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Abstract  

Development of “Smart” Particles for Silencing Anti-apoptotic Bcl-2 

Protein Expression in Epithelial Cancer Cells 

by 

Yen-Ling Lin 

 

Chair: Mohamed E.H. ElSayed 

 

 

B-cell lymphoma 2 (Bcl-2) is an anti-apoptotic protein that is over-expressed in head and 

neck cancer cells and results in increased radio- and chemo-resistance. Short interfering 

RNA (siRNA) inhibits Bcl-2 expression causing enhanced cancer cell death and 

reduction of tumor growth. Transforming anti-Bcl-2 siRNA into a viable therapy with a 

defined dosage regimen requires a biocompatible carrier that can shuttle a large dose of 

siRNA into the cytoplasm of cancer cells. This dissertation describes the development of 

degradable, pH-sensitive, membrane-destabilizing, comb- and star-shaped polymers to 

condense anti-Bcl-2 siRNA into “smart” nanoparticles, which bypassed the endosomal 

membrane and delivered the cargo into the cytoplasm of cancer cells resulting in efficient 
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knockdown of Bcl-2 gene expression. Specifically, comb-like polymers were synthesized 

by grafting copolymers of cationic trimethyl aminoethyl methacrylate (TMAEMA) and 

hydrophobic hexyl methacrylate (HMA) monomers from a diblock linear backbone via 

acid-labile hydrazone linkages. Similarly, β-cyclodextrin (β-CD) was used as a core to 

synthesize star-shaped polymers where pH-sensitive dimethyl aminoethyl methacrylate 

(DMAEMA) and hydrophobic HMA monomers were grafted from the secondary face of 

β-CD via hydrazone linkages to form β-CD-P(HMA-co-DMAEMA) polymers. Both 

comb- and star-shaped polymers condensed siRNA molecules into “smart” particles that 

were stable at physiologic pH but rapidly degraded into membrane-active fragments in 

acidic endosomal pH. We systematically evaluated the effect of hydrophobic/hydrophilic 

balance (HMA/DMAEMA ratio), percentage of DMAEMA monomers quaternized into 

TMAEMA, and molecular weight of grafts on the ability of star polymers to achieve 

functional delivery of anti-Bcl-2 siRNA. Results show that star-shaped polymers 

incorporating P(HMA-co-DMAEMA-co-TMAEMA) grafts with the MW of 25 kDa, 

50/50 HMA/DMAEMA monomers, and 50% of DMAEMA monomers transformed to 

TMAEMA exhibit the highest transfection efficiency. These star-shaped polymers 

delivered anti-Bcl-2 siRNA into UM-SCC-17B cells causing 50-75% reduction in Bcl-2 

mRNA and protein levels. Further, combining “smart” particles loaded with anti-Bcl-2 

siRNA with AT-101(a Bcl-2 small molecule inhibitor) synergistically inhibited the 

proliferation of cancer cells by 63% while increasing cancer cell apoptosis by 12-14%. 

These results confirm the successful development of a new family of degradable, pH-

sensitive, membrane-destabilizing star-shaped polymers that enhance the cytoplasmic 

delivery of anti-Bcl-2 siRNA into head and neck cancer cells. 
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Chapter 1.                                                                                                           

Introduction 

 

1.1 Introduction to small interfering RNA therapy 

Gene therapy by using plasmid DNA (pDNA), antisense oligodeoxynucleotide (ASODN), 

and small interfering RNA (siRNA) to regulate specific gene expression has been 

considered a potential method to treat genetic diseases,
1
 viral infections,

2
 or cancer

3
 for 

decades. Among them, siRNA has recently been intensively studied due to its physical 

stability
4
 and reduced possible adverse gene alteration.

3a
 The therapeutic potential of 

siRNA has been demonstrated both in vitro and in vivo.
5
 Recent progress in siRNA-based 

clinical trials, including treatment of age-related macular degeneration (AMD),
6
 

respiratory syncytial virus infection,
7
 and solid tumors

8
 further proved that the use of 

siRNA molecules is an applicable method for treatment of diseases. However, so far 

there is still no FDA-approved siRNA-based therapeutic product, which is mostly due to 

the difficulties in the systemic delivery of siRNA molecules to target site. Therefore, 

numerous studies have focused on the design and development of carriers that can 

encapsulate siRNA molecules into stable particles and achieve efficient targeted siRNA 

delivery in vivo. 
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Figure 1.1: The mechanism of RNA 

interference. In the cytoplasm, long double-

stranded RNA (dsRNA) and small hairpin RNA 

(shRNA) molecules are cleaved into small 

interfering RNA (siRNA) by the enzyme Dicer. 

The siRNA duplex is then incorporated with the 
RNA-induced silencing complex (RISC) and 

unwound into two single-stranded RNA 

(ssRNA). The anti-sense strand RNA guides the 

activated RISC binding to the complementary 

mRNA and degrading it, which leads to the 

silencing of the target gene.  

 

 

 

 

1.1.1 Basic concept and mechanism of small interfering RNA (siRNA) 

RNA interference (RNAi) by long double-

stranded RNA (dsRNA) (> 30 bp) is a 

natural biological mechanism, which was 

demonstrated in a variety of organisms, 

including Caenorhabditis elegans,
9
 

insects,
10

 plants,
11

 and mammalian cells.
12

 

It was found that in cytoplasm, the long 

dsRNA molecules are processed into small 

21-23 nucleotide duplex by the cleavage of 

RNase III enzyme Dicer (Figure 1.1).
12b

 

The resulting small interfering RNA 

(siRNA) molecules are then incorporated 

into the RNA-induced silencing complex 

(RISC) and unwound into two single-stranded RNA (ssRNA). The sense strand ssRNA is 

then degraded and the activated RISC containing anti-sense ssRNA is guided to the 

complementary mRNA sequences and degrade target mRNA.
13

  The translation of 

specific protein is, therefore, inhibited.  

1.1.2 Challenges for delivery of naked siRNA 

Although siRNA-based therapy has been considered a promising therapeutic strategy, 

there are many difficulties in efficient delivery of naked siRNA molecules to the 

cytoplasm of target cells, owing to their low stability, non-specific tissue penetration, and 

poor cellular uptake. 
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Figure 1.2: Chemical modifications of siRNA molecules. 

1.1.2.1 Serum/nuclease instability 

Naked siRNA molecules are highly susceptible to endogenous nuclease degradation in 

the serum.
14

 Previous studies showed that the half life of unprotected siRNAs is less than 

10 minutes in vivo.
15

 To improve the stability of siRNA molecules in vivo, the chemical 

modification of siRNA has been investigated.
16

 Replacement of the non-bridging oxygen 

by a borane in siRNA becomes boranophosphate siRNA (Figure 1.2), which proved to 

be 10 times more resistant to nuclease degradation then unmodified siRNAs.
17

 

Modification of siRNA sugar moiety at the 2’ position of the ribose by linkage of O-

methyl (2’-OMe) and fluoro (2’-F) (Figure 1.2) also showed increased plasma stability 

and nuclease resistancy.
18

 However, this increase in stability did not necessary translate 

into enhanced gene silencing activity in mice.
19

 In addition, the degradation of modified 

siRNA molecules may produce unsafe products in the body. 

1.1.2.2 Non-specific tissue distribution 

Effective siRNA-based treatment relies on the delivery of therapeutic siRNA molecules 

into target tissue sites. Local, direct delivery of naked siRNAs to the eye, lung, and 

central nervous system has been successfully tested in several studies.
3a,20

 For example, 

local injection of siRNA molecules targeting the vascular endothelial growth factor 

(VEGF) into the eye has been proved to be effective for the treatment of age-related 
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macular degeneration (AMD) by reducing the ocular neovascularization.
21

 Intranasal 

injection of siRNA targeting respiratory syncytial virus (RSV) has also been investigated 

for the treatment of RSV infection.
22

 However, majority of the treatments requires 

systematic delivery of siRNAs to target tissues deep within the body without uptake and 

clearance by non-target tissues. Previous studies have shown radio-labeled siRNA 

molecules rapidly accumulated in the kidney and liver after intravenous (IV) injection,
23

 

and then were rapidly cleared from the body through renal excretion and the 

reticuloendothelial system.
14

 

1.1.2.3 Poor cell uptake/internalization 

siRNA molecules are negatively charged, hydrophilic macromolecules,
24

 so it is difficult 

for them to cross cellular membrane into the cytoplasm of target cells and induce 

effective gene inhibition.
25

 Previous studies showed that siRNAs can access the 

cytoplasm by hydrodynamic injection, where large amount of siRNA molecules were 

rapidly injected into the body to induce transient damage to cell membranes in highly 

vascularized organs.
26

 However, this method is highly dangerous and not applicable for 

human use. So far, no evidence shows that naked siRNA molecules can be efficiently 

internalized into cells after conventional IV injection. 

1.1.3 Use of non-viral carriers in delivery of siRNA  

In order to transform siRNA molecules into the therapeutic agents for disease treatment, 

therefore, we need to develop effective delivery systems, which can (i) encapsulate 

siRNAs into nuclease- and serum-stable particles, (ii) preferentially accumulate in 

diseased tissue, (iii) be efficiently taken up by target cells, and (iv) release siRNA cargo 

into the cytoplasm.
27

 Although viral vectors, such as retrovirus
28

 and adenovirus,
29

 have 
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Figure 1.3: Chemical structures of some common liposome reagents. 

been proved to exhibit high efficiency in transferring nucleic acids into various 

mammalian cells. Their toxicity, immunogenicity, and high cost still remain the chief 

concerns, which limit their clinic application.
30

 As a result, development of non-viral 

delivery systems using lipids and polymers is emerging as an alternative strategy to 

replace viral vectors. 

1.1.3.1 Lipids  

Cationic lipids have become commonly used transfection reagents for gene delivery since 

N-[1-(2, 3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) (Figure 

1.3) was first used to deliver DNA molecules into cells in 1987.
31

 The cationic lipids 

have a cationic hydrophilic head group which is attached to a lipid hydrophobic moiety 

through a linker. Their amphiphilic structure allows them to spontaneously form lipid 

bilayers when they are dispersed in an aqueous solution. Mixture of negatively charged 

nucleic acids with cationic lipids spontaneously leads to the formation of lipoplexes 

through electrostatic interaction. Among the numerous cationic lipids that have been 

developed, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (Figure 1.3) showed 

high transfection efficiency and low toxicity, so it became one of the most widely used 

lipids.
32
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Figure 1.4: Chemical structure of 

poly (L-lysine) (PLL). 

 

Previous studies also showed that lipoplexes composed of DOTAP and cholesterol 

exhibited enhanced transfection efficiency and reduced serum degradation compared to 

conventional lipoplexes.
33

 In addition, delivery of siRNA against hepatitis B virus (HBV) 

by using liver-targeted DOTAP/cholesterol lipoplexes through IV administration proved 

to show specific accumulation in liver and functional suppression in viral protein 

expression in vivo.
34

 However, recent studies also reported that many cationic lipids can 

induce the occurrence of systemic immune responses possibly due to their surface 

charge.
35

 The safety of lipid-based delivery systems needs to be further investigated and 

improved.  

1.1.3.2 Polymers 

Cationic polymers are commonly used in the intracellular delivery of siRNA molecules 

because they can easily form polyplexes through the electrostatic interaction. Polymeric 

carriers can be specifically designed and synthesized for the proposed application by the 

control of molecular weight, modification of functional group, and conjugation of 

targeting ligands, etc.
36

 Their manufacture process is relatively easy and cheap compared 

to other viral and lipid vectors. Poly (L-lysine) (PLL) (Figure 1.4) is a cationic 

biodegradable polymer that has been used for non-

viral gene delivery for many years due to their 

excellent condensing ability with anionic nucleic 

acids.
37

 A varieties of PLL derivatives have been 

synthesized to improve stability, decrease toxicity, 
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and increase half-life in vivo.
37a,b,38

 For example, previous studies proved that graft of 

hydrophilic poly (ethylene glycol) (PEG) to PLL significantly increased the circulation 

time of the encapsulated siRNA molecules and their accumulation in tumor tissues in 

vivo.
38

  However, PLL-based polyplexes cannot escape from endosomal/lysosomal 

trafficking
39

 and rapidly release siRNA molecules to cytoplasm, so their transfection 

efficiency is relatively low and they are inapplicable to clinical applications.
40

   

1.1.4 Challenges and solutions for systematic administration 

1.1.4.1 siRNA packaging 

Among the numerous requirements to be addressed in the development of a safe and 

effective siRNA delivery system, the first is the packaging of siRNA molecules. The 

system should have the ability to (i) prevent charge repulsion between negatively charged 

siRNA duplexes and cell surface membrane by neutralization of siRNAs, (ii) shield the 

siRNA molecules from serum protein and nuclease degradation, and (iii) condense the 

siRNA molecules into nano-sized particles and facilitate their internalization into target 

cells.
14,41

 Due to the anionic nature of siRNA molecules, cationic lipids and polymers can 

easily complex siRNAs into stable particles through electrostatic interaction. These 

particles usually carry positive surface charge, which allows them to be taken up by cells 

through adsorptive endocytosis. This complexation also limits the access of nuclease 

enzymes to siRNA molecules and prevents the degradation.
42

  

1.1.4.2 Stability of particulate carriers  

Although the cationic surface charge of particles enhances cellular uptake, it also causes 

some problems when applied systematically. These positively charged particles can 
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nonspecifically interact with blood components to form large aggregates, which activate 

the complement system and eventually lead to rapid removal of particles from circulation 

through the reticular endothelial system (RES).
36,40-41,43

 It has been proved that the 

incorporation of hydrophilic polymers such as poly (ethylene glycol) (PEG) into non-

viral carriers can mask their cationic surface charge, reduce their non-specific binding 

with serum proteins, and therefore prolong their circulation time.
44

 The modification of 

carriers with PEG, however, affects their complexation with siRNA molecules, the 

internalization into cells, and the transfection efficiency.
45

 Therefore, the molecular 

weight and density of the PEG incorporated in the design of carriers need to be carefully 

selected.
46

  

1.1.4.3 Diffusion across the endothelial barrier 

The non-viral carriers encapsulating therapeutic siRNA molecules then need to 

extravasate through the vascular endothelial junctions to reach target tissues. However, 

the vascular permeability of particles with 5 nm or larger in size is significantly limited in 

normal tissues,
47

 while only certain organs with an irregular fenestration, such as liver 

and spleen, allow the permeation of molecules up to 200 nm in diameter.
48

 On the other 

hand, the rapid and disorganized angiogenesis in tumor tissues lead to the development of 

leaky and discontinuous vascular structures with poor lymphatic drainage, which results 

in the enhanced permeation and retention (EPR) effect (Figure 1.5),
49

 allowing the 

accumulation of particles up to 500 nm in tumors.
50

 It has been proved to successfully 

deliver non-viral complexes to tumor tissues without the incorporation of targeting 

ligands.
51
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Figure 1.5: A schematic drawing shows the accumulation of non-viral vectors (purple) in the tumor 

tissue due to the diffusion across the leaky vasculature and the poor lymphatic drainage, which is known 

as the enhanced permeability and retention (EPR) effect. 

 

1.1.4.4 Cellular entry 

Once reaching the target cells in tumor tissue, the non-viral carrier/siRNA complexes 

encounter the obstacle, to traverse the cellular membrane. The cellular membrane is 

composed of a lipid bilayer with embedded proteins, and it is selectively permeable to 

ions and small hydrophobic molecules through passive diffusion.
52

 For large and charged 

particles, such as lipoplexes and polyplexes, previous studies have shown that most of 

them pass the cellular membrane through endocytic pathways, including clathrin-

mediated endocytosis (adsorptive or receptor mediated), lipid-raft mediated endocytosis 

(caveolae mediated or not), phagocytosis (mostly happen in specialized cells), and 

macropinocytosis.
25a,52-53

  

1.1.4.4.1 Non-specific uptake  

The most common route for the entry of cationic lipoplexes and polyplexes into cells is 

through non-specific adsorptive endocytosis followed by the clathrin-coated pit 

mechanism. This is due to the electrostatic interaction between positively charged 

particles and cellular membrane, containing negatively charged glycoproteins, 
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proteoglycans, and glycerophosphates.
54

 The uptake of these cationic molecules into cells 

can be enhanced by the increase of their surface charge, which results in higher affinity to 

plasma membrane,
55

 but this strategy is not applicable since it also increases particles’ 

toxicity and renal clearance.
36

 Research by Rejman et al. showed that DOTAP/DNA 

lipoplexes were taken up into cells only through clathrin-mediated endocytosis, while 

PEI/DNA polyplexes internalization was processed by both clathrin- and caveolae-

mediated mechanisms.
56

 However, the exact route for cationic particles to be taken up by 

cells varies largely between different cell types and the vectors used, and the contribution 

of each pathway in cellular uptake is still poorly defined.
53b,57

  

1.1.4.4.2 Targeted uptake 

In order to specifically deliver therapeutic siRNA molecules to the designated target cells, 

non-viral vectors containing targeting ligands, which are recognized by specific cell 

surface receptor, have been widely investigated.
25a,36

 For example, asialoglycoprotein 

receptor is abundantly expressed in hepatocytes and selectively binds to 

asialoglycoproteins.
58

 Incorporation of a sugar moiety such as asialoglycoprotein or 

galactose into the vectors has been proved to effectively target liver cancer cells both in 

vitro and in vivo.
59

 Transferrin and folic acid are also commonly used targeting ligands, 

which can be easily conjugated to the surface of non-viral carriers and specifically bind to 

their receptors over-expressed in tumor cells.
60

 In addition to eliminate the non-specific 

delivery to normal cells, the targeted non-viral vectors can also increase cellular uptake 

by the route of both adsorptive endocytosis and receptor-mediated endocytosis, and 

therefore enhance the transfection efficiency.
36
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                                          (A)                                                                      (B) 

 
Figure 1.6: A schematic drawing shows (A) the degradation of free siRNA in the endosomal/lysosomal 

trafficking, and (B) the escape of siRNA carriers from endosomal entrapment and cytoplasmic release 

of therapeutic siRNA. 

1.1.4.5 Endo-lysosomal entrapment and escape  

After internalization into cells via endocytosis, the non-viral vectors are entrapped in the 

endosomes, where the pH drops from neutral (7.4) to around 5-6 due to the ATPase 

proton pumps.
61

 Then the endosomes fuse with lysosomes, which contain various 

degradative enzymes in more acidic pH environment.
61

 The encapsulated siRNA 

molecules, therefore, will be ultimately degraded in the lysosomes and lose their 

therapeutic functions (Figure 1.6).
25a,61

 In order to escape from enzymatic degradation, 

the non-viral carriers should be able to release siRNA molecules to cytoplasm at an early 

stage of the endo-lysosomal trafficking to preserve their therapeutic functions (Figure 

1.6).
62

 Various approaches have been proposed to improve endosomal escape of non-viral 

vectors based on two main hypotheses, “proton sponge” effect and membrane-

destabilizing effect.
25a,53b,61

 Detail mechanisms will be further explained in Chapter 2. 

1.1.4.6 Nucleic acid/vector dissociation 

Once non-viral vectors escape from endosomal entrapment, they need to rapidly 

dissociate from siRNA molecules and release them into cytoplasm. It has been shown 

that poor decomplexation of the loaded DNA/RNA molecules can lead to low 
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transfection efficiency.
63

 The disassembly of the nucleic acids from the vectors can be 

regulated by the use of less cationic carriers
63a,64

 or the use of degradable vectors.
41,61

 For 

example, ester bonds and hydrazone bonds have been used as linkages for connection of 

cationic grafts to a polymer backbone, so the polymeric carriers become fragmented and 

dissociate from their cargos when hydrolysis occurs.
65

 It is important to develop a vector 

which forms compact particles with siRNA molecules but rapidly releases them into 

cytoplasm upon endosomal escape.  

1.1.4.7 Effective RNA interference 

Unlike plasmid DNA, which can be replicated or incorporated into the host chromosome, 

siRNA molecules can only induce transient gene silencing effects (3-7 days) in 

proliferating cells.
66

 The persistence of silencing in different cell types depends on the 

factors such as proliferation rate and transcriptional activity.
67

 In addition, siRNA-

induced gene silencing usually only suppresses target gene expression but not completely 

inhibits their translation.
68

 The effective RNA interference relies on the drop of target 

protein level under a specific threshold to induce the desired biological effects, and this 

requires the successful cytoplasmic delivery of enough number of therapeutic siRNA 

molecules.
68
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Chapter 2.                         

Background 

 

2.1 Challenge in Endosomal/lysosomal escape 

Endosomal entrapment is one of the major barriers, which limits the practical application 

of siRNA-based cancer therapy. In order to achieve effective gene silencing, many 

strategies have been developed to enhance the escape of nucleic acids from 

endosomal/lysosomal trafficking. Two mechanisms, including “proton sponge” effect and 

membrane-destabilizing effect, have been widely investigated to explain this escape and 

used in the development of non-viral vectors.
1
 

2.1.1 Mechanisms of endosomal escape 

2.1.1.1 “Proton sponge” effect and carriers 

The “proton sponge” effect was discovered in certain cationic polymers, which contain a 

large number of protonable secondary and tertiary amine groups with pKa close to 

endosomal/lysosomal pH (i.e. 5 < pKa < 7).
2
 In the endosome, polymers with the “proton 

sponge” effect become protonated, so the ATPase proton pumps on the endosomal 

membrane need to pump more protons from the cytosol into the endosomes to maintain 

the acidic pH environment. The transport of protons is accompanied by the influx of 
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chloride counter ions and water, and ultimately causes osmotic swelling and rupture of 

endosomal membrane (Figure 2.1).
1,3

 

 

2.1.1.1.1 Polyethylenimine (PEI) 

PEI is the most well-known cationic polymer which has been proved to be highly 

effective in gene delivery both in vitro and in vivo.
3a

 This could be attributed to the strong 

buffering capacity of PEI, due to their high density of protonable amine groups, resulting 

in rapid endosomal escape.
4
 A series of PEI have been synthesized in different molecular 

weights (MW) and structures (linear and branched) (Figure 2.2) to be used as 

transfection agents.
5
 Earlier researches showed that both the transfection efficiency and 

cytotoxicity of PEI-based vectors increases with increased molecular weight (600 Da-70 

kDa),
6
 and the toxicity is due to the aggregation of PEI polyplexes on the cell membrane, 

which causes significant necrosis.
7
 In addition, higher-branched PEI showed stronger 

complexation with nucleic acids and better transfection efficiency than lower-branched 

one, but the cytotoxicity also increased with the degree of branching.
8
 In order to reduce 

the toxicity of PEI polyplexes while increase their stability and transfection efficiency, 

many efforts have been made to synthesize various degradable PEI derivatives. For 

 
Figure 2.1: A schematic drawing shows the buffering capacity of poly (amidoamine) (PAMAM) 

dendrimers in acidic endosomal pH, which leads to influx of proton, chloride, and water, and ultimately 

causes osmotic swelling and rupture of endosomal membrane. 
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example, low MW PEI (2 kDa) was cross-linked via reducible disulfide linkage and 

conjugated to the hyaluronic acid (HA) to form (PEI-SS)-b-HA block copolymers, which 

encapsulated anti-vascular endothelial growth factor (VEGF) siRNA into serum-stable 

particles with negligible toxicity. The formed particles proved to suppress VEGF 

expression both in vitro and in vivo, and successfully inhibit tumor growth after 

intratumoral injection.
9
 Modification of branched PEI (25 kDa) by incorporation of 

negatively charged succinic acid groups to the backbone also obtained effective siRNA 

carriers with low toxicity.
10

 Further, branched PEI (25 kDa) was PEGylated with Arg-

Gly-Asp (RGD) peptide ligands to achieve tumor-specific targeting and prolonged 

circulation in vivo.
11

 

 

2.1.1.1.2 Poly (amidoamine) (PAMAM) dendrimers 

PAMAM dendrimers are a family of water-soluble polymers that is characterized by a 

unique tree-like branching architecture with a large number of primary, secondary, and 

tertiary amine groups (Figure 2.3).
12

 The high density of protonable amine groups 

enables the rapid endosomal escape of PAMAM-based dendriplexes due to the “proton 

sponge” mechanism,
13

 but also leads to non-specific cytotoxicity. The toxicity of 

PAMAM dendrimers can be reduced by conjugation of hydrophilic polymers
14

 or by 

                     (A)                                                                                     (B) 

                     
Figure 2.2: Chemical structure of (A) linear and (B) branched PEI. 
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partial neutralization of the cationic amine groups.
15

 However, their gene silencing 

capacity was also reduced due to the poor pH buffering capacity and endosomal 

escape.
15a,16

 Earlier researches also showed that heat-treated PAMAM dendrimers in 

water or butanol became partially degraded and more flexible which allowed them to 

better complex with DNA and exhibited better transfection efficiency with less toxicity 

compared to the intact PAMAM dendrimers.
17

  

 

2.1.1.2 Amphiphilic membrane-destabilizing effect and carriers 

Several viruses such as the influenza virus have evolved pH-responsive fusogenic 

proteins hemagglutinin to facilitate their infection in host cells. These fusogenic proteins 

are characterized by their unique ability to switch from an ionized and hydrophilic 

conformation at physiologic pH to a protonated and hydrophobic one in response to 

acidic endosomal pH gradients, which destabilizes the endosomal membrane leading to 

release of genetic cargos.
18

 Therefore, several synthetic peptides with similar pH-

sensitive, membrane-destabilizing properties have been developed to enhance 

cytoplasmic gene delivery.
19

 However, the clinical application of these synthetic 

 
Figure 2.3: Chemical structure of poly (amidoamine) (PAMAM) dendrimer, generation 1. 
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fusogenic peptides are limited by their potential immunogenicity, low stability and high 

synthesis cost.
20

 

2.1.1.2.1 Amphiphilic carriers 

To mimic the membrane-disruptive properties of viral fusogenic peptides, a family of 

pH-sensitive poly (alkylacrylic acid) polymers ( 

Figure 2.4) has been synthesized to enhance the cytoplasmic delivery of therapeutic 

DNA/RNA molecules.
21

  

 

The carboxyl groups can “sense” the changes in environmental pH and become 

protonated at acidic pH, while the hydrophobic alkyl groups can interact with the 

endosomal membrane, which collectively enable the rapid escape from 

endosomal/lysosomal trafficking (Figure 2.5).
22

 Poly (ethylacrylic acid) (PEAA) is the 

first polymer proved to cause membrane disruption of liposomes at acidic pH of 6.3 or 

lower.
23

 Hoffman, Stayton, and coworkers then showed that the pH-responsive 

membrane-destabilizing activity can be modulated by changing the ratio of hydrophobic 

 
 

Figure 2.4: Chemical structures of some common pH-sensitive amphiphilic polymers. 
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alkyl groups in polymer composition. In addition, poly (propylacrylic acid) (PPAA) 

exhibited a pH-dependent membrane-destabilizing activity that is one order of magnitude 

higher than PEAA
22

 and proved to enhance the transfection efficiency of cationic 

lipid/pDNA complexes both in vitro
24

 and in vivo.
25

 Afterward, a functionalized 

monomer, pyridyl disulphide acrylate (PDSA), was incorporated to the backbone of pH-

sensitive polymers through glutathione-sensitive disulfide linkages to allow direct 

conjugation of cationic peptides, which proved to complex with negatively charged 

therapeutic macromolecules.
26

   

 

2.1.2 Limitations of current siRNA carriers 

Although both “proton sponge” effect and membrane-destabilizing effect proved efficient 

in enhancing cytoplasmic delivery of therapeutics nucleic acids, they both have some 

limitations. Cationic polymers with strong pH buffering capacity, such as PEI, usually 

(A) 

 
(B) 

 
Figure 2.5: (A) Protonation of the pH-sensitive carboxyl groups of poly (ethyl acrylic acid) (PEAA) at 

acidic pH induces (B) the hydrophobic alkyl groups inserting into the endosomal membrane, which 

ultimately becomes ruptured. 
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exhibit functional gene transfection when a large amount of polymer is used to carry 

sufficient DNA/RNA. This always leads to non-specific cytotoxicity due to the excess 

positive charge destabilizing cellular membrane.
7,27

 On the other hand, the membrane-

destabilizing activity of pH-sensitive amphiphilic polymers is based on a delicate balance 

between the hydrophilic and hydrophobic monomers.
22a,28

 Excess positive charge 

abolishes their membrane-destabilizing activity, while excess amount hydrophobic 

groups makes them water-insoluble and ineffective.
26a

 Further, PEI and those pH-

sensitive poly (alkylacrylic acid) polymers are non-biodegradable polymers. The ideal 

non-viral vectors need to be hydrolyzed and degraded into small fragments once they 

deliver their therapeutic cargos, so they can be eliminated from human body without 

causing accumulation and toxicity.
26a,29

 In addition, treatment of cancers usually requires 

systemic delivery, but incorporation of targeting ligands to these cationic polymers is not 

easy since it affects the proton buffering capacity and hydrophilic/hydrophobic balance. 

Finally, successful cancer therapy usually requires administration of anticancer drugs. 

Therefore, development of polymeric carriers that can deliver both therapeutic 

DNA/RNA and anticancer drugs at the same time has become a future target. 

2.1.3 Structural requirements of an “ideal” polymeric carrier for in vivo siRNA 

delivery 

Due to the limitations mentioned above, the ideal polymeric carrier should be (i) 

degradable, (ii) high drug loading, (iii) low toxicity, (iv) cell-specific, and (v) able to co-

deliver other therapeutic drugs. We have designed and developed a new series of 

degradable, pH-sensitive, membrane-destabilizing, star-shaped polymers that proved to 

deliver therapeutic siRNA molecules into the cytoplasm of cancer cells and selectively 
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induce cellular apoptosis. These carriers have a β-cyclodextrin (β-CD) core, which is 

composed of 7 glucose units linked by α-1,4-linkages, forming a cone-shaped structure 

(Figure 2.6). The 7 hydroxyl groups on the primary face and 14 hydroxyl groups on the 

secondary face have different reactivity, which allow selectively conjugation of pH-

sensitive/hydrophobic/cationic grafts on the secondary face while conjugation of 

hydrophilic PEG grafts displaying targeting motif on the primary face. The copolymer of 

pH-sensitive dimethyl aminoethyl methacrylate (DMAEMA), hydrophobic hexyl 

methacrylate (HMA) and cationic trimethyl aminoethyl methacrylate (TMAEMA) was 

grafted from the secondary face via acid-labile hydrazone linkages. Hydrazone linkages 

have previously been used to conjugate small molecular weight anticancer drugs (e.g. 

doxorubicin) to water-soluble hydroxypropyl methacrylate (HPMA) polymers and proved 

to hydrolyze and release the attached drug upon internalization into acidic intracellular 

vesicles.
30

 Incorporation of the hydrazone linkages in these star-shaped polymers allows 

grafts of a large number of pH-sensitive/hydrophobic/cationic copolymers to achieve a 

high positive charge density that will allow the condensation of a large number of 

DNA/RNA molecules into pH-sensitive particles with high therapeutic loading.
31

 In 

addition, the acid-labile hydrazone linkages will be hydrolyzed in the endosome, which 

will result in fragmentation of the carriers into multiple grafts that can be easily 

eliminated from the body without inducing significant toxicity. Also, β-CD is a water-

soluble polymer with a hydrophobic cavity, which allows the encapsulation of 

hydrophobic anticancer drugs inside and complexation of hydrophilic therapeutic 

DNA/RNA molecules outside.
32

 Overall, these degradable, pH-sensitive, membrane-
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destabilizing, star-shaped polymers are believed to be a potential non-viral vector for 

intracellular delivery of therapeutic macromolecules. 

 

2.1.4 Comparison between star-shaped polymers and other non-viral vectors 

2.1.4.1 Polyethyleneimine-based carriers 

PEI is one of the most effective non-viral vectors due to their buffering capacity, which 

causes endosomal swelling and rupture of endosomal membrane.
3a,4

 However, it usually 

requires a large excess of PEI to provide efficient buffering capacity, leading to non-

specific toxicity both in vitro and in vivo.
7
 It has been proved that modification of PEI by 

covalently coupling PEG chains to form block or graft copolymers can decrease their 

cytotoxicity.
33

  In addition, PEGylated PEI complexes displayed decreased interaction 

with serum proteins,
34

 reduced activation of opsonization,
35

 and prolonged plasma 

residence time in vivo.
36

 Further, to prevent long-term accumulation of non-degradable 

PEI complexes in body, the incorporation of hydrolytically cleavable amide bonds or 

reductively cleavable disulfide bonds has been utilized to synthesize biodegradable 

 
Figure 2.6: A schematic drawing shows the design of an ideal polymeric carrier, pH-sensitive star-

shaped β-CD-P(HMA-co-DMAEMA-co-TMAEMA)n polymers, for cytoplasmic delivery of 

DNA/RNA molecules and co-delivery of hydrophobic drugs (dark green) in vivo.  
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PEGylated PEI polymers for the delivery of DNA/RNA molecules.
37

 An ideal gene 

delivery system also needs to provide cell-specific delivery to prevent adverse side 

effects. It has been proved that coupling of galactose to PEI can provide liver-specific 

delivery, due to the expression of asialoglycoprotein receptor on the surface of 

hepatocytes.
38

 However, incorporation of targeting ligands in the PEGylated PEI carriers 

did not necessary enhance transfection efficiency, probably due to the low grafting ratio. 

Although various strategies have been proposed to address the limitations in the 

intracellular delivery of DNA/RNA using PEI-based complexes, the ideal carrier has not 

yet been established. The delivery efficiency relies on the molecular weight and 

architecture (linear and branched) of PEI.
5
 The incorporation of PEG grafts and targeting 

ligands has significant effects on the complexation of PEI and nucleic acids, their cellular 

uptake, and the transfection efficiency.
5
 Therefore, it requires systematical investigation 

on the parameters that affect therapeutic activity of PEI-based complexes. In addition, 

compare with our proposed star-shaped polymers, PEI carriers do not have the potential 

to co-deliver other therapeutic drugs, such as chemotherapeutic drugs and small molecule 

inhibitors, which may limit their clinical applications. 

2.1.4.2 Cyclodextrin-based carriers 

The first targeted delivery of siRNA in human was accomplished by using cyclodextrin-

containing polymers in 2008. This siRNA delivery system includes a) a linear 

cyclodextrin-containing polymer to complex with siRNA through electrostatic interaction, 

b) an adamantane (AD)-PEG conjugate to provide steric stabilization and increase plasma 

residence time, c) the targeting component, transferrin (Tf)-PEG-AD, to allow selectively 

delivery to tumor cells, and d) imidazole groups to assist in endosomal escape.
39

 This 
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polymer has been proved to successfully condense therapeutic siRNA into water-soluble 

nanoparticles, which reduced tumor growth by 50% in vivo without inducing immune 

responses.
40

 However, earlier studies suggested that branched polymers provide better 

steric protection for loaded therapeutic cargo and longer plasma residence time compared 

to linear polymers, which collectively improve the transfection efficiency and 

biocompatibility of branched polymers.
41

  Our proposed star-shaped polymers may 

exhibit better gene delivery ability than this linear cyclodextrin-containing polymer. In 

addition, the star-shaped polymers have the potential to co-deliver other therapeutic drugs 

in the hydrophobic core of β-CD.  

