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Abstract	

	 The	 complex	 microbial	 communities	 that	 inhabit	 our	 bodies,	 our	 microbiota,	

profoundly	influence	human	health.		Alterations	in	microbiota	profiles	occur	as	a	result	of	

host	 and	 environmental	 factors,	 and	 can	 lead	 to	 increased	microorganism	 transmission,	

pathogen	susceptibility,	and	disease.	 	This	interdisciplinary	dissertation	investigates	hand	

microbiota	 dynamics	 over	 a	 3‐week	 period	 among	 34	 surgical	 intensive	 care	 unit	

healthcare	workers	(HCWs),	while	accounting	 for	 technical	sources	of	variation.	 	We	also	

assess	the	role	hand	microbiota	play	in	specific	nosocomial	pathogen	carriage.	

	 An	accurate	profile	of	the	human	microbiota	requires	assessment	of	the	variation	in	

biological	patterns	between	individuals	and	within	individuals	over	time,	while	considering	

technical	 variation	 due	 to	 (i)	 specimen	 collection	method,	 (ii)	DNA	 extraction	 technique,	

and	 (iii)	 sequencing.	 	Analysis	of	 the	HCWs'	hand	microbiota	 showed	 that	only	 sampling	

collection	 method	 appeared	 to	 have	 a	 significant	 impact	 on	 the	 observed	 microbial	

community	 structure.	 	 Samples	 collected	 using	 the	 glove‐juice	 method	 showed	 that	

individuals'	hands	were	slightly	more	similar	to	each	other	in	microbial	composition	over	

time	 than	between	 individuals.	 	Using	 the	 swab	method,	however,	 samples	 from	a	 single	

individual	were	no	more	similar	to	each	other	than	to	other	individuals.	

	 After	 HCW	 hand	 microbiota	 characterization,	 we	 assessed	 its	 role	 in	 nosocomial	

pathogen	carriage.		The	proportion	of	pathogens	detected	using	qPCR	varied	by	collection	

visit:	 Staphylococcus	 aureus	 ranged	 from	 41.2%‐52.9%;	 Enterococcus	 spp.	 ranged	 from	

52.9%‐61.8%;	 Candida	 albicans	 ranged	 from	 2.9%‐8.8%;	 and,	 MRSA	 from	 2.9%‐5.9%.		

HCWs	with	lower	microbiota	diversity	were	more	likely	to	carry	a	pathogen	on	their	hands	

than	those	with	higher	diversity.	 	HCWs	took	a	self‐administered	questionnaire	regarding	
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basic	 demographics,	 overall	 health,	 hand	 health,	 hand	 hygiene	 practices,	 and	 patient	

contact	 levels,	 to	 explore	 possible	 associations	 with	 pathogen	 carriage.	 	 Risk	 factors	 for	

pathogen	 carriage	 were	 pathogen	 specific.	 	 Hand	 microbiota	 may	 have	 mediated	 the	

relationship	between	hand	hygiene	and	pathogen	carriage;	and,	acted	as	effect	modifiers	in	

the	 relationships	 between	 a)	 age	 and	 Enterococcus	 spp.	 carriage,	 and	 b)	 work	 shift	 and	

Staphylococcus	aureus	carriage.	

	 Understanding	risk	factors	for	pathogen	carriage	and	its	relationship	to	HCW	hand	

microbiota	 has	 significant	 implications	 for	 pathogen	 transmission	 and	 hospital	 infection	

control	policies.	
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Chapter	1:		Introduction	

Background	

	 Infections	 acquired	 in	 intensive	 care	 units	 (ICU)	 are	 associated	 with	 significant	

morbidity	 and	 mortality.	 	 The	 burden	 of	 nosocomial	 infection	 varies,	 according	 to	 the	

hospital	 setting,	 the	 patient	 population,	 hospital	 length‐of‐stay,	 surveillance	 methods,	

reporting	rates,	and	case	definitions	used	(Doyle	et	al,	2011).		According	to	the	Centers	for	

Disease	Control	and	Prevention,	approximately	1	out	of	every	20	hospitalized	patients	will	

contract	a	healthcare‐associated	 infection	 (HAI).	 	Others	estimate	up	 to	10%	of	admitted	

patients	will	acquire	a	nosocomial	infection.		These	rates	have	once	been	reported	to	be	5‐

10	times	higher	in	ICUs	than	among	general	ward	patients	(Trilla,	1994).		Recently,	a	large,	

international	 study	 of	 the	 epidemiology	 of	 ICU	 infections	 reported	 a	 51.4%	 prevalence	

among	13,796	adult	patients	at	1,265	participating	ICUs	from	75	countries	(Vincent	et	al,	

2009).	

	 Among	interventions	geared	at	hospital	infection	control,	hand	hygiene	remains	the	

most	important	in	reducing	transmission.		A	review	of	studies	from	1977	to	2008	looking	

at	 hand	 hygiene	 on	 the	 prevention	 of	 HAI	 showed	 that	 almost	 all	 report	 a	 temporal	

association	between	improved	hand	hygiene	and	reduced	infection	and	cross‐transmission	

rates	 (Allengranzi	 and	 Pittet,	 2009).	 	 Nevertheless,	 even	 with	 high	 compliance,	 there	 is	
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much	evidence	pointing	toward	the	insufficiency	of	hand	hygiene	in	preventing	HAI.	 	One	

study	which	used	transmission	rates	as	the	reference	standard	for	evaluating	indicators	of	

infection	control	problems	among	5	ICUs,	showed	no	correlation	between	the	incidence	of	

transmission	 episodes	 and	 hand	 hygiene	 compliance	 (Eckmanns	 et	 al,	 2006).	 	 An	

explanation	of	why	increasing	hand	hygiene	compliance	is	not	the	silver	bullet	against	HAI	

is	 the	 increased	 rates	 of	 dermatitis	 among	 healthcare	 workers,	 acquired	 due	 to	 the	

extraordinary	high	frequency	with	which	they	wash	their	hands	and	use	hand	alcohol	rubs.		

Their	 ensuing	 damaged	 hands	 often	 harbor	 more	 microorganisms	 than	 normal	 hands,	

because	washing	damaged	hands	is	less	efficient	at	reducing	bacterial	load	(Larson,	2001).		

Damaged	 hands	 has	 also	 been	 shown	 to	 be	 associated	 with	 greater	 bacterial	 load	 with	

antimicrobial	 resistance,	 despite	 using	 just	 plain	 soap	 (Borges	 et	 al,	 2007;	 Rocha	 et	 al,	

2009).	 	 Poor	 hand	 health,	 however,	 may	 not	 be	 the	 only	 explanation	 for	 the	 observed	

increase	 in	 bacterial	 load.	 	 Perhaps,	 the	 inter‐species	 interactions	 provided	 by	 the	 hand	

microbiota	can	also	be	held	accountable.		We	do	not	know,	for	instance,	enough	about	our	

skin	 microbiota	 to	 realize	 the	 full	 impact	 hand	 hygiene	 has	 on	 its	 balance,	 and	

consequently,	 on	 our	 potential	 to	 carry	 certain	 pathogens,	 and	 consequently	 transmit	

diseases.	 	Clearly,	 control	of	 transmission	of	hospital	 infections	requires	more	 than	clean	

hands.			

Overview	

	 This	 dissertation	work	 comprises	 of	 a	 detailed	 review	 (see	 chapter	 2)	 of	 the	 skin	

microbiota	and	its	association	with	its	potential	determinants	of	community	structure,	and	

ultimately	health	and	disease,	in	addition	to	the	results	of	a	pilot	study	(chapters	3	and	4)	

called	Healthy	Hands	Study,	which	implements	the	conceptual	 ideas	from	the	review	into	
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practice.	 	 The	Healthy	Hands	 Study	 is	 a	 longitudinal,	 short‐termed,	 observational	 cohort	

study	looking	at	the	hand	microbiota	of	healthcare	workers	(HCW)	in	a	surgical	intensive	

care	 unit.	 	 The	HCWs'	 hand	microbiome	were	 collected	 and	measured	 at	 three	points	 in	

time,	 and	 time‐invariant	 predictors	 of	 its	 variability	 and	 of	 pathogen	 carriage,	 were	

collected	 at	 baseline	 through	 a	 self‐reported	 questionnaire.	 	 Additionally,	 HCWs	 were	

screened	for	four	pathogens	known	to	cause	a	high	level	of	hospital	infections	worldwide.		

