
Genetic Insights into Aging and Age-Related Diseases among Varied 
Pedigree Structures 

 
 
 

By 
 

Jennifer L. Bragg-Gresham 
 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Epidemiological Science) 

in the University of Michigan 
2013 

 
 
 
 
 
 

Doctoral Committee: 
 

Professor Sharon L. R. Kardia, Co-Chair 
Professor Goncalo R. Abecasis, Co-Chair 
Professor Carlos F. Mendes de Leon 
Professor Peter X. Song 
 
 
 

  



 
 
 
 
 
 
 
 
 

© Jennifer Bragg-Gresham 2013 
All Rights Reserved 

  



ii 
 

ACKNOWLEDGEMENTS 
 
 

First, I owe Sharon Kardia and Goncalo Abecasis many thanks for their guidance over the 

last three years. I would like to thank Goncalo for giving me the opportunity to work as full-time 

staff while pursuing my degree. It allowed me to return to school, while still maintaining my 

family. More than that, it gave me the experience I needed in analyzing complicated genetic 

data sets, coordinating large consortia projects, and leading junior-level students.  

I am also very thankful to Sharon for taking me on as a graduate student mentee. When 

I was recommended to Sharon as a new student, she was so busy with her research and other 

graduate students that I know she was skeptical about taking on another responsibility, so we 

set up a time to meet each other. I remember my relief after we chatted for about an hour and 

she concluded that I seemed like I’d be “pretty low-maintenance” and she decided to take me 

on. Sharon, I hope I have actually been pretty “low-maintenance” for you. Thank you also for 

helping me keep sight of epidemiologic principles in genetic analyses.  

  Next I would like to acknowledge my committee members, Carlos Mendes de Leon and 

Peter Song. Although we didn’t meet often, your advice has been very useful. Carlos, thank you 

for helping me keep my analysis in-line with the community views on aging research. Peter, 

thank you for helping me explore the usefulness of including the longitudinal nature of the 



iii 
 

SardiNIA data in terms of predicting biological age. A very special thank you, also, to Yan Zhou 

for writing R code to handle the SardiNIA pedigree structure within the longitudinal data. 

There are two special mentors that deserve a lot of credit for helping me get to where I 

am today. After completed my BS in Biostatistics back in 1999, I decided to take a position at a 

local not-for-profit research organization focusing on improving clinical treatment and 

outcomes for hemodialysis patients. Philip Held, who founded the organization in 1996 asked 

me a question during my interview that I’m so happy I answered correctly. “Jennifer, are you 

prepared to work hard?” I did work hard and enjoyed it. The second mentor is Hal 

Morgenstern, who if a professor of Epidemiology here at UM. I had the pleasure of working 

with Hal before returning to complete my education and he really opened my eyes to better 

ways of thinking about study design and analysis. I also greatly appreciate his support in my 

decision to apply to the department and pursue my PhD in Epidemiology. Although Hal was not 

formally on my committee, I found him very happy to discuss and direct me in my analyses.  

I cannot leave out a special thank you to my friends and my family who have put up with 

either not seeing me as often as we would have liked or putting up with one tired and often 

grumpy mommy. Thank you to my wonderful husband for taking on more responsibilities 

within the family and always being a shoulder to lean on or a quick wit to make me laugh.  

Thank you also to co-workers at the Center for Statistical Genetics for listening to me 

present my aging work for the past two years. In particular, Serena Sanna, for giving me a crash-

course in UNIX scripting, teaching me the more efficient ways to run genome-wide association 

studies, and always being willing to help me, even from Sardinia. Also, Xiaowei Zhan, who very 

patiently helped me get my MACH imputation running and completed during one of the busiest 



iv 
 

computational times of the year. Without that data, this dissertation would not have been as 

interesting.  

Finally, this dissertation would not have been possible without contributions from my 

collaborators. I am honored to have been part of the core group for the SardiNIA Study on 

Aging. Thank you to Dr. David Schlessinger at the National Institute on Aging, and Francesco 

Cucca at Consiglio Nazionale delle Ricerche in SardiNIA. I also am very thankful to the clinicians 

and staff members who worked so hard to collect and process the rich data included in the 

SardiNIA Study. 



v 
 

 

TABLE OF CONTENTS 
 
 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . ii 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 

 

CHAPTERS 

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

II. Development of Two Measures of Aging and Assessment of Their Heritability 
in Cohorts with Varied Pedigree Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

 2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

 2.2.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

 2.2.2 Predicted Age Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

 2.2.3 Mortality Risk Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

 2.2.4 Heritability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

 2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

 2.3.1 Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

 2.3.2 Heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

 2.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

  



vi 
 

III. Genome-wide Study of Two Aging Traits in over 30,000 Individuals . . . . . . . . .  40 

 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

 3.2 Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

 3.2.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

 3.2.2 Phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

 3.2.3 Genotype Data and Imputation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

 3.2.4 Statistical Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

 3.2.5 Bioinformatics for Genetic Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 

 3.3 Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   46 

 3.3.1 Meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

 3.3.2 Bioinformatic analysis of functional implications of genetic variants . . . . . 48 

 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

 3.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

   

IV. Prevalence of Chronic Kidney Disease in the SardiNIA Study Cohort and its 
Relationship with eGFR-related Loci and Clinical Risk Factors (CKD-SardiNIA  
Study) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

 4.2.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

 4.2.2 Screening and Follow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

 4.2.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 

 4.2.4 Genotype Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   74 

 4.2.5 CKD Classification and Measures of Kidney Function . . . . . . . . . . . . . . . . . . .   75 

 4.2.6 Calibration of Serum Creatinine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   75 

 4.2.7 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   76 

         4.2.8 Definition of Decline in eGFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

         4.2.9 Methodological Considerations for Cross Study Comparisons . . . . . . . . . . . .   78 

 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

 4.3.1 General Demographic Characteristics of the SardiNIA Study Cohort . . . . . . .  79 

 4.3.2 Longitudinal Renal Function Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   80 

 4.3.3 Prevalence of Albuminuria and CKD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   80 

         4.3.4 Comparison of SardiNIA Study Results with NANES 1988-1994, 1999-2004,   
                  HUNT II, and Beijing Study Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

81 

 4.3.5 Risk Factors Associated with CKD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

 4.3.6 Risk Factors Associated with Change in eGFR . . . . . . . . . . . . . . . . . . . . . . . . .  82 

   



vii 
 

 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

 4.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 

   
V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
99 

 

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110



viii 
 

LIST OF FIGURES 
 

Figure   
2.1 Comparison of Age Distributions, by Cohort. A: ARIC, n=9,633. B: FHS, n=3,232. 

C: SardiNIA, n=6,161. D: TwinGene, n=10,664. E: TwinsUK, n=4,838. Black line 
indicates a normal fitted curve to each histogram. . . . . . . . . . . . . . . . . . . . . . . . . .  28 

   

2.2 Comparison of age traits to age, by cohort: Figure A displays the predicted ages 
on the Y axis and age on the X axis for each cohort.  . . . . . . . . . . . . . . . . . . . . . . . .  32 

   

2.3 Figure 2.3: Histogram of the Distribution in Predicated Age Differential and Risk 
Age Differential. A.Predicted Age Differential (Standardized within Age Decade). 
B. Risk Age Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

   

2.4 Heritability Estimates by Trait and Cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 
   

S2.1 Comparison of Residual Plots for Predicted Age using Linear and Squared 
Physiologic Traits as Predictors. A: Linear Predictors. B: Squared Predictors . . . .  37 

   

S2.2 Distribution of Three Physiologic Measurements used to Predict Age and 
Mortality Risk over Age Range from the SardiNIA Study. A: Serum Creatinine. B: 
Waist Circumference. C: Adjusted Systolic Blood Pressure . . . . . . . . . . . . . . . . . . .  38 

   

S2.3 Example of Risk Age Trait for an Individual Aged 82, with S. Creatinine of 0.95 
mg/dl, SPB of 135 mmHg, and Waist Circumference of 67 cm, from SardiNIA . . .  39 

   

3.1 QQ plots of Difference between Predicted Age and Age, Adjusted for Age, by 
Cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

   

3.2 QQ plots of Difference between Risk Age and Age, Adjusted for Age, by Cohort .  60 
   

3.3 Locus Zoom Plot of Gene LRP1B on Chromosome 2, for Predicted Age 
Difference, Adjusted for Age, From Meta-Analysis, N=20,000 Individuals of 
European Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 

   

3.4 Locus Zoom Plot of Chromosome 21, Positions 20.7 to 21.3 Mb, for Predicted 
Age Difference, Adjusted for Age, From Meta-Analysis, N=20,000 Individuals of 
European Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

   
   
   
   



ix 
 

3.5 Locus Zoom Plot of Chromosome 18, position 52.7 to 53.5 Mb, for Difference 

between Risk Age and Age in 17,500 Individuals of European Decent, Adjusted 

for Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 
   

3.6 Locus Zoom plot of Chromosome 18, position 39.9 to 41.6 Mb for Difference 
between Risk Age and Age in 17,500 Individuals of European Decent, Adjusted 
for Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

   

S3.1 Manhattan Plot for Meta-Analysis of the Difference between Predicted Age and 
Age, Adjusted for Age, N=20,000 Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

   

S3.2 Manhattan Plot for Meta-Analysis of the Difference between Risk Age and Age, 
Adjusted for Age, N=17,500 Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

   

S3.3 Comparison of SNP rs10496861 across 46 Species . . . . . . . . . . . . . . . . . . . . . . . . . 67 
   

4.1 Prevalence of Chronic Kidney Disease defined by eGFR alone and by NHANES, 
by wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   91 

   

4.2 Histogram of Change in eGFR, Fitted with a Linear Regression, for Individuals 
with All Three Visits, n=4,768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

   

S4.1 Plots of eGFR Decline with Age, by Individual, by Age Decade . . . . . . . . . . . . . . . .  95 
   

S4.2 Creatinine Calibration Plots for Wave 1 and Wave 3 . . . . . . . . . . . . . . . . . . . . . . . . 97 
   

S4.3 Distribution of SardiNIA Sample Compared to Distribution of Population by Age 
in the Territory of Lanusei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

 



x 
 

LIST OF TABLES 
 

Table   
2.1 Characteristics Used in Estimating Measures of Aging, by Cohort . . . . . . . . . . . . .  29 
   

2.2 Linear Mixed Model Estimates by Cohort for Predicted Age. . . . . . . . . . . . . . . . . .  30 
   

2.3 Hazard Ratios for Time to Death Models* for all Cohorts and Odds Ratio for 

Discrete Survival in SardiNIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
   

2.4 Odds Ratios of Death or New Disease in SardiNIA Sample by Standardized 
Predicted Age Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

   

S2.1 Univariate Models for Choosing Traits for Predicted Age Model, SardiNIA Study, 
N=6,114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

   

3.1 Meta-analysis of Difference between Predicted Age and Age in 20,000 
Individuals of European Descent, Adjusted for Age . . . . . . . . . . . . . . . . . . . . . . . . .  57 

   

3.2 Meta-analysis of Difference between Risk Age and Age over 17,000 Individuals 
of European Descent, Adjusted for Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

   

S3.1 Summary of Study Design and Sample QC, by Cohort . . . . . . . . . . . . . . . . . . . . . . .  68 
   

S3.2 Summary of Genotyping and Imputation Procedures, by Cohort . . . . . . . . . . . . . .  69 
   

4.1 Demographics and CKD Risk Factors for the SardiNIA Study, by Wave . . . . . . . . .  88 
   

4.2 Prevalence of chronic kidney disease (CKD) stages and of kidney function 
categories (normal, mildly, moderately, and severely reduced) stratified by age 
in SardiNIA study cohort individuals aged 14 years or older based on third visit 
(SardiNIA 3) and compared to  NHANES 1988- 1994 and 1999- 2004, Beijing, 
and HUNT II populations (glomerular filtration rate estimated by MDRD 175) . . .  90 

   

4.3 Previously Identified Genetic Loci used in SardiNIA Risk Score for eGFR, with 
Univariate Beta Estimate from SardiNIA Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 

   

4.4 Multivariable Odds Ratios for CKD (NHANES definition) at Visit 3* and Decline in 
eGFR during study N=4,273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 

   

S4.1 Comparison of Characteristics by CKD Status and Fast Decline Status . . . . . . . . . .  96 



xi 
 

ABSTRACT 
 

Genetic Insights into Aging and Age-Related Diseases among Varied 
Pedigree Structures 

 
By 

 
Jennifer L. Bragg-Gresham 

 
 
 

Co-chairs: Sharon L. R. Kardia and Goncalo R. Abecasis 
 
 
 

Older age is associated with decline in many physiological functions that eventually lead 

to increased susceptibility to diseases. The rate of aging varies among individuals and may be 

influenced by genes. This dissertation has three aims: 1) define a measure of aging using 

physiologic traits and determine its heritability among various pedigree structures, 2) 

investigate genetic associations with the age trait using genome-wide association study 

analyses, and 3) focus on decline in kidney function by examining its association with known 

kidney loci and clinical risk factors within the SardiNIA Study on Aging. 

 Using data from five genetic cohorts (30,000+ individuals) with varying pedigree 

structure (SardiNIA Study on Aging – large pedigrees, Framingham Heart Study offspring – small 



xii 
 

pedigrees, Atherosclerotic Risk in Communities Study – unrelated, and two twins studies: 

Twingene and TwinsUK), two aging traits were developed. Both traits employ three physiologic 

health measures (kidney function, systolic blood pressure, and waist circumference) to estimate 

an individual’s biologic age and contrast it with actual age. Linear mixed modeling was 

employed to estimate a predicted age, while Cox models were used to estimate a risk age 

equivalent to the age of the census population with the same mortality risk.   

Using Merlin software (Abecasis, 2002), both age traits were found to be heritable in all 

cohorts with h2 estimates of 0.25 to 0.68, depending on pedigree structure. Meta-analysis 

revealed a genome-wide significant association (p < 5 x 10-8) within the LRP1B gene on 

chromosome 2.  LRP1B produces low density lipoprotein receptor-related protein 1B and has 

been previously associated with tumor suppression, metabolic traits, and successful aging.   

Association analyses were also conducted using a genetic risk score for CKD, adjusting 

for clinical factors, with CKD prevalence and change in kidney function. One additional allele in 

the genetic risk score for CKD was significantly associated with CKD prevalence (OR=1.07, 

p=0.001), decline in eGFR (β=-0.23, p=0.004), and eGFR decline > 1 SD (OR=1.05, p=0.04). 

These findings further our understanding of the genetics of aging and the CKD risk score 

results suggest a possible clinical utility. Putting the findings into clinical use should be 

evaluated.
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CHAPTER I 

 

Introduction 

 

The human population, not just its individuals, is aging. It is projected that by the year 

2016, for the first time in history, the proportion of individuals over the age of 65 years will 

surpass the proportion of children under the age of 5 years (Dobriansky, et.al., 2007). This 

population shift has happened for a few reasons. Life expectancy has increased. There has been 

a shift from high reproductive rates to low reproductive rates. There has been a shift from the 

predominance of infectious disease to non-communicable disease and chronic conditions as 

leading cause of death (Dobriansky, et.al., 2007).  

In 2012 the 10 leading causes of death in the US were:  heart disease (597,689 deaths), 

cancer (574,743 deaths), chronic lower respiratory diseases (138,080 deaths), 

stroke/cerebrovascular diseases (129,476 deaths), accidents/unintentional injuries (120,859 

deaths, Alzheimer's disease (83,494 deaths), diabetes (69,071 deaths), nephritis/nephrotic 

syndrome/nephrosis (50,476 deaths), influenza and pneumonia (50,097 deaths), and 

intentional self-harm/suicide (38,364 deaths) (CDC, 2013). Seven out of these ten leading 
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causes of death are chronic conditions, typically found among the elderly, while influenza and 

pneumonia, although infectious diseases, are also much more likely to be deadly among the 

elderly.  These US numbers are very reflective of the world-wide causes of death for middle and 

high income countries (World Health Organization, 2011).  Overall, five of the ten leading 

causes of death world-wide are chronic conditions and include:  ischaemic heart disease (7.25 

million deaths, 12.8%), stroke and other cerebrovascular disease (6.15 million deaths, 10.8%), 

chronic obstructive pulmonary disease (3.28 million deaths, 5.8%), trachea, bronchus, lung 

cancers (1.39 million deaths, 2.4%), and diabetes mellitus (1.26 million deaths, 2.2%); leaving 

the remaining five causes to communicable diseases (lower respiratory infections,  diarrheal 

diseases,  HIV/AIDS, and tuberculosis) or accidents (road traffic accidents). 

 While the current rates of these chronic conditions are high, they are projected to get 

even worse. The American Heart Association (AHA) projects that in the next 20 years, more 

than 40% of the US population is expected to have some form of cardiovascular disease. This 

increase will triple the total direct medical costs of caring for hypertension, coronary heart 

disease, heart failure, stroke, and other forms of cardiovascular disease from the current $273 

billion to more than $800 billion (Heidenreich PA, et.al, 2011). It is also predicted that the 

prevalence of cardiovascular disease will increase by approximately 10% over the next 20 years 

if there are no changes in prevention practices and treatment trends. The increase is likely to be 

even greater if some risk factors, such as diabetes and obesity, continue to increase rapidly. 

 The good news, though, is that heart disease is largely preventable and many believe 

the healthcare system needs to focus on prevention and early intervention (Heidenreich PA, 



 

3 
 

et.al, 2011). Recent work from the Coronary Artery Risk Development in Young Adults (CARDIA) 

study suggests cardiovascular disease prevention should begin earlier in life, as many risk-factor 

levels in individuals younger than 30 years old were predictive of subclinical atherosclerosis 15 

years later. The data also suggests that modest improvements in risk factors earlier in life have 

a larger impact than more substantial reductions later in life (Lee DH, et.al, 2003). 

 A large contributor in many of the chronic conditions that are plaguing our society is 

obesity. Recent research has shown that obesity accelerates the aging of adipose tissue, a 

process only now beginning to come to light at the molecular level (Ahima, 2009). Evident of 

this has come from experiments conducted in mice which suggest that obesity increases the 

formation of reactive oxygen species in fat cells, shortens telomeres—and ultimately results in 

activation of the p53 tumor suppressor, inflammation and the promotion of insulin resistance.  

 Data from the National Health and Nutrition Examination Survey, 2009–2010 (Flegal, 

2012 and Ogden, 2012) show that more than 2 in 3 adults are considered to be overweight or 

obese, more than 1 in 3 adults are considered to be obese, with more than 1 in 20 adults 

considered to have extreme obesity. About one-third of children and adolescents ages 6 to 19 

are considered to be overweight or obese, and more than 1 in 6 children and adolescents ages 

6 to 19 are considered to be obese. 

The health risks of being overweight or obese include: type 2 diabetes, heart disease, 

high blood pressure, nonalcoholic fatty liver disease (excess fat and inflammation in the liver of 

people who drink little or no alcohol), osteoarthritis (a health problem causing pain, swelling, 

and stiffness in one or more joints), some types of cancer (breast, colon, endometrial, and 

http://www.theheart.org/viewDocument.do?document=http%3A%2F%2Fwww.clinicaltrials.gov%2Fct2%2Fshow%2FNCT00005130%3Fterm%3DCoronary%2BArtery%2BRisk%2BDevelopment%2Bin%2BYoung%2BAdults%26rank%3D1
http://www.theheart.org/article/786489.do
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kidney), and stroke (Weight-control Information Network, 2012). Since the early 1960s, the 

prevalence of obesity among adults has more than doubled, increasing from 13.4 to 35.7 

percent in U.S. adults age 20 and older (Flegal, 2012 and Ogden, 2010). Obesity prevalence 

remained mostly stable from 1999 to 2010, but has increased slightly, yet in a statistically 

significant way, among men overall, as well as among black women and Mexican American 

women. Among children and adolescents, the prevalence of obesity also increased in the 1980s 

and 1990s but is now mostly stable at about 17 percent (Ogden, 2012). 