2.2 Objective and Hypothesis 

The objective of this dissertation is to develop novel “smart” particles to enhance the 

cytoplasmic delivery of anti-Bcl-2 siRNA molecules to suppress anti-apoptotic Bcl-2 

protein expression in head and neck cancer cells with subsequent induction of cancer cell 

death and inhibition of tumor growth. Specifically, we propose to synthesize degradable, 

pH-sensitive, membrane-destabilizing, comb- and star-shaped polymers. These polymers 

are characterized by their unique ability to switch from a hydrophilic, stealth-like 

conformation to a hydrophobic, membrane-destabilizing one in response to acidic 

endosomal pH gradients. We will utilize these pH-sensitive polymers to condense anti-

Bcl-2 siRNA molecules into “smart” particles that will be taken up by head and neck 

cancer cells via endocytosis. These particles will “sense” the drop in endosomal pH, 

which will trigger the degradation of the polymeric carrier into small membrane-

destabilizing fragments to destabilize the endosomal membrane and release the siRNA 

molecules into the cytoplasm. In addition, we propose to “switch of” anti-apoptotic Bcl-2 
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activity by using star-shaped polymers loaded with anti-Bcl-2 siRNA along with Bcl-2 

small molecule inhibitor AT-101, to induce apoptotic head and neck cancer cell death and 

inhibit cancer cell growth.  

We hypothesize that the degradable, pH-sensitive, membrane-destabilizing, comb-like 

polymers can complex a large dose of anti-Bcl-2 siRNA molecules into “smart” 

nanoparticles, which can functionally deliver their siRNA cargo into the cytoplasm of 

cancer cells to suppress Bcl-2 gene expression at both mRNA and protein levels. The 

star-shaped polymers can also condense anti-Bcl-2 siRNA into pH-sensitive particles that 

will be internalized in cancer cells via adsorptive endocytosis. In the endosome, the 

particles can destabilize endosomal membrane through both hydrophobic disruption and 

endosomal swelling mechanisms, releasing siRNA cargo into the cytoplasm of head and 

neck cancer cells to suppress Bcl-2 gene expression. We also hypothesize that 

combination treatment with AT-101 and star-shaped polymers encapsulating anti-Bcl-2 

siRNA can synergistically induce head and neck cancer cell apoptosis and inhibit cancer 

cell growth.  

2.3 Specific aims 

The specific aims of this dissertation are: 

1. Confirm the feasibility to design and synthesize a new family of degradable, pH-

sensitive, membrane-destabilizing, comb-like polymers, which can complex siRNA 

molecules into “smart” particles. Prove the pH-dependent membrane-destabilizing 

activity of these particles can destabilize endosomal membrane without loss their 

therapeutic effect. 
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2. Design and synthesize a new family of degradable, pH-sensitive, membrane-

destabilizing, star-shaped polymers. Engineer these star-shaped polymers to 

systematically evaluate the effect of graft’s molecular weight, hydrophobic/hydrophilic 

balance, and degree of quaternization on their ability to deliver the RNA cargo past the 

endosomal membrane and into the cytoplasm of epithelial cancer cells. 

3. Confirm both comb- and star-shaped polymers can achieve functional delivery of anti-

Bcl-2 siRNA molecules in multiple cancer cells based on their ability to suppress Bcl-2 

expression at the protein and mRNA levels. 

4. Confirm the feasibility of combination treatment with Bcl-2 small molecule inhibitor 

AT-101 and “smart” particles encapsulating anti-Bcl-2 siRNA molecules based on the 

ability to a) induce apoptotic head and neck cancer cell death, and b) inhibit head and 

neck cancer cell growth.  

  



32 

 

References 

(1) Liang, W.; Lam, J. K. W. Endosomal Escape Pathways for Non-Viral Nucleic 

Acid Delivery Systems; InTech, 2012.  

(2) Wong, S. Y.; Pelet, J. M.; Putnam, D. Prog Polym Sci 2007, 32, 799.  

(3) (a) Boussif, O.; Lezoualch, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; 

Demeneix, B.; Behr, J. P. P Natl Acad Sci USA 1995, 92, 7297. (b) Morille, M.; 

Passirani, C.; Vonarbourg, A.; Clavreul, A.; Benoit, J. P. Biomaterials 2008, 29, 

3477.  

(4) Boussif, O.; Zanta, M. A.; Behr, J. P. Gene Ther 1996, 3, 1074.  

(5) Neu, M.; Fischer, D.; Kissel, T. J Gene Med 2005, 7, 992.  

(6) (a) Godbey, W. T.; Wu, K. K.; Mikos, A. G. Biomaterials 2001, 22, 471. (b) 

Godbey, W. T.; Wu, K. K.; Mikos, A. G. J Biomed Mater Res 1999, 45, 268.  

(7) (a) Fischer, D.; Li, Y. X.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. Biomaterials 

2003, 24, 1121. (b) Fischer, D.; Bieber, T.; Li, Y. X.; Elsasser, H. P.; Kissel, T. 

Pharmaceut Res 1999, 16, 1273.  

(8) Fischer, D.; von Harpe, A.; Kunath, K.; Petersen, H.; Li, Y. X.; Kissel, T. 

Bioconjugate Chem 2002, 13, 1124.  

(9) Park, K.; Lee, M. Y.; Kim, K. S.; Hahn, S. K. Biomaterials 2010, 31, 5258.  

(10) Zintchenko, A.; Philipp, A.; Dehshahri, A.; Wagner, E. Bioconjug Chem 2008, 19, 

1448.  

(11) Schiffelers, R. M.; Ansari, A.; Xu, J.; Zhou, Q.; Tang, Q. Q.; Storm, G.; Molema, 

G.; Lu, P. Y.; Scaria, P. V.; Woodle, M. C. Nucleic Acids Res 2004, 32.  

(12) (a) Frechet, J. M. J. Science 1994, 263, 1710. (b) Tomalia, D. A.; Frechet, J. M. J. 

J Polym Sci Pol Chem 2002, 40, 2719.  

(13) Sonawane, N. D.; Szoka, F. C.; Verkman, A. S. J Biol Chem 2003, 278, 44826.  

(14) (a) Kim, T. I.; Seo, H. J.; Choi, J. S.; Jang, H. S.; Baek, J. U.; Kim, K.; Park, J. S. 

Biomacromolecules 2004, 5, 2487. (b) Luo, D.; Haverstick, K.; Belcheva, N.; Han, 

E.; Saltzman, W. M. Macromolecules 2002, 35, 3456. (c) Jevprasesphant, R.; 

Penny, J.; Jalal, R.; Attwood, D.; McKeown, N. B.; D'Emanuele, A. Int J 

Pharmaceut 2003, 252, 263.  

(15) (a) Waite, C. L.; Sparks, S. M.; Uhrich, K. E.; Roth, C. M. Bmc Biotechnol 2009, 

9. (b) Kolhatkar, R. B.; Kitchens, K. M.; Swaan, P. W.; Ghandehari, H. 

Bioconjugate Chem 2007, 18, 2054. (c) Patil, M. L.; Zhang, M.; Betigeri, S.; 

Taratula, O.; He, H.; Minko, T. Bioconjugate Chem 2008, 19, 1396.  

(16) Lee, J. H.; Lim, Y. B.; Choi, J. S.; Choi, M. U.; Yang, C. H.; Park, J. S. B Kor 

Chem Soc 2003, 24, 1637.  

(17) Tang, M. X.; Redemann, C. T.; Szoka, F. C. Bioconjugate Chem 1996, 7, 703.  

(18) (a) Cross, K. J.; Langley, W. A.; Russell, R. J.; Skehel, J. J.; Steinhauer, D. A. 

Protein Pept Lett 2009, 16, 766. (b) Skehel, J. J.; Wiley, D. C. Annu Rev Biochem 

2000, 69, 531. (c) Wiley, D. C.; Skehel, J. J. Annu Rev Biochem 1987, 56, 365. (d) 

Hughson, F. M. Curr Biol 1995, 5, 265.  

(19) (a) Fattal, E.; Nir, S.; Parente, R. A.; Szoka, F. C., Jr. Biochemistry-Us 1994, 33, 

6721. (b) Funhoff, A. M.; van Nostrum, C. F.; Lok, M. C.; Kruijtzer, J. A.; 

Crommelin, D. J.; Hennink, W. E. J Control Release 2005, 101, 233. (c) Li, W.; 

Nicol, F.; Szoka, F. C., Jr. Adv Drug Deliv Rev 2004, 56, 967.  



33 

 

(20) Merdan, T.; Kopecek, J.; Kissel, T. Adv Drug Deliver Rev 2002, 54, 715.  

(21) (a) El-Sayed, M. E.; Hoffman, A. S.; Stayton, P. S. Expert Opin Biol Ther 2005, 5, 

23. (b) Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Nat Rev Drug Discov 

2005, 4, 581. (c) Yessine, M. A.; Leroux, J. C. Adv Drug Deliv Rev 2004, 56, 999.  

(22) (a) Murthy, N.; Chang, I.; Stayton, P. S.; Hoffman, A. S. Macromolecular 

Symposia 2001, 172, 49. (b) Murthy, N.; Robichaud, J. R.; Tirrell, D. A.; Stayton, 

P. S.; Hoffman, A. S. J Control Release 1999, 61, 137.  

(23) (a) Thomas, J. L.; Barton, S. W.; Tirrell, D. A. Biophys J 1994, 67, 1101. (b) 

Thomas, J. L.; Tirrell, D. A. Accounts of Chemical Research 1992, 25, 336.  

(24) (a) Cheung, C. Y.; Murthy, N.; Stayton, P. S.; Hoffman, A. S. Bioconjug Chem 

2001, 12, 906. (b) Kiang, T.; Bright, C.; Cheung, C. Y.; Stayton, P. S.; Hoffman, 

A. S.; Leong, K. W. J Biomater Sci Polym Ed 2004, 15, 1405.  

(25) Kyriakides, T. R.; Cheung, C. Y.; Murthy, N.; Bornstein, P.; Stayton, P. S.; 

Hoffman, A. S. J Control Release 2002, 78, 295.  

(26) (a) El-Sayed, M. E.; Hoffman, A. S.; Stayton, P. S. J Control Release 2005, 101, 

47. (b) Bulmus, V.; Woodward, M.; Lin, L.; Murthy, N.; Stayton, P.; Hoffman, A. 

J Control Release 2003, 93, 105.  

(27) Boeckle, S.; von Gersdorff, K.; van der Piepen, S.; Culmsee, C.; Wagner, E.; 

Ogris, M. J Gene Med 2004, 6, 1102.  

(28) (a) Kurisawa, M.; Yokoyama, M.; Okano, T. J Control Release 2000, 68, 1. (b) 

Oskuee, R. K.; Dehshahri, A.; Shier, W. T.; Ramezani, M. J Gene Med 2009, 11, 

921. (c) Wadhwa, M. S.; Collard, W. T.; Adami, R. C.; McKenzie, D. L.; Rice, K. 

G. Bioconjugate Chem 1997, 8, 81. (d) Wen, Y. T.; Pan, S. R.; Luo, X.; Zhang, X.; 

Zhang, W.; Feng, M. Bioconjugate Chem 2009, 20, 322.  

(29) (a) Forrest, M. L.; Koerber, J. T.; Pack, D. W. Bioconjugate Chem 2003, 14, 934. 

(b) Thomas, M.; Ge, Q.; Lu, J. J.; Chen, J. Z.; Klibanov, A. M. Pharmaceut Res 

2005, 22, 373.  

(30) (a) Etrych, T.; Chytil, P.; Jelinkova, M.; Rihova, B.; Ulbrich, K. Macromol Biosci 

2002, 2, 43. (b) Etrych, T.; Strohalm, J.; Kovar, L.; Kabesova, M.; Rihova, B.; 

Ulbrich, K. J Control Release 2009, 140, 18. (c) Kovar, M.; Kovar, L.; Subr, V.; 

Etrych, T.; Ulbrich, K.; Mrkvan, T.; Loucka, J.; Rihova, B. J Control Release 

2004, 99, 301.  

(31) Lin, Y. L.; Jiang, G.; Birrell, L. K.; El-Sayed, M. E. Biomaterials 2010, 31, 7150.  

(32) (a) Davis, M. E.; Brewster, M. E. Nat Rev Drug Discov 2004, 3, 1023. (b) Del 

Valle, E. M. M. Process Biochem 2004, 39, 1033. (c) Uekama, K.; Hirayama, F.; 

Irie, T. Chem Rev 1998, 98, 2045.  

(33) Kircheis, R.; Schuller, S.; Brunner, S.; Ogris, M.; Heider, K. H.; Zauner, W.; 

Wagner, E. J Gene Med 1999, 1, 111.  

(34) Tang, G. P.; Zeng, J. M.; Gao, S. J.; Ma, Y. X.; Shi, L.; Li, Y.; Too, H. P.; Wang, 

S. Biomaterials 2003, 24, 2351.  

(35) Finsinger, D.; Remy, J. S.; Erbacher, P.; Koch, C.; Plank, C. Gene Ther 2000, 7, 

1183.  

(36) Ogris, M.; Brunner, S.; Schuller, S.; Kircheis, R.; Wagner, E. Gene Ther 1999, 6, 

595.  



34 

 

(37) (a) Lee, Y.; Koo, H.; Jin, G. W.; Mo, H.; Cho, M. Y.; Park, J. Y.; Choi, J. S.; Park, 

J. S. Biomacromolecules 2005, 6, 24. (b) Petersen, H.; Merdan, T.; Kunath, K.; 

Fischer, D.; Kissel, T. Bioconjug Chem 2002, 13, 812.  

(38) (a) Kunath, K.; von Harpe, A.; Fischer, D.; Kissel, T. J Control Release 2003, 88, 

159. (b) Zanta, M. A.; Boussif, O.; Adib, A.; Behr, J. P. Bioconjug Chem 1997, 8, 

839.  

(39) Davis, M. E. Mol Pharm 2009, 6, 659.  

(40) Bartlett, D. W.; Davis, M. E. Biotechnol Bioeng 2008, 99, 975.  

(41) (a) Gillies, E. R.; Frechet, J. M. J. Journal of the American Chemical Society 2002, 

124, 14137. (b) Newland, B.; Tai, H. Y.; Zheng, Y.; Velasco, D.; Di Luca, A.; 

Howdle, S. M.; Alexander, C.; Wang, W. X.; Pandit, A. Chemical 

Communications 2010, 46, 4698. (c) Synatschke, C. V.; Schallon, A.; Jerome, V.; 

Freitag, R.; Muller, A. H. E. Biomacromolecules 2011, 12, 4247.  

 



35 

 

Chapter 3.                            

Degradable, pH-sensitive, membrane-destabilizing, comb-like 

polymers for intracellular delivery of nucleic acids 

 

3.1 Introduction 

Recent advances in drug design have led to the development of several classes of nucleic 

acid molecules such as plasmid DNA (pDNA), antisense oligodeoxynucleotides 

(ASODN), short interfering RNA (siRNA), and micro RNA (miRNA), which have the 

potential to treat cancer, viral infection, and cardiovascular and neurodegenerative 

diseases.
1
 These nucleic acid therapies are typically internalized by endocytosis where 

they accumulate in the endosomal-lysosomal trafficking pathway, which results in their 

degradation and loss of therapeutic activity.
2
 Transforming these nucleic acid molecules 

into therapeutic agents with defined dosing regimens and well-characterized activity 

requires the development of specialized carriers that can successfully condense and shield 

nucleic acid molecules into nano-sized particles that preferentially accumulate in the 

diseased tissue, selectively taken up by target cells, effectively escape the endosomal 

compartment, and deliver their therapeutic cargo into the cytoplasm to interact with 

defined intracellular targets and produce the desired therapeutic activity.
3
 

Viral vectors proved to be highly efficient in delivering nucleic acids into the cytoplasm 

of infected cells.
4
 For example, the influenza virus utilizes the pH-sensitive membrane-
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destabilizing Hemagglutinin protein displayed on the viral coat to disrupt the endosomal 

membrane and enter the cytoplasm.
5
 Hemagglutinin and other fusion proteins are 

characterized by their unique ability to switch from an ionized and hydrophilic 

conformation at physiologic pH to a hydrophobic and membrane-active one in response 

to acidic endosomal pH gradients, which destabilizes the endosomal membrane leading to 

leakage of endosomal contents into the cytoplasm.
5
 Szoka, Wagner, and others have used 

artificial, pH-sensitive, fusogenic peptides to enhance cytoplasmic gene delivery.
6
 

Despite the endosomolytic activity of these fusogenic peptides, their potential 

immunogenicity and toxicity limit their clinical use. 

Several groups have focused their efforts on the development of synthetic polymeric 

carriers that mimic the endosomolytic properties of fusogenic proteins and enhance the 

cytoplasmic delivery of therapeutic macromolecules.
7
 These polymers are characterized 

by their unique ability to “sense” the changes in environment pH where they undergo a 

change from a hydrophilic, stealth-like conformation at physiologic pH to a hydrophobic 

and membrane-destabilizing one in response to acidic endosomal pH gradients. 

Poly(ethylacrylic acid) (PEAA) is the first reported polymer to display a pH-dependent 

disruption of synthetic lipid vesicles at acidic pH of 6.3 or lower.
8
 Stayton, Hoffman, and 

coworkers expanded this family of synthetic polymers by synthesizing poly(propylacrylic 

acid) (PPAA) and copolymers of acrylic acid and alkyl acrylates, which showed a pH-

dependent membrane-destabilizing activity that increased with the increase in the 

proportion of hydrophobic alkyl acrylates in polymer composition.
9
 PPAA exhibited a 

pH-dependent membrane-destabilizing activity that is one order of magnitude higher than 

PEAA 
9
 and proved to enhance the transfection efficiency of cationic lipid/pDNA 
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complexes both in vitro 
10

 and in vivo.
11

 However, the number of anionic carboxylate 

groups of the PPAA polymer affects charge balance in cationic lipid and polymer/DNA 

complexes and the order of mixing of PPAA proved to affect the size, surface charge, 

stability, and transfection efficiency of these complexes.
10a,12

 Subsequent polymers 

incorporated a glutathione-sensitive monomer, pyridyl disulfide acrylate (PDSA), to 

allow direct coupling of cationic peptides to the pH-sensitive polymer backbone.
13

 These 

polymer-peptide conjugates proved to complex DNA nucleotides and retain their 

membrane-destabilizing activity in response to acidic pH gradients.
13

 

Earlier research showed that the membrane-destabilizing activity and the ability of these 

polymers to condense DNA/RNA molecules relies on a delicate balance between the 

content of pH-sensitive acrylic acid and hydrophobic alkyl acrylate monomers, the net 

positive charge of polymer-cationic peptide conjugates, and their overall molecular 

weight.
13b

 The optimum molar content of EAA and PAA monomers is typically more 

than 60% of the polymer backbone to maintain aqueous solubility and pH sensitivity of 

the polymer. However, this high content of anionic carboxylate groups causes 

electrostatic repulsion between the pH-sensitive polymer and the negatively charged 

phosphate groups of the loaded DNA/RNA molecules, which reduces the amount of 

nucleic acid incorporated in cationic lipid or polymer/DNA complexes.
13b

 Covalent 

conjugation of cationic peptides to PDSA-containing polymers significantly improved 

their aqueous solubility and allowed for effective complexation of DNA/RNA 

molecules.
13

 However, PDSA content in these polymers remains limited to avoid 

reducing the content of the hydrophobic alkyl acrylate monomers in the polymer 

backbone, which are essential to achieve the desired membrane-destabilizing activity.
13
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The membrane-destabilizing activity of these polymers increases with the increase in 

polymer’s molecular weight. However, these are linear non-degradable polymers that rely 

on renal excretion to be eliminated from the body, which limits their molecular weight to 

a maximum of 45-50 KDa.
13b

 

This research focuses on the design and synthesis of polymeric carriers that can condense 

a large dose of therapeutic nucleic acids into particles that can “sense” the drop in 

environment pH after internalization into target cells via endocytosis, which will trigger 

particle degradation into small membrane-destabilizing polymer fragments that rupture 

 
Figure 3.1: A schematic drawing comparing the cellular fate of: (A) free nucleic acid molecules (e.g. 

siRNA) and (B) “intelligent” particles encapsulating therapeutic siRNA molecules. (A) Free siRNA 

molecules are internalized by endocytosis and get trapped in the endosomal-lysosomal trafficking 

pathway, which results in their degradation and loss of therapeutic activity. (B) Similarly, “intelligent” 

particles are internalized by endocytosis. In the endosome, the acid-labile hydrazone linkages 
connecting the comb-like grafts to the polymer backbone will be hydrolyzed in response to endosomal 

acidity. In addition, the pH-sensitive polymer backbone switches from a hydrophilic stealth-like 

conformation to a hydrophobic membrane-destabilizing one. The hydrophobic backbone and the 

polymer fragments synergistically rupture the endosomal membrane and release the encapsulated 

siRNA molecules into the cytoplasm to interact with their intracellular targets and produce the desired 

therapeutic activity. The polymer backbone and the fragmented grafts will be exocytosed and excreted 

in urine after delivering their cargo. 
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the endosomal membrane and release the encapsulated nucleic acid cargo into the 

cytoplasm to interact with their targets and produce the desired therapeutic activity 

(Figure 3.1). These comb-like polymers are constructed on diblock copolymers where 

the first block incorporates pH-sensitive EAA monomers and hydrophobic butyl 

methacrylate (BMA) or hexyl methacrylate (HMA) monomers at a 60/40 molar feed ratio. 

The second block is synthesized using N-acryloxy succinimide (NASI) or ß-benzyl L-

aspartate N-carboxy-anhydride (BLA-NCA) monomers, which are functionalized to 

allow for controlled grafting of hydrophobic HMA and cationic trimethyl aminoethyl 

methacrylate (TMAEMA) copolymers at a 50/50 molar feed ratio via acid-labile 

hydrazone linkages (Figure 3.2). 

 

 
Figure 3.2: A schematic drawing showing the chemical structure of a degradable, pH-sensitive, 

membrane-destabilizing, comb-like polymer. The first block in the diblock polymer backbone 

incorporates pH-sensitive (e.g. EAA) and hydrophobic (e.g. BMA and HMA) monomers. The second 

block incorporates N-acryloxy succinimide (NASI) or ß-benzyl L-aspartate N-carboxy-anhydride (BLA-

NCA) monomers, which are functionalized to allow controlled grafting of hydrophobic HMA and 

cationic TMAEMA monomers via acid-labile hydrazone linkages. 
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The polymer backbone is tailored to have a molecular weight below 45-50 KDa and to 

exhibit a high membrane-destabilizing activity in response to acidic stimuli. The comb-

like grafts have an average molecular weight of 20 KDa per graft and incorporate cationic 

TMAEMA monomers for condensation of DNA/RNA molecules and hydrophobic HMA 

monomers to enhance their membrane-destabilizing activity. These comb-like polymers 

will complex nucleic acid molecules via electrostatic interaction forming pH-sensitive 

particles that will fragment upon exposure to acidic endosomal pH gradients due to 

hydrolysis of the hydrazone linkages connecting poly(HMA-co-TMAEMA) grafts to the 

polymers backbone (Figure 3.3). The membrane-destabilizing backbone and the 

hydrophobic monomers embedded in the comb-like grafts will synergistically disrupt the 

endosomal membrane and release the nucleic acid cargo into the cytoplasm to produce 

the desired therapeutic activity. These polymer fragments are engineered to be quickly 

eliminated in vivo by renal excretion. 

This manuscript describes the synthesis, characterization, and membrane-destabilizing 

activity of a new family of degradable, pH-sensitive, comb-like polymers. It describes the 

ability of these comb-like polymers to condense siRNA molecules into particles and 

reports their size, zeta potential, and serum and nuclease stability. We also report the 

uptake of particles incorporating anti-GAPDH siRNA molecules into MCF-7 breast 

cancer cells and the associated knockdown of GAPDH gene expression as a function of 

particle composition. 
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Figure 3.3: A schematic drawing showing the structure of a comb-like polymer, complexation of 

siRNA molecules into “smart” particles, their response to acidic pH, and fragmentation of the comb-like 

carrier. (A) is a schematic of a degradable, pH-sensitive, membrane-destabilizing, comb-like polymer at 

pH 7.4 with intact hydrazone linkages between the grafts and the polymer backbone. (B) This polymer 

condenses therapeutic nucleic acids into “smart” particles, which remain intact at neutral pH but 

degrade upon exposure to acidic endosomal pH gradients (C) due to hydrolysis of the acid-labile 

hydrazone linkage and fragmentation of the comb-like carrier (D). 
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3.2 Materials and methods 

3.2.1 Materials 

Copper (I) bromide (Cu(I)Br), 1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA), 

2,2’-Azo-bis(isobutyronitrile) (AIBN), BMA, HMA, NASI, TMAEMA, and all solvents 

were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO). All reagents were 

used as delivered without further purification except for AIBN, which was crystallized 

from methanol prior to use. EAA monomer and 2-dodecylsulfanylthiocarbonylsulfanyl-2-

methyl propionic acid (DMP) chain transfer agent were synthesized following published 

procedures.
14

 The ß-benzyl L-aspartate N-carboxy-anhydride (BLA-NCA) monomer was 

synthesized using triphosgene following the Fuchs-Farthing method.
15

 The human anti-

GAPDH siRNA, FAM-labeled anti-GAPDH siRNA, negative siRNA sequence, KDalert 

GAPDH assay kit, RNase V1 enzyme, and siPORT-NH2 transfection reagent were 

purchased from Ambion Inc. (Austin, TX). The RNeasy Mini Kit and Omniscript reverse 

transcriptase kit were purchased from Qiagen (Valencia, CA). The TaqMan universal 

PCR master mix and TaqMan gene expression assays for human GAPDH and β-actin 

genes were purchased from Applied Biosystems (Foster, CA). The PicoGreen assay was 

purchased from Molecular probes (Eugene, OR). 

3.2.2 Synthesis of poly(ethyl acrylic acid-co-alkyl methyl acrylate) copolymers 

The first block of the polymer backbone was synthesized by reversible addition-

fragmentation chain transfer (RAFT) polymerization (Figure 3.4A) and random free 

radical polymerization (Figure 3.5A). For synthesis following RAFT polymerization 

techniques, we mixed EAA monomers (1.0 gm, 10×10
-3

 moles) with BMA monomers 

(3.3×10
-3

 moles), DMP (33 mg, 9.15×10
-5

 moles), and AIBN (3 mg, 1.83×10
-5

 moles) in 
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a 50 ml round bottom Schlenk tube. The reaction mixture was degassed by purging with 

nitrogen for 20 minutes and placed in an oil bath at 60 
o
C for 17 hours. The resulting 

crude polymer was dissolved in dimethyl formamide (DMF), precipitated in diethyl ether, 

and dried under vacuum to yield pure poly(EAA-co-BMA) polymer. For synthesis using 

random free radical polymerization, we replaced the DMP chain transfer agent with 

cysteamine (33 mg, 9.15×10
-5

 moles) and followed the same reaction protocol except for 

increasing the reaction time to 48 hours. 
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Figure 3.4: Protocol for synthesis of poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-like 

polymer. 
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3.2.3 Synthesis of poly(ethyl acrylic acid-co-butyl methacrylate)-b-N-acryloxy 

succinimide copolymers 

The first block of this diblock copolymer, poly(EAA-co-BMA) polymer, was dissolved 

in dioxane and mixed with N-acryloxy succinimide (NASI) monomers at a 1:56 molar 

ratio in a round bottom Schlenk tube followed by purging with nitrogen for 15 minutes. 

The AIBN initiator (5 mg, 3.0×10
-5

 moles) was added to the reaction mixture before 

placing the tube in an oil bath at 65 
o
C for 24 hours (Figure 3.4B). The crude polymer 

 

Figure 3.5: Protocol for synthesis of poly(EAA-co-BMA)-b-Asp-g-(HMA-co-TMAEMA) and 

poly(EAA-co-HMA)-b-Asp-g-(HMA-co-TMAEMA) comb-like polymers. 
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was dissolved in DMF, precipitated in diethyl ether, and dried under vacuum to yield 

pure poly(EAA-co-BMA)-b-NASI copolymer. 

3.2.4 Synthesis of poly(ethyl acrylic acid-co-alkyl methyl acrylate)-b-β-benzyl L-

aspartate copolymers 

We dissolved poly(EAA-co-BMA)-NH2 or poly(EAA-co-HMA)-NH2 polymers 

synthesized by free radical polymerization in presence of cysteamine in DMF and mixed 

with ß-benzyl L-aspartate N-carboxy anhydride (BLA-NCA) monomers at a 1:100 molar 

ratio in a round bottom Schlenk tube that was allowed to react at 50 C for 48 hours 

(Figure 3.5B). BLA-NCA monomers reacted with the terminal NH2 group of the first 

block through a ring-opening polymerization reaction forming the second poly(ß-benzyl 

L-aspartate) block. The crude product was dissolved in DMF, precipitated in diethyl ether, 

and dried under vacuum to yield pure poly(EAA-co-BMA)-b-BLA and poly(EAA-co-

HMA)-b-BLA polymers. 

3.2.5 Graft polymerization of HMA and TMAEMA monomers via hydrazone 

linkages 

The diblock polymer backbone with NASI and BLA blocks was used to synthesize 

macroinitiators for graft polymerization of HMA and TMAEMA monomers (Figure 

3.4C & Figure 3.5C). The polymer backbone was dissolved in dimethyl sulfoxide 

(DMSO), mixed with anhydrous hydrazine in a Schlenk tube, and allowed to react at 40 

o
C for 24 hours. The crude product was dissolved in DMF, precipitated in diethyl ether, 

and dried under vacuum to yield pure polymer-hydrazine conjugates, which was 

dissolved in DMSO and allowed to react with bromomalonaldehyde at a hydrazine-to-

bromomalonaldehyde molar ratio of 1:1.5 for 24 hours at room temperature. The pure 
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macroinitiator was precipitated in acetone, filtered, and dried overnight under vacuum. 

The selected macroinitiator was dissolved in DMF, mixed with equimolar concentrations 

of HMA and TMAEMA monomers, the [Cu(I)Br] catalyst, and HMTETA ligand at a 1:1 

molar ratio followed by three freeze-vacuum-thaw cycles before placing the reaction 

mixture in an oil bath at 60 C for 48 hours while stirring. The molar ratio of the 

macroinitiator, HMA, and TMAEMA were controlled to prepare poly(HMA-co-

TMAEMA) grafts with a weight average molecular weight (MW) of 20 KDa equally split 

between the HMA and TMAEMA units. The final comb-like polymers were precipitated 

in diethyl ether, dried under vacuum, and further purified by dialysis against a NaOH 

solution (pH = 10) for 24 hours followed by lyophilization for 48 hours. 

3.2.6 Characterization of the diblock backbone and comb-like grafts 

The purity and composition of the all the synthesized polymers were evaluated based on 

their 
1
H-NMR spectra in DMSO-d6 recorded using a 300 MHz Varian Mercury system 

(Palo Alto, CA) at ambient temperature. The weight average molecular weight and 

molecular weight distribution of each polymer were examined based on their elution 

volume on an Ultrahydrogel 500 column compared to a series of poly(ethylene glycol) 

standards (Polymer Laboratories Ltd, UK) using Tris-HCL buffer (pH = 8) as a mobile 

phase at a flow rate of 0.5 ml/min. Detection of the eluting polymers was done using a 

Waters 2414 refractive index detector under the control of Breeze software run by an 

external PC (Waters Corporation, Milford, MA). Fragmentation of comb-like polymers in 

response to acidic environment was evaluated by dissolving 5 mg of each of the comb-

like polymers in phosphate-buffered saline (PBS) with pH 5.8 and incubating at 37 C for 

24 hours while stirring. A 100 l sample was drawn from each of these polymer solutions 
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at 0.5, 1, 2, 6, 12, and 24 hours for analysis by gel permeation chromatography. The areas 

under the curve for the peaks corresponding to the parent comb-like polymer and 

poly(HMA-co-TMAEMA) fragments were used to quantify the amount of each polymer 

species present in solution at a given time point to determine the hydrolysis rate of the 

hydrazone linkages connecting the polymer grafts to the backbone. 

3.2.7 Evaluation of the pH-dependent membrane-destabilizing activity of comb-

like polymers 

The membrane-destabilizing activity of the polymer backbone and comb-like polymers 

was assessed based on their ability to hemolyze red blood cells (RBCs) at different pH 

values. Briefly, human blood was collected in EDTA-containing vacutainers, which were 

centrifuged at 13,500xg to separate the RBCs. The plasma supernatant was discarded and 

the RBCs were washed three times using a 150 mM saline solution. After the third wash, 

the RBCs solution was equally divided into three vacutainers and suspended in 100 mM 

PBS solutions with pH 5.8, 6.6, or 7.4. The RBCs solutions were diluted 10-fold using 

PBS with the corresponding pH value to reach a concentration of 10
8
 RBCs per 200 l 

solution. Stock polymer solutions were prepared by dissolving each polymer in PBS 

solution of pH 7.4. The hemolytic activity poly(EAA-co-BMA) and poly(EAA-co-HMA) 

copolymers and the comb-like polymers was evaluated as a function of polymer 

concentration (50, 100, and 200 g/ml). The appropriate volume of the polymer stock 

solution was added to 800 l of PBS solution and 200 l of RBCs solution with the 

appropriate pH to reach the desired polymer concentration. The RBCs solutions were 

gently inverted several times for mixing with the added polymer solution then incubated 

for 60 min at 37 C. The membrane-destabilizing activity of a given polymer was 
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measured in terms of its ability to rupture the cell membrane of RBCs allowing the 

release of hemoglobin into the solution. At the end of the incubation time, RBCs 

solutions were centrifuged at 13,500xg for 5 min to pellet out intact and ruptured RBCs 

leaving the hemoglobin in the supernatant solution. Absorbance of hemoglobin in the 

supernatant was measured at its characteristic wavelength, 541 nm. The observed 

hemolysis of RBCs in PBS solutions with different pH values and in DI water was used 

as negative and positive controls, respectively. The observed hemolytic activity of a 

given polymer at a given concentration and pH value was normalized to that of the 

positive control, DI Water. All hemolysis experiments were carried out in triplicate. 

3.2.8 Formulation and characterization of “smart” particles 

The pH-sensitive comb-like polymers were dissolved in RNase free water and mixed 

with 0.5 μg of anti-GAPDH siRNA molecules dissolved in 1 μl of RNase free water at 

different nitrogen/phosphate (N/P) ratios. Each mixture was vortexed and allowed to 

stand at room temperature for 20 minutes before loading onto a 1% w/v agarose gel. The 

gel was immersed in a Tris acetate EDTA (TAE) buffer and run at 60 V for 1 hour before 

staining with SYBR Green II dye (Pierce, Rockford, IL) for 30 minutes and visualized 

under UV using a fluorescent green filter (Fotodyne Incorporated, Hartland, WI). Size 

and zeta potential of the particles prepared using different comb-like polymers at N/P 

ratio of 2.5/1 were measured using 90Plus particle size analyzer with ZetaPALS 

capability (Brookhaven Instruments Corporation, Holtsville, NY). 