The	relationship	between	the	determinants	of	pathogen	carriage,	the	hand	microbiota,	and	

pathogen	carriage	was	investigated.	

	 First,	 this	dissertation	describes	 the	human	skin	microbiota,	outlines	 the	potential	

determining	factors	driving	 its	variability,	posits	the	 likelihood	of	an	association	between	

the	 resulting	 microbial	 community	 structure	 on	 the	 skin	 with	 disease	 outcomes	 among	

individuals,	 and	 finally,	 presents	 some	 challenges	 and	 implications	 for	 studying	 the	 skin	

microbiota.	

	 Second,	it	evaluates	the	biological	variability	of	the	skin	microbiome	of	the	hands	of	

HCWs	 to	consequently	understand	more	accurately	 its	 impact	 in	health,	disease	etiology,	

and	microbial	transmission.		This	dissertation	investigates	the	dynamics,	or	the	variation	in	

biological	patterns	between	individuals	and	within	individuals	over	time,	of	the	HCW	hand	

microbiota	 after	 assessing	 the	 technical	 variation	 introduced	 due	 to	 	 (i)	 specimen	

collection,	(ii)	DNA	extraction,	and	(iii)	sequencing.		These	results	are	discussed	in	Chapter	

3,	which	is	entitled	 'Hand	Microbiome	Dynamics	among	Healthcare	Workers	in	a	Surgical	

Intensive	Care	Unit'.	
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	 Third,	upon	assessing	the	dynamics	of	the	HCW	hand	microbiome,	this	dissertation	

addresses	 its	 influence	 on	nosocomial	 pathogen	 carriage.	 	 Among	 the	most	 common	 ICU	

pathogens	 reported	 by	 the	U.S.	 National	Health	 Surveillance	Network,	 are	 Staphylococci,	

Enterococci,	and	Candida	 (Doyle	et	al,	2011).	 	HAI	of	methycillin‐resistant	Staphylococcus	

aureus	 (MRSA),	while	 in	decline	 in	 the	United	States,	 are	 still	 a	major	 concern.	 	A	6‐year	

surveillance	 study	 from	 173	 ICUs	 across	 Latin	 American,	 Asia,	 Africa,	 and	 Europe,	 show	

MRSA	 bloodstream	 infection	 rates	 remain	 high	 (84.1%)	 (Doyle	 et	 al,	 2011).	 	 These	 four	

nosocomial	 pathogens	 were	 therefore	 selected	 for	 screening	 the	 HCWs.	 	 Many	 factors,	

exogenous	 and	 endogenous,	 play	 a	 role	 in	 pathogen	 carriage	 upon	 exposure.	 	 The	

endogenous	skin	microbiota	of	the	hand,	is	one	of	them.		Through	intra‐specific	ecological	

interactions,	it	is	possible	the	hand	microbiota	can	either	mediate	pathogen	carriage	or	act	

as	 an	 effect	 modifier	 in	 the	 relationship	 between	 certain	 environmental	 factors	 and	

pathogen	carriage.		These	potential	roles	the	hand	microbiota	play	in	pathogen	carriage	are	

investigated	 in	 Chapter	 4,	 entitled	 'Healthcare	Workers'	 Hand	 Microbiome	 at	 a	 Surgical	

Intensive	Care	Unit:	Mediators	or	Effect	Modifiers	of	Pathogen	Carriage?'.	

	 Lastly,	this	dissertation	summarizes	its	key	findings	and	addresses	future		directions	

for	skin	microbiome	studies	in	public	health,	in	its	conclusions	(see	chapter	5).	

Goal	and	Research	Objectives	

	 Overall,	this	dissertation	uses	laboratory	techniques	and	ecological	analyses	within	

an	 epidemiological	 context,	 in	 order	 to	 characterize	 the	 dynamics	 of	 the	 microbial	

community	structure	of	the	hand	microbiota	of	SICU	nurses,	and	to	assess	the	roles	of	the	

HCW	hand	microbiota	in	pathogen	carriage.	



5 
 

Aim	#1:	To	perform	a	literature	examination	of	current	and	past	research	of	human	skin	

microbiota.	 	 To	 write	 a	 review	 that	 will	 summarize	 the	 skin	 microbiota,	 outline	 the	

potential	determining	 factors	driving	 its	variability,	posit	 the	 likelihood	of	 an	association	

between	 the	 resulting	microbial	 community	 structure	on	 the	skin	with	disease	outcomes	

among	individuals,	and	finally,	present	some	challenges	and	implications	for	studying	the	

skin	microbiome.	

Aim	 #2:	 	 To	 assess	 the	 dynamics	 of	 skin	 microbial	 community	 structure	 within	 and	

between	nurses	over	a	three‐week	period,	and	to	determine	whether	community	structure	

varies	by	 the	current	methods	of	specimen	collection	(i.e.	glove	 juice	and	swabbing),	and	

DNA	extraction	(i.e.	enzyme	cocktail	and	lysozyme	only).	

Hypothesis	 1:	 	 The	microbiome	 community	 structure	 on	 nurses'	 hands	 observed	 among	

sequencing	replicates,	using	an	Ion	Torrent	personal	genome	machine,	is	the	same.	

Hypothesis	2:	 	 The	 glove	 juice	method	of	 specimen	 collection	 captures	 greater	microbial	

composition	 and	diversity,	 likely	 to	 be	more	 representative	 of	 the	 true	hand	microbiota,	

than	 the	 swabbing	method.	 	Moreover,	 the	microbial	 community	 structure	 found	 on	 the	

nurses'	hands	is	more	similar	within	than	between	collection	method.	

Hypothesis	3:		The	diversity	of	the	microbial	community	structure	within	individual	nurses	

is	 lower	 than	 the	 diversity	 between	 all	 nurses.	 	 Additionally,	 the	 microbial	 community	

structure	 is	not	uniform	within	an	 individual	nurse,	nor	across	all	nurses	over	time.	 	The	

microbial	 community	 structure	 is	 more	 similar	 within	 individual	 nurses	 over	 time	 than	

between	nurses.	
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Aim	 #3:	 	 To	 screen	 HCWs	 for	 known	 nosocomial	 pathogens	 via	 real‐time	 qPCR,	 and	

determine	whether	(i)	host	demographic,	behavioral,	and	environmental	factors	determine	

pathogen	carriage,	and	whether	(ii)	hand	microbiota	is	a	mediator	or	an	effect	modifier	in	

that	relationship.	

Hypothesis	1:	 	Healthcare	workers	are	not	consistently	colonized	with	known	nosocomial	

pathogens,	due	to	their	high	level	of	hand	hygiene	practice.	

Hypothesis	 2:	 Certain	 host	 demographic,	 behavioral,	 and	 environmental	 factors	 are	

associated	with	pathogen	carriage	among	HCWs.	

Hypothesis	 3:	 	 Certain	 host	 demographic,	 behavioral,	 and	 environmental	 factors	 are	

associated	with	microbial	community	structure	of	the	hand	microbiota	of	HCWs.	

Hypothesis	4:		HCW	hand	microbiota	is	associated	with	certain	pathogen	carriage.	

