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Abstract

The ability to classify the political leaning of a large number of articles and items
is valuable to both academic research and practical applications. The challenge, though,
is not only about developing innovative classification algorithms, which constitutes a
“classifier” theme in this thesis, but also about how to define the “ground truth” of
items’ political leaning, how to elicit labels when labelers do not agree, and how to
evaluate classifiers with unreliable labeled data, which constitutes a “ground truth”
theme in the thesis.

The “ground truth” theme argues for the use of distributions (e.g., 0.6
conservative, 0.4 liberal) instead of labels (e.g, conservative, liberal) as the underlying
ground truth of items’ political leaning, where disagreements among labelers are not
human errors but rather useful information reflecting the distribution of people’s
subjective opinions. Empirical data demonstrate that distributions are dispersed: there
are many items upon which labelers simply do not agree. Therefore, mapping
distributions into single labels requires more than just majority vote. Also, one can no
longer assume the labels from a few labelers are reliable because a different small
sample of labelers might yield a very different picture.

However, even though individual labeled items are not reliable, simulation
suggests that we may still reliably evaluate and rank classifiers, as long as we have a
large number of labeled items for evaluation. The optimal way is to obtain one label per
item with many items (e.g., 1000~3000) for evaluation.

The “classifier” theme proposes the LabelPropagator algorithm that propagates
the political leaning of known articles and users to the target nodes in order to classify
them. LabelPropagator achieves higher accuracy than the alternative classifiers based
on text analysis, suggesting that a relatively small number of labeled people and stories,
together with a large number of people to item votes, can be used to classify the other
people and items. An article’s source is useful as an input for propagation, while text
similarities, users’ friendship, and “href” links to articles are not.

Xii



Chapter 1. Introduction

1.1 Motivation

Observers are concerned about the increasing political polarization of our society, with
opposing groups unable to engage in civil dialogue to find common ground or solutions.
Sunstein (2011) and others have argued that, as people have more choices about their
news sources, they will live in echo chambers. Republicans and Democrats read

different newspapers and political books (Krebs, 2008), watch different TV news stations,
and even live in different places (Bishop, 2008). If people prefer to avoid hearing
challenging views, we may see even greater political fragmentation as people get better
tools to filter the media they consume based on their own reactions and the reactions

of other people like them.

In recent years, a burst of research has studied how to mitigate media bias and
encourage citizens to consume a balanced mixture of political opinions. For example,
Park et al (2008, 2009, 2011) proposed the NewsCube system to mitigate media bias by
showing multiple aspects of news stories. Matlin et al (2010) developed a system to
track Slate Magazine readers’ liberal and conservative news consumption. Munson,
Zhou and Resnick (2009) proposed a simple news aggregator that displays a balanced
list of liberal and conservative articles. Munson and Resnick (2010) studied how to
present diverse political opinions to readers that are challenging to their existing

opinions but not too challenging to upset them.

One key to studies regarding media bias and polarization is the ability to classify the
political leaning of a large number of articles. Other studies also require political leaning

classification on various types of items. One line of work is about user experience with



political leaning annotations. For example, Gamon et al (2008) built the BLEWS system
and argued that displaying the political leaning of articles and other contextual
information would improve users’ reading experience. Oh, Lee and Kim (2009) studied
users’ experience by showing the political leaning of articles in search engine results.
Another line of work is about using the political leaning of articles, tweets and people to
study political and social phenomena. For example, Levine et al (2011) used politicians’
political affiliation to study the structure and cohesiveness of their twitter messages,
and predicted candidate victory with high accuracy. Conover et al (2012) used the
political leaning of twitter users and messages to study the differences of conservative

and liberal users’ online behavior.

All'in all, the ability to classify the political leaning of a large number of articles and
items is critical to many studies. It is desirable to design computer algorithms to classify
the political leaning of items automatically. Many algorithms have been proposed over

the past two decades, but they have two major limitations.

4

The foremost and fundamental limitation is the lack of clear definitions of “conservative”’
and “liberal” to serve as the “ground truth” of articles’ political leaning. Most studies
never discussed the meaning of “conservative” and “liberal” and simply adopted
existing labeled datasets from multiple third party sources to train and evaluate
classifiers without checking the validity, consistency and reliability of the datasets (e.g.
Jiang and Argamon 2008). Other studies gave vague, arbitrary definitions of
“conservative” and “liberal”, and assumed that they could rely on these unclear
definitions and usually poorly labeled data to optimize their classifiers (e.g. Oh, Lee and
Kim 2009). As | will discuss later, political leaning is inherently subjective in that
different people have their own interpretations. It is questionable to draw conclusions
about the classifiers when the labeled data to train and evaluate the classifiers are

unreliable.

The second limitation is that most existing political leaning classifiers only used text

analysis approaches (e.g., Oh et al, 2009). Text-based approaches might work well when



different categories are associated with drastically different sets of keywords, or when
there is lots of training data. As | will discuss later, these are not usually true for political
leaning classification on individual articles. In addition, text-based approaches are not

able to classify the political leaning of non-textual items such as people, images, or video.

This thesis aims to tackle these two limitations in order to develop and correctly
evaluate political leaning classifiers with high accuracy. It has two main themes in
response to the two limitations in prior literature. The first theme is to study how to
define the “ground truth” of articles’ political leaning and how to evaluate classifiers
with inaccurate labeled data. This theme is mainly discussed in chapters 2, 3 and 4, and |
will call it the “ground truth” theme. The second theme is to develop a political leaning
classifier that does not rely on text analysis. It is mainly discussed in chapter 5, and | will
call it the “classifier” theme. | will discuss more about the two themes in sections 1.3

and 1.4.

The intended target audience of the thesis are media bias researchers, political and
social scientists, human computer interaction designers, and machine learning
developers and practitioners, who want to develop and evaluate algorithms that classify
the political leaning of a large number of items. Machine learning researchers and
practitioners might also be interested in the “ground truth” theme about how to obtain

annotations properly in practice for classifier evaluation.

The rest of this introductory chapter is organized as follows. In section 1.2, | will discuss
the problem of political leaning classification, and introduce the more general class,
subjective classification problems. In section 1.3, | will summarize the content of each

chapter, and discuss the relationships between the chapters.

Throughout the entire thesis, | will use the following terminology. According to the

current convention in U.S. media, | will color-code conservative, liberal and others into



red, blue and grayl respectively, and use the colors and political labels inter-changeably.
These labels are also called classes or categories. The political articles and artifacts to be
labeled or classified are also called items, instances, objects or examples. | will use the
terms coders, raters, labelers, annotators, or assessors inter-changeably to refer to
those people who label the political leaning of items. The results produced by the
human coders are called annotations, ratings, labels, codes, or assessments

interchangeably.
1.2 Political Leaning Classification

Conservative versus Liberal Dichotomy

In U.S. politics, opinions on a variety of issues involving taxes, the role of government,
domestic policy, and international relations are substantially though imperfectly
correlated with each other and with party affiliation and with an overall self-
identification as liberal or conservative. Thus, classifying people, media outlets, and
opinions expressed in individual articles as liberal or conservative conveys meaning to

most people.

The liberal versus conservative classification scheme has its critics (e.g., Klein and Stern
2008). One reason is that the single dimension cannot capture cases such as libertarians
or populists who align with liberals on some issues and conservatives on others. Another
is that definitions of conservative and liberal are vague and inconsistently applied.
Moreover, many political news and opinion articles express a mixture of conservative
and liberal ideology. Thus, not everyone will agree about the correct classification of

particular items, or even the correct classification of their own stance.

Despite these fuzzy boundaries, however, the one-dimensional classification scheme
persists in our discourse, and many people, articles, and news sources fit clearly into

one category or the other. The ability to classify blogs as liberal or conservative enabled

! Purple is the conventional color for independent ideology, but gray is used to denote anything other than
red or blue.



Adamic and Glance (2005) to analyze patterns of inter-linking between them. It also
served as the basis for investigating people’s preferences for difference mixtures of
reinforcing and challenging articles in a news aggregator (Munson and Resnick 2010)
and for sorted or annotated displays (Gamon et al 2008; Oh et al 2009; Munson and
Resnick 2010). Just like the other studies, this thesis is also based on the conservative

versus liberal dichotomy.

Political Leaning Measurement

Researchers could apply several types of metrics to measure political leaning based on
the conservative versus liberal dichotomy. Table 1 lists four possibilities. The columns
specify whether political leaning should be measured by a range of continuous scores or
by a limited set of labels. The rows specify whether to measure political leaning in two
dimensions, treating “red-ness” and “blue-ness” as two orthogonal dimensions of

articles, or in a single dimension, treating political leaning as a single spectrum.

Table 1. Political leaning measurement

Continuous scores Discrete labels
Two E.g., <red=0.38, E.g., red, blue,
. . blue=0.2>, <red=0, .
dimensions both, neither
blue=0.9>
Single E.g., -0.6 (red), 0.05 E.g., red, gray,
dimension (gray), 0.9 (quite blue) | blue

Political leaning measurement are used in three situations: 1) representing the true
political leaning of items, 2) having human coders annotate the political leaning of items,
and 3) having classifiers classify the political leaning of items. Researchers usually use
the same measurement across all three situations, but it is not necessary. For example,
we could treat the underlying political leaning of items as continuous scores (such as 0.9,
-0.6, etc.), yet classify them into a small number of categories (such as red, blue, etc.)
rather than assigning scores to them. Or, we could have human coders annotate items

in two dimensions, and then collapse the annotations into a signal dimension to

represent the true political leaning of items.
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In this thesis, | will design political leaning classifiers to label items as one of red, gray,
and blue, which is a “single dimension, discrete labels” measurement. The reason to use
this particular metrics as classification output is discussed in the next sub-section. | will
also have human coders annotate the political leaning of items as red, gray and blue.
Conventionally, the underlying political leaning of items should be conveniently treated
as red, gray and blue as well. But this thesis proposes the “distribution as ground truth”
model, which treats the underlying true political leaning of an item as a distribution over
red, gray and blue dimensions. | will discuss this model in chapter 2 and explain why it is

better than simply treating the underlying model as discrete labels of red, gray and blue.

Classification Output

As mentioned earlier, political leaning classifiers in this thesis are designed to classify
items into red, gray and blue. This sub-section explains why it is preferable not to use
other measurements in Table 1 for classification output. Recall that the very motivation
to design a political leaning classifier is to be able to use the classification results in
applications such as media bias study or user interface design. The particular
requirement of an application will determine the right measurement of political leaning

for classification output.

This thesis is born out of the need to generate political leaning annotations to display
together with articles in a news aggregator, such as the one illustrated in Figure 1. The
end users will directly view the classification results while they read political articles.
Therefore, the measurement of political leaning should be intuitive to users and not

cause confusion.
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Figure 1. Illustration of displaying classification results in a news aggregator application
I’d like to argue that the two dimensions measurement (first row of Table 1) is not
optimal for this typical application scenario. First, it is quite confusing to the end users
about having both red and blue ideological dimensions: for example, how does one
distinguish between “both” and “neither”? In addition, the red and blue dimensions are
not usually orthogonal, but are often negatively correlated. In other words, an article
that has a high score in the red dimension usually has a low score in the blue dimension,
and vice versa. So it might be natural to reduce it into a single dimension. Finally, the
two dimensions measurement is not commonly known in existing literature, and thus is

inconvenient to use.

Also I'd like to argue that the continuous scores measurement (first column of Table 1)
is not optimal for the application scenario because it could cause confusion. Suppose a
user views a 0.9 article and a 0.8 article (where 1 means total blue and -1 means total
red), how does the user interpret the 0.1 unit of difference between the two articles?
Furthermore, the scores -0.9 and -0.7 has 0.2 unit of difference, which has the same
difference as -0.1 and 0.1. But to the end users, the former case might be less different

than the latter case because the latter case changes from slightly red to slightly blue. In



short, using continuous scores as classifiers’ outputs is less straightforward and could

cause problems.

Finally, I’d like to argue that using three labels — red, gray and blue — is more suitable to
the application scenario than using other sets of labels. Using only two labels, red and
blue, would be too limiting and doesn’t cover many cases that are not clearly red or blue.
Using more than three labels — for example, “strong-red, weak-red, gray, weak-blue,
strong-blue” or 7 points Likert scale — would introduce too many categories than
necessary, which demands more “cognitive effort” (see chapter 2 “related work” in page

22) from users who will read the classification results.

Note that the argument above — that is, to show red, gray and blue labels as items’
political leaning to end users —is based on discussions with a few researchers and end
users. Future work should practice a user-centered approach to study whether it is
indeed optimal to display red, gray and blue labels to end users, which will then

determine how to design the classification output.

Subject Classification Problems

The political leaning classification problem as | have discussed above is a typical case of
a more general set of classification problems, subjective classification problems. For a
subjective classification problem, people often have their own different subjective
opinions on the correct labels of items, and therefore it is not clear how to have human
annotators label items correctly. If the labeled items are not reliable, then it is
questionable to design and evaluate classification algorithms correctly with the
unreliable labeled dataset. Such subjective classification problems include word sense
disambiguation, twitter message classification, spam detection, image labeling, and

many more.

The “ground truth” theme of this thesis is to use the political leaning classification
problem as an example to study how to define the underlying ground truth model, how

to elicit annotations, and how to evaluate classifiers for subjective classification



problems. | will discuss subjective classification problems as opposed to the traditional

objective classification problems in more detail in chapter 2.

1.3 Outline

The thesis has four main chapters. The “ground truth” theme is discussed in chapters 2,
3 and 4, and the “classifier” theme is discussed in chapter 5. | will briefly introduce the

main arguments and contributions of each of the four chapters as follows.

Chapter 2 lays out the conceptual foundation for the rest of the thesis. It characterizes
the subjective classification problems as opposed to the objective classification
problems, proposes the distribution as ground truth model as opposed to the label as
ground truth model, and discusses a principled approach to map distributions into labels

for practical purposes.

Chapter 3 focuses on the practical annotation process to elicit ground truth dataset in
distributions. It uses empirical data to show that subjective classification problems do
exist and using the distribution as ground truth model does make a difference. The
annotation process is exemplary to other subjective classification problems. The dataset
obtained will also serve as ground truth to train and evaluate the political leaning

classifiers in chapter 5.

Chapter 4 focuses on classifier evaluation with the distribution as ground truth model. It
uses computer simulation to show that using the traditional “label as ground truth”
model for a subjective classification problem will run the risk of incorrectly ranking the
accuracy of classifiers. Computer simulations also illustrate the optimal way of
evaluating classifiers with the distribution as ground truth model, and conclude that
even though individual items in the labeled dataset are unreliable, classifier evaluation
(in terms of ranking according to accuracy) with distribution as ground truth can still be

reliable with a large number of labeled items.

Chapter 5 proposes a semi-supervised political leaning classifier called LabelPropagator
that automatically classifies people and items as liberal or conservative. The inspiration
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is that a few manually coded labels on articles and people might be propagated to other
people and articles, since liberal people are likely to endorse liberal articles, and
similarly for conservative people and articles. This chapter has two parts. The first part is
the original study of the algorithm in the year 2010 with problematic ground truth data.
The second part is to re-evaluate the algorithm in the year 2012 with new ground truth
data obtained from chapter 3. | will show that using different ground truth models and

evaluation schemes indeed leads to different results about the classifier.

Chronologically, the thesis started in 2010 with the first part of chapter 5 that proposed
the LabelPropagator algorithm. However, the original study was faced with the problem
of an unreliable labeled dataset, and the question was raised of whether the unreliable
labeled dataset could affect the reliability of classifier evaluation. Therefore, | started to
work on chapters 2 and 4 to study how to evaluate classifiers correctly with the
“distribution as ground truth” model. Based on the findings of chapters 2 and 4, | then
started to work on chapter 3 and obtained a labeled dataset that was reliable and
powerful enough to evaluate classifiers correctly. With the new labeled dataset as
ground truth, | finally worked on the second part of chapter 5 and showed that using a
different labeled dataset indeed led to different results. This process as well as the

organization of the thesis is illustrated in Figure 2 below.
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Figure 2. Outline of the thesis in chronicle order
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Chapter 2. Distribution as Ground Truth

2.1 Introduction

In machine learning theoretical and algorithmic research, labeled examples for training
and evaluation purposes are assumed to be 100% accurate, because “a well-defined
learning problem requires a well-specified task, performance metric, and source of
training experience” (Mitchell, 1997). Therefore, the practical process of acquiring
labeled data is not a concern of machine learning theoretical and algorithmic research.
In fact, none of the five widely used and most influential textbooks on machine learning
discusses how to obtain labeled data as ground truth for practical use (Mitchell, 1997;

Witten & Frank, 2005; Hastie et al, 2005; Bishop, 2006; Alpaydin, 2010).

However, one should not confuse theoretical and algorithmic machine learning research
with applications of machine learning theories and algorithms. For many real world
machine learning applications, the first step is always to obtain labeled data as ground
truth for training and evaluation purposes. Due to the lack of systematic guidance, the
actual annotation process to obtain ground truth data is usually rather chaotic. One
common practice is to use existing labeled datasets from multiple third party sources,
without checking their validity and reliability (e.g. Jiang and Argamon 2008). Another
common practice is to have one human coder (usually one of the researchers) label a
small set of items, assuming there are no errors or only small errors in the labeled
dataset (e.g. Oh, Lee and Kim 2009). Another more sophisticated approach is to define a
codebook, hire multiple human coders to label items, and use the majority vote or
consensus vote as the ground truth label of items, assuming human errors are corrected

with multiple coders (e.g., Zhou, Resnick and Mei 2011).
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Those approaches all assume that the obtained labels are reliable. That is, if the labeling
process is to be repeated either by the same or by other raters, the labels would remain
the same. The assumption is certainly true in some cases where the correct labels for
items are clear beyond doubt (e.g., Sharma et al 2002). But it might not be true for
many other subjective classification problems such as political leaning classification. As |
will show later in chapter 5, when labeling the same 1000 political articles again in year
2012 compared to the first time labeling them in 2010, 27% of the articles received

different labels.

When labels are not reliable, it is important to ask these questions: If we label a set of
items for multiple times, and each time certain items are labeled differently, then which
labels are correct? For those items that have the same labels across multiple rounds of
annotating, can we still expect to see the same labels if we label them again? If we are
to use these unreliable labels to train and evaluate classifiers, can we expect to obtain

reliable results about the classifiers?

I’d like to give a hypothetical example to illustrate the potential danger of evaluating
classifiers with unreliable labels. Suppose we have two binary classifiers, one is able to
classify any item 100% correctly and the other 100% incorrectly. If we have 10 labeled
examples to evaluate these two classifiers but all of them are incorrectly labeled by the
human raters, then according to these 10 incorrectly labeled examples, the bad
classifier would be 100% accurate, while the perfect classifier would be 0% accurate.
One would then draw the wrong conclusion that the bad classifier is better than the
perfect classifier. Although in practice we would not expect to see all examples labeled
wrongly, it is still questionable that we can always correctly rank classifiers using

erroneous “ground truth” that happens to favor the bad classifier.

This and the next two chapters are closely related under the “ground truth” theme of
the thesis, which mainly concern the problem of unreliable labels dataset and how it
affects classifier evaluation. In particular, this chapter (chapter 2) lays out the

conceptual foundation for the rest of the thesis. It characterizes the “subjective

13



classification problems”, proposes the “distribution as ground truth” model, and
discusses a principled way to map distributions into labels for practical purposes.
Chapter 3 focuses on practical annotation process, and uses empirical data to show that
subjective classification problems (where raters do not agree on many items) do exist
and using the distribution as ground truth model does make a difference. Chapter 4
focuses on classifier evaluation with distributions, and uses computer simulations to
show that even though individual items in the labeled dataset are unreliable, evaluation
of classifiers would still be reliable if we have a large number of labeled items to

evaluate. The relationship of the three chapters is shown in Figure 3.

Ch4 -- Classifier
evaluation with

Ch2 -- Conceptual

foundation of the Ch3 -- Empicial

study: distributions
are real

distributions and
sample errors

distribution as
ground truth model

Figure 3. Relationship of chapters 2, 3, and 4
The rest of this chapter is organized as follows. Section 2.2 discusses related work,
which is also relevant to the next two chapters. Sections 2.3 and 2.4 distinguish the
objective and subjective classification problems and their corresponding ground truth
model. | will argue that, for subjective classification problems, disagreements among
human coders are not due to observation errors as implied by the common annotation
process, but are due to substantive difference among people’s subjective assessments.
And therefore, in order to keep the disagreement as useful information rather than
eliminating them as errors, the underlying ground truth model should be distributions
over labels rather than single labels. Section 2.5 discusses a principled approach to map
distributions into labels using cost functions. Section 2.6 discusses caveats and future
work of using the distribution as ground truth model. This chapter is mainly conceptual,

and practical work will be discussed in next two chapters.
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2.2 Related Work

Theories of Truth

This chapter is about ground truth. What is “truth”? The answer to this question is
central to this chapter, and perhaps to the entire endeavor of scientific inquiry.

According to Glanzberg (2009), there are a few different theories of truth.

One of the most important and popular theories of truth is the neo-classical
corresponding theory that says: “what we believe or say is true if it corresponds to the
way things actually are — to the facts” (Glanzberg 2009). This theory presupposes the
existence of an objective world. To apply the corresponding theory of truth to the
political leaning classification problem requires objective, factual definitions of
“conservative”, “liberal” and “political”, which do not exist. As | have discussed in the
first chapter, people don’t agree on the exact definitions of conservative and liberal, and
even the validity of the dichotomy itself is fiercely challenged (Klein & Stern 2008). The
interpretation of “conservative” and “liberal” is mostly subjective, and therefore it is
impossible to define the true political leaning labels for items according to the neo-

classical corresponding theory of truth.

Another theory, the consensus theory of truth, holds that “truth is whatever is agreed
upon”, or “that which is universal among men carries the weight of truth” (Bohman &
Rehg, 2011). According to this theory, truth does not necessarily correspond to facts,
but is collectively determined by the population. This theory inspires the distribution as
ground truth model, which will be discussed later in this chapter, because the emphasis
is not on the existence of objective “facts” but on people’s subjective opinions. For the
political leaning classification problem, however, the theory requires consensus among
people, which still doesn’t exist for many, if not all, items. Therefore, this theory cannot

directly apply here.

The last theory of truth I'll discuss here is the pragmatic theory of truth, whose slogan is

“truth is satisfactory to believe”, or “true beliefs are guaranteed not to conflict with
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subsequent experience” (Glanzberg, 2009). According to the pragmatic view, truth
depends on how one defines truth for practical purposes. And thus the pragmatic
theory is not incompatible with other theories of truth, as long as they are useful in

practice. Hookway (2010) discussed an example to illustrate the pragmatic view on truth:

... This human witness tries to get sight of the squirrel by moving rapidly round the tree, but no matter how fast he
goes, the squirrel moves as fast in the opposite direction, and always keeps the tree between himself and the man, so
that never a glimpse of him is caught. The resultant metaphysical problem now is this: Does the man go round the
squirrel or not? James proposed to solve the problem by pointing out that which answer is correct depends on what
you ‘practically mean’ by ‘going round’. If you mean passing from north of him to east, then south, then west, then
the answer to the question is ‘yes’. If, on the other hand, you mean first in front of him, then to his right, then behind
him, and then to his left, before returning to being in front of him again, then the answer is ‘no’. Pragmatic
clarification disambiguates the question, and once that is done, all dispute comes to an end. The ‘pragmatic method’
promises to eliminate all apparently irresoluble metaphysical disputes. (Hookway 2010)

Ground truth, when used in machine learning classification problems, takes the
pragmatic view of truth. The annotation process that assigns “true” labels to items is not

Ill

about the metaphysical “true labels”, but about how researchers define the true labels
of items in order to train and evaluate classification algorithms to solve real problems.
For the political leaning classification problem and other subjective classification
problems, | propose to use distributions as the “truth” of items. Other people might not
agree with this particular definition of “truth” on items, but as long as the definition

satisfies my reasons and purposes, | can still treat it as the “truth” according to the

pragmatic view.

For the rest of the thesis, | will take the pragmatic view on truth to define the true

political leaning of items. | will then not discuss what is “conservative”, “liberal” or

III

“political” on the metaphysics level.

Inferring Correct Labels from Noisy Input

In order to increase the reliability of the labeled dataset, one obvious attempt is to use
more advanced techniques to infer correct labels from multiple human coders’ noisy
input. This line of work assumes that each item to be labeled does have an objective,
correct true label, even though it is hard, if possible at all, to observe. Due to the
difficulty of observing the true label, most human coders will make considerable errors,

but expert coders are less erroneous than inexperienced coders. Therefore, using
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advanced techniques other than majority vote that account for coders’ quality (or
expertise level) and then aggregating multiple coders’ input will lead to better quality

labeled dataset.

For example, Dawid and Skene (1979) proposed a latent class model and used the EM
approach to infer coders’ quality, and then use the quality score of each coder to
discount or increase the weight of their labels. Built on that work, Smyth et al (1995)
studied the problem of labeling volcano images of Venus, and showed that using the
latent class model to aggregate multiple coders’ input made a significant improvement
over simply using majority vote. This type of work is quite popular in Amazon
Mechanical Turk research (e.g., Ipeirotis, Provost and Wang 2010) where coders are

quite noisy. | will discuss more about it in the “related work” section of the next chapter.

This line of work is conceptually different from the work of this chapter in that it
assumes that each item to be labeled has an objective, correct true label. Disagreement
among coders is simply due to errors, and thus the main goal of this line of work is to
reduce or eliminate the errors. But this chapter assumes that disagreement among
coders is not due to errors, but is due to subjective differences, and therefore coders’
disagreement should be kept in the labeled dataset. Furthermore, this line of work
argues that using the latent class model will reduce errors. But again, it assumes that
the labeled dataset thus obtained is reliable despite the fact that there are still
considerable errors in the labeled dataset. The researchers haven’t studied the

consequence of having inevitable errors in the labeled dataset for classifier evaluation.

Empirical Loss Minimization and Decision Theory

My work in this chapter resembles “empirical loss minimization” or “empirical risk
minimization” (ERM) in decision theory (Berger 1985, Haussler 1992, Vapnik 1999,

Bishop 2006). Haussler (1992) described the general framework of ERM as follows:

In this general framework, we assume the learner receives randomly drawn training examples, each example
consisting of an instance x € X and an outcome y € Y, X and Y are arbitrary sets called instance and outcome spaces,
respectively. These examples are generated according to a joint distribution on X XY, unknown to the learner. This
distribution comes from a (known) class P of joint distributions on X XY representing possible “states of nature.”
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After training, the learner receives further random examples drawn from this same joint distribution. For each
example (x,y), the learner will be shown only the instance x. Then he will be asked to choose an action a from a set
of possible actions 4, called the decision space. Following this, the outcome y will be revealed to the learner. In the
case that we examine here, the outcome y depends only on the instance x and not on the action a chosen by the
learner. For each action a and outcome y, the learner will suffer a loss, which is measured by a fixed real-valued loss
function [ on Y XA. We assume that the loss function is known to the learner. The learner tries to choose his actions
so as to minimize his loss.

Here we look at the case in which, based on the training examples, the learner develops a deterministic strategy that
specifies what he believes is the appropriate action a for each instance x in X. He then uses this strategy on all future
examples .... The learner’s strategy, which is a function from the instance space X into the decision space 4, is called a
decision rule. We assume that the decision rule is chosen from a fixed decision rule space H of functions from X into
A. For example, instances in X may be encoded as inputs to a neural network, and outputs of the network may be
interpreted as actions in A. In this case the network represents a decision rule, and the decision rule space H may be
all functions represented by networks obtained by varying the parameters of a fixed underlying network. The goal of
learning is to find a decision rule in H{ that minimizes the expected loss, when examples are drawn at random from
the unknown joint distribution on X XY.

This general framework enables researchers to answer theoretical questions such as
how many training examples are needed, how to choose the hypothesis design space H,
what is the computational complexity to find the optimal hypothesis, what are the
theoretical error bounds of learning algorithms, and so on (Haussler 1992). Practically,
this general framework can apply to a variety of problems, including regression, betting,

decision making and classification (Haussler 1992).

This chapter builds on many ideas from the ERM literature, as can be seen later.
However, this chapter still differs significantly from the ERM literature. First, in the ERM
framework, the outcome y for each instance x is the true state of Nature, and will be
revealed after decisions are made. For political leaning classification, applying the ERM
framework would assume that each article (x) in the labeled dataset has a perfectly
accurate label (y). My work in this chapter, however, assumes that an article’s political

leaning is a distribution and does not have one perfectly accurate label.

Second, according to the problem formulation of the ERM framework, even though
P(y|x) is a distribution over the X XY space, the outcome y is still a single label for each
individual instance x. In other words, the underlying ground truth model uses labels. On
the contrary, this chapter proposes the underlying ground truth model uses

distributions over labels instead of single labels.

18



Last but most importantly, the ERM literature has a different research problem, which is
to find a hypothesis h* among a fixed class of functions H for which the risk is minimal.
The research problem of this and the next two chapters is not about finding the best
hypothesis h*, (or in my case, a classifier), but about finding the best evaluation scheme
that is able to discriminate the best hypothesis h* from the inaccurate ones when the
labels from human coders (y) are not reliable. Thus, the conclusions drawn from this

thesis would be in a different category from the ERM literature.

Multi-class, Multi-label, Multiple-label, and Multiple-rater Problems

Existing literature discusses the multi-class, multi-label, multiple-label and multiple-rater
problems. Here I'd like to make some clarifications on these rather confusing terms. A
multi-class classification problem is distinguished from a binary classification problem by
having more than two classification labels (Tsoumakas and Katakis, 2007). A multi-label
classification problem is to assign multiple labels to one item, and all label assignments
are considered correct (Tsoumakas and Katakis, 2007). A few examples of multi-label
classifications are, for examples, Zinovev et al (2011), Vannoorenberghe and Denoeux
(2002), Li, Zhang and Zhu (2006), and Quost and Denoeux (2009), among others. A
multiple-label classification problem is different from a multi-label problem in that
although multiple labels are associated with a single item, only one label is the correct
one (Jin and Ghahramani, 2003). A multiple-rater problem directly uses labels from
multiple raters for classifier training, and at the same time computes the quality of
coders and discounts erroneous input in the training process. Literature about the

multiple-rater problem will be discussed in the final chapter.