With rates of high blood pressure and diabetes on the rise, it is no surprise that kidney 

disease is also on the list of the leading causes of death in the US.  In the US kidney disease 

affects more than 20 million people, or approximately 7% of the US population (USRD, 2011). 

Rates of chronic kidney disease and end stage renal disease are increasing as our population of 

elderly is increasing. From 1991-2004, the prevalence of CKD has increased from 10% - 13% and 

the number of patients treated with dialysis or transplantation has increased from 209K to 

472K. In the period 1991-2001 ESRD incidence increased 43% (USRDS, 2011). 

 How can we reduce the burden of these chronic diseases on our society and improve 

the health of our elderly individuals? Just as the advances in public health over the past 100 

years have enabled a shift from infectious to chronic disease, we must now take steps to 

counter the effects of chronic disease on our aging population. Some public health researchers 

are working toward better educating our population on living healthier lifestyles, while others 

are working with the government to develop policies to improve overall health, and some are 

studying the genetic and molecular biomarkers of diseases in populations.  
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I believe Heidenreich, et.al, said it quite clearly in terms of the next steps for heart 

disease and his statement can be extended to many other chronic diseases of the elderly: "In 

the public-health arena, more evidence-based effective policy, combined with systems and 

environmental approaches, should be applied in the prevention, early detection, and 

management of cardiovascular disease risk factors. Through a combination of improved 

prevention of risk factors and treatment of established risk factors, the dire projection of the 

health and economic impact of cardiovascular disease can be diminished." (Heidenreich PA, 

et.al, 2011). The key to lowering the burden of chronic disease is to prevent the chronic 

diseases from occurring.  

In the current age of unequal medical coverage in the US, this will be a difficult task. 

Many individuals never visit a doctor unless they are already ill. Without getting into a political 

discussion of health care coverage or public health programs, it is clear that first, we must have 

people seen regularly starting at young ages by their health professionals. We need to be able 

to detect individuals at higher risk of developing these costly chronic conditions and intercede 

early in the process or before the course of the conditions begin. 

My current work toward this goal combines the use of statistical genetics and 

epidemiologic principles to better understand the role genetics plays in the aging process, 

focusing on quantitative measures for the three chronic conditions highlighted above: 

cardiovascular disease, obesity, and chronic kidney diesase. If we can recognize individuals at a 

higher risk of accelerated aging and at a higher risk of age-related diseases very early in life, 

caregivers and clinicians can better target individuals in need of close monitoring or early and 
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preventative treatment. As the CARDIA study (Lee DH, et.al, 2003) has shown, early 

intervention may be the key. We need to take action before clinical symptoms appear. 

Although the use of genetics in medicine and public health is still in its infancy, it may be the 

key to identifying these high-risk individuals early. 

Another approach to improving chronic conditions is highlighted in recent research at 

the Mayo Clinic in the use genetics to better understand the pathophysiological process of 

aging to devise better treatments. This research has implicated a category of cells, known as 

senescent cells that promote aging in tissues (Baker, et.al, 2011). These cells accumulate in 

aging tissues, like arthritic knees, cataracts, and arterial plaque and cause damage by secreting 

agents that stimulate the immune system and cause low-level inflammation. There is hope that 

cleansing the body of these cells may postpone many of the diseases of aging. A possible 

mechanism for clearance involves a characteristic marker gene, p16Ink4a, which is switched on 

by the senescent cells, making many hopeful this finding will be clinically useful. 

Findings such as that of senescent cells are very exciting, because aging is such a 

complex process that it can be difficult to study. One challenge of investigating the genetics of 

aging, in particular, is in having a measure of aging that can be applied to living individuals of 

varying age. Many studies have focused on specifically studying centenarians (Sebastiani and 

Perls, 2012; Beekman, et.al, 2013), but these studies are often very small. Another approach 

has been to use age at death as a measure of aging, but again there are limitations, such as the 

generalizability of findings to the living (Walter, et.al, 2011). 
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I believe the key to making early prevention and intervention possible is having good 

early biomarkers and genetic markers available. Because the physical decline that accompanies 

aging typically involves multiple systems that often interact, such as the cardiovascular system 

and the renal system, the first goal of this dissertation (Chapter II) aims to develop a measure of 

aging, based on three easily measured physiologic traits: blood pressure, waist circumference, 

and serum creatinine. It was also important for this measure to be applicable to a wide range of 

ages and among individuals who are still living.   Two definitions of aging are explored. Both 

measures estimated a “biologic” age for each individual. The first measure accomplishes this by 

calculating a predicted age, while the other uses the individual’s risk of mortality to assign them 

a “risk” age which is equal to the age at which someone in the census population has the same 

mortality risk. Both measures are then compared to the person’s real age. In this way we can 

classify individuals as either being younger or older biologically than their actual age. 

These measures of aging can be used to identify new biomarkers or predictors of aging. 

If there is a genetic component to the traits, we would expect them to have a significant degree 

of heritability. Using four family-based cohort studies, with differing pedigree structures, 

heritability of both traits was explored. After confirming that both traits are moderately 

heritable in Chapter II, Chapter III contains a genome-wide association study (GWAS), 

incorporating an additional unrelated cohort of middle-aged individuals, and ultimately will 

contain genotype and phenotype data on over 30,000 individuals after replication. 

Based on evolutionary theories of aging and past research, expected findings from the 

GWAS should likely include genes that control the levels of activities, such as DNA repair and 
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antioxidant defense, and thus indirectly regulate longevity (Kirkwood, 2008). This is because 

aging has not been shown to be programmed, but rather results from accumulation of somatic 

damage, owing to limited investments in maintenance and repair. People may wonder how 

these deleterious variants have escaped natural selection. The two main theories are that the 

variants have late action late-acting deleterious effects, after the age where natural selection is 

greatest (sexual maturity) or that there is a trade-off between benefit at an early age against 

harm at older ages, termed antagonistic pleiotropy (Ness and Williams, 1996). 

Because kidney function is one of the best predictors of age and because of my personal 

interest in it from working on the Dialysis Outcomes and Practice Patterns Study (DOPPS) for 

over 10 years, Chapter IV of this dissertation focuses specifically on chronic kidney disease. As 

previously mentioned, the rates of CKD and ESRD are increasing all over the world. Mortality 

rates once a person reaches end-stage are over 20% per year. The key to improving these 

numbers is to keep patients from reaching ESRD.  

Over our lifetime, kidney function decreases for all individuals. Among healthy 

individuals, it has been reported that kidney function, measured as estimated glomerular 

filtration rate (eGFR), declines on average 0.4 – 1.2 ml/min/year after age 40 (Vlassara, et.al, 

2009). There are known clinical predictors of accelerated decline in kidney function, such as 

diabetes, hypertension, smoking, and family history. Recent studies, by such consortia as 

CKDGen (Köttgen, et.al, 2009 and Böger, et.al, 2011), have also determined several genetic loci 

that are predictive of kidney function. To examine the potential clinical and public health 

utitility of genetic markers, I have investigated the use of genetic risk score for the decline in 
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kidney function. The score is based on the reported loci from CKD-Gen significantly associated 

with eGFR and the prevalence kidney disease. This was accomplished by exploiting the 

longitudinal nature of the SardiNIA Study on Aging and examining the change in kidney function 

over time. 

Through this work, it is my hope to demonstrate the utility of incorporating the use of 

genetic information into clinical practice at an early stage may lead to improvements in chronic 

disease outcomes. While the clinical use of using genetic scores remains to be tested, they 

could potentiallly reduce the societal burden of care as well as improved survival and quality of 

life for individuals as they age. 
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CHAPTER II 

 

Development of Two Measures of Aging and Assessment of Their 
Heritability in Cohorts with Varied Pedigree Structures 

 

2.1 Introduction 

 

When one thinks of aging, they commonly think of heart disease, cancer, and diseases 

such as Alzheimer’s, but these age-related pathologies are actually a side-effect of the human 

body’s loss or malfunction in cell processes. Also, unlike pathologies, aging occurs in every 

human given sufficient time (Hayflick, 2004). While gerontology studies age-related disease and 

degeneration, with the goals of preserving health and prolonging human life, it does not look at 

the fundamental causes of aging or predisposition for individuals to age at such variable rates. 

The fundamental cause of aging and its biological variation are rooted in the cellular and 

molecular mechanisms that are consequences of the interplay of environmental and genetic 

factors.  

Genetic studies have been conducted to better understand aging and assess its 

heritability. However, these have mainly focused on studying 1) longevity, using very selected 

cohorts of centenarians (Sebastiani and Perls, 2012; Beekman, et.al, 2013); 2) non-human 
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populations (Frankowski, et.al., 2012; Osiewacz, et.al., 2013); or 3) specific age-related 

pathologies, such as cancer (Han, et.al, 2013). While these studies have identified genetic loci 

and chromosomal regions of interest, we do not know how generalizable animal studies are to 

human populations. Also, there hasn’t been replicated evidence of key genetic elements 

underlying aging in human populations.   

To begin to better understand the genetic mechanisms of aging within population-based 

studies of human, we first focus on defining a measure of aging among five cohorts 

representing over 30,000 individuals of ages ranging from 14 to 90 years of age who have not 

been selected on the basis of any health measures or outcomes. Next, to determine if there is a 

significant genetic component to this measure of aging, the heritability was also estimated in 

three different pedigree structures: large pedigrees (up to five generations), small pedigrees 

(two to three generations), and within twins (one generation). 

 

2.2 Methods 

2.2.1 Samples 

 

 Aging traits were first developed based on individuals aged 20-89 years of age and of 

European-descent from five genetic cohorts. The sample included 9,612 individuals from the 

Atherosclerotic Risk in Communities Study (ARIC), 3,018 individuals from the offspring cohort of 

the Framingham Heart Study (FHS), 6,135 individuals from the SardiNIA Study on Aging 

(SardiNIA), 9,998 siblings from the Swedish TwinGene Study (TG), and 4,838 siblings from the 
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TwinsUK Study (TwinsUK), totally 33,601 individuals.   Heritability was assessed among the four 

cohorts ascertained as relatives (FHS, SardiNIA, TG, and TwinsUK), which included 23,989 

individuals. 

 The ARIC study is a prospective study designed to investigate the etiology of 

atherosclerosis (The ARIC Investigators, 1989) and included only individuals aged 44-65 years of 

age at baseline. While there were four recruitment sites (Forsyth County, North Carolina, 

Jackson, Mississippi, the suburbs of Minneapolis, Minnesota, and Washington County, 

Maryland) in the study with a total sample of 15,792 individuals, this investigation contains only 

the participants who were of European descent and had complete data for the variables of 

interest (n=9,633). Participants of African descent were not included, so the sample would be 

more homogeneous genetically to the other cohorts. Baseline data collection occurred between 

1986 and 1989. Because this cohort does not contain family information, their data was 

employed in creation of the aging traits, but not used in the heritability analyses.  

 Although the FHS was started in 1948 as a prospective investigation of coronary heart 

disease (Dawber, 1950) in Framingham, Massachusetts, this investigation included participants 

of the offspring cohort, who were the descendants of the initial cohort participants. Initial 

examinations for this cohort began in 1971 (Kannel, 1979), but only information from the 

seventh visit contained the variables of interest and was included. Visit seven occurred in the 

early 2000’s. Use of the offspring cohort also allowed us to study the heritability of the traits in 

small pedigrees. This sample contained a total of 1,749 families, with over two-thirds of the 

family structures representing sib-ships. Only adult men and women who were at least 20 
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years-old and have completed an informed consent were eligible for participation. Individuals 

were excluded from the study if they had an allergy to latex; had active Reynaud's disease, as 

manifested by daily attacks of Reynaud's currently blue fingers or ischemic finger ulcers; had in 

the past had a radical mastectomy on right side; or who refused or withdrew from the test. 

 The SardiNIA Study is a prospective study containing close to 60% of the inhabitants of 

four regions in southeast Sardinia, Italy. Baseline visits began in late 2001 (Pilia, 2006) and the 

study is currently conducting the fourth visits. This investigation used information from the first 

three visits, which were conducted approximately 3-years apart. This cohort contains a rich 

selection of physiologic measurements on all participants and includes 588 large multi-

generation pedigrees. The number of generations represented ranged from one to five, with an 

average of three generations. 

 Both of the twin studies included in this investigation are European (TwinGene in 

Sweden and TwinsUK in the United Kingdom) and contain a combination of monozygotic and 

dizygotic twins. Each study contains approximately two-thirds dizygotic twins and one-third 

monozygotic twins. All pedigrees contained only the twins and therefore included only one 

generation of individuals. The studies differed in their recruitment of participants and age-

distributions. 

The TG project contains approximately 10,000 participants drawn from the Swedish 

Twin Registry (Katsika, et.al, 2010). The Swedish Registry was established in the 1960s to study 

how smoking affects our health and at present contains information on approximately 85,000 

twin pairs. Recruitment for participants in the TG project was restricted to twins born before 
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1958 and contained individuals who completed self-reported questionnaires on health and 

medication data are collected from self-reported questionnaires. Blood sampling materials 

were then collected at a local health care center and a health check-up was administered. In 

the simple health check-up, height, weight, circumference of waist and hip, and blood pressure 

were measured (http://ki.se/ki/jsp/polopoly.jsp?l=en&d=13903&a=30244).  

The TwinsUK study contains approximately 12,000 twin volunteers from the UK Adult 

Twin Registry, which was started in 1992 (Moayyeri, 2012).  Blood draws for collection of DNA 

for use in genetic studies occurred between April 2004 and May 2007 and were collected on a 

total of 5,024 individuals who were active and consented for genetic studies. Although the age 

range of the full cohort spanned 18 to 108 years, individuals participating in the genetic portion 

of the study tended to be younger, with an age range of 18 to 80 years. 

 

2.2.2 Predicted Age Differential 

 To quantify the variation in aging between individuals, we first estimated a “biological” 

age based on physiological traits for each individual. Physiologic trait selection was done 

originally using the SardiNIA sample and began with forty quantitative traits known or 

hypothesized to be associated with aging and which has very low rates of missing values (< 

0.5%). Traits examined included: four anthropomorphic traits (waist circumference, height, 

weight, and BMI), immunologic measures (basophils, eosinophils, monocytes, lymphocytes, 

neutrophils, white blood cell count, IL-6, and C-reactive protein), lipid measures (total 

cholesterol, HDL, LDL, and triglycerides), liver measures (AST, ALT, bilirubin, and gamma GT), 

blood count measures (platelet count, red blood cell count, serum iron, hemoglobin, 

http://ki.se/ki/jsp/polopoly.jsp?l=en&d=13903&a=30244
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transferrin, and mean corpuscular volume), adipokines and glycoproteins (adiponectin, leptin, 

and fibrogen), glucose metabolism (insulin, glucose, and HbA1c), atherosclerosis measures 

(intima medial thickness, SBP, and DBP), and serum measures of uric acid, sodium, potassium, 

and creatinine (or estimated glomerular filtration rate, using the CKD-Epi formula). A detailed 

description of the measurements of all traits has been previously described in the 2006 paper 

by Pilia, et.al.  

Using linear regression with forward selection and assessing the partial R2 of each trait, 

it was found that the majority of the variation in age could be explained by three traits that 

were common between all of the cohorts involved in the study, which included: serum 

creatinine, waist circumference, and systolic blood pressure. After inclusion of these three traits 

in the model, additional traits explained less than 1% of the remaining variability. A full-list of 

the traits investigated along with their univariate estimates can be found in Table S2.1. To 

account for the use of anti-hypertensive medication use, the standard adjustment used in 

genetic studies of adding 10 mmHg to the reported SBP for all individuals taking anti-

hypertensive medications was implemented. 

 The first trait estimated, predicted age differential, is the difference between this 

estimated “biological” age for each person and their real age (i.e., the residual from the 

predicted age model). More specifically, predicted age differential = Agei – Predicted Agei, 

where Predicted Agei =  ̂   ∑  ̂    
 
    . The trait yields a positive number if the individual is 

older biologically or a negative number if the individual is younger biologically than their actual 

calendar age.  
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Examination of the predicted ages vs. age revealed a floor/ceiling effect or regression to the 

mean effect, where very young individuals were much more likely to be predicted older than 

they were and very old individuals were predicted to be younger than they were. Efforts were 

made to improve the fit, by employing the use of squared and cubic terms, but the extra terms 

did not improve the fit (Figure S2.1). This was expected, as closer investigation within the 

SardiNIA study showed a fairly linear association between age and the three physiologic 

measurements used to predict it (Figure S2.2). To correct for this bias, the differences between 

predicted age and actual age were calculated for each individual were standardized within age 

decade, as a post-hoc adjustment. 

 To validate the predicted age differential was actually indicative of health; associations 

were examined between the standardized trait and death, as well as, the prevalence of 

comorbid conditions within the SardiNIA cohort, using logistic regression. These models 

accounted for family clustering using a generalized estimating equation, with compound 

symmetry covariance structure. Conditions examined included: gastro-intestinal, blood 

disorders, bone, cancer, cardiac, cerebrovascular, depression, diabetes, endocrine, 

hypertension, immunological, kidney/urinary, dyslipidemia, liver, lung, metabolic, neurologic, 

and skin.  

In the final models, predicted ages were obtained separately by each cohort, using 

linear mixed models, which accounted for family clustering. As a sensitivity analysis, using the 

SardiNIA cohort, a linear mixed model was also fit, using the calculated kinship matrix as the 
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random effect. The two models did not differ meaningfully and therefore the simpler and more 

expedient approach was used for all cohorts. Models were adjusted for sex. 

  

2.2.3 Mortality Risk Differential 

 A second aging trait was also explored that incorporated an individual’s risk of death 

based on the same three physiologic traits used in the predicted age modeling. This method 

employed the use of census mortality rates or counts per population (specific to each of the 

cohort populations in the study). Each person’s estimated 1-year survival predicted by the three 

physiologic traits was compared to the national statistics and individuals were assigned a “risk” 

age that was equal to the census age at which the mortality risks were equivalent. The 

difference between this risk age and actual age was then computed. An example person is 

displayed in Supplementary Figure S2.3. 

US mortality rates were determined from the Social Security Administration actuarial 

life tables (http://www.ssa.gov/oact/STATS/table4c6.html), Sardinian mortality estimates were 

calculated from Italian government website (http://demo.istat.it/unitav/index.html#), Swedish 

estimates were taken from Eurostat European Commission data base 

(http://epp.eurostat.ec.europa.eu/portal/page/portal/population/data/database), and UK 

mortality was estimated from the UK Office for National Statistics 

(http://www.ons.gov.uk/ons/taxonomy/index.html?nscl=Mortality+Rates).  

 Because survival curves and predicted risk of 1-year mortality are expected to be very 

different at different ages, Cox proportional hazards regression was employed to estimate the 

http://www.ssa.gov/oact/STATS/table4c6.html
http://demo.istat.it/unitav/index.html
http://epp.eurostat.ec.europa.eu/portal/page/portal/population/data/database
http://www.ons.gov.uk/ons/taxonomy/index.html?nscl=Mortality+Rates
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1-year survival for each individual based on their covariate values and the estimated baseline 

hazard for all cohorts where specific entry time and censoring data was available (ARIC, FHS, 

TG, and TwinsUK). In the SardiNIA study, where age of death was known for individuals who 

died during follow-up, a discrete survival analysis was employed using a repeated-measures 

logistic model, which employed the information available from the three visits for each 

individual. This model was used to estimate the 3-year odds of survival for each individual. 

