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CHAPTER I

Introduction

This dissertation summarizes the results of an investigation into low-dimensional modeling

of an infinite-dimensional dynamical system, namely the problem of buoyancy-driven convec-

tion in a fluid-saturated porous medium. Motivated by the emergence of coherent structures

in various dynamical regimes of this problem and the ultimate development of an “orderly”

chaos, we ask whether it is possible to construct finite-dimensional dynamical models that

are tailored specifically to this problem, reflecting its inherent symmetries and other quali-

tative features. We further ask if such models are in any sense more efficient in reproducing

the essential features of the dynamics than other standard “generic” methods.

As we begin to study more and more complex dynamical regimes, we can not help but wonder

if the coherent structures emerging amid the chaos can be exploited to further reduce the

models in size. If successful, such an approach will constitute not only a computational

advance, but a major step in identifying and isolating the “essence” of the motion in its most

parsimonious form, thus bringing us one step closer to a physical understanding.

Thus, the effort is divided between two distinct but related fronts: on the one hand, we

use direct numerical simulations in order to understand whether the most robust emergent

coherent structures may in any way be seen as autonomous dynamical “units” encapsulating
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the essential dynamics. On the other hand, we develop an a priori numerical method that

yields a family of low-dimensional dynamical models of the problem which are adapted

specifically to the equations of motion. Finally, we combine the findings of the two, and test

the capabilities of the models enhanced by the physical insights gained from the study of

coherent structures.

The rest of this dissertation is organized as follows: in Chapter II we present an overview

of the theory of global attractors for driven dissipative dynamical systems, the fundamental

theoretical inspiration for this undertaking. An introduction to the generic template for our

dynamical models, namely the class of Galerkin spectral methods will naturally follow. Then

we state the problem of buoyancy-driven convection in a fluid-saturated porous medium and

review the phenomenological aspects thereof. This motivates the numerical investigation of

the notion of the “minimal flow unit” in Chapter III. We show that the minimal flow unit

may indeed serve as a dynamical unit to which the modeling can be reduced. In Chapter IV,

we derive our new Galerkin method as well as the generic Fourier-Galerkin method, which

we put to the test numerically in various dynamical regimes in Chapter V. Finally, Chapter

VI presents our conclusions and closing remarks.
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CHAPTER II

Background

Modeling, i.e., the process of constructing logical or mathematical frameworks that describe

and predict natural phenomena in a sufficiently detailed and faithful fashion while being

maximally parsimonious is arguably the cornerstone of the scientific method. In this sense,

virtually any scientific theory, any equation describing a physical phenomenon, is ultimately

a model: perhaps lacking in full accuracy and predictive power, but nevertheless capable of

explaining and predicting to some finite extent.

The need for modeling may arise not only from our limited understanding of the fundamental

physics, but also from the sheer mathematical complexity of physical systems even when

the physics is exactly known. In classical physics, the Navier-Stokes equations describing

the motion of fluids and other simplified variants are examples of such complex systems.

Abstractly, they are represented by infinite-dimensional dynamical systems whose behavior

can not be understood in complete analytical detail. Some such systems, however, possess

a property that renders them in principle amenable to reduced modeling: their asymptotic

dynamics are essentially finite-dimensional. It is to such systems that we now turn our

attention.
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2.1 Low-dimensional modeling

2.1.1 The global attractor

Driven dissipative nonlinear dynamical systems, including those evolving in ostensibly infi-

nite dimensional phase spaces, often evolve on to invariant subsets after transients decay.

These so-called global attractors contain the essential dynamical features of many complex

systems. When applied to such systems, the theory of global attractors formalizes the idea

that in certain cases, the asymptotic dynamics is essentially finite-dimensional, i.e., it dis-

plays enough regularity such that only a finite number of degrees of freedom are sufficient

for a complete description of solutions contained in it.

The global attractor A can be defined as the maximal compact invariant set under the

evolution semigroup defined on a Hilbert phase space. It exists if the semigroup is dissipative

(as is the case in Navier-Stokes, Reaction-Diffusion and other equations) and provided there

exists a compact absorbing set. It contains all complete bounded orbits and the unstable

manifolds of all fixed points. The latter fact allows us to compute estimates the dimension of

the attractor [2,3]. One can also prove that after long enough every orbit in the phase space

will come to stay arbitrarily close to some trajectory on the global attractor, for an arbitrarily

long time. This suggests that we must be able to approximate the asymptotic dynamics of

the system with arbitrary precision by the dynamics restricted to the some superset of the

global attractor. Temam [4] presents proofs of existence for the global attractors of several

dissipative systems including reaction-diffusion equation, Navier-Stokes equations (in 2D),

Rayleigh-Bénard (originally from [5]), and several dissipative wave equations. A proof of

existence and bounds on the Hausdorff dimension of the global attractor of the porous-

medium convection problem can be found in [6, 7].
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Although compact, in all but a few cases we are unable to prove that the global attractor is

a smooth manifold. Therefore, dimensional bounds on the global attractor need to consider

its fractal or Hausdorff dimensions. Furthermore, additional steps are required before we can

formulate the asymptotic dynamics as the restriction of the semigroup on a finite-dimensional

smooth manifold. Under certain conditions, the global attractor may be approximated by

an “approximate manifold”, a finite-dimensional sub-manifold of the phase space. The final

step is the introduction of the stronger concept of the “inertial manifold” M defined as “ A

finite-dimensional Lipschitz manifold which is positively invariant and attracts all trajectories

exponentially.” [3, 8]

The existence of the inertial manifold is not trivial to prove or even known in many cases.

For instance, while there exist proofs for many reaction-diffusion equations in one spatial

dimension and in a rectangular domain in two dimensions, no proof is known for the generic

two-dimensional geometry. Similarly, the existence of the inertial manifold for the Navier-

Stokes equations in more than one dimension is an open problem (See Appendix A for

details). In spite of this, the assumption of existence for typical dissipative systems is not

too far-fetched in practice. In fact, in one way or another, it is implicit in any reduced

modeling attempt. With this assumption, a natural reduced modeling strategy becomes

readily available.

Consider an equation of the form

du

dt
+ Au = F (u) u ∈ H (2.1.1)

where H is a Hilbert space, A is a positive linear operator and F is a Lipschitz function. Let

{ψi, i = 1, 2, · · · } be the eigenfunctions of A and let PN be the projection operator onto the
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first N eigenfunctions. Further, denote the orthogonal complement of PNH by QNH. We

can expand u in terms of the eigenfunctions: u =
∑∞

1 ajψj and PNu =
∑N

1 ajψj. Clearly,

[A,PN ] = 0. Then, by definition, for sufficiently large N, we expect that all “high” modal

amplitudes, aj(t), j > N be asymptotically “slaved” to the low modes. In other words, for

N large enough and t → ∞, we expect that all solutions u(t) =
∑∞

1 ajψj be expressible as

the sum of two terms: a linear combination of low modes, and a linear combination of high

modes slaved to the low modes.

u(t)→ PN (u(t)) + φ (PN(u(t))) (2.1.2)

where φ : PNH → QNH is a Lipschitz function whose graph defines the inertial manifold.

Then, in principle, the dynamics are determined fully by the low modes alone: the equation

projected by PN together with the function φ, fully characterize the asymptotic dynamics:

d

dt
PNu(t) + APN(u) = PNF [PNu+ φ(PN(u))] (2.1.3)

where we used the fact that [A,PN ] = 0. Thus, a set of N ODEs will produce the asymptotic

dynamics in full.

2.1.2 Galerkin projection

The functional form of the inertial manifold φ is almost never known explicitly. Consequently,

we have to be content with the Galerkin truncation of the equation instead:

d

dt
PNu(t) + APN(u) = PNF [PNu] . (2.1.4)
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This is no longer the projection of the exact equation, but an equation for a low-mode approx-

imation modified from the original equation to be entirely “blind” to the high modes. While

the use of the eigenfunctions of the particular linear operator A casts the Galerkin projected

equation into an especially simple form, it is not technically necessary. One can perform the

Galerkin projection onto any complete basis. In numerical analysis, this procedure consti-

tutes the essence of Galerkin spectral methods sometimes used for efficient numerical solution

of ODEs and PDEs, although less commonly than the other class, namely the pseudospectral

collocation methods [9, 10]. In the theory of partial differential equations, it is particularly

common to use the Fourier basis generically to produce finite truncations and generalize the

obtained properties to the full PDE by proving convergence in the limit N →∞.

In practice, the choice of the basis is the defining feature of reduced-dimensional model-

ing strategies. Once projected onto the chosen basis, the equation assumes the form of a

countable number of “modes” interacting with one another with various computable coupling

coefficients. This presents a novel opportunity to gain insight into the physical processes in-

volved: if chosen judiciously, the modes may be interpreted as representations of physical

spatio-temporal “structures” that drive, inhibit or balance one another. A low-dimensional

truncated model performing equally as well as a higher-dimensional model likely indicates a

more efficient encoding of the dominant physical structures and their interaction processes

into the selected basis functions. A physically motivated basis is likely to produce more effi-

cient numerical methods, and conversely, an efficient method is likely a sign of a physically

informative underlying basis.
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2.1.3 Proper Orthogonal Decomposition

A traditional method for computing the “optimal” basis functions is the Proper Orthogonal

Decomposition or POD. It is known in different contexts as the Karhunen-Loève decompo-

sition, principal components analysis and singular value decomposition as well [11]. POD is

an a posteriori statistical method requiring a sufficiently large ensemble of empirical data

which must be obtained either experimentally or via direct numerical simulation. In essence,

the method consists of statistically computing the principal axes of the “mass” of observed

states residing in a Hilbert phase space. The ordered eigen-directions are then used as the

new basis for the space.

More specifically, let {uk}∞k=1 ⊂ L2 (Ω) be a representative ensemble of scalar functions, say,

temperature fields in a thermal convection problem, obtained empirically. In order to find a

complete set of normalized basis functions {φj}∞j=1 that maximally capture the “energy” or

the L2 norm of the uk, we solve the following variational problem:

max
φ∈L2(Ω)

〈
|(φ, u)|2

〉
‖φ‖2 (2.1.5)

where 〈· · · 〉 is the ensemble average over all uk, (·, ·) denotes the inner product on L2 (Ω)

and ‖·‖ is the L2 norm. This leads to the maximization of

〈
|(φ, u)|2

〉
− λ

(
‖φ‖2 − 1

)
. (2.1.6)

The resulting Euler-Lagrange equation is the eigenvalue problem Rφ = λφ [12] where

(Rφ) (x) =

ˆ
Ω

〈u(x)u∗(x′)〉φ(x′) dx′ (2.1.7)
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with the kernel being simply the autocorrelation function of the empirical uk. In [11], rela-

tively lax necessary conditions are derived for R to be a compact self-adjoint operator, in

which case it possesses a complete eigenbasis and the expression in (2.1.5) has a maximum

equal to the largest eigenvalue λmax.

Furthermore, given the spectral decomposition of a function in {uk}∞k=1 as u(x) =
∑∞

1 ajφj(x),

one can show that

〈aja∗k〉 = δjkλj. (2.1.8)

In other words, the modal amplitudes of the empirical functions in this basis are statistically

uncorrelated. Additionally, λj (which are necessarily positive) give the “average energy” in

the j-th mode. For more details of the derivations see [11].

2.1.4 Discussion

The basis obtained as above can be proven to be optimal in the sense that the total ensemble-

average energy in its first N modes is greater that that of any other basis [11]. Thus, the

use of POD constitutes a clear trade off: In order to attain energetic optimality, one has to

measure a complete history of the dynamics and thus give up truly predictive power. The

method serves as a powerful tool for empirical analysis of the dynamics but clearly fails to

yield predictive a priori spectral methods.

Nevertheless, POD has been used to construct highly truncated models for a number of prob-

lems including turbulence coherent structures in Navier-Stokes [11] and turbulent Rayleigh-

Bénard convection [13].

We, on the other hand, set out to derive a priori Galerkin methods for the problem of
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porous-medium convection. The main goal of this dissertation is to explore how to compute

a priori bases that are adapted specifically to the equations at hand and to the given pa-

rameter regime. The theoretical motivation also gives us hope of gaining insights into some

of the coherent structures emerging in the porous-medium problem. We begin by stating

the problem and reviewing the past phenomenological studies pertaining to porous-medium

convection. The physical insights derived from the phenomenology, supplemented by our

own direct numerical simulations, will guide us to assemble certain elements of our modeling

strategy. The theoretical core of the method together with the complete derivations will

follow that, and finally, numerical simulations of the reduced models constructed using the

method will be studied extensively.

2.2 Porous-medium convection

The problem of buoyancy-driven convection in a fluid-saturated porous medium is a particu-

larly simple yet elegant variant of Rayleigh-Bénard convection [14]. It has been successfully

used to model geophysical phenomena where chemical or thermal inhomogeneity in fluids

produces buoyancy and drives convection. Examples are geothermal reservoirs and carbon

sequestration in saline aquifers [15]. Furthermore, despite its relative formal simplicity, it ex-

hibits a range of increasingly complex behaviors as the main control parameter, the Rayleigh

number (Ra) is increased. Although the flow eventually falls into a state of spatio-temporal

chaos, it is nevertheless organized into recognizable large-scale structures that seem to follow

a simple order, setting it apart from standard fully developed homogeneous isotropic tur-

bulence as understood in the context of the Navier-Stokes equations [16]. Hence, the term

turbulence, which we occasionally use to describe this regime, should be understood in a
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qualified fashion.