Public	Health	Significance	

	 The	advent	of	new	technology	has	caused	a	fundamental	shift	in	our	ability	to	study	

native	 microbial	 communities,	 leading	 to	 substantial	 infectious	 disease	 epidemiology	

implications.		Human	microbiome	studies,	in	general,	give	insight	into	whether	changes	in	

our	 communities	 of	 microbes	 can	 be	 correlated	 with	 changes	 in	 health.	 	 Studying	 the	

human	 skin	 microbiome,	 in	 particular,	 furthers	 our	 understanding	 of	 the	 microbial	

involvement	 in	 diseases	 and	 syndromes	 of	 the	 skin,	 their	 participation	 in	 transmission	

events,	as	well	as	advance	therapeutic	approaches,	such	as	the	implementation	of	pre‐	and	

probiotics.	
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	 Healthcare	workers'	hands	are	potential	fomites	carrying	microorganisms	between	

patients,	causing	healthcare‐associated	infections.		Some	hand	microbiota	are	more	or	less	

resistant	to	the	acquisition	of	certain	nosocomial	pathogens.		Understanding	the	role	of	the	

hand	 microbiota	 in	 pathogen	 carriage	 and	 transmission	 is	 important	 to	 help	 identify	

effective	hospital	infection	control	policies.	
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Chapter	2:		Skin	Microbiota:	Microbial	Community	Structure	and	its	Potential	

Association	with	Health	and	Disease	

	

Abstract	

	 Skin,	the	largest	human	organ,	is	a	complex	and	dynamic	ecosystem	inhabited	by	a	

multitude	of	microorganisms.		Host	demographics	and	genetics,	human	behavior,	local	and	

regional	environmental	 characteristics,	 and	 transmission	events	may	all	potentially	drive	

human	 skin	 microbiota	 variability,	 resulting	 in	 an	 alteration	 of	 microbial	 community	

structure.		This	alteration	may	have	important	consequences	regarding	health	and	disease	

outcomes	 among	 individuals.	 	 More	 specifically,	 certain	 diversity	 patterns	 of	 human	

microbiota	may	 be	 predictive	 or	 diagnostic	 of	 disease.	 	 The	 purpose	 of	 this	 review	 is	 to	

briefly	 describe	 the	 skin	microbiota,	 outline	 the	potential	 determining	 factors	 driving	 its	

variability,	 posit	 the	 likelihood	 of	 an	 association	 between	 the	 resulting	 microbial	

community	structure	on	the	skin	with	disease	outcomes	among	individuals,	and	finally,	to	

present	some	challenges	and	implications	for	studying	the	skin	microbiota.	
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Introduction	

	 The	 skin	 is	 the	 largest	 human	 organ.	 	 As	 the	 skin	 is	 in	 direct	 contact	 with	 the	

environment,	 it	 is	 inhabited	 by	 and	 constantly	 exposed	 to	 microorganisms	 in	 the	

environment.	 	 The	 resident	 skin	 microbiota	 interacts	 with	 other	 microbes,	 with	 human	

cells,	 and	with	 the	 human	 immune	 system	 in	multiple	ways	 that	mediate	 risk	 of	 disease	

(Wilson,	 2005;	Wilson,	 2008).	 	 The	purpose	of	 this	 review	 is	 to	briefly	describe	 the	 skin	

microbiota,	 outline	 the	 potential	 factors	 driving	 its	 variability,	 posit	 the	 likelihood	 of	 an	

association	between	the	resulting	microbial	community	structure	on	the	skin	with	disease	

outcomes	among	individuals,	and	finally,	 to	present	some	challenges	and	implications	for	

studying	the	skin	microbiota.	

	 For	 many	 decades,	 researchers	 have	 been	 interested	 in	 defining	 the	 microbial	

inhabitants	of	human	skin,	focusing	on	descriptive	features	such	as	their	association	with	

infection	 (McBride	 et	 al,	 1977),	 their	 stability	 over	 time	 (Evans,	 1975),	 and	 their	

interactions	with	other	microbes	(Wright	and	Terry,	1981).		Currently,	our	understanding	

of	the	human	microbiota	is	undergoing	a	dramatic	reassessment.		The	application	of	high‐

throughput	 DNA	 sequencing	 to	 the	 collection	 of	 individual	 genomes	 of	 microorganisms	

which	normally	inhabit	the	human	body	(the	‘microbiome’)	(Peterson	et	al,	2009)	enables	

characterization	of	microbial	communities	in	addition	to	individual	microbes.	 	These	new	

studies	are	using	analytic	methods	from	community	ecology	to	describe	the	structure	of	the	

entire	microbial	community.		Community	ecology	seeks	to	understand	what	determines	the	

presence,	 abundance,	 and	 diversity	 of	 species	 in	 communities,	 focusing	 on	 the	 role	 of	

interactions	among	multiple	species.		We	are	just	beginning	to	use	ecological	parameters	to	
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explore	the	effects	of	microbial	community	structure	on	disease	dynamics	within	a	single	

host	species.			

	 Although	 there	 have	 been	 some	 initial	 reports	 characterizing	 the	 skin	microbiota	

(Dekio	et	al,	2005;	Fierer	et	al,	2008;	Gao	et	al,	2007;	Grice	et	al,	2008;	Grice	et	al,	2009),	

most	 studies	 to	date	have	 focused	on	 the	 gastrointestinal	microbiota.	 In	 this	 system,	 the	

role	of	microbiota	diversity	 in	health	and	disease	 is	unclear.	 	For	example,	greater	 fungal	

richness	 and	 diversity	were	 observed	 in	 31	 patients	with	 Crohn’s	 disease	 as	well	 as	 26	

patients	 with	 ulcerative	 colitis	 compared	 to	 47	 controls	 (Ott	 et	 al,	 2009).	 	 By	 contrast,	

among	3	patients	with	recurrent	antibiotic‐associated	diarrhea	due	to	Clostridium	difficile,	

bacterial	 diversity	 was	 lower	 in	 the	 fecal	 microbiome	 compared	 to	 that	 found	 among	 7	

controls	 (Chang	 et	 al,	 2008).	 	 The	 sample	 size	 of	 these	 initial	 studies	 are	 small,	 and	 the	

results	do	not	give	a	clear	picture	of	whether	more	or	less	microbial	diversity	in	the	gut	is	

advantageous	 to	 the	 human	 host.	 	 Studies	 on	 other	 microbiota	 of	 clinical	 and	 general	

interest,	 including	the	oral,	urogenital,	and	skin	microbiota	(McGuire	et	al,	2008),	also	do	

not	show	a	consistent	association	between	diversity	and	health	and	disease.	 	It	is	still	too	

early	 to	predict	whether	 certain	microbial	 diversity	patterns	 are	 good	or	bad,	much	 less	

whether	 they	 cause	disease.	 	What	 is	 clear	 is	 that	 these	patterns	are	highly	complex	and	

dynamic,	 and	 require	 ecological	 analytic	 approaches	 to	 characterize	 the	 microbial	

communities.			

	 Skin	is	particularly	interesting	to	study	with	an	ecological	approach	because	of	the	

complexity	of	its	ecosystem.		It	is	composed	of	an	intricate	system	of	cell	layers,	nerves	and	

glands,	protecting	the	body	against	extreme	environmental	conditions,	harmful	chemicals	
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and	pathogens.		Keratinocytes,	which	form	the	outermost	layer	of	cells	on	the	skin,	release	

antibacterial	 substances	 that	 help	 prevent	 infection.	 	 Skin	 also	 harbors	 a	 plethora	 of	

different	 groups	 of	microorganisms	 that	make	 up	 the	 human	 skin	microbiota.	 	 Properly	

characterizing	 this	 microbiota	 has	 important	 clinical	 implications	 due	 to	 its	 interaction	

with	other	microorganisms	that	may	play	a	role	in	human	disease.	

	 Most	 studies	 of	 skin	 microbiome	 have	 concentrated	 on	 characterizing	 the	

community	 structure	 of	microbes	 inhabiting	 healthy	 human	 hosts	 or	 in	 examining	 "how	

particular	bacteria	become	pathogenic"	(Chiller	et	al,	2001;	Cogen	et	al,	2007;	Fierer	et	al,	

2008;	Gao	et	al,	2007;	Grice	et	al,	2008;	Grice	et	al,	2009).		Though	dermatological	studies	

have	 long	 since	 shown	 associations	 between	 a	 number	 of	 skin	 infections	 and	 microbes	

(Masenga	et	al,	1990;	McBride	et	al,	1977;	Nakabayashi	et	al,	2000),	most	have	been	done	

using	 culture‐based	 approaches.	 	 Aside	 from	 some	 studies	 comparing	 microbial	

composition	between	healthy	adults	and	patients	with	psoriatic	 lesions	(Gao	et	al,	2008),	

atopic	 dermatitis	 (Dekio	 et	 al,	 2007),	 or	 acne	 (Bek‐Thomsen	 et	 al,	 2008),	 there	 is	 a	

surprising	lack	of	literature	evaluating	potential	associations	of	skin	microbiota	with	health	

and	disease,	especially	non‐dermatological,	systemic	disease,	using	molecular	approaches.		