What distinguish this thesis (in particular, this and the next two chapters) from these
previous studies are as follows. First, the thesis assumes the ground truth of an itemis a
distribution rather than a single label or multiple labels. Second, the thesis focuses on
classifier evaluation with distribution as ground truth rather than classifier training with
distributions. Third, the thesis evaluates classification outcomes as labels against ground

truth as distributions rather than “labels against labels” or “distributions against
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distributions”. And finally, the thesis assumes the ground truth dataset for classifier

evaluation is unreliable and studies whether we can still draw reliable conclusions.

Probabilistic Forecasting and Scoring Rules

In a probabilistic forecasting problem, an expert makes a prediction with a probability
distribution over possible outcomes, and the true state will be revealed after the
prediction and the prediction is evaluated against the true state (Dawid 1984). Weather
forecasting is a typical probabilistic forecasting problem, where weather experts make
probabilistic predictions on a few possible outcomes of today’s weather. Then Nature
reveals today’s weather, and the experts will get rewarded based on the quality of their

predictions evaluated against the true state (Brier 1950).

Scoring rules play an important role in probabilistic forecasting problems that evaluate

predictions as distributions against the true states as discrete labels, as discussed below:

Scoring rules provide summary measures for the evaluation of probabilistic forecasts, by assigning a numerical score
based on the predictive distribution and on the event or value that materializes. In terms of elicitation, the role of
scoring rules is to encourage the assessor to make careful assessments and to be honest. In terms of evaluation,
scoring rules measure the quality of the probabilistic forecast, reward probability assessors for forecasting jobs, and
rank competing forecast procedures. (Gneiting and Raftery 2007)

The incentivizing role of scoring rules is ex ante, while the evaluation role is ex post
(Winkler and Jose 2010). Scholars have studied both roles of scoring rules. For example,
Bickel (2007) compared the difference between quadratic, spherical, and logarithmic

scoring rules in terms of both of their ex ante and ex post roles.

This line of research is relevant to the work of this chapter and chapter 4 (about
classifier evaluation) because here evaluation is also between labels and distributions
(as opposed to “labels against labels” or “distributions against distributions”). However,
in a probabilistic forecasting problem, the predictions are distributions whereas the
ground truth outcomes are labels; in this chapter, the predictions (or classification
outcomes) are labels while the ground truth data are distributions. In addition, this
chapter particularly focuses on sample errors in the ground truth data, whereas in a

probabilistic forecasting problem, ground truth outcomes from Nature are indeed 100%
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accurate. Finally, studies about “proper” scoring rules (Gneiting and Raftery 2007) focus
on the scoring rules’ ex ante role on incentivizing forecasters. To some extent, the
process of classifier evaluation also “incentivizes” researchers to design a classifier
algorithm according to a chosen scoring rule in order to optimize for evaluation
outcome. However, it is not the focus of this chapter to study the ex ante role of scoring
rules used in classifier evaluation. As can be seen later, this chapter only uses one simple

form of a scoring rule, and | will not discuss its properness either.

Measurement Error in Statistics

Measurement error in the statistics literature is relevant to this chapter and chapter 4
because both chapters are about sample error in the ground truth data for subjective
classification problems. Fuller (2008) studied how to assess the effects of measurement
errors in regression models and other univariate and multivariate models, and then how
to correct for measurement errors when estimating the parameters for those models.
Hyslop and Imbens (2001) argued against the classical measurement error (CME) model,
which assumes measurement error is independent of the true value. The paper argues
that in addition to CME, there are optimal prediction errors (OPE) that are independent
of the reported values but could be dependent on the true values. The paper then
discusses how to use the concept of OPE to correct errors in linear regression model and
generate better predictions. To my knowledge, there is no existing work in the
measurement error literature studying how errors in the ground truth affect classifier

evaluation. My work could add to this line of work.

Classification Systems and Theories

According to Bowker and Star (1999), “a classification is a spatial, temporal, or spatial-
temporal segmentation of the world”, and an ideal classification system should have
three properties: 1) clearly defined, 2) mutually exclusive, and 3) collectively exhaustive.
Political leaning classification seems to be far from those properties, and one might ask

whether such a classification problem is useful or valid at all.
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To explain why any classification — even though as “messy” as political leaning
classification, for example — is useful and valid, Rosch (1999) discussed two principles of
classification. The first principle is about why a classification is useful or desirable: “the
task of category systems is to provide maximum information with the least cognitive
effort”. In the extreme case where people don’t classify at all, each individual instance
would be considered a category by itself, resulting in tremendous cognitive effort.
Therefore, people want to classify and keep the number of categories small. The second
principle explains why a classification is workable or valid: “the perceived world comes
as structured information rather than as arbitrary or unpredictable attributes”. If the
target problem does not have any structural information, then it is not a valid
classification problem at all. I'd like to argue that political leaning classification satisfies

both principles, and thus is a useful and valid classification problem.

In this chapter, | will discuss objective versus subjective classification problems, which
should not be confused with the Aristotelian versus the prototype classification systems
(Bowker and Star, 1999). An Aristotelian classification “works according to a set of
binary characteristics that the object being classified either presents or does not present.
At each level of classification, enough binary features are adduced to place any member
of a given population into one and only one class (Bowker and Star, 1999).” A prototype
classification makes use of prototypes or exemplars “rooted in people’s experience” to
categorize objects without consulting any Aristotelian-style classification rules, even
though “conceptual categories are not identical for different cultures, or indeed, for
every individual in the same culture (Rosch 1999).” Aristotelian and prototype systems
differ in how to classify items into different categories, whereas objective and subjective
classification problems differ in whether there exist many items where human raters do

not agree.

Furthermore, the study of the subjective classification problems should not be confused
with the study of folksonomy. Folksonomy is a term coined by Vander Wal (2007) to

contrast with formal taxonomy. My work is similar to folksonomy in the “folk” part: it is
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the users who define which items should be labeled into which categories. However, my
work is different from folksonomy in the “-sonomy” part: my work pre-defines the
categories of red, blue and gray, and people are not allowed to contribute new

categories (or labels) to the categorization scheme.
2.3 Objective Classification Problems and Label as Ground Truth

Before discussing objective classification problems and the label as ground truth model,
I’d like to summarize what researchers usually do to annotate items. One common
practice is to use only one human coder (usually one of the researchers) to annotate a
small set of items. The validity of this approach rests on the assumption that the coder
follows objective rules (usually implicitly in the coder’s mind) during annotation, and
makes only small, negligible errors, if at all, during the process so that the resultant
labeled dataset is accurate and reliable. That assumption might be too strong in practice
because it is easy for human beings to make mistakes. So another common but more
sophisticated approach is to use more than one coder to annotate items in order to
assess the quality of the annotations and correct for human errors. Examples are seen in
word sense disambiguation (Kilgarriff 1998, Veronis 1998), subjectivity classification

(Wiebe et al 1999), and many other studies in the machine learning literature.

The multiple coders approach is actually borrowed from the qualitative coding process
widely seen in social sciences. Krippendorff (2004) summarized a full-fledged qualitative
coding process that involves multiple coders and the use of a codebook. In such a coding
process, the researchers first define a sophisticated codebook instructing how items
should be coded. For example, MacQueen et al (1998) described a codebook structure
with six components: 1) the code (or categories), 2) a brief definition, 3) a full definition,
4) guidelines for when to use the code, 5) guidelines for when not to use the code, and 6)
examples. The researchers then hire and train multiple coders to annotate a small set of
items according to the codebook. Then, the researchers compute the inter-rater
reliability (IRR) using Cohen’s kappa or Fleiss’s kappa. If IRR is high, then the researchers

can have the coders annotate the rest of the items and conclude that the resultant
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labeled data is reliable. But if IRR is low (which is usually the case), which implies either
the codebook is not well-defined or the coders are not well trained, then it will trigger
several iterations to improve the codebook, re-train the coders, and re-code the items.
The process is repeated until IRR is high. For items upon which coders don’t agree, the
coders and researchers should discuss them and reach an agreement, and perhaps
revise the codebook too. MacQueen et al (1998) described a typical coding and recoding

process as follows:

The codebook is reviewed to determine whether the inconsistencies are due to coder error, e.g., misunderstanding of
terminology or guidelines. We view these as training errors and they are generally handled by the coders and team
leader(s). Other inconsistencies are due to problems with the code definitions, e.g., overlapping or ambiguous
inclusion criteria that make it difficult to distinguish between two codes. These types of problems are generally
discussed by the whole team, as they have implications for the interpretation of the text. Once the problems are
identified and the codebook clarified, all previously coded text is reviewed and, if necessary, recoded so that it is
consistent with the revised definitions. Intercoder agreement is again checked, to ensure that the new guidelines
have resolved the problem. This iterative coding process continues until all text has been satisfactorily coded. ...
Schedule regular meetings where the coding team reviews each code and definition in the codebook. It is easy for a
coder to develop a set of implicit rules without realizing that the codebook no longer reflects his or her actual coding
process; in addition, this evolving process may or may not be shared by other members of the coding team.
(MacQueen et al 1998)

When applying the qualitative coding process to label items for machine learning
classification problems, researchers usually simplify this complicated process to various
degrees, as can be seen from many machine learning papers. For example, researchers
may not take the time and effort to define a sophisticated codebook or train the coders
well to such a degree like what has been described in MacQueen et al (1998). In
addition, disagreements on items may be resolved simply by majority votes rather than
discussing them collectively (e.g., Zhou et al, 2011). Furthermore, even though IRR is
only “fair” (Cohan’s kappa 0.2 ~ 0.4), which means coders don’t agree on many items,
researchers may just treat the labeled dataset as reliable instead of going through
iterations to improve IRR (e.g., Zhou et al, 2011). Finally, researchers may sometimes
hire multiple coders to label a few items to check IRR, and proceed with having one

coder label the rest of the items even though IRR does not indicate high agreement.

It is understandable to see these simplifications in a machine learning annotation
process, because the researchers are more interested in the computational aspect of

their research (such as algorithm development), rather than spending all of their

24



resources and efforts on a complicated annotation process. But more importantly, such
a simplified coding process (including the one coder coding process) could turn out to be
sufficient for a set of classification problems where the classification boundaries are
clear and straightforward. For example, an annotation process for detecting the
presence of faces in images (Shakhnarovich et al 2002) and gender classification of
passport photos (Sharma et al 2002) are very straightforward, even though admittedly

there might be a small, negligible number of ambiguous cases.

I’d like to define as “objective classification problems” or OCPs those where all items
(perhaps with few negligible exceptions) can be clearly classified into categories
according to some objective, well-defined criteria. These objective criteria could be
implicitly held by coders, or explicitly codified in a codebook. Following these objective
criteria, multiple coders would all agree on the correct label of items and repeated
annotations will result in the same labels. The labeled dataset would be reliable with no
error or with only a small number of errors due to random human error, which are
negligible. Clearly, for this type of classification problem, it is valid to use either one
coder or multiple coders (to correct for human errors with majority votes) for the
annotation process. Many classification problems in the machine learning literature do
satisfy this characterization (e.g., Shakhnarovich et al 2002, Sharma et al 2002).
However, even though some classification problems are not objective such as the
political leaning classification problem, researchers usually still treat them as objective,

and, as | will argue later, it is a defective model.

For OCPs, the underlying ground truth model is indeed on the label space. That is, each
instance has one and only one label as its true label. If coders disagree on the correct
label of an item, it is due to human errors and such errors should be resolved. Under
this model, error rate is assumed to be fixed for all items (whereas variable error rates
for different items imply that coders’ disagreement are “subjective”, which will be
discussed later). For any valid classification problem (see “related work” at page 22 for

discussions about a valid classification system), it is safe to assume that the correct label
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is more likely to be observed than any other label. According to the principle of
maximum likelihood, disagreement among coders should be resolved by majority vote
in order to get the correct label. I'd like to call this model the “label as ground truth”
model for the objective classification problems. This is to contrast with the “distribution
as ground truth” model for the subjective classification problems, which will be

discussed next.

2.4 Subjective Classification Problems and Distribution as Ground

Truth

As | have briefly introduced in chapter 1, there is a set of classification problems
different from the objective classification problems, and I'd like to call them the
“subjective classification problems” or SCPs. The fundamental difference here is that
we cannot find objective, well-defined classification criteria to put items into categories.
When presented with an item, people have to use their subjective judgments to label it,
and the subjective judgments on many items may vary among different people. As a
result, there are a non-negligible number of items whose labels people simply do not
agree upon. The disagreement is not simply due to random observation errors that
could be avoided, but rather substantive subjective differences among people. The
distributions of coders’ different labels indeed reflect the true nature of an item.
Therefore, Id like to call the underlying ground truth model the “distribution as ground
truth” model for subjective classification problems, as opposed to the “label as ground
truth” model for objective classification problems. Here, the ground truth for an item is
a distribution over labels, not a single label anymore. Next, I'll describe distribution as

ground truth in detail.

Defining Ground Truth Using Distributions

I’d like to start by introducing notations. Here | will only study the political leaning
classification problem as a representative example of SCPs, without making explicit

effort to generalize it to other SCPs.
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Let I* be the entire target political articles corpus, and i be an item or article, i € I*. Let
I € I" be a subset of articles to be labeled as ground truth, and I;,.4;, and I;.g; are for
training and testing purposes respectively, where I;qin U Lty = 1. Let ' = 1" — 1,
which are the unlabeled items to be classified by a classifier. Let U* be the target
population and u as a person from the population, u € U*. Let U; be a random sample
of the population, U; € U*, where U; denotes a random sample of the population (or, in
the case of U; = U™, the entire population) who will label item i. Let U be the set of
coders sampled from the population to label I, thatis, U = U, VU, U ..U; ..., Vi €I,
and U € U*. Let L = {red, gray, blue} be the political leaning label space, and £ € L
be a label. For convenience purposes, I'll sometimes use {r, g, b} as an abbreviation for

{red, gray, blue}.

Let s,,; be the personal assessment of user u € U; onitemi € I, s,; € L. Here | assume
u reports s,,; truthfully without errors: s,,; is not a random variable. | will discuss this
assumption and extensions to the simplified s,,; model in the last section. Let 8,(s,;) =
1if s,; = £, or 0 otherwise. Then, define the empirical frequency of labels for item i

over the entire population (i.e., U; = U") as:

ZVuEU* Qé’ (Sui)
|U*| '

P,(i) = teL={rgb}Viel

Equation 1. Definition of P (i)
For convenience purposes, I'll use R;, G; and B; to denote B.(i), F, (i), and P, (i)
respectively. Intuitively, R;, G; and B; are the proportions of the entire population who
would label item i as red, gray and blue respectively, and R; + G;+B; = 1. Now, I'd like

to define H; as the ground truth for the political leaning of article i as:
Hi = <Pr(l),Pg(l),Pb (l)> = <Ri: Gi; Bi); Viel

Equation 2. Definition of H;
Since H; is a distribution, this ground truth model is thus called distribution as ground

truth. Let H, = {H;, H,, ..., H;, ...}, Vi € I, which denotes the annotated labeled ground
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truth data for I. The goal of the annotation process is to obtain H;, and researchers will

use H; to train and evaluate classifiers.

Simplex Notation

Any item i € [ with H; = (R;, G;, B;) can be represented as a point in a simplex (Elte,
1912), as illustrated in Figure 4. For example, H; = (1, 0, 0) is the point on the simplex’s
left corner; H; = (0.33,0.33,0.33) is the point in the middle of the simplex. If H; is
higher in one dimension (such as R;), on the simplex the point will be closer to the
corresponding corner (such as the left corner). Similarly, any point in a simplex could
map to a H; distribution. In short, there is a one-to-one correspondence between H; and
a point on the simplex. For the rest of the dissertation, I'll use the distribution H; and its
simplex notation interchangeably to represent the political leaning of article i. More

information about the simplex can be found in (Elte, 1912).

Sometimes | use the bar chart graphical notation to represent H; for item i, where the
red, gray and blue bars correspond to R;, G;, and B; (see Figure 5). A bar chart maps to a

point in the simplex.

<0,1,0>

0.1

X <0.1,0.72,0.18>

<0.33,0.33,0.33>

Figure 4. Simplex notation for H;

Figure 5. Bar chart notation for H;
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Sample Errors

Ideally, | would use H; = (R;, G;, B;) as the ground truth for item i, but H; is defined
from the entire population U™ and is not directly observable. | will call H; “population
ground truth”, or the “true” ground truth. Practically, one can only get an estimate of H;
from a subset of the population, U;, where |U;| < |U*|. | will define H; as the “sample

ground truth”, or the “observed” ground truth for i, as follows.

ZVuEUi Hf(sui)

, teL={rgb}LVieEl
A g

P,(i) =

H; = (B.(1), B, (), P, (1)) = (R, Gy, B)),  ViEl

Equation 3. Estimation: H;, P,(i)
In Equation 3, U; is a random sample of users drawn from U™ to label item i. The ground
truth of i is then collectively estimated by the sample of users U; rather than by the
entire population U*. Note that for any two items i and j, U; and U; do not have to be
the same. Also, according to statistical theories, H; is an unbiased estimator of H;, that
is, E(H;) = H;, even if H; # H;. One can avoid sample bias by randomly sampling U;,
and reduce sample error by increasing |U;|. With a small |U;], inevitably the sample

ground truth dataset H; will have errors, as shown in Figure 6.

74
Figure 6. Ground truth estimation errors
Here, I'd like to introduce a few more notations. Let m = |U;| < |U*|. That is, m is the
number of human coders to label item i € I. Here I'd like to assume m remains the
same for all i € I. In the “active learning” literature, m could differ for different items,
but it’s not the concern of this chapter. Let n = |I| < |I*|. That is, n is the number of

items to label in the labeled dataset I.
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The total number of labels to elicit from human coders is denoted as k, where k = mXn.
Assuming the cost per label is a constant, then under limited budget and a constant k,
one can either have a small m but a large n, or a large m but a small n. For example,
given the same budget, one can either annotate 1000 articles with 4 labels per article, or
annotate 4 articles with 1000 labels per article. It is important to find the optimal m and
n given the presence of sample errors in the ground truth dataset. | will discuss this in

chapter 4.

Roles of Codebooks and Coders

For an OCP that uses label as ground truth, a codebook explicitly codifies the objective
criteria instructing how to put items into categories, and thus defines the ground truth
of items. Human coders are merely an “instrument” to annotate items following the
rules in the codebook. As with any other instruments, the coders could make errors, but

the errors should be eliminated.

For an SCP where classification boundaries are fuzzy, it is hard for researchers to define
a good codebook that clearly instructs how coders should label items. Researchers have
two alternatives here. The first is to apply the qualitative coding process and turn the
subjective classification problem into an objective classification problem by developing a
comprehensive codebook through several iterations. Through this process, subjectivity
is eliminated by forcing the coders to follow the same comprehensive rules in the
codebook. Consequently, coders would all agree on most items and the resultant
labeled items are reliable. Note that the inherent subjectivity of the classification

problem at hand is not eliminated: it is just embedded in the making of the codebook.

For the political leaning classification problem, following this approach (that is, making it
an objective) means that we have to clearly give our own definitions of “conservative”,

n u

“liberal”, “populist”, “libertarian”, “politica

III

, etc, and then define a comprehensive
codebook including definitions, examples, guidelines and so on. We have to revise the

codebook several rounds and work with the coders to resolve ambiguous cases.
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However, for machine learning application studies, I'd like to argue against this
approach of turning a subjective classification problem into objective through the
qualitative coding process. As | have argued earlier, this process is too costly for
machine learning researchers who are more interested in developing classification
models and algorithms than developing a sophisticated codebook. Furthermore, even
though researchers actually do go through several iterations of improving the codebook,
it doesn’t necessarily mean they will get good results due to extreme subjectivity in the
labeling process. For example, despite several rounds of iterations, researchers never
came to acceptable inter-rater agreement on labeling “humorous tweets”

(Munson, Rosengren and Resnick 2011) or “related Drupal modules” (Zhou and Resnick

2009).

More importantly, a comprehensive codebook means high specificity and low
generalizability, whereas machine learning researchers want low specificity and high
generalizability. For example, if | define a comprehensive codebook for political leaning
classification, then my own specific interpretation of “conservative” and “liberal”, out of
many other different possible interpretations, would be embedded in the codebook. As
a result, my research results would be limited to this specific interpretation (hence high
specificity) and not generalizable to a wider audience who has different interpretations

of “conservative” and “liberal” (hence low generalizability).

Instead of turning a subjective classification problem into objective, another choice is to
acknowledge the inherent subjectivity of the classification problem. In this case,
researchers should use the distribution as ground truth model, and have the coders use
their own subjective assessments to label items. In this case, human coders are not
merely an instrument; rather, the coders, who represent the population if randomly
sampled, collectively define the ground truth of items as distributions by aggregating
subjective opinions. The codebook, if given, only provides some general classification
principles and leaves several undefined areas. Therefore, the codebook has some

educational value, but does not define the ground truth of items. Clearly, having the
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population define the ground truth of items implies low specificity (i.e., not limited to
any particular definition of the labels or categories) and high generalizability (i.e., the
definition of the labels or categories are acceptable by a wide range of audience) of the

labeled data, and thus is desirable for machine learning studies.

For example, Figure 7 shows a codebook example we used in an early study to label
articles into red, blue and gray (Zhou, Resnick, and Mei, 2011). To many coders who
already know about US politics, this codebook doesn’t teach them anything new in
terms of how to label articles into red, blue or gray. When labeling ambiguous articles
(such as liberals criticizing Obama, or Republican candidate Ron Paul arguing for more
civil liberties), those coders are not able to find clear guidelines in the codebook, and
have to use their own subjective assessment. The codebook is indeed helpful to
inexperienced coders who don’t know much about US politics. They can apply some

III

general principles found in the codebook such as “’inequality is bad” means liberal” to
label items, but still, they have to use their own subjective assessment on many

ambiguous articles.

Liberal, if an article

B argues from a liberal perspective, and/or uses liberal ideological arguments (e.g., inequality is
bad, social safety net is important, government should not interfere with personal life style
choices, etc.)

B presents facts selectively to promote liberal perspective

B attacks conservative positions, perspectives, or people from a liberal perspective

Conservative, if an article

B argues from a conservative perspective, and/or uses conservative ideological arguments (e.g.,
big government is bad, taxes should be low, government should not interfere with markets, etc.)

B presents facts selectively to promote conservative perspective

B attacks liberal positions, perspectives, or people from a conservative perspective

Not-sure, if an article

B presents simple facts with no hint of political opinions
B does not satisfy criteria of either "liberal" or "conservative"
B presents well balanced opinions from both "liberal" and "conservative”

Figure 7. A simple codebook example on political leaning classification
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Sometimes it is even hard to compile a set of very generalized classification guidelines in
a codebook, or the instructions in a codebook are too generalized to the point of being
trivial (such as the example of Figure 7), then it is not necessary to provide a codebook
under the distribution as ground truth model. For example, when asked to define
“pornography”, a Supreme Court judge responded with “you know it when you see it”?.
Another example is to label “humorous tweets”: everyone knows whether a tweet is
humorous or not when they see it (although people might disagree), but it is just hard to
define what a “humorous tweet” really is. I'd like to call this type of cases as “you-know-

it-when-you-see-it” or YKIWYSI®. The YKIWYSI classification problems are all subjective,

and do not require a codebook.

Note that regardless of whether we provide a codebook or not, there is an implicit
assumption for the SCPs that people would still agree on the labels of many items due
to shared tacit knowledge despite their subjective differences on many other items.
Otherwise, if people simply don’t agree on any item, then there would be no valid

classification system at all.

Inter-rater Reliability

For an objective classification problem, we would expect to see high inter-rater
reliability (IRR) among multiple coders (or if there is only one coder, we would expect to
see high IRR if the annotation process is repeated again by either the same or another
coder). This is because all coders follow the same objective instructions in the same
codebook. We don’t expect, though, to see a perfect IRR score because human coders
make errors. But still, low IRR indicates that there’s something wrong in the annotation
process and the researchers should correct it (by revising the codebook, for example).
Only when IRR is high can the researchers be confident on the reliability of the labeled

dataset.

% Further reading see: http://en.wikipedia.org/wiki/l_know_it when I see it
} Acronym follows the same fashion as WYSIWYG: what-you-see-is-what-you-get.
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For a subjective classification problem, however, disagreement among coders is
expected and thus it is not required to have a high IRR. But we should not expect to see
a very low IRR either: too low an IRR score means people don’t agree more than they
would randomly agree, which perhaps implies that the classification problem is not valid
at all. IRR score for a typical SCP is low, but not too low. For example, as | will show later
in chapter 3, Fleiss’ kappa for the political leaning classification is 0.39 to 0.44 (which

varies across multiple annotation tasks).

The implication about low IRR for SCPs is that we cannot fully trust the reliability of the
labeled dataset anymore due to large sample errors with a only few coders. For example,
suppose there’s an item with the true distribution H; = (0.5,0.2,0.3), then there is still
12.5% chance that three coders could all label it as red, even though we know the true
distribution is far from the observed ﬁi = (1,0,0). If we only have one coder label it as
red, then there is 50% chance that it does not get labeled again as red. And there are
many items like this for a typical SCP. In contrast, suppose an average coder for an
objective classification problem has 10% error rate (which means 90% of the time a
coder is able to label an item correctly), then there is 97.2% chance an item can be
correctly labeled with majority votes and three coders, which means the resultant

labeled dataset is indeed reliable.

Finally, by assumption the error rate under the label as ground truth model for an OCP is
fixed and is small for all items. In practice, when we observe different “error rates” for
different items, it is usually an indicator that we should use the distribution as ground

truth model and treat the “errors” as distributions of subjective opinions.

Annotation Process

| will briefly discuss the annotation process under the distribution as ground truth model

for political leaning classification problem. Figure 8 illustrates the procedure.

* Step 1: Define the target population U™ to consist of any US person who
understands the basics of US politics. This population will collectively define the
ground truth for the political leaning of any article i € I.
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* Step 2: Survey an unbiased random sample of the population®, and ask for their
personal assessments on an article. This gives s,;, Vu € U;. In practice, this can
be done on a crowdsourcing platform such as Amazon Mechanical Turk.

* Step 3: Compute H; = (R;, G;, B;) using Equation 3.

* Step 4: Repeat Step 2 and 3 to compute ﬁi foralli € I to form the observed
sample ground truth dataset H;.

sui,Vu € Ui
00 :> H; as ground
800 truth for i
()

Suj, Vu € Uj
. O . -’ H; as ground
truth for j
eeoe

Figure 8. Define ground truth from the population

Summary: OCP versus SCP

Table 2 summarizes the main differences between the subjective and objective

classification problems and their corresponding ground truth model.

Table 2. Comparisons between the objective and subjective classification problems

Objective classification | Subjective classification
problems problems
Problem # of high agreement Almost all Many
characteristics items
# of low agreement Few Many
items

* Chapter 3 will show that it is advisable to sample the population from crowdsourcing platforms such as
Amazon Mechanical Turk.
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Level of agreement High Medium
among coders
Existence of objective Yes No
classification rules

Ground truth Underlying ground truth | Labels Distributions

model

model

ltems’ ground truth

Objective classification

Coders who represent

defined by rules explicitly codified | the population’s
in the codebook by collective opinions
researchers
Annotation Requirement of a Yes No (optional)
process codebook
Role of coders Instrument Creator of the ground

truth

Coders’ agreement due
to

Following the same
objective rules in the
codebook

Shared tacit knowledge

Coders’ disagreement
due to

Human errors

Subjective differences

How to handle coders’
disagreements

Eliminate them because
errors are distractions

Keep them because
subjective differences
are useful information

Challenges to reliability

Rules in the codebook
not well-defined;
coders not well trained

Sample bias and small
sample size (large
variance) when
sampling coders

Quality measurement of | IRR Difference between H;
labeled items and H;
Quality improvement by | Yes No (coders’ subjective

reducing coders’ errors

differences are not
errors, but it’s a
problem if they are
sloppy and don’t
report what they
think)

Quality improvement by
using larger # of coders

No (only small # of
coders are needed if
error rate is low, but it
does help for any
error rate)

Yes
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2.5 Mapping Distributions into Labels

Defining the ground truth as distributions instead of labels does not necessarily mean
that we will always use distributions in practice. Sometimes we might want to map
distributions into labels. For example, we might want to display the political leaning of
an article in a news aggregator as a red, gray or blue label instead of a distribution (see
Figure 1 in chapter 1). Or, as | will argue later in chapter 4, we might want to map
distributions into labels and then use the labels to train and evaluate political leaning

classifiers that classify items into discrete categories.

Majority vote seems to be the obvious choice to map distributions into labels, which has
been commonly used in previous studies. But it has some problems. For example,
suppose we have 6 labels for an item i, including 3 red labels and 3 blue labels. Using
majority vote, we would either label i as red or blue, not gray. But clearly i is quite
disputed, and perhaps we should best label it as gray. Other studies used arbitrary
criteria to map distributions into labels. For example, Zhou et al (2011) defined red as
having >2/3 red ratings from 6 ratings, blue as having >2/3 blue ratings, and gray for the
rest. Thus, 3 red and 3 blue would be labeled as gray. But one might ask why the

mapping should be done in this particular way and not the other.

In this section, | will discuss a principled approach to map a distribution over the label

space L = {r, g, b} into a single label £ € L.