Mortality analyses were run separately for males and females, since some sex-specific 

differences were observed in the association between physiologic traits and mortality risk. For 

display in the graphics, the risk age was centered for each cohort. This has no effect on the 

estimation of heritability or interpretation of results because it is simply a scalar shift.  

 To allow for comparison between the SardiNIA mortality results and the other cohorts 

by using a Cox regression, two assumptions were made to create the follow-up time 

information needed. First, individuals who did not die during the study follow-up were 

censored at their last visit. Secondly, for individuals who died during the study, their date of 

death was assumed to be during the middle of the year of their reported age of death. 

 All analyses excluded individuals greater than 90 years of age, since the association 

between physiologic measures and age often differs in this age group, compared to younger 

individuals. All modeling was completed using SAS 9.2 and 9.3 software (SAS, Carry, NC).  
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2.2.4 Heritability Analysis 

 Narrow-sense heritability was estimated for each trait by cohort, based solely on their 

phenotypes, using variance-component based estimation. This was accomplished by fitting a 

simple model with two variance components (a heritable additive polygenic component and an 

individual specific environmental component) and two covariates (sex and age). Estimates were 

calculated for the full-sample within each cohort and also for a restricted sample of individuals 

aged 45-65. This age range was common across the five cohorts and within the range of data 

where model fit was best. This age range also contains ages at which humans begin to see age-

related changes in health. Heritability was estimated using Merlin software (Abecasis, 2002). 

 

2.3 Results 

2.3.1 Traits 

 Differences were observed in the age distributions between the different cohorts, as 

displayed in Figure 2.1. The SardiNIA study had the widest age range (14-90 years), while the 

ARIC study had the smallest age range (44-66 years). FHS and TwinGene studies lacked young 

individuals and contained individual’s whose ages ranged from the mid-forties to 90. The 

TwinsUK study was the youngest cohort included with ages ranging from 18 to 80, but 

contained very few individuals over 70 years of age. 

 The characteristics of interest for this study are shown in Table 2.1 for each cohort. As 

illustrated by the distributions displayed in figure 2.1, the SardiNIA and TwinsUK studies had the 

youngest mean ages, in the mid-forties, while FHS and TwinGene samples had mean ages in the 
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low to mid-sixties. All cohorts were > 50% female, but the TwinsUK was overwhelmingly female 

with only 8.6% males. Serum creatinine values were highest in the ARIC and FHS studies, with 

means greater than 1 mg/dl. In all cohorts males had higher creatinine values than females. 

Average SBP ranged from 120 to 140 mmHg between the cohorts, with the highest means 

observed in the oldest cohorts. Waist circumference was also highest in the oldest cohorts and 

larger among the male participants. The percentage of individuals receiving an anti-

hypertensive medication differed markedly, with a higher prevalence of use in the oldest 

cohorts. 

  Tables 2.2 and 2.3 contain the model fit estimates by cohort. As expected, mainly 

significant and positive associations were seen between each physiologic measure and age 

(Table 2.2), although variation is seen between the cohorts. The magnitude of the regression 

coefficient was largest for the SardiNIA study, which had the largest range of ages, while the 

smallest effect sizes were seen in the ARIC cohort which had the tightest age range.  

 Estimates from the Cox mortality models showed more variation between the cohorts 

(Table 2.3), although almost all were in the expected direction of higher values being associated 

with a higher hazard ratio. The mortality HR for creatinine and waist circumference was largest 

in the older cohorts among males (SardiNIA: HR=1.06 for 0.1 higher creatinine and HR=1.16 for 

5 cm larger waist circumference; TwinGene: HR=1.08 for 0.1 higher creatinine and HR=1.09 for 

5 cm larger waist circumference).  

 Very similar estimates were seen for the odds of death using the discrete survival model 

when compared to the Cox model results in SardiNIA, with a 6% higher odds of death for every 
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0.1 higher creatinine (p=0.0005) and a 9% increase in the risk of death for every 5 cm larger 

waist circumference (p=0.005). Systolic blood pressure was not highly predictive of mortality, 

although border-line significant (p=0.05), and was in the opposite direction as expected. The C-

statistic for concordance was quite high at 0.86. 

 Table 2.4 contains the odds ratios for the association between the predicted age 

difference trait and the odds of mortality, as well as prevalence of other comorbid conditions, 

among the SardiNIA sample. The trait was significantly associated with death (OR=1.60, 

p=0.0002). It was also significantly associated with the comorbid conditions typically defined by 

the three physiologic traits used to create the trait: metabolic syndrome (OR=1.55 per 1 SD 

higher, p<0.0001), hypertension (OR=1.48 per 1 SD higher, p<0.0001), and kidney/urological 

disease (OR=1.41 per 1 SD higher, p<0.0001). It was also found to be associated with other 

comorbid measures such as immunologic disease (OR=1.27 per 1 SD higher, p=0.03), diabetes 

(OR=1.24 per 1 SD higher, p<0.0001), coronary artery disease (OR=1.20 per 1 SD higher, 

p<0.0001), and depression (OR=1.11 per 1 SD higher, p=0.03).  

 Figure 2.2a displays the floor/ceiling effect seen in the predicted age estimates from the 

linear models before standardization, for each cohort. The floor/ceiling effect is more 

pronounced for cohorts with a smaller age range, where as the model fits much better in the 

SardiNIA cohort with the large age-range, except in the very young and very old individuals. 

Figure 2.2b shows the risk age estimates plotted by age. Although the estimates don’t appear 

to be linear along the full range of ages, less deviation between the expected and observed 

ages are seen at the extreme ages.  
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 Histograms of the two traits are displayed in Figure 2.3. The predicted age differential is 

normally distributed, as expected, because it was standardized within age decade. The 

distribution of the mortality risk differential nears normal, but it slightly bi-modal, with a small 

second node to the left. This reflects that fact that separate mortality models were estimate per 

sex and compared to sex-specific census values in each cohort. Heritability analyses were 

adjusted for sex to assure this did not affect the estimates. 

 

2.3.2 Heritability 

 Heritability estimates for the four related cohorts are shown in Figure 2.4. Estimates 

vary markedly when comparing the twin studies with the cohorts that include parental 

phenotypes. Estimates for the heritability of the predicted age differences differ less markedly 

and range from 0.25-0.33 in the non-twin studies compared to 0.70 in the twin studies. 

Estimates of h2 for the twin studies for the risk age trait are questionably high and reasons for 

this will be discussed, while estimates for the SardiNIA and FHS studies, using the Cox model 

were markedly low. The heritability estimated within the SardiNIA study using the discrete 

survival model, which estimated a 3-year showed higher heritability (h2=0.30) than the 1-year 

survival estimates from the Cox model.  

 When heritability estimation was restricted to the sample of 45-65 year old individuals 

in each cohort, the heritability estimates were much more similar (h2=0.30 in FHS, h2=0.54 in 

SardiNIA, h2=0.60 in TwinGene, and h2=0.67 in TwinsUK) for the predicted age differential. 
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Estimates were more variable for the risk age differences, likely due to the difference age-

ranges in which the models estimates were devised. 

  

2.4 Discussion 

  Two different measures of aging were developed in this study among five cohorts with 

varying ranges of ages and pedigree structures. The measure based on predicted age showed 

more consistent heritability estimates across the different cohorts ranging from 25% in the full 

SardiNIA sample to 70% in the TwinsUK study. The trait based on an individual’s risk of 

mortality was less consistent across the studies and within the SardiNIA cohort varied 

depending on the type of mortality model used to estimate 1-year and 3-year survival. 

Estimates within the twin studies were quite high and possibly not valid, due to the lack of 

substantial differences seen in the predicted 1-year survival between twin pairs, even when the 

co-twins had differing physiologic traits. 

Both aging traits are highly dependent on obtaining good predictions of both age and 

mortality risk. Having a larger range of ages in a cohort yielded the best model fit for predicting 

age. The three physiologic traits chosen for this analysis were based on work in the SardiNIA 

study, which had the largest age range. These same three measures were then examined in the 

other cohorts, so that heritability estimates would be comparable and future genome-wide 

association studies could be conducted. Without that aim in mind, it is highly likely that 

different physiologic measures may have been better at predicting age in the other cohorts and 

may have yielded better heritability estimates. 
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The cox proportional hazards models depend highly on having a sufficient number of 

individuals of advanced age and deaths for good fit. All three of the physiologic traits (serum 

creatinine, SBP, and waist circumference) showed a positive association with age, but the 

association was stronger in cohorts with more individuals of older ages. Therefore cohorts, such 

as the TwinsUK cohort whose average age is only 47.5 years and contains very few individuals 

over the age of 70 years, showed weaker associations between the physiologic traits and 

mortality. The ARIC study, which had the smallest age range, also did not show large 

associations between the measures and mortality, nor did the SardiNIA study, which has the 

highest percentage of very young individuals. 

 Having a way to measure aging among individuals of varying ages could be very useful in 

furthering our understanding of the genetics of aging. Most work in this field has been limited 

to studies of longevity, focusing on individuals who have attained a specific age. These studies 

have shown heritability estimates between 20-30% (Sebastiani and Perls, 2012), even among 

twins. Other studies among humans have focused on the mitochondrial DNA (De Benedictis, 

1999) haplogroups of centenarians and found variants associated with longevity. Animal studies 

have had more success than studies among humans in detecting variants with large effects on 

longevity (Paaby and Schmidt, 2009), and while these studies have informed human studies, 

they aren’t often directly applicable.  

While estimates of predicted age were fairly consistent across the cohorts in our study, 

there may be an alternate explanation of the estimates of heritability for the risk age trait in the 

twin studies. Estimates of survival are highly dependent on age. Because the twin pairs are the 

exact same age, their predicted 1-year survival estimates are also very similar. In the majority of 
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pairs, this led to both twins being assigned the same risk age and in-turn the same risk age 

difference. With near perfect correlation within twin pairs, the h2 estimates will be biased 

upward.    

 Although the results of this work may not be directly clinically applicable, there are 

genetic components of aging that can be discerned with this technique. Future work focused on 

discovering the loci and pathways involved may facilitate the ability to detect an individual’s 

risk for accelerated aging. Individual’s at high risk for accelerated aging could be followed more 

closely by their physicians and could potentially lower their risk by avoiding high risk and 

unhealthy behaviors. 

There are some limitations in this study. In particular to allow for comparability between 

the different cohorts, the same three physiologic measures were used to predict age and the 

risk of mortality. These measures were selected from SardiNIA may not be the most 

appropriate for other studies because of differences in individual characteristics and age. 

Improvements are expected if cohorts developed their own list of physiologic traits to be used 

in the predictive equations. We also would not expect all predictors of age to be linear across 

the entire age range, although they were fit this way in the current analysis. Squared and 

quadratic terms were tested and did not show an improvement in fit. Had data been available 

on hormone levels or menopause status, this would have been an important factor to examine 

in relation to the shape of the physiologic and age associations. 

Also, the use of 1-year survival estimates vs. a longer follow-up may have limited the 

variability in the predicted survival estimates. The use of 3-year survival estimates from the Cox 
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model could improve this limitation, as evidenced from the discrete survival model employed in 

the SardiNIA sample. Heritability estimates were greatly increased by the use of 3-year 

probability of dying vs. the 1-year survival estimate from the Cox model. 

This study indicates that investigations in the genetics of aging do not need to be limited 

to special cohorts of very advanced ages. By defining an individual’s biological age we can 

investigate the difference between their actual age and the age of their body. Variation does 

exist in this difference that is heritable and future work will attempt to link this variability to 

specific genetic loci. 
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Figure 2.1: Comparison of Age Distributions, by Cohort. A: ARIC, n=9,633. B: FHS, n=3,232. C: 

SardiNIA, n=6,161. D: TwinGene, n=10,664. E: TwinsUK, n=4,838. 
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Table 2.1: Characteristics Used in Estimating Measures of Aging, by Cohort.  

Measure 
Mean (SD) or Percent ANOVA F-

statistic  
P-value 

ARIC 
(n=9,633) 

FHS 
(n=3,232) 

SardiNIA 
(n=6,161) 

TwinGene 
(n=10,664) 

TwinsUK 
(n=4,838) 

      

Demographics: 
   Age (years)       
      All 54.3 (5.7) 61.3 (9.7) 49.6 (17.6) 64.8 (8.5) 47.5 (13.0) <0.0001 
      Males 54.7 (5.7) 61.3 (9.7) 49.7 (18.0) 65.5 (8.0) 46.5 (13.4) <0.0001 
      Females 54.0 (5.7)  61.4 (9.7) 49.6 (17.4) 64.3 (8.1) 47.6 (13.0) <0.0001 
   Male (%) 47.0 46.1 42.5 47.5 6.9 <0.0001 
      

Physiologic Traits: 
   Creatinine (mg/dl)       
      All 1.09 (0.18) 1.07 (0.32) 0.76 (0.22) 0.88 (0.32) 0.76 (0.18) <0.0001 
      Males 1.20 (0.16) 1.19 (0.35) 0.86 (0.24) 0.99 (0.40) 0.92 (0.17) <0.0001 
      Females  0.98 (0.14) 0.97 (0.24) 0.68 (0.18) 0.79 (0.16) 0.75 (0.17) <0.0001 
   SBP (mmHg)*       
      All 120.4 (18.5) 130.6 (20.9) 127.1 (20.2) 141.3 (20.4) 120.8 (17.6) <0.0001 
      Males 122.1 (17.5) 131.8 (19.4) 131.9 (18.9) 142.5 (20.0) 120.3 (17.7) <0.0001 
      Females 118.9 (19.2) 129.6 (22.0) 123.6 (20.5) 140.3 (20.7) 127.8 (15.1) <0.0001 
   Waist circ. (cm)       
      All 96.2 (13.3) 99.8 (14.1) 84.8 (13.1) 91.7 (12.3) 80.8 (11.3) <0.0001 
      Males 99.6 (10.4) 103.3 (11.2) 90.2 (11.3) 97.1 (10.5) 94.1 (10.1) <0.0001 
      Females 93.1 (14.8) 96.8 (15.5) 80.8 (13.0) 86.8 (11.7) 79.8 (10.7) <0.0001 
       

Treatment: 
   Antihypertensive  
   medication (%) 

      

      All 19.7 34.4 13.8 23.9 8.0 <0.0001 
      Males 20.1 37.5 14.5 24.8 0.0 <0.0001 
      Females 19.4 31.8 13.4 23.1 8.6 <0.0001 

*Individuals taking anti-hypertensive medication had 10 mmHg added to their reported SBP  
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Table 2.2: Linear Mixed Model Estimates by Cohort for Predicted Age.*  

Cohort N R2** 
Serum Creatinine  

(per 0.1 mg/dl) 
SBP  

(per 10 mm/Hg) 
Waist  

(per 5 cm) 

β p β p Β p 
         

ARIC 9,612 0.09 0.30 <0.0001 0.9 <0.0001 0.02 0.34 
FHS 3,018 0.18 0.53 <0.0001 1.8 <0.0001 -0.02 0.75 
SardiNIA 6,135 0.47 0.69 <0.0001 3.6 <0.0001 2.71 <0.0001 
TwinGene 9,999 0.13 0.34 <0.0001 1.3 <0.0001 -0.10 0.002 
TwinsUK 4,838 0.19 0.69 <0.0001 2.4 <0.0001 1.12 <0.0001 
         

*Adjusted for sex 

**R-squares taken from model that did not account for family clustering  
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Table 2.3: Hazard Ratios for Time to Death Models* for all Cohorts and Odds Ratio for Discrete 

Survival in SardiNIA. 

Cohort N Deaths 

Serum 
Creatinine 

(per 0.1 mg/dl) 

SBP 
(per 10 mm/Hg) 

Waist 
(per 5 cm) 

HR p HR p HR p 
       

ARIC         
   Females 5,089 572 1.03 0.34 1.10 <0.0001 1.03 0.048 
   Males 4,521 860 1.01 0.66 1.05 0.02 1.08 <0.0001 
         

FHS         
   Females 1,606 123 0.96 0.33 1.07 0.11 1.01 0.75 
   Males 1,410 202 1.07 <0.0001 1.08 0.046 1.11 0.0014 
         

SardiNIA         
   Females 3,392 101 1.03 0.40 0.94 0.18 1.02 0.51 
   Males 2,505 133 1.06 0.10 1.04 0.36 1.16 0.005 
         

TwinGene         
   Females 5,265 191 1.08 <0.0001 0.97 0.30 1.09 0.003 
   Males 4,734 304 1.03 <0.0001 0.99 0.73 1.03 0.35 
         

TwinsUK         
   Females 4,505 235 1.02 0.35 1.04 0.19 1.01 0.71 
   Males 333 17 1.16 0.25 1.18 0.25 1.33 0.035 
         

         

Discrete Survival Model 
(3-year risk of death) 

C-
statistic 

Serum 
Creatinine  

(per 0.1 mg/dl) 

SBP  
(per 10 mm/Hg) 

Waist 
(per 5 cm) 

OR p OR p OR p 

SardiNIA 0.86 1.06 0.0005 0.94 0.05 1.09 0.005 
         

* Left-truncated to account for survival time before entering the study. 
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Figure 2.2: Comparison of age traits to age, by cohort 

  

  

A. Predicted age by age, before standardization 

B. Centered risk age by age 
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Figure 2.3: Histogram of the Distribution in Predicated Age Differential and Risk Age Differential 

A. Predicted Age Differential (Standardized within Age Decade) 

 

 

B. Risk Age Differential 
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Table 2.4: Odds Ratios of Death or New Disease in SardiNIA Sample by Predicted Age 

Measure 

Odds Ratio for 1 SD 
Higher Standardized 

Predicted Age 
Differential 

p-value 

   

Death 1.60 0.0002 

Metabolic Disorder 1.55 6.2e-9 

Hypertension 1.48 <1e-30 

Kidney or Urologic Disease 1.41 <1e-30 

Immunological Disorder 1.27 0.03 

Diabetes 1.24 1.4e-7 

Coronary Heart Disease 1.20 3.1e-6 

Cerebrovascular Disease 1.17 0.21 

Depression 1.11 0.03 

Gastro-intestinal Disorder 1.07 0.12 

Skin Disease 1.05 0.33 

Dyslipidemia 1.04 0.30 

Lung Disease 1.04 0.49 

Liver Disease 1.02 0.75 

Endocrine Disorder 1.00 0.96 

Bone Disorder 0.99 0.91 

Cancer 0.98 0.81 

Neurologic Disorder 0.94 0.38 

Blood Disorder 0.93 0.10 
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Figure 2.4: Heritability Estimates by Trait and Cohort 

A. Full Age Ranges for Each Cohort 

 

B. Limited Age Ranges for Each Cohort: 45-65 years 
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Table S2.1: Univariate Models for Choosing Traits for Predicted Age Model, SardiNIA Study, 

N=6,114. 