3.2.9 Culture of MCF-7 cells 

MCF-7 breast cancer cells were purchased from ATCC (Manassas, VA) and cultured 

following established protocols. Briefly, MCF-7 cells were maintained in Eagle's 
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minimum essential medium (EMEM) supplemented with 10% fetal bovine serum, 0.01 

mg/ml bovine insulin, 10,000 units/ml penicillin, 10,000 μg/ml streptomycin and 

regularly changing the growth medium every 2 days. MCF-7 cells were incubated at 37 

°C, 5% CO2, 95% relative humidity, and passaged upon reaching 70-90% confluency 

using 0.25% trypsin/EDTA mixture. 

3.2.10 Cellular uptake of “smart” particles 

Comb-like polymers and commercial siPORT-NH2 were dissolved in OPTI-MEM 

solution and mixed with 0.57 µg of FAM-labeled anti-GAPDH siRNA molecules at N/P 

ratios of 1.5/1, 2.5/1, 4/1, 8/1, and 12/1 to prepare different particles that were incubated 

with MCF-7 cells for 6 hours at 37 °C, 5% CO2, and 95% relative humidity. MCF-7 cells 

were washed with PBS, treated with 0.25% trypsin/EDTA solution for 10 minutes, 

harvested, and centrifuged to remove the supernatant and form a cell pellet. MCF-7 cell 

pellets were suspended in PBS and analyzed using Biosciences FACSCalibur (Becton 

Dickinson, Franklin Lakes, NJ) to determine the percentage of fluorescently-labeled 

MCF-7 cells for each treatment. MCF-7 cells were gated by forward/size scatter and 

10,000 gated events were collected per sample to discriminate between live and dead 

cells and account for live cells only. 

3.2.11 In vitro transfection of MCF-7 cells 

MCF-7 cells were plated in 24-well plates at a seeding density of 40,000 cells/well and 

allowed to adhere for 24 hours. The particles and siPORT-NH2 complexes incorporating 

0.57 µg of anti-GAPDH siRNA or control siRNA molecules were incubated with MCF-7 

cells at a final siRNA concentration of 100 nM for 6 hours followed by addition of 500 μl 

of fresh culture medium and incubation for a total of 48 hours. The effect of different 
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treatments on GAPDH expression was quantified based on mRNA and protein levels. For 

quantification of mRNA, total RNA was isolated from MCF-7 cells using the RNeasy 

Mini Kit and 0.25 μg of total RNA was reverse transcribed using Omniscript reverse 

transcriptase kit following manufacturer’s protocols. Real time PCR was performed in a 

final volume of 20 μl containing 2 μl of cDNA (corresponding to 10 ng of total RNA for 

GAPDH and β-actin amplification), 1 μl of each primer, and 10 μl of the qPCR 

MasterMix in the 7500 Fast Real-Time PCR system. The amount of GAPDH protein 

expressed by MCF-7 cells was measured using the KDalert assay following 

manufacturer’s specifications. The level of GAPDH protein expression in response to 

different treatments was normalized to that of untreated control cells. 

3.2.12 Effect of serum and nuclease enzymes on stability of “smart” particles 

The particles were prepared by mixing pH-sensitive comb-like polymers with 0.57 µg of 

anti-GAPDH siRNA molecules at a N/P (+/-) ratio of 2.5/1 followed by addition of 10 or 

25% FBS and incubation at 37 C for 6 hours. The amount of siRNA released from 

different particles was measured by adding the PicoGreen dye and measuring the 

fluorescence intensity using a Fluoroskan microplate reader (Thermo Fisher Scientific 

Inc., Waltham, MA) at ex of 485 nm and em of 518 nm. The fluorescence intensity of 

each solution was normalized to that observed upon mixing the PicoGreen dye with 0.57 

µg of anti-GAPDH siRNA to determine the amount of free siRNA present in solution. 

The enzymatic stability of particle 1 was assayed using the gel retardation assay. Briefly, 

poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-like polymer was dissolved 

in RNase free water and mixed with 0.57 µg of anti-GAPDH siRNA molecules at N/P 

(+/-) ratios of 1/1, 2.5/1, 4/1, 8/1, and 12/1. Free siRNA and the complexes prepared at 
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different N/P ratios were incubated with RNase V1 enzyme at 37 C for 30 minutes 

before loading onto a 1% w/v agarose gel, which was subjected to 60 mV electric current 

for 60 minutes and stained with SYBR Green II dye. UV was used to visualize siRNA 

shift. The fluorescence intensity of each band for the complexes treated with the RNase 

enzyme (+) was compared to that of complexes not treated (-) with the RNase enzyme 

using free siRNA as a control. 

3.3 Results and Discussion 

3.3.1 Synthesis of degradable, pH-sensitive, membrane-destabilizing, comb-like 

polymers 

The focus of this work is the design and synthesis of pH-sensitive carriers that can 

successfully condense a large dose of DNA/RNA molecules into particles that will be 

internalized into target cells via endocytosis. In the endosome, these particles will “sense” 

the drop in pH, which triggers their degradation into small membrane-destabilizing 

fragments that disrupt the endosomal membrane and release the encapsulated nucleic acid 

into the cytoplasm to interact with specific intracellular targets to produce the desired 

therapeutic activity (Figure 3.3). These degradable, pH-sensitive, membrane-

destabilizing, comb-like polymers are constructed on a diblock polymer backbone where 

the first block incorporates pH-sensitive EAA and hydrophobic BMA or HMA 

monomers at a 60/40 molar feed ratio. The second block in the backbone is either N-

acryloxy succinimide (NASI) or ß-benzyl L-aspartate N-carboxy-anhydride (BLA-NCA) 

monomers to allow controlled grafting of poly(HMA-co-TMAEMA) copolymers via 

acid-labile hydrazone linkages. 
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Results show that the first block in the polymer backbone, poly(EAA-co-BMA) and 

poly(EAA-co-HMA) copolymers, was successfully synthesized by RAFT and random 

free radical polymerization techniques with average yields of 97.2% and 91.7%, 

respectively. The molar ratio of EAA to BMA/HMA monomers in the synthesized 

polymers is approximately 55/45, which is similar to their feed ratio (Table 3.1). 

Controlled addition of the NASI monomers to poly(EAA-co-BMA) polymer yielded a 

diblock copolymer with an average polymerization yield of 90%. Similarly, poly(EAA-

co-BMA)-NH2 and poly(EAA-co-HMA)-NH2 polymers reacted with BLA-NCA 

monomers via a ring-opening polymerization reaction to yield a diblock copolymer with 

an average yield of 92%. Both NASI- and BLA-containing polymers reacted with 

hydrazine and bromomalonoaldehyde to yield macroinitiators that incorporate an acid-

labile hydrazone linkage. Atom transfer radical polymerization (ATRP)-controlled 

grafting of HMA and TMAEMA monomers to poly(EAA-co-BMA)-b-NASI backbone 

was efficient and produced 22 comb-like grafts, which account for 93% of the Br-

activated NASI monomers present in the polymer backbone (Table 3.1). The molar ratio 

of HMA to TMAEMA monomers in the grafts closely followed their feed ratio (Table 

3.1). Grafting of HMA and TMAEMA monomers to poly(EAA-co-BMA)-b-BLA and 

poly(EAA-co-HMA)-b-BLA polymers yielded 4 and 10 comb-like grafts, which account 

for grafting efficiencies of 37% and 38%, respectively (Table 3.1). It is important to note 

that NASI-containing polymers have a higher positive charge density compared to BLA-

containing polymers due to the higher number of grafts attached per polymer backbone 

where poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-like polymer has the 

highest TMAEMA content per unit weight. The variation in TMAEMA content will vary 
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the amount of comb-like polymer necessary to complex a given dose of nucleic acid 

producing particles with different polymer content. 

Table 3.1: Composition of new degradable, pH-sensitive, membrane-destabilizing, comb-like polymers 

 

a
 The weight average molecular weight of each polymer is calculated based on its retention volume in 

relation to the elution volumes of a series of poly(ethylene glycol) standards run on an Ultrahydrogel 500 

column using Tris-HCL buffer (pH = 8) as a mobile phase at a flow rate of 0.5 ml/min. 
b Monomer’s molar ratio determined using the 1H-NMR spectra of the pure polymer. 
c The molar ratio of the HMA and TMAEMA monomers incorporated in the comb-like grafts determined 

using the 1H-NMR spectra of the pure polymer. 
d The number of NASI and BLA monomers incorporated in the second block of the polymer backbone 

calculated using the 1H-NMR spectra of the pure polymer. 
e The number of poly(HMA-co-TMAEMA) grafts attached to the polymer backbone calculated based on 

the molecular weight of the comb-like polymer. Grafting efficiency is based on the ratio between the 
number of grafts to the number of NASI or BLA monomers incorporated in the polymer backbone. 
f The number of cationic TMAEMA monomers is calculated based on its molar content in the grafts. The 

total number of TMAEMA monomers in the comb-like polymer accounts for the total number of the grafts. 
g The number of hydrophobic HMA monomers is calculated based on its molar content in the grafts. The 

total number of HMA monomers in the comb-like polymer accounts for the total number of the grafts. 
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The pH-responsiveness of these comb-like polymers is in part a result of using hydrazone 

linkages to connect the poly(HMA-co-TMAEMA) grafts to the polymer backbone. 

Hydrazone linkages have previously been used to conjugate small molecular weight 

anticancer drugs (e.g. doxorubicin) to water-soluble HPMA polymers and proved to 

hydrolyze and release the attached drug upon internalization into acidic intracellular 

vesicles.
16

 Torchilin and coworkers conjugated PEG chains to TAT-modified liposomes 

via hydrazone linkers to shield the liposomes from the reticular endothelial system, 

increase their plasma residence time, and enhance their accumulation into tumor and 

ischemic tissues. The hydrazone linkage connecting the PEG chains to the lipid shell is 

hydrolyzed in the acidic environment of tumor and ischemic tissues, which unmasks the 

TAT peptide and trigger cell uptake.
17

 Hydrazone linkages have also been used to allow 

controlled degradation of temperature-sensitive hydrogels used for site-specific delivery 

of radioactive nuclides.
18

 

The motivation to incorporate acid-labile hydrazone linkages in these comb-like 

polymers is to allow the grafting of a large number of cationic/hydrophobic polymer 

chains onto the polymer backbone to achieve a high positive charge density that will 

allow the condensation of a large number of DNA/RNA molecules into pH-sensitive 

particles with high therapeutic loading. The molecular weight of a cationic non-

degradable polymer that can condense a similar dose of nucleic acids would exceed 250 

KDa, which would result in non-specific cellular toxicity due to its poor degradation and 

elimination. On the other hand, the hydrzone linkages connecting poly(HMA-co-

TMAEMA) grafts to the polymer backbone will hydrolyze in response to the acidity of 

the endosome, which will result in fragmenting the comb-like polymeric carrier into the 
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backbone and multiple grafts with average molecular weights of 40-45 and 20 KDa, 

respectively. These smaller fragments are hydrophilic and can be easily eliminated in 

vivo by renal excretion, which will significantly diminish their toxicity. Our results show 

that poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA), poly(EAA-co-BMA)-b-Asp-

g-(HMA-co-TMAEMA), and poly(EAA-co-HMA)-b-Asp-g-(HMA-co-TMAEMA) 

comb-like polymers have similar degradation profiles with degradation half lives (t1/2) of 

1.0, 1.2, and 0.75 hour, respectively (Figure 3.6). Earlier research showed that 

acidification of endocytic vesicles loaded with cationic particles occurs within 15 minutes 

with drop in environment pH to 5.9 
19

, which suggests that degradation of the particles 

prepared using these comb-like polymers will start shortly after their internalization and 

result in a rapid escape of the nucleic acid cargo into the cytoplasm. These comb-like 

polymers exhibited insignificant (< 5%) degradation at pH 7.4, which indicates that their 

membrane-destabilizing activity will be limited to the endosomal compartment, which 

enhances their overall biocompatibility. 
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3.3.2 Membrane-destabilizing activity of comb-like polymers 

The membrane-destabilizing activity of the polymer backbone and comb-like polymers 

was assessed based on their hemolytic activity as a function of polymer concentrations 

(50, 100, and 200 µg/ml) and solution pH (pH 5.8, 6.6, and 7.4). This hemolysis assay is 

                                 (A)                                                                   (B) 

  
(C) 

 
Figure 3.6: A plot correlating the change in the areas under the curve for the amount of parent (A) 

poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA), (B) poly(EAA-co-BMA)-b-Asp-g-(HMA-co-

TMAEMA), and (C) poly(EAA-co-HMA)-b-Asp-g-(HMA-co-TMAEMA) comb-like polymers and the 

released poly(HMA-co-TMAEMA) fragments upon incubation of these polymers in phosphate buffered 

saline solutions with pH 5.8 at 37 C for 24 hours. The areas under the curve of the peaks corresponding 
to the parent comb-like polymer (●) and the fragmented poly(HMA-co-TMAEMA) grafts (■) on an 

Ultrahydrogel 500 column were used to calculate the % of the intact comb-like polymer and the 

released fragments upon hydrolysis of the hydrazone linkages in this acidic medium as a function of the 

incubation time. 
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based on the established correlation between the observed hemolytic activity at acidic pH 

values and endosomal membrane disruption.
6h,20

 Polymers that exhibited a hemolytic 

activity ≥ 50% of that observed with the positive control (DI water) at acidic pH values 

has the potential to function as endosomolytic carriers. The hemolytic activity of 

poly(EAA-co-BMA) and poly(EAA-co-HMA) copolymers prepared by random free 

radical and RAFT polymerization techniques caused ≥ 75% hemolysis of the red blood 

cells at all concentrations and pH values (Figure 3.7).  

This high hemolytic activity at all pH values is attributed to high BMA and HMA (45%) 

and low EAA (55%) content, which reduces the ability of these copolymers to sense the 

changes in environment pH compared to polymers with higher (> 75%) acrylic acid 

content.
13

 Earlier results clearly showed that conjugation of cationic peptides and 

complexation with nucleic acids shift the polymer’s hydrophilic/hydrophobic balance 

towards being more hydrophilic, which tunes its pH-responsiveness but can possibly 

reduce its membrane-destabilizing activity.
13b

 We hypothesized that these highly 

hemolytic polymers will retain their membrane-destabilizing activity upon grafting of 

cationic TMAEMA monomers and complexation with nucleic acids. Consequently, we 

utilized these poly(EAA-co-BMA) and poly(EAA-co-HMA) copolymers as the primary 

block in the backbone of the synthesized comb-like polymers. 
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Grafting of cationic poly(TMAEMA) polymers onto the polymer backbone via acid-

labile hydrazone linkages significantly reduced the hemolytic activity of these polymers, 

which prompted us to incorporate an equal molar concentration of hydrophobic HMA 

monomers in the graft composition to enhance the membrane-destabilizing activity of the 

final comb-like polymer (data not shown). The hemolytic activity of poly(EAA-co-

BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-like polymer was ≥ 90% at acidic pH 

                                 (A)                                                                   (B) 

 

(C) 

 
Figure 3.7: The hemolytic activity of poly(EAA-co-BMA) (A & B) and poly(EAA-co-HMA) (C) 

copolymers synthesized by random free radical (A & C) and reversible addition-fragmentation chain 

transfer (RAFT) polymerization techniques (B). Hemolysis results are the average + the standard error 

of the mean of three independent experiments each carried out in triplicates. The observed hemolytic 

activity for each polymer is normalized to that of the positive control (DI water). 
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values of 6.6 and 5.8 at each of the studied concentrations (Figure 3.8A). At pH 7.4, the 

hemolytic activity of this polymer gradually increased from 60% to 88% with the 

increase in polymer concentration from 50 to 200 µg/ml, which can be a result of the high 

concentration of TMAEMA quaternary amine groups present in solution. Recent results 

showed that amphiphilic polymers incorporating quaternary amine groups cause pH-

independent cell lysis.
21

 Poly(EAA-co-BMA)-b-Asp-g-(HMA-co-TMAEMA) comb-like 

polymer exhibited a clear pH- and concentration-dependant hemolytic profile (Figure 

3.8B). At a concentration 50 µg/ml, the polymer produced a low hemolytic activity (29%) 

at pH 7.4 that increased to 54% and 45% at acidic pH of 6.6 and 5.8, respectively (Figure 

3.8B). The hemolytic activity significantly increased with the increase in polymer’s 

concentration reaching 80%-90% hemolysis at acidic pH values with a less pronounced 

increase at physiologic pH of 7.4 (Figure 3.8B). Similarly, poly(EAA-co-HMA)-b-Asp-

g-(HMA-co-TMAEMA) comb-like polymer showed a low hemolytic activity at pH 7.4 

compared to that observed at acidic pHs of 6.6 and 5.8, which increased with the increase 

in polymer’s concentration (Figure 3.8C). The observed hemolytic activity of these 

polymers in acidic environment (pH 6.6 and 5.8) is attributed to the pH-sensitive 

poly(EAA-co-BMA) and poly(EAA-co-HMA) blocks in the polymer backbone aided 

with the hydrophobic HMA monomers embedded in the poly(HMA-co-TMAEMA) 

grafts, which get released into acidic solutions upon hydrolysis of the connecting 

hydrazone linkages. Hemolysis results indicate that all comb-like polymers exhibit a 

concentration-dependent membrane-destabilizing activity in response to acidic stimuli, 

which suggests their potential as carriers for intracellular delivery of therapeutic nucleic 

acids. 



61 

 

 

3.3.3 Formulation of “smart” particles 

The ability of comb-like polymers to condense anti-GAPDH siRNA molecules into pH-

sensitive particles was analysed using the standard gel retardation assay. Comb-like 

polymers were mixed with a fixed amount (0.5 µg) of anti-GAPDH siRNA molecules at 

different N/P (+/-) ratios where the electrostatic interaction between the cationic 

quaternary amine groups of the TMAEMA monomers and the anionic phosphate groups 

                                 (A)                                                                   (B) 

 

(C) 

 
Figure 3.8: Hemolytic activity of (A) poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA), (B) 

poly(EAA-co-BMA)-b-Asp-g-(HMA-co-TMAEMA) and (C) poly(EAA-co-HMA)-b-Asp-g-(HMA-co-
TMAEMA) comb-like polymers as a function of polymer concentration and solution pH. Results are the 

average + the standard error of the mean of three independent experiments each carried out in 

triplicates. The observed hemolytic activity for each polymer is normalized to that of the positive 

control (DI water). 
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of the RNA molecules will lead to formation of particles that encapsulate the loaded 

RNA molecules. The amount of each comb-like polymer needed to complex the loaded 

siRNA molecules varied based on their TMAEMA content. Results show that all comb-

like polymers successfully complexed the loaded siRNA molecules at all N/P ratios, 

which is indicated by their retention in the loading wells compared to the observed 

migration of free siRNA molecules (Figure 3.9). It is important to note that poly(EAA-

co-BMA)-b-Asp-g-(HMA-co-TMAEMA) and poly(EAA-co-HMA)-b-Asp-g-(HMA-co-

TMAEMA) polymers fully condensed the loaded siRNA molecules at a 1/1 N/P ratio 

whereas poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) polymer partially 

condensed the same amount of siRNA molecules at a 1/1 N/P ratio and fully condensed 

the loaded siRNA molecules at 2/1 N/P ratio (Figure 3.9). This clearly shows that these 

new comb-like polymers can condense siRNA molecules at low N/P ratios compared to 

other acrylic acid-based polymers.
13

 This reduces the amount of comb-like polymers 

needed to complex a given dose of therapeutic nucleic acids and consequently minimizes 

the toxicity commonly associated with cationic carriers. 
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3.3.4 Membrane-destabilizing activity of “smart” particles 

Comb-like polymers have to retain their membrane-destabilizing activity after their 

complexation with nucleic acid molecules in order to disrupt the endosomal membrane 

and release their therapeutic cargo into the cytoplasm in response to the acidic endosomal 

pH gradients. Conjugation of cationic peptides and complexation with DNA molecules 

have been shown to reduce the membrane-destabilizing activity of other pH-sensitive 

                                 (A)                                                                   (B) 

           

(C) 

 
 

Figure 3.9: Images of the 1% w/v agarose gels stained with SYBR Green II dye showing the 

electrophoretic mobility of free siRNA and the particles prepared by complexing (A) poly(EAA-co-

BMA)-b-NASI-g-(HMA-co-TMAEMA), (B) poly(EAA-co-BMA)-b-Asp-g-(HMA-co-TMAEMA) and 

(C) poly(EAA-co-HMA)-b-Asp-g-(HMA-co-TMAEMA) comb-like polymers with 0.5 g of anti-
GAPDH siRNA molecules at different N/P (+/-) ratios. 
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polymers due to a shift in the hydrophilic/hydrophobic balance in the formed complexes 

towards being more hydrophilic.
13

 Consequently, we evaluated the hemolytic activity of 

the particles prepared by complexation of comb-like polymers with 0.5 g of anti-

GAPDH siRNA molecules at N/P ratio of 2.5/1 as a function of solution pH. Results 

show that all particles exhibited a sharp membrane-destabilizing activity in acidic 

solutions (pH 5.8) compared to neutral ones (pH 7.4), which indicates their ability to 

“sense” the drop in environment pH (Figure 3.10). At pH 5.8, the particles formulated 

based on NASI-containing polymer displayed a high hemolytic activity (84%) compared 

to Asp-containing polymers, which displayed a lower hemolytic activity in the range of 

66%-72%. All particles except those prepared using Poly(EAA-co-BMA)-b-NASI-g-

(HMA-co-TMAEMA) comb-like polymers showed a low hemolytic activity at pHs 6.6 

and 7.4, which clearly indicates the tuning of the membrane-destabilizing activity of 

these comb-like carriers upon complexation with nucleic acid molecules. This hemolysis 

profile clearly shows the membrane-disruptive activity of these particles in response to 

acidic endosomal pH gradients, which suggests their potential as carriers for enhancing 

the cytoplasmic delivery of nucleic acids. 
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3.3.5 Characterization of “smart” particles 

Size and surface charge of these particles were measured using dynamic light scattering 

and zeta potential measurements, respectively. Results show that particles 1 and 3 have 

similar particle size in the range of 400 – 430 nm compared to particles 2, which have a 

larger size of 666 nm (Figure 3.11A). All particles display a cationic surface with an 

average zeta potential of 23 – 35 mV (Figure 3.11B). The combination of size and 

surface charge dictates the ability of these particles to escape recognition and scavenging 

by the reticular endothelial system, extravasate from the systemic circulation into tumor 

tissue, and become effectively internalized by target cells. Earlier research showed that 

the molecular size cut off for tumor vasculature is between 400 and 600 nm.
22

 

Consequently, these particles particularly 1 and 3 are suited for delivery of nucleic acids 

into solid tumors. Additionally, the cationic nature of these particles will facilitate their 

 

Figure 3.10: The hemolytic activity of particles 1-3 prepared by complexing poly(EAA-co-BMA)-b-

NASI-g-(HMA-co-TMAEMA), poly(EAA-co-BMA)-b-Asp-g-(HMA-co-TMAEMA), and poly(EAA-

co-HMA)-b-Asp-g-(HMA-co-TMAEMA) comb-like polymers with 0.5 g of anti-GAPDH siRNA 
molecules at a N/P ratio of 2.5/1. Results are the average + the standard error of the mean of three 

independent experiments each carried out in triplicates. The observed hemolytic activity is normalized 

to that of the positive control (DI water). 
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interaction and internalization into target cells via adsorptive endocytosis, which further 

emphasizes their potential as drug carriers. 

 

3.3.6 Uptake of “smart” particles into MCF-7 breast cancer cells 

We evaluated the internalization of fluorescently-labeled particles 1-3 prepared at 

different N/P ratios into MCF-7 breast cancer cells in comparison to complexes prepared 

using commercial siPORT amine transfection agent using flow cytometry. Results show 

that free siRNA molecules were not internalized and require a carrier to enhance their 

uptake by MCF-7 cancer cells (Figure 3.12). At low N/P ratios of 1.5/1 and 2.5/1, 

particles 3 showed higher uptake into MCF-7 cells compared to particles 2, which 

exhibited higher uptake than particles 1. However, at higher N/P ratios, all particles 

exhibited a similar uptake profile into MCF-7 cells, which can be attributed to their 

higher positive charge density due to the incorporation of excess comb-like polymers into 

                                  (A)                                                               (B) 

  

Figure 3.11: The  size (A) and zeta potential (B) of particles 1-3 prepared by complexation of 

poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA), poly(EAA-co-BMA)-b-Asp-g-(HMA-co-

TMAEMA), and poly(EAA-co-HMA)-b-Asp-g-(HMA-co-TMAEMA) comb-like polymers with 0.57 

µg of anti-GAPDH siRNA at a N/P (+/-) ratio of 2.5/1, respectively. The plotted results are the average 

+ the standard error of the mean of two independent experiments each carried out in triplicates. 
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these particles. Similarly, siPORT amine-based complexes showed high internalization 

(95%) into MCF-7 cells. These results clearly show that all particles are efficiently 

internalized (> 75%) by MCF-7 cells regardless of the N/P ratio. Earlier research showed 

that increasing the particle’s cationic nature is typically associated with toxicity 
23

 or low 

transfection efficiency due to poor decomplexation of the loaded DNA/RNA molecules.
24

 

Consequently, we decided to evaluate the transfection efficiency of the particles prepared 

at N/P ratio of 2.5/1, which will have the optimum number of cationic TMAEMA 

residues to complex the loaded siRNA molecules without inducing cellular toxicity or 

hindering the cytoplasmic decomplexation of the loaded siRNA. 

 

3.3.7 Effect of “smart” particles on GAPDH expression 

The ability of particles 1-3 to deliver functional siRNA molecules into the cytoplasm of 

MCF-7 breast cancer cells was assayed based on their ability to selectively knockdown 

 

Figure 3.12: The % of MCF-7 cells that internalized free siRNA molecules, particles 1-3, and siPORT 

amine-based complexes upon incubation for 6 hours in a serum-free culture medium. Particles 1-3 were 

prepared by complexation of poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA), poly(EAA-co-

BMA)-b-Asp-g-(HMA-co-TMAEMA), and poly(EAA-co-HMA)-b-Asp-g-(HMA-co-TMAEMA) 

comb-like polymers with 0.57 µg of fluorescently-labeled anti-GAPDH siRNA at different N/P (+/-) 

ratios, respectively. The plotted results are the average + the standard error of the mean of four 

independent experiments each carried out in triplicates. 
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GAPDH gene expression at the mRNA and protein levels. We utilized the KDalert assay 

kit to measure the changes in GAPDH protein level upon incubation with particles that 

encapsulate the anti-GAPDH siRNA molecules compared to those encapsulating a 

scrambled siRNA sequence. We utilized siPORT amine-based complexes encapsulating 

an equal dose of anti-GAPDH siRNA molecules as a positive control to determine the 

maximum level of knockdown that can be achieved using robust commercial transfection 

reagents. 

 

Results show that particles 1, 2, and 3 caused 36%, 27%, and 20% reduction in GAPDH 

protein expression, respectively (Figure 3.13A). Results also show that siPORT amine-

based complexes produced 38% reduction in GAPDH protein expression. It is important 

to note that particle 2 caused non-specific reduction in GAPDH expression upon 

                                  (A)                                                               (B)

  

Figure 3.13: The effect of particles 1-3 encapsulating 100 nM of anti-GAPDH siRNA (+) or a 

scrambled siRNA sequence (-) on GAPDH protein expression (A) and mRNA levels (B) in MCF-7 

breast cancer cells. Particles 1-3 were prepared by complexation of poly(EAA-co-BMA)-b-NASI-g-

(HMA-co-TMAEMA), poly(EAA-co-BMA)-b-Asp-g-(HMA-co-TMAEMA), and poly(EAA-co-

HMA)-b-Asp-g-(HMA-co-TMAEMA) comb-like polymers with 0.57 µg of the selected siRNA 

sequence at a N/P (+/-) ratio of 2.5/1. The mRNA levels for GPADH gene are normalized to mRNA 
levels of β-actin. The plotted results are the average + the standard error of the mean of three 

independent experiments with five replicates for each treatment. 
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incubation with the particles that encapsulate scrambled siRNA molecules, which may be 

a result of polymer’s toxicity towards MCF-7 cells. By comparing the activity of particles 

1 and 3, it is clear that particle 1 is more efficient in silencing the expression of the 

targeted gene (GAPDH) reaching the same level of knockdown achieved by commercial 

transfection reagents without inducing any toxicity. The observed reduction in GAPDH 

protein levels was also evident at the mRNA level with particle 1 and siPORT amine-

based complexes inducing 40% knockdown in GAPDH mRNA levels (Figure 3.13B). 

The higher activity of particles 1 is a result of higher grafting efficiency (92.5%) and 

TMAEMA content per comb-like polymer compared to those used to prepare particles 2 

and 3 (Table 3.1). These results collectively indicate that particle 1 is an effective carrier 

for intracellular delivery of therapeutic siRNA molecules. 

We prepared a series of particle 1 by complexing poly(EAA-co-BMA)-b-NASI-g-(HMA-

co-TMAEMA) comb-like polymers with siRNA molecules at different N/P ratios to 

determine the effect of particle composition on their ability to achieve functional 

knockdown of GAPDH expression in MCF-7 cells. Results show that particles prepared 

at N/P ratio of 1.5/1 failed to reduce GAPDH expression compared to those prepared at 

N/P ratio of 2.5/1, which reduced GAPDH expression by 36-40% at both the mRNA and 

protein levels (Figure 3.14). Particles prepared at 4/1 and 8/1 N/P ratios reduced GPADH 

expression by ~25%, however their effect was associated with reduction in cell viability 

indicated by the non-specific decline in mRNA levels observed upon treatment with 

particles encapsulating scrambled siRNA sequences (Figure 3.14B). These results are in 

agreement with earlier research clearly documenting the non-specific toxicity of particles 

with high content of cationic polymers 
23,25

. These results further confirmed the potential 
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of the particles prepared by complexation of poly(EAA-co-BMA)-b-NASI-g-(HMA-co-

TMAEMA) comb-like polymers with therapeutic siRNA molecules at N/P ratio of 2.5/1 

as effective carriers for intracellular delivery of nucleic acid drugs. 

 

3.3.8 Effect of serum and nuclease enzymes on “smart” particles 

Particles have to shield and protect their therapeutic cargo from serum proteins and 

nuclease enzymes, which proved to degrade DNA/RNA molecules into small ineffective 

fragments 
23b,26

 to become therapeutically effective in vivo. We examined the effect of 

serum proteins on particles 1-3 prepared at a N/P ratio of 2.5/1 by incubating these 

particles with 10% and 25% FBS for 6 hours at 37 °C and measuring the amount of 

siRNA released in solution using the PicoGreen dye. Results show that particles 1-3 

retained 92-95% of the loaded siRNA molecules upon incubation in serum-free medium 

for 6 hours (Figure 3.15). However, incubation of these particles with 10-25% of FBS 

caused partial decomplexation of these particles and reduced the amount of shielded 

                                  (A)                                                           (B) 

  
Figure 3.14: The effect of particle 1 prepared by complexation of poly(EAA-co-BMA)-b-NASI-g-

(HMA-co-TMAEMA) comb-like polymers with 0.57 µg of anti-GAPDH siRNA (+) or a scrambled 

siRNA sequence (-) at different N/P (+/-) ratios on GAPDH protein expression (A) and mRNA levels 

(B) in MCF-7 breast cancer cells. The plotted results are the average + the standard error of the mean of 

three independent experiments with five replicates for each treatment. 
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siRNA molecules to 75-80% of the loaded siRNA molecules. Despite the partial release 

of 20-25% of the loaded siRNA molecules, these particles retained and shielded the bulk 

of the loaded dose at a low N/P ratio for a long incubation time. 

 

We evaluated the stability of particle 1 prepared at different N/P ratios upon incubation 

with RNase V1 at 37 °C for 30 minutes using the standard gel retardation assay. By 

comparing the fluorescence intensity of the wells loaded with the particles treated with 

RNase enzyme (+) to those incubated with blank buffer (-) using Image J software, our 

results show that particle 1 prepared at N/P ratio of 2.5/1 and higher was able to retain 

and shield > 95% of the loaded siRNA molecules (Figure 3.16). The particles prepared at 

N/P ratio of 1/1 shielded the fraction of the siRNA molecules that is complexed with the 

polymeric carrier and entrapped into the loading well. The free fraction of siRNA 

molecules that appeared as a faint band with similar electrophoretic mobility to free 

 

Figure 3.15: The change in the amount of siRNA molecules encapsulated within particles 1-3 upon 

incubation for 6 hours at 37 C with 10% and 25% of fetal bovine serum (FBS) compared to the 
particles incubated in serum-free medium. SYBR Green II dye was used to measure the amount of free 

siRNA molecules present in each solution to determine siRNA leakage from each particle at different 

FBS concentrations. The amount of free siRNA molecules present in solution was normalized to the 

encapsulated siRNA dose (0.57 µg) to determine % of shielded siRNA in each particle under different 

conditions. All particles were prepared at N/P (+/-) ratio of 2.5/1. The plotted results are the average + 

the standard error of the mean of a single experiment carried out in triplicates. 
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siRNA was digested by the RNase enzyme (Figure 3.16). These results collectively 

indicate that particles 1-3 retained and shielded > 75% of their siRNA cargo in presence 

of 25% (v/v) FBS and particle 1 protected > 95% of the loaded siRNA molecules in 

presence of nuclease enzymes at N/P ratio of 2.5/1 and higher, which indicate their 

potential as effective DNA/RNA carriers in vivo. 

 

3.4 Conclusions 

We have designed and synthesized a new series of degradable, pH-sensitive, membrane-

destabilizing, comb-like polymers that exhibit a robust membrane-destabilizing activity 

in response to acidic pH gradients similar to those present in the endosome. These comb-

like polymers proved to degrade into smaller fragments in acidic environment, which will 

minimize their toxicity and facilitate their in vivo elimination by renal excretion. These 

polymers successfully complexed model siRNA molecules into pH-sensitive, serum- and 

nuclease-stable particles at low N/P ratios, which indicate their ability to encapsulate 

 
Figure 3.16: Image of a 1% w/v agarose gel stained with SYBR Green II dye showing the 

electrophoretic mobility of free siRNA molecules (0.75 µg) and an equal amount complexed with 

poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-like polymer at different N/P (+/-) ratios 

upon incubation with RNase V1 enzyme (+) or blank buffer (-) for 30 minutes at 37 C. 
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large doses of therapeutic nucleic acids. Particles 1-3 proved to successfully delivery 

functional siRNA molecules into the cytoplasm of MCF-7 breast cancer cells and achieve 

targeted gene knockdown at both mRNA and protein levels with particle 1 being the most 

effective formulation. These results collectively indicate the potential of these particles 

particularly particle 1 to serve as a carrier for enhancing the intracellular delivery of 

therapeutic nucleic acids. 
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Chapter 4.                                    