Cost Functions

Letw; € L = {r, g, b} be an arbitrary label for item i which will be shown to users as the
political leaning of i. Let w; be a set of w;, Vi € I. For convenient purpose, consider w;
as the classification outcome of i from a political leaning classifier. | will use the cost
function L(w;, s,;) to measure the cost of a person u, whose subjective opinion on i is
Sui» Who sees a classification outcome on i as w;. Here, “cost” could be interpreted as
how much cognitive discomfort or resistance the person will experience if she sees a

classification result different from her own opinion. Here, I'll make a simplified
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assumption that L(w;, s,,;) does not depend on any other characteristics of the
particular item beyond the mismatch between the user’s perceived label and the

classifier’s. That is:

L(Wifsui) = L(W,S), Yu e U*,Vl € I; w,S € L

Equation 4. Definition of cost
Therefore, a cost function here is defined only by nine values, as shown in Table 3. For
example, L(r,r) specifies the cost of a person, whose personal opinion to an article is
red (s,; = 1), seeing the article labeled as red too (w; = r): presumably the cost is 0. If a
person’s own assessment to an article is blue (s,; = b), then seeing it labeled as gray
(w; = g) might incur 1 unit of cost, thatis L(g, b)=1, or seeing it labeled as red (w; = 1)
might incur 2 units of cost, that is L(r, b)=2. Clearly this is a very simple model. A more

sophisticated cost model will be discussed in the last section.

Table 3. Cost function

s red gray blue

red | L(r,r) | L(r,g) | L(r,b)

gray | L(g,7) | L(9,9) | L(g,b)
blue | L(b,7) | L(b,g) | L(b,b)

There are three types of cost in the table. First, L(r,7), L(g, g) and L(b, b) are the “hit”
cases where the classification result w; matches a person’s personal opinion s,;. Second,
L(r,b) and L(b,r) are the “far miss” cases where the classification result w; is the
opposite of a person’s opinion s;. Third, L(r, g), L(b,g), L(g,7) and L(g, b) are the
“near miss” cases where the classification result w; does not match a person’s opinion

Sui, and either one of them is gray.

I’d like to assign numerical scores to the labels: red as “-1”, gray as “0”, and blue as “1”.
There are other ways to assign the score, but I’d like to argue that in many cases, this is

the most succinct form. Using the numerical scores, it is possible to define a cost
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function using a simple equation form instead of a full 3 by 3 matrix like Table 3. For

example:

* Absolute cost function: L(w,s) = |w — s|.
* Quadratic cost function: L(w,s) = (w — s)2.
* 0-1cost function: L(w,s) =1if w # s, or 0 otherwise.

Regardless of which cost function is used, the total expected cost of showing the

classification results w; for all items i € I to the entire population would be:

L= Z [Li,Wh.eTe ]Li = Zpg(l) ' L(W“'g)

i€l teL
=R, L(w;,7)+G; - L(w;,g) +B; L(w;,b)
Equation 5. Total expected cost
Recall that P,(i) and (R;, G;, B;) were defined in Equation 1 as the “distribution as
ground truth”, H;, for item i. Since we are only able to observe the sample ground truth
ﬁi, we can only get an estimate of L, defined in Equation 6. Note that after we observe
ﬁ,, the total expected cost L is solely determined by the cost function L and the

classification outcomes w;.

E = Zmi,Where Ei = Zpg(l) ' L(W“'g)

iel LeL
=R, L(w,7r)+ G, - L(w;,g) + B;-L(w;,b)
Equation 6. Total expected cost over sample ground truth

I’d like to use an example to illustrate the intuition of Equation 5 and Equation 6.
Suppose we have an article i with H; = (0.7,0.2,0.1). If we label it as red, then 70% of
the population would be satisfied with the result, while the other 20% and 10% of the
population who consider it as gray and blue would incur some cost. Suppose | use the
quadratic cost function, then I; =.7X0 + .2X1 4+ .1X4 = 1.3. That is, showing the

article as red would have an expected cost of 1.3.
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Cost-minimizing Label and Partitioning

For any item i with H;, there is an optimal label [; € L that minimizes L;. I'd like to call [;
the “cost-minimizing label” of i. I'd like to argue that the principled way to map a

distribution into a label is to map H; into its cost-minimizing label [;, Vi € I.
Take the absolute cost function for example, the expected cost of classifying i as red is:
ILL'T:RLO‘FGll"‘BLZ:Gl"‘ZBl

Here | use the notation L; . to denote the cost of classifying i as red given H;.Similarly,

we have:
]Li,g:Ri.1+Gi.0+Bi.1:Ri+Bi
ILl’b:R12+Gll+BlO:Gl+2Rl

In order for red to be the cost-minimizing label of i, I; ,. has to be lower than both I; 4

and LL; 5. Thatis, R; > 0.5, because:

Ri+Gi+B;=1
{]Ll,r<]Ll,g:>Gl+ZBl<Rl+Bl:>Rl>05:>R>05
i .

[Li,r < I[‘i,b = Gi +ZBl < Gi +2Rl :>Ri > Bi

Similarly, in order for blue to be the cost-minimizing label of i, we need to have B; > 0.5.

Therefore, under the absolute cost function, the cost minimizing label for i would be:

g otherwise

Equation 7. Cost-minimizing label for item i under the absolute cost function
Take the quadratic cost function for another example. The cost of classifying item i as

red, gray, or blue would be:
H‘l,T:RLO+Gll+Bl4:Gl+4Bl

]Li,g:Ri.1+Gi.0+Bi.1:Ri+Bi
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ILl’b:Rl‘l""Gll"‘BlO:Gl"“l'Rl

In order for red to be the cost-minimizing label for i, we need:

Ly <Ljg=G;+4B; <R+ Bj=——=R; >05+B;

Ri+Gi+B;=1
[Li,r < I[‘i,b = Gi + ZBL < Gi + 2Rl = Ri > Bi

Therefore, under the quadratic cost function, the cost minimizing label for i would be:

rifR; > 0.5+ B;
[, =3bif B;>05+R;
g otherwise
Equation 8. Cost-minimizing label for item i under the quadratic cost function

Suppose there is an item i with H; = (0.51,0,0.49). Using the absolute cost function, [;
should be red because R;=0.51 > 0.5. Intuitively, it means that showing i labeled as red
to the readers would incur less cost than showing it as either gray or blue, given that the
readers’ cost is modeled under the absolute cost function. Using the quadratic cost
function however, [; should be gray according to Equation 8. Note that the quadratic
cost function punishes “far misses” more than the absolute cost function, because a far
miss incurs 4 units of cost instead of 2. Since i has 49% of the population looking at it as
blue, thus [; should be gray in order to avoid the excessive penalty for a far miss under

the quadratic cost function.

Intuitively, equations such as Equation 7 and Equation 8 are rules that determine how to
partition a set of items with distributions H; into cost-minimizing labels [;, which I'd like
to call “rules partitioning” or partitioning in the form of rules. Recall that an item’s
political leaning can be represented either as a distribution H; or as a point on the
simplex: an item’s simplex notation is equivalent to its distribution notation. Similarly,
the rules partitioning also maps to a particular partitioning on the simplex, and vice
versa. For example, Figure 9 shows the partitioning on the simplex according to
Equation 7 for the absolute scoring rule. A partitioning on the simplex cuts a simplex

into three partitions, where the items covered in each partition all have the same cost-
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minimizing label, which I’d like to call “simplex partitioning” or partitioning in the
simplex form. Partitioning in the form of rules or in the form of simplex are for use with
items’ distribution notation or simplex notation respectively, and thus both forms are

equivalent. | will use both forms interchangeably.

7S AL

Figure 9. Simplex partitioning for the absolute scoring rule

Equivalence of Cost Function and Partitioning

Next, I'll prove that a cost function and a partitioning have a one-to-one correspondence.
The proof requires some axioms about cost functions and partitioning, which are also
used for choosing the right cost function (to be discussed in the next sub-section). | will

introduce the axioms here, and return to them in the next sub-section.

* Locality. The cost-minimizing label is red for an item i with H; = (1,0,0). And
there exists € > 0 such that the cost minimizing label for another item j with
H; = (1 — 2¢,¢,¢€) is also red. Similarly for blue and gray.

* Monotonicity. If the cost-minimizing label for an item i with H; = (R, G, B) is red,
then the item j with H; = (R + k, G — kq, B — k;) is also red, where k, kq, k, >
0, and k = k; + k,. Similarly for blue. Note the similar property need not hold
for gray.

* Canonicity. In a cost function, L(w,s) = 0ifw = s,and L(w,s) > 0ifw # s.
The smallest non-zero unit of L(w, s) is 1.

* Symmetry. Red and blue are symmetric in that L(g,r) = L(g,b) = k4, L(b, g) =
L(r,g) = ky,and L(r,b) = L(b,7r) = k5. Or, on the simplex notation, the red
and blue partitions are symmetric about the bisecting line from gray to red and
blue.

* Linearity. Any rules partitioning take the form of Equation 9. Or, any simplex
partitioning is defined by straight lines instead of curves.

rif Ry> By + B2 B;
bif B; > B+ B2 Ry, where By, B; € (—0, )
g otherwise

Equation 9. Linearity
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Now, | will generalize the process that derives Equation 7 and Equation 8, and show that
given a cost function, there will be one and only one corresponding partitioning. The

following equations show L; if i is classified as red, gray, or blue respectively:
Li, =R;-L(r,v)+G;-L(r,g) + B; - L(r,b)
Lig = Ri-L(g,7) + G- L(g,9) + B; - L(g,b)
L;p, =R;-L(b,v)+G;-L(b,g)+ B;-L(b,b)

In order for red to be the cost-minimizing label for i, we need to have 1) L; . < LL; 4, and
2) L;, < L;,. Note that according to the “canonicity” axiom, L(r,r) = L(g,g) =
L(b,b) = 0. And according to the definition of H;, we have G; = 1 — R; — B,. Therefore,

we have:
1) I[‘i,r < [Li,g

= G;L(r,g)+B;-L(r,b) <R;-L(g,v)+ B;-L(g,b)

Ri+G;+B;=1
——R;-L(g,r) +B;-L(g,b) >(1—R;—B;)"L(r,g) + B;* L(r,b)
L(r, L(r,b) — L(r, —L(g,b
SR> (r.9) (r,b) - L(r,g9) — L(g )'Bi
L(g,7) +L(r,9) L(g,7) + L(r, g)
k ka—k,—k
:>R 2 3 2 1 .

Ptk atlkg

2) Ly <Lip
= G;"L(r,g) +B;-L(r,b) <R;-L(b,v)+G;-L(b,g)
= R; > B;

Equation 10. Generalized rules of partitioning
According to the “symmetry” axiom, we will have similar results for blue to be the cost-
y Y

minimizing label for item i. In short, given a cost function L(w, s), we can always derive
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rules partitioning according to the procedure listed in Equation 10. Therefore, | have

concluded that a cost function will determine a partitioning.

On the other hand, according to the “linearity” axiom, any partitioning in the form of

rules would look like Equation 9. Let:

ka

A ky + ky

'32 k3_k2_k1
ki +k,

Note that according to the “canonicity” axiom, either k; or k, would be the smallest
unit of cost, which is 1. So we can easily solve the first equation to get the positive
values of k; and k,, and then solve the second equation to get the positive value of k5
as well. In short, given a partitioning (which takes the form of Equation 9 under the
“linearity” axiom), we can always derive a corresponding cost function. All in all, that
concludes that a cost function and a partitioning have a one-to-one correspondence,

given the axioms.

Table 4 summarizes a few cost functions and their equivalent partitioning. For the rest
of the thesis, | will use “cost function” and “partitioning” inter-changeably. Note that the
0-1 cost function maps to the “majority vote” partitioning, as can be seen in both its
rules and simplex notation. Intuitively, since the 0-1 cost function only distinguishes
between a hit and a miss regardless of whether the miss is a far miss or a near miss, the

label with the most votes would naturally be the cost-minimizing label.

Table 4. Comparison of cost functions and partitioning

Mnemonics | Cost function | Rules partitioning Simplex partitioning

rif R>0.5—-0.5B

bif B> 0.5-0.5R
g otherwise

or equivalently, &

{rifR>BandR>G

0-1, or
majority vote

_ = o
_ o R
o R R

bif B>RandB > G
gifG=Rand G =B
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2 (1) i rif R> 0.5
Absolute 5 1 0 bif B> 0.5 é g
or |w-s| g otherwise p g
2 (1) ‘; rif R>05+B .
9.
Quadratic 4 10 bif B>05+R ) 5
or (w-s)? g otherwise p g
2 (1) i rif R > 0.5+ 0.5B
S; 31 0 bif B> 0.5+ 0.5B 5 NS
or (w-s)'°,3 g otherwise X
0 1 6 rif R>1/3+B %‘i
Si/3 2 0 2 bif B>1/3+B Ak
6 1 0 g otherwise % g
0 2 6 rifR>2/3+B
S2/3 1 0 1 bif B>2/3+B l/ﬁ/s
6 2 0 g otherwise " g
0 1 25| (rifR>05+0.25B
S2/s 1 0 1 |{bif B>05+025R 3
25 1 0 otherwise
g i 2
0 1 5 rif R>0.25+0.5B 6.25/\ 725
S35 3 0 3 bif B> 0.25+ 0.5R
51 0 g otherwise
B 2

Choosing a Cost Function

Clearly, we should choose the cost function that best describes the reality of cost.
Perhaps the best approach to choose the right cost function is to directly inquire of the
target population by modeling the cost when a person views an article labeled
differently from her own personal opinion. However, due to time and scope constraints,
I’m not able to do that in this thesis, and will discuss it in future work. Instead, | will use

two steps to choose the cost function for political leaning classification.
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The first step is to apply the axioms discussed earlier. Note that the “canonicity” axiom
greatly simplifies the model by ruling out “negative costs” which can be interpreted as
“gains” for cases where a classification matches a person’s own opinion. It also defines
the smallest unit of cost as 1, which normalizes a cost function not to take any arbitrary
number. Also, the “symmetry” axiom implies that whatever applies to red also applies
to blue, but gray could be different from both red and blue, which can be seen in the
“monotonicity” axiom as well. Finally, note that the axioms rule out many irregular
cases of cost functions and partitioning. But we still need to choose the right cost
function from many possible candidates, such as those listed in Table 4, which all satisfy

the axioms.

The second step is to use heuristics that specify how to associate labels to distributions,
and then infer the best partitioning and cost function that matches the heuristics. For
example, suppose a heuristic says a distribution (0.51,0,0.49) should be labeled as gray
instead of red. Then it implies that we should choose the quadratic partitioning over the
absolute partitioning because the former matches the heuristic while the latter does not.
As illustrated in Figure 10, the coloring of each point on the simplex represents a
heuristic, and the quadratic partitioning (Figure 10a) is preferred over the absolute

partitioning (Figure 10b) because it better matches the heuristics.

(a). B E

Figure 10. The quadratic partitioning (a) matches the heuristics better than the absolute partitioning (b)
Table 5 lists a few heuristics. I'd like to point out that gray is special in that low
agreement cases such as (0.51,0,0.49) or (0.4,0.3,0.3) are labeled as gray even though
the majority of the population don’t consider them gray. | will discuss more about high

agreement gray and low agreement gray in the last section.
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Table 6 lists a few candidate cost functions and how they respond to the heuristics.
Overall, I'd like to choose the quadratic cost function because it matches the heuristics
well. In this thesis, | will use the quadratic cost function and partitioning to model the
cost for political leaning classification, where a “far miss” incurs 4 times more costs than
a “near miss”. The choice of the quadratic cost function is for the political leaning
classification problem where the heuristics are drawn. Other problems might find other
cost functions more appropriate. The structure of the distribution as ground truth

model allows using any cost function to map distributions into labels.

Table 5. Heuristics that associate labels to distributions

Label [ Distribution H

Red * Strongred: <0.9, 0, 0.1>,<0.8,0.1,0.1>
* Weakred: <0.7,0.2,0.1>

Blue * Strong blue: <0.1, 0, 0.9>
* Weak blue: <0.1, 0.3, 0.6>, <0.2, 0.2, 0.6>

Gray * (Clean gray:<0.1,0.8,0.1>
* Weakgray: <0.2,0.7,0.1>
* Polarized gray (could be rare): <0.4, 0, 0.6>, <0.51, 0, 0.49>
* Mixed gray (could be rare): <0.4, 0.3, 0.3>

Table 6. Cost functions and heuristics

Heuristics R>G | R>0.5 | R>0.5+B | R>0.5+0.5B | R>1/3+B | R>2/3+B
<0.51, 0, 0.49> gray | red red gray gray gray gray
<0.2,0.2,0.6> blue | blue | blue gray gray blue gray
<0.19, 0.2, 0.61> | blue | blue | blue gray blue blue gray
<0.7,0.2,0.1> red | red red red red red gray
<0.9, 0.05, 0.05> | red red red red red red red
<0.09, 0.4, 0.51> | gray | blue | blue gray gray blue gray
<0.51,0.2,0.29> | gray | red red gray gray gray gray
<0.4,0.5,0.1> gray | gray | gray gray gray gray gray
<0.31, 0.69, 0> gray | gray | gray gray gray red gray

Finally, note that according to the “locality” and “monotonicity” axioms, the small
regions by the three corners of the simplex would always remain the same color as red,
gray and blue respectively regardless of which cost function to choose. Different cost

functions would only affect the partitioning of items in the middle of the simplex where
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people don’t always agree. I'd like to call the region on the simplex where items are
assigned different colors between two partitioning as the “partitioning disputed region”
or simply “disputed region”. For example, Figure 11(a) illustrates the disputed region
between the 0-1 cost function and quadratic cost function, and Figure 11(b) illustrates
the disputed region between the quadratic cost function and the absolute cost function.
In chapter 3, | will show that many items are covered in the disputed region in the real

dataset, which implies that choosing different cost functions does matter.

Figure 11. Partitioning disputed region, highlighted in yellow: (a) between 0-1 and quadratic; (b) between
absolute and quadratic

2.6 Discussion and Limitation

Using the Wrong Ground Truth Model

| have introduced both the objective and subjective classification problems, and have
argued to use the label as ground truth for OCPs, and the distribution as ground truth
for SCPs. One mistake is to use label as ground truth on SCPs, as illustrated in Figure 12.

This sub-section discusses the problem of using the wrong ground truth model.

Objective Subjective
Classification Classification
Problems Problems

Label as Ground x Distribution as Ground
Truth Model and Truth Model and
Annotation Process Annotation Process

Figure 12. Using the wrong ground truth model
To begin with, if we treat a classification problem as objective and use the label as

ground truth model, then the focus is on how to decrease or eliminate rater’s error rate
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in order to get the true label. However, with the distribution as ground truth model, we
will not try to decrease rater’s error rate because the ratings are subjective, and we will
not assume the labeled dataset is reliable with only a few labels per item. It opens up
new possibilities (such as this chapter) to explore the phenomenon of low agreement
among coders and study how that affects the reliability of labeled dataset and classifier

evaluation results.

In addition, the distribution as ground truth model allows various partitioning (quadratic
in particular in this thesis) to map distributions into single labels, while the label as
ground truth model only allows majority vote, resulting in many items in the partitioning
disputed region get assigned different labels (see Figure 11). In chapter 3, | will use real
empirical dataset to show that the political leaning classification, as a typical SCP, has
19.4% items in the disputed region which will get labeled differently if we treat it as an

OCP (with majority vote) instead of an SCP (with quadratic partitioning).

Furthermore, the labeled dataset for an SCP is much less reliable than the researchers
would have expected if the classification problem had been objective. Using the
unreliable labeled dataset, researchers are more likely to draw unreliable conclusions
about classifier evaluation. | will discuss it in more detail in chapter 4 with computer

simulations.

It might seem that we do not have distributions if we only get one label per item.
However, I'd like to point out that the distribution as ground truth model is defined
regardless of the number of labels to get for each item. Even if we only get one label per
item, the one label is an estimate to a true distribution under the distribution as ground
truth model (although with high sample error), instead of an estimate to a true label

under the label as ground truth model.

Finally, I’d like to point out that there is no clear line to cut between OCPs and SCPs.
Even for a clearly objective classification problem, such as to label passport images as
male or female, there could still be a small number of ambiguous cases where human
coders have to consult their own subjective opinions. One might reasonably argue that a
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“pure” objective classification problem does not exist in the real world. However, the
concern of this chapter is not about a typical OCP: even though it might have a few
ambiguous items, most items are still clearly labeled. The bottom line is that there exist
a few problems such as the political leaning classification problem where subjectivity
level is quite high and coders don’t agree on many items. For such problems, the
traditional view of label as ground truth label simply does not suffice anymore, both
conceptually and practically (which will be discussed in the next two chapters), and thus

it is necessary to use the distributions as ground truth model.

Eliciting s,,;
Recall that s,; is the personal assessment from user u on item i, and H; and H; are

defined simply by aggregating s,,;. I’d like to address some common concerns about this

simple process and point out directions for future research.

To begin with, s,;; is drawn randomly from the population regardless of whether the
coder is an expert or not. Being an expert coder implies that there exists an objective
ground truth on which to judge how accurate a coder can label items correctly. However,
| have argued that for a subjective classification problem, people have their own
opinions on items and there is no objective “correct” label against which to judge a
person’s expertise. Thus it is not fair to distinguish a coder as expert or inexpert based

on their subjective assessment. One might confuse eliciting people’s personal opinions
with eliciting people’s predictions on other people’s opinions, where the latter is

affected by expertise and will be discussed in chapter 3 “related work”.

Let r; be the report of a rater u’s personal assessment of an item i. So far in this
chapter, | have assumed r,;; = s,;. In reality, however, there might be a few cases
where ry,; # sy;. For example, some raters might want to game the system by altering
1, in order to earn more bonus. Or some coders simply do not put forth enough effort
to label items. In chapter 3, | will address some practical concerns of eliciting truthful
reports from raters. More sophisticated incentive-compatible models of eliciting s,,; or

assuming s,,; to be a random variable would be left to future work. Note that there
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could be small random errors when eliciting s,,;, but these small random errors are

accounted for in the definition of H;.

People from different sub-populations might have systematically different s,;. For
example, liberals are more likely to view liberal articles as neutral while conservatives
view conservative articles as neutral (Garrett 2005). Politically savvy people might be
reluctant to say "gray", and less involved people might be more willing to say "l don't
know". Future work should address the effects of bias from sub-populations, and

perhaps define distributions of the distributions H;.

Finally, note that s,,; € L is a label while the ground truth of items are defined as
distributions over L. In this chapter, | assume each individual person’s assessment of an
article is still a red, gray or blue label, not a distribution — only when aggregating

individual assessments from multiple people can we get the distributions.

Cost Model

Previously, | have made a simplified assumption that cost remains the same across items
and users regardless of their individual differences (see Equation 4 and Table 3). Next, |
will discuss some possible extensions to the simplified cost model, which will be left to

future work.

Cost might depend on many other factors. For example, misclassification may occur due
to biases or assumptions regarding the source of an article. People might find it
acceptable that an article from the New York Times is labeled as blue, even though
without knowing the source, they may have otherwise considered it red. Or people from
different sub-populations, such as politically savvy users and apolitical people, might

have different cost models. Future work might need to consider these issues too.

In section 2.5, | have introduced some axioms that claim a cost function does not have
negative costs or gains, and needs to be symmetric and linear. These limitations

introduced by the axioms could be released in future work too.
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Low Agreement Items

A subjective classification problem is special because it has many low agreement items.
In this chapter, | have used the quadratic partitioning to map the low agreement items
into the “gray” category. These low agreement gray items might be conceptually
different from the high agreement gray items, because in the former category an item
could be gray even though no one considers it as gray. Further work is needed to study
whether low agreement items should be put into a separate category from items that

everyone agrees are gray.

Generalization

The political leaning classification problem has two symmetric, opposing polarized
categories — red and blue — and a middle ground gray category. Many other subjective
classification problems only have one pole and two categories. For example, to label
whether a tweet is humorous or not has only one pole. Of course, we can add an extra
“gray” category to such problems. But it is not clear whether we can still assign -1, 0,
and 1 to the three categories and assume symmetry between the -1 and 1 categories.
More importantly, perhaps we want to keep the two categories without adding a new
“gray” category. Future work should study how to define distribution as ground truth

model for such problems.
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Chapter 3. Annotation Elicitation

This chapter fills a gap of chapter 2 by showing that the real political leaning dataset
indeed contains many low agreement items whose ground truth should be modeled as
distributions instead of labels. It is also an example to demonstrate how to practically
obtain labeled data for a subjective classification problem. The labeled items obtained in
this chapter will be used as ground truth to train and evaluate political leaning classifiers

in chapter 5.

One goal of annotation elicitation for a subjective classification problem is to be able to
obtain raters’ truthful personal assessments. It should not be confused with eliciting
raters’ predictions on other people’s assessments. Researchers sometimes evaluate
raters’ ratings against each other and reward those raters whose ratings match the
majority (e.g., Ipeirotis et al 2010). However, this will create incentives for raters to
report their predictions on other people’s assessments instead of truthfully report their
own. For example, if a rater personally considers an article red, but believes that most
people would label it as blue, then she would report blue instead of red if she knew her
annotation would be evaluated against others’. Nevertheless, eliciting predictions could
be combined with eliciting personal assessments as a quality control mechanism. | will

discuss more about it in the “related work” sections.

Another goal of annotation elicitation is to randomly sample raters from the population
in order to avoid bias. Hiring raters who have similar background and who live in the
same geological location (such as undergraduate students in a liberal college town)
could be problematic: their assessments on the political leaning of items might not

represent how the population views them. Therefore, it is natural to hire raters from a
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platform such as Amazon Mechanical Turk (AMT) that has a large and diverse pool of

raters. | will discuss more about it in the “data collection” section.

The organization of the chapter is as follows. | will discuss related work in section 3.1.
Section 3.2 discusses data collection on Amazon Mechanical Turk. Section 3.3 reports

results. And finally section 3.4 discusses conclusions and future work.

3.1 Related Work

Quality Control for Crowdsourcing

The term “crowdsourcing” was introduced by Howe (2006), and systematically studied
by von Ahn (2006), Howe (2008), and Quinn and Bederson (2011). Crowdsourcing is a
process that involves outsourcing tasks to a distributed group of people, in which
humans and computers can work together to solve problems. This chapter uses the paid
micro-task crowdsourcing platform, Amazon Mechanical Turk (AMT), to collect human

annotations on political leaning of articles.

Adar (2011) distinguishes “the science of crowdsourcing” from “crowd-sourced science”,
where the former refers to the systematic study of crowdsourcing as a scientific
methodology, and the latter refers to using crowdsourcing to do science. This chapter
belongs to the “crowd-sourced science” category, and does not contribute to the
science of crowdsourcing. Here, | will discuss related work about the validity of crowd-
sourced science and quality control for crowdsourcing. | will directly apply findings from

prior research.

One line of work is to study the validity of using crowdsourcing to do scientific research.
For example, Paolacci et al (2010) duplicated social science experiments on AMT and
concluded that the results from AMT are as good as results from traditional studies.
Snow et al (2008) found that experts hired offline are better labelers than non-experts
on AMT, but aggregating multiple labels from non-experts to train supervised learning
algorithms is better than using only one expert to train the system. They also found that

four non-experts were as good as one expert for their task. Mason and Suri (2011)
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summarized prior research about the validity of using AMT to do behavioral
experiments and discussed guidelines on how to do them properly. All in all, prior
research has convincingly demonstrated that using crowdsourcing platforms such as

AMT is valid to do scientific research.

However, one challenge to the validity of crowd-sourced science is the concern of
unreliable human laborers on the crowdsourcing platform. Next, | will discuss different
approaches in terms of quality control, some of which will be applied in the annotation

process in the “data collection” section.

Monetary incentives: One line of work about quality control is to study how to design
monetary incentives to increase work quality on AMT. Rogstadius et al (2011) studied
incentives with AMT and found that intrinsic motivations (e.g., non-profit work) increase
quality but not quantity when the price is low, and that extrinsic motivations (e.g.,
monetary reward) increase quantity but not quality. Mason and Watts (2009) found that:
1) increased financial incentives increase the quantity but not the quality, 2) all workers
felt like they were being paid less than they deserved, thus were no more motivated to
perform better no matter how much they were actually paid, 3) the number of
completed tasks decreased with increasing task difficulty, and 4) paying workers a low
rate led them to perceive their work as less valuable than not paying them at all. Harris
(2011) compared workers’ accuracy against a pre-labeled gold standard and then used
both bonus and punishment as incentive to improve work quality. Kazai (2010) found
that 1) higher pay results in more usable labels and less spam, 2) workers with
qualifications are not affected by pay, 3) over-confident workers produce less accuracy,
and 4) hard tasks (which require more effort) reduce accuracy. Shaw et al (2011) studied
14 incentives categorized as social, financial and hybrid, and found that only two
incentives worked: 1) Bayesian Truth Serum, where the workers were asked to predict
other workers’ responses and got rewarded accordingly, and 2) punishment by reducing

the payment if a particular worker’s response doesn’t agree with the others’.
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Qualification based approaches: Kittur et al (2008) found that it is important to have
explicitly verifiable questions as part of the task and that it is advantageous to design
the task such that completing it accurately and in good faith requires as much or less
effort than non-obvious random or malicious completion. They also found that it is
useful to have multiple ways to detect suspect responses. Chen and Dolan (2011)
argued for maintaining long-term relationship with AMT workers and using a multi-

tiered system to pay workers based on their performance.

Excluding poor quality workers: Dekel and Shamir (2009) used AMT to collect labels, and
argued that the label qualities would increase by removing low quality workers. Donmez
et al (2009) proposed an algorithm to compute the quality of workers in AMT and then
used the IEThresh algorithm to obtain labels only from the good workers for active
learning. They also proposed an extension of the algorithm that learns the quality of

workers assuming it changes over time (Donmez et al 2010)

Better user interface design: Chandler and Horton (2011) argued that researchers should
pay attention to HIT interface design to put the incentive descriptions at the “focal point”
on the page. The paper also argued that $0.01 bonus is almost as good as $0.05 bonus,
and monetary incentive works better than cheap-talk. Chilton et al (2010) argued that
AMT tasks that are at the top of the most recently updated list would get processed

faster.