Measure Beta P-value Measure Beta P-value 

S. Creatinine (per 0.1 mg/dl)      1.0    <1e-30 MCV (per 1 fL)       0.3 <1e-30 
eGFR (per 10 ml/min)         -6.3     <1e-30 CRP (per 1 mg/dl)              1.5 6.3e-13 
SBP (per 10 mm/Hg)             5.2     <1e-30 Platelets (per 10^3/ul) -0.04 <1e-30 
DBP (per 5 mm/Hg)             3.9     <1e-30 Basophils (per 1 %) 0.5 0.3520 
Waist (per 5 cm)             3.7     <1e-30 Eosinophils (per 1 %)     0.6 2.7e-7 
Weight (per 5 Kg)            1.8     <1e-30 Lymphocytes (per 1 %)    -0.3 <1e-30 
Height (per 1 cm)           -0.71     <1e-30 Monocytes (per 1 %)       0.3 0.0022 
Ln IMT (per 0.1)             6.4    <1e-30 Neutrophils (per 1 %)        0.2 1.9e-11 
BMI (per 1)               1.95     <1e-30 Potassium (per 1 mEq/L) 8.8 <1e-30 
Bilirubin (per 0.1 mg/dl)      1.5    4.2e-7 RBC (per 10^6/uL)       -1.9 2.6e-6 
ALT (per 5 U/L)             0.4   2.3e-14 Iron (per 5 microU/L 0.1 0.0016 
AST (per 5 U/L)              0.9     <1e-30 Sodium (per 1 mEq/L)      0.6 <1e-30 
Uric Acid (per 1 mg/dl) 3.4     <1e-30 Transferrin (per 10 mg/dl) -0.4 <1e-30 
Total Chol (per 10 mg/dl       1.7    <1e-30 Triglyc. (per 10 mg/dl 0.5 <1e-30 
GammaGT (per 10 U/L)         0.8   <1e-30 Fibrinogen (per 10 mg/dl)     0.7 <1e-30 
Glucose (per 10 mg/dl) 2.4     <1e-30 WBC (per 10^3/ul)      -0.9 6.5e-11 
HDL (per 5 mg/dl)     1.4   <1e-30 IL6 (per ug/mL)       1.0 <1e-30 
HbA1C (per 0.5)           3.8     <1e-30 Leptin (per 100 pg/mL)   0.03 <1e-30 
Insulin (per 5 mU/L) 0.8     1.4e-8 Adiponectin (per mg/mL) 0.9 <1e-30 
LDL (per 10 mg/dl 1.8   <1e-30 Hemoglobin (per mg/dl)   0.6     7.8e-5 
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Figure S2.1: Comparison of Residual Plots for Predicted Age using Linear and Squared 

Physiologic Traits as Predictors 

A. Linear Predictors of Age (S. Creatinine, SBP, Waist): 

 

B. Squared Predictors of Age (S. Creatinine2, SBP2, Waist2): 
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Figure S2.2: Distribution of Three Physiologic Measurements used to Predict Age and Mortality 

Risk over Age Quartile Range from the SardiNIA Study 

A. Creatinine (mg/dl) 

 

 

B. Waist Circumference (cm)  

 

 

C. Adjusted Systolic Blood Pressure (mmHg) 
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Figure S2.3: Example of Risk Age Trait for an Individual Aged 82, with S. Creatinine of 0.95 

mg/dl, SPB of 135 mmHg, and Waist Circumference of 67 cm, from SardiNIA 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Female 

Age = 82 

S. Creatinine = 0.95 

SBP = 135 

Waist = 67 

P(death in 3 years) = 0.057  
Risk age = 74 

Age Difference = - 8 years 

Risk Age 

Probability of Death in Next 3 years 



 

40 
 

CHAPTER III 

 

Genome-wide Study of Two Aging Traits in 20,000 Individuals 

 

3.1 Introduction 

 

 While genome-wide significant studies (GWAS) have uncovered a host of loci associated 

with age-related diseases (Jeck, et.al, 2012), to date, no genome-wide association consortia of 

aging have detected any single nucleotide polymorphisms (SNPs) significant at p < 5 x 10-8. A 

large meta-analysis of genome-wide association studies from nine studies from the Cohorts for 

Heart and Aging Research in Genomic Epidemiology Consortium was recently conducted for 

two outcomes: a) all-cause mortality and b) survival free of major disease or death and also 

failed to produce genome-wide significant findings (Walter, et.al, 2011).  

 As evidenced in the Walter et.al study, work in this area has typically focused on 

morality as the measure of aging. We propose a different approach that will be more applicable 

to general population studies with a wide range of ages. As described in detail in previous work 

(Chapter III), we have developed two different measures of aging that compare a person’s 

“biological” age to their actual age, in an attempt to quantify the variation in aging. Using family 
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information from four family-based cohorts, both traits have moderate heritability with 

estimates ranging from 0.25 in a small pedigree setting to 0.70 among twins for the predicted 

age differential. 

 The current work focuses on these traits in five cohorts of varying pedigree structures to 

determine if genomic regions associated with measures of aging could be identified and 

replicated.   

 

3.2 Methods 

3.2.1 Samples 

 The same five cohorts that were described in Chapter II were used in this analysis. All 

five cohorts are longitudinal cohort studies and included the participants of European-descent. 

A total included: 9,612 individuals from the Atherosclerotic Risk in Communities Study (ARIC, 

The ARIC Investigators, 1989), 3,018 individuals from the offspring cohort of the Framingham 

Heart Study (FHS, Dawber, 1950 and Kannel, 1979), 6,135 individuals from the SardiNIA Study 

on Aging (SardiNIA, Pilia, et.al, 2006), 9,998 twins from the Swedish TwinGene Study (TG, 

Katsika, et.al, 2010), and 4,838 twins from the TwinsUK Study (TwinsUK, Moayyeri, 2012), 

totally 33,601 individuals.  ARIC, FHS, SardiNIA, and TwinsUK (approximately 20,000 individuals 

with genotype data) were used in the discovery stage of this analysis and TwinsUK will be used 

for replication (approximately 10,000 individuals with genotype data). 
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3.2.2 Phenotypes 

 Two traits were developed (predicted age differential and mortality risk differential) to 

measure aging among population samples of individuals of varying ages. A full description can 

be found in Chapter II of this dissertation, but briefly, the traits are both based on the 

difference between an individual’s estimated “biologic” age and their actual age. Both traits 

employed three common physiologic measures to estimate biologic age: serum creatinine, 

systolic blood pressure, and waist circumference. An increase in the value of each trait was 

generally associated with an increase in estimated biologic age. 

 The first trait employed mixed linear regression, accounting for family clustering, to 

predict and individual’s biologic age. The second trait was based on the individual’s risk of 

mortality, (1) using Cox proportional hazards models for all cohorts for 1-year and (2) Cox 

models for all cohorts, except for SardiNIA, for 3-year survival estimates. The SardiNIA study 

employed discrete survival analysis, using repeated measures logistic regression compared to 

the mortality risk of the appropriate country’s census data. Each individual was then assigned a 

“risk” age that was equal to the age at which the individual’s survival estimate was equivalent 

to the census survival estimate. Both traits are the difference between the estimated biologic 

age and actual age. For example, predicted age differential = Agei – Predicted Agei, where 

Predicted Agei =  ̂   ∑  ̂    
 
    . Both traits yield a positive number if the individual is older 

biologically or a negative number if the individual is younger biologically than their actual 

calendar age.  
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3.2.3 Genotype Data and Imputation 

 Genotype data came from a variety of chip platforms, but were all imputed on the 

HapMap2 reference panel, release 22, build 36, CEU population 

(http://hapmap.ncbi.nlm.nih.gov/, The International HapMap Consortium, 2007).  Data was 

downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap ) for the ARIC and FHS cohorts, 

while data was contributed through collaboration with the TwinGene and TwinsUK cohorts.  

 The FHS cohort employed a combination of Affymetrix 500K and MIPS 50K chip (for a 

total of 534,982 genotyped SNPs) and used MACH (version 1.0.15, Li, et.al, 2010 and Li, et.al, 

2009) to impute autosomal SNPs.  

 Genotype data for the ARIC study came from the Affy 6.0 chip, while the SardiNIA 

cohort used a combination of the Affy 50K, 500K, and 6.0 chips. The ARIC and SardiNIA cohort 

data was imputed, in-house. As all ARIC samples were genotyped on the same chip a single 

imputation was run using a combination of MACH for phasing and Minimac software (Kim, 

http://genome.sph.umich.edu/wiki/Minimac) for imputation. 

As the SardiNIA cohort contained individuals genotyped on three different chips, a two-

step imputation was run: one haplotype-based and one family-based (Naitza, 2012). The first 

was based on imputing separately samples typed with the 500K (N=1412) and with the 6.0 

array (N=1097), treating individuals as unrelated. The best guessed genotype (not the dosages) 

were chosen for all SNP with RSQR >0.3. Using the best guessed genotypes from the two 

imputations, samples were put back in family pedigrees, and additional imputed SNPs were 

http://hapmap.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/gap
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discarded if there were an excess of Mendelian errors. Finally, the individuals typed with the 

10K array were merged back into the data and family-based imputation was implemented using 

Merlin, which imputes SNPs based on the estimated haplotype transmission. This imputation 

was possible because samples typed with 500K and 6.0 were mostly founders and key 

descendents, so one needed to follow the haplotype inheritance flow estimated using markers 

in common between the 10K chip and the 500K/6.0 arrays to accurately impute SNPs (Burdick, 

et.al, 2006). 

 For the TwinsUK sample, 5710 twins have undergone a genome-wide scan of either 

317,000 SNP markers (Illumina HumanHap300 Bead Chip) or 610 000 SNPs (Illumina 

HumanHap610 Quad Chip). The data have been fully imputed using IMPUTE version 2 software 

(Howie BN, et.al., 2009) and quality checked (Moayyeri, 2012). 

 A summary table of genotyping and imputation procedures can be found in 

Supplementary table S3.1. 

 

3.2.4 Statistical Analysis 

 Genome-wide association models were run using Merlin software (Abecasis, 2002) for 

the ARIC, FHS, and SardiNIA Studies and Genabel (Aulchenko, 2007) for the TwinsUK Cohort 

using an additive model and fitted dosage data for each SNP. The reported pedigree structure 

was used in the form of the kinship matrix to account for relatedness in the three family-based 

studies. Each trait was examined unadjusted, adjusted for age, and adjusted for age and sex. It 

was important to examine the associations adjusted for age, particularly for the predicted age 

http://bioinformatics.oxfordjournals.org/search?author1=Yurii+S.+Aulchenko&sortspec=date&submit=Submit


 

45 
 

trait, to account for the standardization of the trait within age decade. On average 2.5M SNPs 

were available for analysis in each cohort. All SNPs with minor allele frequency (MAF) greater 

than zero were examined.  

Quantile-quantile (QQ) plots and genomic control (GC) values were calculated using R 

software (R Development Core Team, 2008), to assess population substructure. GC values 

ranged from 0.98 to 1.09 for the predicated age trait (Figure 3.1 displays plot for each cohort 

adjusted for age) and 0.92 to 1.09 for the risk age trait (Figure 3.2 displays plot for each cohort 

adjusted for age). Although the GC values and QQ plot for FHS appear to show an 

overcorrection for pedigree structure in the age risk trait, no problems could be detected from 

the pedigree data downloaded from dbGaP. All SNPs with imputation quality < 0.30 were 

removed before analysis and therefore not the cause. 

Meta-analysis was performed, using METAL software (Willer, 2010), to combine the 

evidence for association from the four individual studies. Two weighting schemes, sample size 

and standard error, were investigated and showed similar results. Heterogeneity between the 

studies was also assessed. SAS (SAS, Cary, NC) was employed for creation of all traits and Locus 

Zoom (Pruim and Welch, 2010) was used to create plots of interesting genomic regions. 

 

3.2.5 Bioinformatic analysis of functional implications of genetic variants 

 Variants with p < 5 x 10-6 were analyzed by computational methods to infer potential 

functional relevance. Conservation analysis was performed using the comparative genomics 

feature in Ensembl (http://useast.ensembl.org/index.html) to compare the human variant with 
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nine eutherian mammals, including chimp, mouse and pig. To analyze the putative biological 

effects of each exonic or intronic variation, either the major or minor allele was input into 

predictive programs flanked on either side by 100 bp of sequence. Potential human 

transcription factor binding sites were analyzed using default parameters of the transcription 

element search system from the University of Pennsylvania (http://www.cbil.upenn.edu/cgi-

bin/tess/tess).  SNPs were interrogated for effects on expression levels, i.e. whether they are 

expression quantitative trait loci (eQTLs) for that gene using the SNP and CNV Annotation 

(SCAN) Database (http://www.scandb.org/newinterface/about.html) from the University of 

Chicago.  This database includes information on expression levels in numerous populations, 

including those from the HapMap. 

 

3.3 Results 

3.3.1 Meta-Analysis 

 One SNP (rs10496861) reached genome-wide significance in this study for the trait 

based on the difference between predicted age and age, after adjustment for age (table 3.1). 

The SNP is located within an intronic region of the gene LRP1B  which produces low density 

lipoprotein receptor-related protein 1B. The direction of association was the same within all 

four cohorts and there was no significant heterogeneity found. Minor allele frequency (MAF) 

for this SNP is 34%. The meta-effect size is +0.28 with a p = 5.75 x 10-9. Because the trait was 

standardized by age decade this effect size translates into varying age differences, based on an 

individual’s age. Standard deviations by age decade ranged from 7 to 11 years in all cohorts, so 

an effect size of +0.28 translates into approximately a +2 year to +3 year higher than average 

http://www.cbil.upenn.edu/cgi-bin/tess/tess
http://www.cbil.upenn.edu/cgi-bin/tess/tess
http://www.scandb.org/newinterface/about.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=53353
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age difference for each age range. The Locus Zoom plot of this SNP (Figure 3.3) shows the 

typical spike compared to the surrounding regions. 

 Table 3.1 also displays the SNPs that were found to be marginally significant (5 x 10-8 < p 

< 5 x 10-7) and SNPs of interest for validation (5 x 10-7 < p < 5 x 10-6). Of particular interest is a 

set of SNPs on Chromosome 21 located between 20.7 and 20.8 Mb (Figure 3.4). These SNPs are 

approximately 500 Kb upstream of the NCAM2 gene. Seven SNPs in this region had a meta-

analysis p-values of 5 x 10-8 < p < 5 x 10-7 and 20 more SNPs in the region had meta-analysis p-

values 5 x 10-7 < p < 5 x 10-6. 

 Although one SNP (rs9472826 on Chromosome 6) also reached genome-wide statistical 

significance for the risk age trait, data was only available for analysis from the SardiNIA and 

TwinsUK cohorts and there was significant heterogeneity detected between the associations 

(Table 3.2).  The MAF for this SNP was less than 1% and therefore the finding is thought to be a 

false positive. Similar findings for a marginally significant SNPS (rs17476005) also on 

Chromosome 6, but in a different region, also point to it potentially being a false positive result. 

Two regions of modest interest were detected on Chromosome 18. The first region is very small 

and located around position 41.2 Mb (Figure 3.5), which is upstream of the SLC14A2 gene. 

Three SNPs were detected in this region with 5 x 10-7 < p < 5 x 10-6, with MAF of approximately 

2.5%. The second region is wider, spanning positions 53 to 53.1 Mb, and is upstream of two 

genes: ST8SIA3 and ONECUT2 (Figure 3.6). This region contained nine SNPs with significance 

levels 5 x 10-7 < p < 5 x 10-6. 
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 All SNPs with p < 5 x 10-6 are currently being follow-up in replication work planned 

among 10,000 individuals in the TwinGene cohort.  

 

3.3.2 Bioinformatic analysis of functional implications of genetic variants  

 The LRP1B gene is very large (1,900,279 bases) and belongs to the low density 

lipoprotein (LDL) receptor gene family (http://www.genecards.org/cgi-

bin/carddisp.pl?gene=LRP1B). These receptors play a wide variety of roles in normal cell 

function and development due to their interactions with multiple ligands (Liu et al., 2001) by 

producing cell surface proteins that bind and internalize ligands in the process of receptor-

mediated endocytosis. This gene has homologues in six other species: Mus musculus, Gallus 

gallus, Pan troglodytes, Canis lupus familiaris, Bos Taurus, and Danio rerio and has 41 known 

protein products (http://refgene.com/gene/53353). Using the University of California Santa 

Cruz genome browser (http://genome.ucsc.edu/cgi-

bin/hgTrackUi?hgsid=329521287&c=chr2&g=cons46way), a comparison of this SNP was made 

across 46 different vertebrate species (Figure S3.2).  Based on these findings is appears that this 

position/region is not highly conserved, nor highly divergent. 

Our top SNP rs10496861 is located in one of the 93 distinct introns [NM_018557.2] and 

has been shown to alter expression levels of the LOC407835, MAP2K2, and SLC38A5 genes 

within the Nigerian population (YRI) at a level p<0.0001, n=283. Expression work for the LRP1B 

gene have shown that it is expressed in the human brain, thyroid gland, skeletal muscle, and to 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=LRP1B
http://www.genecards.org/cgi-bin/carddisp.pl?gene=LRP1B
http://refgene.com/gene/53353
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=329521287&c=chr2&g=cons46way
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=329521287&c=chr2&g=cons46way
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a lesser amount in testis but absent in other tissues, including heart, kidney, liver, lung, and 

placenta (Haas, 2011).     

 

3.4 Discussion 

 Most human genetic studies of aging and longevity have focused on centenarians’ 

survival, or have been candidate gene studies focused on genomic regions suspected to be 

associated with aging. In a new approach, using two novel measures of aging developed in and 

applicable to adults of ages 20 to 90 years of age, this study was able to detect a genome-wide 

significant genetic association for aging. Each measure used an estimated biologic age for each 

individual and computed the difference between that age and the individual’s chronological 

age.  

 One SNP (rs10496861) on Chromosome 2 within the LRP1B gene reached genome-wide 

statistical significance with a p-value of 5.78 x 10-9 for the trait comparing predicted age to age 

in the meta-analysis. Because additive models were used, individuals with one additional copy 

of the minor allele (T compared to the wild-type G, with MAF=0.34) were on average +0.28 

standardized years older than individuals with the wild-type allele. Depending on the 

individual’s actual age, this translates into a 2 to 3 year above average biologic age compared to 

actual age, for each copy of the T allele. Another region of interest was found for this trait on 

chromosome 21 between position 20.7 and 20.8 Mb, with the most statistically significant SNP 

(rs1786357) just above genome-wide significance with a p-value of 7.64 x 10-8. Seven SNPs with 

5 x 10-8 < p < 5 x 10-7 were found within this region. 
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 Although no SNPs reached genome-wide significance with the risk age trait, two regions 

of interest on Chromosome 18 showed promise (around position 41.2 Mb and between 53 to 

53.1 Mb). These regions are currently being followed-up in replication work in the TwinGene 

cohort. 

These findings are very exciting because if validated, may provide a way to detect an 

individual’s risk of accelerated aging before clinical symptoms can be detected for comorbid 

conditions such as hypertension, diabetes, and chronic kidney disease. Work from the CARDIA 

study (Lee DH, et.al, 2003) has found that early intervention at a young age can have effects 

long after.  With the current shift in the age distribution of the population, having a way to 

determine an individual’s risk for accelerated aging could be invaluable. We need to be able to 

single out high risk individuals and focus efforts to change behaviors and, if necessary, closely 

monitor them for early signs of diseases or comorbidities, such as high blood pressure or high 

glucose levels.  