It is this balance between mathematical tractability, dynamical complexity, and statistical

spatio-temporal regularity which renders the problem of porous-medium convection espe-

cially appealing as a suitable model for the study of coherent structures and reduced model-

ing. There exists a sizable and growing literature on various experimental, computational and

theoretical aspects of this problem on which parts of the present study are based [5,6,17–24].

2.2.1 Statement of the problem.

Consider the general three-dimensional geometry where a fluid saturated porous medium is

placed in a rectangular box of height h, width L and depth d. The state of the system is

uniquely characterized by the temperature field T (x, z, t) and the velocity field u(x, z, t) =

u(x, z, t)̂i + v(x, z, t)ĵ + w(x, z, t)k̂.

T = Tcold e3 ·u =w= 0

T = Thot e3 ·u =w= 00
0

L

1

x

z

d

Figure 2.2.1: The geometry of the three-dimensional setup and the boundary conditions.

We adopt the Darcy-Oberbeck-Boussinesq equations of motion [25]: the time evolution of the
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temperature field is determined by an advection-diffusion equation which couples the tem-

perature to a divergence-free velocity field. The momentum equation governing the evolution

of the velocity field is given by Darcy’s law in the Boussinesq approximation: the Navier-

Stokes equation with internal forcing proportional to local velocity and an external forcing

proportional to the local temperature to model thermal bouyancy. Darcy’s law is a phe-

nomenological equation describing the flow of a fluid in a porous medium. It states that the

flux through a uniform block of a porous medium is proportional to the pressure drop across

the medium. Equivalently, it implies that a fluid passing through a porous medium experi-

ences a net resistance force per unit volume proportional to its velocity: − ν
K
u. In modeling

porous medium flow, this forcing replaces the viscous term −ν∆u which in the Navier-Stokes

equations represents fluid-fluid friction. Interestingly, the porous-medium forcing depends

not only on K (the square of the pore length scale) but also ν, meaning it is still partially a

product of fluid-fluid friction, albeit at the sub-pore length-scale. The Boussinesq approxima-

tion consists of neglecting density variations—and thus assuming incompressibility—except

where they give rise to buoyancy: gα(Thot − Tcold). In the absence of any density gradient,

buoyancy and therefore convection are impossible. Thus we have

Tt + u ·∇T = κ∆T (2.2.1)

∇ · u = 0 (2.2.2)

ut + u ·∇u +
ν

K
u +∇p = gα(Thot − Tcold)k̂. (2.2.3)

We consider a two-dimensional version of this problem where the fluid occupies a box of

height h and width L. This is not an entirely unphysical abstraction. In practice, the two-
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dimensional version of the equations provide a good model for the experimentally realizable

convection in the Hele-Shaw geometry where a an infinitesimally thin layer of fluid confined

between two parallel vertical plates is studied.

The fluid is heated from below and cooled from above:

T (x, 0, t) = Thot and T (x, h, t) = Tcold ∀t > 0. (2.2.4)

In the x dimension, periodic boundary conditions are imposed for simplicity:

T (0, z, t) = T (L, z, t) (2.2.5)

u(0, z, t) = u(L, z, t) (2.2.6)

Further, we impose impenetrable boundary conditions at the top and bottom boundaries:

u · k̂ = w = 0 at z = 0, h. (2.2.7)

Table 2.1 summarizes the physical parameters appearing in equations (2.2.1)− (2.2.3) .

Parameter Description
α Thermal expansion coefficient
K Darcy Permeability coefficient
h Height of the layer
ν Momentum diffusivity
κ Heat diffusivity

Table 2.1: List of the physical parameters.

We choose the non-dimensionalization scheme used in [24] where time is measured in units of

h2/κ, length is measured in units of h, and temperature is measured in units of (Thot−Tcold).
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The dimensionless equations take a particularly simple form where all physical parameters are

combined into two dimensionless parameters, namely the Rayleigh number and the Prandtl

number B−1 :

Tt + u ·∇T = ∆T (2.2.8)

∇ · u = 0 (2.2.9)

B (ut + u ·∇u) + u +∇p = RaT k̂ (2.2.10)

where

Ra =
gα(Thot − Tcold)Kh

νκ
(2.2.11)

and

B−1 =
νh2

κK
. (2.2.12)

The Rayleigh number is proportional to the overall temperature gradient (Thot−Tcold) and is

therefore a measure of the intensity of the thermal forcing. The Prandlt number is inversely

proportional to the Darcy permeabilityK which measures the square of the pore length scale.

What we are concerned with is the infinite Prandtl number limit of the Darcy-Oberbeck-

Boussinesq equations where the velocity u becomes slaved to the temperature T : it becomes

a linear albeit non-local functional of T. Furthermore, the only nonlinearity is now in the

coupling of the temperature with the velocity in the advection-diffusion equation. The

equations in their final dimensionless form then reduce to

Tt + u ·∇T = ∆T (2.2.13)

∇ · u = 0 u = uî + wk̂. (2.2.14)
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u +∇p = RaT k̂ (2.2.15)

subject to boundary conditions

T (z = 0) = 1, T (z = 1) = 0 (2.2.16)

w(z = 0) = w(z = 1) = 0 (2.2.17)

2.2.2 Nusselt number

The central emergent physical quantity of interest in our study of porous-medium convection

is the dimensionless Nusselt number, denoted Nu and defined as the spatially and long-time

averaged vertical heat flux through the medium normalized by the heat flux due to conduction

(diffusion) alone. In applications where the buoyancy originates from density gradients due

to varying concentrations of different chemicals rather than temperature variations within

the same material, for instance in the problem of CO2 sequestration [26], the Nusselt number

measures mass transport rather than heat transport.

The various dynamical regimes encountered as Ra is changed are conveniently characterized

by the manner in which Nu depends on Ra. For instance the onset of convection is (clearly)

marked by the departure of Nu from one, and the “turbulent” high-Ra regime has come to

be identified with the power law dependence of Nu on Ra in that regime.

In this study, we use the prediction of the Nusselt number as a measure of the “success” of

our reduced models. In particular, by measuring the Nusselt number for models of increasing

sizes (number of modes) at a given Ra and tracking the trends thereof, we are able to gauge

the rate and manner of convergence of our models to the exact system defined by the full
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PDEs.

It is possible to derive a number of different expressions for Nu, all of which should yield

identical results in the limit of long averaging time and high resolution. However, at severe

truncations, as is the subject of our study, they need not be identical. Furthermore, due

to issues of numerical stability, some may be more suitable for numerical evaluations than

others. Here we derive all such expressions.

The heat flux density vector J (divided by density and the heat capacity) consists of a

convective part and a diffusive part:

J = uT − κ∇T. (2.2.18)

The spatially averaged heat flux at a given time t is then

Q(t) =
1

hL

ˆ h

0

ˆ L

0

J · k̂ dxdz =
1

hL

ˆ h

0

ˆ L

0

wT dxdz − 1

hL

ˆ h

0

ˆ L

0

κ∂zT dxdz. (2.2.19)

Denoting the area of the domain by A = hL and defining the spatial and long- time average

〈·〉 by

〈· · · 〉 = lim
t→∞

1

t

ˆ t

0

[
1

A

ˆ h

0

ˆ L

0

(· · · ) dxdz

]
dτ, (2.2.20)

we obtain

〈Q〉 = lim
t→∞

1

t

ˆ t

0

Q(t) dt (2.2.21)

= 〈wT 〉+
κ

h2
h [Thot − Tcold] . (2.2.22)
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The conductive heat flux can be easily shown to be equal to κ
h2
h [Thot − Tcold] , equal to one

In the dimensionless units. Thus the Nusselt number 〈Q〉 / 〈Q〉cond is simply

Nu = 1 + 〈wT 〉 (2.2.23)

in the dimensionless units. Henceforth, we will only work in the dimensionless units.

Another useful formulation is in terms of the Fourier transforms of the fields w and T . Let

wk(z) and Tk(z) be the coefficients in the Fourier expansion of w and T in x respectively:

T (x, z, t) =
∞∑

k=−∞

Tk(z, t)e
2πi
L
k (2.2.24)

w(x, z, t) =
∞∑

k=−∞

wk(z, t)e
2πi
L
k. (2.2.25)

Then, by Parseval’s theorem [27],

1

L

ˆ L

0

wT dx =
∞∑

k=−∞

w̄k(z, t)Tk(z, t) (2.2.26)

so that

Nu = 1 + lim
t→∞

1

t

ˆ t

0

[
∞∑

k=−∞

ˆ 1

0

w̄k(z, τ)Tk(z, τ) dz

]
dz. (2.2.27)

This expression is particularly convenient in conjunction with the pseudospectral collocation

methods of chapter III where the Fourier transforms of the fields are available and fast and

efficient integration in the z variable is possible on the Chebyshev grid.
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2.2.3 Phenomenology

Porous-medium convection has been the subject of numerous experimental and numerical

studies. Velocity field measurements are generally more difficult in the case of porous-

medium convection than Rayleigh-Bénard in a pure fluid layer due to the presence of the

porous medium. Thus, most experiments focus on measuring the total heat flux instead [17].

Using the minimally invasive technique of Magnetic Resonance Imaging (MRI) fairly detailed

measurements of the velocity field have been made as well [18].

Moreover, the validity of Darcy’s law requires a very small ratio of pore length scale to box

size. Absent this condition, in particular at very high Ra where the smallest wavelengths

of the flow approach the characteristic pore size, the flow will depend on the microscopic

details of the porous material and the model fails [18].

Complementary numerical experiments have revealed additional quantitative and qualitative

details of the flow, providing us with a fairly complete knowledge of the various regimes from

the onset of convection up to nearly Ra ∼ 105, well into the turbulent regime [1, 19–21].

Energy stability analysis shows that at small enough Ra, the linear conduction solution

T (x, z) = 1−z is absolutely stable, meaning any perturbation to this solution decays (Figure

2.2.2a). As Ra is increased, the conduction solution becomes unstable, leading to steady

convection in the form of a single pair of convective rolls (Figure 2.2.2b). Linear stability

analysis allows us to compute the exact critical Rayleigh number Rac as well as the horizontal

wave length of the leading instability. For a box of aspect ratio 2, Rac = 4π2. From

onset up to Ra ∼ 380, the steady convective rolls prevail until a Hopf bifurcation leads to

a time-dependent flow where small-scale instabilities at the boundary layers are convected

horizontally, forming periodic and quasi-periodic “traveling waves” [21]. At around Ra ∼ 700,
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(a) Ra = 20. (b) Ra = 300

(c) Ra = 700 (d) Ra = 2000

Figure 2.2.2: Schematic depictions of the distinct dynamical regimes in porous-medium
convection. The curves are isothermal lines in the plane. (a) The conduction regime.
T (x, z) = 1 − z. (b) Steady convection in the form of one convective roll. (c) Periodic
plume formation around the convective roll. (d) The single convective roll is lost and the
high-Ra regime has begun.

these instabilities begin to grow into recognizable “plumes” which are advected periodically

around the large scale rolls (Figure 2.2.2c). Near Ra = 1000, chaotic solutions are found

but the single pair of rolls stably remains the dominant structure until Ra ∼ 1250 where it

becomes unstable and the roll structure is lost (Figure 2.2.2d). This transition is marked by

a sharp drop in the Nusselt number [19] and the replacement of the large convective rolls

with chaotic “mega-plumes” [1, 19].

Perhaps the most important physical feature of the porous-medium flow at medium to high

Ra is the formation of boundary layers adjacent to the top and bottom boundaries. The

formation of the boundary layers together with the rise of the plumes, mark the beginning

of the so-called “scaling regime” where heuristic arguments predict a power-law dependence
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of the Nusselt number upon Ra. Much theoretical, experimental and numerical effort has

been dedicated to studying the scaling of the flow in this regime.

The so-called “marginal stability argument” was originally introduced by Malkus and devel-

oped by Howard for Rayleigh-Bénard convection [28–30]. The same argument may be used

for porous-medium convection as well1. The outline of the argument is as follows: at high

enough Ra a distinct boundary layer is formed at the top and bottom boundaries. That

is, in the horizontally averaged temperature profile virtually half of the total temperature

drop 1
2

(Thot − Tcold) occurs within a short distance of the boundaries while it barely varies

in the bulk. Since the vertical velocity vanishes at the boundaries, the primary mode of heat

transport in the boundary layer is diffusion. This links the total time averaged heat flux at

the boundary and consequently the Nusselt number directly to the thickness of the boundary

layer δ. Finally, the thickness of the boundary layer may be linked to the Rayleigh number

via a heuristic ’marginal stability’ argument: the average thickness of the boundary layer

is determined by a balance between the tendency of thinner layers to grow via diffusion on

the one hand, and thicker layers to shrink down due to instabilities giving rise to convective

plumes on the other. The boundary layer is thus “marginally stable”, meaning that at each

Ra, it assumes a thickness such that the effective Ra of the boundary layer, i.e., the Ra

computed for a box of height δ and overall temperature difference 1
2

(Thot − Tcold), is equal

to the critical Rayleigh number Rac, which marks the onset of convection. Thus, Nu and Ra

are linked via δ and the so-called Howard-Malkus-Kolmogorov-Spiegel (HMKS) scaling [29]

for porous-medium convection is obtained:

δ ∼ Ra−1 and Nu ∼ Ra. (2.2.28)
1the difference being that Ra ∼ h instead of Ra ∼ h3 and a different scaling is obtained [31]
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Although numerical studies have shown [19] that up to Ra = 104 the exponent is slightly

less than one
(
Nu ∼ Ra0.9

)
, more recent numerical studies [1] show that at higher Rayleigh

(Ra ≤ 40000) , there is a significant trend toward linear scaling, suggesting that the Howard-

Malkus-Kolmogorov-Spiegel scaling may in fact be exact asymptotically.

