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ABSTRACT

Magnetohydrodynamic Modeling of Space Plasmas with Pressure Anisotropy

by

Xing Meng

Co-Chairs: Tamas I. Gombosi and Gábor Tóth

The present generation of global 3D magnetohydrodynamic (MHD) simulations of

the Sun-Earth environment is based on the assumption that the plasma pressure is

isotropic. This assumption, however, is an inadequate description of space plasmas,

such as plasmas in the Earth’s magnetosheath and inner magnetosphere, as well as in

the solar corona, where strong magnetic fields give rise to highly anisotropic plasma

pressures. Specifically, particle collisions are not frequent enough to balance the

particle motions along and perpendicular to the magnetic field, thus the corresponding

parallel and perpendicular pressure components are different.

This dissertation research, therefore focuses on extending the University of Michi-

gan MHD space physics code BATS-R-US to account for pressure anisotropy. The

analytical model is developed by studying the formulation of anisotropic MHD under

both classical and semirelativistic approximations, in particular, deriving the dis-

persion relation and characteristic wave speeds for semirelativistic anisotropic MHD.

The software implementation of the new model, Anisotropic BATS-R-US, is verified

through numerical tests.

Several applications of Anisotropic BATS-R-US are considered in this work. The

xvi



first application is to simulate the quiet time terrestrial magnetosphere and validate

the results with satellite measurements. Pressure anisotropy is found to widen the

magnetosheath, enhance the nightside plasma pressure, and reduce the flow speed in

the magnetotail. In the second application, Anisotropic BATS-R-US is coupled with

two ring current models, respectively, to conduct global magnetospheric simulations

during geomagnetic disturbed times. The simulation results indicate the importance

of pressure anisotropy in controlling the nightside magnetic field topology. Finally,

Anisotropic BATS-R-US is applied to simulate the solar corona and heliosphere, in

which pressure anisotropy results in faster solar wind speeds close to the Sun. This

application has the potential to capture the anisotropic heating mechanism that has

not been addressed by isotropic MHD models.
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CHAPTER I

Introduction

This chapter contains three parts. In the first part, I present the motivation of this

thesis study by reviewing current understandings of the solar-terrestrial environment,

particularly the research of pressure anisotropy in space plasmas. In the second part,

I introduce the Space Weather Modeling Framework that this dissertation research

builds on. In the final part, I overview the content of this dissertation.

1.1 Motivation

1.1.1 The Sun-Earth environment

Although the earliest sightings of the auroras and the application of compasses can

be dated back to thousands of years ago, the emergence of the solar-terrestrial physics

discipline was not until the eighteenth century, when an instrument maker found that

the compass is always in motion, which led to the discovery of the diurnal varia-

tion of the geomagnetic field. Since then, especially since the mid-twentieth century

when rockets and spacecrafts began to provide opportunities of space exploration, the

understanding of the Sun-Earth environment has been advanced significantly.

Today we know that the Sun-Earth environment is a complex and highly-coupled

system with various physical processes going on. While not every process is fully

understood, the overall picture is clear: the Sun is very dynamic and provides the
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major energy source for the physical processes in the solar-terrestrial environment; the

interplanetary space between the Sun and the Earth is filled with tenuous magnetized

plasma primarily originating from the Sun; This space plasma is called the solar

wind, which propagates from the surface of the Sun throughout the solar system; the

interaction between the solar wind and the intrinsic magnetic field of the Earth forms

the terrestrial magnetosphere; the lower extension of the magnetosphere towards the

Earth is the ionosphere, which is also part of the upper atmosphere and contains

neutral and ionized particles; the activities on the Sun can cause variations in the

solar wind that disturbs the terrestrial magnetosphere and the ionosphere.

This thesis research mainly deals with the terrestrial magnetosphere, and the last

part of this research is about the solar corona and the solar wind. Below I present

major physics processes and discuss outstanding issues in these regions, with emphasis

on the magnetospheric part.

1.1.1.1 The solar corona and the solar wind

The solar corona is the uppermost layer of the solar atmosphere. Below it we have

the photosphere, the chromosphere, and the transition layer. The most important

feature of the solar corona is its very high temperatures of more than 106 K, in contrast

to about 5800K in the photosphere. This temperature increase occurs within 500 km,

which is very small compared to the solar radius. The problem of how the coronal

plasmas are heated in such a short distance has been a hot research topic, but it is still

not fully solved. The corona is highly structured. For instance, coronal holes are the

dark regions appearing in x-ray observations where open magnetic field configurations

dominate; streamers are long-lived regions extending from the base of the corona

to several solar radii in the visible view of the corona, and are found to represent

closed loops of magnetic field. A schematic plot of the coronal structures is shown in

Figure 1.1.
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Figure 1.1: An illustration of the solar corona from Kivelson and Russell [1995].

The solar wind is the extension of the solar corona into the interplanetary space.

It starts subsonically at the base of the corona and accelerates to supersonic speeds.

There are two types of solar wind with different origins. The solar wind originating

from coronal holes with open magnetic field lines is the fast solar wind with speed

larger than 600 km/s, while the solar wind originating from the closed magnetic field

line regions is the slow solar wind with speed smaller than 350 km/s typically. Al-

though the origin of the fast solar wind is clear, the formation and acceleration of the

slow solar wind is still under investigation. The composition of the solar wind plasma

is mostly protons and electrons. The solar wind plasma is also magnetized, and the

interplanetary magnetic field (IMF) is the extension of the solar magnetic field. The

current sheet separates the fields and plasma flows from different hemispheres. The

region of space influenced by the solar wind is the heliosphere extending far beyond

the planetary orbits.

The solar corona, and consequently the solar wind have both temporal and spatial

variations. The most important long-term variation is due to the solar cycle, which

has an average period of about 11 years as characterized by the number of sunspots on

the solar surface. During a solar cycle, the solar magnetic field changes significantly.

Near solar maximum, the solar magnetic field is not dipolelike, and the coronal holes
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are restricted to the polar regions; near solar minimum, the solar magnetic field is

approximately a dipole, and the coronal holes extend to lower heliographic latitudes.

The spatially varying solar corona results in recurring solar wind structures as the

Sun rotates. More specifically, faster solar wind streams catch up with slower streams

at low heliographic latitudes and leads to the formation of a high-pressure region that

separates the fast and slow solar wind regions. This is the corotating interaction re-

gion (CIR). Short-term solar activities such as coronal mass ejections (CMEs) lead

to non-recurring variations in the solar wind. During CMEs, large amounts of coro-

nal material with speeds that can reach 2000 km/s are ejected from the Sun to the

interplanetary medium. CMEs have been studied intensively, yet their physical origin

is not clear.

1.1.1.2 The terrestrial magnetosphere

The intrinsic magnetic field of the Earth can be approximated by a magnetic

dipole. The interaction between the solar wind plasma and the geomagnetic dipole

field was first studied by Chapman and Ferraro [1930], who proposed that the solar

wind stream is in effect a highly conducting body, and a current system is generated

at the surface of this conducting body as it approaches the terrestrial dipole field.

The Chapman-Ferraro model, though too simple to describe the real situation, reveals

the fundamental physics behind the solar wind-Earth interaction and establishes the

base for later research.

In today’s understanding, the interaction between the supermagnetosonic solar

wind and the geomagnetic field forms the magnetosphere, as displayed in Figure 1.2.

The five main current systems that are important in controlling the dynamics of the

magnetosphere are shown in Figure 1.3.

The supermagnetosonic solar wind results in the bow shock, which slows down

the solar wind ahead of the Earth. The bow shock is a fast shock, and its location is
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Figure 1.2: A schematic noon-midnight meridian cross section of the terrestrial mag-
netosphere from Russell [1972].

determined by the shape and size of the magnetopause, which is approximately a tan-

gential discontinuity that separates the shocked solar wind from the region dominated

by the terrestrial magnetic dipole field. The magnetopause current, also called the

Chapman-Ferraro current, flows around the magnetopause and generates a magnetic

field that prevents the terrestrial dipole field from penetrating into the solar wind.

At the magnetopause, the total pressure of the shocked solar wind is balanced by the

total pressure inside of the magnetosheath, thus the position of the magnetopause

varies with solar wind conditions. The region between the bow shock and the mag-

netopause is the magnetosheath, which can extend down to the atmosphere in the

two polar cusps. It is filled with compressed and heated solar wind plasmas with

stronger magnetic field than in the ambient solar wind. The magnetosheath, together

with the bow shock and the magnetopause, form a complex plasma environment, in

which many physical processes occur. Those processes that have been heavily studied

but not well understood include the dayside magnetic reconnection, energetic particle

acceleration, waves and turbulence, plasma instabilities, chaos and fractals, foreshock

cavities, hot flow anomalies, dawn-dusk asymmetry, temperature anisotropy, and so

on [Russell , 1994; Song and Russell , 1997; Pudovkin et al., 2002; Lucek et al., 2005].
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The effects of pressure anisotropy on this region will be explored in Chapter III.

In the nightside magnetosphere, the magnetic field lines are highly stretched along

the solar wind flow direction, and they form the magnetotail. In a simplified scenario,

the magnetic field lines reconnect at the neutral line. The center of the magnetotail

contains hot and dense plasmas, which is called the plasma sheet. The plasma man-

tle is the expansion of the magnetosheath plasma as the field lines are convected

downward along the magnetotail. The very low density regions between the plasma

sheet and the plasma mantle are the two magnetotail lobes. The tail current system

relates to the tail magnetic field. It consists of the neutral sheet current pointing

from dawn to dusk in the current sheet, which is closed by the tail current pointing

from dusk to dawn in the tail magnetosheath. The magnetotail stores the energy in

the magnetosphere, and plays an important role during substorms. A lot of research

work have been focused on the tail magnetic reconnection, which is probably the most

important process in the magneotail and even in the magnetosphere. By now we only

have a rough picture of how the tail magnetic reconnection works and incomplete

understandings of the reconnection rate, the energy release and conversion, and the

contribution to global magnetospheric dynamics. The tail magnetic reconnection rate

will be discussed in Chapter III.

The nearly dipolar closed field line region around the Earth is the inner magneto-

sphere. This region is perhaps the most intensively studied part in the magnetosphere,

given the large amount of interesting phenomena there and its direct coupling with the

upper atmosphere that could affect human activities. The inner magnetosphere con-

tains the plasmasphere, the ring current, and the radiation belts. The plasmasphere

is composed of the coldest particles (eV-energy), mostly hydrogen ions, of the inner

magnetosphere. Examples of active research topics include plasmapause formation,

plasmasphere refilling and erosion, drainage plumes, and plasmaspheric wind. The

ring current is composed of 10 to 200 keV particles that are geomagnetically trapped
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between 3 and 6 Earth radii, and it is formed due to the gradient-curvature drift.

The drift path of a ring current particle is not necessarily closed due to the convec-

tion and corotational electric fields. These electric fields normally point from dawn

to dusk near the equatorial plane, and cause the particles drifting sunward. Since

the gradient-curvature drift is energy-dependent and proportional to the square of

geocentric distance, while the electric drift is independent of particle energy and pro-

portional to the cubic of geocentric distance, at larger geocentric distances and/or for

particle with lower energies, the particles are sunward drifting and deflected around

the Earth, and form the partial ring current. The ring current is a critical factor dur-

ing geomagnetic storms. The strength of the ring current affects the magnetic field

on the surface of the Earth, which is characterized by the Dst index. Numerous work

on the ring current have been carried out [Daglis et al., 1999; Daglis , 2001, 2006], and

major open disputes are the mass driver for strong current, the role of oxygen ions,

the contribution from electrons, the large-scale morphology, the efficiency of charge

exchange, and the effects of wave scattering. In Chapter IV I will investigate the

ring current dynamics affected by ion temperature anisotropy. The radiation belt

contains relativistic electrons and very energetic ions of MeV energies, and is also a

hot research area especially after the recent discovery by the Radiation Belt Storm

Probe that reveals a previously unknown radiation region [Baker et al., 2013].

The remaining two current systems connect the magnetosphere with the iono-

sphere and thus important in the magnetosphere-ionosphere coupling. The field-

aligned currents, also called Birkeland currents, consist of Region 1 currents flowing

outward from the ionosphere to the magnetosphere, and Region 2 currents flowing

in the opposite direction. The field-aligned currents are closed by the partial ring

current in the low latitude magnetosphere, therefore the strength of the field-aligned

currents is related to the strength of the nightside equatorial plasma pressure in the

inner magnetosphere. This will be demonstrated in Chapter IV. The last current sys-
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Figure 1.3: An illustration of the current systems in the terrestrial magnetosphere,
from Russell et al. [1995].

tem, the ionospheric currents (Hall and Pedersen currents, not shown in the figure),

close the field-aligned currents in the polar ionosphere.

The solar wind-magnetosphere-ionosphere coupling leads to several types of ge-

omagnetic activities. The best understood one is the quiet time diurnal variation,

which refers to systematic variations in each magnetic field component measured in

midlatitude ground-based magnetometers on geomagnetic quiet days. This variation

is essentially due to the Hall currents in the ionosphere.

Variations in the solar wind can cause large and prolonged disturbances of the

magnetosphere, and lead to another type of geomagnetic activity, geomagnetic storms.

Geomagnetic storms relate closely to solar activities, and many of them follow solar

flares or coronal mass ejections (CMEs). A typical geomagnetic storm event begins

with a sudden compression of the magnetosphere, causing the magnetopause current

to increase. Then several hours of southward IMF enhances the dayside magnetic

reconnection between the solar wind magnetic field and the geomagnetic field, which

increases the penetration of the solar wind motional electric field into the magne-
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tosphere. Consequently, the magnetospheric convection increases. The strengthened

duskward electric field increases the number of particles injected into the ring current.

Thus the ring current increases, and the horizontal component of the surface magnetic

field decreases. In the ionosphere, increased precipitation of charged particles from

the magnetosphere can result in variations in the electric current systems and lead

to aurora activity. As soon as the southward IMF weakens, the reconnection rate

decreases, which weakens the electric fields and consequently the particle injection

into the ring current. As a result, the ring current starts to decay. The recovery of

a storm can last for several days. Therefore, during geomagnetic storms, the energy

input from the solar wind is deposited into the magnetosphere and dissipates in the

magnetosphere-ionosphere system. During large geomagnetic storms, magnetospheric

substorms often develop.

Substorms belong to a different type of geomagnetic activity, and refer to time

periods of enhanced energy input from the solar wind into the magnetosphere and

the subsequent energy dissipation processes in the magnetosphere. Comparing to

storms, substorms usually have much shorter durations of several hours. A typical

substorm follows the growth phase, expansion phase, and the recovery phase. During

substorms, auroral activities increase, and the ionospheric currents enhance.

There are a lot of open questions regarding geomagnetic storms and especially

substorms. For example, the differences between storms caused by various sources,

the relation between storms and substorms, the trigger of substorms, and the sub-

storm timing are not clear. I will analyze two particular storm/substorm events in

Chapter IV.

The modern development of the solar-terrestrial physics led to the emergence of a

new term space weather in 1990s. The conditions on the Sun determine the conditions

in the solar wind, which impact the conditions in the terrestrial magnetosphere, and
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furthermore, the ionosphere and the thermosphere. These conditions can influence the

performance of space-borne and ground-based technological systems or can endanger

human life or health, and are referred to as space weather.

Space weather can impact telecommunication systems operating on the ground

and in space, power grids and oil pipelines, satellite operations, global navigation

satellite systems, airplane radios, and the health of astronauts, airplane crews and

passengers. As human activities rely more and more on the technology systems that

could be affected by space weather, the study of the solar-terrestrial environment,

especially the development of predictive space weather models, has become important.

Currently our knowledge of the solar-terrestrial environment has achieved an un-

precedented high level. We have a physical explanation, sometimes more than one

interpretations, for almost every phenomenon observed. However, what we know is

far from complete, and there are still lots of unknowns or debates that mostly relate

to the details of some physical processes as mentioned earlier. One such question is

about the pressure anisotropy of space plasmas.

1.1.2 Pressure anisotropy of space plasmas

1.1.2.1 What is pressure anisotropy?

Pressure anisotropy, or alternatively, temperature anisotropy, refers to different

thermal pressures/temperatures perpendicular and parallel to the magnetic field.

Pressure anisotropy arises naturally in a low density magnetized plasma, where the

gyration and the field-aligned motion of the particles are not coupled by collisions.

The magnetic field provides the preferred orientation, while particle collisions tend

to drive the plasma towards isotropy by evenly distributing the parallel and perpen-

dicular momenta with respect to the magnetic field. Without enough collisions, the

parallel and perpendicular pressures can be different. Space plasmas, our primary

interest, are basically collisionless, which means that pressure anisotropy could play
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an important role. In fact, a large amount of in-situ and remote observational data

has shown plasma pressure or temperature anisotropy in the solar corona [Kohl et al.,

1998, 2006; Li et al., 1998; Antonucci et al., 2000; Telloni et al., 2007] and the so-

lar wind [Hundhausen, 1968; Feldman et al., 1974; Marsch et al., 1982, 2004; Gary

et al., 2001, 2002; Kasper et al., 2003; Hellinger et al., 2006], as well as in the mag-

netosheath [Crooker et al., 1976; Phan et al., 1994], the ring current region [Lui and

Hamilton, 1992; De Michelis et al., 1999], and the magnetotail [DeCoster and Frank ,

1979; Takahashi and E. W. Hones , 1988] of the Earth’s magnetosphere.

In the presence of pressure anisotropy, plasma pressure can be expressed by a

tensor as [Chew et al., 1956; Gombosi , 1991]

P = p⊥I+ (p‖ − p⊥)bb (1.1)

where I is the identity tensor and b = B/|B| is the unit vector along the magnetic field

B. p‖ and p⊥ describe the parallel and perpendicular thermal pressure components

with respect to the magnetic field. Equation (1.1) is a generalized expression for

anisotropic pressure, and thus valid for both ions and electrons. In real space plasmas,

electron pressure anisotropy is much less important than ion pressure anisotropy, since

electrons respond to perturbations much more rapidly than ions due to their small

mass, as a result their momentum distribution tends to be less anisotropic than ions’.

The difference between parallel and perpendicular pressures cannot be arbitrarily

large, because it is bounded by plasma instabilities. In space plasmas, ion pressure

anisotropy can cause several types of instabilities, including the firehose, mirror, ion-

cyclotron and Harris instabilities [Chandrasekhar et al., 1958; Barnes , 1966; Kennel

and Petschek , 1966; Soper and Harris , 1965; Gary , 1976]. The first three instabilities

are related to anisotropic ion pressure only, while the Harris instability is also related

to anisotropic electron pressure, and it is not considered in this dissertation study.
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The firehose instability can be viewed as an analogue of the violent motion of a

firehose with water flowing through rapidly. It arises when the ion parallel pressure

is sufficiently large that a small perturbation perpendicular to the magnetic field

grows. The mirror instability occurs when the ion perpendicular pressure gets too

large, and part of the particles are trapped in small magnetic “mirrors” formed by the

perturbed magnetic field. A typical observational feature is the anti-phased variations

in the magnetic field strength and the plasma number density. The ion cyclotron

instability is also driven by the too large ion perpendicular pressure. It is a resonant

instability that occurs when the electric field vector of the ion cyclotron wave rotates

synchronously with the particle gyration.

1.1.2.2 Modeling space plasmas with anisotropic pressure

Though being observed frequently, the role of the pressure anisotropy in space

plasmas is not fully understood. To address this issue, numerical modeling has been

carried out in the past few decades. In particular, for the solar wind and the terrestrial

magnetosphere, where our primary research interest lies, empirical and/or physics-

based models have been developed to account for pressure anisotropy.

For solar wind modeling, proton temperature anisotropy has been included in

several MHD models. The earliest work can be dated back to about forty years ago.

Leer and Axford [1972] developed a one-dimensional (1D) steady state solar wind

model with isotropic electron temperature and anisotropic proton temperature that

allows for extended coronal proton-heating. The model itself does not solve for the

magnetic field, but the solar wind solutions are obtained for the cases of a purely

radial and a spiral magnetic field, and the solutions at 1AU are reasonable. At about

the same time, Whang [1972] also developed a 1D steady state solar wind model

including proton thermal anisotropy, which assumes the same isotropic temperature

for electrons and protons within a radial distance of 0.4AU, while different temper-
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atures for electrons and protons, as well as proton temperature anisotropy beyond

0.4AU. The calculated solar wind solution at 1AU agrees well with observations.

Both models are pioneers in simulating proton temperature anisotropy in the solar

wind.

More work has been done after 1990s. Hu et al. [1997] presented a 1D time-

dependent fast solar wind model with isotropic electron temperature and anisotropic

proton temperature. The model includes momentum and heat input to the solar

wind by Alfvén waves, additional momentum input to the protons, and additional

heat input to both electrons and protons. The high-speed solar wind solutions they

obtained match most of the empirical constraints from observations. This model was

further extended to solve the 16-moment bi-Maxwellian equations by Li [1999], who

has found that the inclusion of proton parallel and perpendicular heat flux densities

greatly affect proton temperature anisotropy. More recently, Li et al. [2004] reported

the first 2D Alfvén wave turbulence-driven solar wind model with proton temperature

anisotropy. They obtained solutions for both fast and slow solar wind, and found that

the average proton temperature in the anisotropic case is lower than in the isotropic

case. Chandran et al. [2011] developed a 1D solar wind model including proton tem-

perature anisotropy, pitch-angle scattering from mirror and firehose instabilities, and

kinetic Alfvén wave turbulence, based on theories of linear wave damping and non-

linear stochastic heating. They have found consistency between their model results

and a number of measurements. All these studies provide valuable understanding to

the modeling of solar wind with anisotropic proton temperature. However, these 1D

or 2D models still cannot reveal the complete picture of the spatially and temporally

varying solar wind, which could only be provided by time-dependent 3D global models

of the corona and heliosphere.

For terrestrial magnetospheric modeling, pressure anisotropy has been inves-

tigated with empirical, equilibrium and MHD models, all of which are major branches
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of magnetospheric modeling techniques. One widely used empirical model is the

Tsyganenko geomagnetic field model, based on which several studies considered an-

isotropic pressure. For instance, Horton et al. [1993] derived the plasma pressure

tensors from the Tsyganenko models; Lui et al. [1994] obtained the perpendicular

and parallel pressure distributions in force equilibrium with magnetic stresses from

the Tsyganenko models for the quiet time nightside magnetosphere, and found the

deduced pressure profiles are in good agreement with observations.

Equilibrium modeling has also been adopted to address pressure anisotropy. Cheng

[1992a] obtained self-consistent magnetospheric equilibria with anisotropic pressure

by solving the inverse equilibrium equation. Zaharia et al. [2004] computed 3D force-

balanced magnetospheric configurations with their 3D equilibrium code and applied

them to magnetic storm simulations. Wu et al. [2009] extended a friction code equi-

librium solver to include pressure anisotropy. These studies provide very interesting

insight of how anisotropic pressures modify the magnetic field and current configu-

ration in the inner magnetosphere. Yet the equilibrium modeling relies on empirical

models of the pressure distribution as initial inputs, thus it is not as self-consistent

as MHD modeling.

Since no global magnetospheric MHD model capturing pressure anisotropy has

been developed (to our knowledge), MHD modeling with anisotropic pressure has

been focused on localized models. A heavily studied topic is the anisotropic MHD

modeling of the magnetosheath. Erkaev et al. [1999] presented a 3D steady state MHD

model of the magnetosheath flow near the subsolar line with anisotropic pressure.

Denton and Lyon [2000] studied the effects of pressure anisotropy using a 2D fluid

model of the magnetosheath. More recently, Samsonov et al. [2007] validated their

3D anisotropic MHD model of the magnetosheath by comparing the model results

to Cluster data. The magnetotail has also been simulated with a 3D anisotropic

MHD model by Hesse and Birn [1992]. These regional MHD models significantly
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contribute to the numerical modeling of magnetospheric plasmas with anisotropic

pressure, however they cannot reveal the global impacts of pressure anisotropy.

The above review of past studies implies the lack of 3D global MHD models

that can resolve plasma pressure anisotropy for both the solar wind and terrestrial

magnetosphere. In other words, the 3D global MHD models of the solar wind and the

magnetosphere have been assuming isotropic plasma pressure so far. More advanced

models are needed to represent the real space plasmas where pressure anisotropy could

arise, which would be not only a new tool to study the effects of pressure anisotropy in

the solar-terrestrial environment, but also a step forward towards better space weather

prediction models. This motivates the development of a 3D global anisotropic MHD

model, Anisotropic BATS-R-US, which is the fundamental code modification task of

this dissertation research.

1.2 Technique

The present research tools for studying the Sun-Earth environment range from

remote-sensing to in-situ observations, and from plasma theories to computational

models. These techniques have different strengths and weaknesses, and thus can

complement each other to provide better understanding of the physical processes

that we are interested in. Observations directly supply the plasma data of the space

environment, which can validate theoretical and computational models, but the ob-

servational data are often largely limited by the locations of the satellites, the time of

the measurements, and the accuracy of the instruments. The theoretical approach is

the most rigorous way to understand the phenomena that we observe, yet the correct-

ness of theoretical space plasma models relies on the support from observational data.

The computational modeling of the space environment can provide complete pictures

of the dynamics of space plasmas and can be predictive. However, the numerical

models are usually developed based on theoretical models, and are validated against
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actual measurements. In this dissertation research, the major tool used is numerical

modeling, while the other two approaches are also applied as supplements. More

specifically, I first develop an analytical model, upon which I build a computational

model, which is then validated through observational data.

This dissertation research is conducted with the Space Weather Modeling Frame-

work developed at the University of Michigan. This is a software framework that

uses different models for different domains of the solar-terrestrial system to account

for disparate temporal and spatial scales on the Sun, in the heliosphere, and in the

magnetosphere.

1.2.1 The Space Weather Modeling Framework

The Space Weather Modeling Framework (SWMF) [Tóth et al., 2005, 2012] is a

highly integrated toolkit of various numerical models for the solar-terrestrial space.

It contains several components corresponding to different physics domains from the

Sun to the Earth, and each component is represented by one or more physics models

with appropriate wrappers and couplers. The components, or more typically, a subset

of the components, can be compiled and linked to the core of the framework to form

a single executable, or the components can be compiled into individual executables

and used as stand-alone models.