There is support for the current LRP1B finding from previous work investigating 

successful aging (Poduslo, et.al, 2009). The study was very small (n=63) and included individuals 

aged greater than 85 years with Mini Mental State Examination (Folstein, 1983) scores > 26 and 

no major illness (cardiovascular problems, diabetes, obesity, major cancer diseases, or 

dementia in the family) were compared to a cohort of Alzheimer’s patients. They found that 

specific haplotypes (3 SNPs: rs12474609, rs10201482, and rs980286) in intron 18 of the LRP1B 

gene were significantly associated with successful aging after Bonferroni correction. These 

three SNPs are located 32 Kb downstream from the SNP in the current study, but linkage 
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disequilibrium between them is very low, with r2 ranging from 0.02 to 0.033. Since their finding 

was based on Alzheimer’s patients and a large GWAS of Alzheimer’s patients was published in 

2011 (Hollingworth, et.al), their findings were examined for any hits in the LRP1B gene and non 

were found. 

LRP1B expression appears to be restricted to specific organ. mRNA was been detected in 

the human brain, thyroid gland, skeletal muscle, and testes (Haas, 2011). It is absent in other 

tissues, such as heart, kidney, liver, lung, and placenta. This could point to a speciation function 

of LRP1B in certain organs. Many of the LRP1B ligands are well known factors in blood 

coagulation and lipoprotein metabolism, which may suggest a possible role in atherosclerosis, 

which is directly correlated with aging. 

The biological implications described in the mRNA work above corroborate other studies 

that have linked this gene to phenotypes such as thyroid cancer, where inactivation of LRP1B 

results in changes to the tumor environment, conferring cancer cells an increased growth and 

invasive capacity (Prazeres, 2010) and insulin-resistance (Burgdorf, 2012). The rs2890652 locus 

upstream of LRP1B was associated with both increased BMI and decreased insulin sensitivity.  

Through bioinformatic investigation, our most significant SNP was shown to alter 

expression levels of the LOC407835, MAP2K2, and SLC38A5 genes MAP2K2 (mitogen-activated 

protein kinase kinase 2) is located on 19p13.3 and the protein encoded by this gene is a dual 

specificity protein kinase that belongs to the MAP kinase kinase family. This kinase is known to 

play a critical role in mitogen growth factor signal transduction and mutations in this gene 

cause cardiofaciocutaneous syndrome (CFC syndrome), a disease characterized by heart 
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defects, mental retardation, and distinctive facial features similar to those found in Noonan 

syndrome. The inhibition or degradation of this kinase is also found to be involved in the 

pathogenesis of Yersinia and anthrax. A pseudogene (LOC407835), which is located on 

chromosome 7, has been identified for this gene and was also shown to have altered 

expression by LRP1B (http://www.ncbi.nlm.nih.gov/gene/5605). The protein encoded by 

SLC38A5 (solute carrier family 38, member 5), located on the X-chromosome at p11.23, is a 

system N sodium-coupled amino acid transporter involved in the transfer of glutamine, 

asparagine, histidine, serine, alanine, and glycine. The encoded protein does not transport 

charged amino acids, imino acids, or N-alkylated amino acids 

(http://www.ncbi.nlm.nih.gov/gene/92745).  

A possible mechanism for the increased rate of aging that we observe in association 

with variation in our most significant SNP (rs10496861) that follows our evolutionary 

expectations is that the minor allele causes a reduction in LRP1B’s endocytosis capability. 

Endocytosis and autophagy work as partners to take in and break up molecules. Both pathways 

are highly conserved as is gene LRP1B, demonstrated by the presence of homologues in six 

other organisms. Constitutive autophagy has a housekeeping role and is essential for survival, 

development and metabolic regulation (Markaki, 2011). Research has also shown that 

autophagy is also responsive to stress and can degrade damaged proteins and organelles, 

oxidized lipids and intracellular pathogens and that defects in the autophagic degradation 

system have been linked to disease pathogenesis and aging. Different signaling pathways 

converge on autophagy to regulate lifespan in diverse organisms and autophagy is a critical 

regulator of metabolic homeostasis and molecular mechanisms that promote longevity. 

http://www.ncbi.nlm.nih.gov/gene/5605
http://www.ncbi.nlm.nih.gov/gene/92745
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Another study showed that genetic inhibition of autophagy induces degenerative 

changes in mammalian tissues that resemble those associated with aging, and normal and 

pathological aging are often associated with a reduced autophagic potential (Rubinsztein, 

2011). This study also showed that pharmacological or genetic manipulations that increase life 

span in model organisms often stimulate autophagy, and its inhibition compromises the 

longevity-promoting effects of caloric restriction, Sirtuin 1 activation, inhibition of 

insulin/insulin growth factor signaling, or the administration of rapamycin, resveratrol, or 

spermidine, which could be insightful for considering future targets. 

With GWAS there is always a chance that the findings are false positives, which is very 

likely the case for rs9472826 and rs17476005 in the risk age difference meta-results. SNP 

rs9472826 has a MAF of only 0.6% in our sample and this SNP was only present in two of the 

cohorts (n=7,242 with SardiNIA and TwinsUK combined). This suggests that only 44 copies of 

the minor allele are present in the entire sample. SNP rs17476005 is even rarer with a MAF of 

0.08% (9 copies out of the 11,319 individuals from ARIC and TwinsUK). With such a small 

number of copies in the sample, the results could be highly affected by error rates in both 

genotype calling and imputation, which are less accurate for rare alleles.  

The findings for the top SNP (rs10496861) which was genome-wide significant and 

located in the LRP1B gene appear to be quite robust. The MAF is 34%, which is well in the range 

for effects we would expect to indentify using GWAS. Also, we saw similar direction of 

association in all four cohorts (n=19,860) and there was no significant heterogeneity found in 

the associations between cohorts. After inspection of other SNPs in the region we see the 
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characteristic spike on a LocusZoom plot (Figure 3.3), showing that although less significant, our 

analysis picked up nearby SNPs in linkage disequilibrium with our SNP.  

The current study was limited to individuals of European descent to remove potential 

bias from inadequately accounting for population admixture, but it does limit the 

generalizability of the findings. Future work should be done investigating this gene and 

polymorphism in other ancestry groups. Another potential issue with the current work was 

demonstrated in the QQ plot for the risk age difference in FHS, where GC values were 0.91. This 

cohort created their imputed data set from samples that were genotyped on two different 

chips. Because of the direction of bias in the FHS sample, we would expect to find less 

significant results and therefore this should not be a major limitation in interpreting any 

significant findings. The SardiNIA cohort also had samples genotyped on different samples, but 

took great care in imputation, employing the family information, as described by Burdick, et.al.  

There are limitations in this work due to how the traits were defined, as well. It is 

possible that one of the physiologic factors used to predict age or mortality risk may be driving 

our findings. Since the GWAS results from the CKD-Gen studies are publically available 

(https://intramural.nhlbi.nih.gov/labs/CF/Pages/CKDGenConsortium.aspx), I was able to verify 

that genome-wide significant SNP was not significant in their kidney-specific analyses. In 

particular, the p-value for the odds of CKD for SNP rs10496861 was 0.7728 and for the 

continuous measure of eGFR the p-value was 0.5380.  

Analysis is currently underway to replicate the findings from this study, focusing on 

associations with p < 5 x 10-6, using 10,000 individuals from the TwinGene study. While 

https://intramural.nhlbi.nih.gov/labs/CF/Pages/CKDGenConsortium.aspx
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consistent replication can greatly improve the credibility of a genotype-phenotype association, 

there is still a chance it may not eliminate spurious associations due to biases shared by many 

studies (Kraft, 2009). If these findings do replicate and the bioinformatics hypotheses are 

plausible, then a next step would be to begin looking for the causal variant. This may be 

accomplished by accessing publically available data from the Exome Sequencing Project 

(https://esp.gs.washington.edu/drupal/), which is available from dbGaP. In instances where this 

data will not be suitable, a multi-pronged approach will be needed. Due to the fact that our 

most significant SNP is located in an intron, we would want to sequence the surrounding exons, 

including 50 bp on each side of the exons to clearly capture the intron/exon boundaries. If 

nothing if found within the immediate range then targeted sequencing of the entire gene may 

be in order, being sure to include possible promoter regions in the 2000 bp at the 5’ end. 

There are times when even such targeting sequencing is unable to generate hypotheses 

for the biological processes taking place and then one would need to start considering epi-

genetic factors, such as methylation or histone modification, and consider the role of gene by 

environment interactions, or regulatory mechanisms. 

The findings of this study have demonstrated that aging can be investigated in cohorts 

of varying ages and not restricted to the very elderly or need to be based on survival. An 

association between a polymorphism in the LRP1B gene and the difference in predicted age and 

age reached genome-wide significance and is supported by a previous study investigating 

successful aging. Bioinformatics investigation of this SNP has shown it to alter expression levels 

of the LOC407835, MAP2K2, and SLC38A5 genes within the Nigerian population (YRI) at a level 

https://esp.gs.washington.edu/drupal/
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p<0.0001 Replication work and specific investigations into determining the causal variant are 

underway. If replication of this SNP is successful, it could be a target for determining an 

individual’s risk of accelerated aging and allow for early interventions to prolong healthy life.  
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Table 3.1: Meta-analysis of Difference between Predicted Age and Age in 20,000 Individuals of 
European Descent, Adjusted for Age. 

Locus Chr 
SNPs in Region 
in Significance 

Range 
Lead SNP Alleles/MAF Effect Size P 

Direction of 
association* 

        
Genome-wide Significant: P < 5 x 10-8 
LRP1B 2 1 rs10496861 T/G/0.34 +0.28 5.78E-09 ++++ 
        
Marginally Significant:  5 x 10-8< P < 5 x 10-7 
LRP1B 2 1 rs6732847 T/C/0.34 +0.16 3.94E-07 ++++ 
ERC2 3 1 rs1167245 T/C/0.46 +0.20 2.35E-07 ++++ 
PSD3 8 1 rs335222 A/C/0.04 -0.80 2.31E-07 ?--- 
OTOGL 12 1 rs10778728 C/G/0.36 +0.21 1.80E-07 ++++ 
KLHL1 13 1 rs2154199 G/A/0.04 +0.46 4.21E-07 ++++ 
MDGA2 14 2 rs1683210 T/C/0.04 +0.54 1.01E-07 ++++ 
NCAM2 21 7 rs1786357 G/A/0.16 +0.33 7.64E-08 ++++ 
        
Suggestive for Replication: 5 x 10-7 < P < 5 x 10-6 
MTOR 1 3 rs3765897 G/A/0.06 +2.07 5.14E-07 +??+ 
EDEM1 3 1 rs17043984 A/G/0.02 +0.60 1.12E-06 ++++ 
CPNE4 3 1 rs16837395 C/G/0.42 +0.22 2.07E-06 ++++ 
SI 3 1 rs12630444 G/T/0.01 -0.77 2.82E-06 ---- 
LPP 3 1 rs9820072 T/A/0.43 +0.07 3.12E-06 +?+? 
CPEB2 4 1 rs218819 G/A/0.03 +0.79 3.31E-06 +??+ 
NUDT12 5 4 rs7702688 A/C/0.03 +0.59 2.89E-06 ++++ 
HLA-L 6 1 rs3094078 A/T/0.09 +0.48 1.58E-06 ++++ 
C6orf105 6 1 rs4140558 T/C/0.28 +0.07 1.16E-06 +++? 
PHACTR1 6 1 rs2327591 T/C/0.10 +0.38 2.74E-06 ++++ 
EYA4  6 1 rs2184784 A/C/0.13 +0.37 8.89E-07 ++++ 
IMMP2L 7 1 rs6968496 C/T/0.24 +0.26 7.11E-07 ++++ 
FBXO25 8 2 rs17737960 C/G/0.07 +0.38 3.00E-06 ++++ 
NKAIN3 8 1 rs10099792 G/A/0.10 +0.35 1.67E-06 ++++ 
IL33 9 1 rs13284060 C/A/0.07 +0.39 1.89E-06 ++++ 
KDM4C 9 4 rs4742295 A/C/0.03 -0.58 5.27E-07 ---- 
TMEM38B 9 1 rs3010957 G/A/0.03 +0.47 3.27E-06 ++++ 
MUSK 9 1 rs2846447 G/C/0.20 +0.28 7.70E-07 ++++ 
GRID1 10 1 rs17106322 T/C/0.03 +0.57 7.97E-07 ++++ 
ADAM12 10 1 rs4559596 T/C/0.43 +0.21 1.46E-06 ++++ 
ENDOD1 11 2 rs626246 A/C/0.16 +0.33 1.01E-06 ++++ 
KLHL1 13 1 rs9529821 A/T/0.04 +0.35 2.75E-06 ++++ 
MDGA2 14 1 rs1769488 A/G/0.04 +0.44 1.45E-06 ++++ 
WSCD1 17 1 rs12942336 G/C/0.05 +0.40 4.06E-06 ++++ 
NCAM2 21 20 rs1786368 A/G/0.16 +0.30 6.16E-07 ++++ 

* Order of studies: SardiNIA, FHS, ARIC, TwinsUK 
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Table 3.2: Meta-analysis of Difference between Risk Age and Age in 20,000 Individuals of 
European Descent, Adjusted for Age. 

Locus Chr 
SNPs in Region 
in Significance 

Range 
Lead SNP Alleles/MAF Effect Size P 

Direction of 
association* 

        
Genome-wide Significant: P < 5 x 10-8 
PLA2G7 6 1 rs9472826 C/T/0.006 +12.0 4.17E-09 +??+ 
        
Marginally Significant:  5 x 10-8< P < 5 x 10-7 
BAI3 6 1 rs17476005 G/A/0.0008 -10.6 3.26E-07 ??-- 
        
Suggestive for Replication: 5 x 10-7 < P < 5 x 10-6 
ASB3/ 
CHAC2 

2 1 rs6735011 C/T/0.35 +0.31 8.98E-07 ++++ 

GABRA1 5 1 rs1531263 G/A/0.49 -0.31 4.81E-06 ---? 
ACO1/ 
MIR873 

9 1 rs10738859 G/T/0.003 -2.6 7.18E-07 ---- 

LOC286370 9 1 rs4744117 A/G/0.34 +0.32 3.54E-06 ?+++ 
C12orf10 12 1 rs4759054 C/T/0.008 +4.5 8.01E-07 +??+ 
CMKLR1 12 1 rs11113865 A/G/0.07 +.56 4.46E-06 ++++ 
SLC14A2 18 3 rs1462152 C/T/0.02 -0.85 5.48E-07 ---- 
ST8SIA3/ 
ONECUT2 

18 9 rs4801093 A/C/0.24 +0.33 1.75E-06 ++++ 

* Order of studies: SardiNIA, FHS, ARIC, TwinsUK 
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Figure 3.1: QQ plots of Difference between Predicted Age and Age, Adjusted for Age, by Cohort 

 

A. ARIC      B. Framingham 

 

 

C. SardiNIA     D. TwinsUK 
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Figure 3.2: QQ plots of Difference between Risk Age and Age, Adjusted for Age, by Cohort 

 

A. ARIC      B.  Framingham 

      

C.  SardiNIA     D.  TwinsUK 
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Figure 3.3: Locus Zoom Plot of Gene LRP1B on Chromosome 2 for Predicted Age Difference, 
Adjusted for Age, From Meta-Analysis, N=20,000 Individuals of European Descent 
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Figure 3.4: Locus Zoom Plot Chromosome 21, Positions 20.7 to 21.3 Mb, for Predicted Age 
Difference, Adjusted for Age, From Meta-Analysis, N=20,000 Individuals 
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Figure 3.5: Locus Zoom plot of Chromosome 18, position 52.7 to 53.5 Mb for Difference 

between Risk Age and Age in 17,500 Individuals of European Decent, Adjusted for Age 
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Figure 3.6: Locus Zoom plot of Chromosome 18, position 39.9 to 41.6 Mb for Difference 

between Risk Age and Age in 17,500 Individuals of European Decent, Adjusted for Age 
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Figure S3.1: Manhattan Plot for Meta-Analysis of the Difference between Predicted Age and Age, Adjusted for Age, N=20,000 

Individuals 
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Figure S3.2: Manhattan Plot for Meta-Analysis of the Difference between Risk Age and Age, Adjusted for Age, N=17,500 Individuals 
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Figure S3.2: Comparison of rs10496861 across 46 Species 
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Table S3.1: Summary of Study Design and Sample QC, by Cohort 

Study Study design Ethnicity 
Total sample 

size for 
analysis 

Sample QC 

Call rate* other exclusions 

ARIC 
Population 

Cohort 
White 

European 
8,718 >95% Missing phenotypes 

Framingham Family-based 
White 

European 
3,018 >95% Missing phenotypes 

SardiNIA Family-based 
White 

European 
4,774 >90% Missing phenotypes 

TwinGene Twin-based 
White 

European 
9,999 

 
Missing phenotypes 

TwinsUK Twin-based 
White 

European 
4,838 >98% 

Missing phenotypes, 
heterozygosity across 
all SNPs ≥2 s.d. from 

the sample mean, 
evidence of non‐

European ancestry as 
assessed by PCA 
comparison with 

HapMap3 
populations, 

observed pairwise 
IBD probabilities 

suggestive of sample 
identity errors 
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Table S3.2: Summary of Genotyping and Imputation Procedures, by Cohort 

Study 

Genotyping Imputation 

Platform 
Genotype 

calling 
algorithm 

Inclusion criteria SNPs 
that met 

QC 
criteria 

Imputation 
software 

Inclusion criteria 
Reference 
Population MAF Call rate* 

p for 
HWE 

MAF 
Imput 

quality* 

ARIC Affymetrix 6.0  Birdseed >0% > 95% > 10-6 566,802 
MACH/ 

Minimac 
>5% >0.30 

HapMap2 
(release 22, 

build 36, 
CEU) 

Framingham 
Affymetrix 

500K and MIPS 
50K 

Dynamic 
Modeling 

>0% > 97% > 10-6 534,982 MACH >0% >0.30 

HapMap2 
(release 22, 

build 36, 
CEU) 

SardiNIA 

Affymetrix10K, 
Affymetrix 

500K, 
Affymetrix 6.0 

BRLMM 
for 10K 

and 500K 
arrays, 

Birdseed_
v2 for 6.0 

array 

≥ 0% 

>90% for 
10K and 

500 arrays, 
> 95% for 
6.0 array 

> 10-6 759,213 MACH >0% >0.30 

HapMap2 
(release 22, 

build 36, 
CEU) 

TwinGene 
          

TwinsUK 

Illumina 
HumanHap300 
Bead Chip and 

Illumina 
HumanHap610 

Quad Chip 

Illuminus ≥1% >97% > 10-6 ~927000 IMPUTE (v2) ≥1% >0.30 

HapMap2, 
(release 22, 
combined 
CEU+YRI+ 

ASN panels) 
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CHAPTER IV 

 

Prevalence of chronic kidney disease in the SardiNIA study cohort and 

its relationship with eGFR-related loci and clinical risk factors (CKD-

SardiNIA Study) 

4.1 Introduction 

 

Universal concern about chronic kidney disease (CKD) and renal failure (National Kidney 

Foundation, 2002, Levey et.al, 2005, Levey et.al, 2007) has been expressed over geographical 

differences in CKD prevalence (Zhang, et.al, 2008, Zoccali, et.al, 2010).  However, only a small 

(though increasing) number of large, adequately powered studies have estimated CKD 

prevalence in general populations. The “template” for such studies is the National Health and 

Nutrition Examination Surveys (NHANES) (Coresh, et.al, 2007), which showed an alarming 

increase of CKD prevalence during the last two decades in the USA. Other surveys in Europe 

(Nynke, 2011, Hallan et.al, 2011, Gambaro, et.al, 2010, Viktorsdottir, et.al, 2005, Wetzels, et.al, 

2007, Cirillo, et.al, 2006) and developing countries (Zhang, et.al, 2008, Zhang, et.al, 2012, 

Nugent, et.al, 2011) showed a lower but variable prevalence. The differences can be partially 
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explained by differences in the prevalence of risk factors such as diabetes, hypertension, 

obesity, and atherosclerosis; but other factors (Levey and Coresh, 2012) can also influence 

prevalence.  In addition to epidemiological and hormonal influences, specific genetic loci were 

recently demonstrated to be significantly associated with estimated glomerular filtration rate 

(eGFR) and with end stage renal disease (ESRD) in large genome-wide association studies of 

individuals of European descent (Böger, et.al, 2011, Köttgen, et.al, 2009).  