2.2.4 The minimal flow unit

Concerning low-dimensional modeling, perhaps the most important feature of the flow at

high Ra is the emergence of the “mega plumes”; persistent pairs of rising hot plumes and

adjacent falling cold plumes stretching across the entire height of the domain, save for the

increasingly thin boundary layers and relatively thicker but still considerably thin regions

neighboring the boundary layers where instabilities grow into small “proto-plumes”. In this

regime, both our numerical results (see Chapter III) and those of Hewitt et al [1] suggest that

the Nusselt number as well as the lateral length scale of the mega-plumes are independent

of the aspect ratio L at high enough L.

In other words, the mechanisms governing the local dynamics of the mega plumes and thus

determining their size are blind to the overall extent of the domain. In fact, once the columnar

structure settles into its asymptotic statistically stationary state, it appears that the pairs

of plumes evolve more or less independently of one another (Figure 2.2.3). This suggests

strongly that at very high Ra, a spatially “extensive” system evolves where certain measures

of complexity including the number of dynamical degrees of freedom and the Kolmogorov-

Sinai entropy grow linearly with the system size (in this case the aspect ratio L) [32]. Put

differently, it is reasonable to assume that the approximate manifold of the full dynamics is

roughly the direct sum of an integer number of smaller equivalent manifolds each describing
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Figure 2.2.3: A snapshot of the temperature field at Ra = 4 × 104 where the rising and
falling “mega-plumes” span most of the height of the box, leaving only a thin proto-plume
forming region and a much thinner boundary layer (too thin to be seen here) near the top
and bottom.

the asymptotic dynamics of one of the statistically identical spatially localized subsets of the

system, or the “minimal flow units”.

This assumption paves the way for a significant reduction in size of dynamical models aimed

at predicting intensive properties of the flow such as the vertical heat flux. Rather than

wastefully resolving an entire box of aspect ratio 2 for instance, one may conceivably model

only a single pair of plumes in an aspect ratio just large enough for the purpose.

To this end, one requires a theoretical or experimentally motivated prediction of the depen-

dence of the size of the minimal flow unit on Ra. Hewitt et al [1] directly measured the size of

the minimal flow unit (as defined here) by measuring the horizontal Fourier transform of the

field (obtained from high-resolution direct numerical simulations with L = 2) at z = 1
2
and
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averaging the wave number with the largest amplitude. They observe that this wavenumber

kmax approximately satisfies a scaling law and measure the pre-factor:

kmax ' 0.5Ra0.4 (2.2.29)

or equivalently, L ' 4πRa−0.4. As of the date of this dissertation’s writing, no theoretical

argument predicting this 2/5 scaling has been presented.

A different and perhaps more fitting definition of the minimal unit for our purpose addresses

the manner in which the dynamics changes as the aspect ratio varies from large to very

small values. Such an approach has the potential to verify the physical assumption that

more than being merely the visual quantum of flow, the minimal flow unit is indeed the

smallest unit containing the essential dynamics. This will be our license to construct models

for the minimal unit only, and assert that the results reflect those of the entire system in the

appropriate sense. The following chapter describes a numerical investigation of the minimal

flow unit in this pragmatic sense.
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CHAPTER III

Direct numerical simulations

In this chapter, we explore the notion of the minimal flow unit numerically. As outlined

in the previous chapter, the results will be applied to the construction of the reduced-order

models developed and tested in Chapter IV and V. Our investigation consists of a series of

direct numerical simulations (DNS) of porous-medium convection at a wide range of Rayleigh

numbers and several aspect ratios where we measured the Nusselt number. The goal is to

construct a complete picture of the exact aspect ratio-dependence of Nu at a relatively large

range of Ra values in the turbulent regime. The trends revealed will lead us to formulate an

operational definition of the minimal flow unit which we then use for reduced-dimensional

modeling.

In what follows, we will describe the numerical methods employed in the direct numerical

simulations and present the results.
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3.1 Numerical methods

Our direct numerical simulations are based on a pseudospectral collocation method [9]. We

write the equations of motion in terms of fluctuations about the conduction solution 1− z:

∂tθ = −u.∇θ + ∆θ − w (3.1.1)

∆w = Ra
∂2θ

∂x2
(3.1.2)

∇ · u = 0. (3.1.3)

Therefore, θ(x, z, t) satisfies Dirichlet boundary conditions in z and periodic boundary con-

ditions in x. The box is disctretized using a regular equispaced grid in the x dimension and

the Chebyshev-Gauss-Lobatto grid [9] in the z dimension.

xj = j
L

Nx

, j = 0, 1, · · · , Nx (3.1.4)

zj = cos

(
j
π

Nz

)
, j = 0, 1, · · ·Nz. (3.1.5)

Derivatives in x are computed in the Fourier space using the Discrete Fourier Transform

(DFT) [33] via Fast Fourier Transform (FFT). In the z dimension, derivatives are computed

using the Chebyshev differentiation matrix [33]. A numerical solution of the time-dependent

equation involves the following at each time step:

1. Given the temperature field θ(x, z), solve the momentum equation (3.1.2) for w in

spectral space.

2. Solve the incompressibility equation (3.1.3) for u in spectral space.
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3. Form the right hand side of the advection-diffusion equation (3.1.1) in real space.

4. Perform time-stepping for θ using suitable methods for each of the terms.

The right hand side of (3.1.1) is divided into the linear (diffusion and w ) and the nonlinear

(advection) terms. All terms are computed in the Fourier space and then transformed back

to the real space. This involves solving equations (3.1.3) and (3.1.2) , the latter being the

most computationally expensive step of all. An efficient method is employed for this task

and will be elaborated below.

The time-stepping is performed in two separate half-steps. At each step, first the advection

term is integrated using the 2nd order Adams-Bashforth method [34], which for the generic

equation ∂θ
∂t

= F {θ} and time step h may be written as

θn+1 − θn =
h

2
(3F {θn} − F {θn−1}) . (3.1.6)

The largest eigenvalue of the second order Chebyshev differentiation matrix grows quartically

with the vertical resolution [33], rendering the time integration problem for the diffusion term

ill-conditioned. Thus, an implicit method is required for the time-stepping of the diffusion

term in order to ensure stability and we use the Crank-Nicolson method [34], also second

order:

θn+1 − θn = h

[
F {θn+1}+ F {θn}

2

]
. (3.1.7)

De-aliasing [9] is performed at each time step. A constant time-step dt is used throughout

each simulation due to the fact that the Adams-Bashforth method is a multi-step method.

The multi-step Adams-Bashforth method allows us to achieve the desired order of accuracy

with only one function evaluation per time step and is thus computationally cost effective.
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The method is initialized by integrating over multiple fractional time-steps using the Euler

method.

3.1.1 Solution of the momentum equation2

A pseudospectral solution of (3.1.2) requires the transformation of the equation into appro-

priate spectral spaces in both spatial dimensions. Taking the discrete Fourier transform of

the equation in the x direction (using for instance, FFT), we have

[
D2 − (nk)2

]
ŵn(z) = −(nk)2Ra θ̂n(z) (3.1.8)

where D = ∂z and

θ(x, z) =

Nx/2∑
n=−Nx/2+1

θ̂n(z)eiknx , k =
2π

L
. (3.1.9)

Then, for each wavenumber n, we have a second order linear differential equation in the

z variable only, with a known right-hand-side. Since z is discretized using the Cheby-

shev–Gauss–Lobatto grid, the most straightforward solution would be to use the real-space

Chebyshev differentiation matrix and solve the resulting linear equation. However, the

Chebyshev differentiation matrix and therefore the full LHS matrix are dense, and this

method is not practical. We must therefore use the Chebyshev Integration Method [35].

The rest of this section describes the method for completeness, and closely follows the nota-

tion and exposition of [35].

The Chebyshev integration method is the method of choice for the solution of inhomogeneous
2Chebyshev integration method.
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linear differential equations on the Lobatto grid. In general, suppose we would like to solve

Lψ =
n∑
k=0

(mn−k(x)Dk)ψ = f(x) , x ∈ Ω = (a, b) (3.1.10)

subject to the constraints

T ψ = c (3.1.11)

where mk are rational functions of x, Dk denotes kth order differentiation with respect to x

and T is a linear functional of rank n. Our equation is an example with L = [D2 − (nk)2I]

and f(z) = −(nk)2Ra θ̂n(z).

In short, the Chebyshev Integration Method consists of solving for the highest order deriva-

tive of ψ(z) rather than ψ(z) itself, and doing so in the Chebyshev spectral space rather

than the real space. Thanks to a particular property of the Chebyshev polynomials (and a

number of other families of orthogonal polynomials), the resulting linear system will consist

of a linear combination of various powers of the tridiagonal Chebyshev-basis-representation

of the integration operator rather than the dense real-space Chebyshev differentiation ma-

trix. The equation may then be solved using O(Nz) operations rather than O(N2
z ). In what

follows, we discuss the technical details of the method.

Let {φn(z), n = 0, 1, · · · } be a complete family of orthogonal polynomials that solve the

singular Sturm-Liouville problem

d

dx

(
p(z)

d

dx
φn(z)

)
+ w(z)φn(z) = 0 x ∈ (a, b) (3.1.12)

where the weight w(x) is non-negative and p(x)→ 0 as x→ a, b.

Examples of such families include the Jacobi polynomials (and as a special case of that, the
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Chebyshev polynomials), the Laguerre and the Hermite polynomials [35].

Let Qn
m = span{φj, m ≤ j ≤ n}. The Galerkin truncation of a function f(z) in Qn

m is then

f(z) =
n∑

k=m

akφk(z). (3.1.13)

If φn are the Chebyshev polynomials, then the real-space representation of f(z) on the N -

point Lobatto grid can be used to efficiently compute its spectral representation in QN
0 , i.e.,

the coefficients ak, 0 ≤ k ≤ N, using Fast Fourier Transform. It is in this space that the

equation may be solved efficiently. Let f be the vector of the Chebyshev spectral coefficients

of the function f(z), and let L and D be the Galerkin truncation of the linear operator L

and D in the Chebyshev spectral space:

Then

1

2
Di,j =



0 i ≥ j

0 i < j, i+ j even

j 0 < i < j, i+ j odd

j
2

i = 0, j odd.

(3.1.14)

The recursion relation satisfied by the solutions of (3.1.12) [36] gives rise to “Integration

Operators” that are banded; a property that is central to the efficiency of the method [35].
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In particular, the integration operator in the Chebyshev basis is given by

B =
1

2



0 0 0 · · · 0 · · · 0

2 0 −1 · · · · · · · · · 0

0 1/2 0 −1/2 · · · · · · 0

0 0
. . . . . . . . . · · · 0

0 0 0 1/k 0 −1/k · · ·


. (3.1.15)

B may be seen as the “inverse” of D by which we mean, DB = IQ∞
0

= I. However, BD =

IQ∞
1
6= I. Also, in general, Dk

B
k

= I, but Bk
D
k 6= I. The reason for that is the fact that

differentiating a function k times, erases all information about the first k basis functions, and

therefore, “integrating” the k-th derivative does not yield a unique result. However, if the

domain of D and the range of B are properly restricted, then B truly becomes the inverse of

D. We will do this for the finite truncations of these operators. Note that D : QN
1 → QN−1

0

and D
k

: QN
k → QN−k

0 . In order to construct the inverse of Dk in QN
k , we need two

modifications to Bk
: we need to set the first k rows of Bk to zero (thus setting its range to

QN
k ) and set its last k columns to zero (thus changing its domain to QN−k

0 ). Let us call this

modified version the “reduced” integration matrix and denote it by Bk

[k]. Then, we have

B
k

[k]D
k

= IQNk . (3.1.16)

Let us consider the porous-medium convection example:

[
D2 − α

]
ψ(z) = f(z) (3.1.17)
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thus [
D

2 − α
]
ψ = f (3.1.18)

The null-space of L =
[
D

2 − α
]
, N (L) has dimension 2, reflecting the fact that the solution

of Lu = 0 involves two free parameters.

Write

ψ = w + ψp (3.1.19)

where w ∈ N (L) and ψp ∈ QN
2 is a particular solution: Lψp = f .