In	 particular,	 the	 role	 of	 skin	 microbiota	 disturbance	 on	 the	 risk	 of	 infectious	 disease	

transmission,	have	not	been	explored.	

	 Figure	2‐1	describes	our	conceptual	framework	for	understanding	the	interactions	

between	 skin	microbiota,	 the	 human	host	 and	 environment,	 and	 the	 resulting	 impact	 on	

human	 health	 outcomes.	 	 Significant	 and	 potentially	 harmful	 alterations	 of	 the	 skin	

microbial	community	structure	may	occur	as	a	result	of	several	 factors,	 including	(1)	 the	
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transmission	 (dispersal)	 of	 non‐resident	 microorganisms	 into	 the	 microbiota,	 or	 the	

removal	 of	 dominant	 microorganisms	 from	 the	 microbiota,	 both	 resulting	 from	 direct	

human	 contact,	 (2)	 behavioral	 characteristics	 of	 the	 individual,	 such	 as	 handwashing	

practices,	(3)	local	and	regional	environmental	factors,	such	as	the	host	skin	condition	and	

indoor	settings,	respectively,	 (4)	host	genetics,	 (5)	and,	host	demographic	characteristics.		

Behavioral	and	environmental	characteristics,	as	well	as	host	genetics	and	demographics,	

however,	 also	 all	 have	 their	 own	direct	 effects	 on	health	 outcomes,	 possibly	 by	 affecting	

host	immunity.		All	of	the	driving	factors	included	in	the	conceptual	model	interact	to	some	

degree,	 as	 noted	 by	 the	 two‐directional	 arrows	 (Figure	 2‐1).	 	 For	 example,	 host	

demographics	(e.g.	gender)	may	interact	with	behavioral	characteristics	(e.g.	cosmetic	use)	

to	influence	the	microbial	community	structure	found	on	the	hands.	

	 It	 is	 generally	 accepted	 that	 host	 demographics	 and	 genetics,	 human	 behavior,	

certain	 environmental	 characteristics,	 and	 transmission	 events	 can	 all	 influence	 risk	 of	

disease.	 	 One	 question	 that	 has	 not	 been	 addressed,	 however,	 is	 to	 what	 extent	 these	

relationships	are	mediated	through	the	microbial	community	present	on	the	human	body,	

specifically,	the	skin.		Disturbance	of	skin	microbiota,	caused	by	the	various	driving	factors	

listed	in	Figure	2‐1,	may	influence	the	course	of	various	disease	states.	

	 This	review	aims	to	summarize	what	is	currently	known	about	the	skin	microbiota,	

the	methodological	 issues	regarding	how	we	have	come	to	know	it	and	what	needs	to	be	

further	 explored	 (e.g.	 temporal	 dynamics),	 followed	 by	 a	 summary	 of	 each	 of	 the	

determining	factors,	shown	in	Figure	2‐1,	to	be	driving	human	skin	microbiota	variability.	
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Microbial	Community	Structure	of	Human	Skin	

Skin	Microbiota	

	 Humans	 are	 usually	 born	 from	 an	 essentially	 sterile	 environment	 (Hrncir	 et	 al,	

2008;	 Stecher	 and	 Hardt,	 2008),	 but	 quickly	 become	 colonized	 by	 microbes.	 	 Which	

microbes	become	established	is	primarily	driven	by	the	mode	of	delivery,	with	vaginally‐

delivered	 babies	 having	 a	microbiota	more	 similar	 to	 their	mother’s	 vaginal	microbiota,	

and	C‐section	babies	having	a	microbiota	more	 similar	 to	 their	mother’s	 skin	microbiota	

(Dominguez‐Bello	et	al,	2010).	 	Bacteria	and	other	microorganisms	from	the	environment	

subsequently	interact	with	the	infant’s	epithelial	cells	leading	to	microbial	colonization	and	

co‐existence.	 	 Eventually,	 an	 increasingly	 complex	 ecosystem	 forms,	 comprised	 of	

endogenous,	or	resident,	and	transient	microorganisms	(Tlaskalová‐Hogenová	et	al,	2004).		

These	include	bacteria,	viruses,	fungi	and	protozoa.		Humans	harbor	more	microbial	cells	in	

their	mucosal	 surfaces	 and	 skin	 than	mammalian	 cells	 in	 the	 entire	 body	 (Foxman	 et	 al,	

2008).	 	While	many	of	 them	are	beneficial,	 commensal	or	neutral,	 some	can	 still	become	

pathogenic	 (Chiller	 et	 al,	 2001).	 	 It	 remains	 to	 be	 demonstrated	whether	 the	 potentially	

pathogenic	members	of	the	microbiota	are	kept	in	check	by	other	resident	microorganisms.		

Disruptions	 by	 antibiotics,	 handwashing	 or	 lotions	 may	 alter	 the	 microbial	 community	

enabling	 overgrowth	 by	 pathogenic	members	which	 then	 interact	with	 the	 host	 causing	

disease.	 	Additionally,	it	has	been	argued	that	what	is	considered	solely	a	commensal	or	a	

pathogenic	organism	depends	on	the	profile	of	the	human	immune	system	rather	than	"the	

inherent	properties	of	the	microbe"	itself	(Cogen	et	al,	2007).			

	 The	membership	of	the	skin	microbiota	is	quite	diverse.		A	survey	of	twenty	distinct	

skin	sites	of	ten	healthy	volunteers	using	16S	rRNA	gene	phylotyping,	 identified	19	phyla	
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and	 205	 genera	 (Grice	 et	 al,	 2009).	 	 Using	 broad‐range	 16S	 rRNA	 genes,	 PCR‐based	

sequencing	 of	 randomly	 selected	 clones	 identified	 8	 phyla	 and	 91	 genera	 from	 the	

superficial	 volar	 forearms	 of	 six	 healthy	 subjects	 (Gao	 et	 al,	 2007).	 	 In	 this	 study,	

Actinobacteria,	Firmicutes,	and	Proteobacteria	accounted	for	94.6%	of	the	clones.	 	Using	a	

pyrosequencing‐based	method,	 palmar	 surfaces	 of	 the	 hands	 of	 51	 healthy	 young	 adult	

volunteers	were	surveyed,	and	shown	to	harbor	more	than	25	phyla	(Fierer	et	al,	2008).		Of	

note,	 the	 same	 three	 phyla	 accounted	 for	 94%	 of	 the	 sequences	 in	 this	 study.	 	 A	 more	

comprehensive	 "whole‐body"	 survey,	 using	 a	 multiplexed	 barcoded	 pyrosequencing	

approach,	of	27	body	sites	(including	up	to	18	different	skin	sites)	among	healthy	adults,	

identified	 the	same	 three	phyla	 to	account	 for	over	82%	of	 the	sequences	 (Costello	et	al,	

2009).	 	 According	 to	 a	 recent	 review	 of	 the	 cutaneous	 microbiota,	 "Staphylococcus,	

Corynebacterium,	 Propionibacterium,	 Micrococcus,	 Streptococcus,	 Brevibacterium,	

Acinetobacterium,	 and	 Pseudomonas"	 were	 named	 as	 human	 skin	 bacterial	 residents	

(Cogen	 et	 al,	 2007).	 	Many	 are	 now	 emerging	 as	multidrug‐resistant	 pathogens,	 such	 as	

Staphylococcus	aureus	and	Staphylococcus	epidermidis.	(Marshall	et	al,	2008;	Sommer	et	al,	

2009).	 	Better	 characterization	of	 the	human	skin	microbiota	as	 "an	antibiotic	 resistance	

reservoir"	has	tremendous	clinical	implications	(Sommer	et	al,	2009).	