Smart, comb-like carriers for silencing Bcl-2 expression in 

epithelial cancer cells 

4.1 Introduction 

Recently, there are increased strategies of cancer treatment based on the selective down 

regulation of specific molecular targets involved in the process of cancer development 

and progression.
1
 Nucleic acids, such as small interfering RNA (siRNA) and antisense 

oligonucleotides (ASODN), that complementary bind to specific mRNAs have been 

shown to be effective in regulating the expression of several mammalian genes.
2
 In 

addition, many studies proved to support that decreased expression of genes which are 

directly involved in cancer development and progression could inhibit cancer cell 

growth.
3
  

The B-cell lymphoma 2 (Bcl-2) family of proteins includes a number of apoptotic 

regulators with opposing functions.
4
 Among them, Bcl-2 is a pro-survival protein that is 

over expressed in various human cancer cells and responsible for dysregulation of 

apoptosis and prevention of death in cancer cells.
5
 Anti-apoptotic activity of Bcl-2 

protein is attributed to its ability to stabilize the mitochondrial membrane and prevent the 

cytoplasmic release of cytochrome c, which inhibits the activation of caspases.
5b,6

 Over-

expression of Bcl-2 has also been correlated with resistance to chemotherapy, 

radiotherapy, and development of hormone-resistant tumors.
7
 Earlier studies also showed 
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that Bcl-2 orchestrates the cross-talk between tumor cells and neovascular endothelial 

cells, which increases tumor angiogenesis and growth.
8
 In addition, targeting Bcl-2 

expression in cancer cells using short hairpin RNA (shRNA) molecules proved to down 

regulate the expression of anti-apoptotic Bcl-2, and inhibit tumor growth in nude head 

and neck squamous cell carcinoma (HNSCC) tumor-bearing mice.
8b

 These studies 

suggest that reducing anti-apoptotic Bcl-2 expression using therapeutic nucleic acids is a 

viable strategy to suppress tumor growth and induce cancer cell death.  

Although the significant advances in the design and synthesis of antisense 

oligonucleotides (ASODN) and small interfering RNA (siRNA) molecules, their selective 

delivery into the cytoplasm of diseased cells remains a significant challenge. The ideal 

carrier for delivery of therapeutic nucleic acids should successfully complex the 

DNA/RNA molecules into serum- and nuclease-stable particles that can preferentially 

accumulate into the diseased tissue and get selectively internalized into the targeted cells 

coupled with efficient escape from the endosomal/lysosomal trafficking pathway and 

delivery of the therapeutic cargo into the cytoplasm.
9
 Hoffman, Stayton, and coworkers 

have designed and developed a series of synthetic polymeric carriers that mimic the 

endosomolytic properties of fusogenic proteins and enhance the cytoplasmic delivery of 

therapeutic macromolecules.
10

 These polymers are characterized by their unique ability to 

“sense” the changes in environment pH where they undergo a change from a hydrophilic, 

stealth-like conformation at physiologic pH to a hydrophobic and membrane-

destabilizing one in response to acidic endosomal pH gradients. We also designed and 

synthesized a series of “smart” pH-sensitive, membrane-destabilizing, comb-like 

polymers, which incorporating two blocks in their backbone.
11

 The first block is 
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composed of pH-sensitive EAA monomers and hydrophobic butyl methacrylate (BMA) 

monomers whereas the second block incorporates N-acryloxy succinimide (NASI) 

monomers, which allows controlled grafting of hydrophobic and cationic copolymers via 

acid-labile hydrazone linkages (Figure 4.1A). At physiologic pH, these polymers retain 

their comb-like architecture and successfully complex siRNA molecules through 

electrostatic interactions with the cationic grafts forming “smart” pH-sensitive particles 

(Figure 4.1B) that are taken up into the cell by adsorptive endocytosis (Figure 4.1C). In 

the endosome, the comb-like polymer “senses” the drop in environment pH, which results 

in hydrolysis of the acid-labile hydrazone linkage and release of the hydrophobic/cationic 

grafts that rupture the endosomal membrane and release their siRNA cargo into the 

cytoplasm (Figure 4.1D). These polymers have been proved to successfully deliver 

functional siRNA molecules into the cytoplasm of MCF-7 breast cancer cells and achieve 

targeted gene knockdown at both mRNA and protein levels. 
11

 

In this paper, we further evaluated the ability of these “smart” comb-like polymers to 

achieve functional delivery of anti-Bcl-2 siRNA molecules based on their ability to 

selectively knockdown Bcl-2 expression at the mRNA and protein levels in HeLa 

cervical carcinoma, and UM-SCC-17B head and neck squamous cell carcinoma. We also 

investigated the effect of incubation time on the suppression of Bcl-2 expression in head 

and neck cancer cells after treatment with these particles for 48, 72, and 96 hours. 
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Figure 4.1: A schematic drawing showing (A) the chemical structure of a degradable, pH-sensitive, 

membrane-destabilizing, comb-like polymer. The first block in the diblock polymer backbone 

incorporates pH-sensitive EAA and hydrophobic BMA monomers. The second block incorporates N-

acryloxy succinimide (NASI) monomers, which are functionalized to allow controlled grafting of 
hydrophobic HMA and cationic TMAEMA monomers via acid-labile hydrazone linkages. Comb-like 

polymers (A) condenses siRNA molecules forming “smart” particles (B). After internalization into 

target cells through adsorptive endocytosis (C), these particles will be degraded into membrane-active 

fragments upon exposure to acidic endosomal pH (D) due to hydrolysis of the acid-labile hydrazone 

linkage, and escape from endosomal/lysosomal trafficking. (B, right) Image of the 1% w/v agarose gel 

stained with ethidium bromide showing the electrophoretic mobility of free siRNA and the particles 

prepared by complexing poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-like polymer 

with 0.7 µg of anti-Bcl-2 siRNA at different N/P (+/-) ratios. 
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4.2 Experimental Section 

4.2.1 Materials 

The human anti-GAPDH siRNA, FAM-labeled anti-GAPDH siRNA, negative siRNA 

sequence, KDalert GAPDH assay kit, and siPORT-NH2 transfection reagent were 

purchased from Ambion Inc. (Austin, TX). The anti-Bcl-2 siRNA sequence (5’-

GCCCUGAUUGUGUAUAUUCA-3’) was synthesized by Integrated DNA 

Technologies, Inc. (Coralville, Iowa). The RNeasy Mini Kit and Omniscript reverse 

transcriptase kit were purchased from Qiagen (Valencia, CA). The TaqMan universal 

PCR master mix and TaqMan gene expression assays for human GAPDH, human Bcl-2, 

β-actin, and 18S rRNA genes were purchased from Applied Biosystems (Foster, CA). 

The anti-human β-actin monoclonal antibody and anti-human Bcl-2 monoclonal antibody 

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA) and BD Biosciences 

(San Jose, CA), respectively. 

4.2.2 Formulation and characterization of “smart” particles 

The pH-sensitive comb-like polymers were dissolved in RNase-free water and mixed 

with 0.7 μg of anti-Bcl-2 siRNA molecules dissolved in 1 μl of RNase-free water at 

different nitrogen/phosphate (N/P) ratios. Each mixture was vortexed and allowed to 

stand at room temperature for 20 minutes before loading onto a 1% w/v agarose gel 

containing ethidium bromide (EtBr). The gel was immersed in a Tris-acetate-EDTA (TAE) 

buffer and run at 60 V for 45 minutes and visualized under UV (Fotodyne Incorporated, 

Hartland, WI). Size and zeta potential of the particles prepared at N/P ratios of 2.5/1, 4/1, 

and 5/1 were measured using 90Plus particle size analyzer with ZetaPALS capability 

(Brookhaven Instruments Corporation, Holtsville, NY). 
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4.2.3 Culture of HeLa and UM-SCC-17B cells 

HeLa cervical cancer and UM-SCC-17B head and neck cancer cells were generously 

provide by Dr. Nör and cultured following established protocols. Briefly, HeLa and UM-

SCC-17B cells were maintained in DMEM supplemented with 10% fetal bovine serum, 

10,000 units/ml penicillin, 10,000 μg/ml streptomycin and regularly changing the growth 

medium every 2 days. Cells were incubated at 37 °C, 5% CO2, 95% relative humidity, 

and passaged upon reaching 70-90% confluency using 0.25% trypsin/EDTA mixture. 

4.2.4 Cellular uptake of “smart” particles 

Comb-like polymers and commercial siPORT-NH2 were dissolved in OPTI-MEM 

solution and mixed with 0.57 µg of FAM-labeled anti-GAPDH siRNA molecules at N/P 

ratios of 1.5/1, 2.5/1, 4/1, 8/1, and 12/1 to prepare different particles that were incubated 

with HeLa and UM-SCC-17B cells for 6 hours at 37 °C, 5% CO2, and 95% relative 

humidity. HeLa and UM-SCC-17B cells were washed with PBS, treated with 0.25% 

trypsin/EDTA solution for 10 minutes, harvested, and centrifuged to remove the 

supernatant and form a cell pellet. Cell pellets were suspended in PBS and analyzed using 

Biosciences FACSCalibur (Becton Dickinson, Franklin Lakes, NJ) to determine the 

percentage of fluorescently-labeled HeLa and UM-SCC-17B cells for each treatment. 

HeLa and UM-SCC-17B cells were gated by forward/size scatter and 10,000 gated events 

were collected per sample to discriminate between live and dead cells and account for 

live cells only. 

4.2.5 In vitro evaluation of GAPDH knockdown in HeLa and UM-SCC-17B cells 

HeLa and UM-SCC-17B cells were plated in 24-well plates at a seeding density of 

20,000 cells/ well and allowed to adhere for 18 hours. The “smart” particles and siPORT-
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NH2 complexes incorporating 1.14 µg of anti-GAPDH siRNA or control siRNA 

molecules were incubated with HeLa and UM-SCC-17B cells at a final siRNA 

concentration of 200 nM for 6 hours followed by addition of 500 μl of fresh culture 

medium and incubation for a total of 48 hours. The effect of different treatments on 

GAPDH expression was quantified based on mRNA and protein levels. The amount of 

GAPDH protein expressed by HeLa and UM-SCC-17B cancer cells was measured using 

the KDalert GAPDH assay following manufacturer’s specifications. The level of GAPDH 

protein expression in response to different treatments was normalized to that of untreated 

control cells. For quantification of GAPDH mRNA, total RNA was isolated from HeLa 

and UM-SCC-17B cells using the RNeasy Mini Kit and 0.25 μg of total RNA was reverse 

transcribed using Omniscript reverse transcriptase kit following manufacturer’s protocols. 

Real-time PCR was performed in a final volume of 20 μl containing 2 μl of cDNA 

(corresponding to 10 ng of total RNA for GAPDH and β-actin amplification), 1 μl of each 

primer, and 10 μl of the qPCR MasterMix in the 7500 Fast Real-Time PCR system.  

4.2.6 In vitro evaluation of Bcl-2 protein knockdown in HeLa and UM-SCC-17B 

cells 

HeLa and UM-SCC-17B cells were plated in 6-well plates at a seeding density of 

200,000 cells/ well and allowed to adhere for 18 hours. The “smart” particles and 

siPORT-NH2 complexes incorporating 2.86 µg of anti-Bcl-2 siRNA or control siRNA 

molecules were incubated with HeLa and UM-SCC-17B cells at a final siRNA 

concentration of 200 nM for 6 hours followed by addition of 1250 μl of fresh culture 

medium and incubation for a total of 48, 72, or 96 hours. The amount of Bcl-2 protein 

expressed by HeLa and UM-SCC-17B cells was analyzed using the western blot 
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technique following established protocol.
12

 Briefly, whole cell lysates were resolved by 

SDS-PAGE and membranes were probed overnight at 4°C with anti-human β-actin 

monoclonal antibody (1:1000000) and anti-human Bcl-2 monoclonal antibody (1:1000), 

and proteins were visualized with SuperSignal West Pico Chemiluminescent Substrate 

(Pierce, Rockford, IL). The knockdown of Bcl-2 protein expression in response to 

different treatments was quantified by Image J software (NIH, Bethesda, MD) and 

normalized to that of untreated cells. 

4.2.7 In vitro evaluation of Bcl-2 mRNA knockdown in HeLa and UM-SCC-17B 

cells 

HeLa and UM-SCC-17B cells were plated in 24-well plates at a seeding density of 

20,000 cells/ well and allowed to adhere for 18 hours. The “smart” particles and siPORT-

NH2 complexes incorporating 1.14 µg of anti-Bcl-2 siRNA or control siRNA molecules 

were incubated with HeLa and UM-SCC-17B cells at a final siRNA concentration of 200 

nM for 6 hours followed by addition of 500 μl of fresh culture medium and incubation for 

a total of 48, 72, or 96 hours. For quantification of mRNA, total RNA was isolated from 

HeLa and UM-SCC-17B cells using the RNeasy Mini Kit and 0.25 μg of total RNA was 

reverse transcribed using Omniscript reverse transcriptase kit following manufacturer’s 

protocols. Real-time PCR was performed in a final volume of 20 μl containing 2 μl of 

cDNA (corresponding to 10 ng of total RNA for Bcl-2 and 18S rRNA amplification), 1 μl 

of each primer, and 10 μl of the qPCR MasterMix in the 7500 Fast Real-Time PCR 

system.  
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4.3 Results 

4.3.1 Formulation and characterization of “smart” particles 

The ability of poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-like 

polymers to condense anti-Bcl-2 siRNA molecules into pH-sensitive particles was 

analysed using the standard gel retardation assay. Comb-like polymers were mixed with a 

fixed amount (0.7 µg) of anti-Bcl-2 siRNA molecules at different N/P (+/-) ratios. The 

loaded RNA molecules were encapsulated into stable particles as a result of the 

electrostatic interaction between the cationic quaternary amine groups of the TMAEMA 

monomers and the anionic phosphate groups of the RNA molecules. Results show that 

poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-like polymers successfully 

complex the loaded siRNA molecules at all N/P ratios, which is indicated by their 

retention in the loading wells, while  free siRNA molecules migrate towards the positive 

charge (Figure 4.1B). Size and surface 

charge of particles prepared at N/P 

ratios of 2.5/1, 4/1, and 5/1 were 

measured using dynamic light 

scattering and zeta potential 

measurements, respectively. In Figure 

4.2, results show that particles have 

245, 373, and 313 nm in size at N/P 

ratios of 2.5/1, 4/1, and 5/1, 

respectively. These particles carry 

positive surface charges of 22.4, 24.9, 

 
Figure 4.2: The  size and zeta potential of siPORT 

amine-based complexes and particles prepared by 

complexation of poly(EAA-co-BMA)-b-NASI-g-

(HMA-co-TMAEMA) comb-like polymers with 1.14 

µg of anti-GAPDH siRNA at N/P (+/-) ratios of 2.5/1, 
4/1, and 5/1. The plotted results are the average ± the 

standard error of the mean of two independent 

experiments each carried out in triplicates. 
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and 32.3 mV at N/P ratios of 2.5/1, 4/1, and 5/1, respectively. The sizes of “smart” 

particles are slightly larger than siPORT amine-based complexes, while the surface 

charges are relatively similar. 

4.3.2 Uptake of “smart” particles into HeLa and UM-SCC-17B cells 

We evaluated the internalization of fluorescently-labeled “smart” particles prepared at 

different N/P ratios into HeLa cervical carcinoma and UM-SCC-17B head and neck 

squamous cell carcinoma using flow cytometry. Complexes prepared using commercial 

siPORT amine transfection agents were used as positive controls. Figure 4.3 shows that 

“smart” particles can be efficiently (> 97%) taken up into HeLa and UM-SCC-17B cells 

at N/P ratios higher than 2.5/1, and siPORT amine-based complexes also showed high 

internalization (~100%) into both cell types. These results indicate that our “smart” 

particles can be successfully 

internalized by HeLa and UM-SCC-

17B cancer cells through adsorptive 

endocytosis due to the positive surface 

charge of these particles. Earlier 

research showed that the increase of 

particle’s positive surface charge is 

typically associated with toxicity or 

low transfection efficiency due to poor 

decomplexation of the loaded 

DNA/RNA molecules.
13

 Consequently, 

we decided to evaluate the transfection 

 
Figure 4.3: Percentage of HeLa cervical cancer and 

UM-SCC-17B head and neck cancer cells that 

internalize siPORT amine-based complexes and 

“smart” nanoparticles prepared by complexation of 

poly(EAA-co-BMA)-b-NASI-g-(HMA-co-

TMAEMA) comb-like polymers with 1.14 µg of 

fluorescently-labeled anti-GAPDH siRNA at 
different N/P (+/-) ratios upon incubation for 6 hours 

in a serum-free culture medium. Results are the 

average + the standard error of the mean of three 

replicates. 
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efficiency of the particles prepared at N/P ratios of 2.5/1, 4/1 and 6/1, which will have a 

sufficient number of cationic TMAEMA residues to complex the loaded siRNA 

molecules, while eliminating cellular toxicity without preventing cytoplasmic 

decomplexation of the loaded siRNA molecules. 

4.3.3 Effect of “smart” particles on GAPDH expression 

The ability of “smart” particles to deliver siRNA molecules into the cytoplasm of HeLa 

and UM-SCC-17B cancer cells and perform their function was evaluated based on their 

ability to selectively knockdown GAPDH gene expression at the protein and mRNA 

levels. We utilized the KDalert GAPDH assay kit to measure the changes in GAPDH 

protein level upon incubation with particles that encapsulate the anti-GAPDH siRNA 

molecules. These particles were compared to those encapsulating a scrambled siRNA 

sequence. We utilized siPORT amine-based complexes encapsulating an equal dose of 

anti-GAPDH siRNA molecules as a positive control to determine the maximum level of 

knockdown that can be achieved using robust commercial transfection agents. As shown 

in Figure 4.4A, particles prepared at N/P ratios of 2.5/1 and 4/1 induced 30 and 39% 

knockdown in GAPDH protein expression in HeLa cells, respectively. This knockdown 

is better than siPORT amine-based complexes, which inhibited GAPDH protein 

expression by only 21% with toxicity, since scrambled siRNA molecules also induced 

53% GAPDH reduction compared to untreated cells. “Smart” particles prepared at an N/P 

ratio of 6/1 also induced 39% knockdown in GAPDH protein expression, which was 

associated with non-specific toxicity possibility due to the use of excess cationic carriers. 

To prevent their toxicity, we decided to use particles prepared at 2.5/1 and 4/1 ratios for 

the rest of the experiments in HeLa cells. The particles prepared at N/P ratios of 2.5/1 and 
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4/1 did not induce significant knockdown in GAPDH protein expression in UM-SCC-

17B (data not shown), and this may be caused by the delayed decrease in endosomal pH 

and thus inefficient cytoplasmic release of siRNA molecules in head and neck cells.
14

 So 

in Figure 4.4C, the particles were prepared at an N/P ratio of 5/1, which induced 14% 

knockdown in GAPDH protein expression in UM-SCC-17B cells without toxicity, while 

siPORT amine-based complexes induce 36% GAPDH protein knockdown with toxicity. 

The low transfection efficiency of “smart” particles in UM-SCC-17B cells was perhaps 

due to the poor decomplexation of siRNA from particles after endosomal escape since a 

higher amount of polymer was used at an N/P ratio of 5/1 than 2.5/1 and 4/1. We further 

utilized qRT-PCR to evaluate the changes in GAPDH mRNA level upon incubation with 

particles that encapsulated the anti-GAPDH siRNA molecules. As can be seen in Figure 

4.4B, particles prepared at N/P ratios of 2.5/1 and 4/1 induced 40 and 60% knockdown in 

GAPDH mRNA expression in HeLa cells, respectively, while siPORT amine-based 

complexes induced 50% knockdown. Figure 4.4D shows that particles prepared at 5/1 

ratio induced 38% knockdown in GAPDH mRNA expression in UM-SCC-17B cells, 

compared to siPORT amine-based complexes that induced 54% knockdown. These 

particles proved to transfect HeLa and UM-SCC-17B cells more effectively than the 

commercial transfection agent without toxicity. Overall, the results suggest our “smart” 

combe-like polymers can function as an effective carrier for intracellular delivery of 

therapeutic siRNA molecules.  



89 

 

 

4.3.4 Effect of “smart” particles on Bcl-2 expression 

The therapeutic activity of “smart” particles was evaluated based on their ability to 

selectively knockdown Bcl-2 gene expression at both the mRNA and protein levels. We 

utilized the qRT-PCR to measure the changes in Bcl-2 mRNA level upon incubation with 

                                        (A)                                                                              (B) 

    
                                        (C)                                                                               (D) 

    
 

Figure 4.4: Effect of siPORT amine-based complexes and “smart” nanoparticles prepared by 

complexation of poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-like polymer with 1.14 

µg of the anti-GAPDH siRNA (+) or scrambled siRNA (-) at N/P (+/-) ratios of 2.5/1, 4/1, and 6/1 (A, 

B) or 5/1 (C, D) on GAPDH protein (A, C) and mRNA levels (B, D) in HeLa cervical cancer cells (A, 

B) and in UM-SCC-17B head and neck cancer cells (C, D). Levels of GAPDH mRNA are normalized 

to the levels of β-actin. Results are the average + the standard error of the mean of five replicates. 

Statistical difference between particles encapsulating anti-GAPDH siRNA (+) and scrambled siRNA (-) 

was evaluated using paired t test where * denotes p ≤ 0.05, ** denotes p ≤ 0.01, and *** denotes p ≤ 
0.005. 
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particles that encapsulate the anti-Bcl-2 siRNA molecules, and compare to those 

encapsulating a scrambled siRNA sequence. We utilized siPORT amine-based complexes 

encapsulating an equal dose of anti-Bcl-2 siRNA molecules as a positive control to 

determine the maximum level of knockdown that can be achieved using robust 

commercial transfection agents. As shown in Figure 4.5A, particles prepared at N/P 

ratios of 2.5/1 and 4/1 selectively induced 50 and 60% knockdown in Bcl-2 mRNA 

expression in HeLa cells, respectively. This knockdown is better than siPORT amine-

based complexes which only inhibited Bcl-2 mRNA expression by 40% accompanied 

with toxicity. In Figure 4.5B, particles prepared at N/P ratios of 2.5/1 and 4/1 induced 79 

and 81% knockdown in Bcl-2 protein expression in HeLa cells, respectively, while 

siPORT amine-based complexes induced only 64% knockdown. For UM-SCC-17B cells, 

in order to exclude the issue of poor decomplexation of particles prepared at an N/P ratio 

of 5/1, we decreased the N/P ratio to 2.5/1 but increased the incubation time to solve the 

possible problem of delayed endosomal pH drop. As shown in Figure 4.6A, Bcl-2 

mRNA expression was inhibited by 30, 40, and 20% after treatment with particles for 48, 

72, and 96 hours, respectively. Inhibition of Bcl-2 protein expression was only shown 

after treatment for 72 hours by 30% knockdown (Figure 4.6B). The results suggested 

that the therapeutic effects of anti-Bcl-2 siRNA delivered by using comb-like polymers is  

most effective after treatment for 72 hours in UM-SCC-17B cancer cells. In summary, 

these results prove our “smart” combe-like polymers can be utilized as effective carriers 

for the delivery of therapeutic siRNA molecules into various mammalian epithelial cells. 
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                                        (A)                                                                               (B) 

    

Figure 4.6: Effect of “smart” nanoparticles prepared by complexation of poly(EAA-co-BMA)-b-

NASI-g-(HMA-co-TMAEMA) comb-like polymer with 1.14 µg of the anti-Bcl-2 siRNA (+) or 

scrambled siRNA (-) at an N/P (+/-) ratio of 2.5/1 on Bcl-2 mRNA (A) and protein (B) levels at 48, 72, 

and 96 hours in UM-SCC-17B head and neck cancer cells. Levels for Bcl-2 mRNA are normalized to 

the levels of 18S rRNA. Results are the average + the standard error of the mean of five replicates. 

Statistical difference between particles encapsulating anti-Bcl-2 siRNA (+) and scrambled siRNA (-) 
was evaluated using paired t test where * denotes p ≤ 0.05, ** denotes p ≤ 0.01, and *** denotes p ≤ 

0.005. Levels for Bcl-2 protein are quantified by Image J software (NIH, Bethesda, MD) and 

normalized to the levels of β-actin. 
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Figure 4.5: Effect of siPORT amine-based complexes and “smart” nanoparticles prepared by 

complexation of poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-like polymer with 1.14 

µg of the anti-Bcl-2 siRNA (+) or scrambled siRNA (-) at N/P (+/-) ratios of 2.5/1 and 4/1 on Bcl-2 

mRNA (A) and protein (B) levels after treatment for 48 hours in HeLa cervical cancer cells. Levels for 

Bcl-2 mRNA are normalized to the levels of 18S rRNA. Results are the average + the standard error of 

the mean of five replicates. Statistical difference between particles encapsulating anti-Bcl-2 siRNA (+) 

and scrambled siRNA (-) was evaluated using paired t test where * denotes p ≤ 0.05, ** denotes p ≤ 

0.01, and *** denotes p ≤ 0.005. Levels for Bcl-2 protein are quantified by Image J software (NIH, 

Bethesda, MD) and normalized to the levels of β-actin. 
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4.4 Discussions 

The regulation of Bcl-2 expression using therapeutic nucleic acids has recently caused 

increasing interests due to the role of Bcl-2 in tumor development and angiogenesis. 

However, development of an efficient approach to deliver therapeutic anti-Bcl-2 nucleic 

acids to its target site is still a challenge. Therefore, it is important to develop an effective 

nucleic acid carrier to selectively inhibit Bcl-2 expression in cancer cells.  

In this paper, we evaluated the possibility of using our “smart” pH-sensitive, membrane-

destabilizing, comb-like poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) polymer 

to knockdown Bcl-2 expression in HeLa cervical cancer and UM-SCC-17B head and 

neck cancer cells. The gel retardation result clearly shows that the polymers can condense 

siRNA molecules at lower N/P ratios compared to those of other acrylic acid-based 

polymers,
15

 thus reducing the amount of comb-like polymers needed to complex a given 

dose of therapeutic nucleic acids and consequently minimizing the toxicity commonly 

associated with cationic carriers.
16

 The size of these “smart” particles proved to fall 

below the molecular cut off size of 400-600 nm for tumor vasculature,
17

 and that the 

cationic nature of these particles will facilitate their interaction and internalization into 

target cells via adsorptive endocytosis, which is proved by the high cellular uptake into 

HaLa and UM-SCC-17B cancer cells. Most importantly, results show that the 

transfection efficiency of “smart” comb-like polymers, which is determined based on the 

inhibition of GAPDH and Bcl-2 expression at both protein and mRNA levels, is overall 

better than commercial transfection agent, siPORT amine. Transfection efficiency differs 

among tumor cell types probably due to their differences in the endosomal pH, resulting 

in ineffective endosomal escape in UM-SCC-17B cells. It has been proved that various 
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combinations of Na
+
, K

+
-ATPases and chloride channels, which regulate endosomal pH, 

could lead to two types of cancer cells. One type of cancer cells have an early endosomal 

pH of 6.1-6.2 and a late endosomal pH of 5.4-5.6, while the other type have similar early 

and late ensodomal pH of 5.4-5.6.
14,18

 In addition, when we increased the incubation time 

from 48 to 72, and 96 hours, results showed that the most significant inhibition of Bcl-2 

expression was induced after treatment for 72 hours, which matches earlier studies
19

 and 

suggests the transfection condition should be optimized in different cell types. Overall, 

the results suggest that the poly(EAA-co-BMA)-b-NASI-g-(HMA-co-TMAEMA) comb-

like polymers are potential carriers for cytoplasmic delivery of therapeutic siRNA 

molecules. 

4.5 Conclusions 

In summary, we proved that our “smart” pH-sensitive, membrane-destabilizing, comb-

like polymers can successfully complex model siRNA molecules into stable nano-sized 

particles at low N/P ratios, which indicate their ability to encapsulate large doses of 

therapeutic nucleic acids with minimum toxicity. These particles proved to be efficiently 

internalized into cancer cells, and achieve selectively knockdown in GAPDH and Bcl-2 

expression at both the protein and mRNA levels. The results collectively indicate the 

potential of these particles to serve as a carrier for silencing Bcl-2 expression in cancer 

cells, and inducing cancer cell apoptosis. 
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Chapter 5.                        

Development of degradable, pH-sensitive, star vectors for 

cytoplasmic delivery of nucleic acids 

5.1 Introduction 

Small interfering RNA (siRNA) molecules are double stranded RNA molecules that can 

selectively hybridize with the target mRNA sequence in the cytoplasm and trigger its 

degradation by RNase H enzyme, which reduces the expression of the encoded gene.
1
 

Several preclinical investigations showed the potential of siRNA in inhibiting 

pathological gene expression, which proved effective in treatment of AIDS,
2
 

cardiovascular,
3
 and neurodegenerative diseases.

4
 However, transforming siRNA drug 

candidates into actual therapies with a defined dosing regimen remains a significant 

challenge due to the lack of an efficient biocompatible carrier that can deliver the 

necessary dose selectively into the cytoplasm of the diseased cells while sparing 

neighboring healthy ones.
5
 Cationic lipids,

6
 polymers,

7
 and peptides

5d
 have been used to 

condense siRNA via electrostatic interaction forming ionic complexes that are 

internalized by endocytosis. However, these complexes are often trapped in the 

endosomal/lysosomal trafficking pathway where the loaded siRNA cargo is degraded, 

which diminshes their therapeutic activity.
8
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Amphiphilic pH-sensitive polymers have been used to complex siRNA forming “smart” 

particles that bypass the endosomal/lysosomal trafficking pathway and deliver their cargo 

into the cytoplasm.
9
 These polymers utilize their unique ability to switch from a 

hydrophilic stealth-like conformation at physiologic pH to a hydrophobic membrane-

destabilizing one in response to acidic endosomal pH gradients to rupture the endosomal 

membrane and release the entrapped RNA cargo into the cytoplasm to produce the 

desired effect.
10

 pH-sensitive membrane-destabilizing polymers proved effective in 

delivering plasmid DNA,
11

 antisense oligodeoxynucleotides,
12

 siRNA,
13

 and proteins
14

 

into the cytoplasm of multiple cells both in vitro
12-13

 and in vivo.
15

 These amphiphilic 

polymers typically incorporate ionizable acidic moieties, hydrophobic motifs, and 

cationic groups for sensing the change in environment pH, disruption of the endosomal 

membrane, and complexation of the loaded DNA/RNA, respectively.
16

 Earlier research 

showed that the membrane-destabilizing activity increases with the increase in polymer’s 

molecular weight.
17

 However, given their non-degradable composition, these polymers 

are poorly eliminated by urinary excretion in vivo, which increases the risk of their long 

term accumulation leading to non-specific toxicity.
17b

 In addition, increasing the number 

of hydrophobic motifs to enhance the membrane-disruptive activity dramatically reduced 

polymer’s aqueous solubility and therapeutic utility.
17b

 Further, increasing the molar 

fraction of the cationic group to increase DNA/RNA loading and incorporation of 

targeting ligands (e.g. sugars, antibody fragments) has been shown to diminish the 

membrane-destabilizing activity of the formed particles and reduce the associated 

transfection capacity.
18
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Polyethyleneimine (PEI) and polyamidoamine (PAMAM) dendrimers represent another 

class of cationic polymers that resist the drop in endosomal pH through the buffering 

effect of their secondary and tertitary amine groups, which causes endosomal swelling 

and rupture resulting in leakage of its contents into the cytoplasm.
7,19

 Many targeting 

ligands have been covalently conjugated to PEI- and PAMAM-based complexes and 

proved effective in achieving selective internalization by diseased cells.
20

 However, 

formulation of stable and efficient ionic complexes requires 10- to 20-fold N/P (+/-) ratio 

resulting in the use of excess polymer, which leads to significant toxicity both in vitro 

and in vivo.
21

 

To address the limitations of both amphiphilic pH-sensitive memebrane-destabilizing and 

endosomal buffering polymers, we report the synthesis of degradable, pH-sensitive, 

membrane-destabilizing, star-shaped polymers that proved efficient in delivering siRNA 

past the endosomal membrane and into the cytoplasm of multiple cell lines achieving the 

desired gene knockdown at the mRNA and protein levels. Specifically, we utilize β-

cyclodextrin (β-CD), which is a FDA-approved, water-soluble, cone-shaped 

oligosaccharide composed of seven glucose units linked by -1,4-glycosidic linkages as 

the core for the star-shaped vectors.
22

 We recognize that the β-CD core has seven primary 

hydroxyl groups at the C-6 position and fourteen secondary hydroxyl groups at the C-2 

and C-3 positions providing two rims of hydroxyl groups with different chemical 

reactivity, which can be asymmetrically functionalized to display different motifs.
23

 

Therefore, we grafted amphiphilic membrane-destabilizing polymers from the secondary 

face of the β-CD core via acid-labile hydrazone linkages while leaving the primary face 

for subsequent modification aimed at achieving cell specific targeting (Figure 5.1A). We 
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grafted a random copolymer of hydrophobic hexyl methacrylate (HMA) and pH-sensitive 

dimethyl aminoethyl methacrylate (DMAEMA) monomers from the secondary face of 

the β-CD core via acid-labile hydrazone linkages forming star-shaped polymer where 

DMAEMA monomers were partially (50%) or fully (100%) quaternized into cationic 

trimethyl aminoethyl methacrylate (TMAEMA) for complexation of siRNA molecules. 

We hypothesized that star-shaped β-CD-P(HMA-co-DMAEMA-co-TMAEMA)n 

polymers will condense siRNA into pH-sensitive particles that will be internalized via 

adsorptive-mediated endocyosis. In the endosome, the acid-labile hydrazone linkages will 

hydrolyze releasing the membrane-active P(HMA-co-DMAEMA-co-TMAEMA) grafts 

from the β-CD core to destabilize the endosomal membrane and release the siRNA cargo 

into the cytoplasm (Figure 5.1B). 

We used atom transfer radical polymerization (ATRP) technique to control the number, 

molecular weight (25 and 40 kDa), and molar ratio of HMA/DMAEMA monomers 

(50/50 and 75/25) in the grafted P(HMA-co-DMAEMA) polymers to investigate the 

effect of the molecular weight and the hydrophobic/hydrophilic balance of these 

membrane-active fragments on the endosomal escape capacity indicated by the effect of 

the siRNA cargo. It is important to note that DMAEMA monomers have been shown to 

exhibit gradual protonation with the drop in environment pH producing an appreciable 

endosomal buffering capacity.
24

 Comparing the transfection capacity of “smart” pH-

sensitive particles that incorporate the same star-shaped β-CD carrier with identical graft 

composition but differ in the % of residual DMAEMA monomers that were not converted 

to cationic TMAEMA (i.e. retained their buffering capacity) allowed us to investigate the 

possibility of combining hydrophobic membrane disruption with endosomal burst to 
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achieve enhanced cytoplasmic delivery and the relative contribution of each mechnism to 

carrier activity. 

 

   

Figure 5.1: (A) Structure of pH-sensitive star-shaped β-CD-P(HMA-co-DMAEMA-co-TMAEMA)n 

polymers. (B) A schematic drawing showing condensation of siRNA molecules by star-shaped pH-

sensitive polymers forming “smart” particles, which are internalized by endosytosis. In the endosome, 

acid-labile hydrazone linkages are hydrolyzed by the acidic pH and release the P(HMA-co-TMAEMA-

co-DMAEMA) grafts, which rupture the endosomal membrane and release the loaded siRNA cargo 

into the cytoplasm. 
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5.2 Experimental Section 

5.2.1 Synthesis and characterization of degradable, pH-sensitive, star-shaped 

polymers 

We synthesized a series of degradable, pH-sensitive, star-shaped β-CD-P(HMA-co-

DMAEMA-co-TMAEMA)4.8 polymers where we varied the molecular weight (25 or 40 

kDa) of the P(HMA-co-DMAEMA-co-TMAEMA) grafts, the molar ratio of 

HMA/DMAEMA monomers (50/50 or 75/25), and the degree of quaternization (50% or 

100%) of DMAEMA monomers to cationic TMAEMA to systematically investigate the 

effect of these parameters on their ability to deliver siRNA molecules into the cytoplasm 

of epithelial cells. Detailed description of the experimental procedures for the synthesis 

and characterization of these polymers along with the supporting spectra are provided in 

the attached Supplementary Information. 