First, we solve for the particular solution by writing ζ = D2ψp ∈ QN−2
0 so that ψp = B

2

[2]ζ ∈

QN
2 is uniquely defined. Then the equation becomes

[
I − αB2

[2]

]
ζ = f. (3.1.20)

Next, we find a basis for N (L) by writing

e0 = φ0 + w0 (3.1.21)

e1 = φ1 + w1 (3.1.22)

where wk ∈ QN
2 . Then, Lek = 0 yields

Lw0 = −Lφ0 (3.1.23)

Lw1 = −Lφ1 (3.1.24)

These equations need to be solved only once, and the result can be used for arbitrary right
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hand sides (f). Using this basis, we may now impose the boundary conditions

w =
1∑

k=0

akek =⇒ T ψ = T ψp +
1∑

k=0

akT ek = c. (3.1.25)

Since T and the ek are known, we can compute Tkl = (T ek)l , l = 0, 1. Therefore, to solve

for the unknowns ak , k = 0, 1, we need to solve the 2× 2 linear equation

1∑
k=0

Tklak = cl − (T ψp)l . (3.1.26)

Having found both the particular solution and the general solution (by which the boundary

conditions were imposed), we can now construct the full solution:

ψ = w +B
2

[2]ζ. (3.1.27)

This last step involves a matrix multiplication, but B2

[2] is also banded and thus the multi-

plication is an O(N) operation.

3.1.2 Boundary conditions

In our problem the conditions enforced by T ψ = c are homogeneous Dirichlet boundary

conditions at the two limits of the domain. Writing the Chebyshev spectral expansion

ψ̄(z) =
∑N

k=0 akTn(z), z ∈ [−1, 1] where Tn is the n-th Chebyshev polynomial of the first

kind [37] and Tn(cos(z)) = cos(nz), we find that ψ̄(1) = a0 + a1 + a2 + · · · + aN = 0 and

ψ̄(−1) = a0−a1+a2−· · ·±aN = 0. Equivalently, these conditions imply a0+a2+a4+· · · = 0
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and a1 + a3 + a5 + · · · = 0. We conclude that

 1 0 1 0 1 0 · · ·

0 1 0 1 0 1 · · ·

× ψ =

 0

0

 , (3.1.28)

or

T =

 1 0 1 0 1 0 · · ·

0 1 0 1 0 1 · · ·

 and c =

 0

0

 . (3.1.29)

3.2 Simulations

For the purposes of this chapter, we performed several independent simulations sampling

the Ra − L parameter space from Ra ∼ 103 to 4 × 104 and L ∼ 0.05 to 2. We measured

Nu∗ = 〈Nu〉L / 〈Nu〉∞ where

〈Nu〉L =
1

T

ˆ T

0

Nu(t) dt for a box of widthL. (3.2.1)

where T is taken to be large enough so that the relative error in the measurement is no

more than a few percent. For the range of Ra studied, no significant variation in 〈Nu〉L

was observed near L = 2 and therefore we assume that for our purposes 〈Nu〉∞ = 〈Nu〉2.

The density of sample points is relatively sparse in the high L region where there is little

variation in 〈Nu〉L and more dense in the areas where high gradients are expected. For the

most part, the sample points are logarithmically equi-spaced in L. A few points deemed to

be outliers have been removed from the sample. We skipped points lying at high Ra and

high L where 〈Nu〉L is expected to have converged to 〈Nu〉∞ and used the value 1 as the

outcome. Figure 3.2.3(a) shows the sample space used for the study. Figure 3.2.3(b) is a
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Figure 3.2.1: Plots of Ra vs t at Ra = 700 and Ra = 11486. At high Ra, significantly higher
temporal resolution is required for stability and accuracy.

color-coded map of Nu∗ in the Ra−L plane with brighter colors representing higher values. A

cubic interpolation of the discrete data points is used to smooth the final presentation. The

contour lines represent the level sets for Nu∗ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}

from right to left. The level set for Nu∗ = 1 has been omitted due to high levels of noise

naturally occurring where Nu∗ plateaus.

Figure (3.2.4) shows snapshots of the temperature field obtained from the direct numerical

simulations at Rayleigh numbers ranging from 103 to 4 × 104. Using our large-aspect-ratio

results—L = 2 at low Ra and L = 1 at high Ra— juxtaposed with the results of Otero et

al. [19], we are able to construct a full picture of Nu vs Ra for up to Ra = 4 × 104. The

results are plotted in figure (3.2.2) .
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Figure 3.2.2: Nusselt vs Ra from direct numerical simulations. At high Ra, simulations are
performed at aspect ratio 1 instead of 2.

3.3 Discussion

As evident from figure (3.2.4) , the spacing of the mega-plumes indeed decreases with increas-

ing Ra, qualitatively confirming the findings of Hewitt et al [1]. Our main goal however,

is to propose a new definition for the minimal flow unit by studying the variations of the

Nusselt number across the Ra-L parameter space and compare it with that used by Hewitt

et al [1].

We recognize the following regimes in the Nusselt landscape presented in (3.2.3)(b):

1. The conduction regime: regardless of Ra, at small enough L, convection becomes

unsustainable and the flow settles to the conduction solution and Nu = 1. (Note

that Nu∗ is small although non-zero). The onset of convection occurs at different
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Figure 3.2.3: (a) A representation of the points sampled in the Ra-L plane to produce the
next plot. The blank area at high Ra andL was not sampled since physical arguments and
numerical indications from the rest of the sample suggest that Nu is essentially equal to Nu∗

in that region.
(b) A color-coded map of Nu∗ = 〈Nu〉L / 〈Nu〉∞ where 〈Nu〉∞ is the infinite-aspect-ratio
Nusselt. The contour lines represent the level sets for 0.1, 0.2, · · · , 0.9, 0.95 from right to
left. At small aspect ratios, eventually convection becomes unsustainable and Nu → 0. The
solid line scale corresponds to the minimal flow unit measurements of Hewitt et al [1].
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(a) Ra = 11486 (b) Ra = 13195 (c) Ra = 15157

(d) Ra = 17411 (e) Ra = 20000 (f) Ra = 22973

(g) Ra = 26390 (h) Ra = 30314 (i) Ra = 34822

(j) Ra = 40000 (k) Ra = 45947

Figure 3.2.4: Snapshots of the temperature field obtained from direct numerical simulations
at L = 1.

37



aspect ratios depending on Ra and the precise critical L may be computed using linear

stability theory as follows. As derived (for example) in Doering & Constantin [24] the

eigenvalues of the linear stability problem for a box of height 1 are given by

λm,k = k2 +m2π2 − Rak2

k2 +m2π2
. (3.3.1)

where k is the horizontal wave number and mπ is the vertical wave number (m =

1, 2, 3, · · · ). To investigate the onset of instability, we consider the lowest of the branches:

m = 1. It is easily found that above the critical Rayleigh number Ra∗ = 4π2, λ1,k > 0

for some open interval of k. For a periodic box of finite size however, instability re-

quires that a quantized horizontal wave number n = kL/(2π) fall within that interval.

Therefore, the smallest L such that an unstable mode exists corresponds to that for

which the wave number with n = 1 coincides with the larger of the two roots of λ1,k.

Thus,

Lmin =
4π

Ra1/2 +
√
Ra − 4π2

∼ 2πRa−1/2 as Ra →∞. (3.3.2)

This line indeed delineates the boundary of the dark region at the bottom right of

figure 3.2.3 (b).

2. The large-aspect ratio regime. At any Ra, at large enough L, eventually Nu becomes

independent of L and Nu∗ plateaus to 1. This is to be expected physically since in

the turbulent regime, the flow is organized in apparently independent and statistically

similar “cells”, each consisting of a rising column and an adjacent falling column. Our

result clearly confirms this at low to medium Ra values. At high Ra (104 − 4 × 104),

we have not performed high-L simulations. However, the trend toward the Nu∗ = 1

plateau is clearly visible from our low-L simulations, and is consistent with results from
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lower Ra.

3. The intermediate regime. Between the onset of convection and the high-L plateau,

convection is sustained but not fully actualized due to small box size, and Nu∗ < 1.

We interpret the boundary between this region and the L-independent plateau as the

minimal box size that sustains a fully actualized convection cell.

At each Ra, the solid line in 3.2.3 (b) follows the scaling suggested by the time-averaged

width of a mega-plume pair or a single convective cell measured by Hewitt et al [1].

k = 0.5Ra
2
5 (3.3.3)

We believe that this line is remarkably close to the boundary between the Nu∗ = 1 plateau

and the intermediate regime. For reference, the blue line represents k ∼ Ra−1/2. Although

not fully resolved at high Ra, the level sets of Nu∗ in 3.2.3 (b) seem to follow the Ra
2
5 scaling

more closely.

Note that any coincidence between the time-averaged convection cell width in a large-aspect

ratio box and our measurement of the minimal aspect ratio sustaining Nu∗ = 1 is quite

non-trivial. The former corresponds to the length scale naturally selected by the dynamics

independently of any geometric constraints, while the latter demonstrates the behavior of

the flow in response to imposed size constraints.

If true as we suspect, the coincidence of the two provides new insights into the dynamics: it

suggests that even when the width of the box is infinite, the convective cells asymptotically

self-organize into the smallest units that are just large enough to allow the maximum heat

transport to be realized.
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Henceforth, we adopt the scaling k = 0.5Ra
2
5 or equivalently L = 4πRa−

2
5 as our operational

definition of the minimal flow unit width. In some of the low-dimensional models we will

derive and investigate in the coming chapters, we will use this aspect ratio for high-Ra

simulations.
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CHAPTER IV

Galerkin methods from upper-bound theory

In this chapter, we derive Galerkin methods for the solution of porous-medium convection.

First we derive a method based on the Fourier basis in both dimensions, henceforth referred

to as the Fourier-Galerkin (FG) method. Using the Fourier basis as the most “neutral” basis

possible provides us with a point of reference for future comparisons.

Then, we proceed to derive our adapted Galerkin method (Nonlinear-Galerkin method or

NG), using a basis computed numerically at each Rayleigh number. This method has its

roots in upper-bound theory [22–24,38] and energy-stability theory which will be explained

first. The results of extensive numerical studies of these methods will be presented in the

next chapter.

4.1 The Fourier-Galerkin method

In order to derive the Fourier-Galerkin method, we project the evolution equation of the

temperature field onto the two-dimensional Fourier basis satisfying the boundary conditions.
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To simplify the boundary conditions, we rewrite the equations in terms of the fluctuations

θ(x, z, t) about the conduction solution: T (x, z, t) = (1 − z) + θ(x, z, t). We will then have

periodic boundary conditions in x and Dirichlet boundary conditions in z. The temperature

basis will consist of the functions φmn(x, z) = einkx sin(mk′z), m = 1, 2, · · ·∞ and n =

−∞, · · ·+∞, k = 2π/L, k′ = Γk where Γ is the aspect ratio of the box. The no-flux boundary

condition at the vertical boundaries and the incompressibility condition will dictate the basis

to be used for the expansion of the velocity fields

θ(x, z, t) =
∞∑

n=−∞

∞∑
m=1

amn(t)einkx sin(mk′z) (4.1.1)

u(x, z, t) =
∞∑

n=−∞

∞∑
m=1

bmn(t)einkx cos(mk′z) (4.1.2)

w(x, z, t) =
∞∑

n=−∞

∞∑
m=1

cmn(t)einkx sin(mk′z). (4.1.3)

Two constraints relate the modal amplitudes amn(t), bmn(t), cmn(t) :

1. Incompressibility: ∂xu+ ∂zw = 0. This implies

∞∑
n=−∞

∞∑
m=1

(ink)bmn(t)einkx cos(mk′z) =
∞∑

n=−∞

∞∑
m=1

(mk′)cmn(t)einkx sin(mk′z) (4.1.4)

or

(ink)bmn(t) = (mk′)cmn(t). (4.1.5)

2. The momentum equation: ∆w + Ra(D2 −∆)θ = 0. This similarly yields

[
(nk)2 + (mk′)2

]
cmn(t) = Ra(nk)2amn(t). (4.1.6)
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Using these constraints we may now perform the full Galerkin projection of the time evolution

equation

∂tθ + u∂xθ + w∂zθ = w +
(
∂2
x + ∂2

z

)
θ. (4.1.7)

The various terms can be expanded as follows:

∂tθ =
∞∑

n′=−∞

∞∑
m′=1

ȧm′n′(t)ein
′kx sin(mk′z) (4.1.8)

u∂xθ =
∑
m′,n′

∑
p,q

(in′k)am′n′bpqe
ikx(n′+q) sin(k′m′z) cos(k′pz) (4.1.9)

w∂zθ =
∑
m′,n′

∑
p,q

(k′m′)am′n′cpqe
ikx(n′+q) sin(k′pz) cos(k′m′z) (4.1.10)

(
∂2
x + ∂2

z

)
θ =

∞∑
n′=−∞

∞∑
m′=1

[
−(kn′)2 − (k′m′)2

]
am′n′(t)ein

′kx sin(m′k′z). (4.1.11)

Using these expansions, we may compute the projections of both sides of the equation onto

any given basis function φmn = einkx sin(mk′z) by taking the inner product

(φmn, f) =
2

L

ˆ 1

0

ˆ L

0

e−inkx sin(mk′z)f(x, z)dxdz.