General decline in eGFR is in fact a long-established feature of aging (Glassock and 

Winearls, 2008), but some groups of individuals may show a more rapid loss of renal function. 

How much clinical and genetic conditions influence decline of eGFR has been largely 

conjectural. Therefore, we investigated the clinical, epidemiological, and genetic factors that 

may influence both cross-sectional and longitudinal renal function in a well-powered Sardinian 

founder population cohort (SardiNIA study).  In particular, given the recent success in finding 

and replicating genetic regions for eGFR, we investigation a genetic risk score for CKD in this 

population. 

 

4.2 Methods 

4.2.1 Study Design 

 

The SardiNIA study, which began in 2001, has measured > 300 traits (endophenotypes, 

quantitative risk-related genetic, and environmental factors) that can be scored on a 

continuous scale for both epidemiological and genetic analyses.  The sample was drawn from 

the 10,982 residents of 4 mountain villages (Lanusei, Arzana, Elini and Ilbono) in Ogliastra, a 
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province in eastern Sardinia (Pilia, et.al, 2006). In 2002, letters were sent to all residents inviting 

them to participate.  About 56% (n=6,162) had initial visits. The recruited cohort, ranging from 

14 to 102 years of age, is representative of the overall age distribution of the region in 2002, 

with a somewhat greater number of females. Visits were repeated approximately every three 

years and data from two additional visits have been collected, with 5,204 individuals 

completing a visit during the third to sixth year of the project, and 4,842 completing a visit 

during the seventh to ninth years. A total of 4,074 individuals had three visits, with a total 

average follow-up of seven years. 

 

4.2.2 Screening and follow-up  

 

Participants were interviewed during the first visit to collect detailed socio-demographic 

information, medical and family history, lifestyle, health behaviors (smoking, drinking, coffee 

intake, etc.), and medications taken. Anthropometric measures (height, weight, and waist 

circumference) and resting blood pressure were determined. Blood samples were collected by 

venipuncture after an overnight fast of at least 12 h at each visit.  Urine specimens were only 

collected at the third visit, in 95% of the participants. Blood tests included serum creatinine, 

blood urea nitrogen [BUN], uric acid, glucose, hemoglobin A1c (HbA1c), and lipid levels. At the 

third visit, urine dipstick proteinuria and microalbuminuria were determined (Clark, et.al, 2011).   
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4.2.3 Definitions 

 

Diabetics were defined according to the guidelines of the American Diabetes Association 

as individuals with either  HbA1c ≥ 6.5 %, or fasting plasma glucose (no caloric intake for at least 

8 h) ≥ 126 mg/dl (7.0 mmol/L), or on anti-diabetic therapy, or when they reported a diagnosis of 

diabetes.  Blood pressure (BP) was measured using a calibrated desktop sphygmomanometer 

after at least 5 minutes of supine rest. BP was measured three times at intervals of at least 5 

minutes, and the reported BP was the average of the last two measurements. Volunteers were 

classified as hypertensive when BP was ≥ 140 mmHg systolic or ≥ 90 mmHg diastolic, or when 

they reported taking antihypertensive medication. Obesity was defined as BMI (body mass 

index) ≥ 30 kg/m2, according to the World Health Organization’s definition. Abdominal 

circumference was considered high when it was >94 cm for men and >80 cm for women.  

Metabolic syndrome was defined according to the International Diabetes Federation (IDF) 

guidelines (Alberti, et.al, 2006).   

Participants whose albuminuria ranged from 3 to 30 mg/dl and whose proteinuria on a 

urinary spot test was < 30 mg/dl were classified as microalbuminuric, while individuals with 

proteinuria > 30 mg/dl at urinary spot test classified were classified as having 

macroalbuminuria. Cigarette smoking was defined as at least 10 cigarettes a day for a year. 

Previous cardiovascular (CV) events included coronary heart disease, heart attack, heart failure, 

or stroke, and were self-reported. Total cholesterol ≥ 200 mg/dl, triglycerides ≥ 130 mg/dl, LDL 

cholesterol (LDL-cholesterol)≥ 110 mg/dl, and uric acid serum levels ≥ 6 mg/dl (360 µmol/L) for 
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women and ≥ 7 mg/dl (420 µmol/L) for men were considered high. HDL cholesterol (HDL-C) < 

40 mg/dl for men and < 50 mg/dl for women was considered low.  

 

4.2.4 Genotype Data 

 

Genome-wide markers assayed on a combination of Affymetrix platforms (500K and 1.0) 

(http://www.affymetrix.com ) and imputed using HapMap2 samples as a reference, were used 

to calculate a genetic risk score from a list of 18 published loci found to be associated with CKD 

(Köttgen, et.al, 2012, Böger, et.al, 2011). Sixteen of the loci were available for analysis and 

ultimately 13 loci that were found to have the same direction of association with CKD in the 

SardiNIA sample were included: rs13538, rs347685, rs626277, rs881858, rs1731274, rs4744712, 

rs11959928, rs17319721, rs1260326, rs10109414, rs13038305, rs2467853, and rs12917707 

(Table 3). For each locus, dosages were coded so that a value of 0 indicated the presence of no 

risk alleles, 1 indicated the presence of one risk allele, and 2 indicated the presence of two risk 

alleles. Dosages were added for the 13 loci to create a composite measure with a possible 

range of 0-26. More complicated genetic risk scores were explored, employing weights based 

on their strength of association with each outcome. These scores yielded smaller p-values in the 

association models, but for ease of being able to interpret the risk per 1 additional risk allele, 

the simple score is presented. 

 

  

http://www.affymetrix.com/
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4.2.5 CKD classification and measures of kidney function 

 

CKD was defined as eGFR <60 mL/min/1.73 m2 and/or eGFR >60 ml/min/1.73 m2 with 

kidney damage, and was staged according to the KDOQI classification (Levey, et.al, 2005). 

Kidney damage was quantified by albuminuria (micro or macro), and decreased kidney function 

was quantified by eGFR assessed by serum creatinine (sCr) concentrations (Levey, et.al, 2005). 

The Chronic Kidney Disease Epidemiology Collaboration (CKD-Epi) formula was employed in all 

association models because it is considered to be best to estimate GFR in general population-

cohort studies (Wieneke, et.al, 2010). We also did estimation of GFR with MDRD 175 study 

equation to facilitate comparisons with the other surveys. 

 

4.2.6 Calibration of serum creatinine 

 

Measurements of sCr in the SardiNIA Laboratory (NIALab) were performed with a kinetic 

alkaline picrate assay at the first and third visits, but using different instruments, a Bayer 

Express Plus Chemistry Analyzer at first visit and a Biosystem A25 Chemistry analyzer at third 

visit. Calibration was done (Selvin, et.al, 2007) to estimate correctly the prevalence of kidney 

disease in the study cohort, to assess rates of change in kidney function, and to compare the 

data to other surveys. Calibration was carried out by assaying 109 randomly chosen, thawed 

samples from the first visit at the Central Laboratory of the Brotzu Hospital (CLB), Cagliari, Italy, 

where sCr measurements were performed with an Olympus analyzer (Olympus Mishima Co., 

Ltd., Shizuoka, Japan), using Jaffe’s kinetic method. The creatinine concentration for the serum 

calibrator was traceable to the IDMS method.  
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A total of 63 randomly chosen specimens were also sent from the CLB to the NIA Lab for 

the measurement of sCr values using the same instrument that had been used for the third visit 

analysis. Extreme outliers (difference > 3 standard deviations, SDs, from the mean) were 

excluded because they would not contribute useful information to the calibration. Deming 

linear regression (Y = CCRL on X = original serum creatinine) was conducted for each survey to 

correct the regression models for measurement error (Selvin, et.al, 2007).  

Two calibration equations were generated from the results and applied accordingly: 

1) First/second visit: y (CLB) = -0.107+ 1.066*Creatinine NIALab 

2) Third visit: y (CLB) = -0.195+ 1.0977*Creatinine NIALab 

After standardization, we compared sCr values in subgroups of individuals in the same age 

range (20- 40 yr) and found that no statistically significant differences (Figure S4.1). 

 

4.2.7 Statistical Analyses 

 

Quantitative data are presented as the mean ± SD, and categorical data are presented 

as percentages. Differences between groups were examined using chi-square statistics for 

categorical variables.  

The unadjusted odds ratios (OR) between risk factors and CKD were calculated using 

univariate logistic regression analysis, whereas the adjusted OR was calculated by multivariable 

logistic regression analysis, accounting for family membership by using generalized estimating 

equation methods. P-values less than 0.05 were considered significant.  All parameters that 
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were significant (p<0.10) in univariate regression models were entered into a full multivariable 

model. In instances in which variables were known to be strongly correlated to one another 

(e.g., glucose and diabetes) only the one with the strongest association was included in the final 

model. Final multivariable models included predictors that were significant at the p<0.10 level. 

Because it is possible that variable that were not significant in the univariate models could 

become significant predictors in the multivariable models (Simpson’s Paradox), we examined all 

combinations of multivariable models and this was not found to be the case. We evaluated 

both the continuous and categorical variables, and since results were very similar, the 

categorical variables are shown for ease of interpretation. 

 

4.2.8 Definition of Decline in eGFR 

Changes in eGFR during the study were assessed in individuals for whom measurements 

at all three visits were available. Linear regression was employed to determine the slope for 

each individual. These models imposed a linear rate of decline on each individual, which was a 

close estimation for most individuals (Figure S4.1) and allowed for a single value estimate for 

use in later association models. Linear mixed models, accounting for family membership as a 

repeated variable with compound symmetry covariance, were used to examine the association 

between known risk factors (including a genetic risk score) and change in eGFR (slope).  

Individuals were defined as having a “fast decline” in eGFR if their slope was steeper 

than -13.18 ml/min over the 6 years of follow-up, as this value indicated that these individuals 

had a decline greater than one SD below the mean. Clinical and genetic risk factors were 
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examined by logistic regression to determine their association with classification as “fast 

decline”. All analyses were performed using SAS 9.3 software (SAS, Cary NC).  

 

4.2.9 Methodological considerations for cross study comparisons  

 

To date, our cohort is one of the largest European cohorts to have been investigated 

using the CKD-Epi eGFR formula. For the first time, a genetic risk score for CKD was tested in a 

general population. The SardiNIA study cohort differs in ethnicity from the NHANES, HUNT II, 

Beijing, and INCIPE cohorts. Like the HUNT II and NHANES studies, we enrolled a large, 

representative sample of pedigrees from the general population and achieved high 

participation and completion rates. In order to optimize the comparison of our cohort with the 

HUNT II and NHANES populations we used the same eGFR formulas and stratified the data by 

age. Therefore, prevalence rates of CKD can be compared, although the very low prevalence of 

CKD stage 4 and 5 described here may be biased by an underestimation of sicker individuals, 

whose participation in the study tended to be curtailed.   

Calibration of sCr assays included a correction factor similar to that employed in the 

NHANES and HUNT II analyses (Selvin, et.al, 2007, Hallan, et.al, 2006). With this correction, the 

MDRD 175 formula and the CKD-Epi formula can be considered unbiased in the cohort. The 

precision of the CKD-Epi equation is limited as compared to measured GFR, but the formula 

corrects the bias of previous formulas in the classification of normal and mildly decreased eGFR 

groups (Skali, et.al, 2011).  Using the MDRD study equation we avoided biases comparing our 

eGFR results versus the results of the other cohorts or populations. 
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The SardiNIA project was not designed as an epidemiological study of  CKD, and in 

addition to the lack of determinations of micro-macroalbuminuria and ACR ratio in the first visit 

(see above), quantitative determination of microalbuminuria  was evaluated only qualitatively 

by dipstick (albustick), and only once.  Consequently, the prevalence of micro-macro-

albuminuria and stages 1 and 2 CKD may have been overestimated.  In order to  reduce any 

overestimation of albuminuria, which is the strongest risk factor for CKD progression and thus 

for the development of cardiovascular disease(Sarnak, et.al, 2003), subjects were defined as 

being affected by microalbuminuria when values were  greater than 3 mg/dl, in both genders. 

Encouragingly, the prevalence of persistent microalbuminuria was   also higher than 

macroalbuminuria in CKD stages 1 and 2 in the NHANES study (Coresh, et.al, 2007). 

 

4.3 Results 

4.3.1 General Demographic Characteristics of the SardiNIA study cohort 

 

This cohort was representative of the regional population in Ogliastra with regard to 

mean age (43.7, SD 17.6), gender (58% female), and age groups, as per the National Census 

data shown in Figure S4.2 (Pilia, et.al, 2006). At the third visit, after a median of seven years of 

follow up, 4,842 individuals were examined. As shown in Table 4.1, from the first to the third 

visit, the prevalence of all traditional risk factors increased.  
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4.3.2 Longitudinal renal function evaluation   

 

As expected from the increasing age of the cohort, mean eGFR was lower at the third 

visit in the whole population: 98.6 ml/min (SE 19.3) compared to the first visit 104.6 ml/min (SE 

20.7, p= 0.001). Therefore individuals in the normal renal function group decreased while 

individuals in the mild, moderate, and severe groups increased (Figure 4.1).  The average 

decline in renal function evaluated by eGFR during the follow-up period was approximately 1 

ml/min/year among the 4,074 individuals that completed all three visits (Figure 4.2). 

 

4.3.3 Prevalence of albuminuria and CKD 

 

We evaluated the prevalence of CKD at the third visit. The proportions of individuals 

with micro- and macro-albuminuria were 9.5 % and 3.4%, respectively. The overall estimate of 

CKD stages 1 to 5 was 14.5%. The specific prevalence of CKD for each stage was: 7.4% for CKD 

stage 1,  4.1% for CKD stage 2,  2.9% for CKD stage 3, 0.07% for CKD stage 4, and 0.05 for CKD 

stage 5 (Figure 4.1). The overall prevalence of CKD among men was 12.9% whereas it was 15.4% 

among women (Table S4.1). The general trend toward higher prevalence of CKD stages 1 and 2 

over time differed among age categories. Consistent with expected aging trends, the proportion 

of individuals in stage 1 was higher in the younger age group, i.e., below 30 years of age (> 

10%), compared to 7.0% in the 30-39 year-old group and 5% in the 40-49 year-old group (Table 

S4.1). Total prevalence of CKD increased among age categories from 12.7% in the 50-59 year-

old group, to 16.3% in the 60-69 group, to 36.5% in the 70-79 group, to 48.1% in the over eighty 

group. The highest prevalence of CKD was observed in individuals affected by diabetes (35.3%), 
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hypertension (27.9%), high BMI (22.8%), hyperuricemia (28.4%), and metabolic syndrome 

(27.9%). The lowest CKD prevalence, i.e., 8.5%, was observed in individuals who had none of 

the risk factors listed above (Table S4.1). 

 

4.3.4 Comparison of SardiNIA study results with NHANES (1988-1994 and 1999-2004), HUNT II 

and Beijing study results  

 

To compare our population to the other populations we used CKD prevalence data 

obtained by the MDRD 175 formula stratified by age. SardiNIA’s CKD prevalence was about the 

same as NHANES (16.1 vs 16.5) and Beijing (12.4 vs 11.2), higher than in the HUNT II (16.1 vs 

11.2), and lower than NHANES 1999-2004 (16.8 vs 20.3), although these were next tested for 

statistically significant differences (Table 4.2).    

Similar results can are seen by taking into account kidney function, grouped as normal, 

mildly reduced, moderately reduced, and severely reduced, and stratifying by age.   The 

Sardinian cohort included significantly more individuals with normal renal function than 

Americans (54.4% vs 51.9% in NHANES 1988-1994 and 52.7% vs 40.7% in NHANES 1999-2004) 

and fewer than in the  HUNT II (52.6% vs 56.7%) and Beijing (56.3% vs 64.7%) studies. The 

opposite trend was evident for mildly reduced and moderately reduced eGFR, and no 

significant differences were observed for severely reduced eGFR (Table 4.2).  
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4.3.5 Risk factors associated with CKD 

 

In univariate analysis, we evaluated 15 variables and found that all of them were 

significantly associated with the presence of CKD, except for smoking, major lipid profile, and 

cortical thickness. In the final reduced multivariable model, older age (per 10 years, OR= 1.31), 

female gender (OR= 1.28), diabetes (OR=1.48), and genetic risk score (per 1 risk allele, OR = 

1.07) were independently associated with CKD. High uric acid (OR= 1.28, p= 0.06) and abnormal 

kidney length (OR= 1.26, p= 0.06) showed an association trend with CKD (Table 4.3).  

4.3.6 Risk factors associated with change in eGFR 

 

In univariate analysis, only smoking, low HDL-C, and cortical thickness were not 

significantly associated with decline in eGFR. In the final reduced multivariable model, baseline 

eGFR (per 10 ml/min, - 0.52 ml/min), age (-3,5 ml/ min), male gender (1.23 ml/ min), diabetes (-

3.13 ml/ min), hypertension (-1.69 ml/ min), high uric acid (-1.36 ml/ min), and genetic risk 

score (per 1 risk allele, - 0.23 ml/min) were associated with a change in  eGFR (data are 

expressed in ml/ min per 10 years) (Table 4.4). 

In univariate analysis of the dichotomous outcome of fast decline of eGFR (-2.3 

ml/min/year) and the predictors listed above as the independent variables, only smoking, lipid 

profile and cortical thickness were not significant in the multivariable model, whereas previous 

cardiac disease only showed marginally significant positive trend (p=0.06). In the final reduced 

multivariable model, age (per 10 years, OR= 1.67), female gender (OR=1.39), hypertension 

(OR=1.58), high uric acid (OR=1.97) and genetic risk score (per 1 risk allele, OR= 1.05) were 
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significantly independently associated with a faster decline of eGFR, whereas diabetes (p=0.11) 

was not (Table 4.4). 

 

4.4 Discussion 

 

Assessed for the first time in a European founder population, CKD prevalence and 

geographical variability have been confirmed. It is likely the rapid increase of traditional risk 

factors has contributed to the high prevalence of early stages of CKD.  We also present 

evidence for additional clinical risk factors, especially hyperuricemia and ultrasound renal 

length, but not renal cortical thickness. This result counters to what has been reported in a 

small group of patients with advanced stages of CKD and GFR estimated by Cockcroft-Gault and 

MDRD 186 formulas (Beland, et.al, 2010). Instead, in our work, these two parameters have 

been tested for the first time as risk factors in such large sample of pedigrees from a general 

population versus early stages of CKD and with GFR estimated by CKD-Epi formula. For the first 

time we have also shown that a genetic renal risk score supplies an independent risk factor for 

CKD and fast eGFR decline.  

The cross-sectional CKD prevalence was high (14.6%) in the SardiNIA cohort, although 

the population was relatively young (mean age 49.8 ys). Early stages of CKD were the most 

represented (CKD 1 + 2: 11.3%), which corresponds to the high prevalence of proteinuria 

(12.8% in the whole cohort). The prevalence estimate might be reduced if we had used ACR to 

detect proteinuria and did urinalysis more than once; but it seems more likely that the high 

level of early CKD stages reflected an increasing level of risk factors (i.e., diabetes, obesity) as a 
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more American lifestyle/diet has been adopted, mainly in the last 10 years (Table 4.1).  

