to toxic 

industrial pollutants at the block group level, over time, across the United States. Results show 

that block groups located in metropolitan areas with higher levels of poverty segregation have, on 

average, higher rates of pollution exposure.  In addition, those block groups with greater 

proportions of impoverished residents have more exposure to toxic pollutants if they are located in 

a metro area with higher levels of poverty segregation.  

 

Introduction 

Although a number of environmental justice studies consider poverty as a predictor of 

pollution exposure, none actually measure poverty segregation.  This is an important 

limitation of the environmental justice literature, because a measure of poverty 

segregation would be a more accurate metric of concentrated poverty, one of the most 

theoretically cited causes of environmental inequality (Smith 2009; Downey 2005; Lopez 

2002).   A renewed focus on “concentrated poverty” came about in the urban sociology 

literature in the late 1980s in the quest to understand the increasing rates of poverty in 

America’s central cities.  Insights from this body of literature made it clear that both 

racial and economic segregation are important for understanding what social groups are 

located nearer to historically industrial centers in America, and thereby closer to the 

pollution coming from these facilities.  Research investigating the unequal exposure to 

environmental risk by social class has been criticized for being slow to incorporate 

sociological theory (Smith 2009; Downey 2005).   This paper addresses such criticism by 

operationalizing the concept of “concentrated poverty” in a way that is more consistent 
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with that laid out in the urban sociology literature being cited by environmental 

justice studies.  

A large body of research has shown that there has been a great deal of change over 

recent decades in levels of both pollution (EPA 2012a) and economic segregation 

(Wheeler and La Jeunesse 2008), but these two indicators have had different trajectories.  

Economic segregation has been increasing.  Using census tract-level family income data 

for 216 U.S. metropolitan areas, Watson (2009) found that top and bottom income 

quintiles were more isolated in 2000 than in 1970 and income segregation rates have 

stayed high through the year 2009 (Lichter, Parisi  and Taquino 2013).  However, 

hazardous air emissions from industrial facilities have declined dramatically since the 

early 1990’s (EPA 2012a).  Kahn (1999) argues this is mainly due to deindustrialization.  

During the time period of this study, from 1980 to 2009, the United States lost almost 

40% of its manufacturing jobs (Helper et al. 2010). Yet current environmental inequality 

research has not attempted to examine how the association between increasing economic 

segregation and decreasing pollution has evolved over time to influence unequal 

exposure to pollution.  

This paper will address these limitations by exploring two primary research 

questions: (1) In the mid-1990s U.S., how did pollution exposure of a census block group 

vary by the economic segregation of the metropolitan area within which it was situated? 

(2) How did the relationship between economic segregation and pollution vary over the 

ensuing decade? I link data from the Environmental Protection Agency’s (EPA) Risk 

Screening Environmental Indicator geographic microdata (RSEI-GM) for 1995 to 2004 to 

poverty segregation in those years based on the dissimilarity index (DI), a standard 

measure of segregation. Multilevel models are used that account for clustering of 

observations over time within block groups and spatial correlation of the observations.  

This paper helps theoretically advance the EJ literature by offering a more precise 

measure of concentrated poverty, looking at trends over time and using more precise 

measures of pollution exposure than have been used in previous studies.   

Background 

  Research from the field of environmental justice has largely showed that 

stratification of environmental quality mirrors that of other social goods; those of lower 
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income are disproportionately located in more polluted areas (Crowder and Downey 

2010). Recently this field has been criticized for not incorporating important lessons from 

the discussion of the causes of concentrated poverty in America’s cities (Smith 2009; 

Downey 2005). The urban poverty literature borrows from the field of Human Ecology.  

Specifically, Weber’s (1909) least cost theory holds that new industrial facilities are sited 

near industries of similar type because these areas already have the necessary 

infrastructure, access to markets and labor, that companies need to effectively do 

business. This process creates a ‘Zone of Industry’.  The broader sociological literature 

argues that this spatial patterning of industry significantly affects the economic 

opportunities of individuals within a metropolitan area and the spatial concentration of 

poverty (Wilson 1996).  Because these facilities also emit air pollution, these zones of 

industry are also zones of exposure to air toxins. 

It is often argued that having an industrial facility in the local community provides 

economic vitality to the area (Cole and Foster 2001; Bullard 1990).  If such areas are 

economic hotspots we would expect to see that overall, places with more industrial 

facilities would have higher levels of employment, particularly in industrial occupations, 

and a reasonable amount of personal wealth amongst local citizens. This, however, was 

not the case for the communities of over 413 commercial hazardous waste facilities 

operating in the U.S. in the year 1999.  National level examination demonstrated that 

populations within three kilometers of polluting facilities have 1.5 times higher poverty 

rates and 15% lower mean annual household incomes than other areas (Bullard et al.  