	 Most	 viruses	 of	 eukaryotic	 organisms	 are	not	 long‐term	 residents	 on	 the	 skin	but	

some	 "can	 proliferate	 within	 the	 living	 epidermis"	 (Kampf	 and	 Kramer,	 2004).	 	 Only	

recently	 has	 the	 identification	 of	 two	 commensal	 viral	 groups,	 anelloviruses	 and	 GBV‐C,	

alerted	attention	to	the	likelihood	of	a	larger	human	virome	(Delwart,	2007).		The	degree	to	

which	other	viruses,	such	as	the	human	papillomavirus	and	the	Merkel	cell	polyomavirus	

are	 endogenous	 to	 the	 skin	microbiota,	 is	 yet	 to	 be	 fully	 determined	 (Singh	 et	 al,	 2009).		
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Viruses	 (e.g.	 hepatitis	 C	 virus,	 rhinovirus,	 adenovirus,	 and	 rotavirus)	 on	 the	 hands	 have	

been	detected,	however,	usually	as	a	result	of	transient	hand	carriage	due	to	contamination	

or	transmission	events	(Kampf	and	Kramer,	2004).		Currently,	these	viral	communities	are	

not	 considered	 part	 of	 the	 human	 skin	microbiota.	 	 The	mycological	 and	macroparasitic	

microbiota	of	healthy	human	skin	is	poorly	characterized	in	comparison	to	its	bacterial	and	

viral	counterparts,	probably	as	a	result	of	their	rarity	and	asymptomatic	nature	(Cogen	et	

al,	2007).	 	Most	 fungal	organisms	belong	to	 the	genus	Malassezia,	 formerly	known	as	 the	

yeast	 Pityrosporum	 (Paulino	 et	 al,	 2006).	 	 Mites,	 such	 as	Demodex	 folliculorum,	 are	 also	

"considered	part	of	the	normal"	microbiota	(Fredricks,	2001).		

	 The	presence	of	some	microorganisms	in	the	skin	microbiota	may	have	an	effect	on	

the	 growth	 of	 potential	 pathogens	 that	 may	 prompt	 various	 diseases,	 indicating	 the	

importance	 of	 interactions	 among	 species	 (McBride	 et	 al,	 1977;	 Selwyn,	 1975).	 	 For	

example,	 sealing	 certain	 skin	 abrasions	 with	 band‐aids	 or	 other	 hermetic	 barriers	 may	

promote	 an	 overgrowth	 of	 potentially	 pathogenic	 anaerobes,	 causing	 a	 detrimental	

alteration	of	 the	microbiota.	 	S.	aureus,	 once	 believed	 to	be	 a	 "transient	 colonizer	during	

abnormal	 conditions",	 is	 now	 known	 to	 be	 a	 resident	 bacterium	 that	 somehow	 turns	

pathogenic	 upon	 disturbance	 of	 the	 individual’s	 skin	 microbiota	 (Fredricks,	 2001;	

vanBelkum	et	al,	2009).	 	Our	growing	knowledge	of	skin	 immunogenetics	 in	the	past	 few	

years	 has	 improved	 our	 understanding	 of	 the	 interactions	 among	 commensal	 and	

potentially	 pathogenic	 species	 (Bowcock	 and	 Woodson,	 2004;	 Pivarcsi	 et	 al,	 2005),	

however	these	relationships	are	not	fully	understood	in	terms	of	microbial	communities.	



16 
 

Methodological	Issues	in	Skin	Microbiota	Studies	

Dependence	on	Sampling	Methods	and	Laboratory	Techniques	

	 A	representation	of	the	microbiota	found	on	human	skin	is	only	as	accurate	as	the	

sampling	 methods	 used	 to	 harvest	 the	 microorganisms.	 	 While	 swabbing	 is	 the	 most	

convenient	 and	 innocuous	 of	 the	 three,	 it	may	 not	 correctly	 estimate	 the	 true	microbial	

diversity	 across	 all	 the	 skin	 layers.	 	 In	 comparison,	 skin	 scraping	 picks	 up	 more	

microorganisms	per	sampled	area,	but	also	picks	up	more	skin	cells.		Punch	biopsying,	on	

the	 other	 hand,	 is	 thought	 to	 represent	 a	 more	 comprehensive	 microbiota	 since	 the	

technique	 samples	 across	 dermal	 layers	 (Grice	 et	 al,	 2008).	 	 However,	 it	 is	 the	 most	

invasive	and	covers	less	surface	area	in	comparison	to	other	methods.		Grice	and	colleagues	

have	 compared	 these	 sampling	 methods	 and	 concluded	 that	 all	 three	 yielded	 the	 same	

predominant	phylum	(i.e.	Proteobacteria),	and	shared	over	97%	of	all	bacterial	sequences;	

moreover,	all	three	methods	captured	very	similar	bacterial	community	memberships	and	

structures,	 as	 estimated	 by	 the	 high	 abundance‐based	 Jaccard	 and	 Theta	 (θ)	 similarity	

indices,	respectively	(Grice	et	al,	2008).		In	terms	of	transmission,	skin	surface	sampling	of	

the	 hands,	 either	 by	 inserting	 them	 in	 a	 plastic	 bag	 filled	 with	 buffer	 solution	 or	 by	

swabbing	 them,	 may	 be	 the	 most	 informative	 since	 microbial	 transmission	 by	 humans	

occurs	 mostly	 via	 direct	 contact	 with	 other	 individuals	 and/or	 environmental	 surfaces.		

Estimates	 of	 microbial	 community	 structure	 vary	 by	 body	 site	 sampled.	 	 More	 exposed	

areas	of	the	body	may	be	composed	of	"higher	proportions	of	transient	microorganisms",	in	

comparison	to	lesser	exposed	areas	(Roth	and	James,	1988).		Temperature,	moisture	level,	

and	amount	of	sebaceous	glands	found	on	the	skin	vary	by	body	location	as	well,	and	may	

affect	where	certain	microorganisms	are	found	(Grice	et	al,	2009;	Roth	and	James,	1988).	
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	 What	 is	 known	about	human	microbiota	diversity	 also	depends	on	 the	 laboratory	

techniques	 (i.e.	 culture‐dependent	 and	 culture‐independent)	 used	 to	 characterize	 them.		

The	 classic	approach	 to	 identify	 and	quantify	microorganisms	 from	 the	environment	has	

been	 to	 culture	 and	 differentiate	 them	 based	 on	 physiological	 and	 biochemical	 tests	

(Davies	 et	 al,	 2001;	 Ogunseitan,	 2005).	 	 However,	 culture‐dependent	 methods	 do	 not	

accurately	 reflect	 the	 true	 bacterial	 community	 composition	 because	 of	 the	 selective	

properties	 of	 the	 growth	media	used.	 	 Culture‐dependent	 techniques	 are	 costly	 and	 take	

time	as	a	result	of	performing	the	necessary	 laboratory	tests.	 	After	several	passages,	 the	

microorganisms	under	study	may	even	behave	differently	functionally	and	physiologically.		

Additionally,	 some	microorganisms	will	 not	 grow	 in	 the	 absence	 of	 others	 that	 could	 be	

required	to	provide	optimal	oxygen,	pH,	and/or	osmotic	pressure	(Kaeberlein	et	al,	2002).	

	 Microbial	 cultivation	 in	 the	 laboratory	 poorly	 assess	 species	 composition	 and	

function	in	environmental	samples.		It	is	generally	assumed	that	"less	than	10%	of	existing	

microbial	diversity	 in	 [natural]	ecosystems	can	be	accounted	 for	by	cultivation"	methods	

(Ogunseitan,	 2005).	 	Dekio	 and	 colleagues	 took	 swab‐scrubbed	 forehead	 skin	 samples	of	

five	 healthy	 volunteers	 and	 analyzed	 their	 microbiota	 using	 a	 culture‐dependent	 and	 a	

culture‐independent	 method,	 providing	 a	 direct	 comparison	 of	 the	 two	 characterization	

methods	 (Dekio	 et	 al,	 2005).	 	 Analyses	 of	 16S	 rRNA	 gene	 sequences	 obtained	 from	 the	

culture‐independent	method	yielded	an	 increased	bacterial	diversity	 compared	with	 that	

derived	from	the	culture	methods	(Dekio	et	al,	2005).		Culture	techniques,	therefore,	have	

major	limitations	in	estimating	species	abundance	in	natural	ecosystems.	
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	 Culture‐independent	 microbial	 DNA‐based	 approaches	 escape	 some	 of	 these	

limitations	(Ogunseitan,	2005;	Theron	and	Cloete,	2000).	 	Some	of	these	techniques,	each	

having	their	own	relative	strengths	and	limitations,	include:	16S	rDNA	sequencing,	PCR	and	

PCR‐related	 techniques,	 nucleic	 acid	 hybridization	 techniques,	 polymorphism‐based	

procedures,	 signature	 lipid	 biomarkers,	 protein	 profiles,	 and	 molecular	 microarray	

procedures.		All	bacteria	contain	the	16S	rRNA	gene,	which	encodes	the	small	subunit	of	the	

RNA	 of	 the	 ribosome	 (i.e.	 the	 protein	 manufacturing	 machinery	 of	 all	 living	 cells).	 	 It	

encompasses	highly	conserved	sequence	domains	interspersed	with	more	variable	regions.		