The current components of the SWMF are described as follows: the Eruptive

Event (EE) generator is responsible for creating a CME; the Solar Corona (SC)

describes the corona out to about 25 solar radii; the Inner Heliosphere (IH) extends

from about 20 solar radii to the orbit of the Earth and has been extended to 30AU; the

Outer Heliosphere (OH) extends from about 30AU to 1000AU; the Solar Energetic

Particle (SP) domain consists of one or more field lines along which the energetic

particles accelerate and diffuse; the Global Magnetosphere (GM) domain surrounds

the Earth and extends to about 30 Earth radii on the dayside, a few hundred Earth
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Component name ID Physics-based / empirical models
1. Eruptive Event Generator EE BATS-R-US / breakout, flux-rope
2. Solar Corona SC BATS-R-US
3. Inner Heliosphere IH BATS-R-US
4. Outer Heliosphere OH BATS-R-US
5. Solar Energetic Particles SP Kota, FLAMPA
6. Global Magnetosphere GM BATS-R-US / Tsyganenko
7. Inner Magnetosphere IM RCM, CRCM, HEIDI, RAM-SCB
8. Radiation Belt RB RBE
9. Polar Wind PW PWOM
10. Ionosphere Electrodynamics IE RIM / Weimer
11. Upper Atmosphere UA GITM / MSIS, IRI

Table 1.1: Physics-based and empirical models of the SWMF [Tóth et al., 2012].

radii on the nightside, and about 60-100 Earth radii in the orthogonal directions;

the Inner Magnetosphere (IM) models the closed field line region around the Earth;

the Radiation Belt (RB) has the same domain as IM but it models the relativistic

electrons; the Polar Wind (PW) models the open field line region near the Earth; the

Ionospheric Electrodynamics (IE) model is a two dimensional spherical surface at a

nominal ionospheric altitude; the Upper Atmosphere (UA) contains the thermosphere

and the ionosphere from around 90 km to 600 km altitude for the Earth. A few more

components are under development, for instance the Plasmasphere (PS). The SWMF

components are listed in Table 1.1. As the table shows, several components can be

represented by the BATS-R-US model [Powell et al., 1999; Gombosi et al., 2004],

which is also the most computationally expensive model in the SWMF.

1.2.2 The BATS-R-US MHD model

The magnetohydrodynamics (MHD) description of magnetized plasmas has been

widely used in many applications by both the modeling and theoretical communities.

Most space plasmas can be well approximated by MHD. This motivated the develop-

ment of the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US)

as the core model of the SWMF, which is a three-dimensional (3D) MHD model that
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solves a variety of MHD equation sets, including ideal MHD, semirelativistic MHD,

Hall MHD, multi-species MHD, multi-fluid MHD, and MHD with Alfvén wave heating

and electron thermal heat conduction. These different types of MHD approximations

are based on different assumptions and simplifications, and can be applied to simulate

space plasmas according to locations and physical processes of interest.

BATS-R-US uses a block-adaptive grid with either Cartesian or generalized coor-

dinates including spherical and cylindrical grids. Each block has the same number of

cells, but the blocks can have different sizes in terms of the volume of physical space

that they occupy. The block-based Adaptive Mesh Refinement (AMR) algorithm

allows different grid resolutions at different locations in the computational domain.

Starting with an initial mesh consisting of blocks of equal size, selected blocks are

divided or coarsened according to regions of interest. For a 3D grid that the original

AMR algorithm was designed for, the refinement of a block results in eight equal-sized

“children” blocks, while the coarsening process merges eight “children” blocks into a

single block, thus the grid resolution is increased or reduced by a factor of 2. The

recent development of the Block-Adaptive Tree Library (BATL) [Tóth et al., 2012]

generalizes the AMR algorithm to a 1, 2, or 3 dimensional grid, which greatly extends

the capabilities of BATS-R-US.

BATS-R-US has various options for spatial and temporal discretization schemes.

The spatial discretization in BATS-R-US is based on a finite volume discretization of

the MHD equations with up to fifth order accurate slope limiters. Available numeri-

cal flux functions include the Rusanov or local Lax-Friedrichs [Rusanov , 1961], HLLE

[Harten et al., 1983], Artificial Wind [Sokolov et al., 2002], HLLD [Miyoshi and Ku-

sano, 2005], Roe [Roe, 1981] and Godunov [Godunov , 1959] fluxes. BATS-R-US can

use local time stepping or time accurate mode. The local time stepping is usually used

to solve steady state problems, and the steady state solution is often used as an initial

condition for a time accurate simulation. In time accurate simulations, various time
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stepping schemes are available, including the explicit, point-implicit, semi-implicit,

and fully implicit schemes, as well as the explicit/implicit scheme [Tóth et al., 2006]

that can advance some of the blocks explicitly, while the rest of the blocks implicitly.

1.2.3 Coronal and heliospheric simulations

One important application of the SWMF is to perform coronal and inner helio-

spheric simulations with the SC and IH components. We can run the SC component

in stand-alone mode to simulate the solar corona, or run the coupled SC-IH compo-

nents to simulate the solar wind and the IMF solution in the inner heliosphere. When

CMEs are modeled, the EE component is also required to initialize them.

Being represented by BATS-R-US, the SC component contains several coronal

MHD models that have been or are being developed: semi-empirical MHD [Cohen

et al., 2007], two-temperature (proton and electron) MHD with Alfvén wave heating

[van der Holst et al., 2010], MHD with Alfvén wave turbulence heating [Sokolov et al.,

2013], and so on. Although any one of these models can be and have been used to

describe the corona, newer models are preferred as they contain more physics and

rely less on empirical models and tunable parameters. The SC component can use

the Cartesian or spherical coordinate system in the Heliographic Rotating (HGR)

frame. The inner boundary of SC is usually driven by the density, pressure, velocity,

magnetic field, and for newer models, also Alfvén wave energy density defined just

above the photosphere. The temperature and mass density at the inner boundary

may vary with longitude and latitude to achieve the most realistic solar wind near the

Sun and further out. The velocity components at the inner boundary should maintain

line-tying of the magnetic field. The magnetic field at the inner boundary may be

obtained from synoptic magnetograms, or a simple dipole (possibly with a few higher

order terms) may be assumed. The outer boundary of SC is well beyond the sonic

point of the solar wind, and the flow at the outer boundary is usually faster than
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the fast magnetosonic speed of the plasma, so no information is propagating inward.

Sometimes, however, when a CME passes the outer boundary of SC, the solar wind

speed may become subfast for short periods of time. During such periods, the SC

component needs to receive the outer boundary condition from the IH component.

The IH component is also represented by BATS-R-US, more specifically, ideal

single-fluid MHD or two-temperature MHD models. It usually uses Cartesian coordi-

nates in the Heliographic Inertial (HGI) or HGR frame (the rotating frame only works

out to about 1AU). IH obtains its inner boundary conditions from SC. The flow at

the outer boundary of IH is always superfast. The IH component provides the outer

boundary conditions for the SC component when the flow at the outer boundary of

SC is not superfast, as mentioned before. IH can also provide the upstream boundary

conditions for the GM component that is used for Sun-to-Earth SWMF simulations.

The domain of the EE component is embedded in SC, and it is responsible for

creating a CME. The EE component can be represented by either a physics-based

model of flux emergence from the convection zone, or by much simpler, and less

expensive empirical models that insert an unstable flux rope into the steady solar

corona solution, or insert an arcade and apply shearing motion at the lower boundary

of the corona model. EE provides boundary and/or initial conditions for SC.

For quiet time periods without CMEs, assuming the corona condition does not

change much during one or more Carrington rotations, we typically run SC or SC-IH

in steady state mode to achieve a steady coronal and heliospheric solution for a whole

Carrington rotation. For time periods with CMEs, we need to run coupled EE-SC-IH

simulations in time accurate mode, so that the propagation of the CME is tracked

and the CME arrival at the Earth is captured.
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1.2.4 Global magnetospheric simulations

Another important application of the SWMF is planetary magnetospheric mod-

eling with primarily the GM component. In particular, for Earth’s magnetospheric

simulations, the GM component is basically represented by BATS-R-US. Similar to

SC and IH, there are several options of MHD equation sets that BATS-R-US solves,

from ideal MHD to multifluid MHD, as mentioned in section 1.2.2. The GM compo-

nent can use Geocentric Solar Magnetic (GSM) or Geocentric Solar Ecliptic (GSE)

coordinate system, and a Cartesian or spherical mesh. The upstream boundary con-

ditions are obtained from the IH component or from satellite measurements. At the

other outer boundaries one can usually assume zero gradient for the plasma variables

since these boundaries are far enough from the Earth to have no significant effect

on the dynamics near the Earth. The inner boundary of GM is a spherical surface

usually at 2 to 3 Earth radii from the center of the Earth.

The GM component can run in stand-alone mode, but more typically it is coupled

with the IE component for terrestrial magnetospheric simulations. In the current ver-

sion of the SWMF, the IE component is represented by the Ridley Ionosphere Model

(RIM) [Ridley et al., 2004], which is an electric potential solver on a two-dimensional

(2D) spherical surface at around 110 km above the surface of the Earth. IE obtains

the field-aligned currents from GM to generate an auroral precipitation pattern, which

is then used with the solar illumination to calculate Hall and Pedersen conductances.

The IE component provides the electric potential to the GM component, which is

used by GM to calculate the electric field and the corresponding plasma velocities as

the inner boundary condition of GM.

Given that MHD is not appropriate in describing the inner magnetospheric dy-

namics that is characterized by particles with energies in the order of keV or even

MeV, the IM component of the SWMF is also required to couple with the GM and

IE components, especially for simulating the magnetosphere during geomagnetic dis-
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turbed times. The IM component solves equations describing the motion of keV-

energy ions and electrons in the closed field line region, which contribute to the ring

current, and can be represented by several kinetic models as shown in Table 1.1. IM

obtains the geometrical and plasma information about the closed field lines from GM

and the electric potential solution from IE, while it provides the density and pressure

corrections along the closed field lines to GM.

For standard global magnetospheric simulations, the coupled GM-IE model is run

in steady state mode for a few thousand iterations until the magnetospheric solution

reaches an approximate steady state. Then GM-IE is switched to time accurate mode,

and if necessary, coupled with IM, thus the solution advances with time.

1.3 Dissertation Outline

For this dissertation research, my work includes analytical model development,

software implementation and science applications of Anisotropic BATS-R-US, an ex-

tension of the standard BATS-R-US MHD model including pressure anisotropy [Meng

et al., 2012a,b].

The development of the analytical model starts from studying the formulation of

anisotropic MHD to obtain the appropriate set of equations that is both physically

adequate to describe plasmas with pressure anisotropy and computationally inexpen-

sive to perform large-scale 3D simulations. Both the non-conservative/conservative

form and classical/semirelativistic form of the equation set are investigated to take

care of different situations. To calculate characteristic wave speeds that are needed

by numerical fluxes, I solve the eigenvalue problem of the characteristic matrix for the

equation set. Deriving formulas for the instabilities are a substantial part of the work.

During the software implementation, the anisotropic MHD equations are discretized

in various temporal and spatial schemes and implemented into the BATS-R-US code.

To verify Anisotropic BATS-R-US, a large set of numerical tests are designed and
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carried out.

Anisotropic BATS-R-US has many potential applications, and several of them are

considered in this thesis work. First, Anisotropic BATS-R-US is applied to terres-

trial magnetospheric simulations. I perform quiet time magnetospheric simulations

with Anisotropic BATS-R-US and compare the results with satellite measurements

across the magnetosheath and magnetotail. This also serves as validation tests for

Anisotropic BATS-R-US. To better represent the inner magnetosphere where MHD

description is not appropriate, especially during geomagnetic disturbed time, I cou-

ple Anisotropic BATS-R-US with inner magnetospheric kinetic models. The coupled

models are applied to simulate geomagnetic storms, and the results are validated th-

rough comparisons with satellite and ground based magnetometer observations in the

near-Earth magnetosphere.

Second, Anisotropic BATS-R-US is applied to coronal and heliospheric modeling.

I perform idealized coronal simulations and compare the results with previous 1D and

2D modeling results. Real Carrington rotation simulations are also carried out, with

comparisons to satellite observations at various locations in the heliosphere. This

part of work is still undergoing, thus the results presented in this dissertation are

preliminary.

The rest of the dissertation is organized as follows. Chapter II presents the de-

velopment and implementation of Anisotropic BATS-R-US. Chapter III describes

the quiet time magnetospheric simulations performed with Anisotropic BATS-R-US.

Chapter IV describes the coupling between Anisotropic BATS-R-US and inner mag-

netospheric models, as well as the geomagnetic storm simulations performed with the

coupled models. Chapter V applies Anisotropic BATS-R-US to solar wind simula-

tions. Chapter VI concludes the dissertation and proposes future work. The contents

of Chapter II and III are published in Meng et al. [2012a] and Meng et al. [2012b],

respectively, while the content of Chapter IV has been submitted to the Journal of
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Geophysical Research.
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CHAPTER II

The Development of Anisotropic BATS-R-US

MHD with anisotropic pressure was first investigated by Chew et al. [1956]. They

start from the Boltzmann equation and obtain the Chew-Goldberger-Low (CGL) ap-

proximation, also known as the double-adiabatic model, which is valid for single-fluid

collisionless plasma with strong magnetic field and neglects the pressure transport

along magnetic field lines. Later on Hau and Sonnerup [1993] and Hau et al. [1993]

proposed the double-polytropic model as a more generalized description, which recov-

ers the CGL model as a limiting case. We derive our transport equations by taking the

moments of the generalized kinetic equation presented by Gombosi and Rasmussen

[1991]. We include the electron pressure as well, which is assumed to be isotropic.

As an important extension to the classical (non-relativistic) case, we also study

and implement the semirelativistic formulation. The semirelativistic approximation

assumes that the plasma flow speed and the sound speed are nonrelativistic, while the

Alfvén speed is relativistic. This is applicable for the case when the classical Alfvén

speed is comparable or even larger than the speed of light, for example in Jupiter’s

and Saturn’s magnetospheres due to strong planetary magnetic fields. For problems

with moderate Alfvén speeds, the semirelativistic form of the MHD equations is

still useful because it allows larger explicit time steps and reduces the numerical

diffusion for some schemes [Tóth et al., 2011] by artificially reducing the speed of light,
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which is known as the “Boris correction” in the space plasma modeling community

[Boris , 1970]. For single-fluid ideal MHD, the semirelativistic equation set as well as

characteristic waves were presented in Gombosi et al. [2002].

This chapter first presents the MHD equations for both classical and semirelativis-

tic cases with anisotropic ion pressure and isotropic electron pressure in Section 2.1.

Then in Section 2.2 the characteristic waves are explored for the semirelativistic

approximation. The classical case and the case without electron pressure are also

obtained. Section 2.3 describes the implementation of Anisotropic BATS-R-US. In

section 2.4, we present verification tests for Anisotropic BATS-R-US. Section 2.5

contains the summary for Chapter II.

2.1 Equations

According to equation (1.1), with anisotropic ion pressure and isotropic electron

pressure, the pressure tensor can be written as

P = (p⊥ + pe)I+ (p‖ − p⊥)bb (2.1)

where pe denotes electron pressure, and p‖ and p⊥ represent the parallel and perpen-

dicular ion pressures. The average ion scalar pressure thus can be expressed as

p =
2p⊥ + p‖

3
(2.2)

which is the trace of the ion pressure tensor divided by 3.
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2.1.1 Non-relativistic equations

We start with the equation set for non-relativistic MHD in the primitive-variable

form

∂ρ

∂t
+ (u · ∇)ρ+ ρ(∇ · u) = 0 (2.3)

ρ
∂u

∂t
+ ρ(u · ∇)u+∇(p⊥ + pe) +∇ ·

[

(p‖ − p⊥)bb
]

+
1

µ0

B× (∇×B) = 0 (2.4)

∂B

∂t
+∇× [−(u×B)] = 0 (2.5)

∂p‖
∂t

+ (u · ∇)p‖ + p‖(∇ · u) + 2p‖b · (b · ∇)u = 0 (2.6)

∂p⊥
∂t

+ (u · ∇)p⊥ + 2p⊥(∇ · u)− p⊥b · (b · ∇)u = 0 (2.7)

∂pe
∂t

+ (u · ∇)pe +
5

3
pe(∇ · u) = 0 (2.8)

where ρ and u represent the density and velocity, µ0 is the permeability of vacuum,

and the polytropic index is taken to be 5/3. Note that we assume that the ion

and electron velocities are equal, thus we do not consider Hall MHD for this study.

Also, the collision terms which describe the interactions between ions and electrons as

well as wave scatterings are all neglected. Therefore, we are dealing with an “ideal”

three-temperature MHD approximation, i.e., considering the ion parallel pressure, ion

perpendicular pressure and electron pressure separately.

Compared to the isotropic MHD equations, the continuity equation (2.3) and the

induction equation (2.5) remain the same. The momentum equation (2.4) contains

the pressure tensor (2.1) instead of the scalar pressure in the isotropic case. The

ion pressure components have their individual evolution equations (2.6) and (2.7).

In the absence of collision terms, the ratio between the two pressure components

might achieve unrealistic values. When implementing the equations into BATS-R-

US, we add a relaxation term to the right-hand-sides of (2.6) and (2.7) to limit the
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ion pressure anisotropy to the range allowed by the various instabilities. This will be

discussed later.

For the convenience of implementation into BATS-R-US and the consistency with

the isotropic MHD model, we adopt the average ion pressure p as one of our primitive

variables, and solve

∂p

∂t
+ 2p(∇ · u) + (u · ∇)p− 1

3
p‖(∇ · u) + (p‖ − p)b · (b · ∇)u = 0 (2.9)

which is obtained by linearly combining the parallel (2.6) and perpendicular (2.7) ion

pressure equations according to relation (2.2). Mathematically, we can use either p‖

or p⊥ as the other ion pressure variable as they make no difference. However, given p⊥

is larger than p‖ in most places where ion pressure anisotropy exists in the terrestrial

magnetosphere where we will first apply Anisotropic BATS-R-US to simulate, the

chance of p‖ becoming negative when solving for p and p⊥ is larger than the chance

of p⊥ getting negative when solving for p and p‖. In favor of numerical computation,

we choose to solve p‖ instead of p⊥.

2.1.2 Conservative form

The conservative form of the equations is required in order to capture correct

jump conditions across discontinuities, for instance, the Earth’s bow shock. We have

density ρ, momentum ρu, magnetic field B, and total energy density

e =
ρu2

2
+

B2

2µ0

+
3

2
(p+ pe) (2.10)
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as conservative variables, and the conservative equations can be written as

∂ρ

∂t
+∇ · (ρu) = 0 (2.11)

∂ρu

∂t
+∇ ·

[

ρuu+ p⊥I+ peI+ (p‖ − p⊥)bb− 1

µ0

(

BB− B2

2
I

)]

= 0 (2.12)

∂B

∂t
+∇× [−(u×B)] = 0 (2.13)

∂e

∂t
+∇ ·

[

u

(

e+ p⊥ + pe +
B2

2µ0

)

+ u · ((p‖ − p⊥)bb− BB

2µ0

)

]

= 0 (2.14)

The parallel and electron pressure equations (2.6) and (2.8) are still needed to calcu-

late p‖ and pe. This means that the jump conditions across a discontinuity cannot be

fully determined from the conservation relations, because we do not know how to dis-

tribute the total thermal energy (obtained from the conservative quantity e) among

the parallel ion, perpendicular ion and electron pressures. The problem of insufficient

jump relations for discontinuities in an anisotropic plasma has been discussed by many

earlier studies [Abraham-Shrauner , 1967; Lynn, 1967; Neubauer , 1970], in which var-

ious additional assumptions were applied to supplement the jump relations. Hudson

[1970] discussed types of discontinuities for an anisotropic plasma, and pointed out

that the assumptions made for a general case may not be suitable for discontinuities in

the solar wind. There are also detailed analysis of Rankine-Hugoniot relations mod-

ified by the pressure anisotropy for shocks in space [Chao and Goldstein, 1972; Lyu

and Kan, 1986]. A relatively new solution to the problem was proposed by Erkaev

et al. [2000] and Vogl et al. [2001a,b], in which mirror and firehose instability crite-

ria were applied to constrain the ratio between parallel and perpendicular pressures

downstream of the shock. We apply a similar approach of utilizing instabilities.

2.1.3 Instabilities

The three types of instabilities that we consider are the firehose, mirror and ion

cyclotron instabilities that can be present in plasmas with ion pressure anisotropy.
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The Harris instability mentioned in Section 1.1.2.1 is also associated with electron

pressure anisotropy and thus is not considered in our model.

The firehose instability [Lazar and Poedts , 2009a,b; Gary et al., 1998] arises when

the ion parallel pressure is large enough so that

p‖

p⊥

> 1 +
B2

µ0p⊥

(2.15)

The mirror and ion cyclotron instabilities arise when the ion perpendicular pressure

is sufficiently large. These two instabilities, especially their behaviors in space plasma

regimes, have been investigated by many researchers [Tajiri , 1967; Gary , 1976, 1992].

The criterion for the mirror instability is

p⊥

p‖

> 1 +
B2

2µ0p⊥

(2.16)

For the ion cyclotron instability, the general form can be written as

p⊥

p‖

> 1 + C1

(

B2

2µ0p‖

)C2

(2.17)

where C1 and C2 are constants, which vary from study to study. Anderson et al.

[1994] gave C1 = 0.85 and C2 = 0.48, while Gary et al. [1994] presented three different

sets of constants based on three growth rates. Also, Denton et al. [1994] extracted

the threshold from measurements. In our code we use C1 = 0.3 and C2 = 0.5 for

magnetosphere simulations as it gives reasonable agreement with measurements.

When the instability criteria are satisfied, the strong wave-particle interaction

tends to drive the system towards isotropy. The ratio of ion perpendicular to ion

parallel pressure of a stable plasma is limited by the lower bound provided by the

firehose stability threshold (2.15) and the upper bound provided by the mirror and

ion cyclotron stability criteria (2.16) and (2.17). The incomplete equation set in
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conservative form is thus augmented by instability thresholds, which constrain the

solution to be physically reasonable.

It is important to note that the mirror and ion cyclotron instabilities are kinetic

phenomena that are not captured by the anisotropic MHD equations. The firehose

instability is correctly represented by the fluid equations, but its growth rate is limited

by the grid resolution. To take into account the effect of these instabilities, we add

a right-hand-side source term to (2.6) if any of the instability conditions is fulfilled

[Hesse and Birn, 1992; Birn et al., 1995; Samsonov et al., 2001]:

δp‖

δt
=

p‖ − p‖

τ
(2.18)

where p‖ is the marginally unstable ion parallel pressure obtained from (2.15), (2.16)

or (2.17), respectively, which are described in Appendix A. This source term relaxes

the ion pressure anisotropy towards a stable state at a time rate τ . The value of τ

depends on the growth rate of instabilities, which in turn depends on the plasma state

as well as the spatial scales. The details will be explored according to the applications

of Anisotropic BATS-R-US in the following chapters. We can also explicitly set τ to

a constant value that is small relative to the typical dynamical time scales of the

problem.

The source term is applied in a split manner at the end of the time step and it is

discretized point-implicitly for the sake of numerical stability as

pn+1

‖ = p∗‖ +
∆t

τ
(p‖ − pn+1

‖ ) (2.19)

which can be solved for pn+1
‖ to obtain the update

pn+1

‖ = p∗‖ +
(p‖ − p∗‖)∆t

∆t+ τ
(2.20)
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where ∆t is the time step, and time levels ∗ and n+ 1 correspond to the incomplete

and final updates, respectively.

2.1.4 Semirelativistic equations

To obtain the semirelativistic form, we follow the steps in Gombosi et al. [2002]

for semirelativistic MHD with isotropic pressure. We re-derive the equations while

keeping the electric force in the momentum equation and the displacement current

in Ampere’s law. Only the momentum equation (2.4) needs to be modified from the

classical case, which can be written as

∂u

∂t
+ γ2

A(I+
V 2
A

c2
bb) ·

[

(u · ∇)u+
1

ρ
∇(p⊥ + pe) +

1

ρ
∇ ·
[

(p‖ − p⊥)bb
]

]

+ γ2

A

1

µ0ρ
B×

[

∇×B− 1

c2
u× (∇× E)− 1

c20
u∇ · E

]

= 0 (2.21)

where the Alfvén factor

γA =
1

√

1 +
V 2

A

c2

(2.22)

was introduced with the classical Alfvén speed VA = B/
√
µ0ρ. c0 is the true value of

the speed of light, while c is the artificially lowered speed of light. The electric field

E can be obtained from Ohm’s law

E = −u×B (2.23)

Hence, our primitive-variable equation set of the semirelativistic MHD with aniso-

tropic ion pressure and isotropic electron pressure is composed of equations (2.3),

(2.5) - (2.8) and (2.21). Note that when V 2
A is much smaller than c2, the equation

set reduces to the classical form. In equation (2.21), the last term 1

c2
0

u∇ · E can be

dropped because that it is basically u2/c20 smaller than the ∇×B term, and u2 << c20

is true for the semirelativistic limit. This simplification will be used for the derivation
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of characteristic waves.

In the conservative form of semirelativistic MHD, both the momentum and energy

equations are different from the non-relativistic equations. The momentum equation

(2.12) is replaced with

∂ [ρu+ E×B/(µ0c
2)]

∂t
+ (2.24)

∇ ·
[

ρuu+ (p⊥ + pe)I+ (p‖ − p⊥)bb+
B2I

2µ0

+
E2I

2µ0c2
− BB

µ0

− EE

µ0c2

]

= 0

and the energy equation (2.14) changes to

∂ [e+ E2/(2µ0c
2)]

∂t
+ (2.25)

∇ ·
[

u

(

e+ p⊥ + pe −
B2

2µ0

)

+ (p‖ − p⊥)u · bb+
E×B

µ0

]

= 0

where E = |E| is the magnitude of the electric field.

2.2 Characteristic Wave Speeds

The numerical discretization of the anisotropic MHD equations requires character-

istic wave speeds. The maximum wave propagation speed determines the maximum

stable explicit time step according to the Courant-Friedrichs-Lewy (CFL) stability

condition. The maximum wave speed is also required for the Rusanov (or local Lax-

Friedrichs) scheme [Rusanov , 1961], while the fastest left and right wave speeds are

needed for the Harten-Lax-van Leer (HLL) scheme [Harten et al., 1983].

To find the characteristic waves, we need to solve for the eigenvalue problem of a

set of nine equations. We solve the semirelativisitic case, and then obtain the classical

limit by taking γA = 1. In order to obtain the characteristic matrix, we write the
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equation set in a quasi-linear form in one dimension:

∂U

∂t
+Mx

∂U

∂x
= 0 (2.26)

The variables U = (ρ,u,B, p‖, p⊥, pe) only depend on x and t. We utilize the MAPLE

software to extract the coefficients from equations (2.3), (2.5) - (2.8) and (2.21), and

form the 9 × 9 characteristic matrix. Because the characteristic wave speeds do not

depend on the coordinate system, we simplify our problem by setting Bz = 0, i.e.,

the coordinate system is rotated such that the magnetic field lies in the x− y plane.