5.2.2 Formulation and characterization of “smart” particles 

All star-shaped pH-sensitive polymers were dissolved in RNase-free water except (β-CD-

5 and β-CD-7 polymers, which were dissolved in 100% DMSO before mixing with 0.7 

µg of anti-GAPDH siRNA at different N/P ratios. Each mixture was vortexed and 

allowed to stand at room temperature for 20 minutes before loading onto a 1% w/v 

agarose gel containing ethidium bromide (EtBr). The gel was immersed in a Tris-acetate-

EDTA (TAE) buffer and run at 60 V for 45 minutes before visualizing under UV using a 

fluorescent green filter (Fotodyne Incorporated, Hartland, WI). Size and zeta potential of 

the particles prepared at N/P ratios of 2.5/1 and 4/1 using β-CD 1-8 star polymers were 

measured by 90Plus particle size analyzer with ZetaPALS capability (Brookhaven 

Instruments Corporation, Holtsville, NY). 
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5.2.3 Cell culture 

UM-SCC-17B head and neck squamous cell carcinoma and HeLa cervical cancer cells 

were generously provided by Dr. Jacques Nör (University of Michigan, School of 

Dentistry) and cultured following established protocols.
25 

Briefly, HeLa and UM-SCC-

17B cells were maintained in DMEM (Life Technologies, Grand Island, NY) 

supplemented with 10% fetal bovine serum (Life Technologies, Grand Island, NY), 

penicillin (10,000 Uml
-1

), and streptomycin (10,000 μgml
-1

) while regularly changing the 

growth medium every 2 days. MCF-10A mammary epithelial cells were generously 

provided by Dr. Sofia Merajver (University of Michigan, Department of Internal 

Medicine) and cultured in DMEM/F-12 (1:1) medium supplemented with 5% horse 

serum, EGF, cholera toxin, bovine insulin, and hydrocortisone. HeLa, UM-SCC-17B, and 

MCF-10A cells were incubated at 37 °C, 5% CO2, 95% relative humidity, and passaged 

upon reaching 70-90% confluency using 0.25% trypsin/EDTA mixture. 

5.2.4 Cellular uptake of “smart” particles 

Star-shaped polymers and commercial siPORT-NH2 were dissolved in OPTI-MEM 

solution (Life Technologies, Grand Island, NY) before mixing with 1.14 µg of FAM-

labeled anti-GAPDH siRNA (Ambion Inc, Austin, TX) at N/P ratios of 1.5/1, 2.5/1, and 

4/1 to prepare different complexes, which were incubated 6 hours at 37 °C, 5% CO2, and 

95% relative humidity with HeLa, UM-SCC-17B, or MCF-10A cells seeded at a seeding 

density of 4x10
4
 cells per well. Cells were then washed with PBS, treated with 0.25% 

trypsin/EDTA solution for 10 minutes, harvested, and centrifuged to form a cell pellet and 

remove the supernatant medium with free particles. Cell pellets were suspended in PBS 
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and analyzed using Biosciences FACSCalibur Flow Cytometer (Becton Dickinson, 

Franklin Lakes, NJ) to determine the percentage of fluorescently-labeled cells for each 

treatment. Cells were gated by forward/size scatter and 10,000 gated events were 

collected per sample to discriminate between live and dead cells and account for live cells 

only. 

5.2.5 In vitro evaluation of “smart” particles 

HeLa, UM-SCC-17B, and MCF-10A cells were plated in 24-well plates at a seeding 

density of 2x10
4
 cells per well and allowed to adhere for 18 hours. Different “smart” 

particles and siPORT-NH2 complexes incorporating anti-GAPDH siRNA (Ambion Inc, 

Austin, TX) or the scrambled siRNA sequence condensed at a N/P ratio of 2.5/1 were 

incubated with the cells for 6 hours at a final siRNA concentration of 100-200 nM before 

the addition of fresh culture medium (500 μl) and incubating for a total of 48 hours. The 

effect of different treatments on GAPDH expression was quantified based on mRNA and 

protein levels. Briefly, total RNA was isolated from the cells using the RNeasy Mini Kit 

(Qiagen Inc, Valencia, CA) and a total of 0.25 μg RNA was reverse transcribed using 

Omniscript reverse transcriptase kit (Qiagen Inc, Valencia, CA) following manufacturer’s 

protocols. Real-time PCR was performed in a final volume of 20 μl containing 2 μl of 

cDNA (corresponding to 10 ng of total RNA for GAPDH and β-actin amplification), 1 μl 

of each primer, and 10 μl of the qPCR MasterMix in the 7500 Fast Real-Time PCR 

system (Life Technologies, Grand Island, NY). The amount of GAPDH protein expressed 

by cells was measured using the KDalert GAPDH assay (Ambion Inc, Austin, TX) 

following manufacturer’s specifications. The level of GAPDH protein expression in 

response to different treatments was normalized to that of untreated control cells. 



104 

 

5.3 Results and Discussion 

5.3.1 Synthesis of degradable, pH-sensitive, star-shaped polymers 

As described in the associated Supplementary Information, we successfully utilized the 

asymmetric distribution of primary and secondary hydroxyl groups on opposite faces of 

the β-CD core to graft amphiphilic P(HMA-co-DMAEMA) polymers from the secondary 

face via acid-labile hydrazone linkages using ATRP. We engineered these star-shaped 

polymers to systematically evaluate the effect of graft’s molecular weight (25 and 40 

kDa), hydrophobic/hydrophilic balance defined by the ratio of HMA/DMAEMA 

monomers (50/50 and 75/25), and degree of quaternization of DMAEMA monomers 

(50% and 100%) on the complexation of siRNA molecules into “smart” particles and 

their ability to deliver the RNA cargo past the endosomal membrane and into the 

cytoplasm of epithelial cancer cells. Specifically, we controlled the molecular weight of 

the P(HMA-co-DMAEMA) grafts in β-CD-1, -2, -5, and -6 polymers to be ~25 kDa 

compared to ~40 kDa in β-CD-3, -4, -7, and -8 polymers (Table 5.1). Earlier research 

showed the significant contribution of hydrophobic monomers (e.g. HMA) to the 

endosomal escape of ionic complexes.
17b,18a,b

 Therefore, we increased the ratio of 

HMA/DMAEMA monomers from 50/50 in β-CD-1, -2, -3, and -4 polymer to 75/25 in β-

CD-5, -6, -7, and -8 polymers (Table 5.1) to examine the effect of HMA ratio on 

polymer’s aqueous solubility and transfection efficiency of the formed complexes. Earlier 

research also showed that poly(dimethyl aminoethyl methacrylate) (PDMAEMA) 

polymers exhibit higher transfection efficiency compared to poly(trimethyl aminoethyl 

methacrylate) (PTMAEMA) polymers with similar molecular weight,
26

 which is 

attributed to the endosomal buffering capacity of PDMAEMA polymers (pKa = 7.5) 
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resulting in efficient destabilization of the endosomal membrane and release of the loaded 

nucleic acid cargo into the cytoplasm.
24

 Therefore, we compared the transfection capacity 

of β-CD-1, -3, -5, and -7 polymers that have 50% of DMAEMA monomers converted to 

cationic TMAEMA to the transfection efficiency of β-CD-2, -4, -6, and -8 polymers with 

100% of DMAEMA monomers converted to TMAEMA (Table 5.1). 

Table 5.1: Composition of the degradable, pH-sensitive, star-shaped β-CD-based vectors 

Polymer 

Code 

 

Mn 

 of each  

arm
a
 

(g/mol) 

Copolymer 

Composition 

(% HMA/ 

DMAEMA)
a 

# of  

HMA 

units
a 

# of 

DMAEMA 

units
a
 

# of 

TMAEMA 

units
a 

% of  

Quaternization
a
 

β-CD-1 25580 47:53 73 26 58 69 

β-CD-2 25580 47:53 73 0 84 100 

β-CD-3 40750 49:51 122 57 70 55 

β-CD-4 40750 49:51 122 0 127 100 

β-CD-5 25050 76:24 113 20 19 46 

β-CD-6 24930 74:26 110 0 39 100 

β-CD-7 41200 76:24 186 31 29 49 

β-CD-8 41200 76:24 186 0 60 100 

aCalculated from the 1H NMR spectra 

The motivation to incorporate acid-labile hydrazone linkages in polymer composition is 

to engineer a carrier with a large number of cationic and hydrophobic groups necesssary 

for complexation of a large dose of siRNA molecules and endosomal escape of the 

formed particles, which will degrade into small mambrane-active fragments that can be 

eliminated by urinary excretion, which will address the long-term accumulation of linear 

non-degradable polymers and the assoicated in vivo toxicity.
27

 Our results show that the 
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Figure 5.2: Hydrolysis of hydrazone linkages 

incorprated in β-CD-1 to β-CD-4 polymers when 

dissolved in PBS (pH 5.8) and incubated at 37 oC as a 

function of incubation time. The % of intact β-CD 

polymer was calculated using the area under the peak 

of the GPC curve at different time points. 

average degradation half life (t1/2) of 

the acid-labile hydrazone linkages in 

star-shaped β-CD polymers incubated 

in an acidic buffer solution (pH 5.8) at 

37 °C is 60 ± 2 min (Figure 5.2), 

which is consistent with previously 

published results.
13

 We used the β-CD 

core to develop new star-shaped 

carriers for delivery of siRNA based 

on the established advantages of the 

star architecture compared to the linear counterpart.
28

 For example, 3- and 5-arms star 

PDMAEMA polymers exhibit higher transfection efficiency and lower toxicity compared 

to the corresponding linear polymers with the transfection efficiency and 

biocompatability increasing with the increase in dgree of polymer branching.
29

 This is 

further supported by the reported high transfection efficiency of particles prepared using 

dendrimers
30

 and hyper-branched cationic polymers
31

 that provide steric protection for 

loaded cargo, long retention in the systemic circulation, and high accumulation in the 

tumor tissue. Therefore, distributing the number of cationic TMAEMA groups necessary 

for condensation of siRNA molecules over multiple polymer grafts in a star-like 

conformation will eliminate the significant cytotoxicity observed with the linear 

conformation particularly at high molecular weights.
28b,32

 

ATRP 
33

 and reversible addition fragmentation chain transfer (RAFT) 
34

 polymerization 

techniques are the two most efficient methods to synthesize well-defined block,
35

 graft,
36
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and star-shaped 
28b,32c,37

 polymeric carriers. We utilized ATRP to control the number, 

molecular weight, molecular weight distribution, composition, architecture, and site-

specific functionality of the formed star-shaped polymers (Table 5.1). It is important to 

note that the asymmetric grafting of P(HMA-co-DMAEMA) polymers from the 

secondary face of the β-CD core is engineered to allow selective coupling of hydrophilic 

poly(ethylene glycol) (PEG) chains to the primary hydroxyl groups via non-degradable 

linkages, which will confer resistance to the formed “smart” particles against the 

adsorption of serum proteins, increase their residence time in the systemic circulation, 

and allow passive accumulation in tumor tissue when administered in vivo. These PEG 

chains can be further functionalized to display an array of targeting ligands to allow cell-

specific internalization and delivery of the loaded cargo. 

5.3.2 Formulation of “smart” particles 

We evaluated the ability of different star polymers (β-CD-1 to β-CD-8) to complex 0.7 

μg of anti-GAPDH (glyceraldehyde 3-phosphate dehydrogenase) siRNA at different (+/-) 

nitrogen (N)/phosphate (P) ratios using the standard gel retardation assay. The amount of 

β-CD polymer mixed with the anti-GAPDH siRNA was calculated based on the cationic 

TMAEMA content to take into acccount the difference in the % of quaternized 

DMAEMA monomers in each polymer composition. Results show that all β-CD 

polymers successfully condensed the loaded siRNA into particles that were retained into 

the loading wells at low N/P ratios (Figure 5.3). Comparing between β-CD-1 and β-CD-3, 

which have a similar number of P(HMA-co-DMAEMA-co-TMAEMA) grafts, similar 

HMA/DMAEMA ratio, and ~50% of DMAEMA monomers quaternized into TMAEMA 

units but differ in the molecular weight of the grafts shows that β-CD-3 polymer fully 
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condenses the loaded siRNA at N/P ratio of 1.5/1 whereas full RNA condensation with β-

CD-1 occurs at N/P ratio of 2.5/1 (Figure 5.3A & C). This shows that higher molecular 

weight of the P(HMA-co-DMAEMA-co-TMAEMA) graft (40 kDa) in β-CD-3 compared 

to β-CD-1 (25 kDa) results in a more efficient condensation of the loaded siRNA 

molecules while using a smaller (2 µg) amount of β-CD-3 polymer compared to 3 µg of 

β-CD-1. Similarly, β-CD-1 and β-CD-2 have identical number of polymeric grafts with 

the same molecular weight (25 kDa) and the same number of HMA and DMAEMA 

monomers attached to the β-CD core but differ in the % of DMAEMA monomers 

transformed to cationic TMAEMA complex the loaded siRNA molecules at N/P ratios of 

2.5/1 and 1.5/1, respectively (Figure 5.3A & B). This is not surprising given that 100% 

of DMAEMA monomers were transformed to cationic TMAEMA in β-CD-2, which 

allows tighter binding to siRNA phosphate groups compared to partially quanternized β-

CD-1 polymer. This led to the use of only 1 µg of β-CD-2 compared to 3 µg of β-CD-1 to 

complex the same amount of anti-GAPDH siRNA molecules. 

Increasing the molar ratio of HMA/DMAEMA monomers from 50/50 (e.g β-CD-2) to 

75/25 (e.g β-CD-6) increased the N/P ratio and amount of polymer needed to complex the 

loaded siRNA molecules. Specifically, β-CD-2 and β-CD-6 polymers complex equal 

amounts of anti-GAPDH siRNA at N/P ratios of 1.5/1 and 4/1, respectively (Figure 5.3B 

& F). This increase in the amount (6 µg) of β-CD-6 polymer and the N/P ratio where full 

condensation of the loaded siRNA is observed is a result of the reduction in the number 

of cationic TMAEMA monomers/graft available for complexation with the anionic 

phosphate groups. Further, increasing the fraction of hydrophobic HMA monomers in 

graft composition reduced the aqueous solubility of the formed star polymer particularly 
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the partially (50%) quaternized β-CD-5 and β-CD-7 polymers. It is important to note that 

all the synthesized β-CD-based carriers successfully complexed the loaded siRNA 

molecules at N/P ratios that are much lower than established transfection ragents like PEI 

and cationic PAMAM dendrimers, which are routinely used at N/P ratios > 15/1.
38

 This is 

a significant improvement over existing carriers as it allows the use of small amounts of 

β-CD-based vectors for condensation and delivery of a high dose of siRNA molecules, 

which will eliminate the need for excess cationic carrier and reduce the associated side 

effects. 



110 

 

 

                                  (A)              (B) 

        
                                  (C)                (D) 

        
                                  (E)                (F) 

        
                                  (G)                (H) 

        

Figure 5.3: Images of the 1% w/v agarose gel containing ethidium bromide showing the 

electrophoretic mobility of free siRNA and the particles prepared by complexation of βCD-1 to βCD-8 

(A-H) polymers with anti-GAPDH siRNA (0.7 μg) at different N/P(+/-) ratios. 
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5.3.3 Characterization of “smart” particles 

All star polymers (β-CD-1 to β-CD-8) were mixed with 10.3 µg of anti-GAPDH siRNA 

at N/P ratios of 2.5/1 and 4/1 to prepare “smart” particles (P1-P8) that were characterized 

in terms of size and surface charge using dynamic light scattering and zeta potential 

measurements, respectively. Results show that particle size ranged between 67 - 142 nm 

for those prepared at N/P ratio of 2.5/1, which increased to 86 – 162 nm for particles 

prepared at N/P ratio of 4/1 (Figure 5.4A). Given that the molecular size cut off for 

tumor vasculature is between 400 and 600 nm,
39

 these “smart” particles (P1-P8) are 

suited for delivery of siRNA into solid tumors. Zeta potential measurements show that 

P1-P8 prepared at N/P ratio of 2.5/1 have a net positive charge of 21-65 mV, which 

increased to 20-74 mV for particles prepared at N/P ratio of 4/1 (Figure 5.4B). The 

cationic surface of these “smart particles (P1-P8) will trigger efficient internalization by 

epithelial cancer cells via adsorptive endocytosis.
13,40

 

 

                                  (A)              (B) 

   
Figure 5.4: Size (A) and surface charge (B) of “smart” particles (P1-P8) prepared by complexation of 

β-CD-1 to β-CD-8 star polymers with anti-GAPDH siRNA (10.3 µg) at N/P (+/-) ratios of 2.5/1 and 

4/1. Results are the average + the standard error of the mean of two independent experiments with each 

experiment carried out in triplicates. 
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5.3.4 Uptake of “smart” particles into HeLa cervical cancer cells 

We prepared fluorescently-labeled 

particles (P1-P8) by complexation of 

β-CD-1 to β-CD-8 polymers with 

FAM-labeled anti-GAPDH siRNA at 

N/P ratios of 1.5/1, 2.5/1, and 4/1 and 

evaluated their uptake into HeLa 

cervical cancer cells in comparison to 

free siRNA and siPORT amine-based 

complexes using flow cytometry. 

Results show that free siRNA 

molecules were not internalized and 

require a carrier to enhance their 

uptake by HeLa cells (Figure 5.5). All the particles (P1-P8) formulated at N/P ratios of 

1.5/1 and 2.5/1 were internalized by ≥ 80% of HeLa cancer cells except for P7. Further, 

P5 and P7 particles prepared at a N/P ratio of 4/1 were poorly internalized by HeLa cells 

(Figure 5.5). The observed drop in number of fluorescently-labeled HeLa cells upon 

incubation with P5 and P7 particles can be attributed to higher positive surface charge 

density (Figure 5.4B), which could lead to cell death as shown with other cationic 

particles.
18c,d

 Consequently, we limited our study to “smart” particles (P1-P8) prepared at 

N/P ratio of 2.5/1 and investigated their ability to deliver anti-GAPDH siRNA into the 

cytoplasm of HeLa cancer cells indicated by knockdown of GAPDH expression at the 

mRNA and protein levels.  

 

Figure 5.5: Percentage of fluorescently-labeled HeLa 

cancer cells after incubating for 6 hours in a serum-free 

culture medium with free siRNA, siPORT amine-based 

complexes, and “smart” P1-P8 particles prepared by 

complexation of β-CD-1 to β-CD-8 polymers with 

FAM-labeled anti-GAPDH siRNA (1.14 µg) at N/P 

ratios of 1.5/1, 2.5/1, and 4/1. Results are the average + 

the standard error of the mean of four independent 

experiments with each experiment carried out in 

triplicates. 
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5.3.5 Effect of “smart” particles on GAPDH expression 

The ability of “smart” particles (P1-P8) to deliver functional anti-GAPDH siRNA 

molecules past the endosomal membrane and into the cytoplasm of HeLa cells was 

assayed based on their ability to selectively knockdown GAPDH gene expression at the 

mRNA and protein levels. We utilized the kDalert assay kit to measure the changes in 

GAPDH protein level upon incubation with particles that encapsulate (+) the anti-

GAPDH siRNA compared to those encapsulating (-) a scrambled siRNA sequence. We 

utilized siPORT amine-based complexes encapsulating an equal dose of (+) anti-GAPDH 

siRNA molecules as a positive control to determine the maximum level of knockdown 

that can be achieved using a robust commercial transfection reagent (Figure 5.6). Results 

show that P1-P4 were more efficient in knocking down GAPDH protein expression 

compared to P5-P8 indicating that star-shaped β-CD-based carriers that incorporated 

equal ratios (50/50) of HMA and DMAEMA monomers were more effective in 

delivering the RNA cargo into HeLa cells compared to those with higher HMA content. 

The lack of GAPDH knockdown observed with P6 and P8 particles can be a result of 

poor particle solubility in culture medium whereas the non-specific GAPDH knockdown 

exhibited by P5 and P7 is a result of the high positive surface charge density resulting in 

cell death. Results show that P1 is the most efficient formulation indicated by the 73 ± 

1.4% reduction in GAPDH protein expression observed upon incubation with P1 particles 

loaded with (+) anti-GAPDH siRNA compared to those loaded with (-) the scrambled 

siRNA sequence (Figure 5.6). Comparing GAPDH knockdown observed upon 

incubation of HeLa cells with P1 particles to that observed with P3 particles shows the 

effect of increasing the molecular weight of P(HMA-co-DMAEMA-co-TMAEMA) 
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Figure 5.6: Effect of “smart” particles (P1-P8) and 

siPORTamine-based complexes encapsulating 200 nM of 

(+) anti-GAPDH siRNA or (-) a scrambled siRNA 

sequence on GAPDH protein expression in HeLa cervical 

cancer cells. P1-P8 particles were prepared by 

complexation of β-CD-1 to β-CD-8 with 1.14 µg of the 

selected siRNA sequence at a N/P ratio of 2.5/1. Results 

are the average + the standard error of the mean of four 

independent experiments with each experiment carried 
out in five replicates. Statistical difference between 

particles encapsulating (+) anti-GAPDH siRNA and (-) 

scrambled siRNA sequence was evaluated using paired t 

test where * denotes p ≤ 0.05, *** denotes p ≤ 0.005. T 

denotes non-specific GAPDH knockdown due to particle 

toxicity. 
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grafts from 25 kDa (P1) to 40 kDa 

(P3). Results show that P3 particles 

were partially toxic to HeLa cells 

indicated by the reduction in 

GAPDH protein expression upon 

treatment with (-) the scarmbled 

siRNA sequence. Specifically, P3 

particles loaded with (+) anti-

GAPDH siRNA produced 30 ± 

2.5% knockdown in GAPDH 

expression compared to the 73 ± 

1.4% reduction observed with P1 

particles. These results clearly 

show that β-CD polymers 

incorparating P(HMA-co-DMAEMA-co-TMAEMA) grafts with an average molecular 

weight of ~25 kDa are more efficient than longer grafts in delivery of functional siRNA 

into HeLa cancer cells (Figure 5.6). These findings are supported by recently published 

results showing that 3- and 5-arm branched PDMAEMA polymers exhibit measurable 

transfection of CHO-K1 cells at an average molecular weight ≥ 20 kDa.
41

 However, 

PDMAEMA carriers with much higher molecular weight exhibited high cellular toxicity 

that diminished their transfection efficiency.
41

 

Comparing between GAPDH knockdown observed upon incubation of HeLa cells with 

P1 and P2 particles shows the contribution of the buffering capacity of DMAEMA 
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monomers to the endosomal escape and transfection efficiency of P1 particles. 

Specifically, P1 particles are formulated using β-CD-1 polymer with 69% of the 

DMAEMA monomers converted to cationic TMAEMA, which leaves 31% of the 

DMAEMA monomers (pKa = 7.5) to exhibit their buffering capacity at acidic endosomal 

pH. Whereas, P2 particles are formulated using β-CD-2 polymer with 100% of 

DMAEMA monomers transformed to cationic TMAEMA (i.e. no endosomal buffering 

capacity). Results show that P2 particles loaded with (+) anti-GAPDH siRNA produce 58 

± 2.3% knockdown in GAPDH protein expression compared to 73 ± 1.4% GAPDH 

knockdown observed with P1 particles (Figure 5.6). Similarly, P4 particles (100% of 

DMAEMA monomers transformed to cationic TMAEMA) loaded with anti-GAPDH 

siRNA caused 19 ± 5.6% reduction in GAPDH expression compared to 30 ± 2.5% 

observed with P3 particles (only 55% of DMAEMA monomers transformed to cationic 

TMAEMA leaving 45% of DMAEMA monomers with endosomal buffering capacity) 

(Figure 5.6). Given that P1, P2, P3, and P4 particles exhibit similar uptake by HeLa 

cancer cells (Figure 5.5), higher GAPDH knockdown observed with P1 and P3 particles 

compared to P2 and P4 particles can be attributed to the endosomal buffering capacity of 

DMAEMA monomers, which results in endosomal burst and enhanced release of the 

loaded siRNA into the cytoplasm. These results are supported by earlier reports showing 

the enhanced endosomal escape of PDMAEMA through their endosomal buffering 

capacity.
24

 It is important to note that siPORT amine-based complexes produced only 15 

± 7.2% reduction in GAPDH protein expression and it was associated with significant 

toxicity indicated by GAPDH knockdown upon incubation with siPORT amine-based 

complexes loaded with the scrambled siRNA sequence (Figure 5.6). 
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5.3.6 Contribution of DMAEMA monomers to carrier’s transfection capacity 

The amount of cationic quaternary amine groups (TMAEMA) needed to complex 1.14 µg 

of anti-GAPDH siRNA at N/P ratio of 2.5/1 is 4.62 x 10
-8

 moles. We used the number of 

TMAEMA monomers present in each β-CD polymer to calaculate the amount of polymer 

needed to complex the same dose (1.14 µg) of anti-GAPDH siRNA at N/P ratio of 2.5/1. 

Given that β-CD-1 polymer has only 58 TMAEMA units/graft compared to 84 

TMAEMA units/graft in β-CD-2 polymer (Table 5.1), we used a higher amount of β-CD-

1 (27 µg) than β-CD-2 (21 µg) to complex the same amount (1.14 µg) of anti-GAPDH 

siRNA at N/P ratio of 2.5/1. We investigated whether the observed higher activity of P1 

particles in reducing GAPDH protein expression compared to P2 particles is a result of 

the higher amount of β-CD-1 polymer used to complex the anti-GAPDH siRNA or the 

higher number of DMAEMA monomers/graft, which enhances the endosomal escape of 

the formed particles through their established endosomal buffering capacity. Specifically, 

we mixed 27 µg of β-CD-1 and 21 µg of β-CD-2 polymers with 1.14 µg of (+) anti-

GAPDH siRNA or (-) the scrambled sequence to prepare P1-TMAEMA and P2-

TMAEMA particles at N/P ratio of 2.5/1 based on the number of cationic TMAEMA 

monomers present in each carrier. We also mixed 21 µg of β-CD-1 polymer with 1.14 µg 

of (+) anti-GAPDH siRNA or (-) the scrambled sequence to prepare P1-DMAEMA 

particles based on the number of DMAEMA monomers present in the β-CD-1 carrier. We 

evaluated the effect of P1-DMAEMA, P1-TMAEMA, and P2-TMAEMA particles on 

GAPDH expression in HeLa cervical cancer cells compared to commerical siPORT 

amine-based complexes (Figure 5.7). 
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Results show that P1-TMAEMA and P1-DMAEMA particles produce a similar 

knockdown in GAPDH protein expression by 57 ± 4.6% and 51 ± 4.7%, respectively 

(Figure 5.7A). Similarly, P1-TMAEMA and P1-DMAEMA particles reduced the levels 

of GAPDH mRNA by 80 ± 10.0% and 90 ± 5.0%, respectively (Figure 5.7B). The fact that 

P1-TMAEMA particles with higher carrier content (27 µg of β-CD-1) did not show 

higher activity compared to P1-DMAEMA particles (21 µg of β-CD-1) indicates that the 

amount of β-CD-1 polymer does not play a significant role in the observed activity of P1 

particles. In comparison, P2-TMAEMA particles reduced the levels of GAPDH protein 

and mRNA by only 30 ± 7.0% and 23 ± 17.7%, respectively (Figure 5.7A & B). 

Therefore, the observed low GAPDH knockdown by P2-TMAEMA particles compared 

to P1-DMAEMA and P1-TMAEMA particles is due to the residual DMAEMA 

monomers (26 monomers/graft) present in the β-CD-1 carrier that exhibit an appreciable 

endosomal buffering capacity
24

 leading to endosomal swelling and burst, which further 

enhances the cytoplasmic delivery of the loaded anti-GAPDH siRNA molecules. 

We confirmed the contribution of DMAEMA monomers to the enhanced endosomal 

escape of P3 particles by comparing GAPDH knockdown by P3-DMAEMA and P3-

TMAEMA particles to GAPDH knockdown observed with P4-TMAEMA particles 

(Figure 5.7C). Results show that P3-DMAEMA and P3-TMAEMA particles caused a 

similar knockdown of GAPDH protein expression by 49 ± 4.3% and 57 ± 3.2%, 

respectively, which further confirms that the amount of β-CD-3 polymer used to prepare 

different particles at N/P ratio of 2.5/1 does not contribute to the observed activity. In 

comparison, P4-TMAEMA particles reduced GAPDH protein expression by 36 ± 6.7%, 

which is less that the observed knockdown with both P3-DMAEMA and P3-TMAEMA 
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particles. These results collectively show that β-CD-1 and β-CD-3 polymers with 

partially quaternized (50%) DMAEMA monomers exhibit more efficient cytoplasmic 

delivery of the complexed siRNA molecules compared to their fully quaternized 

counterparts (β-CD-2 and β-CD-4 polymers), which is a result of the synergistic 

combination of DMAEMA endosomal buffering capacity with HMA membrane-

destabilizing effect on the same membrane-active P(HMA-co-DMAEMA-co-TMAEMA) 

grafts. 
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5.3.7 Cellular uptake and activity of P1/P2 particles in MCF-10A and UM-SCC-

17B cells 

Results show that P1 and P2 particles prepared by complexation of β-CD-1 and β-CD-2 

polymers with anti-GAPDH siRNA at N/P ratio of 2.5/1 are efficiently internalized by 

                                         (A)                                          (B) 

   
(C) 

 
Figure 5.7: Effect of P1-DMAEMA, P1-TMAEMA, and P2-TMAEMA particles loaded with 1.14 µg 

of (+) anti-GAPDH siRNA or (-) a scrambled siRNA sequence on GAPDH protein (A) and mRNA (B) 

levels in HeLa cervical cancer cells. The mRNA levels for the GAPDH gene were normalized to 

mRNA levels of the β-actin gene. (C) Effect of P3-DMAEMA, P3-TMAEMA, and P4-TMAEMA 

particles loaded with 1.14 µg of (+) anti-GAPDH siRNA or (-) a scrambled siRNA sequence on 

GAPDH protein level in HeLa cervical cancer cells. Results are the average + the standard error of the 

mean of five replicates. Statistical difference between particles encapsulating (+) anti-GAPDH siRNA 

and (-) scrambled siRNA sequence was evaluated using paired t test where *** denotes p ≤ 0.005. T 

denotes non-specific GAPDH knockdown due to particle toxicity. 
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HeLa cervical cancer cells (Figure 5.5) and achieve robust knockdown of GAPDH 

expression at the mRNA and protein levels (Figure 5.7). We investigated the uptake of 

P1 and P2 particles loaded with anti-GAPDH siRNA into normal human mammary 

epithelial cells (MCF-10A) and head and neck squamous cell carcinoma (UMSCC-17B) 

and the associated knockdown in GAPDH expression to confirm the utility of these 

“smart” particles in multiple cell lines. Results show that “smart” P1 and P2 particles are 

internalized by 98-100% of MCF-10A cells at N/P ratios of 1.5/1 and 2.5/1, which drops 

to 76-83% of the cells upon incubation with the particles prepared at higher 4/1 N/P ratio 

(Figure 5.8A). In comparison, 93-100% of UM-SCC-17B cells internalized P1 and P2 

particles prepared at N/P ratios of 1.5/1, 2.5/1, and 4/1 (Figure 5.8B). 

We investigated the effect of “smart” P1 and P2 particles prepared by complexation of β-

CD-1 and β-CD-2 polymers with (+) anti-GAPDH siRNA and (-) scrambled siRNA 

sequence at N/P ratio of 2.5/1 using the same polymer amounts listed in section 2.5 on 

GAPDH expression in MCF-10A and UM-SCC-17B cells. In MCF-10A cell, P1 and P2  

particles reduced GAPDH protein levels by 31 ± 4.6% and 25 ± 11.2%, respectively 

(Figure 5.8C). P1 and P2 particles loaded with anti-GAPDH siRNA reduced GAPDH 

mRNA levels by 50 ± 18%, and 50 ± 38%, respectively (Figure 5.8E). In UM-SCC-17B 

cancer cells, P1 and P2 particles loaded with anti-GAPDH siRNA caused a similar 

reduction in GAPDH protein expression by 21 ± 4.3% and 30 ± 6.9%, respectively 

(Figure 5.8D). However, qRT-PCR results show that only P1 particles reduced GAPDH 

mRNA levels by 40 ± 14% while P2 particles did not affect GAPDH mRNA level 

(Figure 5.8F). 
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                                         (A)                                          (B) 

 
                                         (C)                                          (D) 

 
                                         (E)                                          (F) 

  
Figure 5.8: Percentage of fluorescently-labeled MCF-10A (A) and UM-SCC-17B (B) cells that 

internalize free FAM-labeled anti-GAPDH siRNA molecules, “smart” P1-P2 particles encapsulating 

FAM-labeled anti-GAPDH siRNA, and siPORT amine-based complexes upon incubation for 6 hours 

in a serum-free culture medium. Effect of P1 and P2 particles loaded with 1.14 µg of (+) anti-GAPDH 
siRNA or (-) a scrambled siRNA sequence on GAPDH protein (C & E) and mRNA (D & F) levels in 

MCF-10A (C & D) and UM-SCC-17B (E & F) cells. The mRNA levels for the GAPDH gene were 

normalized to mRNA levels of the β-actin gene. Results are the average + the standard error of the 

mean of five replicates. Statistical difference between particles encapsulating (+) anti-GAPDH siRNA 

and (-) scrambled siRNA sequence was evaluated using paired t test where * denotes p ≤ 0.05, ** 

denotes p ≤ 0.01, and *** denotes p ≤ 0.005. T denotes non-specific GAPDH knockdown due to 

particle toxicity.  
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The observed difference in GAPDH knockdown induced by P1 and P2 particles loaded 

with anti-GAPDH siRNA in HeLa, MCF-10, and UM-SCC-17B cells can be explained 

by the difference in intracellular pH between these cells lines. The literature shows that 

normal cells generally have neutral cytosolic pH (7.2) and acidic endosomal (pH 6.0) and 

lysosomal (pH 5.0) environment.
42

 Whereas, many tumor cells have an acidified cytosol 

and more alkaline endosomes/lysosomes with both pH values is around 6.7.
42

 Although 

the reason for alkalinization of the endosomal and lysosomal compartments remains 

elusive, the elevated organelle pH in tumor cells has been confirmed in many reports 

42b,43
  and proved to dramatically reduce the transfection efficiency of non-viral vectors in 

tumor cells.
44

 Similarly, low GAPDH knockdown in UM-SCC-17B cancer cells can be 

attributed to endosomal alkalinization, which will reduce the hydrolysis of the hydrazone 

linkages connecting the membrane-active P(HMA-co-DMAEMA-co-TMAEMA) grafts 

to the β-CD core. Incomplete release of P(HMA-co-DMAEMA-co-TMAEMA) grafts 

will reduce the net disruption of the endosomal membrane, which will limit the delivery 

of the loaded anti-GAPDH siRNA into the cytoplasm and diminish the associated 

GAPDH knockdown. This explains lower GAPDH knockdown observed with P1 (21 ± 

4.3%) in UM-SCC-17B cancer cells compared to that observed (31 ± 4.6%) with normal 

MCF-10A mammary epithelial cells. These results show that type of targeted cells can 

influence the transfection efficiency of “smart” star-shaped β-CD carriers. Nevertheless, 

our results collectively show the ability of β-CD-1 polymers to complex siRNA at low 

N/P ratio and achieve efficient functional delivery of the loaded cargo into the cytoplasm 

of different cells. 
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5.4 Conclusions 

In summary, we used FDA-approved, water-soluble, cone-shaped β-CD to prepare a 

series (β-CD-1 to β-CD-8) of degradable, pH-sensitive, star-shaped polymers and 

evaluated their ability to deliver anti-GAPDH siRNA past the endosomal membrane and 

into the cytoplasm of multiple epithelial cell lines. Using ATRP, we grafted P(HMA-co-

DMAEMA) copolymers from the secondary face of the β-CD core via acid-labile 

hydrazone linkages. We varied the molecular weight (25 and 40 kDa), molar ratio of 

HMA/DMAEMA monomers (50/50 and 75/25), and degree of quaternization (50% and 

100%) of DMAEMA monomers into cationic TMAEMA to systematically investigate the 

effect of these parameters on siRNA condensation into “smart” particles and the 

associated transfection efficiency. Results show that β-CD polymers incorporating 50% 

DMAEMA monomers/graft complex the loaded siRNA at low N/P (+/-) ratios of 1.5/1 

and 2.5/1 whereas the β-CD polymers with lower DMAEMA content form their 

complexes at a 4/1 N/P ratio. The average sizes of “smart” P1-P8 particles was < 200 nm 

and have a net positive surface charge, which suggest their ability to diffuse from the 

systemic circulation into tumor’s interstitial space followed by efficient cell uptake via 

endocytosis when administered in vivo. Results show that β-CD polymers with 25 kDa 

P(HMA-co-DMAEMA) grafts are more efficient in delivering the siRNA cargo 

compared to those with longer (40 kDa) grafts while exhibiting no cytotoxicity. 