Furthermore, based on the level of early CKD, the percentage of individuals with eGFR < 60 

ml/min is expected to rise in the future (and may already be underestimated because patients 

affected by chronic disease tend to participate less in repeated follow-up visits). Further 

understanding of the interactions between obesity, metabolic syndrome and CKD could 

represent a potential strategy to reduce end stage renal disease (ESRD) in the future.    

In addition to using the CKD-Epi formula, as recommended (Skali, et.al, 2011), we also 

applied the MDRD 175 formula to compare SardiNIA to other large cross-sectional CKD studies. 

Accepting the first-order accuracy of overall estimates, all the populations compared showed a 

greater CKD prevalence in females (15.4%) than in males (12.9%).  Data stratified by age 

showed CKD prevalence in the SardiNIA study similar to to the comparably rural population in 

Beijing – 2008 (12.4% vs 11.2%) and to NHANES 1988-1994 (16.1% vs 16.5%), but lower than 

NHANES 1999-2004 (16.8% vs 20.3%) and higher than HUNT II (16.1% vs 11.2%) (Table 4.2). 

These differences likely result from a combination of factors.  Looking at general risk factors, for 

example, the results are consistent with the higher and increasing prevalence of diabetes and 

metabolic syndrome in the NHANES American population; however, Norwegians have by far 

the highest prevalence of hypertension, often a major cause of ESRD, but had the lowest 

prevalence of CKD.  Differences across the world may also depend on additional parameters 

that have not yet been assessed, including environmental and hormonal factors, genetic 

variation (see below), and even differences in health policy, particularly screening programs 

that can differentially affect awareness, treatment, and control (Zoccali, et.al, 2010).  
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Longitudinal analysis of data in the 4,074 individuals who performed all 3 visits showed 

an overall reduction in mean eGFR. In a mean of 7 years of follow-up, individuals with normal 

renal function decreased, whilst there was a consistent increase in the prevalence of mildly and 

moderately reduced eGFR.   This was partially expected as a result of aging (Prakash, et.al, 

2009) of the cohort with the increased prevalence of clinical risk factors.  In particular, diabetes, 

a major cause of ESRD in developed countries, showed an increase of almost 100%. It was an 

independent risk factor for CKD and its presence was associated with a significant additional 

change in eGFR (-3.13 ml/m’/yr). However it was not a predictor of fast eGFR decline, probably 

because of the high prevalence of CKD stage 1; in early stages of diabetic nephropathy 

glomerular hyperfiltration is observed, resulting in a misleading “improvement” of renal 

function. 

Also, Obesity had an increasingly high prevalence (18.2%), especially compared to the 

Italian mainland population (8-10%) (Eurostat, 2011). As suggested by Zoccali et al, obesity can 

amplify the cost of CKD, hypertension, diabetes, and cardiovascular disease consuming a large 

fraction of healthcare resources (Zocalli, et.al, 2010). However, its correlation with CKD did not 

remain significant in multivariable analysis. Hypertension, the other main cause of ESRD in 

developed countries. Hypertension increased in prevalence weakly and was associated with fast 

eGFR decline. However hypertension was not an independently significant risk factor for CKD. 

This is again most likely because CKD stages 1-2, the most prevalent in SardiNIA, are 

characteristically associated wth proteinuric conditions like diabetes and obesity, whilst 

hypertensive nephroangiosclerosis is associated with more advanced renal damage. Moreover, 

in contrast to what was observed in Africans, Caucasians show greater response to ACE 
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inhibitors (Materson, et.al, 1993), and better control of hypertension might have weakened its 

correlation to CKD. 

Ultrasound renal length, according to other studies and in our experience, is strongly 

associated with CKD when advanced renal damage is present (Sanusi, et.al, 2009). Using a 

restrictive cut-off for renal length (< 10 cm) we observed a correlation with CKD and eGFR 

decline. Hyperuricemia has not been extensively assessed in published surveys, but the 

prevalence was high in SardiNIA.  The correlation of uric acid with CKD and with fast eGFR 

decline was significant, suggesting it as a risk factor. Experimental and clinical studies have 

indicated that elevated uric acid can itself lead to kidney disease without deposition of uric acid 

crystals. Glomerulosclerosis, interstitial fibrosis and arteriolar disease without intrarenal urate 

crystals are the principal lesions in rats with elevated uric acid levels (Kang, et.al, 2002, Mazzali, 

et.al, 2001). Uric acid may thus be implicated in renal disease in human, and lowering its blood 

levels may slow disease progression, especially in patients with hyperuricemia (Mazzali, et.al, 

2001, Siu, et.al, 2006, Kanbay, et.al, 2007).  It remains to be further documented whether uric 

acid is a general independent biomarker of early renal damage and possible prognosis of 

progression (Feig, et.al, 2008). 

For the first time in a study on CKD prevalence and on the longitudinal renal function 

conducted in a general population, we have further tested a risk score to assess the relevance 

of genetic factors. A multivariable model inclusive of traditional risk factors and other measures 

associated with CKD showed that the genetic renal risk score, based on 13 published loci 

associated with CKD, was independently associated with outcomes. An individual with one 
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additional risk allele had a 7% higher odds of having CKD, a greater decline in eGFR (-0.23, p= 

0.004), and 5% increased odds of fast eGFR decline. Although these estimates are relatively 

modest for 1 additional risk allele, when one takes into account the range of data in the cohort 

(6-24), risk increases are quite substantial: 337% higher odds of CKD, -4.14 greater decline in 

eGFR over 10 years, and 240% higher odds of “fast decline”.  Further work is required to cross-

compare the reproducibility of results in Sardinia and in other ethnicities, and to refine 

predictive models for clinical use based in effect sizes of individual genetic loci. 
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Table 4.1: Demographics and CKD Risk Factors for the SardiNIA Study, by Wave * 

Variable 

Total Sample Individuals in All Three Visits (n=4,074) 

Wave 1 
(n=6,162) 

Wave 2 
(n=5,204) 

Wave 3 
(n=4,842) 

Trend Test 
or Χ2 p-value 

Wave 1 Wave 2 Wave 3 
Trend Test 

or Χ2 p-value 

Categorical Measures:        
   Age (years, %):         
      < 20 
      20 – 39 
      40 – 59 
      60 – 69 
      70 +  

8.8 
37.0 
33.4 
12.4 
8.4 

3.6 
34.3 
37.3 
13.8 
11.0 

0.7 
30.6 
40.1 
15.4 
13.2 

< 0.0001 

7.04 
37.78 
37.33 
12.86 
4.98 

3.04 
34.00 
39.74 
14.58 
8.64 

0.00 
28.62 
41.26 
16.47 
13.65 

< 0.0001 

   Male (%) 42.6 41.8 42.3 0.64 41.5 41.5 41.5 - 
   Smoking (%) 17.0 21.4 23.7 < 0.0001 17.7 21.9 24.3 < 0.0001 
   Metabolic syndrome (%) 6.3 6.8 13.1 < 0.0001 7.6 9.6 19.3 < 0.0001 
   Obesity (%) 15.7 16.7 18.1 < 0.0001 14.8 16.3 18.6 < 0.0001 
   Large waist (%) 39.6 43.5 49.2 < 0.0001 39.3 43.2 50.1 < 0.0001 
   Diabetes (%) 5.2 7.4 9.1 <0.0001 3.7 6.4 9.2 < 0.0001 
   High glucose (%) 3.8 4.4 6.2 <0.0001 2.7 3.5 6.3 < 0.0001 
   Hypertension (%) 29.9 31.8 32.0 <0.0001 28.1 31.1 34.4 < 0.0001 
   High Blood Pressure (%) 25.5 24.9 22.1 0.22 24.2 24.9 24.5 0.73 
   Previous cardiac disease (%) 4.2 4.7 5.6 < 0.0001 3.56 4.22 5.94 < 0.0001 
   High uric acid (%) 13.2 15.0 16.9 <0.0001 12.0 14.5 17.1 < 0.0001 
   High total cholesterol (%) 56.2 55.7 63.7 < 0.0001 58.1 57.3 65.0 < 0.0001 
   High LDL (%) 66.2 67.2 76.3 < 0.0001 67.6 68.5 78.0 < 0.0001 
   Low HDL (%) 7.0 6.1 19.3 < 0.0001 6.0 5.7 20.1 < 0.0001 
Continuous Measures, mean (sd):        
   Age (years) 43.7 (17.6) 46.9 (16.8) 49.7 (16.3) < 0.0001 43.3 (15.8) 46.7 (15.8) 50.7 (15.8) < 0.0001 
   BMI 25.3 (4.7) 25.6 (4.6) 25.9 (4.7) < 0.0001 25.4 (4.5) 25.6 (4.5) 26.1 (4.7) < 0.0001 
   Waist circumference (cm) 84.8 (13.2) 85.6 (12.5) 87.2 (12.3) < 0.0001 84.5 (12.8) 85.4 (12.4) 87.3 (12.2) < 0.0001 
   Glucose (mg/dl) 90.1 (23.7) 90.8 (23.3) 98.3 (25.0) < 0.0001 88.7 (20.7) 89.9 (21.7) 98.8 (24.6) < 0.0001 
   Sys Blood pressure (mm/Hg) 125.6 (18.6) 124.5 (17.9) 119.4 (26.0) 0.23 124.9 (17.6) 124.6 (17.4) 125.4 (18.9) 0.26 
   Uric Acid () 4.3 (1.5) 4.5 (1.5) 4.6 (1.4) < 0.0001 4.2 (1.4) 4.4 (1.5) 4.6 (1.4) < 0.0001 
   Total Cholesterol (mg/dl) 208.5 (42.2) 206.9 (38.9) 215.3 (40.3) < 0.0001 210.0     41.0 208.0 (38.7) 216.6 (40.0) < 0.0001 
   LDL Cholesterol (mg/dl) 126.8 (35.4) 125.7 (32.7) 135.5 (34.6) < 0.0001 127.8    34.7 126.8 (32.5) 136.9 (34.3) < 0.0001 
   HDL Cholesterol (mg/dl) 64.1 (14.9) 63.0 (13.7) 56.8 (14.1) < 0.0001 64.7    14.8 63.3 (13.5) 56.8 (14.2) < 0.0001 
   Triglycerides (mg/dl) 88.1 (68.2) 91.4 (70.7) 115.3 (69.3) < 0.0001 87.7     69.7 89.9 (66.8) 114.9 (69.8) < 0.0001 
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Kidney Measures:         
   Reduced Length (<  10 cm) - - 18.1 -     
   Reduced Cortical Thick (< 10mm) - - 2.5 -     
   Microalbuminuria (%) - - 9.5 -     
   Macroalbuminuria (%) - - 3.4 -     

*Trend tests account for family clustering 
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Table 4.2: Prevalence of CKD stages and of kidney function categories, stratified by age in SardiNIA study cohort individuals aged 14 years or older based on 

third visit (SardiNIA 3) and compared to  NHANES 1988- 1994 and 1999- 2004, Beijing, and HUNT II populations (glomerular filtration rate estimated by MDRD 

175). 

 Prevalence of CKD (95% CI) 

CKD 1 CKD 2 CKD 3 CKD 4 TOT 

Not stratified  SardiNIA 3 (4,477) 5.5 (4.9- 6.2) 5.5 (4.9- 6.2) 4.0 (3.5- 4.7) 0.1 (0.0- 0.3) 15.2 (14.2- 16.3) 

 
 
 

Stratified 

SardiNIA 3 5.6 (4.9- 6.4) 5.7 (5.0-6.5) 4.6 (3.9 – 5.4) 0.1 (0.0- 0.3) 16.1 (14.9 – 17.4) 

NHANES 1988-1994 (14,319) 4.2 (3.9- 4.5) 4.8 (4.4- 5.2) 7.1 (6.7- 7.5) 0.3 (0.2- 0.4) 16.5 (15.8- 17.1) 

SardiNIA 3 5.6 (4.9 – 6.4) 6.0 (5.3 – 6.9) 5.0 (4.3 -5.8) 0.1 (0 – 0.3) 16.8 (15.5 – 18.1) 

NHANES 1999- 2004 (12,216) 4.0 (3.6- 4.3) 5.5 (5.1- 5.9) 10.2 (9.6- 10.8) 0.6 (0.5- 0.8) 20.3 (19.5- 21.1) 

SardiNIA 3 5.5 (4.8- 6.3) 5.9 (5.1 – 6.6) 4.6 (4.0 – 5.4) 0.1 (0.0–0.3) 16.1 (14.9 – 17.4) 

HUNT II (65,181) 3.1 (3.0- 3.2) 3.4 (3.3- 3.5) 4.5 (4.3- 4.7) 0.16 (0.13- 0.19) 11.2 (10.9- 11.5) 

SardiNIA 3 5.5 (4.8- 6.3) 4.5 (3.9- 5.2) 2.4 (2.0- 2.8) 0.1 (0.0- 0.2) 12.4 (11.4- 13.4) 

Beijing(13,925) 5.5 (5.2- 6.0) 3.8 (3.5- 4.2) 1.7 (1.5- 2.0) 0.1 (0.1- 0.2) 11.2 (10.7- 11.8) 

 Kidney function (MDRD eGFR), mL/min/1.73 m2 

Normal  (≥ 90) % 
Mildly reduced  

(60- 90) % 
Moderately reduced 

(30- 60) % 
Severely reduced  

(15- 30) % 

Not stratified  SardiNIA 3 53.4 (51.3- 55.5) 42.6 (40.7- 44.5) 4.0 (3.4- 4.6) 0.1 (0.0- 0.2) 

 
 
 

Stratified 

SardiNIA 3 (4,731) 54.4 (52.2- 56.7) 41.0 (39.1- 42.9) 4.5 (3.8- 5.2) 0.2 (0.1- 0.4) 

NHANES 1988-1994 (15,488) 51.9 (50.7 – 53.1) 42.4 (41.3- 43.5) 5.4 (5.0- 5.8) 0.21 (0.14- 0.29) 

SardiNIA 3 52.7 (50.6- 54.9) 42.3 (40.4- 44.2) 4.9 (4.2- 5.7) 0.2 (0.1- 0.4) 

NHANES 1999- 2004 (13,233) 40.7 (39.6- 41.8) 51.2 (50.0- 52.5) 7.7 (7.2- 8.2) 0.35 (0.25- 0.46) 

SardiNIA 3 52.6 (50.6- 54.7) 42.8 (40.9- 44.7) 4.5 (3.8- 5.2) 0.2 (0.1- 0.3) 

HUNT II (65,181) 56.7 (56.1- 57.3) 38.6 (38.1- 39.1) 4.5 (4.3- 4.7) 0.16 (0.13- 0.19) 

SardiNIA 3 56.3 (54.6- 59.1) 40.9 (39.0- 42.8) 2.3 (1.9- 2.7) 0.1 (0.0- 0.2) 

Beijing 64.7 (63.4- 66.1) 33.4 (32.4-34.4) 1.8 (1.5-2.0) 0.1 (0.1- 0.2) 
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Figure 4.1: Prevalence of Chronic Kidney Disease in SardiNIA defined by eGFR alone and by NHANES, by wave 
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Mildly Reduced (60 ≤ eGFR < 90 ml/min, %)

Moderately Reduced (30 ≤ eGFR < 60 ml/min, %)
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Stage 5 CKD                                 
( eGFR < 15 ml/min, %)
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Figure 4.2: Histogram of Change in eGFR 
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Table 4.3: Previously Identified Genetic Loci used in SardiNIA Risk Score for eGFR, with Univariate Beta Estimate from SardiNIA Data. 

Marker Chr Position 
Risk 

Allele 
Gene SardiNIA β CKD-Gen β Comments 

Identified in Köttgen, 2009 

   rs12917707 16 20,275,191 G UMOD -0.3701 -1.02 
Familial juvenile hyperuricemic nephropathy type 1 (FJHN1) & 
medullary cystic kidney disease type 2 (MCKD2) 

   rs17319721 4 77,587,871 A SHROOM3 -0.4081 -1.01 
A susceptibility gene for kidney disease in an obese mouse model 
of type II diabetes 

   rs2467853 15 43,486,085 G 
SPATA5L1-

GATM 
-1.0190 -1.01 SNPs in region association with renal tumors 

   rs13038305 20 23,558,262 C CST3-CST9 -0.0084 +1.07 
SNPs in region associated with kidney function and endocrine-
related traits 

   rs1731274 8 23,822,264 A STC1 -0.2326 -1.02 May play a role in regulation of renal and intestinal calcium 

     
 

 

Identified in Böger, 2011 

   rs11959928 5 39,375,121 A DAB2 -0.5816 N/A May modulate growth factor/Ras pathways 

   rs626277 13 72,347,446 A DACH1 -0.4470 N/A 

Regulates gene expression and cell fate determination during 

development. Expression of this gene is lost in some forms of 
metastatic cancer, and is correlated with poor prognosis. 

   rs10109414 8 23,750,901 C STC1 -0.3411 N/A May play a role in the regulation of renal and intestinal calcium  

   rs13538 2 73,868,078 A NAT8 -1.7967 N/A 
Specifically expressed in kidney and liver. May affect cell 
adhesion and gastrulation movements. 

   rs1260326 2 27,730,690 C GCKR -0.1417 N/A 
Considered a susceptibility gene candidate for a form of maturity-
onset diabetes of the young (MODY) 

   rs4744712 9 71,434,457 A PIP5K1B -0.4639 N/A May be involved in stable platelet adhesion 

   rs881858 6 43,806,359 A VEGFA -0.2690 N/A 
Mutations in this gene have been associated with proliferative 
and nonproliferative diabetic retinopathy 

   rs347685 3 141,806,887 A TFDP2 -0.6510 N/A Transcriptional activation of cell cycle regulated genes 
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Table 4.4: Multivariable Odds Ratios for CKD (NHANES definition) at Visit 3* and Decline in eGFR during study N=4,273 

Measure (yes/no) Odds of CKD Additional change in eGFR 
(ml/min) 

Odds of Fast Decline 

OR (95% CI) P-value Estimate per 10 
year 

P-value OR (95% CI) P-value 

Baseline eGFR (per 10 
ml/min) 

- - -0.52 <0.0001 - - 

Age (per 10 years) 1.31 (1.22 – 1.40) <0.0001 -3.5 <0.0001 1.67 (1.44 – 1.95) <0.0001 
Male (yes/no) 0.72 (0.56 – 0.91) 0.006 1.23 0.0007 0.61 (0.47 – 0.76) <0.0001 
Diabetes (yes/no) 1.48 (1.10 – 2.00) 0.01 -3.13 0.01 1.64 (0.90 – 2.96) 0.11 
Hypertension (yes/no) - - -1.69 0.0003 1.58 (1.17 – 2.12) 0.003 
High uric acid (yes/no) 1.28 (1.00 – 1.67) 0.06 -1.36 0.03 1.97 (1.39 – 2.80) 0.0001 

Abnormal Kidney Length  
   (yes/no) 

1.26 (1.00 – 1.59) 0.06 - - - - 

Genetic Risk Score  
   (per 1 risk allele) 

1.07 (1.03 – 1.12) 0.001 -0.23 0.004 1.05 (1.003 – 1.10) 0.04 

* Accounts for family clustering 
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Figure S4.1: Plots of eGFR Decline with Age, by Individual, by Age Decade 
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Table S4.1: Comparison of Characteristics by CKD Status and Fast Decline Status 