Iterative vs. parallel design: Instead of workers working in parallel, the iterative HIT
design asks each worker’s input as incrementally built upon previous inputs (Little et al
2009). Little et al (2010) discussed the difference between iterative and parallel design.
Bernstein et al (2010) proposed the “Find-Fix-Verify” iterative design to break down a

big task into smaller subtasks and used it to revise research papers on AMT.

Minimum working time requirement: Kapelner and Chandler (2010) discussed

preventing “satisficing” in AMT online surveys when it is impossible to directly evaluate
the results. The paper suggested using the “trip door questions” as an indirect measure
of survey quality. They found that forcing workers to spend a certain amount of time on
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HITs increases quality and does not decreases quantity with the “Kapcha” technique.
Downs et al (2010) found that the time workers spent on a survey cannot predict the
quality of their work, and argued that verification questions, if used, should require

mental effort in order to be effective.

Instant feedback of “gold”: Sorokin and Forsyth (2008) and Le et al (2010) argued that
displaying gold standard results as feedback while workers are working on the HITs will
increase work quality. Dow et al (2011) also argued that showing feedback to workers
would be useful. Horton (2010) explored whether having peer workers review each
other’s work would improve bad workers’ performance, and argued against using peer

reviews in the real workplace.

Effects of task difficulty: Horton and Chilton (2010) studied how work difficulty level
would affect output, and found that workers would work on the same amount of tasks
regardless of whether the tasks are easy (spending less time) or hard (spending more
time). They also found that within the same difficulty level, reducing price would reduce
output. The paper then argued that there might be "target earners", who want to earn a
certain amount of money regardless of how much time they spend. For "target earners",

increased price means reduced output and decreased price means increased output.

Effects of demographics: Chandler and Kapelner (2010) found that “US, but not Indian,
workers are induced to work at a higher proportion when given cues that their task was
meaningful. However, conditional on working, whether a task was framed as meaningful

does not induce greater or higher quality output in either the US or in India.”

Eliciting Truthful Signals

The goal of eliciting signals is to have the coders report signals that match their true
beliefs. The challenge is how to evaluate the subjective signals when there is no ground

truth to tell whether the signals are truthful or not.

Prelec (2004) proposed the Bayesian Truth Serum (BTS) approach to elicit both the

truthful subjective judgments and predictions on distributions at the same time. The BTS
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approach is derived from Bayesian theory that says by observing X, the estimate of
P(X) as the posterior would be higher than the prior P(X). And therefore, this
approach “assigns high scores not to the most common answers but to the answers that
are more common than collectively predicted”. The BTS approach only works when one
can obtain a large m (number of labels for each item). Witkowski and Parkes (2012)
proposed the "robust" BTS approach that can work even with a relatively small m as
long as m = 3. Besides the line of research on BTS, Miller, Resnick, and Zeckhauser
(2005) proposed the “peer prediction” method that elicits truthful signals from raters

without having to ask for predictions on the distributions.

One limitation of the BTS approach or the peer prediction approach, when applying it in
practice, is that it is hard to explain and convince human coders to believe that it works.
In reality, people are not typically rational enough to follow what has been suggested
from theories, especially when the theories are complicated. Another limitation is the
lack of empirical studies to support that those approaches really work in practice. For
these reasons, this chapter will take a much simpler approach to elicit truthful signals,

which will be discussed in the “data collection” section.

Another related line of work in terms of eliciting truthful signals is found in the web
survey literature. For example, Reips (2000) discussed 18 advantages and 7
disadvantages of web surveys, among which one of the disadvantages is the difficulty of
evaluating the truthfulness of respondents. The bottom line of this work is to ask
surveyors to follow best practice guidelines when conducting web surveys, and then
proceed assuming the obtained survey result is reliable. This chapter takes a similar
stance: after applying quality control approaches, | assume the personal signals

obtained are truthful.

Eliciting Predictions

Rothschild and Wolfers (2011) suggested that there could be two alternative types of
reports from human coders: report your own assessment, and predict other people's

assessments. They studied presidential election polling based on projections from
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questions of voter intentions (or signals) versus questions probing voters’ expectations
(or predictions), where the former typically asks “If the election were held today, who
would you vote for?” versus the other typically asks “Regardless of who you plan to vote
for, who do you think will win the upcoming election?” They found that “polls of voter
expectations consistently yield more accurate forecasts than polls of voter intentions”,
because “we are polling from a broader information set, and voters respond as if they
had polled twenty of their friends”. They proposed a small-scale structural model as a
rational interpretation for why respondents’ forecasts are correlated with their
expectations, and showed that they could “use expectations polls to extract accurate

election forecasts even from extremely skewed samples”.

Another work along the same line by Krupka and Weber (2012) studied a pure matching
coordination game to elicit people’s ratings on social norms, in which the researchers
“provide respondents with incentives not to reveal their own personal preferences but
instead to match the responses of others”. The coordination game approach traces back
to earlier studies where researchers found that common culture and shared experiences
can create focal points that makes one equilibrium favorable over others (Schelling 1960;
Mehta et al, 1994; Sugden, 1995), and coordination games can be used with monetary
incentives to reveal shared understanding (Camerer & Fehr, 2004). The work uses game

theory to explain why eliciting predictions might work better then eliciting signals.

Both work suggest a new way of annotation elicitation: people might have more
information about an article’s political leaning than their own personal assessments,
and therefore asking them to predict the article’s distribution or its cost-minimizing
label might return better results compared to simply eliciting their personal signals. | will

discuss more about this approach in the “future work” section.

Data collection in this chapter indeed asked coders to report their predictions as well as
their personal signals. But eliciting predictions was used primarily as a quality control
approach, in the similar fashion as the Bayesian Truth Serum approach discussed earlier.

I will not use the predictions data as ground truth in the following chapters.
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Latent Model on Worker Quality

The annotation process of this chapter rewards bonus to workers who have contributed
good efforts and good quality work. This sub-section discusses related work about
computing worker’s quality based on evaluating their ratings —in my case, the

predictions — against others’.

The seminal paper by Dawid and Skene (1979) proposed the Expectation-Maximization
algorithm to estimate the competence of experts as a latent variable and then compute
the latent “true state” of items from those experts’ annotations discounted with their
competence. This work has many derivative works. For example, Smyth et al (1995)
applied the latent model approach to infer ground truth of Venus images labels.
Ipeirotis et al (2010) extended the approach by correcting systematic biases and applied
it to clean labels from Amazon Mechanical Turk workers. Raykar et al (2009) extended
the approach by learning not only the accuracy of the workers, but also the best logit
classifier at the same time. Welinder et al (2010) assumed that coders had different
competence on multiple dimensions of items, and then proposed the “multidimensional”
technique to estimate the quality of workers on each dimension and used that to infer
the true label. Welinder and Perona (2010) proposed an "online" algorithm that can
compute the latent variables right away rather than computing them only after a

complete set of labels is found.

There are a few other examples along the same line of inferring the latent variable of
coders’ quality. For example, Volkmer et al (2007) used the “latent class modeling”
technique to estimate a true label from multiple noisy labels for image labeling. Snow et
al (2008) used confusion matrices and Bayesian methods to estimate the true labels.
Carpenter (2008) used Multilevel Bayesian models to estimate the true label of items,
competence of coders, and difficulty level of items at the same time. Whitehill et al

(2009) used the EM method to achieve the same goals as in Carpenter (2008).

In this chapter, | will directly apply the Get-Another-Label approach proposed by

Ipeirotis et al (2010) to compute the quality of workers as the basis to offer bonus.
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3.2 Data Collection

Data collection is done through the Amazon Mechanical Turk (AMT) platform. | applied
the best practices suggested from prior literature (see “related work” section) to the
data collection process. The dataset to be labeled consists 1911 articles, where each
article is to be labeled by 20 AMT workers. This section mainly discusses the article

selection, experiment setup and quality control.

The dataset to be labeled consists of two parts crawled from the “Politics” section on
Digg.com. Digg.com is a news aggregator listing popular stories “dugg” by its users. The
first part of the dataset consists of the same 1000 political articles from (Zhou, Resnick &
Mei, 2011), which were randomly selected from 2009-5-25 to 2010-8-11 on Digg.com
from those that received at least 10 diggs. More details about this dataset are discussed
in chapter 5. The reason to reuse the same 1000 articles is to compare the first round of

annotation process in year 2010 to the new annotation process in year 2012.

The second part of the dataset consists of 1500 randomly selected articles crawled from
Digg.com between 2011-05-30 and 2011-11-30. More details about this dataset will be
discussed in chapter 5. Each of the articles received 4 labels from AMT in year 2011.
Digg.com is dominantly liberal. In order to prevent a dominant blue dataset, where
coders on AMT might simply label articles as blue by default, | have stratified the
samples to have 500 red, 500 blue, and 500 gray articles according to the annotations in
year 2011, where the labels of articles are mapped from the distributions (based on the

four labels per article) using the quadratic cost function.

Then | used Diffbot.com® to extract pure textual content from the articles, stripping out
ads, comments, authors, sidebars, urls, and other information not relevant to the
articles. This also prevented workers from labeling articles simply by looking at their
sources. | removed 589 articles that had zero length (which were mainly images and

videos) or broken links, resulting in 1911 valid articles, including 746 from the first part

> http://diffbot.com
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and 1165 from the second part. These 1911 articles are the dataset that was posted to
AMT, denoted as I.

As introduced in the “related work” section, | asked workers to answer both the

III

“prediction” question and the “personal signal” question. A worker first read the
instructions, the bonus information, and then read the political article with only the text
content. Then she first answered the “prediction” question, which asked her to “Predict
the majority of worker’s opinion on the article”, and then she answered the “personal

III

signal” question, which asked her to “Tell us your own opinion on the article”. The
“prediction” question was used for quality control in this particular study, and is not
required for other subjective annotation elicitation process. Figure 13 shows the

screenshots of a typical article posted on AMT.

The articles were posted on 2012-08-31, and all labeling was completed by 2012-09-10.
Each label earned $0.05. | did not upload all of the articles at once. Instead, | divided the
articles into several 100-articles batches, and gradually posted the articles over several
days. This was to prevent the same coders labeling all the items, and also to update HITs
regularly to keep it at the top of the list. Note that 128 of the 1911 articles were labeled
between 2012-08-25 and 2012-08-29 as a test with $0.02 per label and slightly different
bonus structure and task description. These articles were not treated differently from

the other labeled articles for the rest of the thesis.
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153,350 HITs
available now

gmazonmechanlcal turk Your Account HITs | Qualifications

All HITs | HITs Available To You | HITs Assigned To You
@
Il

HITs 0.00

Timer: 00:00:00 of 10 minutes Want to work on this HIT?  Want t other HITs?

HIT

Xiaodan Zhou |

(@)

Total Earned: $0.93

Total HITs Submitted: 21

Classify Political Articles (easy,
Requester: Openturk.org
Qualifications Required:

quick, & bonus!)
Reward: $0.05 per HIT
HIT approval rate (%) is greater than 90, Location is US, Understanding of USA Politics is greater than 80

HITs Available: 500 Duration: 10 minutes

Instructions

You job is to label the political leaning of the following article into Red (conservative, republican, right-wing), Blue (liberal, democratic, left-
wing), or Gray (not sure, independent, other). The first question asks you to predict the majority of worker's opinion on the article. The
second question asks for your own opinion on the article. The 2 answers don't need to match. We will assess the quality of your work by

comparing your answer of the first question to other workers' answers of the first question on the same article, using the algorithm

described in Quality management on Amazon Mechanical Turk. This mechanism rewards you when you more accurately predict the most

frequently given classification for the given article. Your best strategy is to try to guess the first answer correctly, and honestly report your

second answer. See sidebar for bonus information.

More On Congress Taxing Cadillac Health Plans

Friday, January 8, 2010 - 15:36

You host has spent a good portion of his career working to come up with ways to make healthcare better, faster
and cheaper through the appropriate use of computer and information technologies. Given the vitriol that this
blog has periodically heaped upon many of the electronic medical record systems commonly deployed and
mandated by the government, this enthusiasm for computers and telecommunications may come as

>

i

About Bonus

Merit-based bonus: $2 to the
worker with the highest quality.
Another $2 to a random qualified
worker. You need to do 50+
articles to qualify. Bonus will be

granted next Tuesday (Sep.4).

Extra bonus: Grant to workers
who label lots of articles with
good quality. The exact bonus
amount and number of recipients
depend on the results we get.
Total budget is $50.

Classify Political Articles (easy, quick, & bonus!)
Requester: Openturk.org
Qualifications Required:

Reward: $0.05 per HIT
HIT approval rate (%) is greater than 90, Location is US, Understanding of USA Politics is greater than 80

HITs Available: 500 Duration: 10 minutes

u

—Stephen F. Hayes

Predict the majority of worker's opinion on the artide: *
© Red (conservative, right leaning)
) Blue (liberal, left leaning)
© Gray (not sure, independent, other)
What do you think other workers will answer this question? We will compare your answer against other workers' answers to assess
the overall quality of your work.

Tell us your own opinion on the artide: *
) Red (conservative, right leaning)

© Blue (liberal, left leaning)

© Gray (not sure, independent, other)

According to your own opinion, what would you label this article?

Feedback (Optional)

Tell us what you think.

Submit

i

Want to work on this HIT?

Aﬁgt HIT

Want to see other HITs?

SkiE HIT

Report this HIT: violates the Amazon

Figure 13. Screenshots of AMT task

The annotation process mainly adopts two approaches for quality control. Other quality

control approaches such as the ones discussed in the related work section were not

used due to resource constraints.
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The first approach was a qualification test (e.g., Kittur et al 2008). Workers had to satisfy
three conditions in order to participate in the study as a coder. First, they had to be US
residents: non-US residents are generally not likely to have a good understanding of US
politics to qualify as competent coders. Second, they had to have a previous record of
90% approval rate, which is a general indicator of a worker’s good quality. Also,
anecdotal evidence® shows that workers with 90% approval rate care about their
reputation and tend to avoid sloppy work. Finally, they had to pass a simple qualification
test that consists of 4 questions (see Figure 14). They had to be correct on all questions
in order to qualify. If they failed, they had to wait at least two hours before they could

re-take the test.

Understanding of US Politics

Who is the current president of the USA:

) George W. Bush
) George Washington
@ Barack Obama

_ Bill Clinton

What viewpoint would a liberal most likely approve:

_ small government
_ pro-life (abortion)
@ withdrawal from Iraq war

no national health care

What viewpoint would a conservative most likely approve:

) gay marriage
_ gun control
@ free market

affirmative action

Who was the Republican candidate in the 2008 Presidential Election:

_ Barack Obama
@ John McCain
Sarah Palin

Hillary Clinton

Figure 14. AMT qualification test
The second quality control approach was to incentivize workers with a monetary bonus
to prevent moral hazard. Before the workers started labeling, they read the instructions

as follows:

® Observations from Turk Nation discussion forum.
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Your job is to label the political leaning of the following article into Red (conservative, republican, right-
wing), Blue (liberal, democratic, left-wing), or Gray (not sure, independent, other). The first question asks
you to predict the majority of worker's opinion on the article. The second question asks for your own
opinion on the article. The 2 answers don't need to match. We will assess the quality of your work by
comparing your answer of the first question to other workers' answers of the first question on the same
article, using the algorithm described in Quality management on Amazon Mechanical Turk. This mechanism
rewards you when you more accurately predict the most frequently given classification for the given article.
Your best strategy is to try to guess the first answer correctly, and honestly report your second answer. See
sidebar for bonus information.

The quality of workers was computed by comparing the workers’” answers to the
“prediction” question against each other using the Get-Another-Label algorithm
proposed by Ipeirotis et al (2010), where the idea is that a worker will have a high
quality score if his or her answers consistently agree with the majority of workers

answers. | also have a sidebar block that explains the bonus information:

Merit-based bonus: $2 to the worker with the highest quality. Another $2 to a random qualified worker.
You need to label 50+ articles to qualify. Bonus will be granted next Tuesday (Sept.4).

Extra bonus: Grant to workers who label lots of articles with good quality. The exact bonus amount and
number of recipients depend on the results we get. Total budget is $50.

By offering a bonus, | have created incentives for workers to spend more effort trying to
answer the “prediction” question correctly (see Krupka and Weber 2012). Granted that
workers do spend some effort reading the article to make good predictions for the
bonuses, there is no reason for the workers not to report truthfully for the “personal

III

signal” question about their opinions, which incurs no extra cost. Therefore, | assume
the elicited personal assessments are truthful, based on which the ground truth

distributions of articles’ political leaning are defined.

3.3 Results

A total of 165 workers participated in the annotation process. Among them, 73 labeled
more than 50 articles and they contributed most of the labels. Figure 15 shows the
number of articles each worker labeled, and it roughly follows a power law curve. The
workers spent an average of 68 seconds on each label, with a standard deviation of 87

seconds. The median was 34 seconds, and 90% took more than 12 seconds.
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Figure 15. Number of articles labeled by workers
Figure 16 shows the 1911 labeled articles plotted on the simplex according to their
distributions, H;, Vi € I. Define “disagreement labels” for an article as those labels that
disagree with the majority label for the article. Figure 17 shows the number of articles
(y-axis) according to the number of disagreement labels (x-axis): only 74 (3.9%) articles
got 20 out 20 unanimous agreement on articles’ political leaning; 139 (7.3%) and 207
(10.8%) articles got 1 and 2 disagreement labels respectively. More than half of the
items (50.6%) got more than 5 disagreement labels. Fleiss’ Kappa’ (Gwet, 2010) inter-
rater agreement is a low 0.393. In short, the empirical dataset shows that the political
leaning classification problem is indeed subjective: there are some high agreement
items and also quite a few low-agreement items too, which reflect the subjective
disagreement among coders instead of errors. Therefore, we should use distributions
instead of labels as the underlying ground truth in order to keep the disagreement

information.

7 Cohen’s Kappa was not used here because each item was labeled by different coders.
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Figure 16. Articles plotted on the simplex according to their distributions
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Figure 17. Number of items (y-axis) according the number of disagreement labels (x-axis)
The existence of many low agreement items in the center of the simplex raises two
problems. The first problem is how to map the distributions of those items into single
labels. Figure 18 illustrates the difference between the majority vote partitioning and
quadratic partitioning. 19.4% of the articles are covered in the partitioning disputed
region, which means they will have different cost-minimizing labels if we simply use
majority vote instead of the quadratic cost function to map distributions (or multiple

labels) into single labels.

There are also 15 articles, each of which got 8+ red labels as well as 8+ blue labels, but
less than 4 gray labels, yet they are still in the gray partition according to the quadratic

partitioning. For example, one article — “The Muslim Brotherhood Is Infiltrating The Boy
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Scouts!”® — received 9 red and 11 blue labels. Another article — “Obama moves to
embrace OWS”° — received 10 red, 9 blue, and 1 gray labels. These examples
demonstrate the existence of articles where people have opposing opinions. More work

is needed to understand why people have opposing opinions on those articles.

Figure 18. Partitioning difference between majority vote and quadratic

If we only have 4 labels per item instead of 20 labels per item, there are only 15 possible
combinations of red, gray and blue, and H; are concentrated to 15 points on the simplex
as shown in Figure 19(a). However, the partitioning disputed region (highlighted in
yellow in Figure 19) still covers a few cases. When we only have one label per item,
however, there are only three possible cases: 1 red, 1 gray, or 1 blue, as shown in Figure
19(b). The disputed region does not cover any case, which means the cost-minimizing

labels would be the same regardless of which partitioning is used.

Figure 19. Illustration of partitioning when the number of labels per item is small: (a)m =4, (bym =1

8 http://redbluegray.com/node/72959.
® http://redbluegray.com/node/73027
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The second problem when we have many low agreement items is that the labeled
dataset is not reliable when we only have a small number of labels per item. For
example, one article in the dataset has a distribution (0.5, 0.3, 0.2): if we only use one
rater to label it in one study and label it again in another study, it is quite likely for the
two labels to be different. And there are many items like that in a typical subjective

classification problem.

I will discuss in chapter 5 that 733 of the 1911 labeled articles in this chapter were also
labeled in 2010 with 6 labels per items. 24.8% of the 733 items received different cost-
minimizing labels (with quadratic partitioning) between the first round of annotation in
2010 and the second round of annotation discussed in this chapter. Using computer
simulation (which will be discussed in chapter 4), | have simulated having only one rater
label an item. On average, 30.1% of the items, when labeled again for a second time,

would get labeled differently.

Machine learning researchers and practitioners cannot simply ignore this large number
of unreliably labeled items, pretending they are reliable to train and evaluate classifiers.
One typical response is to make the dataset more reliable by revising the codebook,
training the coders better, and turning the subjective classification problem into
objective, like what | have discussed in chapter 2. However, | have also argued against
this approach in chapter 2 because it is too costly and decreases classifiers’
generalizability. Another response is to accept that it is inevitable to have many
unreliably labeled items in the dataset. And the next question is to ask whether we can
still use the unreliable dataset to draw reliable conclusions about classifier evaluation,

which is the main topic of the next chapter.
3.4 Conclusions and Future Work

This chapter elicited political leaning annotations for a real dataset, and demonstrated
that there were many articles raters could not agree on their political leaning. Therefore,

ground truth should be modeled as distributions instead of labels. When there are many
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low agreement items, we should be careful about using the right cost function or
partitioning to map distributions into labels, which will affect many items in the
partitioning disputed region, and we should be cautious about the many unreliably
labeled items. This chapter also serves as an example to show how to practically elicit

annotations for a typical subjective classification problem.

Eliciting people’s predictions instead of their personal assessments could be a promising
direction for future research. The intuition is that people might have more information
about an article’s political leaning than their own personal assessments, and therefore
asking them to directly predict the article’s distribution or its cost-minimizing label
might be more informative than eliciting their personal signals. In this chapter, | have
also collected raters’ predictions on articles’ political leaning as a by-product of using
the “prediction” question as a quality control approach. Next | will discuss some

preliminary results about comparing predictions against personal signals.

Recall that s,; € L = {red, gray, blue} is a rater u’s personal assessment on item i. Let
l; € L = {red, gray, blue} be the 20 raters’ majority vote on item i’s political leaning
according to s,;, Yu € U; (recall that U; is defined as the subset of raters who have
rated i). Let t,;; € L = {red, gray, blue} be a rater u’s prediction on item i’s majority
vote, [;. As discussed earlier, | have asked raters to report both s,,; and t,;;, Vu €

U;, Vi € I, where the set of s,,; is used to define items’ ground truth distributions and
the set of t,;; is used for quality control purpose. Define a “mismatch” as a pair of

(Suir tyi) Where s,,; # ty;. Of all the (sy;, ty;) pairs, 7.7% are mismatches. 74.5% of all
raters and all those who have rated more than 50 articles have made at least one
mismatch. 71.8% of all labeled items have received at least 1 mismatch. Define a
“positive mismatch” as a mismatch where t,; = [; and s,; # ;. Intuitively, a positive
mismatch means that even though a rater u’s personal opinion s,;; does not agree with
l;, she still possesses more information about i to make a correct prediction t,;; that
matches [;. Define a “negative mismatch” as a mismatch where s,; = [; and t,;; # [;,

which means a rater u possesses incorrect information on i that misleads her to make

70



an incorrect prediction t,,; # [; even though her personal signal s,;; matches [;. Of all the

mismatches, 46.4% are positive mismatches and 39.9% are negative mismatches.

In short, these preliminary results show that raters do realize the difference between
eliciting predictions and eliciting personal opinions, and would occasionally report
differently given the chance to do so. Furthermore, when the predictions are different
from personal opinions, the predictions are more likely to be positive than negative in
that they are more likely to match the majority vote, implying that eliciting predictions is
usually more informative than eliciting personal signals. A more thorough study of

comparing the two approaches of annotation elicitation will be left to future work.
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Chapter 4. Classifier Evaluation with Distributions

Using the distribution as ground truth model for political leaning classification (as a
typical subjective classification problem) is unique in two ways. First, it proposes a
particular way of defining gray items using the quadratic cost function: for example, a
distribution such as (0.5, 0, 0.5) would map to gray even though no one personally
assesses the item as gray. Second, it defines the ground truth of an item’s political
leaning as a distribution instead of a label, and thus using only a few human coders to
annotate items will inevitably result in a dataset with sample errors. These unique
features present two main problems: 1) how to train classifiers in the presence of
distributions, and 2) how to evaluate the performance of those classifiers with
distributions. This chapter discusses the second problem only, about classifier

evaluation with distributions.

A few research works studied the first problem of classifier training with distributions
(e.g., Rogers et al 2009). A full literature review will be discussed in the last chapter as
future work. The major problem of that line of work is that researchers evaluated their
classifiers based on the assumption that the labeled dataset for evaluation is reliable,
which, as | have argued, is not true for subjective classification problems with only a few
ratings per item. I'd like to argue that to do any classifier development work with
distribution as ground truth, one should first consider whether the labeled dataset for
evaluation is reliable, and if not, whether one can still draw reliable conclusions about
classifier evaluation using an unreliable dataset. That is one main question this chapter

is trying to answer.

A political leaning classifier in this thesis would classify items into red, gray and blue

labels rather than distributions over the labels, although the ground truth of items is
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distributions. One can directly evaluate the classifiers that output labels against
distributions as ground truth; or, alternatively, one can map the distributions into labels
first and then evaluate classifiers with the labels. Which approach is optimal? In addition,
when preparing the ground truth dataset for evaluation, one can either have a small m
(number of labels per item) but a large n (number of items), or a large m but a small n.
What is the optimal m and n? And above all, does classifier evaluation with distributions
really make a difference to classifier evaluation with labels? That is another set of

questions this chapter is trying to answer.

I’d like to call a particular way to evaluate classifiers as an “evaluation scheme”. The
purpose of an evaluation scheme is to be able to correctly discriminate classifiers: the
more accurate classifiers should be evaluated and ranked favorably compared to the
less accurate classifiers. This chapter studies various evaluation schemes in terms of
their ability to discriminate good classifiers from bad ones, not to evaluate various

political leaning classifiers, which is the topic of chapter 5.

Using computer simulation, this chapter argues for four major findings about classifier
evaluation with distributions. The first finding concerns the particular definition of gray
items under the quadratic cost function: evaluating classifiers according to the
conventional 0-1 cost function instead of the quadratic to define gray items will lead to
incorrect classifier ranking — the classifier that mistakenly classifies “disputed” items into
red or blue instead of gray would be discriminated as the better classifier, whose
classifications are not cost-minimizing when showing to users because users’ cost model
is quadratic. The other three findings are about how to properly evaluate classifiers
using distributions as ground truth, not particularly depending on which cost function is
used. The chapter’s second finding is that even though individual labeled items are not
reliable due to sample errors, classifier ranking might still be reliable as long as we have
many labeled items for evaluation. The third finding is that it is optimal for classifier
evaluation to obtain one label per item as the estimate to an item’s distribution, but we

need to label many items in order to correctly rank classifiers. The last finding is that we
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might map distributions into labels first, and then use the labels to evaluate classifiers
and still be able to rank classifiers correctly, even though the mapping throws away

information. | will discuss more about these findings as the chapter develops.

The rest of the chapter is organized as follows. Section 4.1 discusses related work
concerning algorithm evaluation. Section 4.2 proposes two evaluation schemes to
evaluate classifiers under the distribution as ground truth model. Section 4.3 formulates
the chapter’s research question as assessing different “evaluation schemes” in terms of
their ability to discriminate good classifiers from bad ones. Sections 4.4 and 4.5 describe
the design of the computer simulation methodology and the simulation’s results. Finally,

section 4.6 summarizes this chapter and discusses future work.

4.1 Related Work

Relevance Judgments in Information Retrieval

Algorithm evaluation with relevance judgments in the information retrieval (IR)
literature also studies the problem of unreliable ground truth data. A typical IR
evaluation is based on the Cranfield framework, where IR researchers can evaluate their
IR systems against a set of reusable “relevance judgments” on queries and documents

collections, composed by experts for repeated usage (Voorhees 2002).

The key criticism of the Cranfield framework is that “relevance” is inherently subjective,
and thus relevance judgments could vary for different assessors and even for the same
assessor at different points (Voorhees 2002). Critics question how valid conclusions can
be drawn when the process is based on something as volatile as relevance. One
response is pragmatic: experience has shown that system improvements developed on
test collections prove beneficial in other environments including operational settings
(Voorhees 2000). Another response is a small set of studies that show that the
comparative performance of two retrieval strategies is quite stable despite marked
differences in the relevance assessments themselves (Lesk and Salton, 1969; Burgin,

1992; Cleverdon 1970). In particular, Voorhees (2002) argued that the question is not
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whether relevance judgments can represent “ground truth”, but rather whether they
can distinguish different IR algorithms. And Voorhees (2000) showed that after dividing
a testing set into different subsets, system rankings of IR algorithms are still closely
correlated, which, according to the paper, means that the testing set is reliable, despite

the fact that “relevance judgments” are subjective and volatile.

Lesk and Salton (1969) gave three reasons for the stability of IR system rankings despite
differences in relevance judgments. First, evaluation results are reported as averages
over many topics, and thus random errors are averaged out. Second, disagreements
among judges affect borderline documents, which in general are ranked

after documents that are unanimously agreed upon, and thus do not affect much the
top-k ranking performance of IR systems. Third, recall and precision depend on the
relative position of the relevant and non-relevant documents in the relevance ranking,
and changes in the composition of the judgment sets may have only a small effect on

the ordering as a whole.