2007). One such example is provided by St. James Parish in Louisiana.  In the mid-

nineties this area had 137 petrochemical facilities, but suffered from 10 to 14 percent 

higher unemployment rates than the state average (Kurtz 2003). After a community in 

this area protested a new facility being sited there, corporate officials were forced to 

admit that they were not anticipating hiring people from the local community, “because 

the educational level of the local citizens did not meet the company requirement” (Cole 

and Foster 2001: 78). 

Moreover, with increased automation in industrial sectors, the number of jobs 

industrial facilities can provide has dwindled (Wilson 1996). Wilson (1996) argues that 

one of the primary reasons for poverty segregation, or a concentration of poverty in 
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America’s metropolitan areas, is the polarization of the labor market into low wage and 

high wage sectors. The job opportunities that do remain in industrial facilities are 

reserved for highly skilled workers, who are often brought in from outside of the local 

community. Wilson (1987, 1996) argues that as deindustrialization has progressed, 

America’s historically industrial centers have shown increased poverty rates due in part 

to the lack of low wage jobs in these areas, as well as the outmigration of wealthier 

individuals (Wilson 1987, 1996).  If poverty has concentrated around older 

manufacturing facilities then the next logical step is to ask if this process underlies the 

unequal distribution of pollution by income.   

The environmental justice literature often cites Wilson’s (1987; 1996) work in order 

to explain the importance of including a measure of poverty in statistical models 

predicting pollution exposure (Smith 2009; Downey 2005; Lopez 2002). However 

Wilson’s argument is not just about poverty per se, but rather the spatial concentration of 

poverty.  Wilson’s theories deal explicitly with the concentration of poverty of central 

cities in the context of a broader, less impoverished metropolitan area.  Thus a simple 

measure of a census unit’s poverty doesn’t accurately capture whether this area is 

spatially clustered with other areas with a similar poverty status.  It could possibly be that 

those census units with high areas of poverty are randomly dispersed throughout the 

metro area. Measuring income inequality at the metro level would capture the mean 

pollution level for that metro area, but would not indicate whether those areas that are 

more impoverished in that metro area are the ones most exposed to pollution.  To more 

accurately assess whether being in an impoverished community, surrounded by other 

impoverished communities, increases the risk of exposure to industrial toxins it is 

necessary to use a measure of poverty segregation.   

Smith (2009) provides one of the few studies that operationalize the concentration of 

poverty and determine how it is related to pollution exposure in Portland, Oregon and 

Detroit, Michigan.  He wanted to evaluate Wilson’s (1987; 1996) theory and capture 

“concentrated poverty” explicitly.  Thus he created an index of economic deprivation for 

the census tract that included the percentage of residents who were unemployed, in 

poverty, receiving welfare, living in a female-headed household, lacking a high school 

diploma, and employed as an executive, and the tract-level median income.  He uses this 
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index to predict whether a census tract had a hazardous waste disposal site located in it. 

He presented models with estimates for both concentrated poverty at the tract level and 

racial segregation at the metropolitan level.  He found that concentrated poverty was a 

strong and significant predictor of whether there was superfund site located in the tract, 

and that this index was a stronger predictor of the presence of a polluting facility than the 

level of racial segregation.   

While the literature investigating pollution and concentrated poverty is not yet robust, 

there have been a handful of cross-sectional studies that have examined economic 

inequality and pollution exposure.  For example, in their models to assess the effect racial 

segregation had on environmental outcomes, Downey et al. (2008) ran series of logistic 

regressions for 329 metropolitan areas in 2000.  The dependent variable in these 

regressions was whether or not the average person in a racial group (e.g. African-

Americans) had a higher pollution burden relative to an average person of another racial 

group (e.g. whites).   In these models they incorporated a measure of income inequality 

which was calculated as the ratio of a racial group’s median household income over the 

median household income of all households in the metropolitan area.  The authors found 

that this measure of income inequality did not account for much of the variation in 

pollution exposure by race.  In a similar paper, Downey (2007) used ordinary least square 

models predicting the ratio of exposure of African-Americans and whites, African-

Americans and Hispanics and whites and Hispanics.  In these models Downey (2007) 

included the median income ratio of African-Americans and whites of a metropolitan 

area.  Again, Downey (2007) did not find that this variable of metropolitan level income 

inequality was a significant predictor of unequal pollution exposure by race. While these 

findings are illuminating, their measure of economic inequality is a ratio of median 

income in a MSA.  This tells us nothing about the spatial patterns of the poor in these 

areas, which is the major mechanism cited in the motivating theory of these papers. 

The extant papers are all notably motivated by Wilson’s (1987; 1996) theory on 

metropolitan level concentrated poverty; however, none of them precisely measure it. 

This paper addresses this limitation by helping to make clear if block groups located in 

metropolitan areas with higher poverty concentration are significantly more likely to have 

higher pollution exposure.  In addition, the role of block group level poverty is noted in 
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order to determine if in fact those block groups with higher levels of poverty are also the 

ones experiencing greater levels of pollution.  This paper also helps test the idea that for 

those metropolitan areas with high rates of concentrated poverty, it is those areas of 

concentrated poverty that are experiencing the greatest environmental risk from industrial 

toxins.  