This yields

(φmn, ∂tθ) = ȧmn (4.1.12)

(φmn, w) =
Ra(nk)2

[(nk)2 + (mk′)2]
amn (4.1.13)
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(φmn, u∂xθ) =
2

L

∑
m′,n′

∑
p,q

(in′k)am′n′bpqe
ikx(n′+q−n)

×
ˆ

sin(k′m′z) cos(k′pz) sin(mk′z)dxdz (4.1.14)

= 2
∑
m′,p,q

(i(n− q)k)am′(n−q)bpq

×
[

1

4
δm′,m−p +

1

4
δm′,m+p −

1

4
δm′,p−m −

1

4
δm′,−m−p

]
(4.1.15)

(φmn, w∂zθ) =
2

L

∑
m′,n′

∑
p,q

(m′k′)am′n′cpqe
ikx(n′+q−n)

×
ˆ

sin(k′pz) cos(k′m′z) sin(mk′z)dxdz (4.1.16)

= 2
∑
m′,p,q

(m′k′)am′(n−q)cpq

×
[

1

4
δp,m−m′ +

1

4
δp,m+m′ − 1

4
δp,m′−m −

1

4
δp,−m′−m

]
(4.1.17)

(
φmn,

[
∂2
x + ∂2

z

]
θ
)

= −
[
(kn)2 + (k′m)2

]
amn (4.1.18)

where we have used the fact that

ˆ 1

0

sin(πn′z) sin(πnz) cos(πqz)dz =



1
4

n′ = n− q or n′ = n+ q

−1
4

n′ = q − n or n′ = −(n+ q)

0 otherwise.

(4.1.19)

Reducing the sums over m′, we arrive at

(φmn, u∂xθ) =
1

2

∑
p,q

i(n− q)kbpq
[
a(m−p)(n−q) + a(m+p)(n−q) − a(p−m)(n−q) − a(−m−p)(n−q)

]
(4.1.20)
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(φmn, w∂zθ) =
1

2

∑
p,q

cpq
[
k′(m− p)a(m−p)(n−q) + k′(p−m)a(m+p)(n−q) − k′(p−m)a(p−m)(n−q)

]
(4.1.21)

All terms put together, we obtain the following set of ordinary differential equations:

ȧmn = µmnamn +
∑
p,q

αmnpq apqa(m−p)(n−q) +
∑
p,q

βmnpq apqa(m+p)(n−q) +
∑
p,q

γmnpq apqa(p−m)(n−q)

m = 1, 2, · · · and n = −∞, · · · ,∞ (4.1.22)

where

αmnpq =
1

2
kk′Γpq [p(n− q)− q(m− p)] (4.1.23)

βmnpq =
1

2
kk′Γpq [p(n− q)− q(m+ p)] (4.1.24)

γmnpq = −αmnpq (4.1.25)

Γpq =
Ra(kq)

(kq)2 + (k′p)2 (4.1.26)

and the linear coefficient is given by

µmn =
Ra(kn)2

(kn)2 + (k′m)2
− (kn)2 − (k′m)2. (4.1.27)

We have transformed the partial differential equations into a countably infinite set of ordinary

differential equations. Given any finite subset of

A = {(m1, n1), (m2, n2), · · · , (mN , nN)} ∪ {(m1,−n1), (m2,−n2), · · · , (mN ,−nN)} (4.1.28)

(symmetrized about zero in the second index to satisfy the reality condition), the corre-
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sponding Galerkin approximation of the equations will be

ȧmn = µmnamn

+
∑

(p,q)∈A
(m−p,,n−q)∈A

αmnpq apqa(m−p)(n−q)

+
∑

(p,q)∈A
(m+p,n−q)∈A

βmnpq apqa(m+p)(n−q)

+
∑

(p,q)∈A
(p−m,n−q)∈A

γmnpq apqa(p−m)(n−q)

(m,n) ∈ A (4.1.29)

This finite set of ordinary differential equations may now be analyzed using the standard

techniques of finite-dimensional dynamical systems.

4.2 The Nonlinear-Galerkin method

While standard, the use of the Fourier basis as demonstrated above fails to take advantage

of the distinctive spatio-temporal regularities, or the coherent structures of the system in

question. We may think of the Fourier basis as the most “neutral” of all bases, capable only

of encoding length scale in a “blind” and spatially uniform manner. It fails for instance,

to efficiently represent spatially localized structures such as the increasingly thin boundary

layers encountered in Rayleigh-Bénard or porous-medium convection.

We ask if one can derive a basis from the particular equations of motion at hand, such that

the basis itself reflects the dominant spatial features of the motion in some sense, and the

Galerkin-projected dynamical systems capture the dynamics as modal interactions among a
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subset of modes minimal in size and maximal in qualitative representation of spatial features

of the motion.

Our strategy is inspired by the background field method [22–24, 38] where the temperature

field is decomposed into a mean background profile and a fluctuation field about the back-

ground profile. Various properties of the fluctuation field may be controlled by the choice

of the background profile and thus the analysis of the fluctuation field may be cast into the

most suitable form– depending on one’s goals– by solving appropriate variational problems

involving the background profile.

In particular, we solve a variational problem yielding a background profile that captures the

boundary layer structure of the flow and produces a good first approximation for the Nusselt

number. At the same time, the solution to the variational problem produces a basis with

remarkable properties, suggesting it could be used for efficient Galerkin methods.

4.2.1 Upper-bound theory

Let τ(z) be a smooth function satisfying the temperature boundary conditions τ(0) = 1,

τ(1) = 0.Write T (x, z, t) = τ(z)+θ(x, z, t) so that θ(x, z, t) is the time-dependent fluctuation

about the “background profile” τ(z). Note that θ(x, z, t) now vanishes at z = 0 and z = 1,

and satisfies periodic boundary conditions in x similar to T. The equations of motion may

now be written in terms of θ :

∂tθ + u.∇θ = ∆θ + τ ′′ − wτ ′ (4.2.1)

∆w = Ra
∂2θ

∂x2
(4.2.2)

∇ · u = 0. (4.2.3)
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Using this background decomposition, Doering and Constantin [24] derived rigorous upper

bounds for the Nusselt number as a function of Ra. They showed that provided the functional

Ha {θ} =
〈
a |∇θ|2 + θwτ ′(z)

〉
(4.2.4)

is positive semi-definite, we have the following rigorous upper bound for Nu :

Nu − 1 ≤ 1

4a(1− a)

[ˆ 1

0

(τ ′(z))2dz − 1

]
, (4.2.5)

where a ∈ (0, 1) and 〈·〉 =
´ 1

0

´ L
0

(·)dxdz. For a = 1
2
, the upper bound is precisely the Nusselt

number produced by τ(z) if it were the full temperature field. Figure 4.2.3 shows the optimal

upper bound alongside “exact” values of Nu obtained from direct numerical simulations.

Noting that w(x, z) is a linear functional of θ, we see that Ha {θ} is indeed a quadratic form

in terms of θ :

Ha {θ} =

ˆ 1

0

ˆ L

0

[
a |∇θ|2 + θwτ ′(z)

]
dxdz (4.2.6)

=

ˆ 1

0

ˆ L

0

[−aθ∆θ + θτ ′w[θ]] dxdz. (4.2.7)

This may be rewritten as

Ha {θ} = (θ,L {θ}) (4.2.8)

where (f, g) =
´ 1

0

´ L
0
f(x, z)g(x, z)dxdz indicates the inner product and L = −a∆ + τ ′w

is a linear operator acting on θ. It is clear that the condition Ha {θ} ≥ 0 is equivalent to

a spectral constraint on L . Let S and A be the symmetric and antisymmetric parts of L

respectively:
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L = A + S. (4.2.9)

Then, Ha {θ} = (θ, (A + S) {θ}) = (θ, S {θ}) and the spectral constraint may be equivalently

applied to S. Thus, we have identified a symmetric linear operator, depending parametrically

on τ, whose spectrum determines if τ produces an upper bound on Nu.

4.2.2 Energy-stability

We may interpret the spectral constraint in terms of energy-stability as follows: multiplying

(4.2.1) by θ and integrating, we obtain

1

2

d

dt
‖θ‖2

2 =

ˆ
θ(∆θ − wτ ′)dxdz +

ˆ
θτ ′′dxdz (4.2.10)

where ‖·‖2 indicates the L2 norm over the x-z domain and the term
´
θu ·∇θ dxdz vanishes

due to incompressibility and the boundary conditions. It is evident that

1

2

d

dt
‖θ‖2

2 = −H 1 {θ}+

ˆ
θτ ′′dxdz. (4.2.11)

Energy stability then requires that the sum of the two terms on the right hand side be

negative definite. Were it not for the second term, this condition would have resembled the

spectral constraint necessary for the upper-bound argument. It would not have produced an

upper bound at Ra, since a ∈ (0, 1) in (4.2.5) . However, it would have produced an upper

bound at a lower Ra such as Ra/2 since H1 {θ} at Ra is proportional to H 1
2
{θ} at Ra/2

due to the linear relationship between w and θ (4.2.2) . Consequently, we conclude that if τ

is chosen such that the constraint H1 {θ} ≥ 0 is satisfied, then τ produces a Nusselt upper
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bound at Ra/2 (which may be optimized by varying τ) while isolating the destabilizing

factors in one “forcing term” (
´
θτ ′′dxdz). The upper bound τ produced for Ra/2 in this

manner proves to be a surprisingly good estimate for Nu at Ra as the upper bound plot

illustrates.

4.2.3 Modeling strategy

Based on the arguments discussed above, we propose the following modeling strategy: We

compute an “optimal” background profile τ(z) by numerically solving the variational problem

Nu = inf
τ(0)=1
τ(1)=0

{ˆ 1

0

τ ′2(z) dz |H1 {θ} ≥ 0

}
. (4.2.12)

This is a variational problem subject to a spectral constraint on the self-adjoint operator

inside the quadratic form H1 {θ} . Thus, by solving this problem, we accomplish a number

of goals:

1. We find an “optimal” background profile τ(z) which yields a good first approximation

to the Nusselt number.

2. We find a complete orthogonal eigenbasis and the associated positive semi-definite

spectrum which we can then use for the construction of Galerkin spectral methods. The

linear modal coefficients in the resulting models turn out to be negatively proportional

to the eigenvalues found, and are therefore all either zero or negative. A number of

“marginally stable modes” will emerge from the solution which may indicate dominant

dynamical length scales.
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3. We successfully separate the forcing terms from the linear and non-linear modal inter-

actions in the ODEs that constitute our Galerkin methods. This offers more versatility

in choosing appropriate truncations while addressing numerical stability.

Next, we will formulate the eigenvalue problem and derive the Galerkin methods based on

the resulting eigenbasis.

4.2.4 The eigenvalue problem

For a fixed background profile τ, the spectral condition is essentially a constrained variational

problem where both (4.2.2) and (4.2.3) have to be enforced implicitly. In order to derive

an explicit eigenvalue problem, we solve the variational problem, enforcing the constraints

using Lagrange multipliers.

We demand that the infimum of the H1 {θ} over all smooth θ be non-negative. Since H1 {θ}

is a quadratic form in θ, a necessary and sufficient condition for this is that the infimum be

taken over all smooth θ of some fixed L2 norm(say, 1), or equivalently that we compute the

infimum of H1 {θ} normalized by ‖θ‖2
2 . We proceed with the former condition for reasons

that will become apparent shortly.

λmin = inf
θ

ˆ (
|∇θ|2 + θwτ ′

)
dxdz,

ˆ
θ2dxdz = 1. (4.2.13)

We enforce normalization and the point-wise constraint ∆w = Ra∂xθ via the Lagrange

multipliers λ/2 and γ(x, z)/Ra respectively. Thus

λmin = inf
θ

F
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where F =

ˆ [
|∇θ|2 + θwτ ′ − λ

2

(
θ2 − L

)
+
γ(x, z)

Ra
(∆w −Ra∂

2θ

∂x2
)

]
dxdz. (4.2.14)

Integrating by parts and using the fact that γ(x, z) is also periodic in x, we arrive at an

alternative form of F :

F =

ˆ [
−θ∆θ + θwτ ′ − λ

2

(
θ2 − L

)
+
γ(x, z)

Ra
∆w − θ∂

2γ

∂x2

]
dxdz. (4.2.15)

Given these two forms, a straightforward calculation shows that the Euler-Lagrange equa-

tions

δF

δθ
= 0 (4.2.16)

δF

δw
= 0 (4.2.17)

δF

δγ
= 0 (4.2.18)

reduce to:

−2∆θ + wτ ′ − ∂2γ

∂x2
= λθ (4.2.19)

Raθτ ′ + ∆γ = 0 (4.2.20)

∆w −Ra∂
2θ

∂x2
= 0. (4.2.21)

Now, we show that the local extrema of H1 {θ} are precisely the values of λ that solve

4.2.19-4.2.21. Multiplying (4.2.19) by θ and integrating, we obtain

H1 {θ} −
ˆ [

θ∆θ + θ
∂2γ

∂x2

]
dxdz = λ

ˆ
θ2dxdz = λ. (4.2.22)
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However, equations (4.2.20) and (4.2.21) and the application of integration by parts show

that

ˆ [
θ∆θ + θ

∂2γ

∂x2

]
dxdz =

ˆ [
θ∆θ + γ

∂2θ

∂x2

]
dxdz (4.2.23)

=

ˆ [
θ∆θ +

γ

Ra
∆w
]

dxdz (4.2.24)

=

ˆ [
θ∆θ +

w

Ra
∆γ
]

dxdz (4.2.25)

=

ˆ
[θ∆θ − wθτ ′] dxdz (4.2.26)

= −H1 {θ} . (4.2.27)

Therefore, H1 {θ} = λ/2 if θ and λ solve (4.2.19)− (4.2.21) .