The final characteristic matrix Mx can be written as





















































ux ρ 0 0 0 0 0 0 0

0 γ2
Aux + χ11 χ12 0 κ1 0 η11 η12 η13

0 χ21 γ2
Aux + χ22 0 κ2 0 η21 η22 η23

0 χ31 χ32 γ2
Aux + χ33 κ3 ν 0 0 0

0 By −Bx 0 ux 0 0 0 0

0 0 0 −Bx 0 ux 0 0 0

0 p‖ (1 + 2b2x) 2p‖bxby 0 0 0 ux 0 0

0 p⊥ (2− b2x) −p⊥bxby 0 0 0 0 ux 0

0 5

3
pe 0 0 0 0 0 0 ux





















































(2.27)

where

χ =
γ2
A

µ0ρc2













B2
xux − B2

yux 2BxByux 0

2BxByux B2
yux − B2

xux 0

−B2
yuz BxByuz −B2

xux − BxByuy













(2.28)
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κ =
γ2
A

µ0ρc2













(c2 − u2
x)By + (2µ0ρc

2B−2 + 1)Byb
2
x(p⊥ − p‖)ρ

−1

(u2
x − c2)Bx +

(

b2y + (b2y − b2x)µ0ρc
2B−2

)

B2
x(p⊥ − p‖)ρ

−1

−Byuxuz













(2.29)

ν =
γ2
A

µ0ρc2
[

(u2

x − c2)Bx + Byuxuy − µ0c
2BxB

−2(p⊥ − p‖)
]

(2.30)

η =













b2xρ
−1 γ2

Ab
2
yρ

−1 γ2
Aρ

−1(1 + V 2
A,xc

−2)

bxbyρ
−1 −γ2

Abxbyρ
−1 γ2

Abxbyρ
−1V 2

Ac
−2

0 0 0













(2.31)

We use the notation by = By/B. With the help of MAPLE and after some complicated

algebra, the characteristic equation det(Mx−Iλ) = 0 is reduced to the following form:

(λ− ux)
3P2(λ)P4(λ) = 0 (2.32)

where the wave speed λ is one of the eigenvalues of Mx. ux is the flow velocity along

the direction x. P2 and P4 are second- and fourth-order polynomials:

P2 = λ(λ− ux) + γ2

A

[

λ(u · b)bx
V 2
A

c2
− ux(λ− ux)−

(

V 2

A +
p⊥ − p‖

ρ

)

b2x

]

(2.33)

P4 = (λ− ux)
4 −

(

a2 +
2p⊥ − 3p‖

ρ
+

2p‖ − p⊥

ρ
b2x

)

(λ− ux)
2 (2.34)

−(c2 − λ2)
V 2
A

c2
[

(λ− ux)
2 − a2b2x

]

−
[

p⊥
2 − 3p⊥p‖

ρ2
(1− b2x) +

3p‖
2

ρ2
b2x −5pe

3ρ

(

4p‖ − p⊥

ρ
b2x −

3p‖

ρ

)]

b2x

where

a2 =
3p‖ +

5

3
pe

ρ
(2.35)

is defined as the sound speed and bx = Bx/B.
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Equation (2.32) is the dispersion relation, whose roots λ describe the correspond-

ing characteristic waves. Three of the roots are identical:

λ1,2,3 = ux (2.36)

They represent three entropy waves related to the three pressures p‖, p⊥ and pe. In

the classical limit, the entropy waves remain the same.

2.2.1 Alfvén waves

The roots of P2 = 0 correspond to a pair of Alfvén waves:

λ4,5 =
1

2
γ2

A

[

ux −
V 2
A

c2
(u · b)bx

]

+
ux

2

±

√

γ2
A

(

V 2
A,x +

p⊥ − p‖

ρ
b2x − u2

x

)

+

[

1

2
γ2
A

(

ux −
V 2
A

c2
(u · b)bx

)

+
ux

2

]2

(2.37)

where VA,x = VAbx =
√

B2
x/µ0ρ. Although the formula is quite complicated, there

is no pe dependence, which means that the presence of the electron pressure does

not affect the Alfvén wave solutions. This is expected, since the electron pressure is

isotropic, which can be viewed as an analog to the isotropic pressure in single-fluid

MHD, and only contributes to the longitudinal (compressional) waves.

In the classical limit with VA ≪ c and γ2
A approaching 1, the Alfvén wave speeds

reduce to

lim
VA≪c

λ4,5 = ux ±

√

1

µ0

B2
x + (p⊥ − p‖)b2x

ρ
(2.38)

This is consistent with Baranov’s results [Baranov , 1970]. Compared to isotropic

MHD, pressure anisotropy enters the expression as the difference between the parallel

and perpendicular pressures. λ4,5 contains an imaginary part if the condition (2.15)

is fulfilled, and then the firehose instability will arise.
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2.2.2 Fast and slow magnetosonic waves

The remaining four roots of P4 = 0 in (2.34) are associated with magnetosonic

waves. The equation itself is very complicated, so are the roots. It is much simpler

to look into the classical limit first, as the terms proportional to V 2
A/c

2 will vanish.

The resulting equation has only fourth- and second-order terms of λ− ux, which can

be easily solved:

lim
VA≪c

λ6,7,8,9 = ux ±
1√
2ρ

{

B2

µ0

+ 2p⊥ +
5

3
pe + (2p‖ − p⊥)b

2

x

±
[

(

B2

µ0

+ 2p⊥ +
5

3
pe + (2p‖ − p⊥)b

2

x

)2

+ 4

(

1

4
p⊥

2b2x(1− b2x)− 3p‖p⊥b
2

x(2− b2x) + 3p‖
2b4x

+
5

3
pe(4p‖b

2

x − p⊥b
2

x − 3p‖)b
2

x −
(

3p‖ +
5

3
pe

)

B2
x

µ0

)]1/2
}1/2

(2.39)

where we substituted a2 back from (2.35). The second ± corresponds to fast(+) and

slow(−) magnetosonic waves, respectively. For each type, there are two waves prop-

agating symmetrically along opposite directions with respect to the bulk flow speed

ux, corresponding to the first ± sign. With the pressure anisotropy, the magnetosonic

wave speeds are much more complicated than in the isotropic case. In the case of

neglecting the electron pressure, we recover the formula obtained by Baranov [1970].

Next we consider the semirelativistic case. The general case requires the solution

of a general fourth-order polynomial. While this can be done, it is very expensive.

To obtain an approximation, we study some special cases that have simpler solutions.

First we take the zero flow velocity assumption, i.e. u = 0. We define

a2 = a2
(

1 +
V 2
A,x

c2

)

+
2p⊥ − 3p‖

ρ
+

2p‖ − p⊥

ρ
b2x (2.40)
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related to the sound speed, and

ǫ =
b2x
ρ2

[

3p‖p⊥(2− b2x)− p2⊥(1− b2x)− 3p2‖b
2

x −
5pe
3

(

4p‖b
2

x − p⊥b
2

x − 3p‖

)

]

(2.41)

to include the extra terms related to the pressure anisotropy and the direction of the

magnetic field. The eigenvalues λ6,7,8,9 for no flow approximation are

lim
ux→0

λ6,7 = ± 1√
2

√

γ2
A(a

2 + V 2
A)−

√

γ4
A(a

2 + V 2
A)

2 − 4γ2
A(a

2V 2
A,x + ǫ) (2.42)

and

lim
ux→0

λ8,9 = ± 1√
2

√

γ2
A(a

2 + V 2
A) +

√

γ4
A(a

2 + V 2
A)

2 − 4γ2
A(a

2V 2
A,x + ǫ) (2.43)

corresponding to the slow and fast magnetosonic wave speeds, respectively.

Another special case is when the magnetic field is parallel to the x direction, i.e.

bx = 1. This simplifies the eigenvalues to be

lim
bx→1

λ6,7 = ux ± a (2.44)

lim
bx→1

λ8,9 = γ2

Aux ± γAVA

√

1 +
p⊥ − p‖

V 2
Aρ

− γ2
A

u2
x

c2
(2.45)

The last special case we consider is when the magnetic field is perpendicular to

the x direction, i.e., bx = 0. In this case the wave speeds become

lim
bx→0

λ6,7 = ux (2.46)

lim
bx→0

λ8,9 = γ2

Aux ± γA

√

2p⊥ + (5/3)pe
ρ

+ V 2
A

(

1− γ2
A

u2
x

c2

)

(2.47)

Based on the special cases and the approximate formulas for the isotropic case [Gom-
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bosi et al., 2002], we construct the following approximate slow and fast magnetosonic

wave speeds for the general case:

λ̃6,7 = ux ± c̃s (2.48)

= ux ±
1√
2

√

γ2
A(a

2 + V
2

A)−
√

γ4
A(a

2 + V
2

A)
2 − 4γ2

A(a
2V

2

A,x + ǫ)

and

λ̃8,9 = γ2

Aux ± c̃f (2.49)

= γ2

Aux ±
1√
2

√

γ2
A(a

2 + V
2

A) +

√

γ4
A(a

2 + V
2

A)
2 − 4γ2

A(a
2V

2

A,x + ǫ)

where we defined

V
2

A = V 2

A

(

1− γ2

A

u2
x

c2

)

and V
2

A,x = V 2

A,x

(

1− γ2

A

u2
x

c2

)

(2.50)

Equations (2.48) and (2.49) reduce to the special cases in the corresponding limits.

First of all, they reduce to the classical magnetosonic wave speeds (2.39) for the

case of Alfvén speed negligible compared to the artificially reduced speed of light,

i.e., VA ≪ c and γA → 1,V A → VA, V A,x → VA,x. Secondly, for ux = 0, equations

(2.42) and (2.43) are recovered. Lastly, when substituting bx = 1 or bx = 0 for the

parallel and perpendicular magnetic field limits, (2.48) and (2.49) are consistent with

(2.44),(2.45), and (2.46), (2.47), respectively.

In order to check the accuracy, we compare the exact solutions of P4 = 0 with

the values given by the approximate formulas. The relative error is evaluated as the

difference between the approximate and exact solutions and then divided by the exact

solution:

ξs+ =
λ̃6 − λ6

λ6

, ξs− =
λ̃7 − λ7

λ7

, ξf+ =
λ̃8 − λ8

λ8

, ξf− =
λ̃9 − λ9

λ9

(2.51)
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We investigate the errors statistically by generating 105 random points in a 6-

dimensional variable space of ux, B, bx, p‖, p⊥ and pe, while fixing ρ = 1, c = 1, and

µ0 = 1. Recall the definition of semirelativistic MHD, the bulk flow velocity ux and

the sound speed a should always be much smaller than the speed of light c, yet the

Alfvén speed VA can exceed c. We thus limit variable ranges to be 0 < ux < c/3,

0 < a < c/3, 0 < VA < 3c, 0 < bx < 1 and 0 < p⊥ < 5p‖ that covers the physically

reasonable range of anisotropy. The relative errors are shown in Figure 2.1. For

the right going fast speed λ8, the errors are within 5%. This is the most important

eigenvalue, since λ8 is the largest wave speed (for ux > 0) that determines the explicit

time step and it is also used in the Rusanov and HLL schemes. The HLL scheme

also uses λ9, but it does not contribute much when its value approaches zero. So we

are interested in the errors of λ9 away from zero, which are acceptable. The plot of

ξf+ also shows that the points are mainly in the positive part, which means that λ̃8

overestimates the exact fast speed in almost every case with very few exceptions. This

in turn ensures that the CFL condition based on λ̃8 is sufficiently safe to maintain

stability. When both ux and a lie between c/3 and c, the errors are found to be within

20%. Overall, the approximate formulas are accurate enough for our purposes within

the parameter range of interest.

2.3 Implementation

We implement both the classical and semirelativistic MHD equations with aniso-

tropic ion pressure and isotropic electron pressure into the BATS-R-US code, and

name the new model Anisotropic BATS-R-US. The implementation of the various

temporal and spatial discretization schemes have been reported in detail during the

development of BATS-R-US [Powell et al., 1999; De Zeeuw et al., 2000; Tóth et al.,

2006; Tóth et al., 2012], and here we only describe those parts of the algorithm that

are specific to the anisotropic pressure.
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Figure 2.1: The relative error of the approximate semirelativistic magnetosonic wave
formulas (2.48) and (2.49). The dots are 0.1 million random variable sets
in a 6-dimensional space. The calculation of the error is based on (2.51).

We solve the conservative form of the continuity, momentum, induction and energy

equations: (2.11)-(2.14) in the classical case, and (2.11), (2.13), (2.24), (2.25) in the

semirelativistic case. The pressure equations (2.6), (2.9) and (2.8) cannot be cast into

full conservation form, so they are solved in the following non-conservative form:

∂p‖

∂t
+∇ · (p‖u) = −2p‖b · (b · ∇)u (2.52)

∂p

∂t
+∇ · (pu) = (p− p‖)b · (b · ∇)u−

(

p− p‖

3

)

∇ · u (2.53)

∂pe
∂t

+∇ · (peu) = −2

3
pe∇ · u (2.54)

The above equations have pure divergence terms on the left hand sides where we

use the usual flux formulation of the finite volume schemes. The right hand sides

of equations (2.52), (2.53) and (2.54) consist of the gradient and divergence of the

velocity multiplied by some terms. These coefficient terms are simply taken at the cell
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centers, while the gradient and divergence of the velocity are evaluated analogously

to the fluxes used in the conservative equations. In particular, we use a limited

reconstruction procedure with second or third order accurate slope limiters to obtain

the left and right states in the primitive variables. At resolution changes we use the

algorithm of Sokolov et al. [2006]. The left and right velocities are averaged as

ū =
uL + uR

2
(2.55)

for the Rusanov scheme, and

ū =
λ+uL − λ−uR

λ+ − λ−

(2.56)

for the HLL scheme, where λ− and λ+ are the most negative and most positive wave

speeds, respectively. The wave speeds are calculated with the exact formula (2.39) in

the classical case, while for the semirelativistic case, the approximate magnetosonic

wave speed formulas (2.48) and (2.49) are applied. Finally, the divergence and gra-

dient of the velocity are obtained by integrating ū over the surface of the cell in the

usual finite volume manner.

BATS-R-US can either solve for the energy density e or the ion pressure p or use

a hybrid approach and solve for both. In the hybrid scheme the energy equation

can be used near shock waves to get the correct energy jump conditions, while the

pressure equation provides more accurate and robust solution in regions where the

thermal energy density is a small fraction of the total energy density. In grid cells

where the energy equation is used, p∗ calculated from (2.53) is overwritten by the

pressure calculated from the energy density using (2.10), while the opposite is done

in grid cells where the pressure equation is used. The parallel and electron pressures

p‖ and pe are always computed from equations (2.52) and (2.54), respectively. Finally,

the parallel pressure has to be corrected according to (2.20) if any of the instability
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conditions (2.15) to (2.17) are satisfied.

The full algorithm can be summarized as following:

1. Reconstruct the left and right states using limited slopes of the primitive vari-

ables.

2. Calculate the Rusanov or HLL fluxes and the face centered values of the velocity

from the left and right states.

3. Calculate the divergence of the fluxes and the divergence and gradient of the

velocity by integrating over the cell faces.

4. Convert the classical momentum and energy densities to the semirelativistic

variables in the semirelativistic case.

5. Apply the fluxes and source terms to update the variables.

6. Convert the semirelativistic momentum and energy densities back to the clas-

sical variables in the semirelativistic case.

7. Either overwrite pressure based on energy or the other way around.

8. Calculate the instability limits.

9. Apply the relaxation term to the parallel pressure.

To achieve second order accuracy in time, we apply a two-stage Runge-Kutta scheme.

We can also use an implicit or explicit/implicit time stepping algorithm as described

in Tóth et al. [2006]. In all cases, the instability limits and the relaxation terms are

only applied after the full time step is completed.
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2.4 Numerical tests

To verify Anisotropic BATS-R-US, a large set of numerical tests have been de-

signed and carried out, including solving the relativistic and classical equations, solv-

ing for energy density or pressure, using Rusanov and HLL schemes, uniform and

non-uniform meshes, as well as explicit and implicit time stepping schemes. Here we

present tests involving the propagation of characteristic MHD waves on a 1D mesh

and the simulation of the firehose instability. We use a grid convergence study to

establish the accuracy of the scheme. In all tests we use the HLL scheme and nor-

malized the units of the magnetic field so that µ0 = 1. We do not use the pressure

relaxation term for the tests.

2.4.1 Magnetosonic wave propagation tests

We have performed magnetosonic wave propagation tests for many different mag-

netic field orientations both for classical and semirelativistic cases. Small perturba-

tions are applied on a uniform background state, and then the simulated wave speeds

are compared with the analytic solution.

As a specific example, we describe a test with magnetosonic waves propagating

perpendicular to the background magnetic field in the semirelativistic approximation.

In this case, the analytic solution for the fast wave speed is given by equation (2.47),

while the slow wave speed given by equation (2.46) is equal to the flow speed ux. We

compute on a 1D domain ranging from x = −30 to x = +30 with periodic boundary

conditions, and set the uniform background as ρ = 1, ux = 12, uy = uz = 0,

Bx = Bz = 0, By = 30, p‖ = 14, p = 16, pe = 12, c = 30. The density, pressure, and

magnetic field perturbations are sinusoidal waves centered at x = 0 and limited within

−3 < x < 3: δρ = 0.01 cos(2πx/12), δp‖ = 0.14 cos(2πx/12), δp = 0.16 cos(2πx/12),

δpe = 0.195 cos(2πx/12), and δBy = 0.3 cos(2πx/12). For each perturbation, the

maximum magnitude is around 1% of the background value. A pair of excited fast
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Figure 2.2: A pair of fast waves are generated from the initial center perturbation
(solid lines). The two waves move in opposite directions at speeds −15
and +27, respectively. The dotted lines show the waves at the final time
t = 1. The vertical dashed lines show where the center of the wave should
be at t = 1 based on the analytic formula (2.47).

waves thus propagate along +x and −x directions asymmetrically with velocities

λ8 = 27 and λ9 = −15 respectively. To minimize discretization errors, we used 3,000

grid cells. Figure 2.2 shows the density, ion parallel pressure and electron pressure

at the initial and final times. The numerical propagation speeds of the pair of fast

waves agree well with the analytic values.

2.4.2 Alfvén wave propagation and firehose instability tests

We did Alfvén wave propagation tests similar to the magnetosonic wave tests by

posing perturbations on the velocity and magnetic field. As mentioned in section

2.2.1, the electron pressure does not affect the Alfvén wave speed. The propagation

speed was compared to the analytical solution, and we found good agreement in all

tests.

Here we show a test of the firehose instability in the classical limit, which can

be triggered from the Alfvén mode by increasing the parallel pressure. Within the
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Figure 2.3: Firehose instability test, growing wave pattern at t=0s(solid line),
t=0.1s(dot line), and t=0.2s(dash line)
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Figure 2.4: The y-direction kinetic energy growth against time for the firehose insta-
bility test. The growth curve is plotted as the solid line, while the dash
line represents the theoretical exponential growth rate.

46



domain −6 < x < 6, we have a uniform background with ρ = 1, ux = uy = uz = 0,

Bx = 10, By = Bz = 0, p‖ = 104, p = 110/3, pe = 10. According to the wave speed

formula (2.38), the calculated Alfvén speed is
√
−1. This means that the perturba-

tions in uy and By will be shifted by 90 degrees. We apply the following perturbations:

δuy = 0.01 cos(2πx/6) and δBy = 0.1 cos(2πx/6 + π/2). Instead of propagation, the

perturbations start to grow exponentially. Figure 2.3 shows three snapshots of the

growing instability. There are small oscillations near the local extrema at t = 0.2.

These are caused by the numerical errors that introduce short wave length perturba-

tions which grow much faster than the original perturbation. Figure 2.4 shows the

growth of the y-direction kinetic energy Eky = ρu2
y/2 as a function of time. The

analytical growth rate is overplot for comparison. The agreement is very good up to

t = 0.25. After this time, the growth of the kinetic energy exceeds the theoretical

rate, because the short wavelength perturbation overtake the growth trend.

2.4.3 Grid convergence tests

In order to check the accuracy of the numerical scheme, we did several grid con-

vergence studies. The test involving circularly polarized Alfvén wave propagation is

presented in Tóth et al. [2012].

First, we show a test for sound waves propagating along the magnetic field. For

convenience we only consider the classical limit, of which the exact solution can be

easily calculated. The sound wave is excited in the domain −5 < x < 5 of zero-flow

plasma with the magnetic field parallel to the wave propagation direction: ρ = 1,

ux = uy = uz = 0, Bx = 10, By = Bz = 0, p‖ = p = 5 and pe = 6. The perturbations

are of the order 10−6 in magnitude: δρ = 10−7 cos(2πx/5), δux = 5×10−7 cos(2πx/5),

δp‖ = δp = 1.5×10−6 cos(2πx/5), and δpe = 10−6 cos(2πx/5). The resulting wave is a

pure sound wave with speed a = 5. The test is performed on 1D grids with 100, 200,

400, 800 and 1600 cells, and with the monotonized central (MC) and Koren slope
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limiters, respectively. The boundary conditions are periodic. The final time is set

to t = 5, so the wave propagates 5 full wave lengths. We compare the final state to

the initial perturbed state as the exact solution. The relative error is calculated for

each grid resolution, which is the absolute difference between the numerical solution

and the exact solution then divided by the absolute value of the exact solution.

Figure 2.5 confirms that the scheme converges to the analytic solution at the expected

convergence rate.

Second, as an interesting extension of the propagating semirelativistic magne-

tosonic wave test, we generate a pair of nonlinear fast waves by increasing the magni-

tudes of perturbations to be ten times the ones used in the test before and using cos2

perturbations instead of cos, while other parameters remain the same. The nonlinear

feature of the waves can be clearly seen from Figure 2.6. Similar to the sound wave

test, this test is performed with 100, 200, 400, 800 and 1600 cells. The final state

of the simulation with 3200 cells is regarded as the reference solution to which other

results are compared. Figure 2.7 shows the convergence rates which are essentially

second order. Note that the steepening of the waves creates a non-smooth solution by

the end of the simulation so that second order accuracy is not necessarily expected.

2.5 Summary

We describe the equation set for the non-relativistic and semirelatvistic MHD

with anisotropic ion pressure and isotropic electron pressure, a three-temperature

plasma. The semirelativistic equation set is useful when the classical Alfvén speed is

comparable or exceed the speed of light. It is also suitable for the artificially reduced

speed of light often used in space plasma modeling.

To build a numerical model, we need to determine the characteristic speeds. We

solve for the semirelativistic speeds first and obtain the non-relativistic solutions as a

limiting case. With two more equations compared to the isotropic single-fluid MHD,
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Numerical Errors of the Sound Wave Test
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Figure 2.5: Convergence study for the sound wave test. The two curves are results
of the monotonized central (MC) and Koren limiters. The dashed lines
indicate the second and third order convergence rates, respectively.
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Figure 2.6: A pair of nonlinear semirelativistic fast waves are excited from the initial
center perturbation (solid lines). The dotted lines show the waves at the
final time t = 1. The plot shows the simulation with 3200 cells.
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Numerical Errors of the Nonlinear Magnetosonic Wave Test
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Figure 2.7: Convergence study for the nonlinear propagating semirelativistic wave
test. The two curves are results of the monotonized central (MC) and
Koren limiters. The dashed line indicates the second order convergence
rate.

the resulting dispersion relation contains nine characteristic waves. Three of them

are entropy waves corresponding to three temperatures, two of them are the Alfvén

waves, while the remaining four are fast and slow magnetosonic waves. We calculate

the exact speed for the Alfvén wave and derive the approximate magnetosonic wave

speeds for the semirelativistic case. The accuracy of the approximate formulas are

demonstrated by comparing them to the exact solution. For the classical case, we

obtain the exact formulas for all wave speeds.

Instabilities play an important role in limiting ion pressure anisotropy. The fluid

equations correctly describe the firehose instability, but the mirror and ion cyclotron

instabilities can only be fully captured by a kinetic model. We use a source term in the

parallel pressure equation to relax the solution towards the marginally unstable state

whenever any of the stability conditions are violated. The instability conditions also

augment the incomplete set of conservation laws to establish physically reasonable

jump conditions across discontinuities.

In order to verify our theory and implementation, we performed several numerical
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tests. Both the magnetosonic and the Alfvén wave speeds were checked through wave

propagation tests. We also simulated the firehose instability and compared it with

the analytical solution. These tests demonstrate that we have successfully developed

a numerical model solving the classical and semirelativistic MHD equations with

anisotropic ion pressure and isotropic electron pressure. This model, Anisotropic

BATS-R-US, will be further validated through terrestrial magnetospheric simulations

in the next chapter.
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CHAPTER III

Global Magnetospheric Simulations with

Anisotropic BATS-R-US

In the previous chapter we have reported in detail the implementation and verifi-

cation of Anisotropic BATS-R-US. In this chapter, we apply Anisotropic BATS-R-US

to Earth’s quiet time magnetospheric simulations, which also serve as model valida-

tion tests. Since the electron pressure plays a minor role compared to the ion pressure

in the terrestrial magnetosphere, we do not consider electron pressure in our magneto-

spheric modeling. In this case Anisotropic BATS-R-US solves single-fluid anisotropic

MHD equations under the double adiabatic approximation [Chew et al., 1956] with

an additional pressure anisotropy limiting term.

The following content of this chapter is divided into four parts. We begin with

describing the equation set that Anisotropic BATS-R-US solves in the absence of

electron pressure, as well as the improved pressure anisotropy limiting term specific

to magnetospheric simulations in Section 3.1. Then we present a variety of mag-

netospheric simulations performed with Anisotropic BATS-R-US in Section 3.2 for

idealized simulations and in Section 3.3 for measured solar wind and IMF conditions

as inputs. Finally we evaluate the model and conclude the chapter in Section 3.4.
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3.1 Methods

3.1.1 Equations

Neglecting the electron pressure, Anisotropic BATS-R-US solves the following

equations in the classical limit:

∂ρ

∂t
+∇ · (ρu) = 0 (3.1)

∂ρu

∂t
+∇ ·

[

ρuu+ p⊥I+ (p‖ − p⊥)bb− 1

µ0

(

BB− B2

2
I

)]

= 0 (3.2)

∂B

∂t
+∇× [−(u×B)] = 0 (3.3)

∂p‖
∂t

+∇ · (p‖u) + 2p‖b · (b · ∇)u =
δp‖

δt
(3.4)

∂p

∂t
+∇ · (pu) + 2

3
p⊥(∇ · u) + 2

3
(p‖ − p⊥)b · (b · ∇)u = 0 (3.5)

where ρ, u and B are the density, velocity and magnetic field, respectively. b = B/|B|

is defined as the unit vector along the magnetic field. p‖ represents the parallel

pressure component with respect to the magnetic field, while p is the average scalar

pressure. µ0 denotes the permeability of vacuum. We take the polytropic index to be

5/3. The corresponding semirelativistic equations without electron pressure can also

be easily obtained by neglecting the electron pressure term, for instance in equation

(2.21), thus they are not repeated in this chapter.