Data and Methods 

The Risk Screening Environmental Indicators geographic microdata (RSEI-GM) was 

created to augment the current Toxic Release Indicator (TRI) data. TRI data is a 

compilation of reported releases of over 600 individual chemicals from a variety of 

manufacturing, mining, utility operations, hazardous waste treatment, and disposal 

facilities, as well as from chemical distributors and federal facilities (EPA 2012b).  TRI 

data is limited in that it doesn’t provide information about what areas are most affected 

by this exposure or the comparative risk of these amounts and chemicals.  The RSEI-GM 

data overcomes these limitations by using air dispersion modeling.  This model takes into 

account information on a chemical’s rate of decay, molecular weight, as well as the 

source of the release (i.e.: smokestack height, valve leak, etc.), wind patterns, 

temperature, and topography around a facility, to produce an exposure estimate for a 101 

km by 101 km square around each facility.  This area is further broken down into one 

kilometer square grid cells. These amounts are then weighted by their toxicity to human 

health based on peer-reviewed studies completed by both EPA and external scientists
27

 

which take into account the number of potential chronic human health effects, severity of 

these effects, potency of the chemical and uncertainty in differentiating these effects 

(EPA 2007).  Once weights are applied they are added together to create a score for a one 

by one kilometer grid cell which is comparable across facilities and areas.   

Because reporting requirements change every few years, these analyses only examine 

those 572 chemicals that were consistent across the time period examined. In addition, 

facilities reporting their emissions to the EPA can retroactively change their reported 

numbers to correct for errors.  I follow the standard of the consortium of researchers that 

                                                           
27

 Compiled in the EPA's Integrated Risk Information System (IRIS), EPA Office of Pesticide Programs' 

Toxicity Tracking Reports (OPP), Agency for Toxic Substances and Disease Registry final, and other 

sources.  

http://www.epa.gov/iris
http://www.atsdr.cdc.gov/toxpro2.html
http://www.atsdr.cdc.gov/toxpro2.html
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use these data and omit these facilities (N=957), which make up less than one percent of 

the total facilities in these data (N=50,368).  Finally, these years 1995 to 1997 and 1999 

to 2004 were utilized because over this period the requirements for what types of 

facilities could submit cursory emission information was limited to smaller facilities; this 

allowance was later extended to larger facilities. During this time period smaller facilities 

were able to submit ranges of their emissions rather than the actual output. The EPA then 

used the middle of that range as their actual emissions, making these estimates less 

reliable. After 2004 this allowance was given to larger facilities, expanding the 

uncertainty in estimates after this time.  Pollution estimates in aggregate for the year 1998 

were much greater than the other years, thus this outlier was excluded of the following 

analyses.  

In GIS 10.1 I intersected these grid cells with 2000 census block group boundaries.  

This helped me to determine what percentage each grid cell made up of a census block 

group.  I then weighted the toxicity of this cell by this proportion and aggregated it up to 

the 2000 block group boundary, giving me an estimate of exposure for that block group 

boundary.  I repeated this for the years 1995 to 2004. Using the same technique, I 

overlaid 1990 and 2010 census block group boundaries with 2000 census block groups. I 

determined the percentage each block group made up of the 2000 boundaries, and 

weighted data on the number of individuals in poverty and not in poverty to the 2000 

block group boundaries.  This gave me standardized block group boundaries, 1990 and 

2010 census data in 2000 block group boundaries.  The then was able to linearly 

interpolate these data, so that the average rate of change from 1990 to the year 2000 was 

applied to population data for the years 1994 to 1999. The 2000 census data was used for 

the year 2000, and the average rate of change from 2000 to 2010 was applied to 

population data for the years 2001 to 2004. This gave me annual varying estimates of 

block group level poverty and the population density per square mile, which I then 

matched to yearly pollution estimates from the RSEI-GM data.  These analyses include 

over 150,000 block groups with over 1.4 million observations. 

I calculated the proportion of those in poverty in a block group by dividing the total 

number of individuals in poverty in a block group by the total number of persons in that 

block group.  The distribution of the proportion of block group poverty is skewed so I 
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broke it down into quintiles.  The highest quintile was coded as a four, and so on to the 

lowest quintile which was coded as zero.  It is important to bear in mind that the 

proportion of a block group’s population living in poverty is not necessarily correlated 

with the level of poverty segregation of the metropolitan area that it is located in. In fact, 

there was no evidence of multicollinearity between these variables.  One is a measure of 

an MSA characteristic and the other of a block group characteristic.   