4.2.5 The adapted basis

It is a straightforward exercise to show that the functions θ(x, z) solving (4.2.19− 4.2.21) are in

fact eigenfunctions of the symmetric operator S. One can see this by noting that

δ

ˆ
θS {θ} − λ |θ|2 = 0 =⇒ S {θ} = λθ. (4.2.28)

This is the essence of our variational problem while the additional Lagrange multiplier serves

merely as a means to implicitly enforce the momentum equation.

To compute the eigenfunctions, we take the Fourier transform of the equations in x to arrive
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at a z-dependent equation for each horizontal wavenumber n. Substitute:


θ(x, z)

w(x, z)

γ(x, z)

 −→


Θmn(z)einkx

Wmn(z)einkx

Γmn(z)einkx

 , ‖Θmn‖ = 1. (4.2.29)

where k = 2π/L. The equations therefore become

(−2)
[
D2 − (nk)2

]
Θmn + τ ′Wmn + (nk)2Γmn = λmnΘmn (4.2.30)[

D2 − (nk)2
]
Wmn + (nk)2RaΘmn = 0, (4.2.31)[

D2 − (nk)2
]

Γmn +Raτ ′Θmn = 0, (4.2.32)

where the discrete set of vertical eigenfunctions for a given n is indexed by the vertical “wave

number” m. We note that for n = 0, The equations may be solved exactly:

Wm0(z) = 0, Θm0(z) =
√

2 sin((m+ 1)πz), λm0 = 2 (m+ 1))2π2 (4.2.33)

4.2.6 Derivation of the ODES

The derivation of the Galerkin approximations of the equation of motion are similar to those

we demonstrated in the case of the Fourier basis. The fields are expanded in the obtained

eigenbasis with time-dependent amplitudes:
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θ(x, z) =
∞∑

β=−∞

∞∑
α=0

aαβ(t)Θαβ(z)eiβkx, (4.2.34)

w(x, z) =
∞∑

β=−∞

∞∑
α=0

bαβ(t)Wαβ(z)eiβkx, (4.2.35)

u(x, z) =
∞∑

β=−∞

∞∑
α=0

cαβ(t)Uαβ(z)eiβkx, (4.2.36)

γ(x, z) =
∞∑

β=−∞

∞∑
α=0

dαβ(t)Γαβ(z)eiβkx, (4.2.37)

Here, the main difference is that the linear operator in 4.2.1 needs to be decomposed into

its symmetric and antisymmetric parts.

Denoting by w {θ} the self-adjoint3 linear operator such that w {θ} (x, z, t) = w(x, z, t), we

compute S and A as follows. For any function f satisfying the same boundary conditions as

θ,

(f,L {θ}) =

ˆ
[−f∆θ + fτ ′w {θ}] dxdz (4.2.38)

=

ˆ
[−∆f θ + w {fτ ′} θ] dxdz. (4.2.39)

Thus,

L † {θ} = −∆θ + w {τ ′θ} (4.2.40)
3One can see this from the self-adjointness of the inverse Laplacian operator and the momentum equation.
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which yields

S {θ} =
1

2

(
L {θ}+ L † {θ}

)
= −∆θ +

1

2
(τ ′w {θ}+ w {τ ′θ}) (4.2.41)

A {θ} =
1

2

(
L {θ} −L † {θ}

)
=

1

2
(τ ′w {θ} − w {τ ′θ}) . (4.2.42)

Equation 4.2.1 then becomes

∂tθ + u ·∇θ = τ ′′ − S {θ} − A {θ} . (4.2.43)

Once more, we denote the eigenfunctions by φmn(x, z) = Θmn(z)einkx and project the time-

dependent equation onto each φmn. By the momentum equation and incompressibility respec-

tively, we have the two constraints bqj(t) = aqj(t) and cmn(t)Umn(z) = (i/nk)bmn(t)Wmn(z).

(φmn, ∂tθ) = ȧmn (4.2.44)

(φmn, S {θ}) = −λmn
2
amn (4.2.45)

(φmn, τ
′′) =

ˆ
τ ′′(z)Θmn(z)δn,0dz (4.2.46)

(φmn,u ·∇θ) =
∞∑

β,q=−∞

∞∑
α,p=0

(ikβ)cp,qaα,β

ˆ
Θm,nUp,qΘα,βδ(β + q − n)dz

+
∞∑

β,q=−∞

∞∑
α,p=0

bp,qaα,β

ˆ
Θm,nWp,qDΘα,βδ(β + q − n)dz (4.2.47)

After simplification, the application of modal constraints, and finally renaming the dummy
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variables in the sums, the quadratic term simplifies to

(φmn,u ·∇θ) =
∞∑
j 6=n
j=−∞

∞∑
p=0

∞∑
q=−∞

aqjqp(n−j)

ˆ [(
j

n− j

)
DWp(n−j)Θqj −Wp(n−j)DΘqj

]
Θmndz

if n 6= 0 (4.2.48)

and

(φmn,u ·∇θ) =
∞∑
j 6=0
j=−∞

∞∑
p=0

∞∑
q=0

aqjap(n−j)
√

2(m+ 1)π

ˆ 1

0

WpjΘqj cos((m+ 1)πz) dz

if n = 0. (4.2.49)

Finally, we project the antisymmetric term onto φmn. From (4.2.20) we find that ∆
(
∂2γ
∂x2

)
=

Ra ∂2

∂x2
(τ ′θ) which implies that w {τ ′θ} = ∂2γ

∂x2
. Combining this with (4.2.42) , we deduce

(φmn,A {θ}) = −1

2

∞∑
p=0

(nk)2 dpn

ˆ 1

0

ΓpnΘmndz +
1

2

∞∑
p=0

bpn

ˆ 1

0

τ ′WpnΘmndz. (4.2.50)

Using (4.2.32) , integration by parts, and then (4.2.31) , we find

1

2

∞∑
p=0

bpn

ˆ 1

0

τ ′WpnΘmndz = −1

2

∞∑
p=0

bpn
1

Ra

ˆ 1

0

[
WpnD

2Γmn − (nk)2WpnΓmn
]

dz

= − 1

2Ra

∑
p

bpn

ˆ 1

0

[
D2 − (nk)2]WpnΓmndz

=
1

2

∑
p

bpn

ˆ 1

0

(nk)2 ΘpnΓmndz. (4.2.51)
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Therefore,

(φmn,A {θ}) =
1

2

∑
p

amn (nk)2

ˆ 1

0

[ΘpnΓmn −ΘmnΓpn] dz. (4.2.52)

Combining all terms, the final form of the ordinary differential equations will be

ȧmn = µmnamn +
∞∑
p=0

µpmnapn +
∞∑

j=−∞

∞∑
p=0

∞∑
q=0

Λjpq
mnaqjap(n−j) for n 6= 0 (4.2.53)

ȧm0 = µm0am0 +
∞∑

j=−∞

∞∑
p=0

∞∑
q=0

Λjpq
m0aqja

∗
pj + fm (4.2.54)

where

µpmn =

(
n2k2

2

) ˆ 1

0

[ΘmnΓpn −ΘpnΓmn] dz, (4.2.55)

µm0 = −(m+ 1)2π2, (4.2.56)

µmn = −λmn
2

for n 6= 0. (4.2.57)

Λjpq
mn =

ˆ 1

0

Θmn

[(
j

j − n

)
DWp(n−j)Θqj −Wp(n−j)DΘqj

]
dz, (4.2.58)

Λjpq
m0 =

√
2(m+ 1)π

ˆ 1

0

WpjΘqj cos((m+ 1)πz) dz, (4.2.59)

fm =
√

2(m+ 1)π

[
1− (m+ 1)π

ˆ 1

0

τ(z) sin((m+ 1)πz) dz

]
, (4.2.60)

4.2.7 Numerical computation of the spectrum

It is possible to solve the constrained variational problem (4.2.12) by brute force optimization

using standard numerical optimization software packages as in [39,40]. There, we computed

the spectra and the associated upper bounds for up to Ra = 2102. However for Ra greater

than a few thousand, the method proves excessively resource intensive and lacking in robust-
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ness. Numerical instabilities prohibit accurate computation of the optimal eigenfunctions.

In [41] a new strategy was devised for efficiently and accurately solving the variational prob-

lem which extends the results to Ra ≈ 2.65 × 104. This method consists of two steps: first

an Euler-Lagrange problem is directly formulated for the minimization of
´ 1

0
τ ′2(z) dz sub-

ject to the spectral constraint. The resulting Euler- Lagrange equations are augmented by a

time-derivative term to yield time evolution equations with steady states equal to the desired

solutions. A time-marching method is then used to find the critical modes (those with λ = 0).

Good approximations for the critical modes are quickly found. However, convergence to the

full solution may be forbiddingly slow. Therefore, in the second step, initial guesses for a

Newton-Kantorovich (NK) iterative method are constructed using only the critical modes

found in the first step and the full solution is then computed using the NK method.

The spectrum thus computed possesses properties pertinent to low-dimensional modeling.

To demonstrate this, we present the spectrum and eigenfunctions computed for several values

of Ra in fig 4.2.1.

Several features of the optimal spectra are worth noting:

1. The spectra indicate the existence of “marginally stable” modes, i.e., modes with λ = 0.

In dynamical terms, these modes will have zero linear damping and will be driven

entirely by nonlinear interaction( and constant forcing represented by the Fm terms)

whereas all other modes will be damped linearly. As Ra increases, more and more

marginally stable modes are introduced and/or they shift toward higher wave numbers,

in line with the notion that the dominant length scales decrease as Ra increases.

2. There is a distinct separation between the first two branches of the spectrum (m =

0, 1) and the rest. The first two branches tend to be drawn toward zero to to make
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Figure 4.2.1: Numerically computed eigenvalues λmn at various Ra values. Notice the in-
creasing number of marginally stable modes (λmn = 0) and their shift toward higher wave
numbers as Ra increases.
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Figure 4.2.2: Some temperature eigenfunctions Θmn(z) and the optimal background profile
τ(z) for Ra = 100, 1000, 10000. As Ra increases, τ(z) mimics the horizontally averaged
temperature with increasingly thin boundary layers. The temperature eigenvalues also tend
to concentrate increasingly toward z = 0, 1. 61



“touchdowns” a number of times before growing unboundedly. Remarkably, the second

branch eventually mimics the first, producing marginally stable modes at the same

wavelengths. The alternating parity of Θmn about z = 1/2 with increasing m (evident

in (4.2.2c) for instance) means that using modes from the first two branches alone, one

can produce independent dynamics at the two boundary layers.

3. The optimal background profile τ(z) resembles the horizontally averaged temperature

in that the sharpest gradients occur near z = 0, 1 and there is little variation in the

bulk. Furthermore, with increasing Ra, we observe a thinning of the boundary layers in

τ, reminiscent of the actual (time-averaged) temperature empirically and numerically

observed . Thus, in our Nonlinear Galerkin models, the boundary layer is more or less

resolved a priori by the choice of τ, removing the burden from the dynamics.

We also note that new upper bounds for Nu may be obtained as a bi-product of the numerical

computation of the optimal background profile. Once the optimal background profile τ(z) is

computed, using (4.2.5) an upper bound (at Ra/2) may be found for any a ∈ (0, 1). Finally,

the optimal upper bound is computed numerically by varying the parameter a. Figure 4.2.3

shows the new upper bounds4 alongside previously obtained analytical and numerical bounds,

and results from direct numerical simulations.

4.3 Discussion

A number of qualitative and quantitative distinctions can be predicted between the FG and

NG models. For instance, we can derive a simple absolute lower bound on the size of any
4The numerical computation of the optimal bounds is due to Baole Wen and Gregory Chini, University

of New Hampshire.
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Figure 4.2.3: Previously obtained analytical and numerical upper bounds, compared with
DNS results and the new upper bounds.

NG model as follows. The Galerkin-truncated equations of motion are

∂tθN + PN [uN ·∇θN ] = ∆θN + wN (4.3.1)

∆wN = Ra
∂2θN
∂x2

(4.3.2)

∇ · uN = 0. (4.3.3)

where θN is the N -th Galerkin approximation of θ and wN and uN solve (4.3.2) and (4.3.3) .

Note that even though uN 6= u, it is still incompressible by design. Thus, if we multiply

(4.3.1) by θN and integrate, the cubic term vanishes just as in (4.2.11) with the full fields.

The expression for the rate of energy change then contains quadratic terms only.
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Therefore, we expect all cubic terms to vanish also when we repeat the computation using

the Fourier-Galerkin ODEs (4.1.29) . The only remaining terms are those originating from

the linear term of the time evolution equations:

1

2

d

dt
‖θN‖2

2 =
1

2

d

dt

∑
|amn|2 (4.3.4)

=
1

2

∑
[ȧmna

∗
mn + ȧ∗mnamn] (4.3.5)

= Re {a∗mnȧmn} . (4.3.6)

Thus

1

2

d

dt
‖θN‖2

2 =
∑

µmn |amn|2 . (4.3.7)

This implies that energy will diverge unless at least one stable mode is included in the basis.