Another line in IR evaluation research is to study whether the difference between IR
systems A and B (in terms of precision, recall and a few other measurements) is
statistically significant or not, given that the relevance judgments are subjective and
erroneous (Zobel 1998). Only when the difference is significant can the conclusions be
made that one system is indeed better than the other, not because of a fluke. Some
studies compared different statistical tests among Wilcoxon’s signed-rank test, t-test,
ANOVA, Fisher's randomization test, and sign test and concluded that Wilcoxon’s
signed-rank test is optimal (Zobel 1998, Sanderson and Zobel 2005, Smucker et al 2007).
This line of work is inspiring, and future research could apply the method of statistical
tests to study classifier evaluation. However, due to time and resource constraints, this
chapter only explored using another method to study classifier evaluation, which will be

discussed in section 4.3.

Another line in IR evaluation research studies the optimal number of documents per

guery and the optimal number of queries in order to reduce the cost of relevance
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judgments, while still maintaining reasonable discrimination power of system ranking
(Carterette and Allan 2005, Sanderson and Zobel 2005, Carterette et al 2006, Carterette
and Smucker 2007, Carterette et al 2008). All of these studies concluded that more
queries are better than more documents for each query. This leads to another line of
research on how to sample documents for queries in order to evaluate IR systems with
incomplete relevance judgments (Aslam et al 2006). Carterette and Soboroff (2010)
summarized eight assessor models and studied how to use different assessor models to
improve the quality of relevance judgments. This chapter makes an analogous finding
that one label per item with many items is the optimal setting to obtain labeled items

for evaluation.

This chapter also draws many ideas from the IR evaluation literature and reaches similar
conclusions, as can be seen later. However, this chapter still differs from the IR
evaluation literature. Obviously, the problem settings of IR research and classification
research are quite different. A typical IR system responds to multiple queries and
returns the most relevant documents, while a classification system classifies many items
into a few categories. Also, most IR systems are only evaluated against the top-K query
results, while classification systems are evaluated against all items. Despite some
similarities between the two types of research, it is not clear how to directly apply

findings about relevance judgments from IR research to classification research.

Furthermore, the relevance judgments datasets in IR are designed to be reusable, such
as the ones composed for TREC (Manning, Raghavan and Schutze 2008). The validity and
reliability of these datasets are scrutinized with scientific rigor, and IR researchers can
simply reuse these datasets for training and evaluation purposes without having to
worry about their quality. However, many classification problems are different and
reusable datasets are not available, so researchers and practitioners of classification
algorithms should learn how to obtain labeled items properly for their own classification

problems, rather than simply assuming the labeled dataset in use is reliable.
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Algorithm Evaluation with No Ground Truth

There are a few examples of algorithm evaluation with no ground truth data. They are
inspiring, but are not directly applicable to this chapter because there were no ground

truth data involved. | will summarize the work here.

Grimmer and King (2011) proposed a clustering algorithm, and in order to show that it
works better than other alternatives, the authors used three evaluation approaches.
Their first approach was to have a few human coders manually rank a few randomly
selected document pairs in clusters and then compute the cohesiveness of clusters as
the measurement of clustering algorithm performance. Their second approach was to
have multiple domain experts evaluate the clusters directly. The third approach was to
show, practically, that using the clusters generated from the algorithm can really help

with their qualitative research.

Another set of examples involves diagnostic test evaluation in the Medical and
Biometrics literature. The research goal of this type of work (e.g., Hui and Walter 1980,
Hui and Zhou 1998, Phelps and Hutson 1995, Albert and Dodd 2004) is to be able to
evaluate diagnostic tests (tests that diagnose whether a disease is present in a patient
or not) without knowing the ground truth (whether a patent indeed presents a disease
or not). This type of work is quite similar to the line of work by Dawid and Skene (1995),
which was discussed earlier. Moreover, even though ground truth is absent when
conducting the diagnostic tests, in many cases it would be revealed eventually (through

autopsy for example) for ex post study.

The last set of examples involves credit scoring for credit card companies. Kelly et al
(1998, 1999, 19993, 1999b) studied the problem of designing computer algorithms to
classify credit card holders as good customers or bad customers. The challenge here was
the absent ground truth in terms of whether a customer is good or bad, and therefore it
is impossible to directly evaluate the performance of classification algorithms. Instead of
direct evaluation, the researchers proposed to evaluate the algorithms based on

whether an algorithm eventually leads to revenue increase of credit card companies.
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4.2 Classifier Evaluation Schemes

Let C be a political leaning classifier. Let w; = C(i) € L be the classification result of C
for i. The classification output on a dataset [ is denoted as C(I). To evaluate the
performance of a classifier C, we need to compare its classification output C (i) and the
estimated ground truth H; for all i € I,,,. Denote an evaluation scheme as W. As
introduced in the beginning of the chapter, W is a particular way to evaluate classifiers
in order to be able to discriminate good classifiers from bad ones. This section
introduces three evaluation schemes, Wy, ¥; and ¥, and | will discuss how to evaluate

them in section 4.3.
4.2.1 Wy: Direct Evaluation with Distributions

WYy, (where the subscript H stands for a distribution H;), or colloquially “direct
distribution evaluation scheme”, applies the concept of “cost” introduced in chapter 2
(see section 2.5, Equation 5 and Equation 6) and directly evaluates classifiers with
distributions: it ranks the classifier that minimizes the total expected cost, L, as the best

classifier among a set of alternative classifiers.

I’d like to explain the intuition of W5 with an example. Suppose we have an article i with
H; = (0.7,0.2,0.1). If a classifier C, classifies i as red, then using the quadratic cost
function to compute a penalty, L; =.7X0 + .2X1 +.1X4 = 1.3. Recall that L; is the
expected cost of showing w; (the classification result of i) to the target population (see
Equation 5). 70% viewers will think the item red, and see a label red, incurring no cost;
20% will think the item gray and see a red label at cost 1; 10% will think the item blue, in
which case the red label will seem particularly strange, at a cost of 4. On the other hand,
if another classifier Cj, classifies i as blue, then IL; = 3.0. That is, classifying i as red
incurs less cost than as blue. If C, consistently classifies items that incur less cost than
C,, Wy would then evaluate C, as a better classifier because its classification results

incur less total expected cost.
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Since we are only able to observe L instead of I, ¥, evaluates classifiers based on L
instead of L. Therefore, the classifier that minimizes L does not necessarily mean that it
can also minimize L. Thus Wy might incorrectly evaluate classifiers because of the

unreliably labeled items. | will discuss this in more detail in the next few sections.

Note that even the best classifier, when evaluated with Wy, would still have a non-zero
IL, which indicates that no matter how we classify the articles some people would be
dissatisfied when seeing the classification results. But the best classifier is the one that
classifies the items in the way that minimizes the total cost. We cannot treat a
classification as either fully correct or incorrect when computing the accuracy of a
classifier. Thus, I'd like to introduce the normalized accuracy score to measure the

performance of classifiers under W.

Define the minimum and maximum possible cost of L as Lt and L.~ respectively. Given
a labeled dataset I, both IL.* and L™ are constants, and we can always compute them in
post-hoc analysis using the evaluation dataset I. Then for any classifier C and its
classification cost L, define its normalized accuracy score in Equation 11. Here, L,

L *, L™ and A are the corresponding sample cost and normalized accuracy.

Equation 11. Normalized accuracy under Wy
Obviously, L. € [IL*,IL.7], and thus A € [0,1], where A = 1 means that C is equivalent to
the perfect classifier that minimizes LL; for all i € I, and A = 0 means that C is
equivalent to the anti-minimizing classifier that maximizes L; for all i € I. Since both L*
and IL™ are constants, A is a linear transformation of L. Comparing classifiers according

to A (or A) would have the same ordering as comparing them according to L (or L).

Note that .~ — L* = K is a constant given a fixed labeled dataset I. Then, L™ — L. =
K — (L — L*), where the second term IL. — I.* = A is the “regret” of the classifier,

relative to the best possible. Therefore, Equation 11 is equivalent to Equation 12. The
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intuitive explanation of Equation 12 is that A = 1 is achieved when regret is 0, and
A = 0 is achieved when regret is the maximum. Therefore, the normalized accuracy

scores A and A are also defined according to the regret.

K—2
A:T' where K =L  —Ltand A=L-L*

. K-2 S SN
A= i where K =L  —L*and A=L-L*

Equation 12. Normalized accuracy defined as regret

To sum up, the procedure that uses Wy to evaluate a set of classifiers and rank them

according to their performance is as follows:

* Step 1: For each of the classifiers €y, C,, ... to be evaluated, compute their
classification results w; = C(I) against the testing dataset I.

* Step 2: Compute their sample accuracy Al,/iz, ... using Equation 11.

 Step 3: The classifier that has the highest sample accuracy A would be ranked as
the better classifier.

4.2.2 Y;: Evaluation with Labels Mapped From Distributions

Y, (where the subscript [ stands for a label [;), or colloquially “indirect distribution
evaluation scheme”, first maps a distribution H; into its cost-minimizing label [; using
the principled approached discussed in section 2.5, and then uses [; as ground truth to
evaluate classifiers. Indeed, W; assumes the distribution as ground truth model, even

though it uses labels [; for classifier evaluation.

One reason to map distributions into labels first is because it is more conventional to
evaluate classifiers that output labels against labels as well. In addition, it is possible to

n

use “accuracy”, “precision” and “recal

I”

to measure the performance of classifiers and
the interpretations of such measurements are more straightforward. On the other hand,
however, mapping distributions into labels implies information loss. Whether it is
justifiable to map distributions into labels for classifier evaluation will be one of the

research questions of this chapter.
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The intuition of W, is like this. If a classifier is able to classify an item i that matches [;, it
means the classifier has made a “correct” classification for i in terms of minimizing the
cost ;. A classification that does not match [; means that the classification is not cost-
minimizing, and thus is “incorrect”. An incorrect label is penalized under ¥;. The penalty
depends on the cost of L(w;, [;) for that particular kind of miss. For example, under the
quadratic cost function, the penalty is higher for a red label w; when the best (cost-
minimizing) label [; would have been blue than the penalty when the best label would
have been red. The difference from Wy is that the amount of the penalty under ¥,
depends only on w; and [;, whereas under ¥ the amount of the penalty depends on
how different I;, the expected cost, is for that item. If, for some item i, red is the cost-
minimizing label, but gray is a close second (e.g., H; = (0.51, 0.49,0)), the penalty under
Wy for classifying i as gray would be very small. When gray is much worse (e.g., H; =
(0.99,0.01,0)), the penalty would be higher. Under ¥}, the penalty for the red-gray
mismatch is the same, regardless of whether the difference in expected cost between

red and gray is large or small for that item.

Again, since we are only able to observe [;, and thus ¥, can only evaluate classifiers
based on [; instead of [; and might incorrectly rank classifiers. Similar to Wy, ¥, uses the
normalized accuracy score to measure and rank the performance of classifiers. The

process of W, to evaluate classifiers is then described as follows.

* Step 1: For each i € I, map H; into the cost-minimizing label [;.
* Step 2: For each of the classifiers in C;, C,, ..., compute its classification results
w; = C(I).
* Step 3: Compute the classifiers’ accuracy /11,/12, ... using the following rules:
o Ifw; = Zi, add i to the “hit” set, denoted as P;
o Ifw; # Zi, add i to the “miss” set, denoted as ©);
o Compute A according to Equation 13.
* Step 4: Rank the classifiers according to A;, A,, ..., and the classifier with higher
accuracy is the better classifier.

i= | D |
| D |+ Tiea Lwy, 1)

Equation 13. Normalized accuracy under ¥,
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When all items are classified correctly, A = 1; when all items are classified incorrectly,
A =0.Thus, A € [0,1]. Compared to the normalized accuracy score for ¥, (Equation 11
and Equation 12), here Equation 13 simply counts the number of correct and incorrect
classifications (weighted by L) without having to compute classification “regret” in post-

hoc analysis.

In this chapter both W, and W, use the quadratic cost function for the political leaning
classification problem. However, for other problems, both Wy and ¥, are not limited to
the quadratic cost function, but can use other cost functions as well. The setup of Wy
and W, allows the use of any cost functions. When W¥; is used with a 0-1 cost function,
rather than quadratic, it becomes equivalent to the evaluation scheme used under label

as ground truth as the next section shows.
4.2.3 Y.: Evaluation under Label as Ground Truth

Finally, I’d like to formally introduce the evaluation scheme corresponding to that
typically used under the label as ground truth model for objective classification
problems, denoted as W, (where the subscript ¢ stands for “classical” or “consensus”),
or colloquially “label evaluation scheme”. It is widely used in the current practice of

classifier evaluation.

The process of W, is the same as the process of W; using the 0-1 cost function instead of
the quadratic in two places: first in mapping the distribution of labels to a single best
label Zi, and second when assessing penalty for mistakes between classifier output and
Zi. Note that under the 0-1 cost function, the label selected by the majority of labelers is
the cost-minimizing label. Thus, Zi corresponds to a majority vote process. Also note that
since all misclassifications are penalized equally under the 0-1 cost function, the
performance of a classifier is measured by counting of the number of mismatches
between the classifier and the majority of labelers, which is the “accuracy” of the
classifier as shown in Equation 14. For this reason, accuracy in ¥, is usually represented

as a percentage instead of a normalized score in the range of 0 and 1 as is in Wy and ;.
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| D |

| D |

_ 1Dl

1@+ Nl 1®1+18] 1]

Equation 14. Accuracy under ¥,

All'in all, the differences among W, W, and W, are summarized in Table 7.

Table 7. Differences among evaluation schemes

w, |

¥y

e

Underlying ground
truth model

Distribution as ground truth

Label as ground
truth

Cost function (or
partitioning)

Quadratic (or any other cost function per

different applications)

0-1

Classification output
evaluated against

Distributions

Labels (mapped from distributions using
the quadratic cost function with ¥}, or by

majority vote with ¥,.)

Classifiers ranked
according to

Classification regret

Count of correct and incorrect

classifications

Performance of
classifiers measured
by

Normalized
accuracy (Equation
11)

Normalized
accuracy (Equation
13)

Accuracy

4.3 Problem Formulation

This chapter has four main research questions as follows, where the first one studies Wy

and ¥, versus W, (or, distribution as ground truth versus label as ground truth) and the

other three study properties of ¥y and ¥, (or, how to do classifier evaluation properly

with distribution as ground truth).

* s classifier evaluation with distributions different from classifier evaluation with
labels? That is, what are the consequences of using ¥, when we should use Wy

or ¥, because distributions are actually the ground truth?

* Are Wy and W, able to correctly evaluate classifiers even when the ground truth
dataset is unreliable due to sample errors with a small m (the number of labels

per item)?

* What is the optimal allocation of k ratings for Wy and W;; that is, what is the
optimal number of labels per item (m) and number of items (n) given a budget
constraint for the total number of labels k = mxn?

* Should we use Wy or ¥, for classifier evaluation under distribution as ground

truth?
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| will use computer simulations to answer these research questions. In this section, | will
formulate the research problems and introduce the framework for the computer
simulations. Note that one should not confuse simulated items and simulated classifiers
with real items and real classifiers in the real world. A simulated item does not have any
text features but only ground truth distribution H; and samples from it, ﬁi; a simulated
classifier does not use SVM or Naive Bayesian algorithms but produces labels that are a

function of the ground truth H;, together with stochastic sources or “error”.
4.3.1 Ranking of Classifiers

Let C = {Cy, C;, ... } be a set of political leaning classifiers. Recall that C (i) is the
classification result for item i € I, and C(i) € L. C(I) is C’s classification results for all
items in I. The observed sample ground truth for i € I is H;, and H;, = { ,H,, } is the
annotated ground truth dataset Vi € I, and Z, = {, Zi, } is the set of cost-minimizing

labels mapped from H; according to the quadratic partitioning.

Let ¥ be an evaluation scheme, which defines how to evaluate the performance of a
classifier against a ground truth dataset. Let P = {Wy, ¥, Y.} be a set of evaluation

schemes. Forany ¥ € P, define W as a function:

A=w(, H)
Equation 15. W as a function

The input of W is a classifier C and the sample ground truth ﬁ, on dataset I, and the
output is the sample accuracy A of the classifier C evaluated against the sample ground
truth ﬁ, under the evaluation scheme W. Here, 4 is called “sample accuracy” or
“observed accuracy” because it is computed against the sample ground truth H;. Let

A =Y¥(C, H;) be the “population accuracy” or “true accuracy” of classifier C evaluated
against the population ground truth H; under W. Note that A might be different from A

due to the sample errors introduced from observing H; as H,.
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When the classifiers in C are ranked according to their population accuracy A in the
descending order, the resultant ranked classifier sequence is called “population ranking”,
or x. Both A and y are not observable in the real world, but can be simulated in
computer simulations. The “sample ranking” of classifiers, or ¥, is the ranking of all

C € C according to their sample accuracy A in the descending order. Note that both X
and 7 are determined by the classifiers C, the labeled dataset H; or H;, and the

evaluation scheme W. Different C, H; (or ﬁ,), and ¥ might lead to different y (or ¥).

Natural Ranking

I'd like to denote y* as the “natural ranking” of classifiers in C. Suppose we have a

natural ranking of classifiers y* = {...,Cj, ey i, } where C;, G € C. Then it

ranked

means for some reasons to be discussed later, C; is “naturally” better than C. Note that

x* is defined only on C, without reference to any particular H; (or H;) or W.

The primary approach to obtain the natural ranking of classifiers is called “degradation
to random”. Suppose we have a perfect classifier that is able to observe the full
information of items and then make correct classifications for all items, and we have a
random classifier that makes random classifications, which would be the worst
classifier'®. Then between the two extremes of the perfect classifier and the random
classifier, we can introduce a few classifiers with monotonically decreasing quality and
increasing errors and thus construct the “degradation to random” natural ranking. | will

discuss the “degradation to random” simulated classifiers in section 4.3.3.

Another approach to obtain the natural ranking of classifiers, although not used
extensively in this chapter, is by arbitrary choice. In different application context, one
might prefer one type of classifier to another, and thus is able to arbitrarily set the

natural ranking of classifiers for the particular context.

' A random classifier is the worst classifier because it has absolutely no information to classify items. The
“anti-perfect” classifier that always incorrectly classifies items has zero accuracy, but it still has
information about items, although systematically biased, and can be easily fixed to be a good classifier. See
more discussions in Ipeirotis, Provost, and Wang (2010).
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4.3.2 Evaluating Evaluation Schemes

The main research challenge of this chapter is to evaluate an evaluation scheme ¥ € P
in terms of whether it is able to correctly discriminate good classifiers from bad ones in
spite of non-negligible errors in the ground truth dataset. The key idea is to compare the
sample ranking of classifiers ¥ under W against the classifiers’ natural ranking x*, and ¥

and y* should match in a good evaluation scheme. I'll formulate the problem as follows.

Let y; and y, be any two arbitrary ranking sequences of C. The difference between y;
and y,is measured by Kendall’s T rank correlation coefficient. T();, x2) € [—1,1], where
T = 1 means perfect correlation between y; and y, and T = —1 means perfect negative

correlation between y; and y,. The objective is then formulated as finding and

optimizing ¥ € P that maximizes T(x", ¥) in terms of Equation 16.

argmaxy T(x*, ¥), Yey

Equation 16. Evaluating ¥
Intuitively, T measures the performance of an evaluation scheme W in terms of its
power to correctly discriminate good classifiers from bad ones by comparing the
classifiers’ sample ranking to their true natural ranking. Therefore, | will also call T the
“discrimination power” of W, or simply the power of W. A good evaluation scheme ¥
should have high power, which means classifiers’ sample ranking matches their true

natural ranking quite well.

Sometimes I'll break down Equation 16 into two separate steps in Equation 17. The first
step compares the classifiers’ natural ranking to their population ranking, and the
second step compares the classifiers’ population ranking to their sample ranking. This

breakdown makes the effects of sample errors more salient.
argmaxyt(x*, x), Yeyp

argmaxyt(X, 1), Yey

Equation 17. Two steps evaluation of ¥
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In addition, note that both y and ¥ are dependent on the particular choice of C, H; (and
ﬁ,), and ¥, as | have discussed earlier. Therefore, in computer simulations, | will use
different settings of C, H; (and H;), and ¥ in order to check for robustness. Furthermore,
items in a simulated dataset I are randomly generated according to some distributions
and will add variance to 7 especially when n = |I| is small. Therefore, sometimes I'll run
multiple rounds of simulations and take the average of 7, denoted as 7, as the

discrimination power of W.

Then, what is the acceptable value of T for ¥? Figure 20 lists a few examples: the
differences between two ordered sequences A and B are highlighted and t is computed.
Overall, in computer simulations, I'd like to consider T = 0.9 as acceptable, although in

practice we might consider a much lower t as acceptable too.

Case 1: t=0.990
A={0,1,23,4,5,6,7,8,9,610,11, 12,13, 14, 15, 16, 17, 18, 19, 20}
B={0,1,23,4,5,6,7,8,9,11, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20}

Case 2: t=0.629
A={0,1,23,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
B={20,1,23,4,5,6,7,8,9,10,11,12, 13, 14, 15, 16, 17, 18, 19, 0}

Case 3: t=0.905
A={0,1,273,4,5,6,7,8,9,610, 11, 12,13, 14, 15, 16, 17, 18, 19, 20}
B={1,273,4,56,7,8,9,10,0, 11, 12,13, 14, 15, 16, 17, 18, 19, 20}

Case 4:1t=0.895
A={0,1,23,4,5,6,/Z8,9,10,11, 12,13, 14, 15, 16, 17, 18, 19, 20}
B={1,0 2,1 4,5,6,3,8,9,11, 10, 12, 13, 14, 15, 16, 17, 20, 18, 19}

Figure 20. Intuition about the values of 7.

4.3.3 Simulation Design

Simulated Item, i

A simulated item represents a political article to be classified. For each item i € I in the
simulation, | will randomly generate its population ground truth H; = (R;, G;, B;) from a

Dirichlet distribution (which will be discussed later). Recall that the distribution H; is
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interpreted as R;, G; and B; of the population consider i as red, gray, and blue

respectively.

Also, each item i € I is simulated to receive m labels from human coders, randomly
drawn i.i.d. with replacement from the multinomial distribution H; = (R;, G;, B;). m
remains the same for all items i in I, but varies across different simulation settings.

Denote mir,m‘ig and mf’ as the number of red, gray, and blue labels randomly drawn for

~

item i, m! + mJ + m? = m. The sample ground truth is then H; = (R;, G;, B;) =

(;‘,7‘,;‘) ,Vi € I. Note that each draw of a sample of m coders might result in

)
i

different m!’, m?, m? and H; for the same item i. Therefore, it is necessary to repeat

simulations multiple times to get a distribution of values for ﬁi.

| will use m* = 10° as the maximum possible value of m. By definition, lim,,_,, H; = H;.
| will consider H; = ﬁi when using m = m”* as the approximation of m — oo. | will

usually use m <« m* to get H;.

Simulated Datasets, [

A simulated dataset consists of n = |I| simulated items, where each item gets the same
number, but not same labels. The total number of labels to simulate a dataset is then
k = mXn. nis a variable under different simulation settings. For convenience purposes,

I'll denote n* = 10° as the maximum value of n instead of co.

Since H; follows a multinomial distribution, it is natural to use the Dirichlet distribution
to generate instances of H; to form a dataset /. Here the multinomial distribution H; has
three random variables (R;, G;, and B;) with two degrees of freedom, and thus the
Dirichlet distribution has three parameters, denoted as a = (a”, a9, a?), each of which
controls the “concentration” of R;, G;, and B;. Using different settings of a, | will

construct 4 types of simulated datasets to be used in the simulation, as shown in Table 8.

Table 8. Simulated datasets

Notation a Description Simplex plot
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Lnain (0.4,0.3,0.4) | This dataset closely matches
the real dataset | got in chapter
3, with half items as gray, and
half as red and blue under
quadratic partitioning. It is a
typical dataset for a subjective
classification problem.

Lyray (1,1,1) Items in this dataset are
uniformly distributed across the
simplex, which results in many
gray items under quadratic
partitioning.

Iijean | €0.02,0.02,0.02) | Almost all items in this dataset
are concentrated in the three
corners of the simplex, meaning
that human coders have high
agreement on how to label
items.

Ipiased (0.2,0.3,0.5) Items in this dataset are biased
in favor of blue and gray, while
red items are quite rare. This
maps relatively closely to the
real Digg political dataset, as |
will discuss in chapter 5.

Throughout the simulation, | will mainly use I,,,,;, to get the main results because it
closely matches the real dataset | obtained in chapter 3, and then | will use the other
three datasets for robustness check. | would consider the results learned from these
four simulated datasets generalizable to many real world datasets, although each real

world dataset has its own unique distributions.

I 1ean is different from the other three datasets and deserves extra explanation. In the
real world, a subjective classification problem where people don’t agree on many items
is not likely to result in a dataset like I joqn: Iciean 1S More likely a model of an objective
classification problem. For the political leaning classification problem, we might only see
a dataset like I ;o4 When there is a comprehensive codebook and coders are well

trained to classify items according to the codebook, which means the classification
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problem is made objective. Nevertheless, | can still use Wy and W, to evaluate classifiers

on such a dataset, as | have discussed in section 4.2.3.

Simulated Classifiers, C

I'll introduce two sets of simulated classifiers or “classifier families”, C™" and Ccoder,

as shown in Figure 21.

main _— main -~main ~main main main ~main ~main
C = {craim, iy, Coyvm, .., CROT, L, CE™, CRTse™, ¢

coder _— coder coder coder coder coder coder coder
C _{Cl 'CO.95 »~0.9 1y BB L CO.1 'CO.OS » &0 }

Figure 21. Two simulated classifier families
Each classifier Cé"ai” € C™" s able to classify i as the cost-minimizing label [;
according to the quadratic partitioning as if it observed H;, but with 1 — § random error
producing any label (with equal probaliby), Vi € I. For example, C"*" is able to classify
any item as [; without making any error, but C/¥¥" has 5% chance to make random
errors, and C(’,"“i” always makes random errors. Therefore, the sequence of the 21

classifiers C/;"ai" € C™" follows the “degradation to random” natural ranking.

I"d like to argue that the C™#" family is a reasonably good model of an idealized
classifier. The performance of a real classifier is usually measured by its accuracy, where
high accuracy indicates that the classifier is able to classify items correctly with small
errors, and low accuracy indicates that the classifier makes many errors. The
degradation of 3 in the C™#" family basically maps to the degradation of accuracy in a

set of real classifiers'®.

Define the “step size” of a classifier family such as C™*™ as the difference between two

adjacent classifiers. Since § € {1,0.95,0.9, ...,0.05,0}, the step size of C™%" is then 5%.

' One might argue that the extreme cases such as C]**" and CJ"*™ are hardly seen in the real world, and

thus should be excluded. However, the challenge is to define what cases are considered “more common”.
Further considerations along this line would be left to future work.
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If B € {1,0.99,0.98, ...,0.01,0}, then the step size would be 1%. Obviously, a 1% step
size means that the classifiers are less distinguishable than that of 5%, and it would be
much harder for an evaluation scheme to correctly rank them. That is, the step size of a
classifier family also affects the discrimination power of W. In this chapter, however, |

choose to use a step size of 5% for the C™%" family.

Each classifier C5°%¢" € C€°9€" simulates the process of having a certain number of
B

human coders observe ﬁ, and then classify items into the corresponding ZI. Specifically,
CEo%T simulates having the entire population classify items. By definition, the outcome
of C£o4¢"  if represented as distributions, is identical to the population ground truth H;,
except that Cf2%¢" as a “human classifier” needs to output labels [; mapped from H,;.
Similarly, C§92¢™ simulates 19 coders per item (which then produces the sample H,
instead of H;), C§3%¢" 18 coders, and so on, and C§°%°" simulates no coder but makes
random classifications. Less coders means more errors. Therefore, the sequence of
classifiers in C°°4¢" also follows the “degradation to random” natural ranking, and
models an idealized set of classifiers that are perfect except for sampling errors. Note
that B € {1,0.95,0.9, ...,0.05,0} corresponds to m = {m*, 19,18, ...,1,0}. So, for

example, Cgi‘éegrs = CS2%er . Both forms of using 8 and m are equivalent.

For both C™4" and C¢°%€7, the best classifier is always based on the full information of
items and makes 100% accurate classifications. Indeed, C/"*" = Cf°4¢" = (, is the
perfect classifier. The worst classifier is always the random classifier that makes random
classifications. Denote C"*™ = C§°4¢" = (, as the random classifier. Both C™%" and
Cco%e simulate a set of 21 classifiers whose performance degrade from C; down to C,.

However, each pair of Cé"“i" and CE"der where 8 € {0.95,0.9, ...,0.05} is different by

construction: performance degrades differently.

Figure 22 illustrates the 21 classifiers in C™#™ and C°?¢" degrading from C; down to C,
with decreasing accuracy. Classifiers’ normalized accuracy was computed against I,,,4in

(n = n* and m = 4) under ¥, and ¥, respectively. Note that C™*" degrades in a linear
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fashion as 8 decreases, whereas C°?¢" degrades slowly when S is large and plummets
when S drops to around zero. That is, the step size of C°°?¢" varies. We would expect to
see lower discrimination power T with C°°4¢", because the classifiers are quite close
when f is large. Also note that C; does not have perfect sample accuracy score when
evaluated against the sample ground truth with m = 4, because the sample ground

truth has sample errors.

|y
o

1.00
0.95 ¢ 0000000..,,“ 0.9
*—@
0.90 ° 08
P00V o o
0.85 —0—¢
0.7 oo
*—Q
2 0.80 9 \
8
£ 506 *
8075 g
o . ©
0.5
0.70
065l ** C™ain population accuracy A 04f o 'Cmaf"r population accuracy 4
€™ sample accuracy A < C™M@" sample accuracy A
0.601 &4 €T, population accuracy A 03| a—4 (%", population accuracy A
09 €% sample accuracy A (%", sample accuracy 4
0.5 : ; X : 0?0 0.2 0.4 0.6 0.8 1.0
.0 0.2 0.4 0.6 0.8 1.0
1-8 1-p

Figure 22. C, degrades to C, for C™%™ and C°%T: (a) Wy, (b) ¥,

4.4 Simulation Results

This section merely presents simulation results. Interpretation of the results will be
discussed in section 4.5. Step 1 is the only step that studies ¥, (which assumes the label
as ground truth model) against Wy and W; (which assumes the distribution as ground

truth model). Steps 2, 3, and 4 study properties of Wy and ¥; and no longer consider ...