The conversion between the average scalar pressure and the pressure components

can be expressed as

p =
2p⊥ + p‖

3
(3.6)

Compared to the ideal MHD equations, the momentum equation (3.2) and the

average scalar pressure equation (3.5) are changed. Each of them contains a new

term resulting from the difference between p‖ and p⊥: (p‖ − p⊥)bb in (3.2) and

2

3
(p‖ − p⊥)b · (b · ∇)u in (3.5). These two new terms are eliminated in the case of
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pressure isotropy, thus the equations reduce to the standard ideal MHD equations

as p⊥ = p. The right-hand-side of (3.4) is the pressure relaxation term that will be

discussed shortly. In the absence of the pressure relaxation term, (3.4) and (3.5) are

equivalent to the double adiabatic equations.

As mentioned in Chapter II, capturing jump conditions across a discontinuity

relies on acquiring conservation laws of the system. Therefore, we need to solve the

conservative form of the equation set for the bow shock region. Only the pressure

equations (3.4) and (3.5) are not in a conservation form. The conservation of energy

density e provides the conservative equation that replaces the average scalar pressure

equation (3.5) as:

∂e

∂t
+∇ ·

[

u

(

e+ p⊥ +
B2

2µ0

)

+ u ·
(

(p‖ − p⊥)bb− BB

2µ0

)]

= 0 (3.7)

with

e =
ρu2

2
+

B2

2µ0

+
3

2
p (3.8)

Compared to isotropic MHD, the total energy density equation also contains the

additional term introduced by the pressure difference of the parallel and perpendicular

components.

Since the parallel pressure equation (3.4) cannot be written in an appropriate

conservative form, the system is closed by solving equation (3.4) and using the insta-

bility criteria to bound the parallel pressure jump across the bow shock, similar to

the bounded anisotropic fluid model proposed by Denton et al. [1994].

Apart from supplementing the jump conditions, the plasma instabilities associ-

ated with anisotropic pressure limit the pressure anisotropy throughout the magne-

tosphere. For completeness, we repeat the criteria for the firehose, the mirror, and

the ion cyclotron instabilities that are considered in Anisotropic BATS-R-US. The
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firehose instability occurs when [Gary et al., 1998; Lazar and Poedts , 2009a,b]

p‖

p⊥

> 1 +
B2

µ0p⊥

(3.9)

The mirror and ion cyclotron instability criteria are [Tajiri , 1967; Gary , 1976, 1992]

p⊥

p‖

> 1 +
B2

2µ0p⊥

(3.10)

and

p⊥

p‖

> 1 + C1

(

B2

2µ0p‖

)C2

(3.11)

respectively, where we use C1 = 0.3 and C2 = 0.5 as they are close to the average

values derived from observations in the magnetosphere [Anderson et al., 1996; Gary

et al., 1995].

The latter two instabilities involve kinetic effects and thus cannot be fully de-

scribed by MHD. Moreover, the grid resolution that we normally apply in global

MHD simulations may not be fine enough to resolve even hydromagnetic instabilities.

The effect of these instabilities is represented by the collision term of the parallel

pressure equation (3.4):

δp‖

δt
=

p‖ − p‖

τ
(3.12)

where p‖ is the marginally unstable parallel pressure from (A.5), (A.13) or (A.18). We

call (3.12) the pressure relaxation term due to the instabilities, with the relaxation

time τ relates to their growth rates. In regions stable for all types of instabilities, the

relaxation term (3.12) is zero. In unstable regions, the pressure relaxation term pushes

the parallel pressure so that the plasma reaches the marginally unstable states over

time τ . In the case when both the mirror and ion cyclotron instabilities are present,

only the one that gives larger δp‖/δt is applied. The details of how we set τ will be

addressed in Section 3.1.2.
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In addition to the pressure relaxation term applied in the unstable regions, we in-

troduce a global pressure relaxation term that applies everywhere to represent other

possible mechanisms constraining the plasma pressure anisotropy in the real magne-

tosphere. We write the global relaxation term as

δp‖

δt
=

p− p‖

τg
(3.13)

where τg is the global relaxation time. In unstable regions, both (3.12) and (3.13) are

computed, and the one with larger absolute value, which changes p‖ more, is applied.

To minimize the effect of the global relaxation term on the unstable regions, we set τg

to be of the order of 100 seconds in quiet time magnetospheric simulations. According

to the idealized simulations we performed, shown in Section 3.2, the typical relaxation

time τ due to the instabilities is much lower than 100 seconds.

3.1.2 Anisotropy relaxation time

We have implemented two types of relaxation time τ for the instability induced

relaxation term (3.12). First, τ can be set to a constant value homogeneously in

the computational domain. For magnetospheric simulations, typical values are of the

order of 10 seconds, as we shall see later. Second, τ can be set based on the growth

rates of the instabilities.

For the firehose instability, the growth rate can be calculated from the dispersion

relation of the Alfvén wave in a plasma with anisotropic pressure written as [Baranov ,

1970]

ω2

k2
‖

=
1

ρ

(

B2

µ0

+ p⊥ − p‖

)

(3.14)

When the firehose instability is excited, i.e., equation (3.9) is satisfied, the growth

rate is given by

γf = k‖

√

∆pf
ρ

(3.15)
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where k‖ = k cos θ = (2π/λ) cos θ with θ representing the angle between the wave

number k and the magnetic field, and ∆pf = p‖ − p⊥ −B2/µ0.

As the growth rate γf varies with the wavelength λ, we are seeking the wavelength

that grows fastest. However, according to (3.15), the growth rate becomes infinity

when the wavelength approaches zero. This is because the growth rate (3.15) is

derived from the MHD theory that is only valid in the long-wavelength limit, i.e. the

wavelength is much longer than the mean particle Larmor radius. Taking the finite

Larmor radius effects into account, Hall [1979, 1981] showed that the growth rate is

γfFLR
= k‖

√

1

ρ

{

∆pf −
1

3ρΩ2
i

[

1

4
p⊥(p‖ − p⊥)k2

⊥ + p‖

(

p⊥ − p‖

4

)

k2
‖

]}

(3.16)

where ρ is plasma density, Ωi = qB/m is ion gyrofrequency, and k⊥ = k sin θ. After

some algebra, we found the maximum growth occurs when θ = 0, for p‖/p⊥ < 4, which

shall hold true for the firehose instability in the magnetosphere. The corresponding

fastest growing wavelength is obtained as

λf = 2πri

√

6p‖(p⊥ − p‖/4)

p⊥∆pf
(3.17)

where ri = mv⊥/(qB) is the ion Larmor radius.

Based on the fastest growth rate, we write the relaxation time of the firehose

instability as

τf =
1

γfFLR
(λf )

=
2

Ωi

√

p‖(p⊥ − p‖/4)

∆pf
(3.18)

In our single-fluid model, Ωi is taken to be the gyrofrequency of a proton.

A similar approach is applied to obtain the relaxation time for the mirror insta-

bility. The fluid description of this instability based on the MHD analysis yields the
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following growth rate [Southwood and Kivelson, 1993]

γm = k⊥

√

2p⊥∆pm
p‖ρ

(3.19)

where k⊥ = k sin θ = (2π/λ) sin θ and ∆pm = (p⊥ − p‖) − B2p‖/(2µ0p⊥). Again the

growth rate γm increases monotonically with k. Unfortunately, given the complicated

expression for the growth rate with the finite Larmor radius effects [Hall , 1980], it

is difficult to find the maximum growth rate. However, Hall calculated the fastest

growing wavelength assuming low pressure anisotropy and high plasma beta as

λm =
3
√
5π

2
ri (3.20)

This is close to the typical values found from the full kinetic analysis by Pokhotelov

et al. [2004], as shown in their Figure 1.

Given λm is an order of magnitude larger than the ion gyroradius, we approximate

the maximum growth rate from the long-wavelength MHD analysis by substituting

(3.20) into (3.19). The relaxation time for the mirror instability is thus written as

τm =
1

γm(λm)
=

3
√
5

4Ωi

√

p‖

2∆pm
(3.21)

For the ion cyclotron instability, its growth rate varies with both the wavelength

and the instability criterion (C1 and C2 in (3.11)) [Gary et al., 1994]. In reality,

the ion cyclotron instability can arise in the magnetosheath and the closed field line

region near the Earth. However, the mirror instability often dominates over the ion

cyclotron instability in the magnetosheath as observed and modeled [Phan et al.,

1994; Shoji et al., 2009], which we have already taken care of. The only concern is

for the inner magnetosphere. A good estimation of the relaxation time for the ion

cyclotron instability should probably relate to the bouncing period of the particles
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traveling along the field lines. For sake of simplicity we approximate the growth

rate based on observations in the magnetosphere [Anderson et al., 1996] and theories

[Märk , 1974; Gary et al., 1993, 1995] as

τic =
102

Ωi

(3.22)

Although the relaxation times (3.18), (3.21) and (3.22) have a physical basis, they

are only approximations to reality, as is the relaxation term (3.12). An underlying

assumption is that the time rate of the change in the parallel pressure is the same as

the growth rate of an instability. However, these simplifications are appropriate for

our MHD model in terms of both computational cost and physical accuracy.

3.2 Idealized Magnetospheric Simulations

To validate the anisotropic BATS-R-US code, we perform global magnetospheric

simulations including idealized (this section) and real magnetosphere cases (next sec-

tion). All the simulations in these two sections are produced from coupling BATS-

R-US with the ionospheric electric potential solver Ridley Ionosphere Model (RIM)

[Ridley et al., 2004], i.e., the GM and IE components of the SWMF.

Our model validation starts with simulating the magnetosphere under idealized

conditions to exclude unnecessary factors that complicate the system. First, we ne-

glect the rotation of the Earth. Second, we assume the magnetic axis aligns with the

ecliptic North direction. Third, we use constant solar wind and interplanetary mag-

netic field (IMF) conditions through the simulations: number density ρsw = 5/cc,

temperature Tsw = 105 K, velocity uxsw = −400 km/s, uysw = uzsw = 0 and purely

southward IMF Bzsw = −5 nT or northward IMF Bzsw = 5nT. The input solar wind

pressure is assumed to be isotropic. Finally, for the ionosphere we apply constant

Pedersen conductance 5mho and neglect Hall conductance.
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The computational domain is a three-dimensional box in GSM coordinates. With

the Earth at the origin, the box covers from −224 to 32 Earth radii (RE) in the X

direction and from −64 to 64RE in the Y and Z directions. The inner boundary is

the surface of a sphere surrounding the Earth at a radius of 2.5RE, where the density

is set to be 28 /cc. Taking advangtage of the adaptive mesh refinement (AMR) in

BATS-R-US, we set the finest resolution of 1/4RE near the Earth and the coarsest

resolution of 4RE far down the tail. We take the Boris factor to be 0.01, i.e. the

reduced speed of light is 3000 km/s. We use the Sokolov scheme [Sokolov et al., 2002]

with the Koren limiter [Koren, 1993] in all idealized runs. We do not apply the

global pressure relaxation term (3.13), so the pressure anisotropy is only limited by

the instabilities, if present, based on (3.12).

3.2.1 Southward IMF case

To investigate the effects of the pressure relaxation term (3.12) we compute four

runs identically except with different relaxation times. One of them uses the growth-

rate dependent relaxation times for the three instabilities as (3.18), (3.21) and (3.22);

The other three use a constant relaxation time of τ = 10 s, 100 s, ∞ (no relaxation

term at all) for all three instabilities. For comparison, we also produce a run using

standard BATS-R-US with isotropic pressure. All five runs starts with 5000 iterations

in steady state mode before they are switched to time accurate mode lasting for 4

hours in physical time. We analyze the results at the end of the simulations.

First we examine the pressure anisotropy. Figure 3.1 shows the pressure anisotropy

ratio p⊥/p‖. We extract the solutions in the noon-midnight meridional plane Y = 0

(left column) and the equatorial plane Z = 0 (right column) from the four runs with

different relaxation times. To have a better visualization for all cases, the color scale is

saturated for p⊥/p‖ > 4. In the τ = 100 s and τ = ∞ cases, p⊥/p‖ reaches a maximum

of 15 and 200 in the magnetosheath, respectively, which are highly unrealistic values.
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Figure 3.1: The pressure anisotropy ratio p⊥/p‖ in the Y = 0 plane (left column)
and the Z = 0 plane (right column) from the idealized magnetospheric
simulations using anisotropic BATS-R-US in the southward IMF case.
The four rows are from runs with different pressure relaxation time τ .
From top to bottom: growth-rate based τ , τ = 10 s, τ = 100 s, τ = ∞
(no pressure relaxation).
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The τ = 10 s case gives a little higher p⊥/p‖ compared to the growth-rate based

τ case, thus an appropriate constant τ should be a few seconds. Essentially, three

regions develop highly perpendicular pressure: the magnetosheath; the cusps; and the

magnetotail reconnection site. These regions are filled with compressed flow, thus the

perpendicular pressure increases [Hesse and Birn, 1992].

Next we look into the spatial variation of τ in the growth-rate based τ case, as

displayed in Figure 3.2. We plot τ for three instabilities as color contours on the

noon-midnight meridional plane and the equatorial plane. The white regions are

stable with infinite τ . The relaxation term (3.12) is only applied in the unstable

regions as colored with the corresponding τ value. The firehose instability (first row)

only arises in very limited regions of the dayside magnetosphere and in the distant

tail, with τf varying from about 10 seconds to hundreds of seconds. Both the mirror

(middle row) and ion cyclotron instabilities exist throughout the magnetosheath and

in the tail reconnection region. In the magnetosheath and the tail reconnection region,

τm (around a few seconds) is much smaller than τic (hundreds of seconds). Compared

to the mirror instability region, the ion cyclotron instability region extends into the

inner magnetosphere, but it does not include the region very close to the Earth. This

is probably due to the strong magnetic field near the Earth that stabilizes the plasma,

as can be seen in the stability condition (3.11).

To have more insight into the differences between anisotropic and isotropic MHD

in global models, we compare the results from these two types of simulations. For

anisotropic MHD we refer to the run with growth-rate based relaxation time unless

otherwise specified. The most prominent distinctions are:

1. The width and shape of the magnetosheath.

Previous 2D and 3D anisotropic MHD simulations of the magnetosheath [Erkaev

et al., 1999; Denton and Lyon, 2000; Samsonov and Pudovkin, 2000] have ob-

served a thicker magnetosheath than isotropic MHD simulations give. Our
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64



Number density [/cm3]

      
 

0

5

10

15

20

Pressure [nPa]

      
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Magnetic field strength [nT]

8 10 12 14 16 18
X

0

20

40

60

80

Number density [/cm3]

      
 

0

5

10

15

20

Pressure [nPa]

      
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Magnetic field strength [nT]

8 10 12 14 16 18
X

0

20

40

60

80

Number density [/cm3]

      
 

0

5

10

15

20

Pressure [nPa]

      
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Magnetic field strength [nT]

8 10 12 14 16 18
X

0

20

40

60

80

Number density [/cm3]

      
 

0

5

10

15

20

Pressure [nPa]

      
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Magnetic field strength [nT]

8 10 12 14 16 18
X

0

20

40

60

80
Isotropic MHD
Anisotropic MHD  physical τ
Anisotropic MHD  τ = 10 s
Anisotropic MHD  τ = 100 s

Figure 3.4: The number density (top panel), pressure (middle panel) and magnetic
field strength (bottom panel) profiles of the dayside magnetosheath along
the x-axis from the idealized magnetospheric simulations in the southward
IMF case. Different lines represent different runs as indicated in the figure.

65



results agree with it. Moreover, with global simulations, we are able to examine

the effects of pressure anisotropy on the shape of the whole magnetosphere.

Figure 3.3 shows density contours in the X = 0 and Y = 0 planes. As the

constant relaxation time τ increases, i.e. higher pressure anisotropy is allowed

in the system, the magnetosheath, shown as the red region, becomes thicker.

At the same time, the magnetosheath grows faster in the Y direction than in

the Z direction, such that the boundary of the magnetosphere in the X = 0 cut

changes from an oval to a circle. This is due to the larger pressure along the Y

direction than the one along the Z direction, since the pressure perpendicular

to the magnetic field, which is mostly along the Z direction, is larger than the

pressure parallel to the magnetic field in the magnetosheath.

The thickening of the magnetosheath can also be identified in Figure 3.4 that

shows the variations of the variables along the X axis. The τ = ∞ case is

not shown as it is too far from the reality. The density and pressure profiles of

different τ and their comparisons with isotropic MHD results clearly indicate the

trend of the increasing width of the sub-solar magnetosheath. For the realistic

τ = 10 s setting, represented by the dashed line, the profiles are very close to

the profiles of the growth-rate based τ case represented by the solid line. Both

cases are reasonably close to the isotropic MHD solution shown by the dotted

line except the region inside the magnetosphere, where isotropic MHD produces

higher density. Compared to the isotropic case, the anisotropic MHD simulation

with growth-rate based τ slightly widens the subsolar magnetosheath. Figure

3.4 also indicates that the anisotropic MHD model yields smaller density and

pressure across the magnetosheath.

2. The speed of the earthward plasma jet from the tail.

The standard isotropic MHD simulation generates high-speed plasma jets from
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Figure 3.5: The x-direction velocity contour in the Y = 0 plane (top row) and the
Z = 0 plane (bottom row) from the idealized magnetospheric simulations
with isotropic MHD (left column) and anisotropic MHD with growth-rate
based τ (right column) in the southward IMF case.

the tail reconnection site towards the Earth and the far tail. The speed reaches

a highly unrealistic value of 1000 km/s, as Figure 3.5 shows in the left column.

Observations give the typical tail flow speed smaller than 300 km/s during quiet

time [Baumjohann and Pashmann, 1989], as also shown in our February 2009

event later. Higher speeds are only observed intermittently [Angelopoulos et al.,

1994]. The anisotropic MHD simulation shown in the right column significantly

reduces this speed to about half. As these plasma jets are produced directly

by the tail magnetic reconnection, slower jets imply a weaker reconnection.

A qualitatively similar behavior was observed by Birn et al. [2001], who have

found that pressure anisotropy leads to reduced growth rate of magnetic is-

lands in their study for the Geospace Environment Modeling (GEM) magnetic

reconnection challenge.

3. The magnitude and distribution of the nightside plasma pressure.
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Figure 3.6: The logarithmic pressure contour in the Y = 0 plane (top) and the

Z = 0 plane (bottom) from the idealized magnetospheric simulations
with isotropic MHD (left column) and anisotropic MHD with growth-
rate based τ (right column) in the southward IMF case.

Figure 3.6 displays pressure contours in the Y = 0 and Z = 0 planes. First, the

nightside plasma pressure of the anisotropic MHD simulation is stronger than

that in the isotropic MHD simulation. This agrees with the empirical mod-

eling result reported by Lui et al. [1994], who found the inclusion of pressure

anisotropy in empirical magnetic field models increases the plasma pressure

in the quiet time nightside magnetosphere. In our anisotropic MHD simula-

tion, the nightside pressure is mostly contributed by the perpendicular pressure

given p⊥/p‖ > 1 in this region (see Figure 3.1). Unlike the anisotropic MHD

case, in which the perpendicular pressure can evolve differently from the par-

allel pressure, the traditional isotropic MHD forces the pressure in the inner

magnetosphere to be isotropic thus limits the magnitude of the pressure, which

directly affects the field-aligned currents in the ionosphere as we shall see later.

Second, compared to the pressure distribution from the isotropic MHD simu-
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lation, the anisotropic MHD simulation has a peak in average scalar pressure

at around −7RE. A clearer view is given by the middle panel of Figure 3.7, in

which the nightside pressure profiles are extracted along the X axis from the

two simulations denoted by the dotted and the solid lines, respectively. The an-

isotropic MHD simulation has almost three times larger pressure at −7RE than

the isotropic MHD simulation does. The latter shows no peak in the pressure

distribution. This difference leads to different pressure gradients, and further-

more different ring current patterns in the two simulations. Figure 3.7 also

shows the density and temperature profiles along the X axis in the nightside.

For the anisotropic MHD case, the average scalar temperature is plotted. The

anisotropic MHD run produces hotter nightside plasma.

4. The magnitudes of the field-aligned currents and the cross polar cap potential.

The anisotropic MHD simulation generates stronger region 2 currents compared

to the isotropic simulation, as shown by the ionospheric view over the north-

ern hemisphere in the left column of Figure 3.8. This is expected from the

stronger nightside pressure in the anisotropic MHD simulation, since the night-

side plasma contributes to the region 2 currents through the partial ring current.

In addition, the cross polar cap potential shown in the right column of Figure

3.8 is slightly less in the anisotropic MHD case (the lower plot) than in the

isotropic MHD case (the upper plot).

5. The pattern of the ring current.

As mentioned before, the different pressure distributions from the anisotropic

MHD and isotropic MHD simulations result in different ring current patterns

in these two cases. In general, the anisotropic MHD case will give stronger

ring current as the pressure gradient is larger than that of the isotropic case.

A stricter analysis should consider the individual contributors to the ring cur-
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Figure 3.9: The Y -direction current density contour in the Y = 0 plane (top row)

and the Z = 0 plane (bottom row) from the idealized magnetospheric
simulations with isotropic MHD (left column) and anisotropic MHD with
growth-rate based τ (right column) in the southward IMF case. The field
lines are shown in the Y = 0 plane.

rent. For isotropic MHD, only the gradient of the pressure plays a role. For

anisotropic MHD, both the gradient of the perpendicular pressure and another

term involving the difference between the perpendicular and parallel pressures

contribute to the ring current. The additional term in anisotropic MHD intro-

duces an eastward ring current, which make the original westward ring current

peak away from the equator, as found by Cheng [1992b] and confirmed by Za-

haria et al. [2004] in their equilibrium model. Our anisotropic MHD simulation

produces the same phenomenon.

In Figure 3.9, the Y -direction current density, as an indicator of the ring current

density, is shown in the meridional and equatorial planes. The color scale is

saturated for jy above 0.64nA/m2 and below −0.64nA/m2. The westward

current (in red) at around −9RE is much more prominent in the anisotropic

MHD case. It peaks away from the equator and extends to higher latitude along
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the field lines. Meanwhile an eastward current (in blue) peaked at the equator at

around −7RE appears in the anisotropic MHD case, which is contributed from

both the perpendicular pressure gradient and the additional pressure anisotropy

term. The magnitude of the eastward current (around 0.3nA/m2) is smaller

than the observed values (about 1nA/m2) from Lui and Hamilton [1992]. The

discrepancy is expected given the lack of an inner magnetospheric model.

3.2.2 Northward IMF case

For the northward IMF case, we also perform a set of five runs. All parameters

remain the same as the southward IMF case except the change in the IMF orientation.

The pressure anisotropy in the meridional and equatorial planes is shown in Figure

3.10. Again we observe highly perpendicular pressure in the magnetosheath and in

the vicinity of the Earth. Increased relaxation time τ leads to increased pressure

anisotropy. The τ = 10 s run is most similar to the growth-rate based τ run. In the

τ = 100 s and τ = ∞ simulations, the maximum of p⊥/p‖ is much larger than 4 such

that the anisotropy ratio is saturated on the color scale.

Figure 3.11 displays the spatial variation of τ . Most of it is very similar to the

southward IMF case, except no mirror instability is excited in the close tail. The

magnitude of τ varies between less than 1 second to hundreds of seconds, depending

on the location.

The effect of pressure anisotropy on the width of the magnetosheath is shown in

Figure 3.12. Similar to the southward IMF case, the increased pressure anisotropy

results in a thicker magnetosheath. However, compared to Figure 3.4, the width of the

magnetosheath is more sensitive to pressure anisotropy in the northward IMF case, as

the same amount of relaxation time τ results in a larger change of the magnetosheath

position in the northward IMF case than in the southward IMF case. An exception

occurs when τ = 100 s, which does not seem to widen the magnetosheath more for
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Figure 3.10: Same as Figure 3.1 for the northward IMF case.
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Figure 3.11: Same as Figure 3.2 for the northward IMF case.
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Figure 3.12: Same as Figure 3.4 for the northward IMF case.
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the northward IMF than for the southward IMF.

With northward IMF, a plasma depletion layer just outside of the magnetopause

forms. The depletion layer is identified by decreased plasma density and increased

magnetic field strength relative to the adjacent magnetosheath plasma [Zwan and

Wolf , 1976], as marked by the shadowed region in Figure 3.12. The comparison

between the isotropic MHD and the anisotropic MHD with growth-rate based τ ,

τ = 10 s and τ = 100 s reveals that pressure anisotropy increases the density depletion,

although the overall effect is very small. The same conclusion has been drawn by

Denton from the study of a 2D magnetosheath model [Denton and Lyon, 2000].

3.3 Non-idealized Quiet Time Magnetospheric Simulations

To further validate our model, we perform magnetospheric simulations driven by

real solar wind and IMF conditions. As we do not couple any ring current model to an-

isotropic BATS-R-US for this study, we only simulate the quiet time magnetosphere.

Two time periods are selected based on the geomagnetic activity level indicated by

the Dst index, the positions of the THEMIS satellites and the data availability. Both

the dayside and nightside magnetosphere are covered in our validation. We apply the

global relaxation term in the simulations. Comparisons between the simulations and

measurements are reported.

3.3.1 Dayside validation – 16 June 2008

The first time interval we choose is from 12 to 24UT on 16 June 2008, when two

THEMIS satellites B and C went across the dayside magnetosheath and the bow

shock. The solar wind and IMF conditions measured by the ACE satellite are shown

in Figure 3.13. The IMF Bz component varies a bit between positive and negative

values, yet the magnitude is small. The average Dst index during this period is about

−13 nT. Therefore the magnetosphere basically stays in a quiet state.
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Solar wind and IMF conditions on 16 June 2008
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Figure 3.13: The solar wind and IMF conditions from ACE data for 12-24UT on 16
June 2008.
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The 3D computational domain extends from X = −224RE to X = 32RE, from

Y = −128RE to Y = 128RE, and from Z = −128RE to Z = 128RE. To better

capture the magnetosheath where THEMIS B and C cross, we increase the grid

resolution to 1/8RE in that region. Other parameters are the same as they are in

the idealized simulations. We perform two simulations with anisotropic and isotropic

BATS-R-US respectively. We use the growth-rate based relaxation time and the

global relaxation time of 200 seconds in the anisotropic MHD run.