In other words, the number of unstable modes is a lower bound on the size of any working

model. Of course, the inclusion of at least one stable mode is only a necessary condition

and does not guarantee energy-stability, let alone any measure of convergence. In order to

estimate this lower bound as a function of Ra, we count the modes with µmn > 0 (4.1.27) :

Ram2

m2 + n2
> π2(m2 + n2) with m,n > 0 (4.3.8)

leads to −m2 +
√

Ra
π2m > n2 and thus, to leading order, the number of unstable modes is

ˆ √
Ra
π2

0

(
−m2 +

√
Ra

π2
m

)1/2

dm =
Ra

8π
(4.3.9)
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as Ra → ∞. At Ra = 1000 for instance, this implies that any model with less than ∼ 40

modes will necessarily diverge.

Next chapter will be dedicated to numerical studies of dynamical systems of various trunca-

tions, using both FG and NG.
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CHAPTER V

Low-dimensional models

In the last chapter, we derived two classes of Galerkin spectral methods for the solution

of porous-medium convection: the standard Fourier-Galerkin methods obtained from the

Galerkin projection of the PDEs onto the Fourier basis, and the new “Nonlinear-Galerkin”

methods that exploit the “adapted basis” and the optimal background profile produced by

our proposed variational scheme.

In this chapter, we will present and discuss the results of a substantial set of simulations of

both methods at various Rayleigh numbers. The goal is to understand the relative strengths

of the two methods in different dynamical regimes. In particular, we investigate the manner

in which the solutions of the two methods “converge” as more and more modes are included.

For added perspective, we also compare some results with those of pseudo-spectral collocation

methods as described in Chapter III.
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5.1 Finite truncations

A well-defined finite-dimensional dynamical model (Galerkin method) has not been con-

structed until we have truncated the infinity of ODEs to include only a finite number of

selected modes. For extreme truncations where only a few modes are kept, one might be

able to select the modes based on heuristic physical interpretations of the role of those modes

in the dynamics. However, in general one needs a consistent rule that yields an increasing

sequence of sets of modes to be used for models of various “sizes”. Questions of convergence

may then be studied in a systematic fashion.

Given the ODEs computed in the previous chapter, the most immediate measure of the

comparative dynamical vigor of different modes is the linear growth coefficient of each mode.

In fact, linear analysis shows that at the onset of convection, the linear coefficients are solely

responsible for determining the unstable modes and their relative growth rates. However,

away from the conduction solution, the nonlinear interactions dominate and one can not

rely on linear arguments any more. The other coefficients in the equations define linear

or quadratic couplings between the modes and therefore, from a pragmatic point of view,

do not contribute to an ordering of the modes in any trivial way. On the other hand, the

linear coefficients quantify the level of self-inhibition (when negative) or linear growth (when

positive) and thus provide a clear albeit incomplete measure of dynamical relevance. We

rely solely on the linear coefficients for defining our truncations.

Specifically, let the tuples {(m1, n1) , (m2, n2) , · · · } index the modes such that

µm1n1 ≥ µm2n2 ≥ µm3n3 ≥ · · · . (5.1.1)
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In our notation, for the NG model, m = 0, 1, 2, · · · and n = 0, 1, 2, · · · whereas in the FG

model, m = 1, 2, 3, · · · . A truncation of size N is defined as the choice of the modes

{(m1, n1) , (m2, n2) , · · · , (mN , nN)} . (5.1.2)

Initially, we introduce a slight modification to this scheme. Since computationally the modes

themselves are commonly computed on finite “rectangles” in the spectral space, i.e., (m,n) ∈

{Mmin, · · · ,Mmax}×{Nmin, · · · , Nmax}, and since additionally this is the only option in the

case of pseudo-spectral methods, unless otherwise indicated, a truncation of size N consists

of the N modes with the largest linear coefficients within a rectangle of predefined size in

the spectral space. For instance, Figure 5.1.1 shows how this truncation is applied to the

Fourier-Galerkin models.

5.2 Numerical methods

The implementation of both the NG and the FG models requires the numerical computa-

tion of all the coefficients (4.2.55− 4.2.60) and (4.1.23− 4.1.27) pertaining to the truncation

first. The coefficients derived for the FG model are algebraic functions of various modal

indices and thus efficiently computable. On the other hand, those of the NG model, re-

quire differentiation and integration of various combinations of the numerically computed

eigenfunctions on the Lobatto grid. This task may be performed with high precision, but

is relatively expensive. It should be noted that overall, the numerical computation of the

NG equations takes tens of times longer than that of the FG equations. We have taken
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Figure 5.1.1: An illustration of the truncation scheme for the Fourier-Galerkin method. The
color encodes the linear coefficient of the mode, with lighter colors indicating larger values
and thus higher precedence. Each contour delineates the set of modes used for a truncation.
The truncations depicted use increasing percentages of the total number of modes, equally
spaced from 2 percent to 100 percent.

advantage of parallelized algorithms running simultaneously on multiple cores 5 to perform

these computations. Once the equations are computed for the largest desired truncation,

those of lower truncations may be extracted as appropriately chosen subsets.

We performed the time integration of the equations using a fourth order Runge-Kutta method

with adaptive time-stepping [42]. For each batch of simulations at a given Ra, a single run

at a relatively low truncation was performed to ensure the desired type of solution was
5Using the FLUX computer cluster at the University of Michigan.
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produced, and the result was used as the initial condition for all other truncations. This

involves using the old modal amplitudes in the new truncation and assigning zero to the

new modes. At high Ra, the presence of the zero amplitudes in the initial conditions can

lead to numerical instability unless the time steps are initially chosen to be several orders of

magnitude smaller than otherwise necessary so that the new modes are populated gradually.

Hence the use of adaptive time-stepping.

The Nusselt number is computed using the bulk formula (2.2.23) unless otherwise stated.

At low to medium Ra, i.e., Ra = 100, 700, 900, the solution we seek to simulate is the single

pair of rolls (steady for Ra = 100 and with boundary layer plumes at Ra = 700, 900). At

Ra = 100, this solution is centro-symmetric modulo a horizontal translation, i.e., if centered

in the box, each half-box of size 1×1 appears symmetric about x = z = 1
2
. At Ra = 700, 900,

there exists a family of solutions, all organized about the single pair of rolls with boundary

layer plumes, but not all need be centro-symmetric. However, our results show no difference

in Nu between the two. A restriction to the subspace of centro-symmetric solutions is thus

physically justified and computationally advantageous: one needs to model only half of the

modes in the centro-symmetric subspace. For more details on centro-symmetry, see Appendix

B.

5.3 Direct numerical simulations

Before we begin the simulation of the Galerkin models, we first examine the convergence

of the standard pseudo-spectral collocation method described in Chapter III. Here, the goal

is to solve the porous-medium convection problem at several different grid sizes, which we

interpret in terms of the number of “modes” used, and observe the pattern of convergence
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for the resulting Nu.
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Figure 5.3.1: Pseudo-spectral simulations at Ra = 700 and Ra = 900 at different resolutions.
The former appears to converge with about 1000 modes and the latter with 1000 ∼ 2000
modes.

We perform these simulations at Ra = 700 and Ra = 900. Following Graham and Steen [21],

the vertical and horizontal resolutions of our box of L = 2 are Nz and 8
3
Nz respectively,

where 22 ≤ Nz ≤ 72. We restrict the solutions to the centro-symmetric subspace. Thus, by

centro-symmetry and reality, the total number of degrees of freedom is N = 2
3
N2
z . In both

Ra values, we find other solutions as well, including a steady three pairs of rolls. Especially

at Ra = 900, it is not always easy to isolate the single-pair solution. Thus, given our data,

we can determine the size of the smallest converging simulation only approximately. The

results (Figure 5.3.1) indicate that at these Ra values, the simulations converge with 1000-

2000 degrees of freedom. As we will discuss later, this is far more than the minimum number

of degrees of freedom necessary for the convergence of either Galerkin method, illustrating

the fundamental disparity between the two types of spectral methods. Having established

this, we henceforth focus on comparing the two different Galerkin methods.
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(a) Ra = 100 (b) Ra = 300

(c) Ra = 700 (d) Ra = 900

Figure 5.3.2: Temperature fields from converged pseudo-spectral direct numerical simulation
at low Ra.

5.4 Dynamical systems models

5.4.1 Low Ra regime: Ra = 100

At Ra = 100, our simulations show a significant difference between the NG and FG models.

As Figure 5.4.1 illustrates, The FG models diverge with N < 6, need at least 14 modes to

yield a reasonably accurate Nu and do not converge until N ∼ 30. On the other hand, the

NG models do not diverge even at N = 2, and at N = 6, then already produce a Nu within

a few percents of the converged value. They more or less converge at N = 17.
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(a) Non-linear Galerkin models, Ra = 100.
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(b) Fourier Galerkin models, Ra = 100.

Figure 5.4.1: Comparison of NG and FG models at various truncations. The triangles
measure Nu from conduction at the boundary layers whereas the diamonds use the bulk-
averaged heat transport formula (2.2.23) . The red squares indicate diverging models.

5.4.2 Medium Ra regime: Ra = 700 and Ra = 900

At Ra = 700 and Ra = 900, we observe very little difference between the two methods. As

figures 5.4.2 and 5.4.3 illustrate, at Ra = 700, both models converge at N = 300 ∼ 400

whereas at Ra = 900, this occurs at N = 500 ∼ 600. The only apparent difference is at

extreme truncations (N < 20 ∼ 30) where the FG model simply diverges. A major difficulty
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in both models is isolating the single-pair solution at low N . The results presented in figures

5.4.2 and 5.4.3 have been chosen from hundreds of simulations most of which do not settle

into the single-pair solution at low N where meaningful differences between the two models

are expected.
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(a) Non-linear Galerkin models, Ra = 700.
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(b) Fourier Galerkin models, Ra = 700.

Figure 5.4.2: Comparison of NG and FG models at various truncations. Ra = 700.

74



8.5

9

9.5

10

10.5

11

11.5

12

100 1000

N
u

N

Single pair

(a) Non-linear Galerkin models, Ra = 900.
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(b) Fourier Galerkin models, Ra = 900.

Figure 5.4.3: Comparison of NG and FG models at various truncations. Ra = 900.

5.4.3 High Ra regime: Ra = 1500, L = 2

As mentioned before, above Ra ∼ 1250 the solution organized about a single pair of rolls

becomes unstable, and the roll structure is replaced by multiple chaotic “mega-plumes”.

These solutions are not consistent with centro-symmetry and arise as the generic solution

regardless of the initial conditions. Therefore, they are much easier to produce than the

target solutions at Ra = 700 and Ra = 900. This allows us to study severe truncations and
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compare the NG and FG methods.
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(a) Non-linear Galerkin models, Ra = 1500.
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(b) Fourier Galerkin models, Ra = 1500.

Figure 5.4.4: Comparison of NG and FG models at various truncations. Ra = 1500, L =
2. Empty triangles represent Nu computed using bulk-averaging whereas filled triangles
indicated Nu computed from conduction at boundary layers.

In this regime, the divergence of highly truncated FG models is rather nuanced. Beyond

the diverging low-N truncations, the two measurements of Nu—namely the one using the

bulk average heat flux and the other using conductive heat flux at the boundaries— rapidly

approach one another and continue to converge to the exact value. In contrast, the NG

model produces finite Nusselt measurements using both definitions starting from very low

N, but the two measurements approach one another at a much lower rate.
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5.4.4 High Ra regime, minimal flow unit:Ra = 7× 103 and Ra = 104
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(a) Non-linear Galerkin models, Ra = 7000.

20

40

60

80

100

120

140

160

180

100 1000

N
u

N

(b) Fourier Galerkin models, Ra = 7000.

Figure 5.4.5: Comparison of NG and FG models at various truncations. Ra = 7000, L =
0.3691. Empty triangles represent Nu computed using bulk-averaging whereas filled triangles
indicated Nu computed from conduction at boundary layers. Solid circles represent the
average of the two.

At Ra = 7000 and Ra = 10000 where the the flow is already turbulent, we exploit the

emergence of the minimal flow unit to further reduce the size of our Galerkin models. Based

on the conclusions of Chapter III, we compute the non-linear eigenfunctions and the resulting

ODEs at L = 4πRa−2/5. Thus, the box sizes are L = 0.3691 and L = 0.3156 for Ra = 7000

and Ra = 10000 respectively. As illustrated by figure 4.2.1, reducing the box size leads to

a more rapid (negative) growth of the linear modal coefficients and thus a smaller upper

bound on the horizontal wave numbers included in truncations. Figure 5.4.7b also reflects
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(a) Non-linear Galerkin models, Ra = 10000.
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(b) Fourier Galerkin models, Ra = 10000.

Figure 5.4.6: Comparison of NG and FG models at various truncations. Ra = 10000,
L = 0.3156. Empty triangles represent Nu computed using bulk-averaging whereas filled
triangles indicated Nu computed from conduction at boundary layers. Solid circles represent
the average of the two.

this fact.

Here, we are forced to forgo centro-symmetry for otherwise we are completely unable to

isolate the desired solutions due to the strict symmetry imposed. Figure 5.4.6b summarizes

our findings at this Ra. Surprisingly, in the NG case we find that Nu remains more or less

flat after a modest and brief initial move whereas for the FG case, we witness a sharp initial

fall followed by a steep rise and finally a steady trend toward saturation.
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(c) Ra = 10000, L = 0.3156, larger index
ranges.