Step 1: Comparing W, and ¥, versus V.

I'd like to introduce C373 /oyt and «:;;’gfgmy as variations of C"™#"* and C¢°%¢" that use

the 0-1 cost function (or majority vote) to classify items instead of the quadratic cost

function. To be consistent, denote Cg/yrqric and (Cg?ffﬁ{mm to be the original C™®"

and C¢°%€" These new notations are only used in this step.
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The Cypgjority classifiers and Cqyqaratic classifiers differ in how they classify items in the
partitioning disputed region between the 0-1 and quadratic partitioning. For example,
Cimajority Would classify H; = (0.6,0,0.4) into red, but C; gyqqratic Would classify the
item into gray, even though both classifiers are able to observe the item’s full

information with § = 1.

Table 9 shows the accuracy of C; gyadratic and Cimajoricy €valuated against Iy, 4

(n = n*) under Wy, ¥; and ¥, respectively. Note that under Wy and ¥}, C; guaaratic has
higher accuracy than Cq ,4j0riry and thus is ranked as the better classifier. In contrast,
under W;, Cy ymqjority has higher accuracy than Cy gyqaratic and is ranked as the better
classifier instead. The same ranking between Cy gyqdratic aNd €1 majoricy holds for the

other three datasets (Iyrqy, Icican, aNd Ipigseq) With different m values (e.g., m = 4).

main main
Cﬁ,quadratic C

coder
Bmajority C

B,quadratic and

The same ranking between and and between

csoder .. also holds for any 8 € {0.95,0.9, ...,0.05}.

Bmajority

Table 9. Comparisons of classifiers’ ranking under different evaluation scheme

Py Am=m") | A(m=1)
Cl,quadratic 1 0.858
C1,majority 0.951 0.823

Cl,quadratic 1 0.585
C1,maj0rity 0.755 0.569

y, Am=m*)|A(m=1)
C1,quadratic 75.5% 63.7%
Cl,majority 100% 74.5%

Step 2: Changing n at Fixed m

This step studies how changing n (the number of items in the dataset) affects the power
of Wy and ¥,. The approach is to compare the sample ranking of classifiers in C™%" and

Cco%eT against their “degradation to random” natural ranking respectively and compute
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T under both Wy and ¥,, using a dataset with an increasing n (from 100 to 10000, with a

step of 100) at fixed m. Simulation is repeated 100 times to compute T.

Figure 23 shows the results of 7 for C™%" and C°9°" using the I,,,4;, dataset. First, note
that 7 increases as n increases. This result holds for the other three datasets too. In
addition, note that C°4€" has a lower T than C™%" and does not reach T > 0.9 even at
n = 10000. However, as n continues to increase, T will eventually reach T = 0.9. This
result also holds for the other three datasets. Finally, note that W, has a higher T than
Y, for C™4" byt then Wy has a higher T than W, for C°°%€7, This result does not always
hold for the other datasets. For example, using the I,.,,, dataset, ¥} has a higher T than

P, for C™4" when m = m*, but when m = 1, ¥, then has a lower T than Wy,.

o, m=m* ceder, m=m*
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Figure 23. T changes according to n, with fixed m
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Step 3: Changing m at Fixed n

This step studies how changing m (the number of labels per item) affects the power of
Y, and ;. The approach is to compare the sample ranking of classifiers in C™*™ and
Cco%eT against their “degradation to random” natural ranking respectively and compute
T under both Wy and ¥, using a dataset with an increasing m (from 1 to 20, with a step

of 1) at fixed n. Simulation is repeated 100 times to compute 7.

Figure 24 shows the results for C™*™ and C°%€" using L, 4in, fixing n at 1000. Note that
as m increases, T also increases slowly. This result does not hold for I;.,, though,
where increasing m does not obviously increase 7, which is expected because labels for
the same items in I .., almost always agree with each other and adding the same
labels does not increase power. Also, simulation shows that even when m increases to
m = m*, we still do not have T = 0.9 at n = 1000. However, fixingn atn = n*, Tis
always 1 or close to 1 with m € [1, m*] for all four datasets. Finally, note that ¥y and ¥,
have different power in Figure 24: ¥, has higher power for C™%"*, while Wy has higher

power for C¢o%eT,

cme n Ccod er

5 10 15 20 5 10 15 20
Number of labels per item, m Number of labels per item, m

Figure 24. T changes according to m, with fixed n = 1000
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Step 4: Optimizing k = mXn

The previous two steps have shown that increasing either m or n will increase T for both
WY, and ¥}, although with diminished return. This step is to study the optimal allocation
of m and n given a budget constraint for the total number of labels k = mXxn. The
approach is to study the minimum n required (at a step of 100) in order to have T = 0.9
when ranging m from 1 to 20. Again, T is computed by comparing the sample ranking of
classifiers in C™*™ and C¢°%€" against their “degradation to random” natural ranking

respectively, and T is computed by averaging over 1000 repeated rounds of simulations.

Table 10 lists the minimum n required in order to have T > 0.9 for C™*, using the four
datasets with selected m values. Figure 25 illustrates the minimum k required in order
to have T > 0.9 for C™%", using I,,,4in With m € [1,20]. Note that although we only
need a smaller n as we increase m, the minimum required k still increases. Results for
Cco%€7 s similar, but with a much larger n and k. Also, note that Wy requires a larger n

and k than W, to reach the same level of power to discriminate classifiers in C™3",

Table 10. Minimum n required to get T > 0.9 for C™®"

Imain Igray Iclean Ibiased
W, Y, W, Y, W, Y, v, Y,
3000 2800 3000 4200 1400 1000 2400 2000
2400 2100 2300 2400 | 1300% | 1000 1900 1400
1800 1400 1900 1500 1400 1000 1900 1400
1800 1100 1800 1300 1400 1000 1900 1200

Il
§*g~l>b—x

21333

2 Even with 1000 repeated simulation trials, there is still considerable variance introduced by the sample
ground truth, the randomness of classifiers, and ranking of the classifiers. More simulation trials should be
able to decrease variance and make this number match the other numbers.
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10 15 20
Number of labels per item, m

Figure 25. Minimum k = mxn required for C™*™" on I,,,4;,

4.5 Discussion

Using the Wrong Ground Truth Model

One major research question asks how important it is to use the distribution as ground
truth model instead of the traditional label as ground truth model for subjective
classification problems, or to put it differently, what if anything goes wrong when
evaluating classifiers assuming labels were ground truth when really distributions are
ground truth. The simple answer is that we might rank classifiers incorrectly using the

wrong ground truth model and evaluation scheme.

| have shown in chapter 3 that many low agreement items are in the partitioning
disputed region: incorrectly using the label as ground truth model and majority vote,
those items would be incorrectly labeled as either red or blue instead of gray. Using
those incorrectly labeled items as ground truth to train and evaluate classifiers will drive
classifiers to label similar items incorrectly as red and blue instead of gray.
Classifications like that would not be optimal, because those items should have been
classified as gray but were incorrectly classified as red and blue, and showing them to

users will incur more cost, assuming the true cost function is quadratic.
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The intuition above is supported by results from the first step of computer simulation
(see Table 9). The natural ranking between C; gyqaratic and Cimajority 1S

x* = {Cyquaaratic: Cimajority}, beCAUSE Ci quaaratic can correctly classify items in the
partitioning disputed region as gray in order to minimize cost under the quadratic cost
function, whereas Cj 4 0riry Cannot. According to the ranking of both classifiers in
Table 9, t(x*, ¥) = 1 under ¥y and ¥;, and 7(x*, ¥) = —1 under ¥,. This result holds
even when m = 1. That means W, and ¥, are better evaluation schemes than ¥,. In the
real world, using W, for evaluation will drive classifiers to be optimized closer to

Ci,majority instead of Cy gyqaratic, Which is clearly not optimal.

Reliability of Classifier Evaluation

Chapter 3 has argued that for a typical subjective classification problem, labeled items
are not reliable when m << m* due to large sample errors. One main finding of this
chapter is this: even though individual items in the labeled dataset are not reliable,
classifier evaluation and ranking using either Wy or W, under the distribution as ground

truth model is still reliable with power T > 0.9, if n is large enough (e.g., n = 2800).

As m increases, we could use a smaller n in order to get T = 0.9 due to decreased
sample errors. However, even when m = m*, we still need a minimumn = 1000 in
order to have good discrimination power. Suppose n = 1, then even the random
classifier C, is able to guess the one item’s correct cost-minimizing label and thus is not
discriminated from the perfect classifier C; one out of three times. Table 11 shows the
probability that the better classifier (CI¥*™) is discriminated correctly from the worse
one (CI¥L™) with a varying n (evaluated using W, on I,,,4;, With m = m*, averaging over
1000 times). When n < 10, there is a less than 50% chance that the better classifier is
discriminated™, even though each item in the labeled dataset for evaluation is perfectly

reliable with m = m*. When n = 200, there is still only 78.1% chance to correctly

13 This does not mean the better classifier is ranked lower than the worse classifier more than 50% chance,
because I consider the better classifier having the same accuracy as the worse classifier not being
discriminated correctly.
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discriminate them. In short, it is more important to have a sufficiently large n than

decreasing sample errors with a large m in terms of correctly ranking classifiers.

Table 11. Probability of correctly discriminating the first classifier as better

n=1n=2|n=10|n=100|n=200|n=500|n=1000

crain ys, Cmain | 14.3% | 23.9% | 48.3% | 70.0% | 78.1% | 90.9% | 95.3%

I’d like to make a final point here in terms of sample errors and reliability of classifier
evaluation. As argued earlier, by definition the output of CS2%" is equivalent to the
ground truth with m = 1. Indeed, Figure 23(d) is to use the output of CS2%¢" as ground
truth, which is quite “buggy”, to evaluate a set of C5°%¢" (m > 1) classifiers which have
more coders per item as well as better output. Clearly, here the ground truth data
present more errors than the classifiers to be evaluated. How is a low quality ground
truth dataset able to evaluate classifiers that produce higher quality classifications and
still get good power? It is because a good classifier such as CS2%! agrees more with
CEo%™ over a large number of items than C52%" agrees with itself, and therefore a good

classifier like CS2%€T is still discriminated as better than CS2%¢" even when using a more

erroneous dataset as ground truth.

Optimal Allocation of k = mXn Ratings

Simulation results suggest that the optimal allocation of k ratings for both Wy and W, is
to have m = 1 and k = n (Figure 25 and Table 10). One possible explanation is that a
second label on the same item partly overlaps with the first label, and thus is less
informative. Therefore getting an extra label for the same item is less informative than
getting a new label for another new item in terms of the total amount of information

obtained.

This result is consistent with findings from the IR evaluation literature (e.g., Carterette
and Smucker 2007), which says that even though relevance judgments are subjective
and erroneous, evaluations of IR systems are still valid; and a large number of topics

with a small number of labels per topic (comparable to a large n and a small m) is better
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than a small number of topics with a large number of labels per topic (comparable to a
small n and a large m). The result is also consistent with findings from Jordan and
Wellman (2009), who used simulations and the framework of generalization risk
minimization to find that, in the context of multi-agent systems, it could be more
beneficial to have a small amount of data for each strategy profile and a large number of

strategies and profiles (comparable to a small m and a large n).

In addition, the result does not contradict to Sheng et al (2008), who found that
occasionally it is more optimal for classifier training purposes to get another label for
the same item than getting a new label for a new item, because it could prevent error
propagation in the training process. Obviously, classifier training and evaluation are two
different processes, and opposing results (in terms of whether another label on the
same item is preferable over a new label on a new item) are not inherently
contradictory. If we have to use multiple labels per item in order to improve the training

process, we can still just use one label per item to prepare held out data for testing.

When m = 1, it seems that W (which directly evaluates classifiers with distributions)
and ¥, (which maps distributions into labels first and then evaluate classifiers with
labels) would be the same since we only get one label for an item instead of a full
distribution. I'd like to point out that simulation result shows that T for ¥, and ¥, are
still different when m = 1. The reason is that W and ¥, still use different equations to
compute classifier accuracy (Equation 11 versus Equation 13) regardless of the value of
m, where Wy takes into account “classification regret” and W¥; simply counts the number

of correct and incorrect classifications.

Even though simulation suggests m = 1 is optimal for classifier evaluation, it does not
mean that researchers should always obtain labeled datasets with m = 1, because a
labeled dataset can be used for purposes other than classifier evaluation. For example,

if we just want to use human coders to classify the political leaning of a few articles (e.g.,

Munson and Resnick 2010), then we need m > 1 in order to get reasonably accurate
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results. Or, we might want to use multiple coders to check each other’s quality: a coder

might be a spammer if he rarely agrees with other coders more than at random.

Finally, simulation suggests that a classifier evaluated against a sample ground truth
with m <« m”* would result in a lower accuracy score than with m = m”*. This finding is
consistent with existing studies (e.g., Phelps et al 1995) and is understandable: even the
perfect classifier would have imperfect accuracy when evaluated against an erroneous
ground truth dataset. Therefore, in order to learn a more precise accuracy score for a
classifier in addition to correctly ranking the classifiers, we might want to have m > 1 to

decrease errors in the ground truth dataset.

Comparing ¥, and V¥,

One research question is to ask whether Wy, or ¥, is a better evaluation scheme with
the distribution as ground truth model, where the exact location of a point on the
simplex (i.e., an item’s distribution) matters under Wy, but only the partition of a point
on the simplex matters under ¥;. Simulation at its current form does not provide a clear
answer: W, has higher power than W, to discriminate classifiers in the C°%¢" family; ¥,
has higher power than W to discriminate classifiers in the C™%™ family, but not with

the I

gray datasetatm = 1.

What we did learn from simulation, however, is that both W, and ¥; are valid
evaluation schemes that could achieve high classifier discrimination power with a large
n, although sometimes one has a higher power than the other and thus requires a
smaller n. It is quite surprising because ¥, essentially throws away information, yet it
can still achieve high power, sometimes even higher than Wy, to evaluate classifiers. Ill

leave it to the future work to study when Wy or W, is more suitable in what situations.

There are other practical reasons to choose between Wy and ¥, regardless of their
power. The benefit of ¥, is that we only need to map distributions into labels once, and
then it is convenient to use the cost-minimizing labels to evaluate multiple classifiers

that also classify items into labels. In addition, with ¥, it is more straightforward to
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report other evaluation metrics such as “precision” and “recall” simply by comparing the
classification results against testing items’ cost-minimizing labels. For these reasons, I'd
suggest using W, unless there are specific reasons to prefer W for a particular situation.

In chapter 5, | will use ¥, to evaluate political leaning classifiers.

Finally, I’d like to provide some intuitions to explain the simulation result about
comparing Wy and ;. Recall that Wy ranks classifiers based on the exact classification
cost of each item, while W, ranks classifiers based on the cost-minimizing labels instead.
For example, under Wy, misclassifying ﬁi = (0.51, 0.49, 0) into gray is not as bad as
misclassifying ﬁ] =(0.99,0.01, 0) into gray, because i is “less red” than j. Under ¥,
however, misclassifications of both items incur the same cost because the cost-
minimizing labels for both items are the same. The setup of the C™%™ classifier family
does not treat items like i and j differently: i and j have the same random error rate to
flip into an incorrect label. Therefore, W, is more advantages for C™*™ because ¥, does
not treat items like i and j differently either, resulting in higher power. On the other
hand, if the classifiers are designed to classify items into distributions instead of labels,
one can imagine that W5, might turn out to be the better than ¥;. | will discuss more

about it in the future work.
4.6 Conclusions and Future Work

In the previous two chapters, | have proposed the distribution as ground truth model for
subjective classification problems, and | have shown with empirical dataset that SCPs do
exist with many low agreement items and different partitioning does result in different
cost minimizing labels. This chapter uses computer simulation to study using the
distribution as ground truth model for classifier evaluation. Simulation shows that using
the wrong ground truth model and evaluation scheme could lead to ranking classifiers

incorrectly.

For a subjective classification problem that uses distribution as ground truth, one can no

longer assume the labeled dataset obtained from a small number of raters is reliable.
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Another main result of chapter is this: even though individual items in the labeled
dataset are unreliable, we may still get reliable results about classifier ranking as long as

we have a large number of items in the evaluation dataset.

The optimal way to obtain labels for classifier evaluation is to obtain one label per item
with many items, and it is usually advisable to map the distributions into cost-
minimizing labels first and then evaluate classifiers with the labels. According to
simulation, we need to label about 1000 to 3000 items with one label per item in order
to rank classifiers correctly with good classifier discrimination power. The exact number
of items needed is subject to many factors, such as the step size of classifier difference,
the level of disagreement among coders, the number of classification categories, and so
on. However, the caveat here is that too few labeled items for classifier evaluation is

likely to lead to incorrect evaluation result.

When we only have one label from a human rater instead of a full distribution of an
item, one might ask whether the distribution as ground truth model still matters.
Conceptually (which has been discussed in chapter 2), the distribution as ground truth
model is defined regardless of the number of labels to obtain for each item: even if we
only get one label per item, the one label is an estimate to a distribution instead of an
estimate to a label. Practically, | have shown in this chapter that different ground truth
models and evaluation schemes use different equations to compute classifier accuracy,
have different classifier evaluation power, and produce different classifier rankings,

even when we only have one label per item.

The findings of this chapter echo the research of Hand (2006), who argues that the
progress of classification application research is an illusion. One may easily find many
examples in existing literature where researchers use only a small number of labeled
items (e.g., 100~300) to evaluate their classifiers and conclude that their inventions are
superior to alternatives, without realizing that their results could be unreliable due to
the unreliable labeled dataset in the evaluation process. Practitioners and researchers

of machine learning applications should be aware of this danger and try to avoid it.
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To conclude this chapter, I'd like to propose a set of guidelines to collect labeled items
for classifier evaluation in the machine learning area. Note that this process is intended
to prepare labels for evaluation, not for training. And it is not supposed to be used with
qualitative study which requires the qualitative coding process as | have discussed

earlier.

Step 1: Prepare a codebook with a set of objective instructions on how to label items. In
order to increase generalizability of the classifications, the codebook should not
represent researchers’ own specific subjective opinions. This process also helps to
determine whether the classification problem at hand is objective or subjective: for a
subjective classification problem, it will be hard to write down classification rules

without giving subjective specifics.

Step 2: Use multiple coders to label a subset of items, and compute inter-rater reliability
score. If IRR is high, then the classification problem should be objective. Researchers
could assume the label as ground truth model and just use one coder to label the rest of
the items. On the other hand, if IRR is low and it is hard to define a codebook, then the
classification problem is likely to be subjective, and researchers should proceed to the

next step.

Step 3: Use one coder per item to label 1000 to 3000 items as the classifier evaluation
dataset. Note that the exact number of items required is dependent on the application
specifics, but it cannot be too small to have good classifier discrimination power. In
order to avoid bias, researchers should randomly draw a rater from a pool of raters for
each item (perhaps through Amazon Mechanical Turk, for example), instead of having

one of the researchers label all items himself.

Step 4: Follow the steps of W, to evaluate the classifiers: use Equation 13 to compute
accuracy for each classifier, and rank the classifiers according to their normalized
accuracy. The classifier with higher accuracy would be the better classifier, and we know
it is reliable. Note that the resultant accuracy score would be lower than its actual value
because the ground truth data has sample errors.
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| will discuss future work next. One challenge of future work is to increase the power of
computer simulation. Currently, computer simulation relies heavily on the C™%"
classifier family, which is a simplified model of real world classifiers: it only models
different classifiers according to a set of fixed error rates, without considering items’
rich features commonly seen in the real world. For example, a real classifier might be
able to do very well on high agreement items, but make more mistakes on low-
agreement items. Such a classifier is not modeled in the current simulation. If we add
such a classifier to simulation and want to discriminate it as a better classifier, we might
hypothesize that one label per item is not optimal for evaluation because multiple labels

per item is required to distinguish high agreement items from low agreement items.

One of the research goals of this chapter is to compare two classifier evaluation
schemes — whether to evaluate classifiers directly with distributions (W), or to map
distributions into labels first, and then evaluate classifiers with the mapped labels (¥;) -
in terms of their power of correctly ranking classifiers. Statisticians might find that the
set of simulated classifiers (C™%™), which takes one parameter to control how much
randomness is in the classification results, is comparable to a set of models with varying
randomness, and therefore, ranking a pair of classifiers is comparable to two-sided
hypothesis testing about whether their samples come from the same distribution. In
that sense, studying the power of a classifier evaluation scheme in terms of correctly
ranking classifiers is comparable to studying the power of the evaluation scheme as a
statistical test. This is not new to statistics: a plethora of work is done on efficient
estimators, and many conclusions have been made about which statistical test is more

powerful under what conditions (e.g., Casella and Berger, 2002).

This chapter does not attempt to make general conclusions about the statistical power
of the classifier evaluation schemes. It makes assumptions about the structure of errors
made by classifiers (the families C™%" and C°%¢") only for illustrative purposes, to
show that, at least for some families of classifiers, some particular evaluation schemes

are better than others. If we assumed that real classifiers did make errors following
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particular structures such as C™3", then it would be valuable to map results from
statistical theory to identify other evaluation schemes that might be more efficient, for

that family of classifiers, than those considered in this chapter.

Also, I'd like to define “boundary items” as those items whose ﬁi are plotted on the
simplex partitioning boundaries. For example, when we get two labels per item, there
are only 6 possible combinations of the two labels, and we would get many cases such
as H; = (0.5,0.5,0) (or {(0.5,0,0.5), (0,0.5,0.5)) on the partitioning boundary between
red and gray. Boundary items are not a problem for W, which directly uses the
distributions for evaluation. But they do create a problem for ¥; because ¥, needs to
map ﬁi into either one of the two bordered cost-minimizing labels. In this chapter, | just
randomly pick one label to map. But future work should consider other possibilities such
as arbitrarily picking the gray label, obtaining another label to move the item out of the

boundary, or discarding the item for evaluation.

Finally, generalization of the current study is limited by the particular choice of the
political leaning classification problem, where | have defined three classification
categories (red, gray and blue) and used the quadratic cost function. Future work should
address whether the result from this chapter is generalizable to a broader range of
subjective classification problems where the classification categories are not three and

the cost function is not quadratic.
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Chapter 5. LabelPropagator: A Semi-Supervised Classifier

This chapter proposes a new political leaning classification algorithm called
LabelPropagator, which automatically classifies people and items as liberal or
conservative. The intuition of LabelPropagator is that a few manually coded labels may
be further propagated to identify other people and articles, since liberals are likely to
endorse liberal articles, and likewise for conservative people and articles. Different from
other traditional classification algorithms, LabelPropagator does not rely primarily on

textual information, although | do consider it as an extra information source.

There is a naturally occurring source for the data needed to propagate: a large pool of
subjective “votes” for individual articles. Digg.com, a popular social news aggregator,
has links to political stories from both blogs and news sites. Users can “digg” stories they
like. Individual diggs are visible on the website and accessible through a public API, or
rather were at the time of data collection. Other sources could include tweet mentions,

Facebook “I Like”, or Google “+1”.

Figure 26 illustrates the potential propagation of a few initial labels through the diggs
network. The links in the graph represent diggs, the votes by users for particular articles.
The articles dugg by the red user can be colored red. Similarly, the people who dugg the
blue articles can be colored blue. In subsequent rounds, those colorings can be
propagated still further. Eventually there will be articles dugg by both red and blue users:

the LabelPropagator algorithm will handle those cases to classify articles properly.
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Figure 26. Intuition of LabelPropagator
This chapter has two parts. The first part was completed before beginning this thesis. It
proposed and evaluated the LabelPropagator algorithm. However, the main limitation of
the original study was that the labeled dataset to train and evaluate classifiers only
consisted of clearly red and blue items without gray items. ltems where human labelers
disagree were excluded. The second part of this chapter aims to fix the unreliable
ground truth dataset problem by using the dataset obtained from chapter 3 and the
classifier evaluation scheme proposed in chapter 4. | will show that using a different
ground truth model and an evaluation scheme indeed leads to retuning parameters of

the classifier and to different conclusions about its overall accuracy.

This chapter is organized as follows. Section 5.1 discusses related work. Section 5.2
proposes three variations of the graph propagation algorithm. Section 5.3 discusses the
original study of the algorithm. Section 5.4 discusses the evaluation of the algorithm
with new ground truth data and evaluation scheme from chapters 3 and 4. Section 5.5
summarizes the chapter and discusses future work. Sections 5.1 to 5.3, describing the
original study, first appeared in Zhou et al (2011). Sections 5.4 and 5.5 belong to the
second part of the chapter, which is the follow-up study. Note that some notations to be
introduced in this chapter may differ from the other chapters in order to be compatible

with earlier publication.
5.1 Related Work

Political Leaning Classification

Literature from both political science and computer science has studied the problem of

classifying political positions from texts. One line of work used word frequencies,
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Bayesian statistical models, and topic models (Laver et al 2003, Martin and Vanberg
2008, Lin 2006, Lin et al 2008, Monroe et al 2008, Slaping and Proksch 2008). Another
line of work focused on using SVM with optimization of text feature selection (Jiang and
Argamon 2008, Oh et al 2008, Yu et al 2008, Hirst et al 2010), as well as complementing
that with sentiment analysis (Durant and Smith 2006, Mullen and Malouf 2006, Malouf
and Mullen 2007, Holtzman et al 2007). Rao et al (2010) studied how to use text

features in tweets to classify twitter users.

Rather than using text features, Efron (2004) used co-citations from Google search to
classify political blogs. Park et al (2011) used a panel of “predictive users” and their
comments’ sentiments to predict the political leaning of articles. Pennacchiotti and
Popescu (2011) used features from user profiles, tweet behavior, tweet content, and
tweet networks to classify twitter users. Conover et al (2011) hired two coders to

manually classify the political leaning of twitter users from their tweets.

Semi-supervised Learning

Semi-supervised learning approaches use a large amount of unlabeled data in the
classification process, and thus achieve good classification performance even if only a
small set of labeled examples are available. A particular family of semi-supervised
classification algorithms, which we draw on, cast the classification task as a process of
label propagation in the graph structure of labeled and unlabeled data (Zhu et al. 2003,
Zhou et al. 2004).

The closest study to ours is Lin and Cohen (2008), who used a semi-supervised learning
algorithm called “multirank” to classify political blogs using the HTML links between blog
stories. We use different algorithms and find that, once we propagate via diggs, adding

propagation via blog-to-blog HTML links actually decreases accuracy.
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5.2 Semi-Supervised Learning Algorithms

5.2.1 Problem Formulation

From Digg, we have a set of stories Vsiory, Users Viser, and the diggs from users to stories
as approval votes, denoted as Egigg=1{(i,j)}, Where i€V ser and jEViory. We also have 1)
other types of nodes, Vexra, such as the domain names of blogs, and 2) other types of
links, Eextra, Which will be discussed in the Datasets section. Let V=V ser@ Vstory B Vextra,
E=Edigg @ Eextra, and then we can construct a graph G =<V, E>. Edges e€E are undirected

because the color label of either node of e should propagate to the other.

From G, we construct the symmetric affinity matrix W, where W;=1 if (i,j)EE, or 0

otherwise. Define D as the diagonal matrix of degrees of the nodes. That is, Dj=}; W;;.

Denote the initially labeled nodes as L (LCV). Let C={red, blue, gray} be the set of
category labels. For each i€L, we have an initial [abel ¢;EC. Let T=V-L be the set of
unlabeled nodes (i.e., nodes that need to be classified). The labels will be divided into a
training set Liraining and a testing set Liesting, Where L = Liraining @ Ltesting. The goal of our
algorithms is to use the initial labels from Liraining and assign a label ¢';&C as the

classification output to each node jETEL esting.

We also introduce a |V|x2 matrix Y, where the 2 column vectors are indexed as R for
red and B for blue. Yig=1 if i€Ltraining and ci=red; Yig=1 if i€Ltraining and ci=blue; O for the

other elements.

Note that any gray labels in L are simply ignored for the purposes of training. Intuitively,
we do not treat gray as an independent classification category but rather as nodes for
which the classification is mixed or uncertain. Thus, we do not propagate gray

classifications. However, our algorithms could still output gray for borderline items.
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5.2.2 Random Walk with Restart (RWR)

Our first semi-supervised algorithm, shown in Figure 27, is based on the popular
“random walk with restart” model (Grinstead and Snell 1997). After convergence, F* is
the stationary distribution specifying the probability that a random walk with restart at

Y' will be at each of the nodes.

In our case, the restart matrix Y' has two columns, corresponding to two separate
random walks, leading to two stationary distributions. The first walk, with the R column
of Y', restarts from only the red labeled nodes, and the F*iR scores indicate the stationary
probabilities restarting only from the red nodes. Similarly, the second walk, with the B
columns of Y', yields the Fis scores. Intuitively, F'r>F s means a walk starting from the
red nodes is more likely to reach node i than a walk starting from the blue nodes, and

thus we should label i as red.

When F*iR is close to F*iB, there is not a clear classification and we label them gray. Two
threshold parameters 0z and 0z control how big the ratio of F*R and F*B has to be in
order to make a red/blue classification. When 8, = 05 = 1, the algorithm simply
compares F'r and F 5 and does not generate gray classifications (except for the rare
cases where F*iR=F*iB). Increasing the thresholds leads to output of more gray labels for

borderline nodes.
5.2.3 Local Consistency Global Consistency (LCGC)

Our second semi-supervised learning algorithm, also shown in the algorithm box,
follows the “local consistency global consistency” classification algorithm proposed in
Zhou et al (2004). Note that the iteration process differs from RWR only in normalization

factors for Sand .