I calculated the index of dissimilarity of poverty for metropolitan statistical areas 

(MSA)
28

. MSAs are focused on because in a national examination of commercial 

hazardous waste facilities operating in 1999, Bullard et al. (2007) found that 83% were 

located within metropolitan areas (see table 1 for a breakdown of pollution levels for 

quintiles of poverty segregation).  The dissimilarity index is a measure of spatial 

evenness of poverty across block groups in a metropolitan area, so those metropolitan 

areas that have greater concentration of poverty will have a higher index value.  The 

Index of Dissimilarity for poverty was calculated at the metropolitan area level for 320 

metropolitan areas.  Interpretation of the Index of Dissimilarity is for the larger 

geographic area; in this case it would be a measure of segregation for the MSA. The 

index can range from 1 (total segregation) to 0 (equal distribution of groups).   It is 

calculated using equation 1 below, where pi equals the population of the ith block group 

in poverty; P equals the total population of the MSA in poverty; ni equals the population 

of the ith block group not in poverty, and N equals the total population of the MSA not in 

poverty (Farley 2009).  The absolute values of these percentages are summed across N, 

the total number of block groups in a MSA. 

 

 
∑     

  

 

 

   
 - 
  

 
                                                  (eq.1) 

The dissimilarity index is the most commonly measured dimension of segregation 

(Weinburg et al. 2009). Previous scholars have argued that it is preferable to obtain these 

measures at the metropolitan level because it is at this level that policy decisions on the 

environment and structural forces affecting segregation take place (Morello-Frosch and 

Lopez 2006). As Morello-Frosch and Lopez (2006: 183) argue, “economic trends, 

transportation planning, and industrial clusters tend to be regional in nature, even as 

                                                           
28

 1999 MSA boundaries were obtained from the U.S. census (Census 2001).   
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zoning, facility siting, and urban planning decisions tend to be local.”  Furthermore, MSA 

overlap considerably with real estate markets and are often used as a proxy for these. 

 

 

Analytic Strategy 

 Multilevel models are appropriate for repeated measures on a unit, like these annual 

block group measures of pollution, because they take into account the correlated structure 

of observations in the estimation of standard errors.  Serial observations made on the 

same census unit are likely to be correlated.  The observations in these data are clustered 

so that each block group, standardized to 2000 census block group boundaries as 

discussed above, has one measure of pollution exposure for each year between 1995 and 

2004.  Therefore the following two-level multilevel model was specified where all level 1 

variables are time varying so that the dependent variable, LOGTC, is the log of the toxic 

pollution exposure score of block group i, at time point t;  1i (seg) is the time varying 

poverty segregation level of the metropolitan area;  2i(year) is year centered on 1995, so 

that zero equals year 1995;  3i(popden) is the time-varying population density of the 

block group which allows me to control for the fact that population density has been 

negatively and significantly associated with pollution values from these data (Ash and 

Fetter 2004).   

 Level 2 equations display the fixed effects for these parameters and includes a 

random intercept (b0i) for each block group within MSA.   To address the fact that block 

group observations are correlated with one another across space a spatial power 

covariance structure were specified was specified in SAS 9.3 using the ProcMixed 

statement where the covariance of block groups (covbg) is equal to  the estimated 

covariance of how block groups are associated with one another across space ( 2
(b0i)) 

which is multiplied by a matrix made up of estimated spatial power covariance for block 

groups ( bg) to the power of the distance between block groups to one another.  This 

distance is based on the latitude and longitude of the block group centroid, e.g. block 

group 1 and 2 would be specified as:  bg
d 1,2

.   In addition the fact that these data are 

repeated observations on the same block group means that the observation of block group 
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1 at time 1 is likely to be associated with observation of block group 1 at time 2.  To 

address this an autoregressive lag (AR1) covariance structure was specified so that the 

covariance of the residuals (cov(eti)) is equal to the variance of these residuals ( 2
residuals) 

multiplied by a ten by ten matrix where    is equal to the estimated covariance between 

time periods for each block group to a power of year minus one. Equation three specifies 

the simplest model specified in the following analysis. I expand on equation three above 

by including  4 which is the coefficient associated with the proportion of those living in 

poverty in a block group as well as interaction terms between these variables.  

Level 1: LOGTCti= 0i +  1i (seg)+  2i(year) +  3i(popden) + eti 

Level 2:   0i  =  00 + b0i 

      1i=  10 

      2i=  20 

                  3i=  30 

 

Mixed Model: LOGTCti =  00 +  10(seg) +  20(year)  +  30(popden) +  b0i +  eti 

 

Where: 

 

Spatial Power Covariance Structure: 

 

 

               Covbg=  2
(b0i) *  

 

 

 

Residuals Covariance Structure- Autoregressive Lag: 

  

  cov(eti) =  2
residuals * *     
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(eq.3) 
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 The previous equation specifies the simplest model in the following analysis. I 

expand on this by including  4 which is the coefficient associated with the proportion of 

those living in poverty in a block group.  I also included interaction of this term with the 

poverty segregation level of the MSA in order to understand if those block groups with 

greater proportion of those in poverty have higher pollution exposure if they are living in 

MSAs with greater poverty segregation. 