First we look at the pressure anisotropy. In the top panel of Figure 3.14, we plot

the anisotropy ratio p⊥/p‖ at 18UT in the meridional and the equatorial planes, with

the trajectories of THEMIS B and C overplotted. The lower two panels show the

anisotropy ratio extracted along the satellite orbits from the simulation against the

actual data. The comparison indicates that the simulation does fairly well in repro-

ducing the anisotropy ratio in the magnetosheath, including the anisotropy jumps

near the magnetopause.

Second, as the idealized simulations show the evidence of the mirror and ion

cyclotron instabilities across the magnetosheath, we plot the criteria and relaxation

times of these two instabilities along the satellite orbits in Figure 3.15. The first and

third row from top show the variations of the anisotropy factor A = p⊥/p‖ − 1 with

red lines representing the mirror and ion cyclotron unstable bound respectively. An

instability is excited if A is larger than the unstable bound, i.e., the black line is

higher than the red one, under which circumstance the relaxation times are shown in

the second and fourth row. The mirror and ion cyclotron instabilities are found in

the time interval of 13UT-16.5UT during the magnetosheath crossing by THEMIS B,

and in the time interval of 16.5UT-23UT for THEMIS C. The mirror instability plays

a more important role, because its bound is exceeded by approximately the same

amount as the ion cyclotron instability bound is exceeded, but the relaxation time

of the mirror instability is much smaller than that of the ion cyclotron instability, so
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Figure 3.14: The pressure anisotropy ratio p⊥/p‖ in the Y = 0 (top left panel) and
Z = 0 (top right panel) planes at 18UT on 16 June 2008. Trajectories
of THEMIS B and C during 12-24UT are shown by white lines started
from the stars. The bottom two panels show the simulated p⊥/p‖ (black
lines) against the actual data along the satellite trajectories.
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along THEMIS B orbit
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Figure 3.15: The simulated anisotropy factor A (black lines in the first and the third
row from top), the unstable bounds (red lines) and the relaxation time
(the second and fourth row from top) along THEMIS B and C orbits
during 12-24UT on 16 June 2008.
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16 June 2008
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Figure 3.16: The simulated and measured variables along the THEMIS B orbit during
12-24UT on 16 June 2008.
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16 June 2008
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Figure 3.17: The simulated and measured variables along the THEMIS C orbit during
12-24UT on 16 June 2008.
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THEMIS B THEMIS C

Isotropic Anisotropic Isotropic Anisotropic
MHD MHD MHD MHD

n [/cc] 2.18 2.29 1.66 1.66
p [nPa] 0.25 0.24 0.22 0.21

ux [km/s] 63.37 52.93 80.21 74.22
uy [km/s] 37.67 36.45 46.68 45.23
uz [km/s] 45.48 46.12 42.52 42.30

bx [nT] 5.81 5.52 3.95 3.93
by [nT] 11.75 11.77 6.85 6.70
bz [nT] 11.57 10.86 10.13 10.32

Table 3.1: RMS errors of the simulated variables in comparison to the THEMIS data
for the 16 June 2008 event

the former results in larger changes in the parallel pressure.

Finally, we extract the number density, average pressure, velocity and magnetic

field from the anisotropic MHD simulation to compare with the data from the ESA

instrument and the isotropic MHD solutions, as shown in Figure 3.16 and Figure 3.17.

The root-mean-square (RMS) errors with respect to the data are presented in Table

3.1. Overall the anisotropic and isotropic MHD simulations give very similar varia-

tions of the MHD variables across the magnetosheath. The simulations both resemble

the measurements reasonably. However, we are more interested in any improvements

or drawbacks brought by the anisotropic MHD simulation. One improvement we

observe from the figures is that the anisotropic MHD simulation reduces or even

eliminates some sudden drops in the density, the average pressure and especially the

velocity behind the bow shock, leading to better agreement with the data. The RMS

errors reveal an obvious improvement on the velocity. Note both the anisotropic and

isotropic MHD simulations do not predict the location of the bow shock well espe-

cially for THEMIS C crossing. But the discrepancy between simulated and measured

bow shock locations can also be caused by the plane parallel solar wind conditions

based on a point measurement by ACE. We checked that the agreement with data is
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improved if the satellite positions are shifted slightly (by 0.2RE) towards the positive

X direction.

3.3.2 Nightside validation – 6 February 2009

The second time interval is from 14 to 24UT on 6 February 2009, during which

the THEMIS satellites were in the nightside magnetosphere. Both THEMIS B and

C were close to the tail current sheet. Figure 3.18 shows the solar wind and IMF

conditions from the combined ACE and WIND data. Bz has small variations around

0. The averaged Dst index is about −14 nT.

We compute the simulations in a manner similar to the dayside study, except that

we do not have a high resolution magnetosheath, but 1/8RE resolution in the tail

where the satellites cross. Both the anisotropic MHD with growth-rate depended τ

and isotropic MHD simulations are conducted.

We plot p⊥/p‖ in the Y = 0 and Z = 0 planes and overplot the satellite trajectories

in the top panels of Figure 3.19. A direct comparison between the simulation and the

data is shown in lower panels. The overall results are much worse than the dayside

comparison, as the tail dynamics cannot be fully described by MHD.

The number density, average pressure, velocity and magnetic field profiles along

the satellite orbits are shown in Figures 3.20 and 3.21. Table 3.2 shows the RMS

errors. The agreement looks poor compared to the dayside case. However, compared

to the isotropic simulation, the anisotropic MHD simulation improves the agreement

with data on uy and uz for THEMIS B and ux and uz for THEMIS C. This matches

with the results we have seen in the idealized simulations, as the anisotropic MHD

model reduces the plasma speed in the tail. But the ux agreement is worse in the an-

isotropic case for THEMIS B. The anisotropic MHD simulation also sightly improves

the magnetic field agreement with the data, particularly Bz for THEMIS C. Note

a major contradiction to the measurement occurs at around 19UT, when both the
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Solar wind and IMF conditions on 6 February 2009
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Figure 3.18: The solar wind and IMF conditions from ACE data for 12-24UT on 6
February 2009.
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Figure 3.19: The pressure anisotropy ratio p⊥/p‖ in the Y = 0 (top left panel) and
Z = 0 (top right panel) planes at 24UT on 6 February 2009. Trajectories
of THEMIS B and C during 14-24UT are shown by white lines started
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6 February 2009
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Figure 3.20: The simulated and measured variables along the THEMIS B orbit during
14-24UT on 6 February 2009.
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6 February 2009
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Figure 3.21: The simulated and measured variables along the THEMIS C orbit during
14-24UT on 6 February 2009.
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THEMIS B THEMIS C

Isotropic Anisotropic Isotropic Anisotropic
MHD MHD MHD MHD

n [/cc] 0.39 0.40 1.00 0.78
p [nPa] 0.025 0.035 0.08 0.11

ux [km/s] 195.07 222.87 272.14 201.28
uy [km/s] 40.78 37.39 49.98 59.27
uz [km/s] 32.89 28.45 53.57 32.07

bx [nT] 13.37 12.46 10.10 10.10
by [nT] 1.30 1.38 1.98 3.11
bz [nT] 1.93 1.89 2.44 2.04

Table 3.2: RMS errors of the simulated variables in comparison to the THEMIS data
for the 6 February 2009 event

isotropic and anisotropic MHD simulations predict that THEMIS B crosses the cur-

rent sheet, identified by the sign change of Bx. The incorrect position of the simulated

current sheet closely relates to the bad data-model agreement on other variables.

3.4 Summary

In this chapter we apply Anisotropic BATS-R-US to 3D global magnetospheric

simulations. We have neglected the electron pressure in the model, and the resulting

pressure equations that Anisotropic BATS-R-US solves are equivalent to the double

adiabatic formulation. The model is further improved and specified to magnetospheric

simulations by setting the pressure anisotropy relaxation time τ based on the growth

rates of the firehose, mirror and ion cyclotron instabilities, which in turn depend on lo-

cal plasma parameters, for the instability related pressure anisotropy relaxation term.

We have also implemented a global pressure anisotropy relaxation term that limits

pressure anisotropy everywhere in the magnetosphere with some constant relaxation

time τg set externally.

We have performed both idealized and real quiet time magnetospheric simula-

tions with Anisotropic BATS-R-US. The idealized magnetosphere simulations with
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southward IMF show several interesting differences between anisotropic and isotropic

MHD in modeling the magnetosphere, further revealing the effects of pressure aniso-

tropy. First of all, pressure anisotropy thickens the magnetosheath and changes the

shape of the magnetosphere. Second, pressure anisotropy reduces the reconnection

rate and consequently the flow speed in the tail significantly. Third, pressure aniso-

tropy increases the nightside plasma pressure and forms a pressure peak away from

the Earth. The increase in the nightside pressure strengthens the region 2 currents.

The steepened pressure distribution results in a stronger ring current. Some of these

results are supported by previous studies that obtained similar features. The ideal-

ized magnetosphere simulations with northward IMF confirms the increased density

depletion near the magnetopause resulting from pressure anisotropy that has been

found by past studies.

The simulations of the real magnetosphere during geomagnetic quiet time provides

a direct evaluation of Anisotropic BATS-R-US when comparing the simulations to

the measurements. In general the model predicts the dayside magnetosheath better

than the nightside magnetosphere. Compared to the isotropic MHD simulations, the

anisotropic MHD simulations improve the model-data agreement on the velocity. Not

much improvement has been seen in the other variables.

Despite of its many advantages, our anisotropic MHD model exhibits several lim-

itations that may require improvements in the future. First of all, the anisotropic

pressure equations are formulated equivalently to the double adiabatic equations.

However, the double adiabatic approximation is not applicable to some processes, for

example mirror instability [Kulsrud , 1982; Shi et al., 1987]. Although the pressure

relaxation term mimics the effect of instabilities on pressure, it is still an approxima-

tion. Second, like isotropic MHD, anisotropic MHD based on the double adiabatic

approximation is not appropriate to describe the inner magnetospheric dynamics,

since it cannot capture the diamagnetic drift and neglects the heat flux [Wolf et al.,
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2009; Heinemann and Wolf , 2001]. To better describe the near-Earth plasma and

perform geomagnetic storm simulations, we couple Anisotropic BATS-R-US to inner

magnetospheric models that capture various kinetic processes. The details will be

reported in the following chapter.
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CHAPTER IV

Global Magnetospheric Simulations with Coupled

Anisotropic BATS-R-US and Ring Current Models

We have successfully applied Anisotropic BATS-R-US to quiet time magneto-

spheric simulations. Although Anisotropic BATS-R-US is more advanced than the

standard isotropic MHD model BATS-R-US, it is still not appropriate in describing

the inner magnetospheric dynamics. In fact, neither the isotropic nor the anisotro-

pic MHD equations can properly capture gradient-curvature drift [Wolf et al., 2009],

which is energy-dependent and leads to the formation of the ring current. Therefore,

MHD models are not applicable to simulate various physical processes of the near-

Earth plasma. A better approach is to employ kinetic models, especially during time

periods of strong geomagnetic activity, when the hot ring current plasma plays an

important role.

In this chapter we report the two-way couplings between Anisotropic BATS-R-US

and both the Rice Convection Model (RCM) [Toffoletto et al., 2003] and the Compre-

hensive Ring Current Model (CRCM) [Fok et al., 2001], which are somewhat different

from the existing couplings between BATS-R-US and the two ring current models in

the SWMF. The coupling between Anisotropic BATS-R-US and the RCM is simple

and straightforward, given the coupling of the isotropic MHD version has been estab-

lished already. However, since the RCM assumes pitch angle isotropy, this coupling
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will reduce or even eliminate pressure anisotropy in the inner magnetosphere, thus

greatly limits the capability of Anisotropic BATS-R-US. Alternatively, the CRCM

can resolve pitch angle anisotropy. Therefore it is more meaningful to couple An-

isotropic BATS-R-US with the CRCM to obtain self-consistent solutions of pressure

anisotropy throughout the whole magnetosphere. This coupling requires a new algo-

rithm. Again, we neglect the electron pressure in the magnetosphere, so Anisotropic

BATS-R-US does not use electron pressure for its coupling with ring current models.

The following content of the chapter consists of four sections. In Section 4.1

we briefly review the past work on coupling magnetospheric models with ring current

models, as well as the two ring current models involved in this study. In Section 4.2 we

describe the coupling algorithms. In Section 4.3 and Section 4.4 we present idealized

quiet time and real storm time magnetospheric simulations, respectively. We also

compare the results from the RCM and CRCM-coupled models. Our conclusions are

in section 4.5.

4.1 Background

4.1.1 Previous work on ring current model coupling

Several global MHD models have been coupled with ring current models, mainly

the RCM and the CRCM. The Lyon-Fedder-Mobarry (LFM) MHDmodel [Lyon et al.,

2004] is two-way coupled with the RCM [Toffoletto et al., 2004; Pembroke et al., 2012].

The LFM model is also used to drive the CRCM [Fok et al., 2006; Moore et al., 2008].

The Open Geospace General Circulation Model (OpenGGCM) [Raeder et al., 2001] is

one-way coupled to RCM [Hu et al., 2010]. The BATS-R-US MHD model is two-way

coupled with both the RCM [De Zeeuw et al., 2004] and the CRCM [Buzulukova et al.,

2010; Glocer et al., 2012]. These coupled models successfully combine global MHD

models with kinetic ring current models, providing a key step towards constructing a
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global general circulation model.

No coupling between a global anisotropic MHD model and a ring current model

has been reported to date. However, from a broader perspective of magnetospheric

modeling, equilibrium models with pressure anisotropy have been coupled to ring

current models. Zaharia et al. [2005] fed their 3-D equilibrium code with anisotropic

pressure in the equatorial plane from the UNH-RAM ring current model [Jordanova

et al., 1997] and analyzed the computed magnetic fields and electric fields during a

geomagnetic storm. Wu et al. [2009] extended another equilibrium code, RCM-E,

which has already been coupled with the RCM, to include anisotropic pressure. They

also proposed the possibility of coupling the equilibrium code with the CRCM. These

studies are very insightful in examining the impact of pressure anisotropy in the inner

magnetosphere.

4.1.2 RCM and CRCM

Both the RCM and CRCM are kinetic models of the Earth’s ring current, which is

carried primarily by tens of keV ions drifting westward in the closed field line region

surrounding the Earth. Both models are based on the bounce-averaged calculation

that treats the particle distribution as a result of averaging over the particle bounce

motions along the closed field lines. The underlying assumption is that the time

scale of the variation for inner magnetospheric plasma properties is much larger than

the particle bounce periods. Furthermore, both models compute the magnetospheric

electric fields self-consistently with the plasma distribution. In addition, they use

similar computational grids set in the ionosphere based on longitudes and latitudes.

Despite of their many common features, the RCM assumes isotropic pitch angle

distribution while the CRCM solves full pitch angle distribution. This is the major

difference between the RCM and the CRCM, which results in different pictures of

the inner magnetosphere. Observations have found that the ring current region is
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characterized by anisotropic ion and electron distributions during both quiet time

and disturbed time [Lui and Hamilton, 1992]. Even the plasma sheet, which has long

been considered to have an isotropic particle distribution, contains electrons with

anisotropic pitch angle distribution, according to Walsh et al. [2011].

4.2 Algorithm

The general concept of the coupling between two components is to interchange

variables between the two components periodically. In a typical GM-IE-IM com-

bination in the SWMF, GM-IE and GM-IM are two-way coupled, while IE-IM is

one-way coupled. More specifically, GM sends the field-aligned currents to IE and

the magnetic field topology to IM. IE solves for the ionospheric electric potential on

a 2D height-integrated spherical surface and passes the electric potential to GM and

IM. IM sends the pressure of the inner magnetosphere to GM. The three compo-

nents connect together tightly by the messages passed around regularly. In terms of

computational efficiency, one practical task is to determine the optimal frequency of

coupling one component to another so that the states of the two components have

changed significantly but not dramatically during the time interval of two successive

couplings.

Although the two-way coupling algorithms between BATS-R-US and both the

RCM and the CRCM have been developed [De Zeeuw et al., 2004; Glocer et al.,

2012], these algorithms need to be modified to accommodate the coupling between

Anisotropic BATS-R-US and the two ring current models.

4.2.1 Anisotropic BATS-R-US and the RCM Coupling

The majority of the coupling between BATS-R-US and the RCM [De Zeeuw et al.,

2004] can be migrated directly to the coupling between the Anisotropic BATS-R-US

and the RCM, except the pressure feedback from the RCM to BATS-R-US.
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The RCM computes on a 2D longitude-latitude grid, on which closed field lines are

rooted. For BATS-R-US with isotropic pressure, the RCM passes the total particle

pressure (the sum of pressures of different species) for each closed field line to BATS-

R-US, and the BATS-R-US pressure in every grid cell along that closed field line is

nudged towards the same RCM pressure, assuming the pressure is constant along each

closed field line. In Anisotropic BATS-R-US, both the parallel and total pressures

along a closed field line are nudged towards the same RCM isotropic pressure for

that field line, given the RCM does not resolve pressure anisotropy. This leads to

a significant reduction of the pressure anisotropy in the closed field line region in

Anisotropic BATS-R-US. The RCM can also provide BATS-R-US the density, which

is coupled the same way as the total pressure, i.e., the BATS-R-US density along a

closed field line is nudged towards the RCM density, assuming the density is constant

along each closed field line. The density coupling is the same for Anisotropic BATS-

R-US.

The coupling between Anisotropic BATS-R-US and the RCM implants a ring

current model into the global anisotropic MHD model, yet the pressure anisotropy in

the inner magnetosphere cannot be completely resolved due to the pitch angle isotropy

assumption in the RCM. In order to take full advantage of the anisotropic MHD

model, we seek coupling with another ring current model that allows for anisotropic

pressure.

4.2.2 Anisotropic BATS-R-US and the CRCM Coupling

Recently, Buzulukova et al. [2010] and Glocer et al. [2012] introduced the CRCM

into the Inner Magnetosphere component of the SWMF and implemented the one-

way and two-way coupling between BATS-R-US and the CRCM, respectively. Since

the CRCM can resolve pitch angle anisotropy, it can calculate the parallel and per-

pendicular pressure distributions in the inner magnetosphere. This provides a perfect
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opportunity of combining the CRCM with Anisotropic BATS-R-US to obtain self-

consistent solutions of pressure anisotropy in the global magnetosphere.

The two-way coupling between Anisotropic BATS-R-US and the CRCM requires

a quite different algorithm from the one addressing the two-way coupling between

BATS-R-US and the CRCM. In the Glocer et al. [2012] algorithm, BATS-R-US sends

the CRCM the 3D magnetic field configuration, and density and isotropic pressure

as boundary conditions, while the CRCM feeds BATS-R-US the density and the

total pressure at the magnetic equator for each closed field line. The BATS-R-US

density and pressure along a closed field line are thus pushed towards the magnetic

equatorial CRCM values on that field line. Same as the coupling with the RCM, the

assumption of constant density and pressure along every closed field line is applied

to avoid field-aligned flows in the isotropic MHD model.

Anisotropic MHD, on the other hand, has a different requirement in order to

maintain force balance along field lines. More specifically, the force along the magnetic

field can be obtained from the momentum equation (3.2) as

F‖ = b · F

= b ·
[

∇
(

p⊥ +
B2

2µ0

)

+∇ ·
(

(p‖ − p⊥)bb− BB

µ0

)]

= (p‖ − p⊥)B∇‖(B
−1) +∇‖p‖ (4.1)

where b = B/|B| and ∇‖ = b · ∇. In the case of MHD with isotropic pressure, (4.1)

is simply ∇‖p, which is zero with our assumption of no pressure gradient along the

magnetic field. If the pressure is anisotropic, the first term of the final expression

in (4.1), which basically describes a mirror force, i.e., adiabatic focusing, has to be

balanced by the parallel pressure gradient along the magnetic field. Otherwise the

non-zero force will result in flows moving along closed field lines in the anisotropic

MHD solutions.
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Bearing the pressure gradient requirement in mind, we look for an efficient cou-

pling algorithm connecting Anisotropic BATS-R-US and the CRCM. A natural ap-

proach would be to pass the pressure distributions along each closed field line from

the CRCM to Anisotropic BATS-R-US. Although this is doable, it is computationally

expensive as it requires additional arrays to be passed between the two components

that store the pressure values and their locations along field lines. In addition, the

parallel and total pressures obtained in the CRCM do not necessarily satisfy the force

balance condition in the anisotropic MHD model. To reduce the amount of informa-

tion exchanged between the two models and maintain force balance in Anisotropic

BATS-R-US, we build the algorithm based on Liouville’s Theorem with the conser-

vation of the first adiabatic invariant and energy, so the density and pressure profiles

along magnetic field lines can be obtained from equatorial values following Spence

et al. [1987],Olsen et al. [1994], Liemohn [2003], and Xiao and Feng [2006] as shown

in Appendix B.

The two-way coupling consists of two parts as shown in Figure 4.1. On one hand,

Anisotropic BATS-R-US sends the magnetic field information to the CRCM. Also,

the CRCM uses the density and pressures (parallel pressure and total pressure) at

the minimum magnetic field point on each closed field line from Anisotropic BATS-

R-US as boundary conditions to construct a bi-Maxwellian distribution at the outer

boundary, i.e., the furthest closed field lines from the Earth within an ellipse, the

size and position of which varies in different simulations. On the other hand, the

CRCM passes Anisotropic BATS-R-US the density, the parallel and total pressures

computed at the minimum magnetic field point of every closed field line, which are

used by Anisotropic BATS-R-US to derive the density and pressures at “non-minimum

B” locations along the closed field lines according to the following relations (see
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Figure 4.1: The flow chart for the two-way coupling between Anisotropic BATS-R-US
and the CRCM.

Appendix B for a derivation).

nλ =
n0

p⊥0/p‖0 + B0/Bλ(1− p⊥0/p‖0)
(4.2)

p‖λ =
p‖0

p⊥0/p‖0 +B0/Bλ(1− p⊥0/p‖0)
(4.3)

p⊥λ =
p⊥0

(p⊥0/p‖0 + B0/Bλ(1− p⊥0/p‖0))2
(4.4)

The subscript 0 denotes for the location of the minimum magnetic field on a closed

field line, and λ indexes an arbitrary point along that field line. The relation (2.2)

is employed to calculate the corresponding total pressure pλ. Substituting equation

(4.3) and (4.4) into equation (4.1) gives F‖λ = 0 (also shown in Appendix B), therefore

the pressure distributions obey the force balance condition along the magnetic field

lines.

The derivation of equation (4.2), (4.3) and (4.4) is based on two assumptions.
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First, there is no potential drop between the “minimum B” point and the point at

latitude λ along the field line. Second, the distribution function at the “minimum

B” point is a function of v2‖/T‖ + v2⊥/T⊥ dependence, where v‖ and v⊥ are the par-

allel and perpendicular velocities, and T‖ and T⊥ are the parallel and perpendicular

temperatures, respectively. This means that the relations are satisfied for a variety of

distribution functions, including bi-Maxwellian and bi-Kappa distributions, that are

reasonable approximations of the particle distribution in the inner magnetosphere.

4.3 Idealized Quiet Time Magnetosphere

To validate Anisotropic BATS-R-US and its couplings with the two ring current

models RCM and CRCM, we perform global magnetospheric simulations and analyze

the differences between the anisotropic MHD and isotropic MHD simulations, as well

as the differences between the RCM and the CRCM-coupled simulations. We first

present the idealized simulations.

We have performed six idealized magnetospheric simulations with different model

combinations in the SWMF:

1. Anisotropic MHD Model + RIM

2. Isotropic MHD Model + RIM

3. Anisotropic MHD Model + RIM + RCM

4. Isotropic MHD Model + RIM + RCM

5. Anisotropic MHD Model + RIM + CRCM

6. Isotropic MHD Model + RIM + CRCM

The first two simulations do not contain any ring current models, thus they serve as

the baselines for comparisons. All six simulations use identical parameters for the

same models.
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The global MHDmodel is set up in a 3D box extended from -224RE to 32RE in the

X direction and from -128RE to 128RE in the Y and Z directions in the GSM coordi-

nate system. The inner boundary is at 2.5RE from the center of the Earth. The grid

resolution varies from the smallest 1/8RE grid cells close to the Earth to the largest

8RE grid cells far down the magnetotail. The total number of cells is 1.8 million.

As idealized conditions, we align the magnetic axis with the ecliptic north direction,

and drive the MHD model with constant solar wind condition and southward IMF:

number density nsw = 5 cm−3, temperature Tsw = 105 K, velocity uxsw = −400 km/s,

uy,zsw = 0, magnetic field Bx,ysw = 0, and Bzsw = −5 nT. We use TVD Lax-Friedrich

scheme [Rusanov , 1961] with the Koren limiter [Koren, 1993], explicit time stepping

and Boris factor 0.02, i.e., the reduced speed of light is 6000 km/s.

For the ionosphere model RIM, we assume a constant Pedersen conductance of

5mho and zero Hall conductance. For the RCM, its initial particle distribution is

calculated from the MHD solutions of the density and temperature in steady state.

For the CRCM, its initial particle distribution is based on quiet time ring current

data from the AMPTE/CCE spacecraft [Sheldon and Hamilton, 1993].

All simulations are started with 5000 iterations using local time stepping in the

MHD code that is coupled with RIM every 10 time steps to achieve steady states.

Then they are switched to the time accurate mode, and for the last four simulations,

are coupled with the RCM or the CRCM. The time accurate simulations last for 8

hours.

4.3.1 Force balance along closed field lines

As mentioned in section 4.2, the coupling between Anisotropic BATS-R-US and

the CRCM is built in a way that the force balance condition along closed field lines

is satisfied in the presence of pressure anisotropy. This can be verified by extracting

closed field lines in the MHD solution of simulation 5: Anisotropic MHD + RIM +
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Figure 4.2: Force balance along the field lines for the idealized simulation with An-
isotropic MHD + RIM + CRCM at time t = 4hr. The left plot shows
the logarithmic parallel pressure (colors) and the field lines in the noon-
midnight meridional plane from the MHD model. The black line repre-
sents the closed field line for which the force balance condition is shown
in the right plot.

CRCM, and calculate the forces along these field lines based on the force expression

(4.1).