Increasing the mole fraction of hydrophobic HMA monomers to 75% of the graft reduced 

aqueous solubility and transfection efficiency of the β-CD carriers compared to those 

with lower HMA content (50%/graft). Transforming 100% of DMAEMA monomers to 

cationic TMAEMA enhanced the condensation of the loading siRNA molecules. 
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However, combining the endosomal buffering capacity of DMAEMA monomers with the 

hydrophobic disruptive effect of HMA units in a single membrane-active P(HMA-co-

DMAEMA-co-TMAEMA) graft proved to increase the efficiency of “smart” P1 and P3 

particles by enhancing their endosomal escape. These results provide a clear description 

of key structural features necessary for development of efficient β-CD star-shaped 

carriers for siRNA delivery. Further, it establishes β-CD-1 polymer as a robust vector for 

enhanced cytoplasmic delivery of siRNA. 
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Supplementary Information 

S1. Synthesis of “Smart” β-CD-Based Vectors 

We successfully utilized the asymmetric distribution of primary hydroxyl groups on the 

primary face and secondary hydroxyl groups on the secondary face of the β-CD core to 

graft amphiphilic P(HMA-co-DMAEMA) polymers from the secondary face via acid-

labile hydrazone linkages using ATRP. As shown in Scheme 5.S1, we used tert-

butyldimethylsilyl chloride (TBDMSCl) to cap 96% of the primary hydroxyl groups 

forming (TBDMS)7--CD (compound 2), which allowed us to selectively modify the 

secondary hydroxyl groups in subsequent reactions. The average number of secondary 

hydroxyl groups that reacted with phenyl acetate was 8.5 yielding (TBDMS)7--CD-

(phenyl acetate)8.5 (compound 3), which was completely (100%) transformed to the 

correspponding acyl hydrazide (TBDMS)7-β-CD-(hydrazide)8.5 (compound 4). We 

utilized the aromatic protons of the phenyl groups to quantitatively confirm the formation 

of the phenyl acetate ester and subsequent transformation to the acyl hydrazide based on 
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Figure 5.S2: 1H NMR spectrum of (TBDMS)7-β-

CD-(hydrazide)8.5 recorded in CDCl3. 

 

Figure 5.S1: 
1
H NMR spectrum of (TBDMS)7-

β-CD-(phenyl acetate)8.5 recorded in CDCl3. 

the 
1
H NMR spectra (Figures 5.S1 and 5.S2). We reacted (TBDMS)7-β-CD-

(hydrazide)8.5 (compound 4) with 2-bromo-2-methyl-propionic acid-4-formyl-phenyl 

ester (compound 5) to introduce the initiation sites for ATRP conjugated via acid-labile 

hydrazone linkages to the β-CD secondary face following published protocols 
13,45

. By 

comparing the ratio between TBDMS and the aromatic protons in the (TBDMS)7-β-CD-

(hydrazone-Br)4.8 (compound 6), we confirmed the conjugation of 4.8 ATRP initiation 

sites (Figure 5.S3), which is sufficient for graftting the desired number of cationic groups 

for condensation of a large dose of siRNA molecules without causing undesirable 

gelation of the formed star polymers at higher grafting densities. 
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Figure 5.S3: 1H NMR spectrum of (TBDMS)7-β-

CD-(hydrazone-Br)4.8 recorded in CDCl3. 
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Scheme 5.S1: Protocol for synthesis of β-CD-P(HMA-co-TMAEMA)4.8 and β-CD-P(HMA-co-
DMAEMA-co-TMAEMA)4.8 polymers.  
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We used (TBDMS)7-β-CD-(hydrazone-Br)4.8 (Compound 6) as a macroinitiator for 

copolymerization of HMA and DMAEMA monomers using the CuCl/CuCl2/HMATETA 

catalytic system in anisole or tetrahydrofuran at 60 
o
C, which yielded (TBDMS)7-β-CD-

P(HMA-co-DMAEMA)4.8 (compound 7) star polymers with two different graft 

compositions (HMA/DMAEMA ratio of 50/50 or 75/25) and degree of polymerization 

(molecular weight of 25 kDa or 40 kDa) (Table 5.S1). Details of the polymerization 

reactions are listed in Table 5.S1 and graft composition was confirmed based on the 

corresponding 
1
H NMR spectrum (Figure 5.S4A). The number average molecular weight 

and the number of HMA and DMAEMA units in the each graft were calculated based on 

the ratio between the aromatic protons inserted in the initiating group and the methylene 

protons of each monomer located next the ester and amine groups of the HMA and 

DMAEMA monomers, respectively (Table 5.1). We analyzed the molecular weight and 

molecular weight distribution for all star polymers using gel permeation chromatograph. 

Results show that all the synthesized star polymers exhibit narrow molecular weight 

distribution (Figure 5.S5 & Table 5.S1). However, given the established interaction 

between DMAEMA monomers and the packing material of GPC columns 
29

 and 

difference in topography between star-shaped and the linear polymers, we used the 

number average molecular weight obtained from the 
1
H NMR spectra in all subsequent 

calculations in this research. 
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Table 5.S1: Copolymerization of HMA and DMAEMA monomers from β-Cyclodextrin macroinitiator 

using ATRP 

 

a1,1,4,7,10,10-Hexamethyltriethylenetetramine and (TBDMS)7-β-CD-(hydrazone-Br)4.8 were used as ligand 

and initiator, respectively. 
bPolymerization was performed in THF. 
cPolymerization was performed in Anisole. 
dCalculated by using 1H NMR spectra. 
eDetermined gravimetrically. 
fDetermined from GPC measurements based on methyl methacrylate standard. Mn is the number average 

molecular weight and Mw is the weight average molecular weight. 

 



130 

 

 

 
Figure 5.S4: 1H NMR spectrum of: (A) (TBDMS)7-β-CD-P(HMA-co-DMAEMA)4.8 in CDCl3, (B) β-

CD-P(HMA-co-TMAEMA)4.8 in D2O, and (C) β-CD-P(HMA-co-DMAEMA-co-TMAEMA)4.8 in 

CDCl3. 
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The TBDMS protecting groups were removed to yield β-CD-P(HMA-co-DMAEMA)4.8 

(compound 8) star polymers before partial (50%) or complete (100%) quaternization of 

the DMAEMA monomers into trimethyl aminoethyl methacrylate (TMAEMA) 

monomers using methylene iodide to obtain β-CD-P(HMA-co-TMAEMA)4.8 (compound 

9) and β-CD-P(HMA-co-DMAEMA-co-TMAEMA)4.8 (compound 10) polymers. As 

shown in Figure 5. S4B and S4C, we used the ratio between the methyl protons of the 

DMAEMA monomers at 2.26 ppm and those of the TMAEMA monomers at 3.61 ppm to 

calculate the % of DMAEMA quaternization in different star polymers (Table 5.1). 

S1.1 Materials 

β-Cyclodextrin (β-CD) (Aldrich, 98 %) was freeze-dried before use. Dimethylamino 

ethyl methacrylate (DMAEMA) (Aldrich, 98 %) and hexyl methacrylate (HMA) (Aldrich, 

98 %) were passed through basic alumina column to remove the associated inhibitor 

before use. 1,1,4,7,10,10-Hexamethyltriethylenetetramine (HMTETA) ligand (Aldrich, 

97 %) was distilled before use. 2-Bromo-2-methyl-propionic acid 4-formyl-phenyl ester 

(Ald-Br) was synthesized following a published protocol 
46

. Copper (I) chloride (CuCl) 

 
Figure 5.S5: GPC traces of star polymers. 
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(Aldrich, 99.9 %), copper (II) chloride (CuCl2) (Aldrich, 99.9%), tert-butyldimethylsilyl 

chloride (TBDMS) (Aldrich, 97%), bromophenyl acetate (Aldrich, 98%), sodium hydride 

(NaH) (Aldrich, 60% dispersion in mineral oil), hydrazine anhydrous (Aldrich, 98%), 

pyridine anhydrous (Aldrich, 98%), 2-bromoisobutyryl bromide (Fluka, > 97%), 

tetrabutylammonium floride 1.0 M solution in tetrahydrofuran (TBAF) (Aldrich), 

iodomethane (Aldrich, 99%), anisole anhydrous (Aldrich, 99.7 %), tetrahydrofuran 

anhydrous (THF) (Aldrich, > 99.9 %) were used as received. 

S1.2 Characterization 

1
H NMR and 

13
C NMR spectra of 5–10 % (w/w) solutions in CDCl3 or D2O with 

Si(CH3)4 as an internal standard were recorded using 400 MHz and 500 MHz Varian 

Mercury system (Palo Alto, CA) at room temperature, respectively. Gel permeation 

chromatography (GPC) analyses were done using a Viscotek GPCmax Autosampler 

system equiped with a Water 2414 refractive index (RI) detector. The molecular weight 

and molecular weight distribution of final polymers were determined based on their 

elution volume on an Styragel HR 4E column compared to a series of poly(methyl 

methacrylate) standards (PolyAnalitik Inc, Canada) using THF containing 5 % TEA as a 

mobile phase at a flow rate of 1 mL/min at 35 
o
C. Data were analyzed using Viscotek 

OmniSEC Omni-01 software. Fragmentation of star polymers in acidic solution was 

evaluated by dissolving 2 mg of each star polymer in 1 mL phosphate-buffered saline 

(PBS) with pH 5.8 and incubating at 37 °C for 8 hours while shaking. A 100 μl sample 

was drawn by the autosampler from polymer solution at 1, 2, 4, and 8 hours for GPC 

analysis using a Styragel HR 3, 4 and 5 DMF column system connected in series. DMF 

was used as an eluent at flow rate of 0.8 mL min
-1

 at 50C for this fragmentation study. 
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The areas under the curve for the peaks corresponding to the star polymer were used to 

quantify the amount of degraded polymer at a given time point to determine the 

hydrolysis rate of the hydrazone linkages connecting the polymer grafts to the secondary 

face of the β-CD core. FT-IR spectra were recorded on a Jasco FT-IR Spectrum 4100 

type A. 

S1.3 Synthesis of (TBDMS)7-β-CD-(hydrazone-Br)4.8 Macroinitiator 

S1.3.1 Synthesis of (TBDMS)7-β-CD 

The primary OH groups of β-CD (1) were capped using tert-butyldimethylsilyl groups to 

yield compound (TBDMS)7-β-CD (2) following published protocols 
47

. Briefly, β-CD 

(2.8 g, 2.46 mmol) was dissolved by vigorous stirring in dry pyridine (30 mL) followed 

by cooling the solution on an ice bath to produce a thick gel. Dry tert-butyldimethylsilyl 

chloride (TBDMSCl) (3.0 g, 20 mmol) was dissolved in dry pyridine (20 mL) and added 

dropwise by a syringe to the cooled reaction vessel containing β–CD over 30 minutes, 

which liquefied the β-CD gel. The reaction vessel was kept in an ice bath for 3 hours 

before allowing it to warm up to room temperature while stirring overnight (18 h). The 

reaction mixture was poured into ice-cold water (500 mL) and stirred vigorously for 10 

minutes to precipitate the crude product, which was filtered off, washed with ice-cold 

water, and dissolved in ethyl acetate (70 mL). The ethyl acetate solution was washed with 

5% aqueous HCl solution (3 times x 50 mL), saturated aqueous NaHCO3 solution (50 

mL), and saturated brine (50 mL) before drying the solution using anhydrous Na2S04, 

filtering, and concentrating to get a white solid. The solid product was purified by flash 

chromatography on silica gel using a gradient mobile phase composed of 9/1 ethyl 

acetate/hexane followed by 18/1.9/0.1 dichloromethane/methanol/water to yield 3 g of 



134 

 

compound (2) with 96 % of the primary OH capped with TBDMS group. 
1
H NMR (400 

MHz, CDCl3): δH= 0.02 (s, 21H, Si-CH3), 0.03 (s, 21H, Si-CH3), 0.86 (s, 63H, C-(CH3)3), 

3.55 (dd, J=8.8, 9.2, 7H, H-6a), 3.60 (bs, 7H, H-2), 3.64 (dd, J=4, 9.6, 7H, H-5), 3.71 (bd, 

J=10.8, 7H, H-3), 3.90 (dd, J=2.8, 11.2, 7H, H-6b), 4.00-4.05 (dd, J=8.8, 9.6, 7H, H-4), 

4.88 (d, J=3.6 7H, H-1), 5.26 (s, 7H, OH), 6.73 (s, 7H, OH).
 13

C NMR (125 MHz, 

CDCl3): δC=-5.2, - 5.1, 18.2, 25.9, 61.6, 72.5, 73.4, 73.6, 81.8, 102.0. FT-IR (cm
-1

): 3323, 

2951-2855, 1565, 1465, 1367, 1251, 1151, 1032, 961, 829, 771. EIMS m/z [M+H]
+
 

calculated for C84H168O35Si7 is 1934.8, found 1935.7. 

S1.3.2 Etherification of Secondary Hydroxyl Groups 

(TBDMS)7-β-CD (2) (3.0 g, 1.55 mmol) was dissolved in dry THF (60 mL) and added to 

sodium hydride (NaH) (2.16 g washed with hexane, 54.24 mmol) while cooling the 

reaction flask in an ice bath. Once the evolution of H2 subsided, phenyl bromoacetate 

(12.30 g, 48.48 mmol) was added to the reaction mixture in an ice bath under N2 

atmosphere and the reaction mixture was kept 1 more hour in an ice bath. After 16 h, the 

reaction mixture was cooled on an ice bath followed by dropwise addition of methanol to 

inactivate excess NaH followed by removal of solvents under reduced pressure to yield a 

solid residue. The residue was suspended in CH2Cl2 and washed with H2O followed by 

saturated aqueous NaCl solution. The CH2Cl2 layer was recovered and evaporated to 

dryness to yield brown oil, which was purified by column chromatography starting with 

1/4 ethyl acetate/hexane solvent mixture followed by 18/2 dichloromethane/methanol 

mixture to yield 1.96 g of (TBDMS)7-β-CD-(phenyl acetate)8.5 (compound 3) (54% 

conversion). 
1
H NMR (400 MHz, CDCl3): δH= -0.04 (s, 42H, Si-CH3), 0.89 (s, 63H, C-

(CH3)3), 3.57-4.06 (bm, 42H, H-2, H-3, H-4, H-5, H-6a, H-6b), 4.73 (s, 17H, OCH2CO), 
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4.45-4.90 (b, 7H, H-1), 5.33 (s, OH), 6.83-7.40 (b, 42.5H, aromatic protons). 
13

C NMR 

(125 MHz, CDCl3): δC=-5.01, 18.1, 25.9, 57.3, 61.6, 72.2, 72.9, 73.0, 75.6, 97.5, 114.5, 

121.7, 129.5, 151.2, 157.7. FT-IR (cm
-1

): 2997, 2980, 2926, 2851, 1745, 1590, 1492, 

1251, 1158, 1079, 1032, 833, 750. 

S1.3.3 Incorporation of Acid-Labile Hydrazine Groups 

(TBDMS)7-β-CD-(phenyl acetate)8.5 (3) (1.96 g, 7.75 x 10
-4

 mol containing 6.59 x 10
-3

 

moles of ester unit) was dissolved in THF (80 mL). Hydrazine (2.06 mL, 6.59 x 10
-2

 mol) 

was added to reaction mixture and refluxed at 65 ºC for 36 h before removing the THF. 

The residual solid was dissolved in CH2Cl2 and extracted with 2.5% NaOH solution and 

the organic layer was dried to separate (TBDMS)7-β-CD-(hydrazide)8.5 (4) as a light 

brown solid (0.75 g, conversion ~ 99%). 
1
H NMR (400 MHz, CDCl3): δH= -0.01 (s, 42H, 

Si-CH3), 0.85 (s, 63H, C-(CH3)3), 2.25 (bs, NH-NH2), 3.10-4.40 (bm, 59H, H-2, H-3, H-4, 

H-5, H-6a, H-6b and OCH2CO), 4.45-5.33 (b, 7H, H-1 overlapped with OH), 7.69 (CO-

NH-NH2). 
13

C NMR (125 MHz, CDCl3): δC=-5.02, 18.2, 25.9, 59.5, 61.8, 72.5, 73.2, 73.5, 

79.2, 101.8, 208.1. FT-IR (cm
-1

): 3309, 2930-2855, 1673, 1598, 1462, 1362, 1251, 1143, 

1082, 1036, 961, 829, 775. 

(TBDMS)7-β-CD-(hydrazide)8.5 (4) (0.7 g, 3.5 x 10
-4

 mol containing 2.97 x 10
-3

 moles of 

NH2 units) was dissolved in THF (20 mL) followed by addition of 2-bromo-2-methyl-

propionic acid-4-formyl-phenyl ester (5) (8.06 g, 2.97 x 10
-2

 mol) to the reaction flask 

and refluxing the mixture at 65 ºC for 24 h before evaporating the THF and isolating the 

crude product, which was purified by flash chromatography on silica gel using a gradient 

mobile phase composed of 9/1 ethyl acetate/hexane mixture followed by 18/2 
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dichloromethane/methanol mixture containing 1% w/v TEA to yield 0.15 g of 

(TBDMS)7-β-CD-(hydrazone-Br)4.8 (6) (80% conversion). 
1
H NMR (400 MHz, CDCl3): 

δH= 0.03 (s, 42H, Si-CH3), 0.87 (s, 63H, C-(CH3)3), 2.09 (s, 28H, C(CH3)2-Br), 3.38-4.53 

(bm, 59H, H-2, H-3, H-4, H-5, H-6a, H-6b and OCH2CO), 4.88-5.13 (b, 7H, H-1 and s, 

OH), 6.82-7.21 (b, 9.6H, aromatic protons) 7.30-7.95 (b, 14.5H aromatic protons and 

NH-N). 8.15 (s, CH). 
13

C NMR (125 MHz, CDCl3): δC=- 5.1, 19.2, 25.9, 29.7, 29.9, 55.9, 

59.6, 61.9, 71.8, 72.05, 74.10, 81.8, 99.3, 121.2, 127, 131.7, 145.5, 150.8, 164.7, 170.9. 

FT-IR (cm
-1

): 3294, 3069-2855, 1749, 1684, 1652 1602, 1555 1458, 1387, 1251, 1158, 

1082, 1032, 957, 829, 775. 

S1.4 Grafting of HMA/DMAEMA Monomers from the Secondary Face of β-CD 

Compound 6 (13.5 mg, 3.48 x 10
-6 

mol containing 1.77 x 10
-5

 Br unit) and HMTETA 

(4.83 µL, 1.77 x 10
-5

 mol) were mixed with 1 mL of anisole or THF in Schlenk tube and 

degassed by three freeze–pump–thaw cycles. CuCl (1.4 mg, 1.42 x 10
-5 

mol), CuCl2 (0.47 

mg, 3.55 x 10
-6 

mol), DMAEMA (0.88 mL, 5.33 x 10
-3 

mol), HMA (1.05 mL, 5.33 x 10
-3 

mol) and 2 mL of anisole or THF were mixed in a second Schlenk tube followed by 

degassing the reaction mixture by three freeze–pump–thaw cycles. The initiator solution 

was transferred to the reaction vessel by a syringe and the reaction mixture was heated in 

an oil bath at 60 ºC. The reaction product was dissolved in THF, passed through a basic 

alumina column to remove the catalyst, rotary evaporated to remove the solvent, and 

added to cold heptane to precipitate (TBDMS)7-β-CD-P(HMA-co-DMAEMA)4.8 (7). 
1
H 

NMR (400 MHz, CDCl3): δH= 0.03 (s, 42H, Si-CH3), 0.86-2.03 (C-(CH3)3, CH2-C(CH3), 

CH2-C(CH3), O-CH2-(CH2)2-CH3, O-CH2-(CH2)2-CH3), 2.26 (bs, N(CH3)2), 2.54 (CH2-

N(CH3)2), 3.56 (7H, H-6a), 3.62-3.72  (21H, H-2, H-3, H-5), 3.92 (COOCH2(CH2)4-CH3 
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overlap with H-6b, H-4), 4.04 (COOCH2-CH2-N(CH3)2), 4.90-5.11 (7H, H-1 and OH 

residue), 6.78-7.05 (Aromatic protons), 7.61-7.99 (Aromatic protons and NH-N=CH), 

8.08 (NH-N=CH). FT-IR (cm
-1

): 2951-2725, 1726, 1458, 1376, 1266, 1143, 1061, 965, 

746. 

S1.5 Deprotection of (TBDMS)7-β-CD-P(HMA-co-DMAEMA)4.8 Polymer 

(TBDMS)7-β-CD-P(HMA-co-DMAEMA)4.8 polymer (7) (100 mg, 3.44 x 10
-7

 mol with 

2.40 x 10
-6

 mol of TBDMS units) was dissolved in anhydrous THF (3 mL), mixed with 

tetrabutylamonium floride (TBAF) (24 µL, 2.40 x 10
-5

 mol) under argon atmosphere, and 

stirred for 8 h at room temperature followed by removing the solvent and precipitating 

the polymer in cold heptane. 
1
H NMR (400 MHz, CDCl3): δH=0.86-2.03 (CH2-C(CH3), 

CH2-C(CH3), O-CH2-(CH2)2-CH3, O-CH2-(CH2)2-CH3), 2.26 (s, N(CH3)2), 2.54 (CH2-

N(CH3)2), 3.56 (7H, H-6a), 3.62-3.72  (21H, H-2, H-3, H-5), 3.92 (COOCH2(CH2)4-CH3 

overlap with H-6b, H-4), 4.04 (COOCH2-CH2- N(CH3)2), 4.90-5,26 (7H, H-1 and OH 

residue), 6.78-7.05 (Aromatic protons), 7.61-7.92 (Aromatic protons and CO-NH-N), 

8.08 (CO-NH-N=CH). FT-IR (cm
-1

): 3423, 2958-2768, 1723, 1650, 1573, 1458, 1383, 

1269, 1147, 1061, 961, 882, 746. 

S1.6 Quaternization of DMAEMA Monomers into Cationic TMAEMA Monomers 

β-CD-P(HMA-co-DMAEMA)4.8 (8) (90 mg, 3.1 x 10
-7

 mol with 2.88 x 10
-4

 mol of tert-

amine groups) was dissolved in anhydrous THF (5 mL) followed by addition of methyl 

iodide (36 µL, 5.76 x 10
-4

 mol) to the reaction vessel and allowing the reaction mixture to 

stand overnight at room temperature under an argon atmosphere. Pure β-CD-P(HMA-co-

TMAEMA)4.8 (9) was isolated by removing the THF solvent by rotary evaporation, 

dissolving the reaction product in water and dialyzing it against deionized water for 3 
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days followed by lyophilization. To prepare partially (50%) quaternized polymers, 

methyl iodide was used at 1/2 equivalent of the concentration of tert-amine groups of 

polymer (8) to yield β-CD-P(HMA-co-DMAEMA-co-TMAEMA)4.8, (10), which was 

purified the same way as β-CD-P(HMA-co-TMAEMA)4.8. 
1
H NMR (400 MHz, D2O): 

δH=0.84-2.05 (CH2-C(CH3), CH2-C(CH3), O-CH2-(CH2)4-CH3, O-CH2-(CH2)2-CH3), 

3.16 (bs, N(CH3)2), 3.75 (O-CH2-(CH2)4-CH3 overlap with CH2-N(CH3)2), 4.35 

(COOCH2-CH2-N(CH3)2). FT-IR (cm
-1

): 3334, 2951-2851, 1720, 1648, 1477, 1387, 1237, 

1140, 982, 961, 879. 
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Chapter 6.                                    

Synergistic inhibition of anti-apoptotic Bcl-2 activity by smart, 

star-shaped vector and small molecule inhibitor in head & 

neck cancer cells 

6.1 Introduction 

Head and neck cancer is one of the most commonly diagnosed cancers, which accounts 

for approximately 650,000 new cases and 350,000 cancer-related deaths in the world 

every year.
1
 The five-year survival of head and neck cancer at all stages is 50-60%, 

which is one of the lowest five-year survival rates among all cancers.
2
 Although 

treatment of head and neck cancer with both chemotherapy and radiation has been shown 

to improve the outcome of patients compared with radiation alone,
3
 the efficacy is highly 

limited by the emergence of resistant cancer cells.
4
 Therefore, it is important to develop 

an effective strategy to restore the sensitivity of head and neck cancer cells to radio- and 

chemo-therapy.  

Bcl-2 is a pro-survival protein that is over-expressed in various human cancer cells and 

responsible for dysregulation of apoptosis and prevention of death in cancer cells.
5
 Anti-

apoptotic activity of Bcl-2 protein is attributed to its ability to stabilize the mitochondrial 

membrane and inhibit the cytoplasmic release of cytochrome c, which prevents the 

activation of caspases and incidence of cellular apoptosis.
5b,6

 In addition, over-expression 
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of Bcl-2 has been shown to increase the resistance of cancer cells to chemotherapeutic 

drugs and radiotherapy.
7
 Application of nucleic acid macromolecules, such as antisense 

oligodeoxynucleotide (ASODN) and short hairpin RNA (shRNA), to suppress Bcl-2 

expression in cancer cells proved to successfully induce head and neck cancer cell death 

and sensitize cancer cells to chemotherapy both in vitro and in vivo.
8
 Therefore, these 

studies suggest that it is applicable to target Bcl-2 expression by therapeutic nucleic acids 

to inhibit tumor growth and restore the sensitivity of tumor cells to chemotherapeutic 

drugs. 

However, successfully deliver therapeutic DNA/RNA molecules into the cytoplasm of 

cancer cells to perform functional gene silencing requires an ideal carrier that can 

complex the nucleic acids into nano-sized particles, which preferentially accumulate in 

tumor tissues and be selectively taken up by target cells coupled with efficient escape 

from the endosomal/lysosomal trafficking pathway and release the therapeutic cargo into 

the cytoplasm.
9
 We have designed and synthesized a series of degradable, pH-sensitive, 

membrane-destabilizing, star-shaped polymers that can shuttle a large dose of model 

siRNA molecules past the endosomal membrane and into the cytoplasm of multiple cell 

types, including HeLa cervical cancer cells, UM-SCC-17B head and neck cancer cells, 

and MCF-10A normal mammary epithelial cells.
10

 To be specify, we grafted a random 

copolymer of hydrophobic hexyl methacrylate (HMA) and pH-sensitive dimethyl 

aminoethyl methacrylate (DMAEMA) monomers from the secondary face of the β-

cyclodextrin (β-CD) core via acid-labile hydrazone linkages forming star-shaped polymer 

where DMAEMA monomers were partially (50%) quaternized into cationic trimethyl 

aminoethyl methacrylate (TMAEMA) for complexation of siRNA molecules into “smart” 



144 

 

particles via electrostatic interaction. These cationic particles remain stable at physiologic 

pH and be internalized into cells through adsorptive endocytosis, but hydrolyze into 

membrane-active fragments that disrupt the endosomal membrane and release the nucleic 

acid cargo into the cytoplasm when exposed to acidic endosomal pH gradients (Figure 

6.1).
10

 These polymers have been proved to exhibit enhanced gene suppression at protein 

and mRNA levels probably due to the combined endosomal escape mechanisms of 

hydrophobic membrane disruption and endosomal burst.
10

 

 

  

 
Figure 6.1: A schematic drawing shows the “smart” particles encapsulating anti-Bcl-2 siRNA 
molecules and the hydrolysis of acid-labile hydrazone linkages in the endosome, leading to the 

fragmentation of the membrane-active P(HMA-co-TMAEMA) grafts, rupture of the endosomal 

membrane, and release of the siRNA cargo into the cytoplasm of cancer cells to knockdown Bcl-2 

expression and trigger apoptosis of cancer cells. 
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In this study, we evaluated the therapeutic activity of these pH-sensitive, star-shaped 

polymers to achieve functional delivery of anti-Bcl-2 siRNA molecules based on their 

ability to selectively inhibit Bcl-2 expression at the mRNA and protein levels in UM-

SCC-17B head and neck cancer cells. In addition, we explored the possibility to inhibit 

the anti-apoptotic function of residual Bcl-2 proteins by simultaneously treat cancer cells 

with BH3-mimetic compounds, AT-101, which is a small molecule inhibitor, verified to 

restore the anti-apoptotic pathway and sensitize head and neck cancer cells to 

chemotherapeutic drugs by blocking the heterodimerization of Bcl-2 proteins with pro-

apoptotic proteins.
11

 In this way, the Bcl-2 protein can be largely inhibited by both gene 

silencing mechanism and Bcl-2 antagonist to achieve better inhibition compared to single 

treatment, which triggers apoptotic cell death in response to therapeutic treatments. 

6.2 Materials and Methods 

6.2.1 Materials 

The anti-Bcl-2 siRNA sequence (5’-GCCCUGAUUGUGUAUAUUCA-3’) was 

synthesized by Integrated DNA Technologies, Inc. (Coralville, Iowa). Scrambled siRNA 

molecules were purchased from Ambion Inc. (Austin, TX). The RNeasy Mini Kit and 

Omniscript reverse transcriptase kit were purchased from Qiagen (Valencia, CA). The 

TaqMan universal PCR master mix and TaqMan gene expression assays for human Bcl-2 

and 18S rRNA genes were purchased from Applied Biosystems (Foster, CA). The anti-

human β-actin monoclonal antibody and anti-human Bcl-2 monoclonal antibody were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA) and BD Biosciences (San 

Jose, CA), respectively. The AT-101 was purchased from Tocris Bioscience 

(Minneapolis, MN). Trichloroacetic acid, trizma base, and sulforhodamine B solium salt 
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were purchased from Sigma-Aldrich (St. Louis, MO). Propidium iodide was purchased 

from MP Biomedicals (Santa Ana, CA). 

6.2.2 Culture of UM-SCC-17B cells 

UM-SCC-17B head and neck cancer cells were generously provide by Dr. Nör and 

cultured following established protocols.
11

 Briefly, UM-SCC-17B cells were maintained 

in DMEM supplemented with 10% fetal bovine serum, 10,000 units/ml penicillin, 10,000 

μg/ml streptomycin and regularly changing the growth medium every 2 days. Cells were 

incubated at 37 °C, 5% CO2, 95% relative humidity, and passaged upon reaching 70-90% 

confluency using 0.25% trypsin/EDTA mixture. 

6.2.3 In vitro evaluation of Bcl-2 protein knockdown in UM-SCC-17B cells 

UM-SCC-17B cells were plated in 6-well plates at a seeding density of 200,000 cells/ 

well and allowed to adhere for 18 hours. The “smart” particles incorporating 1.43 µg of 

anti-Bcl-2 siRNA or scrambled siRNA molecules were incubated with UM-SCC-17B 

cells at a final siRNA concentration of 100 nM for 6 hours followed by addition of 1250 

μl of fresh culture medium and incubation for a total of 48 and 72 hours. The amount of 

Bcl-2 protein expressed by UM-SCC-17B cells was analyzed using the western blot 

technique following established protocol.
12

 Briefly, whole cell lysates were resolved by 

SDS-PAGE and membranes were probed overnight at 4°C with anti-human β-actin 

monoclonal antibody (1:1000000) and anti-human Bcl-2 monoclonal antibody (1:1000), 

and then proteins were visualized with SuperSignal West Pico Chemiluminescent 

Substrate (Pierce, Rockford, IL). The knockdown of Bcl-2 protein expression in response 

to different treatments was quantified by Image J software (NIH, Bethesda, MD) and 

normalized to that of negative control cells. 
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6.2.4 In vitro evaluation of Bcl-2 mRNA knockdown in UM-SCC-17B cells 

UM-SCC-17B cells were plated in 24-well plates at a seeding density of 20,000 cells/ 

well and allowed to adhere for 18 hours. The “smart” particles incorporating 0.57 µg of 

anti-Bcl-2 siRNA or scrambled siRNA molecules were incubated with UM-SCC-17B 

cells at a final siRNA concentration of 100 nM for 6 hours followed by addition of 500 μl 

of fresh culture medium and incubation for a total of 48 and 72 hours. For quantification 

of mRNA, total RNA was isolated from UM-SCC-17B cells using the RNeasy Mini Kit 

and 0.25 μg of total RNA was reverse transcribed using Omniscript reverse transcriptase 

kit following manufacturer’s protocols. Real-time PCR was performed in a final volume 

of 20 μl containing 2 μl of cDNA (corresponding to 10 ng of total RNA for Bcl-2 and 18S 

rRNA amplification), 1 μl of each primer, and 10 μl of the qPCR MasterMix in the 7500 

Fast Real-Time PCR system. 

6.2.5 Determination of IC25, IC50, and IC75 of AT-101  

UM-SCC-17B cells were plated in 24-well plates at a seeding density of 10,000 cells/ 

well and allowed to adhere for 18 hours, and then treated with 0, 0.1, 0.5, 1, 2, 4, 8, and 

10 µM AT-101 for 48 and 72 hours. Cell survival was determined by the Sulforhodamine 

B (SRB) assay following the established protocol.
11

 Briefly cells were fixed onto the 

plates by addition of 10% trichloroacetic acid (final concentration) for 1 hour at 4°C. 

Cellular protein was stained by 0.4% SRB in 1% acetic acid for 30 minutes at room 

temperature. Unbound SRB was removed by washing with 1% acetic acid and plates 

were allowed to air dry. Bound SRB was resolubilized in 10 mM Tris base and 

absorbance was determined by a Fluoroskan plate reader (Thermo scientific, Asheville, 



148 

 

NC) at 565 nm. The cell survival in response to different treatments was normalized 

against initial plating density and drug-free controls. 