 

Results 

 Figure 1 graphs the average logged toxic concentration of block groups by quintile of 

MSA-level poverty segregation from 1995 to 2004.  The pattern of higher pollution rates 

at higher levels of poverty segregation is apparent for each year examined.  Those block 

groups in the most segregated quintile are the most exposed, those in the second highest 

are the second most exposed, and the third highest the third most exposed.  Below these 

two quintiles it is less clear cut.  Those block groups in the lowest category of segregation 

are the least exposed in only four of the ten years. Results from an analysis of variance on 

the sample pooled across all years, shows that the mean pollution between each quintile 

is all statistically different from one another, with a p-value of <0.001. 

 Model 1 in Table 1 demonstrates that the poverty segregation level of a metropolitan 

area is positively and significantly related to the logged pollution exposure of the block 

groups within it. For every one unit increase in the poverty segregation level of an MSA, 

the logged pollution exposure value for block groups within that MSA increases by 

8.912.  The coefficient for year in model 1 demonstrates that for block groups at the 

lowest level of poverty segregation, the logged pollution exposure decreases by -0.132 

per year.  Model 2 shows that the interaction between poverty segregation at the 

metropolitan level and year is negative and statistically significant. This means that over 

time poverty segregation of a metropolitan area is less related to pollution exposure so 

that by the year 2004 the poverty segregation level of an MSA is correlated with 

pollution exposure of a block groups by 7.724 = (8.912-(0.132*9).  However the 

coefficient is relatively small, and loses significance in the subsequent models.  
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 Up to this point these statistical models have just provided information about how the 

average pollution exposure of block groups varies by their location in MSAs with 

different levels of poverty segregation.  There is no information about which block 

groups are more affected.  Figure 2 helps us to understand the relationship between the 

proportion of individuals living in poverty in a block group, their pollution exposure and 

MSA poverty segregation level.  This graph breaks down the average pollution exposure 

for the five quintiles of block group poverty, by the five quintiles of metropolitan level 

poverty segregation.  The positive relationship between block group poverty and 

pollution is clear cut for the top two quintiles of metropolitan level poverty segregation.  

Those block groups with the highest proportion of individuals in poverty also have the 

greatest pollution exposure, and this increase is linear. However, for the lowest three 

quintiles of metropolitan level poverty this relationship differs in two ways.  The first is 

that the difference between the highest quintile of block group poverty and lowest 

decreases.  For the MSA with the greatest amount of poverty segregation the difference 

between the average pollution of the top quintile and bottom is 0.76 (3.22-2.46).  For the 

MSA with the lowest poverty segregation this difference is 0.13, the second lowest 0.30, 

the third lowest 0.41, and the fourth 0.52.  The second difference is that the linear aspect 

of this relationship is not as apparent in MSAs with lower levels of poverty segregation.  

In some cases, block groups with the lowest level of poverty have higher average 

pollution exposure than block groups with higher levels of poverty.   

 Model 3 helps us to further understand if block groups with greater rates of poverty 

are more exposed to pollution.   The coefficient for the block group level proportion of 

those living in poverty,  shows that moving to a block group with 0.01 a greater 

proportion of those in poverty increases ones pollution exposure by 0.967. Model 4 

includes an interaction term between the proportion of those in poverty in a block group 

and metropolitan area segregation in order to determine if areas of concentrated poverty 

have greater pollution burdens in MSAs with higher levels of poverty segregation.  The 

main effect for block group proportion of poverty in this model demonstrates that moving 

to a block group with a 0.01 greater proportion of those in poverty, increases pollution 

exposure by 9.051 when there is no metropolitan area level poverty segregation. The 

positive and significant interaction estimate signifies that those block groups with greater 
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percentages of poverty have more pollution exposure in MSAs that have higher levels of 

poverty segregation.  Model 5 includes a three-way interaction between block group level 

poverty proportion, MSA poverty segregation and year.  These results show that the 

association between block group level poverty and MSA level poverty segregation is 

declining slightly and significantly over time (beta= -0.012). 

Discussion 

 These results demonstrate that living in a block group with higher rates of poverty 

will significantly increase exposure to industrial toxins and this effect is amplified in 

metropolitan areas with higher rates of poverty segregation.  This study improves upon 

previous studies in several ways.  First, I examined the segregation of poverty rather than 

overall income inequality or tract-level economic deprivation.  The segregation of 

poverty is a spatial measure that provides information about how spatially concentrated 

poverty is within a metropolitan area; this cannot be captured with metropolitan level 

measure of economic inequality, because such a measure does not indicate whether areas 

of concentrated poverty are experiencing more exposure. Additionally, concentrated 

poverty, in the way Wilson (1987; 1996) talks about it, cannot be measured as just the 

percentage of people in poverty in a block group, or as another characteristic of a small 

geographic unit like a census tract, because it could be that tracts with higher rates of 

poverty are more or less randomly distributed across the metropolitan area.  This paper 

contributes to the literature by defining poverty segregation in a way more consistent 

with the guiding theory posed by Wilson by measuring areas of concentrated poverty as a 

metropolitan area characteristic not a census unit characteristic.  Finally, I examine 

changes in poverty segregation and how this relates to industrial pollution exposure over 

time. 