Figure 4.2 shows an example of the force balance analysis. The left plot displays

the logarithmic parallel pressure and the magnetic field lines in the noon-midnight

meridional (Y = 0) plane at t = 4hr from simulation 5. We extract a closed field

line on the nightside marked by the black line. Using the parallel and perpendicular

pressures and the magnetic field strength in each grid cell along this field line, we

calculate the force contributions from the mirror force, i.e., the first term in (4.1),

and from the gradient of the parallel pressure, i.e., the second term in (4.1). The

right plot shows the forces along this field line starting from near the inner boundary

of the MHD model in the northern hemisphere. The mirror force represented by the

dotted line and the negative parallel pressure gradient represented by the dashed line

are very close to each other. The resulting net force represented by the solid line

is approximately zero. The plot demonstrates that the force balance condition is

satisfied along the particular field line, with some limited discretization errors.
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4.3.2 Pressure distribution

The plasma pressure distribution in the inner magnetosphere is a direct indica-

tion of the ring current. We expect higher inner magnetospheric pressure in the ring

current model-coupled simulations 3, 4, 5 and 6 compared to the simulations without

ring current models. Figure 4.3 displays the plasma pressure, in the case of anisotro-

pic MHD, the total plasma pressure, from the global MHD model in the equatorial

(Z = 0) plane at t = 8hr. The top three plots are from the three simulations with

the anisotropic MHD model, and the bottom ones are from the three simulations

with the isotropic MHD model. The comparison among the three top plots shows a

much stronger nightside pressure from the RCM or the CRCM-coupled anisotropic

MHD simulations than from the anisotropic MHD simulation without any ring current

model. This validates the effect of the couplings with the RCM and the CRCM, which

is consistent with the results from the isotropic MHD simulations shown in the bot-

tom plots. Comparing the anisotropic MHD and isotropic MHD simulation results,

we observe higher nightside pressure in the MHD-only simulations (left column) and

in the CRCM-coupled simulations (right column), but lower nightside pressure in the

RCM-coupled simulations (middle column) for the anisotropic MHD model than for

the isotropic MHD model. Comparing the RCM and the CRCM-coupled simulations,

the latter produces stronger pressure in the anisotropic MHD model but weaker pres-

sure in the isotropic MHD model. Compared to the RCM-coupled simulations, the

CRCM-coupled simulations also show more dawn-dusk asymmetry (dusk preferred)

in the pressure distributions, which implies stronger gradient-curvature drift in the

CRCM than in the RCM. Although the RCM and the CRCM-coupled simulations

react oppositely in terms of changes in the pressure magnitude resulted from the in-

clusion of pressure anisotropy in the MHD model, they exhibit similar changes in the

size of the inner magnetosphere. When comparing the top and bottom plots in the

middle and right columns, we find the influence of the IM pressure is greatly reduced
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Figure 4.3: The logarithm of the total pressure in nPa in the equatorial (Z = 0) plane
from the MHD model at t = 8hr.

with anisotropic MHD in comparison with isotropic MHD. We have also noticed that

the position of the bow shock varies in these simulations, which will be addressed in

section 4.3.3.

A more straightforward comparison of the nightside pressure strengths from dif-

ferent simulations is shown in Figure 4.4. In this figure we plot the nightside pressure

along the Sun-Earth line, i.e., theX axis, from the global MHD model. The solid lines

represent anisotropic MHD, and the dotted lines represent isotropic MHD. Compared

to the two simulations without ring current models identified by the black lines, we

see significant pressure increases in the simulations with the RCM and the CRCM,

identified by the blue and orange lines respectively. The plot clearly shows a little

pressure increase in the anisotropic MHD only simulation, a large pressure increase in

the CRCM-coupled anisotropic MHD simulation but a large pressure decrease in the

RCM-coupled anisotropic MHD simulation compared to the corresponding isotropic
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MHD simulations. Both the RCM and the CRCM coupled anisotropic MHD simu-

lations produce a single pressure peak at around x = −5RE. The pressure gradient

towards the Earth (which leads to eastward inner ring current), is not very distinctive

in the isotropic MHD simulations especially the CRCM-coupled one (orange dotted

line) in which the pressure gradient towards the Earth is very small.

In the anisotropic MHD simulations we can also look into pressure anisotropy.

Figure 4.5 shows the pressure anisotropy ratio P⊥/P‖ in the Z = 0 plane at t = 8hr

from the MHD model. In the inner magnetosphere region within 8RE radius, the

RCM-coupled simulation has the least amount of pressure anisotropy with an ex-

ception of a parallel pressure dominated small region close to the Earth, while the

CRCM-coupled simulation has the strongest pressure anisotropy with the perpendic-

ular pressure dominating in general. This is expected, since the coupling with the

isotropic RCM drives the pressure towards isotropy in the closed field line region.

Therefore, the RCM-coupled simulation produces less pressure anisotropy than the

anisotropic MHD-only simulation does. The CRCM-coupled simulation, on the other

hand, produces more pressure anisotropy than the anisotropic MHD-only simulation

does, behind the magnetosheath particularly, which implies that the CRCM itself gen-

erates more perpendicular preferred pressure anisotropy than the anisotropic MHD

model does.

4.3.3 Magnetosheath thickness and magnetopause position

In the previous study (Chapter III) we have found thicker magnetosheath when

including pressure anisotropy in global MHD simulations. However, this changes

for simulations coupled with the RCM or the CRCM. Figure 4.6 plots the number

density, pressure (total pressure in the anisotropic MHD cases) and magnetic field

strength variations along the Sun-Earth line on the dayside from the MHD solutions

at t = 8hr. For the two MHD only simulations represented by the black lines, we
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Figure 4.5: Pressure anisotropy ratio in the X = 0 plane from the MHD model at
t = 8hr.
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Figure 4.6: The magnetosheath number density (top panel), total pressure (middle
panel) and magnetic field strength (bottom panel) profiles extracted along
the X axis from the MHD model at t = 8hr.

see a larger bow shock stand-off distance from the Earth and a wider magnetosheath

in the case of anisotropic MHD. In addition, the position of the magnetopause is not

affected much by pressure anisotropy. On the contrary, for the RCM and the CRCM-

coupled simulations, pressure anisotropy brings both the magnetopause and the bow

shock closer to the Earth, resulting in a thinner magnetosheath as the change of the

bow shock stand-off distance is larger than the change of the magnetopause position,

which can be seen from the number density and pressure profiles. The thickness of

the magnetosheath from different simulations can be ordered from the thinnest to the

thickest as follows: Isotropic MHD, Anisotropic MHD + CRCM, Anisotropic MHD,

Anisotropic MHD + RCM, Isotropic MHD + CRCM, Isotropic MHD + RCM.

The magnetopause positions from the RCM and the CRCM-coupled simulations
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are further away from the Earth compared to the ones in MHD only simulations. This

could be easily explained by the larger inner magnetospheric pressure in the ring cur-

rent model-coupled simulations, which blows up the size of the whole magnetosphere.

The closer magnetopause from the Earth in the RCM and the CRCM-coupled sim-

ulations in the anisotropic MHD case than in the isotropic MHD case is consistent

with the pressure distribution plots in the middle and right columns of Figure 4.3,

which shows a reduced pressure just inside the magnetopause and thus a smaller

magnetosphere in the anisotropic MHD case.

4.3.4 Earthward tail flow and the magnetic field topology

Another conclusion from the previous study is that the inclusion of pressure aniso-

tropy in the global MHD model reduces the reconnection rate thus the Earthward flow

speed in the tail. This holds true for the ring current model-coupled MHD simulations,

too. Figure 4.7 displays the X direction flow speed as well as the magnetic field lines

in the Y = 0 plane from the MHD solutions at t = 8hr. The comparison between the

top and bottom plots in each column shows greatly reduced Earthward flow speeds

in the cases of anisotropic MHD compared to isotropic MHD. For the RCM and the

CRCM-coupled simulations (middle and right columns), this flow speed reduction

is more significant than the MHD only simulations (left column). For anisotropic

MHD (top row), the Earthward flow in the RCM or the CRCM-coupled case is even

slower than the one in the MHD only case, which brings the simulated flow speed

closer to the observed typical speed of 300 km/s during quiet time [Baumjohann and

Pashmann, 1989]. In terms of modeling the realistic Earthward tail flow, including

pressure anisotropy in the ring current model-coupled MHD simulations improves the

results a lot.

Figure 4.7 also shows the change in magnetic field topology when including pres-

sure anisotropy in the MHD model coupled with the RCM or the CRCM. In the
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Figure 4.7: The X direction velocity contour overplotted with the magnetic field lines
in the noon-midnight meridional Y = 0 plane from the MHD model at
t = 8hr.

anisotropic MHD only simulation, the magnetic field topology is barely different from

the one in the isotropic MHD only simulation. However, with the coupling of the

ring current models, the tail reconnection site in anisotropic MHD is much closer

to the Earth than in isotropic MHD, and the overall shape of the closed field lines

is compressed in anisotropic MHD. This, again, is consistent with the reduced size

of the inner magnetosphere in anisotropic MHD that we discussed previously. An

interesting feature of the three bottom plots is that the coupling of the ring current

models changes the magnetic field topology significantly in the isotropic MHD case.

But this effect is almost eliminated in the anisotropic MHD case, for which the cou-

pling of the ring current models does not seem to impact the magnetic field topology,

at least not distinguishable in the plots. This implies the importance of pressure an-

isotropy in controlling magnetic field topology. Even though the pressure anisotropy

in the global MHD model might be small in the inner magnetosphere, for instance
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in the anisotropic MHD + RCM simulation, it still has a strong effect on the closed

magnetic field region.

4.4 Geomagnetic Storms

Geomagnetic storm simulations require incorporating a kinetic inner magneto-

sphere model with the global MHD model in order to capture the dynamics of the

ring current during storm evolutions, thus can be used to validate the coupling be-

tween the anisotropic MHD model and the RCM or the CRCM.

We set up the storm simulations the same way as we do the idealized magneto-

spheric simulations, except that real physical parameters replace the idealized condi-

tions. For the global MHD model, we set orientations of the magnetic and the rota-

tional axes based on the actual time and date to be simulated. The input time-varying

solar wind and IMF conditions are taken from the ACE and/or WIND measured val-

ues that are time-shifted based on the solar wind propagation time from the satellite

to the upstream boundary of the simulation. For the RIM, we use the actual solar

F10.7 flux to calculate the ionospheric conductance. For the RCM, we use a 10-hour

artificial SYM-H decay to mimic the SYM-H recovery, as the RCM does not model

physical processes that decay the ring current in the recovery phase. This artificial

term is not added to the CRCM because charge exchange loss is already incorporated

in that model.

In this study we simulate two moderate storm events, one in 2009 and the other

in 2010. For each event, we conduct four simulations:

Run I: Anisotropic MHD Model + RIM + RCM

Run II: Isotropic MHD Model + RIM + RCM

Run III: Anisotropic MHD Model + RIM + CRCM

Run IV: Isotropic MHD Model + RIM + CRCM
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4.4.1 21-22 July 2009 storm

The first event we select is the 21-22 July 2009 CIR-driven storm. The time in-

terval we simulate is from 18UT on July 21st to 0UT on July 23rd. The upstream

condition input for the global MHD model is shown in Figure 4.8. The IMF z com-

ponent slowly decreases, accompanied by a density increase starting at 0UT, July

22, which triggers the storm. Later Bz changes from southward to northward, then

southward, then northward again, which continues to disturb the magnetosphere.

The SYM-H index reflects the variation of ring current strength during the storm.

Figure 4.9 compares the simulated SYM-H indexes by the global MHD model from

different simulations and the measured 1-minute SYM-H index. For the RCM-coupled

simulations represented by the blue lines, we see differences in the storm growth phase

and the recovery phase between the anisotropic MHD simulation and the isotropic

MHD simulation. The anisotropic MHD simulation has a slightly deeper SYM-H

decrease in the growth phase, which matches the data better. The same conclusion can

be drawn for the recovery phase between 10UT and 14UT. For the CRCM-coupled

simulations, the anisotropic MHD and the isotropic MHD make a big difference in the

main phase, with the anisotropic MHD predicts much less SYM-H. In the recovery

phase, the SYM-H of the anisotropic MHD case recovers faster than the SYM-H of the

isotropic MHD case. We have also noticed that the SYM-H recovers much slower in

the CRCM-coupled simulations than it does in the RCM-coupled simulations. On one

hand, we have applied the 10-hour SYM-H decay for the RCM-coupled simulations,

which is not physical-based. On the other hand, the CRCM underestimates the decay

rate of the ring current even though it includes a physical loss term.

4.4.1.1 CRCM solutions

Since the coupling between Anisotropic BATS-R-US and the CRCM provides the

first opportunity for the CRCM to be driven by an anisotropic MHD model self-
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Solar wind and IMF conditions for 21 - 22 July 2009
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Figure 4.8: The input solar wind and IMF conditions of the MHD model for the 21-22
July 2009 storm.
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21-22 July 2009 SYM-H
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Figure 4.9: The measured 1-minute SYM-H and the simulated SYM-H for the 21-22
July 2009 storm. The blue lines represent the RCM-coupled simulations,
and the orange ones represent the CRCM-coupled simulations. The solid
lines are for anisotropic MHD, while the dashed ones are for isotropic
MHD.

consistently, we are also interested in the differences in the CRCM solutions when

driven by the anisotropic MHD model compared to the solutions when driven by the

isotropic MHD model.

Figure 4.10 displays the total pressure in the equatorial plane from the CRCM in

simulations III and IV. A series of plots at different times during the storm is shown,

which represents the evolution of the ring current. The anisotropic MHD-driven

case (top panel) and the isotropic MHD-driven case (bottom panel) generate very

different ring current patterns at same times. At 0UT just before the storm begins,

the anisotropic MHD-driven case gives a very similar, though very weak, pressure

distribution as the isotropic MHD-driven case does. At 4UT when the storm grows,

the anisotropic MHD-driven case has a weaker ring current than the isotropic MHD-

driven case has, but in both cases the ring current has a strong duskside preference.

From 6UT to 8UT during the storm main phase, the anisotropic MHD-driven case

shows a much weaker and more dawn-dusk symmetric ring current than the other
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Figure 4.10: The CRCM simulated total pressure in the Z = 0 plane for different
times on 22 July 2009. The top panel shows results from the anisotro-
pic MHD-driven case, while the bottom panel shows results from the
isotropic MHD-driven case.

simulation. Moreover, the ring current undergoes a strong-weak-strong change from

6UT to 8UT in the anisotropic MHD-driven case, yet this variation is not distinctive

in the isotropic MHD-driven case. This difference can also be seen from the SYM-H

variations in Figure 4.9. Between 6UT and 8UT, the SYM-H index in simulation

III increases then decreases, while the SYM-H in simulation IV has a much smaller

change. The consistency between the results from the global MHD model and from

the CRCM also verifies the correct coupling between these models. After 9UT, the

start of the recovery, the ring current patterns in the anisotropic MHD and isotropic

MHD-driven cases become closer. However, the anisotropic MHD case shows a faster

ring current decay, so that at 12UT, the pressure is obviously less and its distribution

is more symmetric surrounding the Earth. An overview of the ring current strength

at all times in Figure 4.10 tells us that the CRCM produces weaker ring current when

driven by the anisotropic MHD model than by the isotropic MHD model for this

storm.

As a further exploration, we plot the equatorial electric potential contours from the

CRCM at 6UT for both the anisotropic MHD and isotropic MHD-driven simulations

in Figure 4.11. The potential distribution in the equatorial plane is traced along the

closed field lines from the potential pattern in the high latitude ionosphere solved by

115



-5 0 5
X

-5

0

5

Y

Anisotropic MHD driven

Potential [kV]

-2
2.

03
-1

5.
41

-15.41

-8.79

-8.79

-2
.1

6

-2.16

4.46

4.
46

4.46

11.08

11.08

11.08

17.70 17
.7

0

-5 0 5
X

 

 

 

 

Isotropic MHD driven

Potential [kV]

-35.27

-28.65

-2
2.

03

-22.03-15.41

-8.79

-8
.7

9

-2.16

-2
.1

6 4.
46

4.
46

11.08

Figure 4.11: The equatorial electric potential contour from the CRCM at 6UT on 22
July 2009, mapped along field lines from the solution of the ionospheric
electrodynamics model RIM.

the RIM. This potential is due to the convection electric field, thus the equipotential

lines represent drift paths of zero (or very low) energy particles. For high energy

particles, their motions are also governed by the azimuthal gradient-curvature drift

that is energy-dependent. In the anisotropic MHD-driven case shown on the left of

Figure 4.11, the equipotential lines are less dense than in the isotropic MHD-driven

case shown on the right, which indicates that the convection electric field is weaker in

the anisotropic MHD-driven simulation. Therefore, for particles of the same energy

in the two simulations, which means that they have the same gradient-curvature

drift speed, they can penetrate closer to the Earth in the isotropic MHD-driven case

because of larger E×B drift speed.

Including pressure anisotropy in the global MHD model also modifies the pressure

anisotropy in the CRCM for the coupled simulations. Figure 4.12 plots the pressure

anisotropy in the Z = 0 plane in the CRCM at three different times. The left column

shows the anisotropic MHD-driven case, and the right column shows the isotropic

MHD-driven case. Overall the anisotropic MHD-driven CRCM produces much less
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pressure anisotropy than the isotropic MHD-driven CRCM does. This results from

the deeper penetration of the particles in the isotropic MHD-driven case, which leads

to more perpendicular pitch angle distribution due to the strong gradient-curvature

drift and charge exchange loss that prefer to remove particles moving along the field

lines. In the more self-consistent simulation (anisotropic MHD with the CRCM),

we observe pressure anisotropy variation during the storm. At 6UT when the storm

enters the main phase, the pressure is highly perpendicular, especially on the dayside.

At a later time 8UT, the anisotropy becomes less. At 12UT during the recovery

phase, the pressure anisotropy increases, and the region with perpendicular preferred

pressure grows larger.

4.4.1.2 Comparison with satellite data

We trace a number of satellites in the global MHD model and extract the variables

along the satellite trajectories for the four simulations. The simulated results are

compared to the actual data.

Figure 4.13 shows the GOES11 and GOES12 orbits during the storm and the com-

parison between the simulated and measured magnetic field along the geosynchronous

orbit. We use the same line types and colors to distinguish different simulations as we

use in Figure 4.9. We calculate the root-mean-square errors for quantitative compar-

isons, also shown in the figure. For both the RCM-coupled and the CRCM-coupled

simulations, the anisotropic MHD model matches the measured X and Y components

of the magnetic field better but does worse for the Z component than the isotropic

MHDmodel does. In terms of the topology of the magnetic field, the anisotropic MHD

model predicts less stretched magnetic field lines than the isotropic MHD model does

during the main phase and the recovery phase of the storm. For the anisotropic MHD

case, the RCM-coupled and the CRCM-coupled simulations are competitive in terms

of reproducing the magnetic field.
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Figure 4.15: The logarithm of the total pressure and the magnetic field lines in the
Y = 0 plane at 12UT on July 22 from the MHD solutions.
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The comparison with the Geotail data indicates significant improvements when us-

ing the anisotropic MHD model instead of the isotropic MHD model for ring current-

coupled simulations, as shown in Figure 4.14. During this storm time interval, Geotail

was down in the tail at about X = −30RE. For both the RCM and the CRCM-

coupled cases, the anisotropic MHD model produces better agreement with data

for all three components of the magnetic field than the isotropic MHD model does.

Moreover, the CRCM-coupled anisotropic MHD simulation matches the measured

magnetic field in the tail best among the four simulations. We have also noticed

that the CRCM-coupled isotropic MHD simulation predicts Bx with the wrong sign

from 10UT, July 22 to 0UT, July 23. To further investigate this problem, we look

into the simulated magnetic field topology at 12UT on July 22nd when simulation

IV has a very different Bx from the other simulations and the data, shown in Figure

4.15. We overplot the field lines on the logarithmic pressure contour in the Y = 0

plane, as well as the Geotail location at 12UT projected to this plane, represented by

the magenta diamond. In simulation IV, the tail is very tilted towards the minus Z

direction, so that Geotail is on the opposite side of the current sheet to where it is in

the other three simulations. Hence, the simulated Bx is positive instead of negative

in simulation IV.

During the July 2009 storm the THEMIS data is also available. Since THEMIS

satellites measure the perpendicular and parallel temperatures, we could compare

the simulated pressure anisotropy to the measurement directly. Figure 4.16 shows

the orbits of THEMIS A, D and E projected in the Y = 0 and Z = 0 planes with

the simulated pressure anisotropy from simulation III at 16UT on July 22nd, and

the simulated pressure anisotropy ratio extracted along the satellite trajectories com-

pared with the actual data. All three satellites are in the dusk sector of the dayside

magnetosphere. THEMIS D and E have very close trajectories. The pressure aniso-

tropy contour plots show that perpendicular pressure dominates the polar regions,
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the magnetosheath, and the region close to the Earth. The simulated P⊥/P‖ matches

the data reasonably for both the RCM and the CRCM-coupled simulations except

the pressure anisotropy jump between 8UT and 9UT seen by THEMIS A. Later we

will see that during this time interval THEMIS A went across the magnetopause and

into the magnetosheath where the pressure anisotropy is high.

We also compare the other variables measured by the THEMIS satellites with

the simulated ones. Figure 4.17, 4.18 and 4.19 display the data-model comparisons

of the number density, pressure, velocity and magnetic field for THEMIS A, D and

E respectively. For THEMIS A, both the RCM and the CRCM-coupled anisotropic

MHD simulations (I and III) improve the comparisons for almost every variable,

especially for the velocity, relative to the isotropic MHD simulations (II and IV).

In the velocity comparison, the isotropic MHD simulations predict large flows after

13UT, which are not observed. The RCM and the CRCM-coupled anisotropic MHD

simulations are very competitive with each other in terms of matching the actual

data. At 8UT, Bz has a sudden decrease and the number density has a sudden

increase, which implies that the satellite flew into the magnetosheath. Although the

simulations capture the change in the magnetic field, they miss the anisotropy jump.

For THEMIS D and E, the anisotropic MHD simulations do not show improvements

as large as they are for THEMIS A. For the RCM-coupled simulations, anisotropic

MHD produces even worse results than isotropic MHD does for some variables, for

example the number density. For the CRCM-coupled simulations, the anisotropic

MHD model still has better results than the isotropic MHD model has for most

variables. Interestingly, for these satellite trajectories, the RCM-coupled isotropic

MHD simulation II seems to do a better job than the CRCM-coupled anisotropic

MHD simulation III.
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21-22 July 2009
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Figure 4.17: The simulated density, pressure, velocity and magnetic field along the
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ment for the 21-22 July 2009 storm. The line representations of the four
simulations are the same as in Figure 4.9.
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21-22 July 2009
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Figure 4.18: Same as Figure 4.17 for THEMIS D.
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21-22 July 2009
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Figure 4.19: Same as Figure 4.19 for THEMIS E.
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Solar wind and IMF conditions for 05 - 07 April 2010

                          
-10
-5

0

5
10

B
x 

[n
T

]

                          
-20
-10

0

10
20

B
y 

[n
T

]

                          
-20
-10

0

10
20

B
z [

nT
]

                          
-900
-800
-700
-600
-500
-400

u x
 [

km
/s

]

                          
-100
-50

0
50

100
150

u y
 [

km
/s

]

                          
-200
-100

0

100
200

u z
 [

km
/s

]

                          
0
5

10

15
20

n 
[/

cm
3 ]

2
April 5

    12      0
April 6

     12      0
April 7

 4

Time [UT]

0
1•106

2•106

3•106
4•106

T
 [

K
]

Figure 4.20: The input solar wind and IMF conditions of the MHD model for the 5-7
April 2010 storm.
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4 - 7 April 2010 SYM-H
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Figure 4.21: The measured 1-minute SYM-H and the simulated SYM-H for the 5-7
April 2010 storm. The blue lines represent the RCM-coupled simula-
tions, and the orange ones represent the CRCM-coupled simulations.
The solid lines are for anisotropic MHD, while the dashed ones are for
isotropic MHD.

4.4.2 5-7 April 2010 storm

The second event we select is the 5-7 April 2010 CME-driven storm. The simulated

time interval is from 2UT on April 5th to 4UT on April 7th. The input solar wind

and IMF conditions are from the ACE satellite measurement, shown in Figure 4.20.

The CME arrives shortly after 8UT, when the IMF Bz starts to decrease, the solar

wind speed suddenly increases, and the number density and temperature suddenly

increase.

Figure 4.21 shows the simulated and measured SYM-H index, from which we could

tell that the anisotropic MHD simulations predict better SYM-H for this storm than

the isotropic MHD simulations do. In particular, for the CRCM-coupled simulations,

the anisotropic MHD case produces much closer SYM-H to the measurement than the

isotropic MHD case does. The CRCM-coupled isotropic MHD simulation produces

overly-large negative SYM-H, which indicates that it overestimates the ring current
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strength. The two anisotropic MHD simulations are competitive, with the RCM-

coupled simulation matching the measured SYM-H after 12UT on April 6th better

than the CRCM-coupled one, but the SYM-H recovery simulated by the RCM-coupled

simulation could be mostly due to the 10-hour SYM-H decay we added.

Comparisons of the simulated magnetic field at geosynchronous orbit to the GOES

satellite measurements are presented in Figure 4.22. In general, for the CRCM-

coupled simulations, the anisotropic MHD model captures the variations in the data

better than the isotropic MHD model does. On the contrary, for the RCM-coupled

simulations, the anisotropic MHD model does slightly worse. Of the two anisotropic

MHD simulations, the CRCM-coupled one does better than the RCM-coupled one,

particularly for Bx. However, all simulations produce less stretched field lines than

as seen by GOES11.

The comparison with the Geotail data is shown in Figure 4.23. During the storm,

Geotail moved from outside the bow shock to the inner magnetosphere. All four simu-

lations reproduce the measured magnetic field well. Between the two CRCM-coupled

simulations, the anisotropic MHD simulation matches the data better according to

the root-mean-square errors. The CRCM-coupled anisotropic MHD simulation and

the two RCM-coupled simulations are competitive.

4.5 Summary

In order to address the ring current dynamics during the geomagnetic disturbed

time with our newly developed anisotropic MHD model, we couple Anisotropic BATS-

R-US with the RCM and the CRCM. Since the CRCM can resolve pitch angle an-

isotropy while the RCM cannot, the coupling between Anisotropic BATS-R-US and

the CRCM is more self-consistent. For the first time, we provide two-way coupling

between a global anisotropic MHD model and an anisotropic ring current model,

which allows us to study the global pattern of pressure anisotropy in the terrestrial
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Figure 4.22: The orbits of GOES11 (top left) and GOES12 (top right) from 2UT on
April 5 to 4UT on April 7 and the measured and simulated magnetic
field with the root-mean-square errors written on the plots. The line
representations of the four simulations are the same as in Figure 4.21.
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magnetosphere more completely.