6.2.6 Cell growth after combination treatment 

UM-SCC-17B cells were plated in 24-well plates at a seeding density of 10,000 cells/ 

well and allowed to adhere for 18 hours. AT-101 (IC25) alone or with the “smart” particles 

incorporating 0.57 µg of anti-Bcl-2 siRNA or scrambled siRNA molecules were 

incubated with UM-SCC-17B cells at a final siRNA concentration of 100 nM for 6 hours 

followed by addition of 500 μl of fresh culture medium with AT-101 (IC25) and 

incubation for a total of 72 hours. Cell survival was determined by the Sulforhodamine B 

(SRB) assay. The synergism or additivity was calculated by CalcuSyn ver. 2.0 software 

(Biosoft, Cambridge, UK) using the combinatorial index (CI), a mathematical and 

quantitative evaluation of a two-drug pharmacologic interaction. A synergistic effect is 

represented by CI<0.9; an additive effect by 0.9≤CI≤1.1; and absence of combinatorial 

effect CI>1.1. 

6.2.7 Cellular apoptosis after combination treatment 

UM-SCC-17B cells were plated in 12-well plates at a seeding density of 20,000 cells/ 

well and allowed to adhere for 18 hours. AT-101 (IC25) alone or with the “smart” particles 

incorporating 1.14 µg of anti-Bcl-2 siRNA or scrambled siRNA molecules were 

incubated with UM-SCC-17B cells at a final siRNA concentration of 100 nM for 6 hours 

followed by addition of 1000 μl of fresh culture medium with AT-101 (IC25) and 

incubation for a total of 72 hours. Cells were treated with 0.25% trypsin/EDTA solution, 

harvested, and centrifuged to remove the supernatant and form a cell pellet. Cell pellets 

were suspended in PBS and stained with propidium iodide (PI) for 20 minutes. Apoptotic 
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cells and cell cycle were determined by Biosciences FACSCalibur (Becton Dickinson, 

Franklin Lakes, NJ). 

6.3 Results 

6.3.1 Effect of “smart” particles on Bcl-2 expression 

The therapeutic activity of “smart” particles to deliver functional anti-Bcl-2 siRNA 

molecules past the endosomal membrane and into the cytoplasm of UM-SCC-17B head 

and neck cells was evaluated based on their ability to selectively knockdown Bcl-2 gene 

expression at both the mRNA and protein levels. We utilized the qRT-PCR to measure the 

changes in Bcl-2 mRNA level upon incubation with particles that encapsulate the anti-

Bcl-2 siRNA molecules, and compare to those encapsulating a scrambled siRNA 

sequence. Results show that particles selectively induced 60 and 50% knockdown in Bcl-

2 mRNA expression in UM-SCC-17B cells at 48 and 72 hours, respectively (Figure 

6.2A). The particles also induced 66 and 76% Bcl-2 protein suppression in UM-SCC-17B 

cells at 48 and 72 hours, respectively (Figure 6.2B). These results suggest that these 

particles can induce gene silencing for at least 72 hours.  
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                                         (A)                                       (B)

     
Figure 6.2: Effect of “smart” nanoparticles prepared by complexation of β-CD-P(HMA-co-

DMAEMA-co-TMAEMA)4.8 star-shaped polymer with 0.57 µg of the anti-Bcl-2 siRNA (+) or 

scrambled siRNA (-) at an N/P (+/-) ratio of 2.5/1 on Bcl-2 mRNA (A) and protein (B) levels at 48 and 

72 hours in UM-SCC-17B head and neck cancer cells. Levels for Bcl-2 mRNA are normalized to the 

levels of 18S rRNA. Results are the average + the standard error of the mean of five replicates. 

Statistical difference between particles encapsulating anti-Bcl-2 siRNA (+) and scrambled siRNA (-) 

was evaluated using paired t test where * denotes p ≤ 0.05. Levels of Bcl-2 protein are quantified by 

Image J software (NIH, Bethesda, MD) and normalized to the levels of β-actin. 
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6.3.2 Determination of IC25, IC50, and IC75 of AT-101 

The IC25, IC50, and IC75 of AT-101 in UM-SCC-17B cancer cells were determined based 

on percentage of cell survival after treatment with 0, 0.1, 0.5, 1, 2, 4, 8, and 10 µM AT-

101 for 48 and 72 hours, and then analyzed by SRB cytotoxic assay. As shown in Figure 

6.3A&B, IC25, IC50, and IC75 of AT-101 at 48 hours is 2.88, 4.87, and 6.63 µM, 

respectively, while IC25, IC50, and IC75 of AT-101 at 72 hours is 1.69, 2.51, and 3.63 µM, 

respectively. This indicates that less AT-101 is required to cause cell death at longer 

incubation time. The effect of AT-101 on Bcl-2 expression in UM-SCC-17B was also 

evaluated after treatment with AT-101 at IC25 and IC50 for 48 and 72 hours by using 

western blot. Results show that AT-101 induced 15-20 and 5-10% reduction in Bcl-2 

protein expression at 48 and 72 hours, respectively (Figure 6.3C).  
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6.3.3 Effect of AT-101 on cellular apoptosis and cell cycle 

Cellular apoptosis in UM-SCC-17B cancer cells was determined after 48 and 72 hour 

treatment with AT-101 at IC25, IC50, and IC75 by PI staining followed by flow cytometry 

analysis. As shown in Figure 6.4A, percentage of apoptotic cells increased from 4, 8, to 

21% at 48 hours and increased from 5, 30, to 47% at 72 hours with the concentration of 

AT-101 increased from IC25, IC50, and IC75. In addition, analysis of cell cycle shows that 

                                     (A)                                         (B)    

       
(C) 

 
Figure 6.3: Determination of IC25, IC50, and IC75 of Bcl-2 small molecule inhibitor, AT-101, at 48 (A) 

and 72 (B) hours in UM-SCC-17B head and neck cancer cells. After exposure to 0, 0.1, 0.5, 1, 2, 4, 8, 
and 10 µM AT-101 for 48 and 72 hours, the cell survival was determined by SRB assay. Results are 

the average ± the standard error of the mean of triplicates. (C) Effect of AT-101 treatment on the Bcl-2 

protein expression at 48 and 72 hours in UM-SCC-17B head and neck cancer cells. 
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treatment with AT-101 also induced cell arrest in G1 phase and inhibition of cell growth 

as indicated by decreased cellular mitosis (Figure 6.4B&C, Table 6.1). These results 

suggest that AT-101 inhibited cell survival through both enhanced cellular apoptosis and 

reduced cell growth. 

 

  

                                     (A)                                         (B)     

       
(C) 

 
Figure 6.4: Effect of AT-101 treatment on cellular apoptosis at 48 and 72 hours in UM-SCC-17B head 

and neck cancer cells. After exposure to IC25, IC50, and IC75 of AT-101 for 48 and 72 hours, cells were 

stained with propidium iodide and subjected to flow cytometry for the analysis of apoptotic cells (A) 

and cell cycle (B and C). Results are the average + the standard error of the mean of five replicates. 

Statistical difference between treatment of AT-101 and untreated cells was evaluated using paired t test 

where *** denotes p ≤ 0.005. 
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Table 6.1: Cell cycle distribution and mitotic index of UM-SCC-17B cells after treatment with AT-101 

 

6.3.4 Effect of combination treatment on cell growth 

After incubation of UM-SCC-17B cancer cells with AT-101 at IC25 alone or with AT-101 

and “smart” particles that encapsulate anti-Bcl-2 siRNA molecules for 48 and 72 hours, 

the percentage of live cells was evaluated by SRB assay and normalized to untreated cells. 

As shown in Figure 6.5, AT-101 alone induced 23 and 21% cell death at 48 and 72 hours, 

respectively. Combination treatment with AT-101 and “smart” particles encapsulating 

anti-Bcl-2 siRNA molecules induced 63 and 75% cell death at 48 and 72 hours, 

respectively, while treatment with AT-101 and “smart” particles encapsulating a 

scrambled siRNA sequence did not further increase cell death compared to AT-101 

treatment alone. Synergistic effects were observed when UM-SCC-17B cancer cells were 

treated with both AT-101 and anti Bcl-2 siRNA molecules. These results proved that 

knockdown of Bcl-2 expression using siRNA coupled with AT-101 treatment could 

inhibit cancer cell growth. 
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6.3.5 Effect of combination treatment on cellular apoptosis 

We evaluated the cellular apoptosis and cell cycle of UM-SCC-17B cells after treatment 

with “smart” particles loaded with anti-Bcl-2 siRNA and AT-101 (IC25) for 48 and 72 

hours using PI staining followed by flow cytometry analysis. Results show that AT-101 

alone induced only 4 and 3% cellular apoptosis at 48 and 72 hours, respectively (Figure 

6.6A). Treatment with AT-101 and“ smart” particles loaded with anti-Bcl-2 siRNA 

molecules further increased apoptotic cells to 12 and 14% at 48 and 72 hours, 

respectively, which is significantly higher than treatment with AT-101 and“ smart” 

particles loaded with a scrambled siRNA sequence. In addition, combination treatment 

with both AT-101 and“ smart” particles encapsulating anti-Bcl-2 siRNA molecules 

caused cell arrest in G1 phase of 76 and 75% at 48 and 72 hours, respectively (Figure 

6.6B). This population is significantly higher than the cells treated with AT-101 alone (62 

 
Figure 6.5: Effect of AT-101 and “smart” nanoparticles prepared by complexation of β-CD-P(HMA-

co-DMAEMA-co-TMAEMA)4.8 star-shaped polymer with 0.57 µg of the anti-Bcl-2 siRNA (+) or 

scrambled siRNA (-) at an N/P (+/-) ratio of 2.5/1 on cell survival at 48 and 72 hours in UM-SCC-17B 

head and neck cancer cells. The cell survival was determined by SRB assay, and the results are the 

average + the standard error of the mean of triplicates. Statistical difference between particles 

encapsulating anti-Bcl-2 siRNA (+) and scrambled siRNA (-) was evaluated using paired t test where * 

denotes p ≤ 0.05. Combinatorial index (CI) was calculated for each experimental condition. Pound sign 

(#) depicts synergistic effect (CI<0.9). 
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and 65%) or treated with AT-101 and“smart” particles encapsulating scrambled siRNA 

molecules (68%). Calculation of mitotic index also shows that the proliferation of UM-

SCC-17B cancer cells decreased after combination treatment AT-101 and Bcl-2 

knockdown (Table 6.2). The results indicated that Bcl-2 gene suppression using siRNA 

coupled with AT-101 treatment could enhance cellular apoptosis and decrease cell mitosis, 

which collectively inhibit cancer cell growth.  

 

  

                                     (A)                                         (B)     

          
 
Figure 6.6: Effect of AT-101 and “smart” nanoparticles prepared by complexation of β-CD-P(HMA-

co-DMAEMA-co-TMAEMA)4.8 star-shaped polymer with 0.57 µg of the anti-Bcl-2 siRNA (+) or 

scrambled siRNA (-) at an N/P (+/-) ratio of 2.5/1 on apoptosis at 48 and 72 hours in UM-SCC-17B 

head and neck cancer cells. After exposure to AT-101 and particles for 72 hours, cells were stained 

with propidium iodide and subjected to flow cytometry for the analysis of apoptotic cells (A) and cell 

cycle (B). Results are the average + the standard error of the mean of five replicates. Statistical 

difference between particles encapsulating anti-Bcl-2 siRNA (+) and scrambled siRNA (-) was 

evaluated using paired t test where * denotes p ≤ 0.05 and *** denotes p ≤ 0.005. 
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Table 6.2: Cell cycle distribution and mitotic index of UM-SCC-17B cells after combination treatment 

with AT-101 and “smart” particles encapsulating anti-Bcl2 (+) or scrambled (-) siRNA molecules 

 

6.4 Discussion 

Previous studies have shown that we successfully designed and synthesized a series of 

degradable, pH-sensitive, membrane-destabilizing, star-shaped polymers.
10

 These 

polymers can shuttle a large dose of model siRNA molecules past the endosomal 

membrane and into the cytoplasm of multiple cell types, including HeLa cervical cancer 

cells, UM-SCC-17B head and neck cancer cells, and MCF-10A normal mammary 

epithelial cells. In this study, we wanted to see if these pH-sensitive “smart” polymers can 

deliver therapeutic anti-Bcl-2 siRNA molecules into UM-SCC-17B cancer cells to 

selectively suppress Bcl-2 gene expression. In addition, we evaluated the potential of 

combing Bcl-2 knockdown using “smart” particles loaded with anti-Bcl-2 siRNA 

molecules with a BH3-mimetic drug (AT-101) to induce apoptotic cell death.  

6.4.1 Effect of “smart” particles on Bcl-2 expression 

Results show that the gene silencing effect of “smart” star-shaped particles loaded with 

anti-Bcl-2 siRNA molecules, which is determined based on the inhibition of Bcl-2 

expression at protein and mRNA levels in UM-SCC-17B cancer cells, can last for at least 

72 hours in vitro. This result matches earlier studies showing that Bcl-2 expression was 
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largely inhibited after 48-72 hour treatment with antisense oligodeoxynucleotide 

(ASODN), but gradually recovered after 96 hour.
13

 Therefore, we chose to evaluate the 

effect of Bcl-2 suppression on cell growth and cellular apoptosis after treatment with Bcl-

2 “smart” particles for 48 and 72 hours.   

6.4.2 Effect of AT-101 on cellular apoptosis and cell cycle 

The IC50 of AT-101 was 2.88 and 1.69 µM in UM-SCC-17B at 48 and 72 hours, 

respectively, which is similar to earlier studies.
11

 Treatment of head and neck cancer cells 

with AT-101 alone with the increased concentration of IC25, IC50, and IC75 caused 

increased apoptotic cell death based on the analysis of PI staining. This is due to the 

binding of AT-101, a BH3-mimetic small molecule inhibitor, to the BH3 binding groove 

of anti-apoptotic Bcl-2 proteins, which prevents the heterodimerization between Bcl-2 

and other pro-apoptotic proteins (such as Bad, Bim, Bax), therefore allowing the cells go 

apoptosis.
4,14

 In addition, results show that AT-101 can also increase the G1-phase cell 

cycle arrest to prevent cell growth, probably through regulating the expression of cell 

cycle regulatory proteins retinoblastoma (Rb) and cyclin Dl.
15

 This suggests that 

treatment of AT-101 can inhibit cell growth by both increase of cellular apoptosis and 

inhibition of cell proliferation. 

6.4.3 Effect of combination treatment on cell growth, cellular apoptosis, and cell 

cycle 

Investigating the effect of treatment with both AT-101 and “smart” particles loaded with 

anti-Bcl-2 siRNA molecules, UM-SCC-17B cell growth was inhibited 2-3 folds more 

comparing to treatment with AT-101 alone. The synergistic effect of Bcl-2 knockdown 

using siRNA molecules and AT-101 suggests that Bcl-2 gene silencing can sensitize 
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cancer cells to BH-3 mimetic drugs, which decreases the dose of AT-101 and the 

associated toxicity. In addition, simultaneously treatment with AT-101 and “smart” 

particles encapsulating anti-Bcl-2 siRNA molecules in UM-SCC-17B enhanced cellular 

apoptosis and G1-phase cell cycle arrest, which collectively leads to reduced cancer cell 

growth. Overall, UM-SCC-17B cell survival was significant decreased to 25% after 

combination treatment for 72 hours, which proves the potential of combing both Bcl-2-

targeted strategies, including Bcl-2 gene silencing and BH3- mimetic drugs, to treat head 

and neck cancer with less adverse side effects. 

6.5 Conclusions 

In summary, we proved the degradable, pH-sensitive, star-shaped polymers can 

successfully deliver anti-Bcl-2 siRNA molecules into the cytoplasm of head and neck 

cancer cells and inhibit Bcl-2 expression at both protein and mRNA levels. In addition, 

simultaneously inhibit Bcl-2 function by using siRNA molecules and AT-101 was shown 

to synergistically inhibit cancer cell growth due to induction of cellular apoptosis and G1 

phase cell cycle arrest. These results collectively suggest the potential of combining two 

Bcl-2 targeted therapeutic strategies to inhibit tumor cell growth and restore their radio- 

and chemo-sensitivity for effective head and neck cancer therapy. 
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Chapter 7.                          

Conclusions & future direction 

7.1 Conclusions 

7.1.1 “Smart” pH-sensitive, comb-like polymers 

In the studies of the development of degradable, pH-sensitive, membrane-stabilizing, 

comb-like polymers, we successfully synthesized a series of “smart” comb-like polymers 

that can encapsulate siRNA molecules into nuclease- and serum-stable particles at 

physiological pH, and be internalized into cells through adsorptive endocytosis. These 

particles hydrolyze into membrane-active fragments upon exposure to acidic endosomal 

gradients, leading to cytoplasmic release of siRNA molecules and functional gene 

knockdown. In these polymers, we incorporated acid-labile hydrazone linkages to allow 

controlled grafting a large number of hydrophobic hexyl methacrylate (HMA) and 

cationic trimethyl aminoethyl methacrylate (TMAEMA) polymer chains to the backbone 

of copolymers of pH-sensitive ethyl acrylic acid (EAA) and hydrophobic butyl 

methacrylate (BMA). This design enabled the comb-like polymers to carry a large dose 

of DNA/RNA molecules with high therapeutic loading, but degrade into small fragments, 

which can be easily eliminated in vivo by renal excretion, after escape from 

endosomal/lysosomal trafficking. Overall, the cytotoxicity of comb-like polymers can be 

largely decreased due to their high drug loading preventing the use of excess cationic 



161 

 

carriers, and non-specific accumulation in human body. However, there are some 

limitations in these comb-like polymers for in vivo application. First, they cannot 

selectively deliver therapeutic cargo into diseased cells. Second, they will be rapidly 

recognized by macrophage and cleared from blood circulation by reticuloendothelial 

system due to their positive surface charge. Third, they cannot co-deliver other drugs, 

such as chemotherapeutic drugs, at the same time to promote cancer cell death. Therefore, 

we tried to solve the above limitations by design and synthesis of another series of 

degradable, pH-sensitive, membrane-destabilizing, star-shaped polymeric carriers. 

7.1.2 “Smart” pH-sensitive, star-shaped polymers 

We utilize β-cyclodextrin (β-CD), which is a FDA-approved, cone-shaped 

oligosaccharide composed of seven glucose units as the core for the star-shaped vectors. 

The seven primary hydroxyl groups on the primary face of the core of β-CD and the 

fourteen secondary hydroxyl groups on the secondary face have different chemical 

reactivity; therefore, allow us to graft amphiphilic membrane-destabilizing polymers 

from the secondary face of the β-CD core via acid-labile hydrazone linkages while 

leaving the primary face for further modification. We controlled the molecule weight (25 

and 40 kDa) and hydrophobic/hydrophilic ratio (50/50 and 75/25) of the grafted polymers 

to investigate the effect of the molecular weight and the hydrophobic/hydrophilic balance 

of these membrane-active fragments on the endosomal escape capacity. In addition, we 

explored the possibility of combining two endosomal escape mechanism, including 

hydrophobic membrane disruption with endosomal burst, to enhance cytoplasmic release 

of siRNA molecules by modulation of the ratio of DMAEMA/TMAEMA in the grafts. 

For the first time, we systemically identified the key parameters for the design of an ideal 
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star-shaped vector and proved the combination of two endosomal escape effects based on 

the gene knockdown efficiency. Further, we showed that successful Bcl-2 inhibition by 

star-shaped polymers encapsulating siRNA molecules can sensitize head and neck cancer 

cells to the treatment of small molecule inhibitor, which synergistically inhibits cancer 

cell growth and induces cancer cell apoptosis. Bcl-2-targeted therapy by both gene 

silencing and BH3-mimetic compound, therefore, is an applicable strategy to treat head 

and neck cancer. It is important to mention that these degradable, pH-sensitive, 

membrane-destabilizing, star-shaped vectors remain the potential to incorporate 

hydrophilic polyethylene glycol (PEG) grafts on their primary face, which prolongs their 

plasma residence time and prevents non-specific distribution into tissues, such as liver, 

spleen, and lung. In addition, the incorporated hydrophilic PEG grafts allows the 

conjugation of targeting ligands, so the vectors can selectively deliver therapeutic 

DNA/RNA molecules into diseased cells without causing potential adverse side effects to 

normal cells. Further, water-soluble β-CD-based vectors have a relatively hydrophobic 

interior, which enables the inclusion of a large variety of hydrophobic drugs, such as 

chemotherapeutic drugs and small molecule inhibitors.
1
 Therefore, these star-shaped 

carriers can be utilized to simultaneously deliver therapeutic nucleic acids and therapeutic 

drugs to targeted cells for enhanced cancer treatment. 

7.2 Future directions 

In order to translate the degradable, pH-sensitive, membrane-destabilizing, star-shaped 

vectors into clinic application for head and neck cancer therapy, we will develop a new 

family of targeted, degradable, biocompatible, and star-shaped vectors to deliver 

therapeutic anti-Bcl-2 siRNA molecules into the cytoplasm of tumor cells. To be specific, 
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we will conjugate hydrophilic PEG to the primary face of β-CD via non-degradable 

linkages to prepare an asymmetric, star-shaped, pH-sensitive polymer (Figure 7.1). We 

will conjugate the synthetic GE11 peptide (YHWYGYTPQNVI) to the free ends of PEG 

chains to function as a targeting ligand for the epidermal growth factor receptor (EGFR) 

(Figure 7.2),
2
 which is over-expressed on the surface of > 80% of head and neck cancer 

cells.
3
 We hypothesize that the proposed asymmetric, pH-sensitive, membrane-

destabilizing polymers can complex a large dose of anti-Bcl-2 siRNA into serum- and 

nuclease-stable “smart” particles that: i) escape recognition and entrapment by the 

reticular endothelial system (liver, lungs, spleen) and exhibit long residence time in the 

systemic circulation, ii) preferentially accumulate in the tumor tissues, iii) selectively 

internalized by head and neck cancer cells, iv) successfully shuttle their RNA cargo into 

the cytoplasm to knockdown Bcl-2 gene expression and sensitize head and neck cancer 

cells to BH3-mimetic drugs, v) encapsulate hydrophobic therapeutic drugs into the cavity 

of β-CD core and release drugs in the tumor cells. 

   

 

Figure 7.2: Schematic drawing showing 

targeted, PEG-βCD-P(HMA-co-DMAEMA-co-

TMAEMA) polymers. 

 

Figure 7.1: Schematic drawing showing 

PEGylated βCD-P(HMA-co-DMAEMA-co-

TMAEMA) polymers. 
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7.2.1 Development of EGFR-targeted, PEG-βCD-P(HMA-co-DMAEMA-co-

TMAEMA) polymers 

Incorporation of hydrophilic PEG monomers in the design of nucleic acid carriers has 

been proved to prevent the cationic vectors be recognized by macrophages and be rapidly 

cleared through the reticular endothelial systems.
4
 The PEG brush displayed on the 

surface of carriers can also protect the therapeutic cargo from enzymatic degradation, 

decrease the non-specific cytotoxicity of carriers, and prevent their non-specific 

distribution in human body.
5
 However, the incorporated PEG grafts has been shown to 

affect the complexation between vectors and DNA/RNA molecules.
5
 The hydrophilic 

PEG brush also decreases the endocytosis of particles into target cells.
5
 Therefore, it is 

important to determine the optimum number and length of PEG grafts that are conjugated 

from the primary surface of our well-established star-shaped polymers. The number of 

targeting peptides conjugated on the PEG also needs to be controlled to enhance cellular 

uptake through receptor-mediated endocytosis without affecting particle’s in vivo 

stability. We will synthesize a series of EGFR-targeted and non-targeted PEG-βCD-

P(HMA-co-DMAEMA-co-TMAEMA) polymers with different PEG molecular weight (2, 

and 5 kDa), different numbers of conjugated PEG chains (3-6) per β-CD, and different 

numbers of GE11 peptides attached per β-CD carriers. We will compare the 

complexation of βCD-P(HMA-co-DMAEMA-co-TMAEMA), PEG-βCD-P(HMA-co-

DMAEMA-co-TMAEMA), and GE11-PEG-βCD-P(HMA-co-DMAEMA-co-TMAEMA) 

polymers with anti-Bcl-2 siRNA as a function of the N/P (+/-) ratio. We will also 

investigate the physicochemical properties of the formed “smart” particles in terms of 

size, surface charge, and stability upon incubation with serum proteins and nuclease 
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enzymes to identify key parameters that reduce particle size and surface charge and 

increase their stability. We will evaluate the uptake of GE11-targeted and non-targeted 

“smart” particles into UM-SCC-17B head and neck cancer cells compared to commercial 

transfection agent, siPORT amine-based particles to identify the critical parameters (e.g. 

length and number of PEG grafts, number of GE11 peptides, etc.) required for efficient 

particle internalization by cancer cells. We will also compare the anticancer activity of 

GE11-targeted and non-targeted “smart” particles and siPORT amine-based particles 

based on their ability to: a) knockdown Bcl-2 expression, and b) induce apoptosis of head 

and neck cancer cells. 

7.2.2 Development of GE-11-targeted, PEG-βCD-P(HMA-co-DMAEMA-co-

TMAEMA) polymers with Bcl-2 small molecule inhibitor inclusion 

Bcl-2 small molecule inhibitors have been proved induce cell apoptosis by occupying the 

hydrophobic groove of anti-apoptotic proteins to prevent their binding to pro-apoptotic 

proteins.
6
 For example, AT-101 is a BH3-mimetic compound, which shows high affinity 

to the anti-apoptotic Bcl-2 proteins, and therefore sensitizes head and neck cancer cells to 

chemotherapeutic drugs and enhances apoptotic cell death.
7
 However, the low aqueous 

solubility and non-specific toxicity of hydrophobic small molecule inhibitors makes it 

difficult to be developed as drug.
1
 In order to overcome the limitations, we plan to use the 

EGFR-targeted, PEG-βCD-P(HMA-co-DMAEMA-co-TMAEMA) polymers to 

encapsulate AT-101 in the cavity to improve their solubility and prevent non-specific 

distribution (Figure 7.3). β-CD is a water-soluble molecule, which has been widely used 

to produce inclusion complexes with various hydrophobic drugs.
8
 We will evaluate the 

ability of GE-11-targeted, PEG-βCD-P(HMA-co-DMAEMA-co-TMAEMA) polymers to 
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encapsulate AT-101 and deliver them into subcellular targets without affecting their 

therapeutic effects. We will compare the complexation with anti-Bcl-2 siRNA molecules 

and the size, zeta potential, and cellular uptake of formed particles before and after the 

encapsulation of AT-101. We will also investigate the anticancer activity of co-delivery 

of anti-Bcl-2 siRNA molecules and AT-101 using GE-11-targeted, PEG-βCD-P(HMA-

co-DMAEMA-co-TMAEMA) polymers based on their ability to: a) knockdown Bcl-2 

expression, and b) induce apoptosis of head and neck cancer cells. 

                                  

7.2.3 In vivo evaluation of “smart” particles 

For clinical application, we need to prove that targeted, PEG-βCD-P(HMA-co-

DMAEMA-co-TMAEMA) polymers can escape recognition and entrapment by the 

reticular endothelial system (liver, lungs, spleen) and exhibit long residence time in the 

systemic circulation, preferentially accumulate in the tumor tissues, and selectively 

internalized by head and neck cancer cells. We will investigate the biodistribution of GE-

11-targeted, and non-targeted “smart” particles loaded with anti-Bcl-2 siRNA in nude 

 

Figure 7.3: Schematic drawing showing AT-101-loaded 

(dark green), targeted, PEG-βCD-P(HMA-co-

DMAEMA-co-TMAEMA) polymers. 
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tumor-bearing mice to a) examine the relationship between the number of GE-11 

peptides/particle on its distribution, accumulation, and retention in tumor tissue, and b) 

identify the particle(s) that exhibit highest accumulation and retention in tumor tissue. 

The “smart” particles that deliver > 25% of the loaded siRNA dose into tumor tissues will 

be used in the subsequent in vivo experiment. We will also investigate the anti-tumor 

activity of the particles identified in the biodistribution experiments based on their ability 

to a) suppress Bcl-2 expression and b) decrease tumor size. Particles that produce > 50% 

knockdown in Bcl-2 expression in head and neck cancer cells, and achieve > 50% 

reduction in tumor size will be considered effective. 
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Appendix I.                

Quantitative evaluation of the effect of poly (amidoamine) 

dendrimers on the porosity of Caco-2 cell monolayers 

 

I.1 Introduction 

Oral delivery is the most desirable route for drug administration due to lower healthcare 

cost and higher patient compliance compared to other routes.
1
 However, oral absorption 

of polymeric drug delivery systems such as polymeric particles and polymer-drug 

conjugates remains a significant challenge.
2
 Currently, oral drug delivery using polymeric 

carriers is limited to mucosal vaccination where natural or synthetic polymers 

encapsulate different antigens forming stable micro- or nano-particles, which are 

recognized, internalized, and processed by Peyer’s patches in the lower ileum to induce a 

systemic and/or mucosal immune response.
3
 To date, there are no polymeric drug 

delivery systems that are effectively absorbed from the gastrointestinal tract. This can be 
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attributed to the large size and molecular weight of the polymeric carriers, which hinder 

their diffusion across the intestinal epithelium into the systemic blood circulation
4
. 

                                 

Poly (amidoamine) (PAMAM) dendrimers are a family of water-soluble polymers that is 

characterized by a unique tree-like branching architecture and a compact spherical 

geometry in solution (Table I.1 & Figure I.1).
5
  

The potential of PAMAM dendrimers in controlled drug delivery stems from their large 

number of surface groups, which can be utilized to immobilize drugs, enzymes, 

antibodies or other bioactive agents providing a high density of biological agents in a 

compact therapeutic system.
6
 For example, phospholipids were conjugated to the NH2 

surface groups of generation 4 (G4) to prepare a hydrophilic-hydrophobic core-shell 

 

Figure I.1: Schematic drawing showing the tree-like 

branching architecture of G0-G2 of PAMAM-NH2 

dendrimers. 
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structure that successfully entrapped the 5-fluoronracil anticancer drug.
7
 This formulation 

showed a sustained release of the encapsulated drug in vitro and enhanced its oral 

absorption via the lymphatic system in vivo.
7
 PAMAM dendrimers have also been used to 

enhance the oral absorption of drug molecules that are substrates of the P-glycoprotein 

(P-gp) efflux pump.
8
 Several PAMAM-drug conjugates proved to enhance the aqueous 

solubility and oral absorption of the incorporated drugs both in vitro and in vivo by 

escaping the P-gp efflux pump.
9
 Similarly, physical mixtures of doxorubicin with the 

cationic PAMAM-NH2 (G3) dendrimers showed enhanced uptake by Caco-2 cell 

monolayers and increased oral bioavailability in vivo.
10
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Table I.1: The physicochemical properties of mannitol and PAMAM dendrimers. 

a Reported by Tomalia et al.5 and Dubin et al.11 

b Number of ionized surface groups calculated using the Henderson-Hasselbalch equation.12 

c The diffusion coefficient is calculated based on Stokes-Einstein equation.13 

 

  

Probe 
Molecular 

Weight
a
 (Da) 

Radius
a
 (Å ) 

Number of 

Surface 
Groups

a
 

Surface 

Functionality
a
 

Valencey
b
 

Diffusion 

Coefficient
c
 

(×10
6
 cm

2
/s at 

37 C) 

Mannitol 182 4.1 - - - 6.20 

G0-NH2 517 15 4 NH2 1 1.70 

G1-NH2 1430 22 8 NH2 2 1.15 

G2-NH2 3256 29 16 NH2 4 0.88 

G3-NH2 6909 36 32 NH2 7 0.71 

G4-NH2 14,215 45 64 NH2 14 0.56 

G2-OH 3272 29 16 OH - 0.88 

G3-OH 6941 36 32 OH - 0.71 

G4-OH 14,279 45 64 OH - 0.56 

G-0.5-

COOH 
436 - 4 COOH 1 - 

G0.5-COOH 1269 9.2 8 COOH 2 2.76 

G1.5-COOH 2935 12.8 16 COOH 4 1.98 

G2.5-COOH 6267 14.7 32 COOH 7 1.73 

G3.5-COOH 12,931 24.5 64 COOH 14 1.04 

G4.5-COOH 26,258 31.0 128 COOH 28 0.82 
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Earlier studies by El-Sayed and coworkers established a clear relationship between the 

size, molecular weight, surface chemistry, and net charge of PAMAM dendrimers and 

their transport across Caco-2 cell monolayers.
14

 These studies showed that small cationic 

PAMAM-NH2 dendrimers (G0-G2) exhibit moderate to high permeability across Caco-2 

cell monolayers, which increased with the increase in dendrimers concentration, 

incubation time, and generation number.
14a

 The decline in the transepithelial electrical 

resistance (TEER) coupled with the increase in mannitol’s paracellular permeability 

across Caco-2 cell monolayers indicated the effect of cationic G0-G2 on the integrity of 

the epithelial tight junctions.
14a,b 

Anionic G2.5 and G3.5 PAMAM-COOH dendrimers 

caused an increase in mannitol permeability and a decrease in TEER values across Caco-

2 cell monolayers compared to neutral PAMAM-OH dendrimers, which exhibited no 

effect of the integrity of Caco-2 cells.
14b

 These results indicated that cationic G0-G2 and 

anionic G2.5 and G3.5 dendrimers can be utilized as polymeric carriers for oral drug 

delivery. Subsequent studies focused on elucidating the mechanism(s) of transport of 

PAMAM dendrimers across the intestinal epithelium. Microscopic studies revealed that 

fluorescently-labeled cationic (G2 and G4) and anionic (G1.5 and G3.5) dendrimers 

permeate across Caco-2 cell monolayers by a combination of paracellular transport that is 

associated with reorganization of tight junction proteins
14c,15

 and transcellular transport 
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via endocytosis.
15-16

 Earlier studies have established the relationship between paracellular 

permeability and the changes in pore size of intercellular tight junctions using small 

molecular weight molecules.
13,17

 In this manuscript, we use a similar approach to 

mathematically calculate the changes in porosity of Caco-2 cell monolayers as a function 

of concentration, incubation time, generation number, surface chemistry, and net charge 

of PAMAM dendrimers to quantitatively delineate the effect of PAMAM dendrimers on 

paracellular diffusion across intestinal epithelial barriers. 

I.2 Methods 

I.2.1 The relationship between porosity and the paracellular permeability across 

Caco-2 cell monolayers 

Electron micrographs of the paracellular space in Caco-2 monolayers show the presence 

of two barriers in series; the tight junctions (length < 0.1 μm) followed by a relatively 

long and tortuous lateral space (~ 20 μm cell height and ~ 75 Å gap width with a 

tortuosity factor of 2.0-2.5).
18

 Since the radius of the tight junction is 12 Å  and the gap 

width of the tortuous lateral space is approximately 75 Å , the tight junction is considered 

the rate-limiting barrier for diffusion of different molecules across the paracellular 

space.
19

 We hypothesize that the observed increase in mannitol paracellular permeability 



175 

 

across Caco-2 cell monolayers upon incubation with selected cationic and anionic 

PAMAM dendrimers is due to changes in the conformation of the tight junctions 

associated with an increase in the size of tight junctional pores. We are using the Renkin 

function for cylindrical channels (equation 1),
19

 which compares the molecular radius (r) 

of the diffusing probe to the radius of the paracellular pores (R) to mathematically 

calculate the changes in tight junctional pore size in response to PAMAM dendrimers. 