 Those block groups with higher rates of poverty were in fact the areas being most 

exposed to industrial toxins.   Statistical models showed that an increase in the level of 

block group poverty was associated with increasing levels of pollution exposure and 

compared to the least impoverished block groups, these relationships were significant. It 

is often assumed that although industrial facilities might pollute, they also bring 

economic development to the local communities in which they are sited.  Such a scenario 
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would suggest that areas with more pollution have greater economic resources.  The fact 

that these results show that block groups with greater proportions of poverty actually 

have higher pollution exposure, provides motivation for future research to test this 

assumption more directly.  

 To explore these findings further, future research should consider how the 

relationship between segregation and poverty pollution varies regionally.  Could it be that 

those metro areas with less segregation are clustered in the Western United States, where 

there might be a different relationship between poverty segregation and industrial 

pollution? This might explain why at lower levels of poverty segregation there is more 

equal distribution of pollution by proportion of block group poverty.  A regional 

examination could also provide insight as to whether certain industrial sectors contribute 

differently to the segregation and pollution association.  Such work could also help to 

explain why poverty segregation is declining in its ability to explain pollution exposure, 

even though economic segregation is increasing in the United States. Current research 

has shown that there have been steady increases in central city populations (Mather et al. 

2011).  Regional examinations should consider if varying levels of gentrification in these 

areas might help explain these trends over time.   

 Future research should also consider different measurements of segregation.  The 

dissimilarity index has been criticized for being “aspatial” in that it relies on areal units 

created by census boundaries (Reardon and O’Sullivan 2008). By comparing various 

measures of segregation, researchers will better be able to grasp how different 

dimensions of poverty or economic segregation might relate differently to pollution 

exposure.  This could also mean creating different measures of economic segregation, 

using various combinations of income brackets, as well as breaking these down by race.  

 Finally, once it is determined to what extent industrial exposures can be explained by 

economic segregation, measures of racial segregation should be incorporated to see how 

results change and how the inclusion of a time dimension alters these relationships. 

Because race and poverty are so intertwined in the U.S., results from statistical models 

just including one of these variables might be capturing effects of the other.  To 

determine the extent to which each affects environmental inequality, it is important to run 
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separate models for poverty segregation and racial segregation, as well as finding ways to 

estimate models that incorporate both.    

 This study has several limitations.   Firstly, it is important to note that these results do 

not provide evidence of causation.  In order to understand if pollution exposure causes 

increases in poverty levels, or vice versa, information on the relative timing of these 

indicators would have to be included.  For example, one could ask: in areas where there 

was an increase in pollution exposure, there was a subsequent increase in block group 

level poverty? Such an examination would be most useful over a longer time period.  

Finally, as with all secondary data analysis, the limitations of these data are passed on to 

this study.
29

  A limitation of note is that these data do not include mobile sources of 

pollution.  While the theory motivating this paper is based on industrial spatial patterning 

and pollution emissions, America’s transportation systems have been used to segregate 

communities ( Venkatesh  2000).  Because mobile pollution has been linked to 

segregation and unequal exposure by race (Morello-Frosch and Jesdale 2006) future work 

should incorporate such information.   

 Environmental justice research finds community-level poverty to be one of the chief 

indicators of exposure to air pollution (Hamilton, 1995; Smith 2009; Stretesky and Hogan 

1998).  However, research investigating the unequal exposure to environmental risk by 

poverty status has not measured poverty segregation in a way that is consistent with the 

motivating theory.  The urban poverty literature that environmental justice researchers 

have drawn upon to explain how pollution and economic inequality relate to one another, 

describes the concentration of poverty within a metropolitan area. According to the urban 

poverty literature, the mechanisms through which poverty affect pollution is a spatial 

relationship between economic groups across the whole metropolitan area, not just within 

one neighborhood. This paper addresses that limitation and results suggest that the 

metropolitan level concentration of poverty is a strong indicator of the overall pollution 

of the MSA, as well as providing evidence that those living in poverty are exposed to 

greater industrial toxins if their MSA has a high level of poverty concentration.   