The intuition behind the algorithm is to optimize for two conditions: a) the labels
assignment should not change too much between nearby nodes (“local consistency”),

and b) the initial labels assignment should not change too much after propagation
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(“global consistency”). The parameter a controls the trade-off between the two

objectives.
5.2.4 Absorbing Random Walk (ARW)

The “absorbing random walk” model is different from the original random walk model in
that it has “absorbing states” without outgoing links (Grinstead and Snell 1997). Let ACV
be a set of absorbing states. After convergence, each node i€V has a probability score
P(a|i) for each absorbing state aE€A, indicating the probability that i would eventually be
absorbed into a. We have ¥, P(ali) = 1, and P(a|a)=1. The use of absorbing random

walks in classification is closely related to Zhu et al (2003).

In our case, we did not use the labeled dataset L as the absorbing states, because the
initial labels are not 100% accurate and should be allowed to change color during
propagation. Therefore, we added two new absorbing states a,eq and ap,e to V, and

added directed edges {(i, areq)} and {(j, aviwe)} if i,JEL and ci=red, cj=blue.

In step 1, kE[0, =) is the weight of the newly added edges {(i, areq)} and {(j, abiwe)}. In
step 2, weights on edges (including the new edges) are normalized to create probability
distributions over transitions from each node. The normalized matrix decomposes into
Q, which gives probabilities of transitions to edges in the original graph, and Y', which
gives probabilities of transitions to the absorbing states a4 and apue. After the random
walk converges, F'r and F g are the probabilities for each i€V eventually getting
absorbed in areq and apye respectively. In steps 4 and 5, we classify the nodes using the

“class mass normalization” method suggested by Zhu et al (2003).

Intuitively, this algorithm classifies i€V as red if it has a much higher probability to be

absorbed in a,eg, and the same for blue.
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Algorithm 1: RWR
Input: W,D,Y

Algorithm:

1. Construct the transition matrix S=D'W

2. Construct Y'=(Dy'Y")", where Dy is a
diagonal matrix with Dy ;=3; Y;;.

3. Tterate F(t+1)=(1-a)SF(t)+aY', where F(t) is a
IVIx2 matrix, F(0)=Y', and a is a tunable
teleport factor. Let F* denote the limit of the
sequence {F(t)}

Classification: Label i€V as:
a. redif F¥/ F*p >0,
b. blue if F* 5/ F*; >0,
c. gray otherwise
(B and Oy are tunable threshold parameters.)

Algorithm 2: LCGC
Input: W,D,Y

Algorithm:
1. Construct the matrix S=D WD
2. TIterate F(t+1) = (1-a)SF(t)+a Y, where o is a
tunable parameter in (0, 1), and F(0)=Y. Let
F* denote the limit of the sequence {F(t)}

Classification: the same as in RWR

Algorithm 3: ARW
Input: W,D,Y

Algorithm:
1. Construct W'=|V(¥ le|, where k=(1-a)/a,

ae(0,1] is a tunable parameter; [ is a 2x2
identify matrix.
2. Construct S'=D"'W', where D' is a diagonal
matrix with D';=3; W’;;. S" has form |(§ 3;
3. Tterate F(t+1)=Y'+QF(t), where F(0)=Y". Let
F* denote the limit of the sequence {F(t)}.
P(ared)

0 P(ablue)
P(a,)=2iev(Fir /IV]), P(ape)=2iev(Fip /IV).
P(a,0)+P(apu)=1.

5. Calculate F¥'=(D;'F™)"

4. LetDy= , Where

Classification: the same as in RWR using F*'

Figure 27. Three versions of the semi-supervised learning algorithms
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5.3 Original Study
5.3.1 Datasets

Graph Structure

Diggs as votes from user nodes to story nodes (Vsiory, Vuser, Edigg)- This is the primary
dataset for our study. With the Digg API, we harvested 480,932 stories and their
6,298,104 diggs from 2 categories, ‘political news’ and ‘political opinions’, from 2009-5-
25 to 2010-8-11. That is an average of 1,083 and 14,185 new stories and diggs each day,
with an average of 13 diggs per story. Our study only used the |Vsory|=84,433 “popular”
stories that received more than 10 diggs, and the |Vyser|=74,844 “frequent” users who
submitted more than 5 diggs. Those “frequent” users made a total of |Egigg|=5,216,273
diggs to the “popular” stories. The median degree for items (number of frequent users
in the dataset who dugg the popular item) was 22. Note that each user could submit an
unlimited number of diggs, but only one per story. The largest connected component

covers 99.98% of the nodes.

Domain source links (Vsource, Esource). FOr €ach story in Vsiory, We have its source domain
name. For example, stories posted on HuffingtonPost.com would all share the same
domain name. We hypothesize that stories with the same domain name would share
the same political leaning. This is clearly true for political blogs like HuffingtonPost.com,
but not necessarily true for NYTimes.com or Blogspot.com. We created domain source

nodes Vsource and edges Esource=1{(i,5): iEVstory Was posted on source domain sEVoyrce)-

Links from blogs to stories (Viink-to, Ejink-to). Munson et al (2008) created a dataset
consisting of political blogs and their HTML links to other stories. We hypothesize that
stories linked to by the same blog would have the same political leaning as the blog. We
created Vjink-to for the 396 political blogs that linked to any stories in Vory, and

undirected edges Ejink-to={(i,j): i€Viink-to HTML links to jEVstory}. | Elink-to|=17,372.

User friendship links (E,se;). Digg.com allows users to mark other users as friends, by
mutual consent. We hypothesize that users who are friends on Digg.com will tend to
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share the same political leaning. Using the Digg API, we harvested a total of 2,247,591
user-user friendship links, among which 755,303 are between u€V .. We created

Euser={(i,j): 1,j€EVuser are friends on Digg.com}.

Story similarity links (Estory). Using the Digg API, we obtained the title and a short text
snippet for each story, which was used to calculate text similarity between each story
pair. We hypothesize that stories that have similar text would also share similar political
leaning. We used Apache Lucene to calculate text similarity. We considered only terms
that appeared in at least 5 stories but not more than 40% of the total stories. For each
story, we selected its 20 terms with the highest tf*idf scores and used them to calculate
a cosine similarity with each other story. If i was one of the 10 stories with highest
similarity to j, and also j was one of the 10 most similar to i, an undirected edge (i, j) was

added to Estory. | Estory|=107,961, so each story had an average of 1.3 text similarity links.

Labels

Users identified in a news article (Lyser-reported). A NEWS article'® reported a group of
conservative Digg users who created a Yahoo group called the “Digg Patriots” and self-
organized themselves to deliberately bury liberal stories on Digg. The article identified
106 conservative users of the group. It also identified 44 liberal users on Digg who were
their primary targets (i.e., stories suggested to Digg by those 44 liberal users were voted
down). Digg.com has purged some members of the “Digg Patriots” from the system to
prevent manipulation. But we still have 104 labeled Digg users, 68 red and 36 blue. We
denote these labeled users as Lyser-reported. These users dugg 69,785 (83%) of the stories

in Vstory-

Labeled blogs (Lpigs). From five sites that classify blogs®®, we compiled 1,635 blogs
g

tagged as conservative or liberal. Of these, only 240 (15%) had any stories in Vsory. Those

" http://blogs .alternet.org/oleoleolson/2010/08/05/massive-censorship-of-digg-uncovered
"* They are: blogcatalog.com, blogarama.com, httpetalkinghead.com, blogs.botw.org, and wonkosphere.com
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blogs form a subset of Vsource that we call Lpjogs. 25,643 (30%) of the stories in Vsory were

from one of these labeled blogs.

More labeled blogs (Ljink-t0). For the 396 political blogs in Vjinkt, Munson et al (2008) also
labeled them as liberal or conservative. We used them as Ljinc.to, Which overlapped but

was distinct from the Lyjogs above.

Manually coded stories from Amazon Mechanical Turk (Lmturk). We randomly selected
1000 stories from Viory and posted them on AMT. For each story, we accepted 6 ratings
(3 from self-identified liberals and 3 from self-identified conservatives), at the cost of 3
cents per rating and a $1-52 weekly bonus to the most productive turkers. We collected
the ratings from 2010-7-8 to 2010-8-22, with 50-500 incoming ratings per week. 41
turkers coded at least one story, and 13 (8 liberals and 5 conservatives) coded more

than 50 stories.

For quality control purposes, we required the turkers to pass a qualification test with 9
correct answers out of 10 questions: 5 questions on basic political knowledge (e.g., who
was the Republican candidate in the 2008 presidential election?) and 5 questions on the
real coding tasks to test their understanding of the coding guideline. They also had to
meet the following criteria: a) located in the US, b) > 90% acceptance rate on other AMT

tasks, and c) complete our survey on their political leaning

We also randomly inserted verification questions (e.g., “1+4=?") into 100 stories, and
got correct answers from all turkers who encountered them. The turkers spent an
average of 63 seconds on each story. The Fleiss inter-rater reliability score was 0.53, a

“moderate agreement” (Landis and Koch 1977).

The limited inter-rater reliability suggests that there is not universal agreement about
the liberal-conservative categories and that they apply more clearly to some stories than
others. We considered those stories where all 6 turkers agreed to be clear examples.
There were 73 red and 234 blue stories in our labeled dataset Ltk In section 5.4, we

return to consideration of stories where raters were not unanimous.
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Manually coded users (Lyser-coded). We selected 220 Digg users from Vser who had made
more than 15 comments, with more than half of their most recent comments on
political stories. Then, we took a snapshot of their 15 most recent comments, and hired
2 undergraduate students to code them into red, blue and gray based on the political

leaning inferred from the 15 comments.

Before the coding process, we trained the coders to follow coding guidelines. For quality
control purposes, we inserted six known Digg users from Lyser-reported iNto the 220 user
pool, and both coders correctly classified them. When both coders felt confident
enough to assign a red or blue label, their agreement was 94.5% and their Cohen’s
kappa score was 0.89. We took the 69 red users and 62 blue users that both coders

agreed upon as clear examples, and formed dataset Lyser-coded-
5.3.2 Evaluation

We organized our evaluation process into 4 steps. Due to limited space, we only
document the detailed optimization process for the RWR algorithm, and simply report
the results for the other 2 algorithms in the first 3 steps. In the last step, we compared
the three algorithms. For all 4 steps, we used 10-fold cross validation, repeatedly

holding out one tenth of the nodes with known labels for testing.

The primary measurement was “accuracy”, averaged across the 10 folds of cross
validation. Let OtestingCO be the output for iE€Ltesting. Let O*testing be the subset of Otesting

that are correctly classified.

10" testing|
Accuracy=ﬂ
|Otesting|

Step 1: Optimizing Parameters

We were not confident on the usefulness of the extra structural datasets beyond the
diggs, nor of two of the label datasets, Lyjogs and Liink-to. Thus, to tune the algorithm
parameters, we used the limited network G'=<V',E'>, where V'= Vsory @ Vyser, E'= Edgigg,

and labeled data L'=Lyser-reported @ Luser-coded & Lmturk- On average, for nodes in a cross-
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validation test set, the shortest path from a node in the training set is 2.55, suggesting
that a small but non-trivial amount of propagation will be necessary to propagate labels

to nodes in the test set.

First, we optimized the teleport factor a for RWR, fixing 6z and 6z at 1.0. Figure 28(a)
shows that accuracy was not sensitive to a in the range 0.1 to 0.7. The optimal was
a=0.3, yielding accuracy 94.8%. For the LCGC and ARW algorithms, the optimized a was

0.3 and 0.1 respectively. We used these values for the rest of the evaluation.

Since our labeled datasets include only definitively labeled items (reds and blues, but no
grays), overall accuracy will be optimized only when all items are assigned a red or blue
label definitively. Not surprisingly, then, holding 6z=1.0 the optimal value for s was also
1.0, and vice versa. Thus, we assign red labels whenever F'r > F g and blue labels when

F'a>F

However, Br and 05 could be used to trade off precision and recall rather than simply
optimizing for overall accuracy. Precision and recall for red are defined as follows (for

blue they are defined analogously):

|0"rl [0"rl

lorl’

Precisiong = Recallg =

|Ltesting,R|

In the formula, Og is a subset of Oiesting that are red. 0'g is the subset of O*testing that are

correctly classified as red. Liestingr is the set of red nodes in the initial testing set.

The results are shown in Table 12. At Bg=05=1.0, red had higher recall and blue had

higher precision. That means our algorithm tended to over-classify nodes as red.

Table 12. High recall for red; high precision for blue

Precision | Recall
Red 88.0% 99.7%
Blue 99.6% 92.1%
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To trade off precision and recall, we could adjust the 8z and 0 threshold parameters. In
general, as we increase Og, fewer things are classified as red and more are left as gray,
increasing precision but decreasing recall for red items, and similarly for 8s. We have
similar results for LCGC and ARW algorithms, too. We will return to the 8 parameters in
section 5.4, where items that turkers did not agree on are labeled gray for the purpose

of evaluation.

Step 2: Evaluating Source and Link-to Relations from Labeled Blogs

In this step, we evaluated the usefulness of the two labeled sets of blogs, Lyiogs and Liink-to-
We added nodes for the blogs in Lyiogs and edges from them to stories that appeared in
those blogs, and added nodes for the blogs in Link-t, and edges for their HTML links to
stories. Table 13 shows the effects on accuracy. We get similar results using LCGC and
ARW. Since the labels (and nodes and edges) associated with Lyjogs Were useful, we
included them in the baseline for assessments in step 3. But we excluded Lijn.to and the
associated Vjink-to and Ejineto because they did not increase accuracy. The optimized

*
IabEIEd dataset WaS then L = Luser.reported Luser.coded Lmturk Lb|og5.

Table 13. Blog sources are useful; not blog links

Add I-Iink—to?

No Yes
Add No 94.8% 92.1%
Lblogs? Yes 95.4% 92.9%

Step 3: Evaluating Structural Datasets

In this step, we evaluated the usefulness of the three extra structural datasets Vsource,
Esources Euser, and Estory that added additional nodes and links without adding any
additional labels. Prior to this step, we used E=Egig, and the weight wj; for each (i,j)EE
was set to 1. Since we have more than 5 million links in Egigg and the number of extra
links, | Edomain @ Euser & Estory |, is only 10% of |Egigg|, adding the extra links to E with the
same weight as Egigg would not have much effect. Therefore, we also optimized the

weight for the extra links by varying their values from 1 up to 100.

119



First, we added Vsource and Esource to G. Note that Lpiogs was already included in G, so the
only additional source nodes added were those not associated with known labeled blogs.
Figure 28(b) shows that their addition, with weight 1, decreased accuracy from 95.4% to
below 95%. Increasing the weight of edges eEEqurce, including the edges from the
labeled blogs, increased accuracy, up to an optimal weight of 50, which yielded accuracy

of 96.6%.

Second, we added E . to the original G (without Vsource and Esource). As shown in Figure
28(c), adding the friendship links reduced accuracy. Even though accuracy peaked at

weight=10, it was still lower than the previous optimum.

Finally, we added Estory to G. As shown in Figure 28(d), accuracy dropped steadily as the
weight of eEEqr, increased, and it was always lower than the previous optimum of 95.4%

WithOUt Estory.

Thus, the optimal graph structure G*=<V* ,E*> has V*= Vstory B Vuser @ Vsource, and E*= Egigg
Esource With the weight of eEE;yuce €qual to 50. We found similar results for LCGC and

ARW algorithms too, where Esource improved accuracy, but Eyser and Estory did not.
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Step 4: Semi-Supervised Algorithms Comparison

Next, we compared the performance of the three semi-supervised learning algorithms,
using the optimized parameters from step 1 and the optimized L"and G from steps 2

and 3. In addition to the overall accuracy, we also show accuracy for stories and users

separately in Table 14.

Table 14. Algorithms comparison

Accuracy | Accuracy | Accuracy

(overall) | (stories) | (users)
RWR | 96.6% 95.4% 99.5%
LCGC | 96.9% 95.6% 100%
ARW | 97.3% 96.3% 99.6%

5.3.3 Discussion

Overall, the results are quite promising, suggesting that a relatively small number of
seed people and stories that are clearly liberal and conservative, together with a large
number of people to item votes, can be used to classify, with high precision and recall,
the other people and items that are clearly liberal or conservative. The three algorithms
all had very high accuracy, with the absorbing random walk performing the best of the

three.

Precision was higher for blue classifications, but true reds had higher recall. We suspect
that this is because Digg is quite skewed in favor of liberal stories, but the color

distribution in our training data is more balanced.

The liberal/conservative labels of source blogs, together with links from source blogs to
the items that appeared in those blogs, proved to be useful inputs to the propagation
algorithms. A closer look at the results of the optimized RWR algorithm reveals that 98.5%
of stories in Lyiogs had the same political leaning as their source blogs. We suspect that
congruence, together with reasonably high quality classifications of the blogs, made

those labels and links useful for classification.
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Propagating liberal/conservative labels from blogs through their HTML links to stories,
however, decreased overall classification accuracy. Although Adamic and Glance (2005)
found that HTML links between blogs that have different ideologies are rare, such links
are frequent enough to make propagating labels over those links misleading. According
to the RWR algorithm’s classification, only 76.5% of HTML links led from blogs to stories

that had the same political leaning.

Adding nodes for website domains (including the non-labeled ones) with links to stories
that appeared on those domains was helpful for the classification. This implies that most
Digg stories posted on the same website indeed share the same political leaning.
Classification improved most when the links from sites to stories were given weight
equal to fifty individual diggs. We suspect that if we had a dataset with many more diggs

per story, the optimal weight for these site-story links might be even higher.

Adding links between declared “friends” decreased classification accuracy. The
classification results from our algorithm suggest that only 63.3% of the 755,303
friendship pairs share the same political leaning. One possible explanation is that since
Digg is not for political news only, and friendship on Digg is not necessarily based on
political preference but perhaps on other non-political factors such as the same hobbies

or locations.

Adding links between stories with textual similarities also decreased classification
accuracy. One plausible explanation is that stories that have similar topics and content
features do not necessarily share the same opinions. For example, “thumbs up to
healthcare reform” has similar text to “thumbs down to healthcare reform”, but clearly
they have opposite political leanings. Another reason was that we didn’t have the full
text of the stories, which prohibited further optimization on the text similarity links. It
could be, however, that more sophisticated text comparisons, perhaps based on topic
modeling and sentiment analysis, would provide better inputs to our graph propagation

algorithms.
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Comparison to SVM

We compared the semi-supervised learning algorithms to the supervised learning
algorithm, SVM, which was the most frequently used approach in prior studies on
political leaning classification. Our semi-supervised learning algorithms outperformed

the SVM algorithm.

We tried three versions of the SVM classifier. All text features were generated using

Apache Lucene, and we used the SVM-light'® application to run the algorithm.

In the first version, we simply generated the uni-gram text features from each story’s
title and text snippet, and ran SVM. In the second version, we followed the optimization
process in (Oh et al, 2009): for the text features, we used the combination of uni-gram,
bi-gram and tri-gram, and then used x> feature selection that selected 5,440 out of

3,079,759 features with p<0.1.

The first two versions only worked for stories that have text features. In the third
version, we first ran SVD on W to generate 6 major components for both stories and

users, and then used them as 6 features the classifier.

The result is in Table 15. SVM with feature selection worked quite well, achieving 92%
accuracy for stories. However, it has two limitations. First, after feature selection, SVM
was not able to classify 9.8% of the stories that didn’t have any selected features. To be
able to classify those stories, we would have had to add more features, possibly noisy
ones, which would have driven down accuracy. Second, a text classifier was not able to

classify the users (except for using features from SVD) that didn’t have any text features.

Table 15. Result of SVM

Accuracy | Accuracy | Accuracy
(overall) | (stories) (users)
All features N/A 76.2% N/A
X’ feature N/A 92.0% N/A

' http://svmlight.joachims.org/
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selection
SVD features 81.4% 87.6% 76.0%

Extensions

Online updating. Running the algorithm with full iteration would be too time-consuming
in an online setting each time a new digg arrived. For the RWR algorithm, we developed
a simple online algorithm to classify stories and users using 1-level propagation of
previously-computed RWR scores F*=(F*;z, F*ig) through the complete set of diggs,

including those that had newly arrived:

F —Z X5 here (i) € B
4 degree(i)'w ere (1)
1

Using the two automatically collected datasets Liraining= Lblogs @ Luser-reported t0 generate the
pre-computed F*;scores with RWR, we evaluated the 1-level propagation algorithm
using the two manually coded datasets for testing, Liesting=Lmturk @ Luser-coded- COmpared to
the first row of Table 16, accuracy of 1-level propagation was only a little lower. We
conclude that it would be reasonable to use 1-level propagation online and periodically
re-compute the stationary F*;scores. We leave it to future work to develop similar

approximations of the LCGC and ARW algorithms.

Table 16. Result of 1-level propagation on , with RWR

Accuracy (overall)|Accuracy (stories)|Accuracy (users)

|-trainingzl-domain I-user—reported 95.2% 94.1% 97.7%
|-testing= Lmturk B Luser-coded
1-level propagation 93.8% 92.5% 96.9%

Preliminary study of using gray labels in testing set. So far, we have showed the semi-
supervised learning algorithms achieved high accuracy on clearly labeled red and blue
items. Some stories and users, however, do not fit cleanly into either category. In some
contexts, either red or blue labels for ambiguous items would be acceptable. In others,
however, it would be better to mark such ambiguous items as gray, and classifying them

as either red or blue would be considered erroneous. In that case, excluding gray items
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from the calculation of error rates, as we have done, would lead to overestimates of the

precision of the classifications.

We have conducted some preliminary analysis of how the algorithms would perform if
classifications of gray items as red or blue counted as errors. From the 1000 Mechanical
Turk stories, we defined the rest of the 653 stories (excluding 40 broken link stories)
that were not in Lk, those without unanimous ratings from turkers, as gray. Adding
the new gray labels to the testing set, we got the optimal threshold parameters as
0r=1.6 and 0=1.45 for RWR, which switched some of the red and blue classifications to
gray. Accuracy overall dropped to 72.4%. Accuracy for the clearly labeled red and blue

items dropped to 89.9% with the new threshold parameters.

For comparison, we used two binary SVMs (one classifies red vs. not-red, the other
classifies blue vs. not-blue) to classify red (as red and not-blue), blue (as blue and not-
red), and gray (otherwise) using the new testing data. Accuracy was 85.7%, higher than
RWR. Note that SVM could not classify 13% of the stories that did not have any selected
features, and we simply labeled them as gray. This helped SVM because there are many

gray labels in the testing set.

With a slightly different definition of true red, blue, and gray, the results turned out
differently. For Mechanical Turk stories, we defined red as any story having >2/3 red
ratings from the turkers, blue as having >2/3 blue ratings, and gray for the rest, which
resulted in 490 blue, 203 red, and 267 gray. Using these new data in the testing set for
RWR, we got the optimal 6g=1.15, 85=1.1, and overall accuracy 74.8%. For clearly
labeled red and blue items, we still have 95.6% accuracy using the new threshold

parameters. The SVM algorithm got accuracy 73.9%, now slightly lower than RWR.

The lack of a principled approach to mapping multiple ratings into red, gray and blue
prevents us from drawing reliable conclusion on whether RWR or SVM is a better
algorithm when classifying items as gray, which is one major limitation of the original

study. | will discuss this in more detail in the follow-up study.
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5.4 Follow-up Study

The main limitation of the original study was that we only used clearly red and blue
items in the labeled ground truth dataset. Low agreement items were entirely excluded.
The limitation was due to the lack of a principled approach to defining “gray” items
when human raters don’t agree on the correct label of items. As a result, classifiers
would only classify items as either red or blue but not gray in order to be evaluated
favorably against such a ground truth with no gray items. Although we learned that
LabelPropagator worked quite well for clearly red and blue items, we still didn’t know

how well it could work for gray items.

Furthermore, even though we had 6 ratings per item in the original study and we only
used those items with consensus agreement from the raters, the labeled dataset was
still not reliable: 13.7% of those items with 6 out of 6 consensus ratings in the original
study would get different cost-minimizing labels when labeled again by 20 different

coders. One might challenge the reliability of the results from the original study based

on the unreliable labeled dataset.

Therefore, the follow-up study tries to answer two questions. First, how does
LabelPropagator perform with gray items? Second, does LabelPropagator work better
than alternative classifiers? The primary task of the follow-up study is to re-evaluate
LabelPropagator using the labeled dataset obtained from chapter 3 in order to study the
performance of LabelPropagator when tuned to produce gray labels as well as red and
blue. We also want to be sure that comparing the performance of LabelPropagator to
that of alternative classifiers lead to reliable result by following the suggestions from

chapter 4, despite the presence of sample errors in the labeled dataset.

The rest of the section is organized as follows. Section 5.4.1 summarizes the datasets
involved in the follow-up study. Section 5.4.2 discusses the evaluation of
LabelPropagator using the labeled dataset obtained from chapter 3, and section 5.4.3

summarizes the main findings and insights of the follow-up study.
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5.4.1 Datasets

Throughout the course of the thesis, | have done three separate rounds of political
leaning annotations on Amazon Mechanical Turk. | will summarize them in chronological

order below.

The first round was done in 2010 in order to collect labeled articles as ground truth to
study LabelPropagator. This labeled dataset was discussed in detail in section 5.3.1. To
better distinguish this dataset from the other two rounds, I'd like to rename the
notations used in section 5.3.1 = Vsiory, Visers Ediggr, @ Lintyrk — as Vstory—2010,
Vuser—20100 Edigg—2010 and Liptyrk—2010- In the original study, Lyt had only 307
clearly red and blue stories with 6 out of 6 consensus ratings from raters. Here, let
Lturk—2010 denote all 960 labeled stories that received 6 valid ratings, regardless of
whether the ratings were consistent or not. Let Ly;;4inq; then be the labeled dataset

used in the original study that only consists of the 307 clearly red and blue stories.

The second round of data collection was done in 2011 between May 30th and
November 30th. Each day, an average of 200-300 popular political stories were crawled
from Digg.com and the most popular ones on the Digg.com homepage between 2011-
07-28 and 2011-11-28 were immediately posted to AMT to get political leaning
annotations with 4 labels per story. I'd like to denote the dataset collected in this round
as Vscory-2011, Vuser—2011, Eaigg-2011, and Lingurk—2011, Where |Vgory—20111=29,313,
|Viser-20111719,614, |E4igg-2011171,711,449, and | Ly, yrk—2011|=14,568. To be
consistent with the original study, | have removed stories that received less than 10

diggs, and removed users that did not make at least 5 diggs.

The last round of data collection was done in 2012, and was discussed in detail in
chapter 3. This round did not crawl any new stories from Digg.com. It only had AMT
workers annotate again the same stories sampled from L,,,1yrk—-2010 @aNd Lyturk—2011,
but this time with 20 labels per story. The process was discussed in chapter 3 and will

not get repeated here. To use consistent notations, | will denote the labeled dataset
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obtained in this round as L,k —2012 (Which was denoted as ﬁf, Vi € I in chapter 3 as

the semi-true ground truth dataset). Recall that |L,,tyrk—2012]=1911. Table 17 lists the

differences of the three labeled datasets: L,turk—-2010 Lmturk—-2011 aNd Lyturk—2012-

Table 17. AMT annotations in 2010, 2011, and 2012

Lmturk—ZOlO

Lmturk—ZOll

Lmturk—ZOlZ

Number of labels
per article (m)

4

20

Number of valid
articles (n)

960

14,568

1,911

Articles selected
from:

Vstory—ZOlO

Vstory—2011

Vstory—ZOlO and
Vstory—2011(only those in

Linturk—2010 @nd
Lmturk—ZOll)

Articles pre-
processed

N N Y
(removing HTML © ° es
and source)

Liberal, Liberal,

Political leaning
labels

Conservative,
Neither, Both,
Broken

Conservative,
Neither, Both,
Broken

Red, Blue Gray

Price per label

$0.03

$0.01~0.05

$0.05

Bonus

Yes

Yes

Yes

Quality control

Qualification test,
threats, captchas

Qualification test,
threats

Qualification test

Annotated in

Jul. ~ Aug., 2010

Jul. ~ Nov., 2011

Oct., 2012

Sample
stratification

No

No

Yes

I’d like to make two clarification points. First, V,,serr—2010 and Vi ger—_2011 Overlap with

each other: 20.9% of users in V, serr_2011 are also in V4o _2010- Therefore, labels in the

original graph (constructed from Vs;ory—2010, Vuser—2010, and Egigg—2010) Were able to

propagate to new stories and users in 2011 through those overlapping users. Similarly,

labels on the new stories are able to propagate back to nodes in the original graph. In

other words, I can append Vi1 —2011, Viser—2011 @nd Egig4-2011 to the original graph

and construct a new connected graph for LabelPropagator.
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Second, stories labeled in L,,;yk—2012 Overlap with stories labeled in L, 17k—-2010 @nd
Loturk—2011, but the labels are different. That is, each story in Ly, tyrk—20121S (Or is
intended to be) labeled for the second time in 2012 although it has already been labeled
in either 2010 or 2011. | intended to get 1000 stories from Vs, 2010 labeled in both
2010 and 2012, but due to various technical problems (e.g., broken links, network
timeout, etc), only 960 and 744 of them got labeled in L, tyrk—2010 3N L turk—2012
respectively. The overlap consists of 733 stories, and I'd like to denote L, as the
overlap in Ly surk—2012 With 20 labels per story from 2012. All the 1,165 stories from
Vstory—2011 that are labeled in Ly, ¢k 2012 are also labeled in Ly, 4y —2011- I'd like to
denote Ljc1q0ut @S the rest of the 13,421 labeled stories in Ly turk—2011 Ut notin

Lturk—2012- The relationships among these datasets are illustrated in Figure 29.