The two-way coupling between Anisotropic BATS-R-US and the RCM is adopted

from the coupling between BATS-R-US and the RCM. Since the RCM assumes

isotropic pressure, both the total and parallel pressures along the closed field lines in

the anisotropic MHD model are nudged towards the RCM pressure with the assump-

tion that the pressures are constant along field lines.

The two-way coupling between Anisotropic BATS-R-US and the CRCM is more

sophisticated. For the CRCM to Anisotropic BATS-R-US coupling, by feeding An-

isotropic BATS-R-US with the CRCM density and pressures at “minimum B” points

on closed field lines, we calculate the density and pressures at “non-minimum B”

points along closed field lines in Anisotropic BATS-R-US based on the relations (4.2),

(4.3) and (4.4), which are obtained by Liouville’s Theorem and based on a set of as-

sumptions. For Anisotropic BATS-R-US to the CRCM coupling, in addition to the

magnetic field information, the CRCM also uses the density and pressures from An-

isotropic BATS-R-US to set boundary conditions.

The coupled Anisotropic BATS-R-US and ring current models are validated th-

rough global magnetospheric simulations and compared to the standard coupled

BATS-R-US and ring current models. In the idealized quiet time simulations, we find

significantly increased nightside pressure and pressure gradient towards the Earth

in the MHD solutions for both the RCM and the CRCM-coupled anisotropic MHD

cases than for the anisotropic MHD-only case. However, compared to the corre-

sponding isotropic MHD simulations, the RCM-coupled anisotropic MHD gives less

nightside pressure, while the CRCM-coupled anisotropic MHD gives more nightside

pressure. In the anisotropic MHD solutions, the pressure anisotropy in the inner mag-

netosphere is the largest for the CRCM-coupled simulations, and the smallest for the

RCM-coupled simulations as expected. We also find that the inclusion of pressure an-

isotropy in the global MHD model that is coupled with the RCM or the CRCM brings
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the subsolar magnetopause and the bow shock towards the Earth, and the resulting

magnetosheath is thinner. In addition, we find the RCM or the CRCM-coupled aniso-

tropic MHD simulation produces a shorter tail, more compressed closed field lines on

the nightside, and a much slower Earthward flow jet from the tail reconnection site,

compared to the corresponding isotropic MHD simulations. The conclusions from

the idealized simulations imply that pressure anisotropy plays an important role in

controlling the magnetic field topology and maybe some other physical processes in

the global magnetosphere.

In two geomagnetic storm simulations, we observe less ring current during the

main and recovery phases produced by the anisotropic MHD model than by the

isotropic MHD model for the CRCM-coupled simulations. For the 2009 storm, the

anisotropic MHD-driven CRCM produces less anisotropic plasma for the ring current

compared to the isotropic MHD-driven CRCM does. For the comparisons with the

satellite data, we see mostly improvements, but also drawbacks from the anisotropic

MHD simulations compared to the isotropic MHD simulations. In particular, aniso-

tropic MHD improves the magnetic field agreement with the Geotail data and the

velocity agreement with the THEMIS A data a lot for the 2009 storm. In most cases,

the CRCM-coupled anisotropic MHD simulation and the two RCM-coupled simula-

tions produce competitive results. Moreover, for the RCM-coupled simulations, the

isotropic MHD case sometimes shows better match with the data than the anisotropic

MHD case does. In our opinion, this reveals the importance of consistency between

the global MHD model and the ring current model. The RCM assumes isotropic

pressure, so does the isotropic MHD model. In principle, the RCM-coupled isotropic

MHD model is more consistent than the RCM coupled anisotropic MHD model. This

might also explain the incorrect tail tilt seen in the CRCM-coupled isotropic MHD

simulation in Figure 4.15, as the coupling between a isotropic MHD model with an

anisotropic ring current model is inconsistent.
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CHAPTER V

Coronal and Heliospheric Simulations with

Anisotropic BATS-R-US

As the last application of Anisotropic BATS-R-US presented in this thesis, we have

generalized a recent coronal and heliospheric model [Sokolov et al., 2013] to account

for the observed proton temperature anisotropy based on Anisotropic BATS-R-US.

This chapter describes the current state of this solar wind model and shows some

preliminary results. Given that the electron thermal pressure is equally important as

the ion thermal pressure in the corona and the solar wind, we consider the electron

pressure as well, which is different from the magnetospheric simulations presented in

Chapter III and IV.

The content of the chapter is as following. Section 5.1 describes the anisotropic

MHD model for the solar wind, including the governing equations and boundary

conditions. Section 5.2 presents an idealized coronal simulation. Section 5.3 presents

the coronal and heliospheric simulations for three Carrington rotations during solar

minimum and maximum. Section 5.4 summarizes the chapter.
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5.1 An Anisotropic MHD Model for the Corona and Helio-

sphere

Since both the SC and IH components in the SWMF are represented by BATS-R-

US, Anisotropic BATS-R-US can be easily incorporated into the coronal and helio-

spheric models available in SC and IH, so that these solar wind models can account

for ion temperature anisotropy in the corona and the solar wind. In this study we ex-

tend the newly developed Alfvén wave driven solar wind model [Sokolov et al., 2013;

van der Holst et al., 2010] to include the ion pressure anisotropy. Note that the ions

only include protons in the model.

The governing equations for the Alfvén wave driven solar wind model with aniso-

tropic ion pressure are written as

∂ρ

∂t
+∇ · (ρu) = 0 (5.1)

∂ρu

∂t
+∇ ·

[

ρuu+ p⊥I+ peI+ (p‖ − p⊥)bb− 1

µ0

(

BB− B2

2
I

)]

+∇
(

w+ + w−

2

)

= 0 (5.2)

∂B

∂t
+∇× [−(u×B)] = 0 (5.3)

∂p‖
∂t

+∇ · (p‖u) + 2p‖b · (b · ∇)u =
2

3τei
(pe − p‖) +

2

3
Qp‖ +

δp‖

δt
(5.4)

∂p

∂t
+∇ · (pu) + 2

3
p⊥(∇ · u) + 2

3
(p‖ − p⊥)b · (b · ∇)u

=
2

3τei
(pe − p) +

2

3
Qp (5.5)

∂pe
∂t

+∇ · (peu) +
2

3
pe(∇ · u) + 2

3
∇ · qe =

2

3τei
(p− pe) +

2

3
Qe −

2

3
Qrad (5.6)

∂w±

∂t
+∇ · (uw± ± bVAw±) +

1

2
w±∇ · u = −Γ±w± (5.7)

Again, ρ and u are the density and velocity, I is the unit tensor, B is the magnetic

field, b is the unit vector along the direction of the magnetic field, and µ0 is the

vacuum permeability. The polytropic index is taken to be 5/3. We still use p‖ and
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p to represent the ion parallel pressure and ion average scalar pressure, which are

related by equation (2.2), while pe represents the electron pressure that is assumed

to be isotropic. The ion pressure anisotropy relaxation term on the right-hand-side

of 5.4 has been discussed in detail in Chapter III and can be expressed by

δp‖

δt
= max

(

p‖ − p‖

τ
,
p− p‖

τg

)

. (5.8)

The definitions of p‖, τ and τg are the same as for equations (3.12) and (3.13).

Comparing to the anisotropic MHD equations used in previous chapters, the new

equations (5.7) are specific to coronal and heliospheric modeling. They describe the

propagation and dissipation of the Alfvén wave energy densities w±. The + subscript

indicates the propagating Alfvén waves in the direction of B, and similarly the −

subscript indicates the Alfvén waves antiparallel to B. The Alfvén wave speed can

be written as VA = B/
√
µ0ρ. The wave energy dissipation rates are expressed as

Γ± =

√

|B|
(L⊥ ·

√

|B|)

√

max
(

w∓, C2
reflw±

)

ρ
, (5.9)

where L⊥ is the transverse correlation length of the turbulence. (L⊥ ·
√

|B|) and Crefl

are free parameters that can be set externally.

There are also some new terms on the right-hand-sides of equations (5.2), (5.4) -

(5.6) that are absent in the anisotropic MHD equations employed in previous chap-

ters. First, ∇((w+ + w−)/2) in equation (5.2) represents the contribution from wave

pressures. Second, 2(pe − p‖)/(3τei) in equation (5.4), 2(pe − p)/(3τei) in equation

(5.5), and 2(p− pe)/(3τei) in equation (5.6) describe the heat exchanges between the

electrons and the ions due to their collisions, where τei represents the relaxation time.

Third, the terms with Qp‖ = α‖Qw, Qp = (1− αe)Qw, and Qe = αeQw represent the

coronal heating by the Alfvén waves, where Qw = Γ−w− + Γ+w+ is the Alfvén wave

dissipation. Hence, the total wave energy dissipation is divided into three parts: two
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for the parallel and perpendicular directions (relative to the magnetic field direction)

in the ions and one for the electrons. α‖ is the ratio of the wave energy dissipated in

the parallel direction of the ions against the total wave energy, while αe is the ratio

for the part of the wave energy dissipated in the electrons. The default ratios are

that the electrons get 40% of the total energy, while the rest of the energy goes into

ions and is partitioned to the parallel and perpendicular directions with a ratio of

1 : 2. For now these ratios are set to be constants, and they are also input param-

eters. Third, ∇ · qe in equation (5.6) is the field-aligned electron heat conduction

term, where qe = −κ · ∇Te, Te is the electron temperature, and κ is the field-aligned

heat conduction tensor that is proportional to T
5/2
e . Lastly, Qrad in equation (5.6)

represents the radiation energy loss from an optically thin plasma: Qrad = nenpΛ(Te),

where ne and np are the electron and proton number densities, respectively, and Λ(Te)

is a function of Te that can be obtained from the Chianti tables [Dere et al., 1997].

The new model described by equations (5.1) - (5.7) has been implemented into

both the SC and IH components. Same as the original Alfvén wave driven solar

wind model, we can either run the SC component only to model the corona, or

run the coupled SC+IH to resolve both the corona and the inner heliosphere. The

original Alfvén wave driven solar wind model sets its inner boundary at the top of

the chromosphere, where the ion and electron temperatures are assumed to be the

same constant and uniform value. In our anisotropic MHD model, we adopt the same

inner boundary conditions, with the assumption that the ion pressure is isotropic

at the boundary, i.e., the ion parallel temperature is the same as the ion average

temperature and the electron temperature. This assumption is approximately valid

due to the abundant particle collisions in the relatively dense plasma at the top of the

chromosphere, which can drive the plasma pressure to be isotropic. The treatment of

the transition region remains unchanged, i.e., modifying the electron heat conduction,

the radiation loss rate, and the wave dissipation rate [Sokolov et al., 2013].

138



5.2 Idealized Coronal Simulation

To validate the Alfvén wave driven solar wind model with ion pressure anisotropy,

we first apply the model to simulate the solar corona under idealized conditions and

compare the results to previous 1D and 2D anisotropic MHD modeling results.

The simulation is performed with the SC component only. Our computational

domain is a sphere centered at the Sun with a radius of 24 solar radii (RS). We

use spherical grids, and the grid resolution varies from about 0.001RS very close to

the surface of the Sun, to about 1RS further away from the Sun, with refined grids

in the current sheet region. The total number of cells is about 2.85 millions. The

idealized condition is that we assume the solar magnetic field is a pure dipole field

as the initial condition and keep the radial magnetic field at the inner boundary

fixed during the simulation. Some other important input parameters include: the

electron and ion temperatures at the inner boundary, i.e., the top of the chromosphere,

are set to a uniform value 5.0 × 104 K, and the inner boundary number density is

set to 2.0 × 1017 m−3 uniformly. For wave dissipation rates, we set (L⊥ ·
√

|B|) =

75 km T1/2 and Crefl = 0.04. For wave energy dissipation ratios, we use the default

values, i.e., αe = 0.4 and α‖ = 0.2. For the pressure anisotropy relaxation, we

use the default instability-growth-rate based term, and do not apply global pressure

anisotropy relaxation, namely, τg = ∞.

For comparisons we also perform an isotropic MHD simulation with the original

Alfvén wave driven solar wind model. This simulation is set up identically as the

anisotropic MHD simulation except for the parameters related to anisotropic pressure.

Both simulations are computed in the local time stepping mode for 60000 itera-

tions, when the solutions are converged to near steady state. We look into the results

at the end of the simulations.
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Figure 5.1: The ion pressure anisotropy ratio (left) and the firehose unstable region
with the firehose instability relaxation time (right) in the Y = 0 plane
from the anisotropic MHD simulation of the idealized corona.

5.2.1 Ion pressure anisotropy

For the anisotropic MHD simulation, we are most interested in the ion pressure

anisotropy. The left plot of Figure 5.1 shows the ion pressure anisotropy ratio p⊥/p‖

in the Y = 0 plane. Close to the Sun, we observe highly perpendicular pressure in

the two polar regions where open field lines are rooted, while much less pressure an-

isotropy near the equator where closed field lines dominate. The pressure anisotropy

in the polar regions gradually reduces away from the Sun, while in the equatorial

region the variation with radius is small. The pressure anisotropy variation along the

open field lines can be explained by adiabatic focusing, which results in a more per-

pendicular pitch-angle distribution towards the stronger magnetic field region along

the magnetic field lines. Close to the outer boundary of the simulation domain, the

perpendicular pressure slightly dominates over the parallel pressure except near the

equatorial plane where the parallel pressure develops to be higher than the perpen-

dicular pressure. Since the fast solar wind originated from coronal holes with open

field lines is frequently observed to have T⊥/T‖ > 1, our results qualitatively agree

with it.
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Instabilities could be excited by the ion pressure anisotropy. During the simula-

tion, the ion cyclotron and firehose instabilities are excited, but the former disappears

after some iterations as the pressure anisotropy is being limited through the pressure

relaxation term. At the end of the simulation we find that only the firehose insta-

bility is present due to the large parallel pressure and small magnetic field strength

near the equatorial plane. The right plot of Figure 5.1 displays the firehose unstable

region in the Y = 0 plane and its growth-rate-based relaxation time τf applied in

the simulation. The two very narrow regions that align with the X axis are firehose

unstable. Comparing with the pressure anisotropy contour on the left, we notice

that the pressure anisotropy ratio in these two regions does not deviate much from

1. However, these two regions are actually part of the current sheet as we shall see

later, where the magnetic field is very small, such that the firehose instability can be

excited even when the parallel pressure is only slightly higher than the perpendicular

pressure.

To better understand the ion pressure anisotropy variation in the simulated coro-

nal hole, we extract the ion parallel and perpendicular temperatures along the positive

Z axis and plot the temperature profiles in the left plot of Figure 5.2. This plot can be

directly compared to the results obtained by the 2D anisotropic MHD model (Figure

2(c) in Li et al. [2004]) and 1D anisotropic MHD model (Figure 4 in Chandran et al.

[2011]). Our ion temperature profiles in the fast solar wind are very close to theirs

in terms of the shapes and magnitudes, as well as the measured values between 1RS

and 3RS (shown in Chandran et al. [2011]). Furthermore, Chandran et al. [2011] ob-

tains isotropic temperature at a radial distance of about 40RS, while Li et al. [2004]

has the perpendicular temperature always higher than the parallel temperature. In

comparison to their results, we get approximately isotropic temperature at about

24RS.

The middle plot of Figure 5.2 shows the ion temperature anisotropy profile, which
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Figure 5.2: The ion parallel and perpendicular temperature (left), the ion pressure
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beta and ion pressure anisotropy (right) along the positive Z axis in an-
isotropic MHD simulation of the idealized corona. The blue and green
dotted lines in the middle and right plots represent the mirror and firehose
instability thresholds, respectively.
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can also be compared to Figure 2(e) in Li et al. [2004]. Although we get similar

variation of T‖/T⊥ as the 2D anisotropic MHD modeling obtains, in our simulation

the location of minimum T‖/T⊥ is closer to the Sun, and the temperature returns to

isotropy much faster. We overplot the mirror and ion cyclotron instability criterion

in the plot, and the region below the dotted lines is unstable. As mentioned earlier,

the ion cyclotron instability has been excited during the simulation, but the solution

at the end of the simulation is ion cyclotron stable.

Observations [Marsch et al., 2004; Hellinger et al., 2006] have shown that the ion

temperature anisotropy and the ion parallel plasma beta are closely related in the

solar wind. The ion parallel plasma beta is defined by the ratio between the ion

parallel pressure and the magnetic pressure: β‖ = 2µ0p‖/B
2. We extract β‖ along the

Z > 0 axis and plot log10β‖ against T⊥/T‖ in the right plot of Figure 5.2. From left

to right along the black line, the location of the extraction point along the Z axis

increases from around 1.5RS to 24RS. For β‖ > 0.01, our result is very similar to

the one obtained by 1D anisotropic MHD simulations [Chandran et al., 2011]. The

mirror and ion cyclotron instability thresholds are also shown in the plot. Again,

we can see that the simulated T⊥/T‖ − β‖ relation is bounded by the ion cyclotron

instability criteria.

5.2.2 Comparison with isotropic MHD results

It is also important to compare the anisotropic MHD simulation with an isotropic

MHD simulation, which will indicate how pressure anisotropy affects the coronal

solution. Below we compare the solar wind speed, the ion and electron temperatures,

and the plasma beta at the end of the two simulations.

Figure 5.3 displays the flow speed with the magnetic field lines in the Y = 0

plane. In both simulations, the flow from the polar regions with open field lines

gradually accelerates radially and forms the fast solar wind, while the flow from the

143



  

  
 

 

 

 

 

 

200

400

600

800

 

Anisotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

-20

-10

0

10

20

Z

Anisotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

-20

-10

0

10

20

Z

Anisotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

-20

-10

0

10

20

Z

Anisotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

-20

-10

0

10

20

Z

Anisotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

-20

-10

0

10

20

Z

Anisotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

-20

-10

0

10

20

Z
  

  
 

 

 

 

 

 

200

400

600

800

 

Isotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

 

 

 

 

 

 

Isotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

 

 

 

 

 

 

Isotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

 

 

 

 

 

 

Isotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

 

 

 

 

 

 

Isotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

 

 

 

 

 

 

Isotropic MHD

flow speed [km/s]

-20 -10 0 10 20
X

 

 

 

 

 

 
Figure 5.3: The flow speed contour and magnetic field lines (white) in the Y = 0

plane from the idealized coronal simulations.
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ure 5.3. Right: A zoom-in view with magnetic field lines in white.
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equatorial region with closed field lines accelerates in a much slower pace and forms

the slow solar wind. Note that both simulations produce solar wind speeds larger

than 850 km/s, while in reality, the fast solar wind speed hardly exceeds 800 km/s.

The difference between the anisotropic MHD and isotropic MHD simulations can

hardly be seen from the figure. In fact, the anisotropic MHD simulation gives larger

solar wind speed than the isotropic MHD simulation gives, as seen in Figure 5.4, in

which we subtract the isotropic MHD simulated flow speed from the anisotropic MHD

simulated flow speed. As we can see from the left plot the speed difference is positive

everywhere, and the difference becomes smaller away from the Sun. The right plot

shows that the largest difference of more than 80 km/s occurs close to the Sun and at

the interfaces of open and closed field lines, where the slow solar wind can originate.

Our results partially agree with Li et al. [2004], who have found faster solar wind

speed in anisotropic MHD than in isotropic MHD simulations for 2D models. Yet we

do not observe a reversed trend beyond 10RS as has been seen in 2D simulations, at

least within 24RS in our simulations.

Figure 5.5 compares the ion temperature Ti, the electron temperature Te and the

plasma beta in the Y = 0 plane from the two simulations. For the anisotropic MHD

simulation, Ti is the average scalar ion temperature: Ti = (2T⊥+T‖)/3, and the plasma

beta is the ratio of the average scalar ion pressure to the magnetic pressure. From this

figure we find the following differences between the anisotropic and isotropic MHD

simulations. First of all, the ion temperature from the anisotropic MHD simulation is

lower than from the isotropic MHD simulation, especially for the region close to the

equatorial plane. Second, the electron temperature given by the anisotropic MHD

simulation is slightly higher than given by the isotropic MHD simulation, but the

difference is small. Third, the plasma beta in the anisotropic MHD simulation is

smaller than in the isotropic MHD simulation, particularly along theX axis. Since the

distinctively high plasma beta region indicates the location of the current sheet where
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Figure 5.5: The ion temperature, electron temperature, and the logarithmic plasma
beta in the Y = 0 plane from the idealized coronal simulations.

the magnetic field is close to zero, the simulation results imply that the anisotropic

MHD simulation produces a somewhat thinner current sheet than the isotropic MHD

simulation does.

A straightforward comparison of the ion and electron temperatures between the

anisotropic and isotropic MHD simulations can be found in Figure 5.6, in which we

plot the profiles of Ti and Te along the positive X and Z axes. While the differ-

ences in the electron temperatures from the two simulations are almost negligible,

the differences in the ion temperatures are considerable. In the polar region, the ion
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Figure 5.6: The ion temperature (left column) and electron temperature (right col-
umn) profiles along the X axis (top panel) and the Z axis (bottom panel)
from the idealized coronal simulations.

temperature in the anisotropic MHD simulation is lower than in the isotropic MHD

simulation beyond 5RS. This was also obtained by 2D simulations [Li et al., 2004].

5.3 Non-idealized Coronal and Heliospheric Simulations

For further validation, we apply the anisotropic MHD solar wind model to simu-

late several real Carrington rotations (CR) during the solar minimum (CR2077 and

CR2058) and the solar maximum (CR2107), and compare the simulation results with

isotropic MHD simulation results, as well as in-situ satellite measurement at 1AU.

The simulations couple the IH component to the SC component to propagate the

solar wind solution to 1AU. For the SC component, the computational domain, grid,

and inner boundary conditions are set to be the same as those used in the idealized

coronal simulations, except that we use real magnetograms to obtain the magnetic

field at the inner boundary of SC, instead of assuming a dipole field. We use the same

wave dissipation rate and reflection coefficient as in the idealized simulations. The
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wave dissipation ratios are: αe = 0.4 and α‖ = 0.05. Here, a much smaller α‖ is used

than in the idealized simulation, because we have found too much parallel pressure

compared to measurement at 1AU with the default α‖ in our initial experiments. In

addition to the growth-rate-based pressure anisotropy relaxation, we also apply the

global relaxation term with a relaxation time τg = 105 s.

For the IH component, the computational domain is a square box surrounding

the spherical domain of SC. The box extends from -250RS to 250RS along each of

the X, Y and Z directions. We use Cartesian grids that vary from less than 1RS to

about 8RS in resolution. Again, the current sheet region is with higher grid resolution

than the rest of the domain. The total number of cells is about 2.1 million. The IH

component uses exactly the same wave dissipation rate, dissipation ratio, and the

pressure anisotropy relaxation as the SC component uses.

Similar to the idealized case, the isotropic MHD simulations with the same settings

as the anisotropic MHD simulations have also been performed.

For all simulations presented in this section, we first run the SC component in

the steady state mode for 60000 iterations, then couple the IH component with the

SC component, switch off SC, and advance IH from the steady state SC solution for

4000 iterations in the steady state mode.

5.3.1 CR2077 Simulation

The Carrington rotation CR2077 (November 20th through December 16th, 2008)

is a very quiet period during the solar minimum of solar cycle 23. The input magne-

togram is obtained from the National Solar Observatory’s Global Oscillation Network

Group (GONG). Figure 5.7 shows the magnetogram used by our simulations, which

has very few active regions and their magnetic field strength is small (compared to

the other two Carrington rotations that we will show later).

Figure 5.8 displays the ion pressure anisotropy and solar wind speed at the end
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Figure 5.7: The input radial magnetic field for CR2077 simulations.

of the anisotropic MHD simulation from the IH component. The black circle in

the middle of each plot represents the domain of the SC component. Away from the

boundary between SC and IH, the ion pressure anisotropy ratio p⊥/p‖ gradually drops

from greater than 1 to smaller than 1. Near the outer boundary of IH, p⊥/p‖ gets

larger again, and the value is very close to 1. Comparing the ion pressure anisotropy

with the solar wind speed in the Z = 0 plane, the region with lowest p⊥/p‖ is in the

fast solar wind region represented by red in the flow speed plot.

We extract the ion pressure anisotropy along the Earth trajectory from the simu-

lation with anisotropic MHD, and compare it with the WIND satellite measurement.

Although WIND is at the L1 point instead of the Earth, we neglect this difference

since the distance between the L1 point and the Earth is small compared to the he-

liospheric scale. Also, the grid resolution in our simulation is about 8RS near 1AU,

which is even larger than the distance between the L1 point and Earth (less than

3RS). The comparison is shown in Figure 5.9. From the plot we could see that the

simulated pressure anisotropy ratio is basically smaller and with less variation than

the data.

Furthermore, we extract the magnetic field magnitude, the solar wind speed, the

number density, and the ion temperature along the Earth orbit from both the an-

isotropic and isotropic MHD simulations, and compare them with the OMNI data,
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which contains the solar wind and IMF conditions at 1AU. The comparisons are

shown in Figure 5.10. The anisotropic and isotropic MHD simulations produce very

similar magnetic field strength and solar wind properties. However, they do not prop-

erly capture the corotating interaction regions (CIRs) that appear as sudden increase

of the solar wind speed, accompanied by simultaneous jumps in the magnetic field

magnitude, the number density and the temperature on November 25th. The fail-

ure in reproducing the CIRs can also been seen in the flow speed plot in Figure 5.8,

where the transitions between slow and fast solar winds are rather smooth without

any sharp interface. The anisotropic MHD model predicts higher ion temperature

(average scalar temperature) at 1AU than the isotropic MHD model does, which

also provides a better agreement with the OMNI data. Interestingly, this is opposite

to the effect of pressure anisotropy in the idealized coronal simulation, in which the

anisotropic MHD simulation produces lower ion temperature than the isotropic MHD

simulation does.

We also compare the simulations with the STEREO-A (STA) and STEREO-B

(STB) data in Figure 5.11 and Figure 5.12, respectively. As shown in the top right

panel of Figure 5.9, the STEREO-A satellite orbits a little bit closer to the Sun, and
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Figure 5.10: The comparison of anisotropic and isotropic MHD simulated magnetic
field magnitude, solar wind speed, number density and ion temperature
with the OMNI data for CR2077.
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Figure 5.11: The comparison of anisotropic and isotropic MHD simulated magnetic
field magnitude, solar wind speed, number density and ion temperature
with the STEREO-A data for CR2077.

the STEREO-B satellite orbits further away from the Sun, compared to the trajectory

of the Earth. The locations of the STEREO satellites and the Earth are quite far

away from each other. Thus the comparison with the two STEREO satellites can

help evaluate the models from different perspectives relative to the Sun.