 

                                                           
29 Further information about the limitations of the RSEI data can be found online at: 

http://www.peri.umass.edu/accurate/ 
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Table 4.1: Descriptives 

Year 
Mean 

Segregation 
Std 

Error 

Mean 
Log 

Pollution 

Std 
Error 

Mean Pollution Quintiles of MSA Level Segregation 

Quintile 
1 

Quintile 
2 

Quintile 
3 

Quintile 
4 

Quintile 
5 

1995 
0.364 <0.000 2.274 0.006 1.280 1.470 2.612 2.768 3.362 

1996 
0.365 <0.000 2.115 0.006 1.156 1.334 2.124 2.818 3.092 

1997 
0.367 <0.000 1.996 0.006 1.358 1.026 1.711 2.689 2.932 

1999 
0.377 <0.000 1.793 0.006 1.222 0.950 1.258 2.201 2.679 

2000 
0.384 <0.000 1.822 0.006 1.193 0.955 1.391 1.942 2.723 

2001 
0.372 <0.000 1.661 0.006 1.017 0.803 1.377 2.133 2.584 

2002 
0.367 <0.000 1.346 0.006 0.595 0.636 1.253 1.698 2.476 

2003 
0.364 <0.000 1.067 0.006 0.342 0.361 0.971 1.600 2.270 

2004 
0.365 <0.000 1.082 0.006 0.281 0.450 1.000 1.561 2.273 
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Figure 4.1:  Average Unadjusted Values of Average Logged Toxicity Weighted 

Pollution Exposure Score of Block Groups by Year, Broken Down by 

Quintile of Block Group Proportion of Poverty 
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Table 4.2: Linear Mixed Model Predicting the Log of Pollution Exposure Scores for 

Block Groups  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Robust standard errors are given in parentheses and models control for population density.  

** significant at a p-value of 0.001 * significant at a p-value of 0.05 

 

 

 

 

 

 

 

 



84 
 

Figure 4.2:  Average of Unadjusted Logged Toxicity Weighted Pollution Exposure Score 

of Block Groups Broken Down by Quintile of Proportion of Poverty and 

Quintile of Metropolitan Level Poverty Segregation 
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CHAPTER 5 

Conclusion 

 As early as DuBois’ 1899 study of the black ghetto in Philadelphia, sociologists have 

known that residential segregation has a deleterious effect on the health of minorities 

(DuBois 1996 [1899]).  The causes of these negative effects have been greatly expounded 

upon by scholars over the years.
30

  There is now a large body of literature providing 

evidence that poor and predominately minority communities are overburdened with toxic 

air pollution.  Yet there has been little research asking how residential segregation by 

race/ethnicity and economic status relates to these unequal environmental risks.  This 

dissertation helps to provide a foundation for such examination. Using detailed pollution 

exposure data on over 572 industrial chemicals that have been weighted by their toxicity 

to human health, this collection of work examines how exposure to industrial toxins has 

changed across racial/ethnic and economic groups from 1995 to 2004 in the United 

States.   

 In chapter 2, average exposure to these toxins was calculated for the typical African-

American, white and Hispanic individual in the U.S. annually from 1995 to 2004.  These 

results confirmed that pollution exposure was declining over time for every group.  When 

these results were examined for differences by race and income results showed that 

African-Americans were consistently the most exposed racial group, while whites and 

Hispanics had similar exposure profiles. It is notable however that Hispanics were 

exposed to less total amounts of pollution, but overall more toxic substances.  Future 

research should investigate this further to understand if these differences can be explained 

by incorporation of region and type of industry that might be over represented in certain 

communities.  

                                                           
30

 See Williams and Sternthal 2010 for a recent review of the literature. 
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 When racial groups were also broken down into household income categories, results 

showed that within racial groups, those with more economic resources were better 

protected.  However when income groups are compared across races results showed that 

although higher income African-American households were more protected from 

pollution than lower income African-Americans they were actually more exposed that 

whites of lower income categories. This has implications for health inequalities as current 

research has shown that there are racial differences in health that cannot be explained by 

differences in socioeconomic status (Williams and Sternthal 2010).  If African-

Americans, regardless of their income, are more exposed to air toxins, then they are at 

greater risk for the health problems that arise from this exposure, such as cardiovascular 

disease (Schultz et al. 2005) and asthma (Grineski 2007).  

 Chapter 3 provides a basis with which to question the straight-forward application of 

the spatial mismatch hypothesis to the field of environmental justice.  The spatial 

mismatch theory holds that jobs followed white-flight trends out of the central cities, 

disenfranchising African-Americans from economic opportunity.  Applying this directly 

to the environmental justice literature would imply that as firms moved away from the 

central city, they took with them the pollution burden they imposed disproportionately on 

the more urbanized African-American population. The results presented in this paper do 

not support this theory rather being in the central city is shown to significantly increase 

one’s exposure to industrial air toxins.  In addition, counter to current hypotheses, 

African-Americans outside of the central city are shown to have greater pollution 

exposure than whites outside of the city.    I theorize in this essay that the current EJ 

literature overlooks the broader context of pollution trends, such as the large-scale 

declines and stricter regulation of toxins.  While such an explicit test of the processes 

underlying these findings is beyond the scope of this paper, the evidence presented here 

lays the groundwork for future studies that might evaluate this hypothesis.  The fact that 

results differed using the dissimilarity index as a measure of segregation compared to 

those using relative centralization as a measure of segregation, make clear that it is 

important for environmental justice researchers consider what a measure of segregation is 

capturing.  The dissimilarity index, the most commonly used measure of segregation, 
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measures the spatial clustering of African-Americans in a broader metropolitan area, 

whereas the relative centralization measure captures the extent to which African-

Americans are located in the central city compared to whites. These are different 

concepts and need to be matched with theory accordingly.   