Identification	 of	 bacteria	 commonly	 uses	 the	 16S	 rDNA	 sequence:	 conserved	 regions	

classify	higher	taxa,	and	variable	regions	differentiate	between	species.		Different	variable	

regions	(V1‐V9)	of	the	16S	rRNA	gene	are	targeted	in	different	studies	of	the	human	skin	

microbiome,	 such	 as	 the	 V2	 variable	 region	 (Costello	 et	 al,	 2009;	Dominguez‐Bello	 et	 al,	

2010;	Fierer	et	al,	2008;	Fierer	et	al,	2010)	and	the	V1‐V3	region	(Dekio	et	al,	2005l	Dekio	

et	 al,	 2007).	 	 To	 date,	 there	 is	 no	 consensus	 of	 optimal	 variable	 region(s)	 to	 target	 for	

taxonomic	 assignment	 purposes	 at	 the	 genus	 level	 or	 below.	 	 Despite	 the	 fact	 that	

commonly	 used	 primers	 targeting	 these	 regions	 match	 most	 of	 the	 sequences	 in	 most	

databases,	 primer	 biases	 may	 still	 occur	 where	 certain	 phylotypes	 are	 missed,	 thereby	

generating	biased	community	profiles	(Hamady	and	Knight,	2009).	

	 Though	 these	 robust	 techniques	 offer	 a	 much	 higher	 resolution	 to	 the	

characterization	 of	 complex	 microbial	 communities,	 they	 also	 possess	 several	 biases.		

Nucleic	acid	extraction	and	purification,	for	example,	require	proper	microbial	cell	lysis	and	

absence	of	enzymatic	 inhibitors.	 	PCR	techniques	can	generate	artifacts	such	as	chimeras,	

primer‐dimers,	and	mutations	that	can	lead	to	a	false	representation	of	microbial	diversity,	
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and	 thus	 require	 specific	 and	 well‐designed	 primers,	 appropriate	 nucleic	 acid	 starting	

quantities,	 and	 potential	 PCR	 elongation	 time	 troubleshooting.	 	 Another	 significant	

limitation	 to	 using	 culture‐independent	 approaches	 is	 the	 inability	 of	 the	 techniques	 to	

identify	 viable	microorganisms	 from	 samples,	 leaving	 unexplained	whether	 the	 diversity	

obtained	reflects	true	transients	or	residents	of	the	skin,	or	whether	they	were	simply	dead	

contaminants	retained	on	the	skin.			

	 The	 viral	 portion	 of	 the	 human	 metagenome,	 the	 virome,	 is	 more	 poorly	

characterized	 than	 the	 bacterial	 portion.	 	 Culture‐based	 approaches	 suffer	 from	 the	

inability	 to	 replicate	 certain	 viruses	 in	 vitro	 and	 the	 difficulty	 in	 establishing	 viral	

antigenic/serological	cross‐reactivity	(Delwart,	2007).		Culture	independent	methods,	such	

as	shotgun	library	sequencing	and	high‐throughput	pyrosequencing,	are	also	done,	though	

the	relatively	few	numbers	of	known	viral	sequences	available	make	it	difficult	to	identify	

viruses	(Delwart,	2007).	

Capturing	Temporal	Dynamics	

	 Temporal	 patterns	 of	 microbial	 community	 structure	 can	 be	 extremely	 dynamic.		

Species	 composition	 can	 vary	 from	 one	 time	 point	 to	 another,	 with	 irregular	 cycles.		

Understanding	 these	 patterns	 is	 important	 for	 investigating	 associations	 between	 the	

human	 microbiome	 variability	 and	 health	 and	 disease,	 and	 ultimately,	 for	 determining	

whether	a	core	human	microbiome	exists.	 	 Identifying	a	core	microbiome	for	human	skin	

would	 assist	 clinical	 applications,	 as	 diagnostic	 or	 prognostic	 factors	 may	 depend	 on	

recognizing	 significant	 deviations	 from	 the	 core.	 	 Changes	 in	 microbial	 community	

structures	beyond	what	 is	expected	over	time	may	indicate	an	altered	physiological	state	
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conducive	to	disease.		However,	the	existence	of	a	core	human	skin	microbiome	remains	to	

be	determined	because	at	present,	the	dynamic	nature	of	the	skin	microbiota	has	not	been	

adequately	characterized.			

	 To	 date,	 studies	 that	 have	 characterized	 the	microbial	 profile	 of	 the	 skin	 through	

time,	rarely	involve	more	than	a	handful	of	intervals	(Table	1).		Overall,	despite	the	fact	that	

the	 time	 variation	 ranged	 from	 a	 couple	 hours	 to	 ten	months	 in	 these	 studies,	 the	 skin	

microbiota	was	 found	 to	 be	 relatively	 stable.	 	 However,	 these	 studies	 are	 not	 consistent	

with	 each	 other	 regarding	 the	 health	 of	 individuals	 sampled	 (e.g.	 healthy,	 psoriasis	

patients,	dermatitis	patients),	 the	skin	site	sampled	(e.g.	 facial	skin,	palmar	surfaces),	 the	

sampling	 method	 (e.g.	 swab,	 scrape,	 scrub‐swab),	 and	 the	 method	 of	 detection	 (e.g.	

pyrosequencing,	RFLP	analysis,	clone	libraries)	used	to	characterize	their	microbiota.		Any	

conclusions	 about	 the	 diversity	 and/or	 stability	 of	 microbial	 communities	 are	 highly	

dependent	 on	 these	 sampling	 issues	 as	 well	 as	 the	 taxonomic	 level	 analyzed.	 	 The	

inconsistencies	 between	 skin	 microbiota	 studies	 make	 it	 difficult	 to	 generalize	 results	

regarding	temporal	and	spatial	dynamics	of	human	skin	microbial	communities.	

	 To	 obtain	 a	 complete	 understanding	 of	 the	 temporal	 dynamics	 of	 the	 skin	

microbiota,	 it	 is	 necessary	 to	 capture	 the	 community	 structure	 at	 several	 time	 points.		

Figure	 2‐2	 illustrates	 the	 difficulty	 in	 determining	 this	 dynamic	 profile.	 	 Panels	 A	 and	 B	

show	how	sampling	(represented	by	 the	stars)	at	 two	or	 three	different	 time	points	may	

not	represent	the	true	variability	(represented	by	the	curves)	of	the	microbiota	within	an	

individual,	 and	may	 lead	 to	 the	 conclusion	 that	 there	 is	 no	 variability	 (A)	 or	 that	 some	

external	factor	(e.g.	treatment)	may	have	contributed	to	the	decrease	in	microbial	diversity	
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in	 time	 (B).	 	 In	 reality,	 the	 full	 scope	 of	 the	 variability	within	 an	 individual	 can	 only	 be	

determined	 when	 sampling	 is	 done	 at	 sufficient	 time	 points	 (Panel	 C).	 	 Only	 then,	 is	 it	

possible	 to	speak	of	an	average	microbial	 community	structure	 (represented	by	 the	 line)	

per	individual	(Panel	D).		Another	review	recently	stated	that	microbial	communities	have	

been	thought	of	as	stable	because	their	"temporal	variability	is	lower	than	inter‐individual	

differences"	(Dethlefsen	et	al,	2006).		However,	comparisons	between	the	skin	microbiota	

of	an	individual	with	another	need	to	be	done	once	the	true	variability	within	an	individual	

is	known,	in	order	to	establish	any	significant	inter‐individual	differences.		Interestingly,	by	

using	hierarchical	distance‐based	metrics,	Costello	and	colleagues	have	shown	that	human	

microbial	 communities	 cluster	 first	 by	 body	 site,	 followed	 by	 individuals	 then	 time		

(Costello	et	al,	2009).			