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Using the Renkin function equation, we calculated the changes in porosity of Caco-2 cell 

monolayers upon incubation with cationic G0-G4, neutral G2-G4, and anionic G-0.5 - 

G4.5 PAMAM dendrimers reflected by the observed changes in mannitol paracellular 

permeability.
14a,b

 

I.2.2 Calculation of porosity and Renkin function of Caco-2 cell monolayers 

The paracellular permeability coefficient (
pP ) of the diffusing mannitol molecules is 

given by the following equation:
13

  

pP
=



 )/( RrDF
          (2) 



176 

 

Where   is the porosity or volume fraction of pores, L  is the tortuousity ( ) times 

the path length across the Caco-2 cell monolayer ( L , μm), D  (cm
2
/sec) is solutes 

diffusion coefficient in water at 37 C, and 








R

r
F  is the Renkin function. Equation 2 was 

reorganized to calculate porosity and Renkin function (Equation 3). 

)(
R

r
F





= D

P

          (3) 

We calculated the aqueous diffusion coefficient ( D ) of mannitol using the Stokes-

Einstein relationship (equation 4).
13

 

r

KT
D

6


           (4) 

Where K  is the Boltzmann’s constant (
Ks

mkg




 

2

2
231038.1 ), T is the absolute temperature 

used for permeability measurements and matches physiological temperature (310 K),   is 

the viscosity of water at 37 C (
sm

kg


 4109.8 ), which is the main constituent of the 

HBSS buffer used in the transport experiments, and r  is the radius of diffusing mannitol 

molecules ( m10101.4  ). We used our published mannitol permeability data to calculate 

the changes in porosity and Renkin function of Caco-2 cell monolayers as a function of 

PAMAM concentration, incubation time, generation number, and net surface charge.
14a,b
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I.2.3 Calculation of porosity and Renkin function of Caco-2 cell monolayers based 

on PAMAM-NH2 permeability 

The permeability coefficient ( 

pP ) of cationic molecules such as PAMAM-NH2 is given 

by the following equation: 



pP
=

)
1

(
)/(








 e

RrDF

        (5) 

By reorganizing Equation 5 to calculate porosity and Renkin function (Equation 6): 

)(
R

r
F





=

)
1

(
ke

k
D

P



         (6) 

We used equation 7 to calculate  , which is a dimensionless electrochemical energy 

function across the tight junction pores. 

 =
KT

ez 
          (7) 

Where e  is the unit charge of an ion ( 1910602.1  Coulombs), z  is the valence of the 

diffusing ions,  is the net electrical potential across the tight junction, K  is the 

Boltzmann’s constant (
Ks

mkg




 

2

2
231038.1 ), and T  is the absolute temperature used for 

permeability measurements and matches physiological temperature (310 K). 
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To solve for z , we calculated the valence of different PAMAM-NH2 generations using 

the Henderson-Hasselbalch equation (Equation 8).
12

  

pH =










salt

base
pKa log

          (8) 

We used the TEER values collected experimentally to calculate   using equation 9: 

 ATEERIIRV 
         (9) 

Where V is the voltage (volts), I  is the current (Amp), R  is the resistance (Ω), TEER  is 

the transepithelial electrical resistance (Ω.cm
2
), and A  is the surface area of Caco-2 cell 

monolayers (cm
2
). 

I.3 Results and Discussion 

I.3.1 Calculation of effective porosity of Caco-2 cell monolayers based on mannitol 

permeability 

Our data shows that the effective porosity of Caco-2 cell monolayers, which is the 

product of Renkin function )(
R

r
F  and the volume fraction of the paracellular pores 




 

remained constant for unperturbed monolayers (Figure I.2). In comparison, the 

incubation of Caco-2 cell monolayers with 0.1 and 1.0 mM G0-NH2 caused an increase in 

monolayer’s effective porosity at an incubation time of 210 minutes, whereas 10 mM G0-
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NH2 caused an increase in effective porosity at all incubation time points (p < 0.005) 

(Figure I.2A). The incubation of Caco-2 cell monolayers with 0.1, 1.0, and 10.0 mM G1-

NH2 caused an increase in monolayer’s effective porosity at all incubation time points 

compared to baseline porosity values (p < 0.005) (Figure I.2B). Similarly, the incubation 

of Caco-2 cell monolayers with 1.0 and 10.0 mM G2-NH2 resulted in a significant 

increase (p < 0.005) in monolayer’s effective porosity at 150, 180, and 210 minutes 

incubation times (Figure I.2C). G3-NH2 produced a significant increase in the effective 

porosity of Caco-2 cell monolayers at all concentrations and incubation time points 

(Figure I.2D). However, the observed increase in effective porosity at an incubation time 

point of 210 minutes may be a result of polymer’s toxicity. G4-NH2 produced a 

significant increase in monolayer’s effective porosity at all concentrations and incubation 

time points, which can be a result of the associated polymer’s toxicity (Figure I.2E). 

These results collectively indicate that cationic PAMAM-NH2 dendrimers (G0-G4) 

increase the effective porosity of Caco-2 cell monolayers in a concentration-, incubation 

time-, and generation-dependent fashion. 
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                                      (A)                                                                          (B) 

 
                                       (C)                                                                          (D)  

   
(E) 

 

Figure I.2: Relationship between the porosity )(
R

r
F




 of unperturbed Caco-2 cell monolayers 

() and those incubated with 0.1 mM (■), 1.0 mM (▲) and 10 mM (●) of PAMAM-NH2 (G0-G4) 

dendrimers and the incubation time. Each data point represents the average ± standard error of the 

mean of three independent measurements. T denotes the toxicity of PAMAM dendrimers at a 

specific concentration and incubation time point. The porosity of Caco-2 cell monolayers upon 

incubation with different concentrations of PAMAM-NH2 dendrimers is compared to that of the 

unperturbed monolayer at the same incubation time point using student t-test where *, **, and *** 

denote p ≤ 0.05, 0.01, and 0.005, respectively. 
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Anionic PAMAM-COOH dendrimers increased the effective porosity of Caco-2 cell 

monolayers in a concentration- and generation number-dependent fashion (Figure I.3). 

The smallest PAMAM-COOH dendrimers (G-0.5) caused no change in monolayer’s 

porosity, whereas larger G0.5 and G1.5 caused a statistically significant increase in 

effective porosity at a concentration 10.0 mM and incubation times 150, 180, and 210 

minutes, which can be attributed to their observed toxicity at this concentration and 

incubation times (Figure I.3A-C). G2.5 and G3.5 caused an increase in monolayer’s 

effective porosity at short non-toxic incubation times (60, 90, and 120 minutes) and to a 

greater extent at longer incubation times, which proved to be toxic to Caco-2 cells 

(Figure I.3D & E). In comparison, G4.5 increased the effective porosity of Caco-2 cell 

monolayers only at toxic concentrations and incubation time points (Figure I.3F). The 

observed increase in effective porosity with anionic G2.5 and G3.5 PAMAM-COOH 

dendrimers at non-toxic concentrations and incubation time points can be attributed to 

their negative charge, which allows them to act as efficient Ca
+2

 ion chelators thus 

reducing the integrity of the tight junctions. 
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                                     (A)                                                                            (B) 

   
                                     (C)                                                                             (D)  

   
                                     (E)                                                                              (F)  

   

Figure I.3: Relationship between the porosity )(
R

r
F




 of unperturbed Caco-2 cell monolayers 

() and those incubated with 0.1 mM (■), 1.0 mM (▲) and 10 mM (●) of PAMAM-COOH (G-

0.5-G4.5) dendrimers and the incubation time. Each data point represents the average ± standard 

error of the mean of three independent measurements. T denotes the toxicity of PAMAM 

dendrimers at a specific concentration and incubation time point. The porosity of Caco-2 cell 

monolayers upon incubation with different concentrations of PAMAM-COOH dendrimers is 

compared to that of the unperturbed monolayer at the same incubation time point using student t-

test where *, **, and *** denote p ≤ 0.05, 0.01, and 0.005, respectively. 
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Surface chemistry and the associated charge density of PAMAM dendrimers affect the 

effective porosity of Caco-2 cell monolayers. Despite the similarity in size and molecular 

weight of G2-G4 PAMAM-OH dendrimers and PAMAM-NH2 dendrimers, the change 

from NH2 to OH surface groups affect the nature of their interaction with Caco-2 cell 

monolayers. At physiologic pH of 7.4, approximately 22% of the primary NH2 surface 

groups will be ionized and carry a positive charge (Table I.1) resulting in an electrostatic 

interaction with the negatively charged epithelium of Caco-2 cells, which could have 

resulted in modulation of the tight junctions and the observed increase in monolayer’s 

effective porosity. In comparison, neutral PAMAM-OH dendrimers (G2-G4) caused no 

significant changes on the effective porosity of Caco-2 cell monolayers (Figure I.4). 

These results collectively indicate that the interaction of PAMAM dendrimers with Caco-

2 cell monolayers is generation size, molecular weight, and charge dependent. 
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I.3.2 Calculation of porosity of Caco-2 cell monolayers based on permeability of 

PAMAM-NH2 dendrimers 

Results show that the incubation of Caco-2 cell monolayers with 1.0 and 10.0 mM 

solutions of cationic PAMAM-NH2 dendrimers (G0-G2) increased monolayer’s effective 

                                     (A)                                                                            (B)   

 
(C) 

 

Figure I.4: Relationship between the porosity )(
R

r
F




 of unperturbed Caco-2 cell monolayers 

() and those incubated with 0.1 mM (■), 1.0 mM (▲) and 10 mM (●) of PAMAM-OH (G2-G4) 

dendrimers and the incubation time. Each data point represents the average ± standard error of the 

mean of three independent measurements. T denotes the toxicity of PAMAM dendrimers at a 

specific concentration and incubation time point. The porosity of Caco-2 cell monolayers upon 

incubation with different concentrations of PAMAM-OH dendrimers is compared to that of the 

unperturbed monolayer at the same incubation time point using student t-test where *, **, and *** 

denote p ≤ 0.05, 0.01, and 0.005, respectively. 
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porosity in a concentration- and incubation time-dependent fashion (Figure I.5). G0-NH2 

caused a significant increase in effective porosity compared to that observed with 

mannitol, which increased with the increase in dendrimers concentration and incubation 

time (Figure I.5A). Similarly, G1-NH2 caused an increase in monolayer’s effective 

porosity that increased with the increase in dendrimers concentration from 1.0 to 10.0 

mM (Figure I.5B). G2-NH2 increased monolayer’s effective porosity with the increase in 

dendrimers concentration and incubation time (Figure I.5C). By comparing the observed 

changes in monolayer’s effective porosity with cationic G0-G2 dendrimers, the increase 

in generation number did not result in a parallel increase in effective porosity. This can be 

attributed to the fact that PAMAM dendrimers permeate across Caco-2 cell monolayers 

by a combination of paracellular and transcellular transport mechanisms compared to 

mannitol, which is transported exclusively via the paracellular route.
14c,16
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I.4 Conclusions 

Selected cationic PAMAM-NH2 (G0-G2) and anionic PAMAM-COOH (G1.5 and G2.5) 

dendrimers increase the effective porosity of Caco-2 cell monolayers in a concentration-, 

incubation time-, surface charge, and generation-dependent fashion. This increase in 

                                     (A)                                                                            (B)   

 
(C) 

 

Figure I.5: Relationship between the porosity )(
R

r
F




 of unperturbed Caco-2 cell monolayers 

() and those incubated with 1.0 mM (■) and 10 mM (●) of PAMAM-NH2 (G0-G2) dendrimers 

and the incubation time. Each data point represents the average ± standard error of the mean of 

three independent measurements. T denotes the toxicity of PAMAM dendrimers at a specific 

concentration and incubation time point. The porosity of Caco-2 cell monolayers upon incubation 

with different concentrations of PAMAM-NH2 dendrimers is compared to that of the unperturbed 

monolayer at the same incubation time point using student t-test where *, **, and *** denote p ≤ 

0.05, 0.01, and 0.005, respectively. 
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monolayer’s effective porosity appears to be the primary reason for the observed increase 

in their permeability across Caco-2 cell monolayers. This quantitative estimation of the 

effect of PAMAM dendrimers on Caco-2 cell monolayers further emphasizes the 

potential of these selected PAMAM generations to serve as carriers for controlled oral 

drug delivery. 
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Appendix II.                                     

Visualizing the attack of RNase enzymes on dendriplexes and 

naked siRNA using atomic force microscopy 

 

II.1 Introduction 

Preclinical investigations showed the potential of small interfering RNA (siRNA) 

molecules in selectively silencing the expression of the genes implicated in the 

development of cancer, cardiovascular, neurodegenerative, and infectious diseases 

indicating their therapeutic potential.
1
 siRNA molecules bind to the RNA-induced 

silencing complex (RISC) revealing the antisense RNA strand that selectively binds to 

the complementary sequence in the targeted mRNA, which triggers mRNA cleavage by 

the endonuclease RNase H enzymes and suppression of the translation process.
2
 Delivery 

of siRNA molecules requires a biocompatible carrier to protect and shuttle the cargo into 

the cytoplasm of the diseased cells to produce the desired therapeutic activity both in 

vitro and in vivo. Many cationic peptides, lipids, and polymers have been used to 

condense siRNA via electrostatic interaction forming ionic complexes with variable size 

and surface charge, which proved effective in delivering the RNA cargo into the 

cytoplasm of mammalian cells in vitro.
3
 However, successful in vivo delivery of siRNA 

required the use of excess cationic carrier to shield and protect the RNA cargo against 

nucleases leading to non-specific distribution of the formed complexes to the reticular 
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endothelial system (liver, spleen, and bone marrow)
4
 and induction of toxicity,

5
 which 

hampered the translation of these particles into the clinic. 

Poly(amidoamine), PAMAM, dendrimers are a family of water-soluble polymers that is 

characterized by a unique, highly-ordered, three dimensional, tree-like branching 

architecture with a large number of primary, secondary, and tertiary amine groups 

embedded in their structure, which become ionized at physiologic pH conferring a high 

positive charge density.
6
 PAMAM dendrimers show a controlled incremental increase in 

the size, molecular weight, and number of surface amine groups with the increase in their 

generation number (G). Steric crowding of the surface groups affects the molecular shape 

of PAMAM dendrimers where G0-G4 adopt an open planar and elliptical conformation 

whereas higher generations (≥ G5) are robust, non-deformable, spheroids.
7
 PAMAM 

dendrimers have been used to complex plasmid DNA (pDNA), antisense 

oligonucleotides (ASODN), and siRNA molecules into compact nanoparticles that 

proved to successfully escape the endosomal/lysosomal trafficking pathway through their 

endosomal buffering capacity known as the “proton sponge” mechanism.
8
 However, 

stabilization of nucleic acid cargo and successful intracellular delivery requires the use of 

high PAMAM dendrimer (+) to nucleic acid (-) ratio,
9
 which is often associated with 

destabilization of the cell membrane and non-specific toxicity.
10

 We are interested in 

formulation of compact dendriplexes that resist degradation by RNase enzymes without 

using excess PAMAM dendrimers to eliminate the associated toxicity. 

Earlier studies showed that DNA condensation has two kinetic phases starting with an 

initial rapid binding (within 15 seconds) of DNA to multivalent cations followed by 

slower structural rearrangement that reaches an apparent equilibrium typically within 1–2 



192 

 

hours and exhibit insignificant changes at longer incubation times.
11

 The effect of 

incubation time of cationic PAMAM dendrimers with pDNA molecules on the 

morphology and stability of the formed dendriplexes has been reported.
12

 Briefly, 

incubation of G4 dendrimers with pDNA for 15 minutes resulted in formation of 

incomplete toroidal complexes or multimeric intermediates that resisted degradation by 

DNase I enzymes for 1 hour.
12

 In comparison, increasing the incubation time of G4 

dendrimers with pDNA to 2 hours resulted in the formation of ring-like toroidal 

complexes that resisted degradation by DNase I enzymes for up to 10 hours.
12

 These 

results indicate that increasing the incubation time of cationic PAMAM dendrimers with 

pDNA results in formation of more compact particles that better shield the complexed 

DNA molecules and protect them against degradation by nuclease enzymes. 

It is important to note that pDNA molecules exist in solution as long flexible chains with 

an average length of ~1.2 µm, which allow them to wrap around cationic carriers forming 

compact particles that resist degradation by DNase enzymes and achieve high 

transfection.
5,13

 In comparison, siRNA molecules are much shorter (~ 6 nm) rigid rods in 

solution that exhibit weak electrostatic interaction with cationic carrier, which increases 

their susceptibility to enzymatic attack, reduces their internalization by mammalian cells, 

and diminishes their net transfection.
5,13

 Further, flexibility of the cationic carrier play a 

critical role in governing its electrostatic binding to siRNA molecules.
14

 Previous 

computational studies showed that flexible cationic carriers assume a spherical shape 

with a compact core and strong orientation of the cationic surface groups toward the 

polynucleotides (e.g. DNA, RNA) present in solution forming individual binding points 

characterized by high binding strength.
14

 On the other hand, rigid cationic carriers form 
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more contact points with polynucleotides present in solution.
14

 These studies collectively 

show that both carrier flexibility and incubation time affect the morphology and 

enzymatic stability of the formed complexes. 

In this article, we describe the complexation of anti-GAPDH siRNA molecules with G4 

(flexible) and G5 (rigid) dendrimers based on the size and morphology of the formed 

dendriplexes at different incubation times (20 minutes and 24 hours). We also investigate 

the stability of the formed dendriplexes upon incubation with RNase V1 enzymes 

compared to naked siRNA molecules as a function of exposure time. We used atomic 

force microscopy (AFM) to visualize the morphology of the formed complexes and 

monitor the attack of RNase V1 enzymes in solution as a function of time. We relied on 

established AFM protocols used to study the dynamics of DNA binding to PAMAM 

dendrimers,
12,15

 polyethylenimine,
16

 and polylysine
17

 forming nanoparticles with different 

morphologies. AFM has also been used to investigate the degradation of free DNA by 

endonuclease and exonuclease enzymes in solution,
18

 which supports our study. 

II.2 Experimental section 

II.2.1 Materials 

G4 (formula weight 14,215 Da) and G5 (formula weight 28,826 Da) with ethylene 

diamine cores were purchased from Dendritic Nanotechnologies, Inc. (Mount Pleasant, 

MI) as 10% w/v solutions in methanol. G4 and G5 solutions were dialyzed using Slide-

A-Lyzer dialysis cassettes with a 7 kDa MWCO (Thermo Scientific Inc., Rockford, IL) 

against DI water for 24 hours to remove polymer debris. The aqueous solutions of G4 and 
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G5 were lyophilized and stored at 4 °C till used. Anti-GAPDH siRNA and RNase V1 

enzyme were purchased from Ambion Inc. (Austin, TX). 

II.2.2 Formulation of Dendriplexes 

G4 and G5 dendrimers were dissolved in RNase-free water and mixed with 0.7 μg of 

anti-GAPDH siRNA molecules dissolved in 1 μl of RNase-free water at a 

nitrogen/phosphate (N/P, +/-) ratio of 2/1. Each mixture was vortexed and allowed to 

stand at room temperature for 20 minutes or 24 hours before loading onto a 1% w/v 

agarose gel containing ethidium bromide (EtBr). The gel was immersed in a Tris-acetate-

EDTA (TAE) buffer and run at 60 V for 1 hour and visualized under UV exposure 

(Fotodyne Incorporated, Hartland, WI). 

II.2.3 AFM Imaging of Dendriplexes and Naked siRNA 

All AFM images were acquired using Nanoscope III MultiMode AFM with a sharp 

nitride lever (Veeco, Santa Barbra, CA) in the tapping mode at a 256 x 256 pixel 

resolution. Selected fields were scanned at scan rates ranging from 3-4 Hz where each 

image was acquired within 90 seconds and tapping frequencies ranged from 8-10.5 kHz 

in solution. Images were flattened to account for Z offsets and sample tilts. Tapping set 

points were selected close to the free oscillation amplitude to reduce forces exerted on the 

interfacial species. All imaging experiments started with scanning the mica substrate in 

DI water to confirm the absence of any adsorbed contaminants. Naked anti-GAPDH 

siRNA was imaged using 30 µl of siRNA solution (3.92 µg/ml) in 1mM PBS containing 

2mM MgCl2 where MgCl2 ions would allow weak adsorption of anionic siRNA 

molecules to the negatively charged mica surface through electrostatic interaction 

following established protocols.
19

 Similarly, 30 µl of G4 and G5 dendriplexes were added 
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to freshly cleaved mica and covered with the liquid cell. A 20 µl aliquot of the solution in 

the liquid cell was replaced with 20 µl of RNase V1 enzyme (6.6 U/ml) diluted with 1 

mM PBS of pH 7.4 to examine the effect of RNase enzyme on free siRNA and the 

dendriplexes. Imaging of naked siRNA and the dendriplexes started immediately after 

adding their solutions to mica surface with continuous recording for at least 5 minutes 

after visualizing each subject to allow thorough investigation of the morphology before 

the treatment with RNase V1 enzymes. Naked siRNA and dendriplexes were also imaged 

after the addition of RNase V1 enzymes as a function of time. 

II.3 Results 

II.3.1 Formulation of G4 and G5 Dendriplexes 

Both G4 and G5 dendrimers successfully complexed the loaded anti-GAPDH siRNA 

molecules (0.7 µg) at an N/P (+/-) ratio of 2/1 via the electrostatic interaction between the 

cationic amine groups (N) and the anionic phosphate groups (P). The gel image shows 

that siRNA molecules were 

retained in the wells after mixing 

with G4 and G5 dendrimers for 20 

minutes and 24 hours indicating 

rapid condensation of the loaded 

siRNA molecules by the cationic 

carriers (Figure II.1). 

 

 

Figure II.1: Image of the 1% w/v agarose gel stained 

with ethidium bromide showing the electrophoretic 

mobility of free siRNA, free G4 and G5 dendrimers, and 
the particles prepared by mixing G4 and G5 dendrimers 

with 0.7 µg of anti-GAPDH siRNA at an N/P (+/-) ratio of 

2/1 for 20 minutes or 24 hours. 
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II.3.2 Effect of RNase Enzyme on Free siRNA 

AFM images show that free siRNA molecules added to freshly cleaved mica appear as 

short rods, spheres, or threaded beads (Figure II.2A). The average diameter of siRNA 

spheres is 18.3 ± 3.1 nm while the average length of the rod- and bead-like features is 

12.1 ± 0.6 and 51 ± 12.4 nm, respectively. These rod-, sphere-, and bead-like particles are 

probably formed via electrostatic interaction between cationic Mg
+2

 ions and multiple 

anionic siRNA molecules.
12

 AFM images show that treatment of free siRNA molecules 

adsorbed to mica surface with RNase V1 enzyme results in their fragmentation within 1.5 

minutes due to rapid and unrestricted access of the enzyme to RNA surface (Figure 

II.2B). Time-lapse images clearly show individual siRNA molecule adsorbed to mica 

surface denoted by the white arrow before the addition of RNase V1 enzyme (i.e. t = 0 

minutes) (Figure II.2C). RNase V1 enzyme was visualized after 1.5 minutes of adding 

the enzyme solution to free siRNA, which caused complete degradation of adsorbed 

siRNA molecule within 3 minutes (Figure II.2C). These images clearly show rapid 

accessibility of RNase V1 enzyme to free siRNA molecules leading to their degradation, 

which is consistent with earlier results.
12,20
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II.3.3 Effect of RNase Enzyme on G4 Dendriplexes 

Incubation of G4 dendrimers with anti-GAPDH at an N/P ratio of 2/1 for 20 minutes 

yielded dendriplexes that were visualized using AFM (Figure II.3). AFM images show 

                                     (A)                                                                                    (B) 

          
(C) 

 
Figure II.2: (A) AFM image of free anti-GAPDH siRNA dissolved in 1mM PBS containing 2mM 

MgCl2 after adding to the surface of freshly cleaved mica, which shows rod-, sphere-, and bead-like 

arrangements. (B) AFM image taken 1.5 minutes after adding RNase V1 enzyme, which shows rapid 

fragmentation of adsorbed siRNA molecules. (C) Time-lapse images showing a single siRNA molecule 
denoted by the white arrow (t = 0 min), the attack of RNase V1 enzyme on free siRNA molecule (t = 

1.5 min), and complete siRNA degradation (t = 3 min). The scale bar in images A and B is 100 nm and 

the Z scale is 9 nm. 
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that G4 dendriplexes are compact hexagonal particles with an average full width of 43 ± 

19.3 nm at half the maximum height and an average height of 0.63 ± 0.025 nm (Figure 

II.3A). Our preliminary studies indicated the difficulty in imaging individual G4 

dendriplexes and individual siRNA fragments released upon incubation with RNase V1 

enzyme at different time points. Therefore, we investigated the effect of RNase V1 

enzyme on a monolayer of G4 dendriplexes covering an entire AFM imaging field before 

and after enzyme addition instead of trying to image an individual particle. AFM images 

show that G4 dendriplexes formed a densely packed monolayer on freshly cleaved mica 

surface before the addition of RNase V1 enzyme (Figure II.3A). However, addition of 

RNase V1 enzyme separated the imaging field into bright spots where intact hexagonal 

G4 dendriplexes were located and dark spots where the particles got detached and the 

complexed siRNA was degraded within 1 minute (Figure II.3B). AFM images show that 

increasing the incubation time (6, 15, 21, and 28 minutes) with RNase enzyme increased 

siRNA degradation shown by the increase in the fraction of dark spots in the imaging 

field (Figure II.3C-F). Figure 3, Panels B-F show two large G4 dendriplexes marked by 

the dashed circles with heights of 9.4 and 7.6 nm and diameters of 151 and 110 nm from 

left to right. These complexes remained intact throughout the incubation time (28 minutes) 

with RNase V1 enzyme indicating better shielding of their RNA cargo compared to the 

bulk of G4 dendriplexes. 
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                               (A)                                                                                    (B)

                     
                               (C)                                                                                   (D) 

                     
                               (E)                                                                                    (F) 

                     
Figure II.3: (A) AFM image of hexagonal G4 dendriplexes prepared by mixing of G4 dendrimers with 

0.7 µg of anti-GAPDH siRNA at N/P ratio of 2/1 for 20 minutes at room temperature before loading 

onto the surface of freshly cleaved mica. AFM images of G4 dendriplexes after incubation with RNase 

V1 enzyme for 1-28 minutes (B-F) shows separation of the adsorbed dendriplexes and degradation of 
the complexed siRNA molecules (dark spots) that increased with the increase in incubation time. Two 

dendriplexes (defined wit dotted circles) remained intact throughout the incubation time with RNase 

V1 enzyme suggesting the formation of individual compact particles. Scale bar in these images is 200 

nm and the Z scale is 15 nm. 
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In comparison, G4 dendriplexes prepared by mixing of G4 dendrimers with anti-GAPDH 

siRNA at an N/P ratio of 2/1 for 24 hours appeared as large globular particles with a 

dense central core surrounded by “loose” network (Figure II.4). AFM images show that 

the average diameter of the tightly-packed core is 263 ± 60 nm with an average height of 

35.3 ± 8.6 nm (Figure II.4A). Time-lapse AFM images show that incubation of these G4 

dendriplexes with RNase V1 enzyme did not affect the compact central core for up to 60 

minutes (Figure II.4B & C). However, the network surrounding the core fragmented 

gradually with the increase in incubation time with RNase V1 enzyme indicated by the 

reduction in their height from 12.3 ± 1.2 nm to 3.4 ± 1.5 nm (Figure II.4B & C). These 

results clearly show that increasing the incubation time of anti-GAPDH siRNA with G4 

dendrimers from 20 minutes to 24 hours results in the formation of larger and more 

tightly-packed complexes that resist enzymatic degradation by RNase enzymes. These 

results are supported by previous studies indicating that complexation of siRNA 

molecules with G4 dendrimers is a biphasic process that starts with an initial exothermic 

binding process followed by secondary endothermic formation of larger dendriplex 

aggregates.
21

 

0 min 

0 min 0 min 

0 min 
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II.3.4 Effect of RNase Enzyme on G5 Dendriplexes 

Similarly, incubation of G5 dendrimers with anti-GAPDH at an N/P ratio of 2/1 for 20 

minutes yielded compact hexagonal dendriplexes that formed a densely packed 

monolayers on the surface of freshly cleaved mica with an average full width of 62 ± 8.3 

nm at half the maximum height and an average height of 1.1 ± 0.05 nm (Figure II.5A). 

                               (A)                                                                                       (B)                            

         
(C) 

 
Figure II.4: (A) AFM image of G4 dendriplexes prepared by mixing of G4 dendrimers with 0.7 µg of 

anti-GAPDH siRNA at N/P ratio of 2/1 for 24 hours at room temperature before loading onto the 

surface of freshly cleaved mica. G4 dendriplexes appear as large globular particles with a dense central 

core surrounded by a “loose” network marked by the white arrows. Incubation of G4 dendriplexes with 

RNase V1 enzyme for 3 (B) and 60 minutes (C) shows that the central core remains intact while the 

surrounding diffuse network gets degraded as a function of incubation time. Scale bar in these AFM 

images is 200 nm and the Z scale is 20 nm. 
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Addition of RNase V1 enzyme to the dendriplexes monolayer separated the imaging field 

into bright spots where intact hexagonal G5 complexes were located and dark spots 

where the particles got detached and the complexed siRNA was degraded (Figure II.5B-

D). AFM images show that increasing the incubation time (1, 4, and 16 minutes) with 

RNase enzyme increased siRNA degradation shown by the increase in the fraction of 

dark spots in the imaging field (Figure II.5B-D). Increasing G5 incubation time with 

anti-GAPDH siRNA to 24 hours increased the width of the formed complexes to 48.3 ± 

2.5 nm at half the maximum height and the average height to 2.1 ± 0.2 nm (Figure II.6A). 

Despite of the smaller size of G5 dendriplexes, they remained intact upon incubation with 

RNase V1 enzyme for up to 60 minutes (Figure II.6B & C) confirming that longer 

incubation time results in formation of tightly packed and more stable complexes. 
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                                  (A)                                                                                     (B)                            

         
                                    (C)                                                                                    (D) 

         
Figure II.5: (A) AFM image of hexagonal G5 dendriplexes prepared by mixing of G5 dendrimers with 

0.7 µg of anti-GAPDH siRNA at N/P ratio of 2/1 for 20 minutes at room temperature before loading 

onto the surface of freshly cleaved mica. AFM images of G5 dendriplexes after incubation with RNase 

V1 enzyme for 1-16 minutes (B-D) shows separation of the adsorbed dendriplexes and degradation of 

the complexed siRNA molecules (dark spots) that increased with the increase in incubation time. Scale 

bar in these images is 200 nm and the Z scale is 17 nm. 
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II.4 Discussion 

Particles prepared by ionic complexation of PAMAM dendrimers with siRNA molecules 

were examined using AFM under air-dry conditions.
20

 However, it is critical to evaluate 

the morphology of such complexes under physiologically-relevant conditions, which will 

impact complex stability against enzymatic attack, interaction with different cells, 

                                  (A)                                                                                     (B)                            

         
(C) 

 
Figure II.6: (A) AFM image of G5 dendriplexes prepared by mixing of G5 dendrimers with 0.7 µg of 

anti-GAPDH siRNA at N/P ratio of 2/1 for 24 hours at room temperature before loading onto the 

surface of freshly cleaved mica. G5 dendriplexes remain intact upon incubating with RNase V1 

enzyme for 30 (B) and 60 minutes (C). Scale bar in these AFM images is 200 nm and the Z scale is 10 

nm. 
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internalization mechanism, and overall transfection capacity. Therefore, we decided to 

visualize naked siRNA and G4 and G5 dendriplexes in solution using AFM, which will 

eliminate the destructive effect observed upon imaging biological samples in air.
12,22

 

Imaging naked siRNA or G4 and G5 dendriplexes in solution in presence or absence of 

RNase V1 enzyme proved challenging due to free mobility of these particles in solution. 

To address this issue, we used small divalent Mg
+2

 cations to allow weak electrostatic 

adsorption of free siRNA and G4/G5 particles to mica’s surface following previously 

published protocols.
19

 We applied weak forces (pico Newtons) by the tip of the AFM 

imaging probe to avoid delocalizing the examined samples coupled with changing the X 

and Y offsets as needed to track the moving features within the imaging field as 

previously reported.
12,23

 We also used a fast scanning speed (90 seconds/image) to avoid 

repelling the imaging tip by the examined sample.
12,23

 These settings allowed us to 

visualize free siRNA molecules, G4 and G5 dendriplexes, and the attack by RNase V1 

enzyme in solution. 

AFM images show that despite the difference in size, number of cationic amine groups, 

and flexibility of G4 and G5 dendrimers, they formed similar hexagonal particles when 

incubated for 20 minutes with anti-GAPDH siRNA (Figure II.3A & Figure II.5A). 

Increasing the incubation time of G4 and G5 dendrimers with anti-GAPDH siRNA to 24 

hours produced larger dendriplexes compared to those observed at shorter incubation 

time point (Figure II.4A & Figure II.6A). However, G5 formed smaller dendriplexes 

compared to G4, which can be explained by the fact that G5 has twice the number of 

cationic amine groups (+) compared to G4. Therefore, the number of G5 particles used to 

complex 0.7 g of anti-GAPDH siRNA is half the number of G4 particles used to 
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complex the same amount of RNA. The relatively smaller number of G5 particles 

coupled with their established rigidity compared to G4 makes it harder for siRNA 

molecules to form intra-molecular bridges between multiple G5 particles via electrostatic 

interaction, which reduced the size of the formed dendriplexes. This is further confirmed 

by the absence of the loose network observed with G4 dendriplexes (Figure II.4A). These 

images indicate that complexation of anti-GAPDH siRNA to G4 and G5 dendrimers is a 

biphasic process that starts with a rapid exothermic binding forming “loose” dendriplexes 

followed by a slow endothermic formation of highly compacted complexes similar to 

previous reports.
12,14,21,24

 Further, the observed rapid degradation of G4 and G5 

dendriplexes prepared within a short incubation time (20 minutes) indicates the G4 and 

G5 dendrimers could not “shield” the cleavage sites of the complexed RNA molecules 

from the RNase V1 enzyme (Figure II.3B-D& Figure II.5B-D). In comparison, formation of 

compact particles at longer incubation time proved effective in shielding and protecting 

the loaded RNA from the attack of RNase V1 enzyme (Figure II.4 & Figure II.6). 

II.5 Conclusions 

AFM images show that increasing the incubation time of G4 and G5 dendrimers with 

siRNA molecules to 24 hours results in formation of ionic complexes that can protect the 

loaded RNA cargo against enzymatic degradation without using excess cationic 

dendrimers. Further, the size of the formed complexes can be tuned by controlling the 

flexibility of the cationic carrier with flexible G4 forming larger particles than the more 

rigid G5 dendrimers while maintaining the desired enzymatic stability. These findings 

provide insight on potential formulation strategies to develop enzymatically-resistant 

complexes with tunable size for enhanced intracellular delivery of therapeutic siRNA 
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molecules without inducing undesirable side effects due to the use of excess cationic 

carrier. 
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