Linturk-2012 € Lyw

Lmturk—ZOll € Lhetaout >

Lmturk—ZOlO

Y
[ VStOTV—ZOlO /StOTV—2011

Figure 29. Labeled datasets overlap

5.4.2 Evaluation

I’d like to make a few clarification points. Firstly, the original study found that ARW has
higher accuracy than the other two variations of LabelPropagator (RWR and LCGC), and
that a story’s sources are useful for propagation while text similarities, users’ friendships
and blog reference links are not. In this follow-up study, | will use ARW and stories’
sources for LabelPropagator without studying again which variation of LabelPropagator

(e.g., RWR, LCGC or ARW) works better or which additional dataset (e.g., stories sources,

129



blog reference links, text similarities or users’ friendship) is useful for propagation,
although future work should address whether these results still hold when adding gray

items to the ground truth dataset for training and evaluation.

Secondly, in the follow-up study, | will treat the underlying ground truth of stories’
political leaning as distributions instead of labels. However, | will use the evaluation
scheme ¥, instead of Wy to evaluate the classifiers, as suggested by chapter 4. That is, |
will first map the distributions (H;) into their cost-minimizing labels (I;) by using the
guadratic partitioning and then use the cost-minimizing labels to evaluate classifiers,
instead of directly evaluate classifiers with the distributions. Using the distribution as
ground truth model and ¥,, | am finally able to define gray items in a principled way (in
terms of cost-minimizing) and solve this major problem in the original study. Suppose
we have 6 labels per story, then (3 red, 3 blue) is gray, (3 red, 3 gray) is gray,
(4red,2 gray)isred, (4 red,1 gray, 1 blue) is gray, (5 red, 1 blue) is red, and so on.
The labeled dataset might still be unreliable due to sample errors, but we know from
chapter 4 that classifier evaluation is still reliable if we have many items in the
evaluation dataset, which we do. Also, ¥; uses Equation 13 to compute classifier
accuracy, which is discounted according to the quadratic cost function. As | have
explained in chapter 4, | will use a decimal number instead of a percentage to denote

the accuracy score, and it is not comparable to the original study.

Thirdly, | will not re-invent LabelPropagator to take advantage of the distribution as
ground truth model for training purpose. Instead, | will first map the distributions into
their cost-minimizing labels, and then use the labels to train LabelPropagator and other
classifiers, just like | will use the labels to evaluate the classifiers too. Although | will use
the cost-minimizing labels instead of distributions for both training and evaluation
purposes, the process still assumes the distribution as ground truth model, which is
quite different from the traditional label as ground truth model. | have discussed this in
both chapter 2 and chapter 3 and will not repeat them here. | will show more evidence

later to support this argument.
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Step 1: Ground Truth - Old versus New

This step is to evaluate LabelPropagator using the new ground truth dataset L,,,,,, and
to contrast the result to evaluation using the old ground truth dataset L,,;gingq; in the
original study. In this step, | will use the same graph structure as in the original study,
constructed from Vs;ory 2010, Vuser—2010, Edigg—2010- But | will use different labels

(Lnew instead of Lyyginq1) to propagate in the graph as well as to evaluate the classifier.

Similar to the original study, | will still use 10-fold cross validation for classifier training
and testing: nine tenth of L,,,,, will be used for training, and the rest one tenth for
testing. In the training process, even though the nine tenth labeled items include gray
items, | will not use them for propagation. | will explain it in the “future work” section. |
will use gray items in the one tenth for testing, which incentivizes classifiers to classify
items into gray in order to achieve higher accuracy. As | have discussed earlier, the
original study did not use gray items at all, and therefore the classifiers had no reasons

to classify items into gray even though they were capable to do so.

Recall that Ly ginq; Only includes 307 clearly red and blue stories with 6 out of 6
consensus ratings from raters. 25% of them were not labeled again in L,,,,, due to
technical problems explained earlier. But 18% of the items in L ginq that got labeled
againin Ly, received different cost-minimizing labels in L,,,,,. Also, L., includes
other items that were not originally included in L,,;4inq; because they did not receive
consensus ratings in 2010. But now we are able to map them into red, gray and blue

using the principled cost-minimizing approach.

Due to these changes in the ground truth dataset, the optimized parameters of
LabelPropagator change from 8 = 8 = 1.0 to 8 = 1.004 and 8z = 1.008 and
accuracy changes from 96.2% to 0.773". A total of 13.9% of the stories in the

classification results get classified differently. Table 18 shows the confusion matrix of

7 The two accuracy scores, 96.2% and 0.773, were computed under ¥, and W, respectively, which
followed different equations. Thus the two scores were not directly comparable.
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the classification result changes. Note that many items that were originally classified as

either red or blue are now classified as gray.

Table 18. Confusion matrix: classification outcome changes

Lpew
r g b
r - 3.2% | 0.1%
Loriginal g 0% - 0%
b | 0.4% | 10.2% -

Total changes: 13.9%

Step 2: Evaluation against Held-out Data

This step is to compare the performance of LabelPropagator to alternative classifiers. |
will use all items in L, syrk—2012f0r training purpose and all items in Lye;40u: @s held-out
dataset for testing. Recall that Lj,;40u¢ has about 14 thousand labeled items with 4
labels per item. According to chapter 4, classifiers’ ranking would be quite reliable even

though the cost-minimizing label of each individual item in Lye;q04¢ 1S NOt reliable.

Now | expand the original graph to include new stories, users and Diggs from
Vstory—2011, Vuser—2011 and Egigg_2011- As | have explained earlier, the new graph is still
connected because of the overlapping users in V,,corr—2010 and Vyser—2011- Using the new
graph and ground truth data L,,+urk—2012 t0 propagate labels, LabelPropagator has the

new optimized parameters 8, = 1.038 and 8z = 1.018. Accuracy is shown in Table 19.

There are three alternative classifiers as comparison baselines. The first alternative
classifier, SVM, has been described in the original study and | will not repeat it here.
Another alternative, SourceClassifier, simply takes the source of any story, and classifies
the story as having the same political leaning as its source. It works on any item as long
as the bias of the source is known, or else the item is labeled as gray. The political

leaning of the sources used in SourceClassifier is from a separate ongoing project'®,

' This project is in its early phase led by Munson(smunson@um.edu). The political leaning of sources are
aggregated over multiple sources such as those described in the original study. Source code is available
upon request.
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which uses a set of heuristics to infer the political leaning of sources. The last alternative
classifier, RandomClassifier, simply classifies items uniformly at random into red, gray,
and blue. This is the worst classifier, and establishes the lower bound. Accuracy scores

of alternative classifiers are listed in Table 19.

Table 19. Accuracy evaluated against Lj,;40,, using ¥,

Accuracy
LabelPropagator | 0.679
SVM 0.384

SourceClassifier 0.543
RandomClassifier | 0.210

(Note: accuracy marked with * are averaged over 1000 repeated trials)

Table 20. Confusion matrix: classification results from different classifiers

LabelPropagator SVM SourceClassifier
r g b r g b r g b
r | 11.7% | 5.3% | 0.04% | 4.1% | 12.4% | 0.59% | 6.7% | 9.6% | 0.68%
Lhetaour | g | 74% | 31.2% | 6.7% | 8.2% | 34.6% | 2.4% | 4.2% | 31.1% | 10.0%
b | 0.25% | 13.5% | 23.9% | 3.9% | 28.8% | 4.9% | 0.10% | 19.8% | 17.7%

Step 3: Comparison to Human Coders

This step is to compare LabelPropagator against human coders as the “human classifier”,
such as the €C°%¢" family described in chapter 4. In this step, | will use all items in
Lturk—2012 @s held-out data for testing purpose instead of for training purpose. For
LabelPropagator, the initial labels to propagate in the expanded graph are only from
Lyser—reportedr Luser-coded, and Lpo45 that were introduced in the original study. With

this setting, accuracy of LabelPropagator is listed in Table 21.

| will denote the “human classifier” as “k-coder”, which randomly sub-samples k labels
from 20 labels per item for each item in Ly, turk—2012 @and then uses quadratic
partitioning to map the k labels into an item’s cost-minimizing label as the classification

result. Accuracy of k-coder is listed in Table 21.
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Table 21. Accuracy evaluated against L,;,,, k2012 using ¥;

Accuracy
LabelPropagator | 0.644
1-coder 0.602°
2-coders 0.736

Note: accuracy marked with * are averaged over 1000 repeated trials)
y g

5.4.3 Discussion

The political leaning classification problem is subjective. | have argued in chapters 2 and
3 that the labeled ground truth dataset for such a problem is unreliable. Here,
“unreliable” means that many factors (such as who the raters are) will affect the labels
of items, and therefore repeatedly labeling items will lead to different results. The first
step of the follow-up study shows that using different ways to define ground truth on
the same set of items will affect classifier optimization and evaluation. Decisions
regarding whether to add gray items, whether to increase the number of labels per item
to decrease sample errors, and which partitioning to choose in order to map
distributions into labels all have a considerable impact on classifier evaluation and
optimization. Different decisions will change LabelPropagator’s optimized parameters
(6r and B3), cause classification results to vary from 13.9%, and changes accuracy from
96.3% to 0.773 (step 1). In short, different ways to define the ground truth dataset do
matter. It is imprudent to define ground truth using any arbitrary approach and expect
to draw meaningful conclusions about the classifiers without considering all factors that

might affect the ground truth dataset.

Using the new ground truth dataset causes accuracy to drop from 96.3% to 0.773. I'd
like to point out that the original study and the follow-up study use different evaluation
scheme to compute classifier accuracy, and thus the two accuracy scores are not
directly comparable. However, in the follow-up study with gray items, LabelPropagator
and other alternatives indeed made more incorrect classifications (see Table 20).
Studies (e.g., Bishop 2006) have consistently shown that multi-class classification

problems are harder than binary classification problems. Although accuracy was usually
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higher than 95% for LabelPropagator and above 90% for alternative classifiers such as
SVM in the original study without gray items, adding gray items makes the classification
problem much harder, and not surprisingly, accuracy drops considerably for all
classifiers. Almost all previous studies on political leaning classification only used items
that fit cleanly into the red or blue category, and would have suffered the same problem

too, had they also included the more difficult items in their evaluations.

Even though the performance of LabelPropagator degrades after using the gray items, it
still outperforms SVM and SourceClassifier (step 2). Classification results from
LabelPropagator are even better than the output of 1 human coder as the “human
classifier” (step 3). According to chapter 4, the conclusion that LabelPropagator is better
than the alternative classifiers is reliable because the classifiers are evaluated against
powerful ground truth datasets containing many items and many labels per item. We
are confident that the better accuracy of LabelPropagator is not simply a misleading

case of comparing the results of LabelPropagator with an unreliable labeled dataset.

Furthermore, LabelPropagator has other advantages besides higher accuracy. It doesn’t
rely on any textual information of the items, and therefore it can classify images, videos,
short messages such as tweets, and people, as long as they are on the propagation
graph. Another advantage is that it does not require a lot of expensive training data,
which is usually a requirement for supervised learning algorithms such as SVM. These
benefits, together with the higher accuracy, make LabelPropagator one of the better

choices for political leaning classification.

SVM does not work very well with gray items: accuracy drops from 92.0% in the original
study down to 0.384 (step 2). Most previous studies about political leaning classification
using SVM have shown higher accuracy (e.g., Oh et al 2009). But I'd like to point out that
those studies did not take into account gray items, which would make the classification
problem much harder. Also, Table 20 shows that SVM has generated many false gray
classifications, indicating the lack of training examples necessary to classify the large

number of articles with many new text features in the held-out dataset. | suspect that
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many previous studies might have suffered the problem of overfitting due to the lack of
labeled items for training and evaluation, thus resulting in higher accuracy. On the other
hand, admittedly, SVM in this section was not fully optimized. For example, if SVM could
simply take an article’s source as a feature during the training process, it should perform
at least as well as SourceClassifier. Also, | have used two binary SVM classifiers to
classify items into red, blue and gray; a more sophisticated multi-class SVM classifier

could have performed better. Further optimization of SVM will be left to future work.

SourceClassifier does not work very well either. Here | will give a few examples to
illustrate why. There were 107 NYTimes articles in the ground truth dataset
(Lnturk—2012), but only 36% of them were labeled as blue (using the quadratic
partitioning) and the other 64% of stories were labeled as gray. Similarly, there were 23
FoxNews stories, but only 48% of them were labeled as red and the other 52% were
labeled as gray. Recall that each article in the ground truth dataset was labeled by 20
coders without knowing where the article came from. Simply by reading the content of
the articles, many people did not think the articles shared the exact same political
leaning as their obviously biased sources. In short, although it is intuitive to label items

according to their sources, it is not optimal to do so.

It can be seen that these alternative classifiers are complementary to each other. In fact,
the political leaning of articles’ sources used by SourceClassifier can be and has already
been used by LabelPropagator to propagate to other nodes on the graph. Also, we can
treat an article’s source as a feature to train SVM. | will talk more about these

possibilities in the “future work” section as well as in the last chapter.
5.5 Conclusions and Future Work

This chapter proposes the LabelPropagator algorithm that classifies articles and people’s
political leaning by propagating political leaning of known articles and users to the
target nodes. Overall, the results are quite promising, suggesting that a relatively small

number of seed people and stories that are clearly liberal and conservative, together
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with a large number of people to item votes, can be used to classify, with high precision
and recall, the other people and items that are clearly liberal or conservative. The three
variations of LabelPropagator all had quite high accuracy when evaluated without gray

items, with the absorbing random walk performing the best of the three.

This chapter also found that the liberal/conservative labels of source blogs, together
with links from source blogs to the items that appeared in those blogs, proved to be
useful input to the propagation algorithms. Propagating liberal/conservative labels from
blogs through their HTML links to stories, however, decreased overall classification
accuracy. Adding nodes for website domains (including the non-labeled ones) with links
to stories that appeared on those domains was helpful for the classification. Adding links
between declared “friends” decreased classification accuracy. Adding links between

stories with textual similarities also decreased classification accuracy.

In the follow-up study, the underlying ground truth of articles’ political leaning was
treated as distributions instead of labels. It allowed us to use cost-minimizing labels to
define gray items in a principled way, and then to evaluate LabelPropagator to see how
it classifies items into all three categories of red, gray and blue. Adding the gray items to
the ground truth dataset and using the more reliable ground truth dataset with more
labels per item for the same items did change LabelPropagator’s optimized parameters
and classification results, and accuracy dropped from 96.3% to 0.773. Even so,
LabelPropagator still has higher accuracy than the other alternative classifiers, which is a

reliable conclusion as suggested by chapter 4.

The primary challenge of future work is to improve LabelPropagator. Obviously,
LabelPropagator depends on the graph to propagate known labels. As the thesis is
written, Digg.com has been officially closed and re-built, and the public API to crawl
diggs data is not available anymore. In order for LabelPropagator to work, it has to

“I

utilize other “voting” data from people to items, such as Twitter mentions, Facebook

like”, or Google “+1”. A preliminary study on using the LabelPropagator algorithm to
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classify the political leaning of Korean twitter messages has shown positive results.

Future work should continue this line of study.

Another improvement to LabelPropagator is to use gray items for training. Currently the
algorithm only propagates red and blue labels, and uses threshold parameters (6 and
05) to determine whether an item should be classified as red, blue or gray. Propagating
gray labels could increase classification accuracy, but at the same time it could be
detrimental because it is not necessarily clear that gray people are likely to vote for gray
items and vice versa, which differs from the algorithm’s intuition that blue/red people
are likely to vote for blue/red items and vice versa. Nevertheless, future research should

study this possible improvement.

Another interesting direction for future work is to try to understand and characterize
the properties of datasets for which the different versions of the propagation algorithms
— RWR, LCGC, and AWR — will perform better or worse. One promising possibility is to
take an axiomatic approach based on identifying how the classification should change in

response to changes in the graph structure.

We note that the propagation algorithms gained accuracy with the addition of datasets
such as domain source links, where the linked items tend to have high correlation in
their labels, but lost accuracy with the addition of datasets such as friendship links
where the correlation was lower. We therefore discarded those datasets. Clearly, this is
not optimal, since even a positive correlation much less than 1 in principle provides
some information. Future research should find ways to make use of these noisy datasets

rather than discarding them entirely.

Finally, LabelPropagator is limited in that it requires interactions between stories and
users (i.e., diggs). For unpopular articles not covered in social news sites such as Digg,
our algorithm will not be able to classify them. However, its advantage is that it does not
require much training data. This is complementary to SVM (see Table 22), which
requires lots of training data, but does not require user-story votes. Therefore, one idea
is to use the propagation algorithms to generate many labeled data with high accuracy,
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feed this data to train SVM, and then use the well-trained SVM model to classify any

textual items. The process is illustrated in Figure 30.

Table 22. Comparison between LabelPropagator and text analysis classifiers

Classifier Pros Cons

Expensive (requires large
amount of training data);
mediocre accuracy

Requires a graph; limited

Text analysis: Doesn’t require a graph;
SVM high coverage

LabelPropagator | Inexpensive; high accuracy

coverage
_train Small amount
P of labeled data
—
- % 3. train s 4, classifv
[}
2 o Large amount of | S _—>
— 8‘ . unlabeled data, n
5 2. classify labeled by

LabelPropagator

Figure 30. Co-SVM illustration
This type of approach was invented by Blum and Mitchell (1998) as the “co-training”
approach. The version of LabelPropagator/SVM co-training as | have proposed and
illustrated in Figure 30 is very much simplified, which only iterates once by feeding the
output of LabelPropagator into SVM. Preliminary study shows that the simplified co-
training classifier has achieved 0.534 accuracy when evaluated against the held-out
dataset (Lje1q0ut)- It is not as good as LabelPropagator, but still is an improvement over
SVM. Future work should explore this promising direction to further improve both
LabelPropagator and SVM through co-training, perhaps with more iteration between

them.
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Chapter 6. Closing Remarks

6.1 Summary

This thesis started with the motivation to develop an algorithm able to classify a large
number of political articles into conservative, liberal and other. The challenge is not only
about classifier invention, but also about how to evaluate the invented classifier with
unreliable ground truth. Therefore, this thesis has two main themes: the “ground truth”
theme and the “classifier” theme. The “ground truth” theme studies how to define the
“ground truth” of articles’ political leaning, how to elicit annotations from human coders,
and how to evaluate classifiers with inaccurate labeled data. The “classifier” theme aims
to develop a better political leaning classifier that does not rely primarily on text analysis.

Next, | will summarize the main findings of both themes respectively.

The “ground truth” theme is mainly studied in chapters 2, 3 and 4. | have argued that
there exists a set of subjective classification problems such as the political leaning
classification problem where people don’t agree upon the correct label of items due to
the lack of objective classification rules. This is in contrast with the traditional objective
classification problems commonly found in the machine learning literature, where
people agree on the correct label of most items according to objective rules for
categorizing items, resulting in a reliable labeled dataset with few or no errors. For a
subjective classification problem, | have argued for the use of distributions as the
underlying ground truth model instead of labels. Under this perspective, disagreements
among coders are not treated as human errors to be eliminated, but rather as useful

information reflecting the distribution of people’s subjective opinions.
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Empirical data shows that more than half of the labeled items are in the middle of the
simplex, where more than 5 out of the 20 labels received for an item do not agree with
the majority label of that item. Many of the low agreement items, that is, 19.4% of the
total items, are in the partitioning disputed region, where different cost functions (or
partitioning of the simplex) would map them into different cost-minimizing labels.
Choosing a non-optimal cost function (i.e., the default 0-1 instead of the quadratic for
political leaning classification) that does not correctly model users’ true cost would
result in labeling those items incorrectly: showing the incorrectly labeled items to the

users would incur more cost than the optimal.

For a subjective classification problem, one can no longer assume the labels from a
small number of coders are reliable due to large sample errors: 24.8% of the items,
when labeled again, changed their cost-minimizing labels. | have found, however, that
even though individual items in the labeled dataset are unreliable, we may still reliably
evaluate and rank classifiers with distribution as ground truth, as long as we have a large
number of items in the evaluation dataset. Treating a subjective classification problem

as if it were objective runs the risk of incorrectly ranking the classifiers.

| have proposed two classifier evaluation schemes with the distribution as ground truth
model using the concept of cost-minimization: one scheme directly uses distributions
for evaluation and the other maps distributions into labels first and then evaluates.
Using computer simulation, | have demonstrated that both evaluation schemes can
obtain high classifier discrimination power with a large number of labeled items for
evaluation. The optimal setting is to obtain one label per item with many items, and it is
usually advisable to map items’ distributions into their cost-minimizing labels first and
then evaluate with the labels. According to the simulation, we need roughly 3000 items
for evaluation in order to get good discrimination power for a subjective classification
problem. For an objective classification problem, where labels for each item are drawn

from tighter distributions, we only need roughly 1000 items.
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The “classifier” theme is mainly studied in chapter 5. | have proposed the
LabelPropagator algorithm that classifies the political leaning of articles and people by
propagating the political leaning of known articles and users to the target nodes. There
is a temptation to leave unclear items out of evaluation sets, but that greatly simplifies
the task for classifiers, allowing them to get away with classifying all the gray items as
red or blue without penalty. When classifiers are assessed based on their correct
labeling of gray as well as red and blue, it is much harder to achieve high accuracy.
Nevertheless, | have shown that LabelPropagator achieves higher accuracy than the
other alternative classifiers, with and without gray items, suggesting that a relatively
small number of labeled people and stories, together with a large number of people to

item votes, can be used to classify the other people and items.

| have also found that the liberal/conservative labels of source blogs, together with links
from source blogs to the items that appeared in those blogs, proved to be useful input
to the propagation algorithms. Propagating liberal/conservative labels from blogs
through their HTML links to stories, however, decreased overall classification accuracy.
Adding nodes for website domains (including the non-labeled ones) with links to stories
that appeared on those domains was helpful for the classification. Adding links between
declared “friends”, however, decreased classification accuracy. Similarly, adding links

between stories with textual similarities also decreased classification accuracy.
6.2 Future Work

| have discussed future work specific to each chapter in that chapter. In this section, |

will discuss future work not covered in the previous chapters.

Distributions as Ground Truth for Training

In terms of using the distribution as ground truth model to design and evaluate
classifiers, this thesis essentially proposes to map distributions into labels first, and then
use the mapped labels to train and evaluate classifiers that also classify items into labels.

Another direction, which is not discussed in the thesis, is to directly train classifiers with
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distributions and classify items into distributions over labels as well. Then, if needed, we
could do a separate step of mapping the classification results as distributions into labels
in order to show the labels to end-users. Future work should fully compare these two

different approaches of using distributions as ground truth.

A few previous studies have taken the approach of training and evaluating classifiers
directly with distributions (e.g., Lugosi 1992, Cook and Stefanski 1994, Friedman 1997,
Kuchenhoff et al 2006, Rogers et al 2009, Dekel and Shamir 2009b, Hopkins and King
2010). Another line of work, which is sometimes dubbed as the “multiple raters
classification problems”, is to train classifiers with multiple labels from raters, and then
classify them into discrete categories (e.g., Yan et al 2010a, 2010b; Raykar et al 2009;
Zhou, Platt, Basu, and Mao 2012).

These prior works share a common limitation in that all of them assume that the labeled
ground truth dataset for evaluation is reliable, which, as | have argued earlier, is not true
due to non-negligible sample errors with a small number of raters. Therefore, their
conclusions about the classifiers could be misleading due to evaluation with unreliable
ground truth datasets. Future work could re-evaluate these existing works using the

evaluation scheme discussed in this thesis to determine if their conclusions still hold.

I have shown that it is optimal to elicit annotations using one label per item for classifier
evaluation purpose. But Sheng et al (2008) argued that it might be optimal for classifier
training purposes to obtain multiple labels for the same item. In other words, the
optimal number of labels per item for training and evaluation could be different. It is
fine as long as training data and evaluation data are kept separate. But it does create a
problem for cross-validation where each labeled item is used for both training and
evaluation. Future work should address how to optimally obtain labeled data for both

training and evaluation instead of obtaining training and evaluation datasets separately.

Finally, one limitation of LabelPropagator is that it doesn’t use labeled items’
distributions in the training process but simply maps distributions into labels first and
then propagate the labels, resulting in information loss. Future work should study how
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to directly propagate distributions (or annotations from multiple coders) to better

classify the items.

Ensemble Method for Political Leaning Classification

There are a few algorithms that have or could have been devised as political leaning

classifiers, listed as follows:

* Text mining based supervised learning algorithms

o SVM and its variations (N-gram, feature selection)
Naive Bayesian and its variations (N-gram and feature selection)
Neural networks
Topic models and generative models
Perceptron, logistic regression, and linear regression
Sentiment analysis (Jiang and Argamon, 2008)

o Text analysis with memes and shingles
* Unsupervised learning algorithms

o SVD (Baio, 2008)

o K-means clustering
* Semi-supervised algorithms, graph-based algorithms

o LabelPropagator: RWR, LCGC, ARW

o Community finding algorithms
* Miscellaneous

o Links from source

o Predictions from comments (Park et al, 2012)

o Google search co-occurrence (Efron, 2004)

o Human “classifiers”

O O O O O

Schapire (1990) showed, analytically, that combining multiple weak learners would
produce a strong learner that outperforms each of its components. Here, | will use
“ensemble method” as an umbrella term for such approaches that combine different
classifiers into a stronger classifier. There are many such ensemble methods developed
and used successfully in practice. For example, Freund and Schapire (1995) proposed
the AdaBoost algorithm. Sill, Takacs, Mackey, and Lin (2009) proposed the “feature-
weighted linear stacking” approach to ensemble recommender algorithms using linear
regression. Bell & Koren (2007) discussed their linear regression approach to combine

107 recommendation algorithms to form the Netflix winner algorithm. A few review
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papers (Polikar 2006; Dietterich 2000; Jahrer, Toscher, and Legenstein 2011) have

studied various ensemble methods, listed as follows:

* Boosting, AdaBoost

* Bagging

* Stack generalization

* Pasting from small votes

* Logistic regression

* Gradient boosting decision trees (GBDT)
* Bootstrap

* Mixture of experts (e.g., Dawid 1978)

Future work could study how to use the ensemble method to combine different political

leaning classifiers in order to achieve better classification accuracy.

Application

As | have introduced in the first chapter, the motivation of this thesis is to be able to
classify the political leaning of a large number of articles in order to feed into other
research or applications that need the classification results. It will have tremendous
practical value to put everything together from this thesis and build the state-of-the-art
political leaning classification system. Ideally, the system will run in a pipeline that
crawls political articles, classifies them into red/blue/gray categories, uses human
assessments to increase classification accuracy, provides classification results to the
wide world through web services, and automatically optimizes the classification

parameters as the system evolves over time.
At a high level, the classification system will have the following features.

* C(Classification accuracy will increase over time after accumulating more labeled
data as well as more unlabeled data (for propagation).

* Parameters can automatically adjust to optimize classification results.

* It can classify the political leaning of any English news articles or snippets.

* The classification results are available to the world via web services.

Below is a list of components to be included in the system.
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* The crawler component will crawl political news articles from all over the web,
clean them, and save them to the database. The component will have a plugin
design, so that new crawlers can be easily plugged into the system.

* The ground truth component serves as both training and testing dataset for the
classifiers. Using this dataset, the system could automatically re-adjust
parameter settings to optimize for classification outputs. The dataset will grow in
size over time as the system acquires more labels from human coders.

* The human component is based on the SignalElicitor/PredictionElicitor discussed
in Chapter 3. It serves as both a real-time classifier for difficult articles that the
automated classifiers are not able to handle, and also as a way to obtain more
labeled data.

* The ensemble of classifiers component uses an ensemble algorithm to combine
results from multiple political leaning classifiers, including LabelPropagator,
PredictionElicitor, and other text analysis tools such as Naive Bayes. The final
output should be more accuracy than any of the individual classifiers.

* The parameter optimization component works with both the ground truth
component and the ensemble of classifiers component to periodically update
the configurations of the system for better outputs.

* The web service component exposes the political leaning data to the outside
world through REST, XML-RPC, SOAP or other web services.

6.3 Broader Impact

The academic contribution of this thesis is two-fold, which corresponds to the two
themes. In terms of the “ground truth” theme, the thesis proposes the “distribution as
ground truth” model and gives clear instructions on how to elicit labels from human
coders and how to evaluate classifiers even though not all coders agree on all items. The
findings can apply to a broad range of subjective classification problems beyond just
political leaning classification. It is also the author’s hope that this thesis can serve as a
first step towards a systematic guidance to machine learning application designers and

practitioners on how to obtain labeled dataset properly.

In terms of the “classifier” theme, the thesis proposes the LabelPropagator algorithm
that has higher accuracy compared to traditional text analysis approaches. Using this
classifier, researchers can obtain good quality political leaning classification results to do

other studies that require such data, such as those discussed in section 1.1.
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In addition to academic contribution, this thesis could give rise to many real world

applications. For example:

* Search engines like Google can use the classification as important metadata to
allow users to search political articles within particular political categories.

* Major media like the New York Times can monitor the political leaning of their
content and add or remove articles when certain political views are under- or
over-represented.

* National online forums can use the technology to monitor online discussion
threads and make sure they represent balanced opinions to attract readers from
both sides.

* Political campaigns can promote popular articles from both sides (selected from
our labeled dataset) to elicit bi-partisan support.

* Website designers can use the classification to highlight the political leaning of
articles for better user experience.

* News consumers can receive feedback about the aggregated political leaning of
their previous reading history, and adjust the articles they want to read to avoid
reading only one side of the story.

* The government can monitor the level of polarization and fragmentation on
mass media and make policies to reduce it and enhance democratic functions.

To sum up, this thesis will make a positive impact upon academic research, news

consumers, media publishers, the government, and the broader culture.
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