	 To	 understand	 the	 dynamics	 of	 the	 microbial	 community	 structure	 processes,	

researchers	 examine	 the	 human	 microbiota	 over	 time	 and	 space,	 and	 the	

interconnectedness	 within	 and	 between	 individual	 hosts,	 respectively	 (Foxman	 et	 al,	

2008).	 	Skin	microbial	communities	have	been	shown	to	display	specific	spatial	patterns,	

with	similar	communities	grouping	together	at	 left	and	right	sides	of	the	body,	at	regions	

close	 to	 the	 head,	 and	 at	 regions	 close	 to	 the	 arms	 (Costello	 et	 al,	 2009).	 	 It	 has	 been	

suggested	 that,	 in	 general,	 skin	 sites	 in	 closer	 proximity	 appear	 to	 contain	more	 similar	

microbial	 communities	 than	 other	 more	 distant	 skin	 sites	 (Fierer	 et	 al,	 2008).		

Furthermore,	certain	bacterial	phylotypes	are	shown	to	predominate	moist,	sebaceous,	and	

dry	skin	regions	differentially	(Grice	et	al,	2009).		Accounting	for	these	spatial	differences	is	

important	when	attempting	to	capture	temporal	dynamics	among	and	between	individuals.		

While	 many	 studies	 tend	 to	 emphasize	 spatial	 and	 temporal	 distribution	 patterns	 of	
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microorganisms	 in	 a	 specified	 ecosystem,	 further	 explanations	 of	 how	 and	 why	 such	

patterns	arise	are	still	largely	missing.		Human	skin	microbiota	diversity	is	thought	to	arise	

via	 the	many	 factors	 depicted	 in	 Figure	 2‐1	 and	 explored	 below.	 	 It	 remains	 to	 be	 seen	

whether	 any	 of	 such	 drivers	 of	 human	 microbiota	 diversity	 act	 to	 influence	 the	

development	of	health	outcomes.	

Driving	Forces	of	Human	Skin	Microbiota	Diversity	

Transmission	

	 Studies	 that	 have	 examined	 transmission	 of	 skin	 microorganisms	 often	 focus	

specifically	on	pathogenic	microorganisms	for	the	purpose	of	preventing	infectious	disease	

transmission,	 especially	 in	 healthcare	 settings.	 	 Unfortunately,	 few	 studies	 describe	

transmission	 of	 non‐pathogenic	 microorganisms	 among	 healthy	 (and	 non‐healthy)	

individuals.	 	 Additionally,	 the	 issues	 of	 whether	 there	 may	 be	 mutualistic	 relationships	

between	 pathogenic	 and	 commensal	 microorganisms	 that	 enhance	 transmission,	 or	

antagonistic	 relationships	 that	 minimize	 acquisition	 have	 not	 been	 fully	 assessed.	 	 As	

shown	 in	 Figure	 2‐1,	 the	 role	 of	 transmission	 in	 influencing	 the	 microbial	 community	

structure	of	resident	human	skin	microbiota	is	very	important.			

	 Inter‐species	 interactions	 can	 greatly	 influence	 the	 presence	 of	 microorganisms	

within	a	community.		In	the	skin,	for	instance,	P.	acnes	and	S.	aureus	have	been	implicated	

in	 working	 synergistically	 to	 increasingly	 make	 worse	 skin	 lesions	 caused	 by	 one	

bacterium	alone	(Lo	et	al,	2010).		Antagonistic	interactions	also	occur,	due	to	competition	

or	predation	 (Little	 et	 al,	 2008).	 	 For	 example,	S.	aureus	 and	S.	epidermidis	 are	 known	 to	

have	competitive	behaviors	on	 the	skin,	which	could	be	explained	by	 the	serine	protease	
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Esp	 (Iwase	 et	 al,	 2010)	 secreted	 by	 S.	 epidermidis,	 and	 possibly	 regulated	 by	 its	 agr	

pheromones	 (Otto	 et	 al,	 2001).	 	 As	 discussed	 in	 detail	 by	 Chiller	 and	 colleagues,	

"bacteriocin	 and	 toxic	 metabolite	 production,	 induction	 of	 low	 reduction‐oxidation	

potential,	nutrient	depletion,	and	inhibition	of	adherence	and	translocation"	are	just	a	few	

of	 the	mechanisms	 used	 by	 bacteria	 that	 allow	 them	 to	 interact	 in	 the	 same	 community	

(Chiller	 et	 al,	 2001).	 	 For	 example,	 bacteriocins,	 which	 are	 toxins	 produced	 by	 certain	

bacteria	 (e.g.	 lactobacilli,	 propionibacteria),	 are	 able	 to	 inhibit	 the	 growth	 of	 other,	

potentiallymore	 pathogenic	 bacteria	 (e.g.	 staphylococci)	 (Klaenhammer,	 1993;	 Oh	 et	 al,	

2006).	 	 Among	 those	 with	 damaged	 skin,	 certain	 bacteriocin	 producers	 proliferate	 and	

dominate	 the	bacterial	community	(Roth	and	 James,	1988).	 	Novel	bacteriocins	are	being	

identified	 at	 a	 growing	 pace	 (Martin‐Visscher	 et	 al,	 2008;	 Sawa	 et	 al,	 2009;	 Tiwari	 and	

Srivastava,	2008).		The	bacteriocin	nisin,	from	Lactococcus	lactis,	has	been	shown	to	reduce	

the	 clinical	 signs	 of	 mastitis,	 which	 is	 generally	 caused	 by	 a	 Staphylococcal	 infection	

(Fernandez	 et	 al,	 2008).	 	 Indirect	 inter‐species	 interactions	 also	 occur	 through	 the	

engagement	of	the	host	immune	system	(Chiller	et	al,	2001).	 	Viral	infection,	for	example,	

causes	alterations	on	epithelial	cell	surface	receptors	(Roth	and	James,	1988).			

	 Transmission	via	direct	contact	with	other	individuals	or	indirectly	with	fomites	or	

water	 droplets	 found	 in	 the	 environment	 introduces	 transient	microorganisms	 that	may	

have	 the	 potential	 to	 alter	 the	 dynamics	 between	 resident	 microorganisms	 of	 the	 skin	

microbiota.	Moreover,	movement	patterns	of	daily	living	may	have	an	effect	on	microbiota,	

in	 its	 ability	 to	 enhance	 transmission	 probabilities.	 	 For	 instance,	 the	 number	 of	 people	

living	 in	 close	 contact	with	 an	 individual	 and	 their	 networking	 patterns,	 the	 individual’s	
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commuting	 practices,	 occupation	 and	 leisure	 pursuits,	 and	 interchanges	with	 schools	 or	

child‐care	facilities	all	could	influence	the	spread	of	skin	microbes.	

Host	Demographic	Characteristics	

	 The	microbial	communities	present	on	skin	are	determined	by	skin	conditions,	the	

host's	 hormonal	 status,	 age,	 gender,	 and	 ethnicity	 (Figure	 2‐1)	 (Fierer	 et	 al,	 2008;	

Fredricks,	 2001;	 Grice	 et	 al,	 2009;	 Roth	 and	 James,	 1988).	 	 In	 terms	 of	 skin	 conditions,	

overall	the	skin	is	cooler	than	core	body	temperature,	and	has	a	pH	around	5,	although	it	

varies	 by	 body	 site	 (Chiller	 et	 al,	 2001).	 	 Several	molecules	 synthesized	 by	 the	 skin	 can	

contribute	to	skin	surface	conditions,	which	for	the	most	part	have	the	ability	to	discourage	

microbial	growth.		Even	host	gender	shapes	skin	environment,	thereby	influencing	what	is	

able	to	colonize	men	and	women.	 	Women	have	been	shown	to	have	significantly	greater	

bacterial	diversity	on	their	hands	in	comparison	to	men	(Fierer	et	al,	2008).		Though	there	

have	been	reports	of	differences	in	carriage	rates	of	microorganisms	between	races,	there	

is	still	much	to	learn	regarding	the	diversity	of	microbiota	across	a	wide	range	of	cultures	

and	 ethnicities	 (Evans	 et	 al,	 1984;	 Mai	 and	 Draganov,	 2009;	 Sultana	 et	 al,	 2003).		