Figure 5.4.7: The truncation schemes for the non-linear Galerkin method at Ra = 700 and
Ra = 10000. The forcing terms Fm are also plotted on the side.
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5.5 Discussion

A closer look at the truncation schemes (figure 5.1.1b and 5.4.7b) provides some insight:

in NG models, all forcing is embedded in the mean modes (n = 0) via Fm and thus any

truncation confined to a finite box in the spectral space will only utilize the forcing contained

in mean modes up to Mmax. For Ra = 700 (figure 5.4.7a), once 50 percent of the modes in a

32× 48 box are included, virtually no more forcing (Fm) is left to be utilized. In contrast, at

Ra = 10000 (figure 5.4.7b), all the forcing available in the 32× 48 box is already employed

at a 25 percent truncation and thus adding more modes will only add dissipation and the

remainder of the forcing is left unused.

In FG models the modal distribution of forcing is entirely different. There, all forcing is left

in the form of unstable modes, precisely those with the highest precedence in the standard

truncation scheme. Hence the divergence of extreme truncations and the sharp fall in the

Nusselt numbers produced by the smallest non-diverging truncations.

It is clear then that the finite-box constraint in our truncation scheme needs to be abandoned

and the linear coefficient should be relied on as the sole determinant of a mode’s precedence.

This will guarantee, in both models, that an increasing sequence of truncations will exhaust

all available forcing before the asymptotic trend toward the inclusion of high-frequency,

high-dissipation modes sets in.

Figure 5.5.1 shows the results of another set of FG models, this time truncated in an “un-

constrained” fashion. By that we mean that lying within a box of predefined size in the

spectral space is no longer a required condition for the inclusion of a mode. The truncations

are determined solely based on the linear coefficients as a criterion for modal precedence.

Clearly, a more rapid and uniform convergence to the exact value is observed suggesting that
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Figure 5.5.1: FG models at Ra = 104 with unconstrained truncations.

the anomalies in 5.4.5b and 5.4.6b are symptomatic of the “constrained” truncations.

It is only natural to surmise that this change to the truncation scheme should produce a

similarly pronounced improvement in the performance of the NG models as well. However,

at the time of writing, we do not have numerical evidence for this claim. Due to the high

computational cost of the NG models, especially at high vertical wave numbers where the

numerical eigenfunctions have to be resolved with rather high spatial resolutions, this task

is best left to future investigations.
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CHAPTER VI

Conclusions

The investigation the results of which we reported in this dissertation led to answers to a

number of questions. First, our numerical simulations confirmed that in the turbulent regime

of porous-medium convection, the coherent structures known as the minimal flow units are

not only spatially repetitive units, but also the smallest “complete” dynamical units of the

flow: we showed that a periodic box with the aspect ratio equal to the experimentally

measured average width of the minimal flow unit is the smallest box capable of sustaining

a flow with the “correct” vertical heat transport. Later, our minimal-flow-unit dynamical

models were also able to reproduce the single mega-plume pair in that aspect ratio.

Secondly, we derived a class of Galerkin methods with a number of desirable properties,

tailored to the problem of porous-medium convection. Our method is designed to model

the boundary layers statically, relieving the dynamics of the task of resolving them. Fur-

thermore, it isolates and separates all forcing in the form of constant inhomogeneities in

a small localized set of the modal equations. This allows the linear truncation scheme to

produce severely truncated working models by dispensing a balanced combination of forcing

and dissipation. In contrast, Fourier-Galerkin models constructed using the same truncation

scheme necessarily begin with all the forcing at once and thus diverge at severe truncations.
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We are now also aware of the limitations of the method. Most importantly, the basis functions

used need to be computed numerically in advance. This also means that the integrations

and differentiations involved in the computation of the coefficients defining the ODEs have

to be done numerically, adding tremendously to the computational cost of the method in

comparison with the Fourier-Galerkin method.

In the beginning, the gap between the first two branches of the nonlinear spectrum and the

higher branches (see figure 4.2.1) seemed to point to the unique dynamical role of modes

chosen from those two branches. These modes indeed play a unique role in resolving fine

structures near the boundary layers, but as we found later, unless many other modes from

other branches are also included to resolve the bulk, we can not expect the models to satis-

factorily reproduce the physical features of the flow. In particular, at high Ra, the forcing is

spread over a large range of vertical wave numbers in the n = 0 modes. Thus, a converging

model requires a large number of those modes.

Having understood the results presented in this report, we can propose a number of additional

strategies for future exploration of the subject. The inhomogeneous forcing terms together

with large self-inhibitions seem to force the large-m modes from the n = 0 family into a

more or less steady state. The energy spectra of the solutions (not reported here) paint a

picture of those modes as steady sources distributing energy among other modes. Therefore,

one may be able to model them statically, and incorporate their full forcing even in low

truncations.

Another approach is to model the n = 0 modes separately from the rest, in the form of a

one-dimensional PDE coupled to the ODEs, supplying them with forcing. This approach is

currently being explored by our collaborators6.
6Gregory Chini and Baole Wen at the University of New Hampshire.
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It is our hope that this study paves the way for and inspires further research into reduced

modeling of infinite-dimensional dynamical systems.
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APPENDIX A
The inertial manifold

An elementary proof of existence for the global attractor requires the existence of a compact

absorbing set for a dissipative evolution semigroup [3]. In some cases, one may addition-

ally derive bounds on the Haussdorf dimension of the global attractor (and thus show that

it is finite-dimensional) by following the evolution of arbitrary infinitesimal n-dimensional

volumes under the evolution semigroup [2]. This is a considerably weaker result than the

existence of a finite-dimensional exponentially absorbing smooth manifold containing the

global attractor: the inertial manifold. It is the restriction to this manifold that renders

the asymptotic dynamics finite-dimensional. Foias, Sell and Temam [8] first introduced this

notion and provided a proof of existence applicable to a certain class of problems: for an

evolution equation of the form

du

dt
+ Au = F (u), u ∈ H (6.0.1)

where H is a Hilbert space and A : H → H a positive linear operator, the so-called strong

squeezing property guarantees the existence of the inertial manifold. This property is essen-

tially the condition that two different initial states which are closer in their high-frequency

component than the low-frequency component will remain so under the evolution, unless

the two trajectories converge to one another exponentially. If F : L2 → L2 is Lipschitz
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continuous (|F (u)− F (v)| ≤ C1 |u− v| for u, v ∈ H), it is then up to the linear operator A

to ensure that the magnitudes of the low and high components evolve in accordance with

the squeezing property. This results in a condition relating the largest eigenvalue of A in the

low subspace λN , the smallest eigenvalue of A in the high subspace λN+1, and the Lipschitz

constant of F , C1. Thus, a weak spectral gap criterion is obtained as a sufficient condition

for the strong squeezing property:

λN+1 − λN ≥ 4C1. (6.0.2)

This is to say that there exists a large enough gap in the spectrum of A, and the smallest

N at which such a gap exists, determines the dimension of the minimal inertial manifold

guaranteed to exist according to this method.

On the other hand, if we fail to demonstrate that F : L2 → L2 is Lipschitz continuous, a more

restrictive spectral gap criterion is required to produce the desired result. For instance, in the

Navier-Stokes equations, the presence of the spatial derivatives in the nonlinear advection

term prevents Lipschitz continuity in L2. However, Lipschitz continuity may still be shown

if F is defined between so-called fractional power spaces, in which case the stronger spectral

gap criterion is

λN+1 − λN ≥ 2C1

(
λγN+1 + λγN

)
(6.0.3)

where γ is a positive number depending on the restricted domain and range of F. Now, it

is required of the spectral gap to grow large, soon enough in order to counter the growth

on the right hand side. This condition is not known to hold for A = −∆ (except in one

spatial dimension where λn ∼ n2) and thus a proof of existence for the inertial manifold of

the Navier-Stokes equations is currently not known.
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APPENDIX B
Centro-symmetry

Graham and Steen [21] consider a 1 × 1 box with Neumann boundary conditions for tem-

perature on the sidewalls and centro-symmetry (technically, antisymmetry). Because of the

Neumann boundary condition, we can place such a field next to its reflection (across one of

the side walls) and obtain a solution that is

1. periodic in x over [0, 2],

2. reflectionally symmetric about x = 1,

3. centro-symmetric within each of the two 1× 1 sub-boxes,

4. differentiable everywhere including at x = 1,

and therefore consistent with the overall constraints and boundary conditions of our nonlinear

model.

We now ask how we can enforce all these constraints on the solutions of our own nonlinear

model. We expand the temperature field as follows:

θ(x, z, t) =
∞∑
m=0

+∞∑
n=−∞

amn(t)Θmn(z)eiknx (6.1.4)

for x ∈ [0, 2] and z ∈ [0, 1].
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In order to enforce reflectional symmetry at x = 1, we demand that θ(x, z, t) = θ(2− x, z, t)

for all x, z, t. Therefore,

∑
m,n

amn(t)Θmn(z)
[
einkx − eink(2−x)

]
= 0 (6.1.5)

∑
m,n

2i sin(nkx)amn(t)Θmn(z) = 2i
∑
m

∞∑
n=1

sin(nkx)Θmn(z) [amn − a∗mn] (6.1.6)

= −4
∑
m

∞∑
n=1

sin(nkx)Θmn(z) Im amn(t) (6.1.7)

= 0. (6.1.8)

Therefore, amn has to be real for all m,n.

The next constraint is centro-symmetry. To enforce this constraint, we introduce the follow-

ing transformation:

x′ = x− 1

2
, z′ = z − 1

2
(6.1.9)

which translates the origin of the coordinate system to (1
2
, 1

2
). Define

Θ̃mn(z′) = Θmn(z) = Θmn(z′ +
1

2
) (6.1.10)

and write

einkx = eink(x′+ 1
2

) (6.1.11)

= ein
k
2 einkx

′
. (6.1.12)
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Thus, the temperature field written in terms of x′, z′, t will take the form:

θ(x′, z′, t) =
∑
m

∑
n

amn(t)Θ̃mn(z′)ein
k
2 einkx

′
(6.1.13)

=
∑
m

am0Θ̃m0(z′) +
∑
m

∞∑
n=1

2amn(t)Θ̃mn(z′) cos(nkx′ +
n

2
k). (6.1.14)

With this form of the expansion, we can now enforce centro-symmetry by demanding that

∑
m

am0Θ̃m0(z′) +
∑
m

∞∑
n=1

2amn(t)Θ̃mn(z′) cos(nkx′ +
n

2
k) (6.1.15)

=−
∑
m

am0Θ̃m0(−z′)−
∑
m

∞∑
n=1

2amn(t)Θ̃mn(−z′) cos(−nkx′ + n

2
k). (6.1.16)

As a result of the symmetry properties of Θmn(z′), namely that

Θmn(−z) =


Θmn(z) m odd

−Θmn(z) m even,
(6.1.17)

this condition becomes:

0 ≡
∑

meven
2am0(t)Θ̃m0(z′) (6.1.18)

+ 2
∑

meven

∞∑
n=1

amn(t)Θ̃mn(z′)
[
cos(nkx′ +

n

2
k) + cos(−nkx′ + n

2
k)
]

(6.1.19)

+ 2
∑
modd

∞∑
n=1

amn(t)Θ̃mn(z′)
[
cos(nkx′ +

n

2
k)− cos(−nkx′ + n

2
k)
]
. (6.1.20)
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Using the trigonometric identities

cos(a+ b) + cos(−a+ b) = 2 cos(a) cos(b) (6.1.21)

cos(a+ b)− cos(−a+ b) = −2 sin(a) sin(b) (6.1.22)

we have:

0 ≡
∑

meven
2am0(t)Θ̃m0(z′) (6.1.23)

+ 4
∑

meven

∞∑
n=1

amn(t) cos(
n

2
k)Θ̃mn(z′) cos(nkx′) (6.1.24)

− 4
∑
modd

∞∑
n=1

amn(t) sin(
n

2
k)Θ̃mn(z′) sin(nkx′). (6.1.25)

Since k = π, we have

cos(
n

2
k) =


0 n odd

non-zero n even
(6.1.26)

and

sin(
n

2
k) =


non-zero n odd

0 n even.
(6.1.27)

Consequently, by the completeness of the bases Θ̃mn(z′) cos(nkx′) and Θ̃mn(z′) sin(nkx′), the

only way the expression can be identically zero is if amn(t) ≡ 0 whenever the accompanying
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trigonometric coefficient ( cos(n
2
k) or sin(n

2
k)) is non-zero. In other words, we demand that

amn(t) =


0 m+ n even

Nonzero otherwise
(6.1.28)

An identical analysis leads to an identical result for the Fourier-Galerkin equations.
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APPENDIX C
Temperature field snapshots from NG models

(a) Ra = 700, low resolution. (b) Ra = 700, high resolution.

(c) Ra = 1500, low resolution. (d) Ra = 1500, high resolution.

(e) Ra = 10000, low resolution. (f) Ra = 10000, high resolution.

Figure 6.2.2: Examples of the temperature fields obtained from non-linear Galerkin models.

In this appendix, we present examples of the temperature field obtained from low and high-

resolution non-linear Galerkin simulations. The low-resolution examples were chosen among
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the lowest truncations capable of reproducing the main large-scale qualitative features of

the flow. The “high resolution” examples were taken from the highest-resolution models

simulated for each Ra. Not all are necessarily converged, but all demonstrate the large-scale

qualitative features of the flow faithfully and robustly.
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