Variable CKD (n=696) 
No CKD 

(n=4,146) 
Χ2 or T-test p-

value 
eGFR Decline > 
1 SD* (n=551) 

 eGFR Decline ≤ 1 
SD* (n=3,522) 

Χ2 or T-test p-
value 

Categorical Measures:    Categorical Measures:  
   Age (years, %):       
      < 20 
      20 – 39 
      40 – 59 
      60 – 69 
      70 +  

0.4 
21.0 
34.9 
17.4 
26.3 

0.8 
32.2 
41.0 
15.0 
11.0 

<0.0001 

8.5 
25.5 
37.5 
19.0 
9.5 

6.7 
39.7 
37.4 
12.0 
4.2 

< 0.0001 

   Male (%) 38.1 43.1 0.01 37.4 42.1 0.04 
   Smoking (%) 25.6 23.4 0.21 15.9 17.9 0.27 
   Metabolic syndrome (%) 30.0 20.1 <0.0001 15.4 9.4 <0.0001 
   Obesity (%) 23.6 17.2 0.0002 17.9 14.3 0.03 
   Large waist (%) 60.5 47.3 <0.0001 46.0 38.2 0.0003 
   Diabetes (%) 15.5 8.0 <0.0001 6.6 3.3 0.0002 
   High glucose (%) 10.6 5.5 <0.0001 5.1 2.3 0.0004 
   Hypertension (%) 44.5 29.9 <0.0001 40.0 26.2 <0.0001 
   High Blood Pressure (%) 28.7 21.0 <0.0001 34.8 22.6 <0.0001 
   Previous cardiac disease (%) 9.5 5.2 0.0003 5.5 3.5 0.03 
   High uric acid (%) 22.0 16.1 0.0004 16.9 11.2 0.0002 
   High total cholesterol (%) 66.3 63.3 0.14 62.6 57.4 0.02 
   High LDL (%) 77.0 76.2 0.66 69.4 67.4 0.35 
   Low HDL (%) 24.7 18.3 0.0002 5.1 6.2 0.32 
Continuous Measures, mean (sd):    Adjusted mean (se of mean): 
   Age (years) 56.0 (17.2) 48.7 (15.9) <0.0001 47.5 (0.50) 42.7 (0.19) <0.0001 
   BMI 26.9 (4.9) 25.7 (4.7) <0.0001 25.9 (0.19) 25.3 (0.07) 0.002 
   Waist circumference (cm) 89.7 (13.2) 86.8 (12.1) <0.0001 85.9 (0.52) 84.2 (0.20) 0.003 
   Glucose (mg/dl) 103.7 (33.5) 97.4 (23.2) <0.0001 92.0 (0.89) 88.3 (0.35) <0.0001 
   Sys Blood pressure (mm/Hg) 122.5 (27.0) 118.2 (25.8) <0.0001 129.5 (0.28) 124.3 (0.72) <0.0001 
   Uric Acid () 4.90 (1.61) 4.58 (1.38) <0.0001 4.42 (0.06) 4.20 (0.02) 0.001 
   Total Cholesterol (mg/dl) 216.1 (41.6) 215.2 (40.1) 0.58 212.1 (1.7) 209.7 (0.66) 0.19 
   LDL Cholesterol (mg/dl) 135.3 (34.8) 135.5 (34.6) 0.88 128.3 (1.5) 127.8 (0.56) 0.74 
   HDL Cholesterol (mg/dl) 56.7 (15.5) 56.9 (13.8) 0.74 64.5 (0.65) 66.2 (0.25) 0.01 
   Triglycerides (mg/dl) 121.4 (82.4) 114.3 (66.8) 0.03 87.5 (3.0) 88.2 (1.2) 0.84 
   Genotype Score 16.51 (2.3) 16.17 (2.3) 0.002 16.4 (0.11) 16.2 (0.04) 0.20 

* Adjusted for baseline eGFR and accounts for family clustering 
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Figure S4.2: Creatinine Calibration Plots for Wave 1 and Wave 3 
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Figure S4.3: Distribution of SardiNIA Sample Compared to Distribution of Population by Age in the Territory of Lanusei 
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CHAPTER V 

 

CONCLUSION 

 

 Due to the huge population age shift that the world is currently experiencing, our 

emphasis on disease prevention and management of chronic diseases needs to increase.  In 

2006, almost 500 million people worldwide were 65 and older. By 2030, that total is projected 

to increase to 1 billion, comprising approximately 1 in every 8 of the earth’s inhabitants 

(Dobriansky, et.al., 2007). The most rapid increases in the 65-and-older population are 

occurring in developing countries, which will see a jump of 140 percent by 2030 (Dobriansky, 

et.al., 2007). 

 The number of deaths due to chronic health conditions have superseded the 

number of deaths from communicable causes world-wide, but strikingly so in middle to high-

income countries, such as the United States (CDC, 2013). In high-income countries, 7 out of the 

10 leading causes of death are chronic health conditions and include: heart disease, cancer, 

chronic lower respiratory diseases, stroke/cerebrovascular diseases, Alzheimer's disease, 

diabetes, and nephritis/nephrotic syndrome/nephrosis. 
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In most instances, such as in cardiovascular diseases, diabetes, and kidney disease, 

damage has occurred to the individual’s health before there are clinical symptoms. The CARDIA 

study (Friedman, et.al, 1988) was designed to investigate the development of heart disease in 

black and white adults and has helped bring attention to the need for early recognition and 

intervention for heart disease. They have found that the early intervention can have lasting 

effects years into the future and are more beneficial than intervention at later ages (Lee DH, 

et.al, 2003).  

In order to develop better early recognition and intervention procedures for these 

chronic conditions, we must first understand more about the biological process of aging.  The 

goal of this dissertation was to develop a measure of aging, applicable to a wide range of ages. 

Further, it aimed to determine the genetic basis of this measure, in the hopes that genetic 

biomarkers could be discovered. With such measures available from the time of conception, we 

can begin to assess the potential value of incorporating such genetic risk biomarkers into 

individual-level health care. We are still just beginning to enter the age of personalized genomic 

medicine, but it’s possible that we can begin to incorporate the use of genetic information in 

the care of individual’s with specific diseases, such as chronic kidney disease. Therefore, this 

work also investigated the utility of adding a genetic risk score, along with the accepted clinical 

risk factors for CKD, in the prediction of the decline in kidney function.  

In the second chapter of this dissertation, I constructed two different measures of aging 

that showed moderate heritability. My method was quite novel compared to the approaches 

taken in the past, which have tended to focus on longevity among individuals of very advanced 

age, such as centenarians. Most of the previous research also used morality as the outcome 
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measure. Instead of using this approach, I examined adults aged 20 to 90 years of age and 

developed two measures of biologic age which were based on three easily measured 

physiologic indicators of health: serum creatinine, systolic blood pressure, and waist 

circumference. This biologic age was then compared to the individual’s actual age and the 

difference was then assessed for a genetic component. These difference measures can be 

interpreted as the number of years the individual is physically older or younger than the 

average person with the same physiologic measurement values. 

By using only three common measures, I was able to obtain data from five cohorts with 

genetic data on individuals of European ancestry. Data from the ARIC and FHS were obtained 

through dbGaP, while data from SardiNIA, TwinGene, and the TwinsUK came through 

collaboration channels. Data on over 33,000 individuals was available for phenotype 

development.  

The first estimation of biologic age was created by fitting a linear mixed model for each 

cohort to determine each individual’s predicted age, based on their physiologic health measure. 

The second estimate of biologic age incorporated the individual’s risk of mortality predicted by 

the same three physiologic measures. This risk of mortality was then compared to the country 

specific death risk reported from census data. Each individual was assigned a “risk” age that 

was equivalent to the census age that had the equivalent mortality risk.  

Upon investigation of the fitted models by cohort, it became apparent that the age 

distribution of sampled individuals had a strong influence on the ability to obtain the best 

model fit for the prediction of biologic age. The predicted age models fit best within the 
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SardiNIA cohort, which has a very large age distribution (included 20-90 year olds in the current 

study), while the mortality risk models were best estimated in cohorts with a larger proportion 

of older individuals that contained more deceased individuals, likely due to the use of 1-year 

mortality estimates.  

In order to assess the traits for a genetic component, heritability analyses were run 

among the related cohorts. Both traits were found to be moderately heritable with the lowest 

estimates seen for the risk age trait in FHS (h2=0.15), where there were few very old individuals, 

and in the SardiNIA study (h2=0.18), where there were only 234 deaths among the sample of 

nearly 6,000 individuals. Heritability estimates were highest for the risk trait among the twin 

studies (h2=0.86-0.90), but may be unreliable, due to the fact that the use of age at entry of the 

study was necessary in the models and twins typically entered at the same age. The predicted 

age differential showed more consistent heritability across the cohorts, especially when 

restricted to individuals between 45-65 years of age (the age range that was present in all 

cohorts), with estimates from 0.25-0.33 in the family pedigrees to 0.60-0.70 in the twin studies.  

In both cases, there was good evidence of a genetic component to the traits, so both 

traits were followed-up using genome-wide association methods, separately for four of the 

cohorts (ARIC, FHS, SardiNIA, and TwinsUK), and these results were meta-analyzed. GWAS is 

currently being run for the TwinGene cohort of approximately 10,000 individuals and these 

results will be used for replication.  

Based on past research of aging and evolutionary theory, we hypothesized that 

significant associations with the aging trait would be found within two broad classes of genes. 
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First, it would be very plausible to find associations with genes involved in controlling the levels 

of activities, such as DNA repair and antioxidant defense, thus regulating longevity. Secondly, 

genomic loci that contained late-acting deleterious genes that had escaped the force of natural 

selection or that traded benefit at an early age against harm at older ages, termed antagonistic 

pleiotropy, could be expected to be discovered (Kirkwood, 2008).  

One genome-wide significant association was detected in the meta-analysis for the 

predicted age differential and was located within the LRP1B gene on chromosome 2. We found 

that individuals with the minor allele for SNP rs10496861 (MAF=0.34 in our samples) had a 2-3 

year higher difference in predicted age compared to age (p=5.78 x 10-9) than an average 

individual in the same age decade.  

Past research, highlighted in Chapter III, has shown the LRP1B gene to be highly 

pleiotropic. The LRP1B gene is very large (1,900,279 bases) and produces 41 different known 

proteins. Previous studies have found association between this gene and phenotypes such as 

thyroid cancer, where risk was increased due to inactivation of the gene (Prazeres, 2010), and 

insulin-resistance (Burgdorf, 2012). Interestingly, another study on aging, that employed a very 

different study design, also uncovered associations between 3 SNPs in this same gene and 

successful aging without cognitive impairment (Poduslo, et.al, 2009). The SNPs in this previous 

study ranged in distance from our top hit by only 32 to 72 Kb. Bioinformatic investigation of our 

polymorphism showed it to alter expression levels of three other genes, LOC407835, MAP2K2, 

and SLC38A5.  
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The goal of the research in Chapter IV was to demonstrate the next step in taking 

experimental science findings to application. Working with the longitudinal data from the 

SardiNIA study, I created a genotype risk score for CKD based on loci found to be significantly 

associated with kidney function in two large meta-analyses of GWAS studies (Köttgen, 2009 and 

Böger, 2011). Thirteen loci from the total of eighteen published loci were available in the 

SardiNIA cohort and showed similar direction of association to that of the published meta-

analysis results. For ease of interpretation the thirteen loci were combined in an additive 

manner, so that association results can be interpreted as the effect of having one 1 additional 

risk allele.  

The genetic risk score was significantly associated with current kidney function and also 

future kidney function, after taking into account known clinical risk factors like diabetes and 

hypertension. First, the genetic risk score was predictive of baseline CKD status (OR=1.07 per 

one additional risk allele, p=0.001). More importantly, though, the risk score was also highly 

associated with future decline in kidney function over the study follow-up (β=-0.23 per one 

additional risk allele, over the following 10 years, p=0.004).  The risk score was also significantly 

associated with the odds of being a “fast decliner”, defined as having a decline in kidney 

function that was greater than 1 SD below the mean (or a decline more extreme than 2.3 

ml/min/year, OR=1.05 per one additional risk allele, p=0.04).  

Although these chapters have been presented as a complete project, there is much 

more to be done to make the findings useful in combating chronic disease burden.  GWAS are 

simply the first step in identifying regions of interest associated with specific phenotypes. The 

goal now is to determine which SNP is actually the causal SNP and to elucidate the functional 
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consequences more fully. Many times the top findings in a GWAS is close to the causal SNP, but 

may not be the exact polymorphism. To accomplish this, the next step should be an analysis of 

the rare variants within and around the LRP1B gene, either through the use of exome chip data, 

exome sequencing data, or potentially imputing the current data on the 1000 Genomes 

reference panel (http://www.1000genomes.org/), which contains rare loci. The Exome 

Sequencing Project data in dbGaP would be a good first place to explore, if the data is available 

to create the two aging traits. 

If publically accessible data is not available, then it would be worthwhile to begin further 

work by sequencing the exons the LRP1B gene both upstream and downstream of the hit. 

Because our variant was found within an intron, it is important to sequence 50 bp outside of 

each exon to be sure that the intron/exon borders are captured. If nothing is found in the 

immediate region, then targeted sequencing of the whole LRP1B gene would be necessary, 

being sure to include the promoter region (usually 2000 bp at the 5’ end). After attempting to 

find the variant with sequencing, if nothing is found then we should being looking into 

epigenetic explanation. There are many inexpensive assays available to quantify methylation of 

the gene. Also, gene-environment interactions and potential regulatory mechanisms should be 

explored.  

When the causal variant is determined, it would be useful to look at the associations 

between the genotypes and expression level of the gene. Since we know that the LRP1B gene is 

an eQTL loci for 3 other genes, expression levels of those genes should also be examined. If a 

sound mechanism can be hypothesized that is supported by this multi-pronged approach, then 

http://www.1000genomes.org/
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one could think about moving into animal models for testing the hypotheses. This should not be 

difficult for this particular gene, since it has homologues in six different well studied species.  

If the true mechanism for the association observed between the LRP1B gene and aging 

is actually related to endocytosis and autophagy as proposed in Chapter III, previous studies 

(Rubinsztein, 2011) have shown that it could be a target for pharmacological or genetic 

manipulations. In model organisms, these manipulations have demonstrated that stimulating 

autophagy often increases life span. Conversely inhibition of autophagy compromises the 

longevity-promoting effects of caloric restriction, Sirtuin 1 activation, inhibition of 

insulin/insulin growth factor signaling, or the administration of rapamycin, resveratrol, or 

spermidine. 

While much work remains to be done to discern the true mechanism and utility of the 

general aging findings discussed in Chapters II and III, the kidney risk score explored in Chapter 

IV could potentially begin to be explored in the clinical setting. Over the past 100 years great 

strides have been made in renal research to allow individuals with little or no kidney function to 

continue to live, but mortality rates remain high for individuals receiving dialysis. 

Until the 1940’s individuals with acute or chronic kidney function had no options and 

often died within days of their kidneys failing. John Abel is credited with having the first idea of 

an artificial kidney in 1914, but it took the personal investment and interest of many individuals 

(Abel, Rountree, Turner, Haas, Hess and McGuigan, Macallum, Lambert and Vogel, Thalheimer, 

Murray, Macneil and the Anthone twins, Kolff, Skeggs and Leonard, Alwall, Kiil, Rosenak and 

others less recognized were) to see the potential widespread clinical use, and Gordon 
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Murray, along with Delorme and Thomas, to construct an artificial kidney in Murray's basement 

with a personal investment of $8,000 in 1946 (Schreiner GE, 2000).  

Dialysis is expensive and in the 1960’s communities would often have bake sales and 

fundraisers to help raise money for friends or loved ones in need of dialysis. State coverage for 

care was very limited and the cause began to be picked up by the media. “The coverage 

extended from local weeklies to TV and Life Magazine: "Who shall live and who shall die?" The 

people and their families and their surrogate, the National Kidney Foundation, recognized the 

possibility of a "national" solution, and historically, several things converged at a national 

level.” (Schreiner GE, 2000). In 1972 President Nixon signed the bill that allowed patients with 

end stage renal disease (ESRD) to be classified as disabled and to be eligible for Medicare 

coverage, regardless of age. 

ESRD coverage by Medicare has extended countless lives, but has also created a large 

burden on society, from loss of individuals in the work force to increased Medicare spending. In 

the US, costs for the care of ESRD patients in 2009 rose 3.1% to $29 billion (USRDS, 2011). 

Mortality rates for patients with ESRD have been decreasing slightly due to work by researches, 

focused on improving patient care, but the rates are still very high (> 20% mortality/year in the 

US) and patients in the US receiving dialysis for renal replacement therapy have only a 34% 

survival rate after 5 years on treatment (USRDS, 2011). 

Individuals with CKD, who are not yet at end-stage of the disease, have much better 

survival and quality of life than individuals on hemodialysis, and are much less healthcare 
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expense. If we can identify these individuals earlier in the course of the disease, there is hope 

that many could live without ever having to begin dialysis.  

I feel the next step in trying to incorporate the genetic risk score into patient care 

should be a refinement of the measure, incorporating data from more cohorts. As mentioned, 

the score developed in this project was meant as a proof of concept and it is likely a more 

predictive measure could be created from the 13 SNPs not in linkage disequilibrium with each 

other. A possible refinement that should be more thoroughly explored is the use of weighting 

for each SNP in the score by its effect size. Another option would be to explore the use of 

principal component analysis to reduce the dimension from 13 separate variables in a 

meaningful way.  

After a suitable measure is created, we would need to test it utility, including sensitivity 

and specificity characteristics. This would be a very long term project if we started with a 

population from the general public, as development of CKD does not usually begin until well 

into adulthood. A more plausible study design may be to begin within a nephrology clinic that 

sees some patients who are still in the early stages of the disease and not yet requiring dialysis. 

If they could be genotyped and followed, monitoring their changes in kidney function over 

time, we may find that we can split the patients into those who we’d expect to see a faster 

decline and those who we expect a more gradual decline.  Then one could begin to customize 

treatment options specifically to this expectation and either be more or less aggressive in 

treating the other conditions that contribute to kidney disease. 
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The sample size for this follow-up project would need to be quite large, as there are a 

certain set of individuals who may not be as responsive to normal therapies and who may show 

no benefit. One possible study to approach with this objective is the Chronic Kidney Disease 

Surveillance Project, which is funded by the CDC and run out of the University of Michigan’s 

Kidney Epidemiology and Cost Center 

(http://www.sph.umich.edu/kecc/html/ckdsurveillance.html). This study was funded in order 

to pilot a National Surveillance System for Chronic Kidney Disease in the US. The study uses 

data from combined sources, such as the University of Michigan Health Center and Blue Cross 

Blue Shield of Michigan. Successful feasibility and pilot testing of the proposed system will allow 

the establishment of national CKD surveillance that will likely shape quality improvement, 

promote research and inform health policy related to CKD.  

In summary, work must continue in the area of genetics to help us better understand 

the etiology of chronic diseases and help us shape possible new treatments, in order to 

effectively manage the healthcare of our aging population structure. The findings in this 

dissertation have demonstrated that there are many ways to assess the genetic contributors to 

aging and specific aging-related diseases. Using multi-pronged methods will allow us to assess 

the quality of our findings, and hopefully in the near future, put them into practice to help save 

productive quality years of life for our elderly. 

 

  

http://www.sph.umich.edu/kecc/html/ckdsurveillance.html
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