Similar to the comparison with the OMNI data, comparisons with the STEREO-

A and STEREO-B measurements indicate that the anisotropic MHD and isotropic

MHD simulations have very similar results in the magnetic field magnitude and the

solar wind speed, while the anisotropic MHD simulated ion temperature is constantly

higher than the isotropic MHD simulated one, and the former agrees with the data

slightly better. Again, both simulations miss the CIRs as seen by STEREO-A and
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Figure 5.12: The comparison of anisotropic and isotropic MHD simulated magnetic
field magnitude, solar wind speed, number density and ion temperature
with the STEREO-B data for CR2077.
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Figure 5.13: The input radial magnetic field for CR2058 simulations.

STEREO-B.

5.3.2 CR2058 Simulation

The second Carrington rotation we select is CR2058 from June 21st to July 18th

in 2007. This time interval is also during the solar minimum, however there are more

active regions on the Sun than during CR2077. The input magnetogram from GONG

is displayed in Figure 5.13. There are a few active regions that can be identified by

several pairs of large red and blue dots representing the strong magnetic field regions

with bi-polarity.

Figure 5.14 plots the anisotropic MHDmodel simulated ion pressure anisotropy ra-

tio p⊥/p‖ and the solar wind speed. Compared to the pressure anisotropy for CR2077

in Figure 5.8, we observe a more interesting pressure anisotropy distribution here.

First, the current sheet region is characterized by higher p⊥/p‖ than the polar regions

as shown in the top left plot. Second, pressure anisotropy exhibits corotational struc-

ture in the Z = 0 plane. When comparing with the solar wind speed shown in the

bottom plot, we find that the region with highest p⊥/p‖(> 1.4) in the Z = 0 plane

corresponds to the sharp interface between regions with slow and fast solar wind, i.e.,

the CIR.

We extract the ion pressure anisotropy along the Earth orbit and compare it with
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Figure 5.14: The ion pressure anisotropy ratio in the Y = 0 (top left) and Z = 0 (top
right) planes, and the flow speed in the Z = 0 plane (bottom) at the end
of the IH iterations for the anisotropic MHD simulation of CR2058. The
trajectories of the Earth and the two STEREO satellites are projected
onto the Z = 0 plane in the top right plot. The stars represent the
locations of the Earth and the satellites at the beginning of CR2058.
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Figure 5.15: The comparison of simulated ion pressure anisotropy with the WIND
data for CR2058.

the WIND data in Figure 5.15. This time we have more variations in the simulated

p⊥/p‖ compared to Figure 5.9. Although the simulation produces quite different p⊥/p‖

from the measurement during June 23rd and July 3rd, the agreement after July 10th

is good. Also, the simulated p⊥/p‖ variation seems to be shifted ahead by a few days

compared to the data. This time shift is observed in the comparisons with other data

as well.

Figure 5.16 compares the anisotropic and isotropic MHD simulations with the

OMNI data. The two simulations are competitive in reproducing the magnetic field

magnitude and the solar wind plasma properties. However, the anisotropic MHD

model does a worse job than the isotropic MHD model does in capturing the CIR

feature on July 11th. In addition, the anisotropic MHD simulation predicted CIR,

shown as a red peak in every quantity in the figure, is a few days ahead of the

isotropic MHD simulated one, as well as the actual data. This is the same time shift

we have seen in the pressure anisotropy comparison. Once again, the anisotropic

MHD simulation gives higher ion temperature than the isotropic MHD simulation

during most of the time interval.

The comparisons with the STEREO-A and STEREO-B satellite measurements in
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Figure 5.16: The same as Figure 5.10 for CR2058.
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Figure 5.17: The same as Figure 5.11 for CR2058.

Figure 5.17 and Figure 5.18 have very similar features to the comparison with the

OMNI data, given the positions of the two satellites and the location of the Earth

are very close, as shown in Figure 5.14. The very same time shift appears in the

comparisons with both STEREO satellites.

5.3.3 CR2107 Simulation

The last time period that we simulate is CR2107 from February 16th through

March 16th in 2011. This is a solar maximum time, and a lot of active regions with

strong magnetic fields appear in the magnetogram, as shown by Figure 5.19.

The simulated ion pressure anisotropy and flow speed are shown in Figure 5.20.

The pressure anisotropy ratio varies between 0.5 and 1.5 in most of the domain. In
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Figure 5.18: The same as Figure 5.12 for CR2058.
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Figure 5.19: The input radial magnetic field for CR2107 simulations.
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Figure 5.20: The ion pressure anisotropy ratio in the Y = 0 (top left) and Z = 0 (top
right) planes, and the flow speed in the Z = 0 plane (bottom) at the end
of the IH iterations for the anisotropic MHD simulation of CR2107. The
trajectories of the Earth and the two STEREO satellites are projected
onto the Z = 0 plane in the top right plot. The stars represent the
locations of the Earth and the satellites at the beginning of CR2107.

the Z = 0 plane, the distribution of p⊥/p‖ appears to be cororating with the Sun,

and the largest p⊥/p‖ away from the Sun occurs at the CIR and close to the outer

boundary of the IH domain. The CIR is very distinct in the solar wind speed plot.

Figure 5.21 shows the comparison of the simulations with the WIND measure-

ments. The anisotropic MHD simulation matches the peak in the magnetic field

magnitude at the CIR better than the isotropic MHD simulation does. The solar

wind speed from the anisotropic MHD simulation also agrees with the data better,

though not by much, than the isotropic MHD simulation does. For the solar wind
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number density, the two simulations are competitive. The last panel in Figure 5.21

shows that the anisotropic MHD simulation gives reasonable ion pressure anisotropy

compared to the measurement, but in the fast solar wind region during March 2rd

and March 6th, the simulated pressure anisotropy ratio is significantly lower than

the measured one. Unfortunately the anisotropic MHD simulation does not capture

the pressure anisotropy jump on February 18th, yet the corresponding jumps in the

magnetic field magnitude, speed and density are not well reproduced by either the

isotropic MHD or the anisotropic MHD simulation. Given that the ACE satellite is

at the same location as the WIND satellite, the comparison with the ACE measured

magnetic field strength and flow speed in Figure 5.22 confirms the features we observe

in the comparison with the WIND data.

In the last two data-model comparisons for CR2107 shown in Figure 5.23 and 5.24,

we compare the IMF and solar wind quantities along the STEREO-A and STEREO-B

trajectories with the actual data. The comparison with the STEREO-A measurement

indicates that both the anisotropic and isotropic MHD simulations predict the jump

in the magnetic field strength and the solar wind speed about one day earlier than

measured. In general, the anisotropic MHD and isotropic MHD produces similar

results, but the anisotropic MHD simulation matches the measured solar wind speed

and ion temperature better. The comparison with the STEREO-B measurement

shows that the anisotropic MHD model predicts worse magnetic field magnitude than

the isotropic MHD model does, for instance, the jump during March 7th and March

9th is well captured by the isotropic MHD simulation but not by the anisotropic

MHD simulation. However, in the flow speed and ion temperature comparisons, the

anisotropic MHD simulation does a better job than the isotropic MHD simulation

does, particularly from February 28th to March 8th.
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Figure 5.21: The comparison of simulated magnetic field magnitude, solar wind speed,
number density by anisotropic and isotropic MHD, and the simulated
ion pressure anisotropy by anisotropic MHD with the WIND data for
CR2107.
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Figure 5.22: The comparison of anisotropic and isotropic MHD simulated magnetic
field magnitude, and solar wind speed with the ACE data for CR2107.
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Figure 5.23: The same as Figure 5.11 for CR2107.
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Figure 5.24: The same as Figure 5.12 for CR2107.
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5.4 Summary

We have successfully incorporated Anisotropic BATS-R-US into the Alfvén wave

driven solar wind model in the SWMF and applied the new anisotropic MHD solar

wind model to coronal and heliospheric simulations.

The anisotropic MHD solar wind model keeps most of the treatments in the origi-

nal Alfvén wave driven solar wind model and in Anisotropic BATS-R-US. We assume

anisotropic ion pressure and isotropic electron pressure. The Alfvén wave energy

dissipation goes into the ion parallel pressure, ion perpendicular pressure, and the

electron pressure. For now we use uniform and constant ratios for the energy parti-

tion. At the top of the chromosphere where the inner boundary of the model lies, we

assume that the ion pressure is isotropic.

In the idealized simulation of the corona with the anisotropic MHD model, most

of our results agree with the 1D and 2D anisotropic MHD modeling results, and the

ion parallel and perpendicular temperature profiles for the fast solar wind agree with

available measurements. By comparing the anisotropic MHD simulation with the

isotropic MHD simulation, we have found the following effects of the ion pressure

anisotropy in the idealized solar corona. First, the ion pressure anisotropy results in

larger solar wind speeds, especially close to the Sun and at the interface of the open

and closed field line regions. Second, including the ion pressure anisotropy in the

MHD model leads to lower ion average temperatures, particularly near the equatorial

plane. Third, the ion pressure anisotropy leads to smaller plasma beta and a thinner

current sheet in the equatorial region.

In the simulations of the corona and the heliosphere for three separated Carring-

ton rotations, we have observed corotational structures in the ion pressure anisotropy

distributions in the heliosphere, and the regions with the highest p⊥/p‖ corresponds to

the CIRs. The comparisons between the simulation results and the satellite measure-

ments indicates both improvements and drawbacks of the anisotropic MHD model.
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Overall, the anisotropic MHD and isotropic MHD simulations produce very similar

magnetic field strength and solar wind speed around 1AU, but the anisotropic MHD

simulations give higher ion temperatures that match the measured values better than

the isotropic MHD simulations do. This is also opposite of the idealized simulations,

which might be due to the different heating ratios used in idealized and non-idealized

runs. The simulated ion pressure anisotropy also reproduces the WIND observations

reasonably well.

The results presented in this chapter are mostly preliminary, and more work will

be carried out in the future. For instance, since the ion pressure anisotropy matters

most in the coronal region, we will compare it against the UVCS observational data

of the ion pressure anisotropy in the corona to further validate our model. Also, the

anisotropic MHD solar wind model itself needs to be improved. For example, we will

implement the physics-based wave energy dissipation ratios α‖ and αe that depend

on local plasma parameters to replace the uniform dissipation ratios in the current

model.
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CHAPTER VI

Conclusions

This dissertation research focuses on MHD modeling of space plasmas with pres-

sure anisotropy. I have successfully extended the existing 3DMHDmodel BATS-R-US

to account for ion pressure anisotropy and applied Anisotropic BATS-R-US to model

the terrestrial magnetosphere as well as the solar corona and heliosphere.

The analytical model for Anisotropic BATS-R-US is the MHD equations with

anisotropic ion pressure and isotropic electron pressure under both non-relativistic

and semirelativistic approximations. The ion pressure equations basically follow the

double adiabatic approximation except for the pressure anisotropy limiting term. The

characteristic waves for the equations are derived in order to calculate the numerical

fluxes. Utilizing the available temporal and spatial schemes in BATS-R-US, I have

implemented the anisotropic MHD equations and performed a variety of numerical

tests to verify the implementation.

The major application of Anisotropic BATS-R-US presented in this dissertation

is the global magnetospheric modeling. I have performed quiet time magnetosphere

simulations and explored the effects of pressure anisotropy in the magnetosphere from

different results seen in the anisotropic and isotropic MHD simulations. The results

from idealized magnetospheric simulations confirm previous studies: pressure aniso-

tropy widens the magnetosheath, increases the density depletion in the vicinity of the
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magnetopause, enhances the nightside plasma pressure, and produces an eastward

ring current. In addition, the flow speed in the magnetotail is significantly reduced

by including pressure anisotropy in MHD simulations. In the non-idealized magne-

tospheric simulations the results are validated against the THEMIS data on both

the dayside and nightside of the magnetosphere during quiet times. The compari-

son to the results from isotropic MHD simulations implies that although anisotropic

MHD is comparable to isotropic MHD in matching the measurement, it improves the

simulated plasma velocity in some cases.

Since the inner magnetosphere dynamics cannot be fully described even by aniso-

tropic MHD, I have coupled Anisotropic BATS-R-US with two ring current models:

the RCM and the CRCM. The coupled models provide better representations of the

near Earth plasma, especially during geomagnetic storms. In particular, we have

developed the two-way coupling algorithm between Anisotropic BATS-R-US and the

CRCM. Global magnetosphere simulations are performed with the coupled models,

and the results are compared to the results given by the coupled isotropic MHD and

ring current models. I find that in the global MHD simulations coupled with ring

current models, pressure anisotropy results in a thinner magnetosheath, a shorter

tail, a much smaller Earthward plasma jet from the tail reconnection site, and is also

important in controlling the magnetic field topology. The comparisons with satellite

data for the magnetospheric event simulations show improvements on reproducing the

measured tail magnetic field and inner magnetospheric flow velocity when including

pressure anisotropy in the ring current model coupled global MHD model.

The last application of Anisotropic BATS-R-US addressed in the dissertation is

the coronal and heliospheric modeling. By incorporating Anisotropic BATS-R-US

into the Alfvén wave driven solar wind model, I have performed idealized coronal

simulations, as well as coronal and heliospheric simulations during real Carrington

rotations. In idealized simulations, I find that the ion pressure anisotropy results in
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faster solar wind speeds, lower ion average temperatures, and smaller plasma beta

near the current sheet in the corona. The simulated ion parallel and perpendicular

temperature profiles in the fast solar wind agree with measurements and 1D and 2D

anisotropic MHD modeling results. In simulations of real Carrington rotations, I find

that in the CIRs the ion pressure is more perpendicular than in other regions. The

simulated ion pressure anisotropies are reasonable compared to the observed values at

1AU. The anisotropic MHD and isotropic MHD simulated magnetic field strengths

and solar wind speeds at 1AU are similar and competitive in matching the in-situ

measurements, while the anisotropic MHD simulated ion average temperatures better

agree with the data than the isotropic MHD simulated ones.

6.1 Originality and Contributions

Anisotropic BATS-R-US is the first 3D global MHD model developed to account

for space plasma pressure anisotropy. It drops the assumption of pressure isotropy

that has been used by the modeling community for a long time, which makes a large

step forward towards accurately describing features of space plasmas.

During the model development, I have derived the characteristic wave speeds for

the semirelativistic anisotropic MHD equations, which is original and contributes to

the anisotropic MHD theory. Also, the semirelativistic formulation for anisotropic

MHD is implemented into a numerical model for the first time.

In the global magnetospheric simulations, I have examined the effects of pres-

sure anisotropy in the magnetosphere, confirmed several features observed in regional

anisotropic MHD simulations, and found new features with our model. The coupled

Anisotropic BATS-R-US and the CRCM provides the first self-consistent Earth’s mag-

netospheric model resolving both the ring current and the pressure anisotropy, which

improves geomagnetic storm simulations and benefits space weather prediction po-

tentially. The application of Anisotropic BATS-R-US on the coronal and heliospheric
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modeling also leads to development of the first 3D Alfvén wave driven anisotropic

MHD model for the solar wind.

6.2 Future Work

A lot of future research can be carried out beyond this dissertation study. An

obvious follow-up work is to further improve the anisotropic MHD solar wind model

as discussed in Chapter V. Beside this, possible future work includes:

1. Apply the anisotropic MHD solar wind model to time-dependent simulations

with the presence of CMEs.

2. For the Earth’s magnetosphere, we could do a more systematic study with An-

isotropic BATS-R-US or the coupled Anisotropic BATS-R-US+CRCM model

to explore how pressure anisotropy affects the magnetosphere, such as studying

the global magnetospheric dynamics under different solar wind and IMF con-

ditions, investigating the role pressure anisotropy plays in the magnetosheath,

and modeling substorm periods.

3. We can use Anisotropic BATS-R-US to model planetary magnetospheres other

than the Earth’s, for example, Jupiter’s and Saturn’s magnetospheres. Since

Jupiter’s and Saturn’s intrinsic magnetic fields are much stronger than the ter-

restrial magnetic field, we expect that the pressure anisotropy is more important

in Jupiter’s and Saturn’s magnetospheres.

4. Anisotropic BATS-R-US itself can be extended to account for electron pressure

anisotropy and pressure anisotropy for multi-ion modeling. The extended model

will have even more applications.
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APPENDIX A

Marginally Unstable States for Plasmas with Ion

Pressure Anisotropy

The marginally unstable states of p‖ for the firehose, mirror and ion cyclotron

instabilities are obtained as following.

We denote the marginally unstable ion parallel and perpendicular pressures as p‖

and p⊥, respectively. The following relation is always true,

p‖ + 2p⊥ = 3p (A.1)

A.1 Firehose Instability

For the firehose instability, based on (2.15), plasmas are marginally unstable when

p‖

p⊥

= 1 +
B2

µ0p⊥

(A.2)

which can also be written as

p‖ = p⊥ +
B2

µ0

(A.3)

173



Combining equation (A.1) and (A.3) and eliminating p⊥ gives

p‖ =
3

2
p− 1

2
p‖ +

B2

µ0

(A.4)

Thus the ion parallel pressure in marginally firehose unstable plasmas is

p‖f = p+
2B2

3µ0

(A.5)

and the marginally unstable ion perpendicular pressure is

p⊥f = p− B2

3µ0

(A.6)

From (A.5) and (A.6), we observe the following interesting relation

p‖ − p‖f = 2(p⊥f − p⊥) (A.7)

where we have used equation (2.2). The relation (A.7) basically says that for an

arbitrary plasma state (stable or unstable), the difference between the parallel pres-

sure and its marginally firehose unstable value is twice of the difference between the

perpendicular pressure and its marginally firehose unstable value.

A.2 Mirror Instability

For the mirror instability, based on (2.16), the marginally unstable condition is

given by

p⊥

p‖

= 1 +
B2

2µ0p⊥

(A.8)

or equivalently,

p⊥ = p‖ +
B2

2µ0

p‖

p⊥

(A.9)
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from which p⊥ can be eliminated with the help of equation (A.1) to obtain

3p2‖ −
(

2B2

µ0

+ 12p

)

p‖ + 9p2 = 0 (A.10)

The above equation can be easily solved for p‖ as

p‖ =
1

3





B2

µ0

+ 6p±

√

(

B2

µ0

+ 6p

)2

− 27p2



 (A.11)

The root with the plus sign is not physically valid, since it yields

p‖ =
1

3





B2

µ0

+ 6p±

√

(

B2

µ0

+ 3p

)2

+
6B2p

µ0





>
1

3

(

B2

µ0

+ 6p+
B2

µ0

+ 3p

)

=
2B2

3µ0

+ 3p (A.12)

for positive |B| and p. This further gives p‖ > p⊥, which contradicts with the fact

that the ion perpendicular pressure is larger than the ion parallel pressure when the

mirror instability is excited. Therefore the remaining root with the minus sign gives

the ion parallel pressure in marginally mirror unstable plasmas

p‖m =
1

3





B2

µ0

+ 6p−

√

(

B2

µ0

)2

+
12B2p

µ0

+ 9p2



 (A.13)

that is always positive. p⊥m can be obtained from (A.1).
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A.3 Ion Cyclotron Instability

From the criterion of the ion cyclotron instability (2.17), we obtain the marginally

unstable condition

p⊥

p‖

= 1 + 0.3

√

B2

2µ0p‖

(A.14)

It can be written as

p⊥ = p‖ + 0.3

√

B2p‖

2µ0

(A.15)

With equation (A.1), we eliminate p⊥ and get

p‖ + 0.2

√

B2p‖

2µ0

− p = 0 (A.16)

√

p‖ can be solved from the above equation as

√

p‖ = −0.1

√

B2

2µ0

±
√

0.01
B2

2µ0

+ p (A.17)

The root with the minus sign is meaningless as it gives
√

p‖ < 0. Hence, from the

root with the plus sign we get

p‖ic =
1

2

(

−0.1

√

B2

µ0

+

√

0.01
B2

µ0

+ 2p

)2

(A.18)

as the marginally unstable ion parallel pressure for the ion cyclotron instability.
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APPENDIX B

Particle Distribution and Force Balance Along

Closed Field Lines in the Inner Magnetosphere

B.1 Particle Distribution Along Closed Field Lines

Let us assume that the particle distribution at the “minimum B” point (repre-

sented by subscript “0”) of a closed field line can be written as

f0(v0) = φ

(

v2⊥0

T⊥0

+
v2‖0
T‖0

)

(B.1)

where v is particle speed, T is temperature, and the subscript “⊥” and “‖” stand for the

directions perpendicular to and along with the magnetic field, and φ is an arbitrary

function of v2⊥/T⊥ + v2‖/T‖. For bi-Maxwellian distribution, φ(x) = A exp(−mx/2k);

For bi-Kappa distribution, φ(x) = B(1+mx/(k(2κ− 3)))−κ−1, or in terms of charac-

teristic energy, φ(y) = B(1 +my/(2κ))−κ−1 with y = v2‖/Ech‖ + v2⊥/Ech⊥, where Ech‖

and Ech⊥ are parallel and perpendicular characteristic energy, respectively. Both A

and B are normalization factors, m is particle mass, and k is Boltzmann constant.

Liouville’s theorem gives the particle distribution at an arbitrary “non-minimum
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B” point (represented by subscript “λ”) as

fλ(vλ) = f0(v0(vλ)) (B.2)

To find v0(vλ), we connect the components of v0 and vλ through the conservation of

the first adiabatic invariant as

µ =
mv2⊥0

2B0

=
mv2

⊥λ

2Bλ

(B.3)

and the conservation of energy with neglecting potential drop along the field line as

E =
1

2
mv2⊥0 +

1

2
mv2‖0 =

1

2
mv2⊥λ +

1

2
mv2‖λ (B.4)

where m is particle mass and B is magnetic field strength. From equation (B.3) we

obtain

v2⊥0 = v2⊥λ

B0

Bλ

(B.5)

which can be substituted into equation (B.4) to get

v2‖0 = v2⊥λ

(

1− B0

Bλ

)

+ v2‖λ (B.6)

Therefore,

fλ(vλ) = φ

(

v2
⊥λ

B0

Bλ

T⊥0

+
v2
⊥λ(1− B0

Bλ

) + v2
‖λ

T‖0

)

(B.7)

Defining

T⊥λ =
T⊥0

T⊥0/T‖0 + B0/Bλ(1− T⊥0/T‖0)
(B.8)

T‖λ = T‖0 (B.9)

the distribution function at “λ” can be written into the same form as the distribution
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function at “0” (equation (B.1)):

fλ(vλ) = φ

(

v2
⊥λ

T⊥λ

+
v2
‖λ

T‖λ

)

(B.10)

We can obtain the number density at “0” and “λ” through

n0 =

∫∫

v0

∫

f0(v0) dv0 =

∫∫

v0

∫

φ

(

v2⊥0

T⊥0

+
v2‖0
T‖0

)

dv0 (B.11)

and

nλ =

∫∫

vλ

∫

fλ(vλ) dvλ =

∫∫

vλ

∫

φ

(

v2
⊥λ

T⊥λ

+
v2
‖λ

T‖λ

)

dvλ (B.12)

f0(v0) and fλ(vλ) are identical except that the velocities are scaled with different
√
T⊥, given T‖λ = T‖0. So the volumes wrapped by the distribution functions over

velocity space, i.e., n0 and nλ, are different by a factor of (
√
T⊥0/

√
T⊥λ)

2, where the

square accounts for the two perpendicular directions. Hence,

nλ =
T⊥λ

√

T‖λ

T⊥0

√

T‖0

n0 =
T⊥λ

T⊥0

n0 (B.13)

Then we can rewrite nλ with the help of (B.8) as

nλ =
n0

T⊥0/T‖0 + B0/Bλ(1− T⊥0/T‖0)
(B.14)

Finally, using p‖0 = n0kT‖0, p‖λ = nλkT‖λ, p⊥0 = n0kT⊥0 and p⊥λ = nλkT⊥λ, we can

express the number density, the parallel and perpendicular pressures at “λ” as

nλ =
n0

p⊥0/p‖0 + B0/Bλ(1− p⊥0/p‖0)
(B.15)

p‖λ =
p‖0

p⊥0/p‖0 +B0/Bλ(1− p⊥0/p‖0)
(B.16)
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p⊥λ =
p⊥0

(p⊥0/p‖0 + B0/Bλ(1− p⊥0/p‖0))2
(B.17)

The above relations, also given as equation (4.2), (4.3) and (4.4), agree with previous

studies [Spence et al., 1987; Olsen et al., 1994; Liemohn, 2003; Xiao and Feng , 2006].

They are valid for any distribution function φ(x) with x = v2⊥/T⊥ + v2‖/T‖ at the

“minimum B” point of a closed field line.

B.2 Force Balance Along Closed Field Lines

We now show that the pressures given by (B.16) and (B.17) satisfy the force

balance condition along closed field lines in anisotropic MHD. The force parallel to a

field line at an arbitrary point λ is given by:

F‖λ = (p‖λ − p⊥λ)Bλ∇‖(B
−1

λ ) +∇‖p‖λ (B.18)

We can write (B.16) and (B.17) as p‖λ = p‖0/g and p⊥λ = p⊥0/g
2, where g = (p⊥0/p‖0+

B0/Bλ(1− p⊥0/p‖0)). Substituting into the first term of (B.18), we get

(p‖λ − p⊥λ)Bλ∇‖(B
−1

λ ) =

(

p‖0

g
− p⊥0

g2

)

Bλ∇‖(B
−1

λ )

=
(gp‖0 − p⊥0)Bλ

g2
∇‖(B

−1

λ )

=
(p‖0 − p⊥0)B0

g2
∇‖(B

−1

λ ) (B.19)

while the second term of (B.18) gives

∇‖p‖λ = −p‖0

g2
g′(B−1

λ )∇‖(B
−1

λ ) = −(p‖0 − p⊥0)B0

g2
∇‖(B

−1

λ ) (B.20)

where we used the fact that Bλ is the only non-constant variable in g along the field

line. (B.19) and (B.20) cancels out, thus the net force F‖λ is zero. The force balance

condition is achieved.
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Marsch, E., K.-H. Mühlhäuser, R. Schwenn, H. Rosenbauer, W. Pilipp, and F. M.
Neubauer (1982), Solar wind protons: Three-dimensional velocity distributions and
derived plasma parameters measured between 0.3 and 1 AU, J. Geophys. Res.,
87 (A1), 52–72.

Marsch, E., X.-Z. Ao, and C.-Y. Tu (2004), On the temperature anisotropy of the
core part of the proton velocity distribution function in the solar wind, J. Geophys.

Res., 109 (A04102), doi:10.1029/2003JA010330.
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