 Chapter 4 engages the environmental justice literature on the often cited arguments 

about the increasing concentration of poverty in America’s inner cities posed by Wilson 

(1978;1996).  Wilson argues that deindustrialization concentrated poverty in inner cities 

by providing economic opportunity outside of the central cities while job opportunities 

within U.S. cities have declined.  This essay links this theory to a metropolitan level 

measure of concentrated poverty, allowing a more accurate assessment of the idea that 

areas of poverty, within metropolitan areas where poverty is concentrated, are more 

exposed to industrial toxins.  Results show that as metropolitan level poverty segregation 

increases, the pollution exposure levels of the most impoverished block groups also 

increases. However, results show that this relationship is decreasing over time.  

 Chapters 3 and 4 included models that allow for the comparison across types of 

segregation. In Chapter 3, model 3 in table 1 presents information for several interactions 

of racial segregation using the relative centralization measure. This same model is 

presented in model 3 in table 2 except the dissimilarity index is used as a measure of 

racial segregation.  Finally, in Chapter 4, model 5 includes these same interactions with 

the proportion of block group poverty replacing the proportion of resident African-

Americans. These models are comparable by using the Bayesian Information Criteria 

(BIC), a popular measure for comparing maximum likelihood models.  This model 

diagnostic determines which set of variables best predicts the outcome without sacrificing 

parsimony.  Unlike the Akaike’s Information Criteria used within these chapters, the 

models being tested do not need to be nested within one another. In other words, I can 

use the BIC to test which of the possible segregation measures is the best predictor of 

pollution exposure risk, with those models having lower BICs being better fits.  Within 

the racial segregation models, the BIC for the relative centralization measure of 

segregation was a much better fit than the dissimilarity index (with a BIC 55,837 points 

lower than the dissimilarity index BIC). However, the poverty segregation model was 

relatively the best fit, with a BIC 395,952 points lower than racial segregation models. 
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While these comparisons are interesting, some scholars have argued that the 

environmental justice literature has spent too much energy on trying to determine the 

relative importance of race verses income in explaining disproportionate burdens of 

pollution exposure (Grant et al. 2010).  Such a criticism is warranted as racial and 

poverty segregation are inherently intertwined in the United States and creating a horse 

race between them does not easily help explicate patterns of unequal exposure to 

environmental risk. 

 

 These essays are all based on the same data and thus several of the same limitations 

can be applied across chapters.  For example, the dependent variable in all of these 

studies is the toxicity weighted pollution exposure.   The exposure score was calculated 

by applying weights to the total amount of air pollution (measured in micrograms per 

cubic meter) to make these chemicals commensurate across health outcomes. This means 

that scores can only be compared to one another.  In addition, these data are modeled 

from Toxic Release Inventory data, whereby industrial employees provide information to 

the Environmental Protection Agency about their annual releases of certain industrial 

toxins.  Thus such data are subject to human calculation error.  While the Environmental 

Protection Agency, and non-affiliated groups, make every effort to check these data some 

error might still be present.  On this point it is important to note that these data likely 

error on the side of underrepresenting pollution exposure.  Researcher at the University of 

Massachusetts have published “top polluters” list from these data for several years and 

although several firms have contacted them to correct their pollution estimates 

downward, none have contacted them to correct them in the opposite direction (PERI 

2013).  Moreover, the environmental integrity project has argued that the Toxic Release 

Inventory data are systematically underreported (EIP 2004).  

 In addition, these data are limited to the years 1995 to 2004. While the decline in 

deindustrialization was consistent with previous years declines, from 1970 to 2009, it 

would still be judicious to update these exposure estimates as well as incorporate 

information about other sources of pollution, such as mobile sources, and including 

information about those facilities that are no longer active, and thus not required to report 

to the Toxic Release Inventory program, yet still might pose hazards to the local 



89 
 

populations.   Future work needs to include information about the date a facility was 

established in order to test possible theories revolving around grandfathering of older 

industries in central cities and how this might be unevenly affecting central city 

populations.  

 One of the most fundamental questions in EJ research is related to the siting of 

industrial facilities:  where do facilities locate and who is affected by the resulting 

pollution?  However, there have been large scale declines in manufacturing in the United 

States over the past several decades (Helper, Krueger, Wial 2012)  as well as changes in 

the spatial patterning of racial and economic groups.  

 Few to no environmental justice studies have focused on trying to determine if the 

large scale declines that have been shown to exist in the United States over the past 

decades have occurred equally across racial and socioeconomic groups.  This dissertation 

addresses these issues and provides a needed foundation for understanding how exposure 

to industrial toxins has changed over time and how this relates to community level racial 

and economic inequality. 
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