Explanations	for	age	and	gender	related	differences	may	include	differences	in	hormones,	

sweat	or	sebum	production,	skin	pH	differences,	and	interactions	with	host	behavior.		For	

example,	a	plausible	explanation	for	women	having	greater	bacterial	diversity	on	the	skin	

of	 their	 hands	may	 be	 that	 they	 likely	 have	more	 contact	with	 children,	who	 commonly	

experience	a	high	burden	of	common	infectious	diseases.		Also,	women	may	be	more	likely	

to	 use	 cosmetics,	 thereby	 altering	 the	 microbial	 community	 structure	 of	 their	 skin.	 	 A	

survey	 looking	 at	 potential	 associations	 between	 demographic	 information	 of	 neonatal	

intensive	 care	 unit	 nurses	 and	 the	 total	 microbial	 composition	 found	 on	 their	 hands,	
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showed	that	while	age	had	a	minimal	effect,	race	was	shown	to	be	"a	significant	predictor	

of	 skin	health"	 (Sultana	et	al,	2003).	 	The	authors	note,	however,	 the	 limited	variation	 in	

age	among	the	nurses	surveyed.	

Host	Genetics	

	 Apart	 from	 skin's	 structural	 cell	 layers	 and	 synthesis	 of	 molecules	 that	 influence	

microorganism	 proliferation,	 its	 immunological	 machinery	 may	 also	 play	 a	 role	 in	 skin	

microbial	community	structure.		The	innate	immune	system	of	the	skin,	now	known	to	be	

important	in	regulating	the	microbiota	at	multiple	epithelial	surfaces,	contains	Langerhans	

cells,	T	lymphocytes,	mast	cells,	and	keratinocytes,	which	expresses	Toll‐like	receptors	and	

produces	 cytokines,	 chemokines,	 β‐defensins,	 Rnase7,	 and	 other	 antimicrobial	 peptides	

(Pivarcsi	 et	 al,	 2005).	 	 The	 skin‐associated	 lymphoid	 tissue	 (SALT)	 has	 the	 ability	 to	

produce	 and	 secrete	 immunoglobulins,	 present	 antigens	 and	 activate	 T‐cells,	 which	 can	

affect	 the	 composition	 of	 the	microbial	 communities.	 	 Conversely,	 certain	 skin	microbial	

residents	 are	 known	 to	 affect	 the	 host	 immune	 system.	 	 For	 instance,	 S.	epidermidis	 has	

recently	 been	 shown	 to	 upregulate	 the	 expression	 of	 antimicrobial	 peptides	 in	

keratinocytes	 (Wanke	 et	 al,	 2010).	 	 Immunogenetic	 components	 of	 the	 skin,	 such	 as	 the	

human	leukocyte	antigen	(HLA)	gene	cluster,	are	shown	to	have	associations	with	certain	

skin	 diseases,	 such	 as	 psoriasis	 (Bowcock	 and	 Woodson,	 2004)	 and	 ashy	 dermatosis	

(Correa	et	al,	2007).		It	remains	to	be	shown	whether	such	associations	are	mediated	by	the	

microbial	communities	of	the	skin	(Figure	2‐1).	

	 While	 genome‐wide	association	 studies	 (GWAS)	have	 successfully	 identified	many	

genetic	 variants	 to	 be	 associated	with	 a	 number	 of	 human	 diseases,	 GWAS	 investigating	
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whether	genetic	variations	in	the	human	genome	can	influence	microbiota	composition	are	

now	 emerging,	 owing	 in	 part	 to	 rapid	 advancements	 in	 sequencing	 technologies	 and	

bioinformatics.	 	 Commonly	 measured	 genetic	 variants	 include	 single	 nucleotide	

polymorphisms	 (SNP),	 non‐SNP	 variants,	 and	 insertion‐deletions	 (INDEL).	 	 Using	 a	 large	

murine	intercross	population,	Benson	and	colleagues	were	able	to	show	that	host	genotype	

does	 indeed	 explain	 some	 of	 the	 variation	 in	 the	 gut	 microbiota,	 controlling	 for	

environmental	 factors	 (Benson	 et	 al,	 2010).	 	 Another	 murine	 model	 study	 looked	 for	

associations	between	the	matriptase	genetic	variant,	which	led	to	filaggrin	deficiency	and	

atopic	dermatitis	phenotype,	and	skin	microbiota	(Scharschmidt	et	al,	2009).		Scharschmidt	

and	 colleagues	were	 able	 to	 show	a	 significant	 alteration	 in	 the	 skin	microbiota	 of	 these	

transgenic	mice,	 in	 particular,	 a	 higher	 abundance	 of	Corynebacteria	 and	 Streptococci,	 in	

comparison	to	their	wild‐type	littermates	(Scharschmidt	et	al,	2009).	

Human	Behavioral	Characteristics	

	 Behavioral	factors	such	as	the	use	of	medications	(e.g.	antibiotics,	steroids),	hygiene	

practices	 (e.g.	personal,	domestic),	 and	use	of	 cosmetics	 (e.g.	 creams,	 lotions,	 emollients)	

have	all	been	reported	as	having	the	ability	to	alter	the	microbial	community	structure	of	

the	skin	(Figure	2‐1)	(Fierer	et	al,	2008;	Fredricks,	2001;	Grice	et	al,	2009;	Larson,	2001;	

Larson	et	al,	2002;	Roth	and	 James,	1988).	 	Other	behavioral	 characteristics	 such	as	diet	

and	nutrition,	 sun	exposure,	 and	 smoking,	 are	 all	 considered	 contributing	 factors	 to	 skin	

and	 systemic	 health,	 however,	 their	 potential	 to	 influence	 the	 microbial	 community	

structure	of	skin	has	yet	to	be	examined.	
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	 Hand	washing	has	been	long	been	considered	to	be	the	simplest	and	most	effective	

method	for	controlling	infectious	diseases	(Borges	et	al,	2007;	Larson,	2001).		Individuals'	

hands	can	be	thought	of	as	either	fomites,	by	transiently	carrying	microorganisms,	and/or	

as	vectors,	by	harboring	established,	endogenous	microorganisms	that	have	 the	potential	

to	 be	 transmitted	 from	 one	 person	 to	 another.	 	 Despite	 the	 multitude	 of	 studies	

emphasizing	 the	 benefits	 of	 personal	 hygiene	 on	 reducing	 disease	 transmission	 by	

removing	transients	obtained	by	contamination	(Aiello	et	al,	2008;	Allengranzi	and	Pittet,	

2009;	Larson,	2001;	Larson	et	al,	2004;	Luby	et	al,	2005),	 the	effects	of	hand	washing	on	

the	microbial	community	structure	of	the	hands	is	an	area	in	need	of	more	research.	 	We	

still	do	not	know	the	impact	of	hand	washing	on	the	longer	term	resident	biota.		However,	

such	 impacts	 have	 already	 been	 metaphorically	 equated	 to	 the	 disturbance	 caused	 by	

"hurricanes"	 and	 "forest	 wildfires"	 (Fredricks,	 2001;	 Marris,	 2009).	 	 Most	 reports	 of	

resulting	microbial	structure	alterations	rely	on	total	bacterial	colony‐forming‐units	(CFU)	

in	an	attempt	 to	explain	disease	causality.	 	However,	 although	hand	washing	 is	meant	 to	

remove	transient	microorganisms	to	either	decrease	self‐inoculation	(why	we	wash	hands	

before	 eating)	 and/or	 transmission	 (why	 we	 wash	 hands	 after	 sneezing	 into	 them),	

researchers	do	not	necessarily	see	a	reduction	in	CFU	counts	after	hand	washing	(Aiello	et	

al,	 2003).	 	 This	 may	 be	 a	 consequence	 of	 a	 microbial	 community	 structure	 disturbance	

whereby	 shedding	 of	 the	 skin	 reveals	 another	 layer	 of	 resident	 microorganisms.		

Realistically,	 diseases	occur	not	 just	with	 an	 increase	 in	bacterial	 loads,	 but	 also	with	 an	

alteration	 in	 the	 microbiota	 of	 the	 individual	 and	 the	 resulting	 interaction	 with	 host	

immunity.	 	Aside	 from	 reducing	 the	number	of	 transient	microorganisms	present	 on	 the	

skin,	hand	washing	also	has	an	impact	on	the	skin	condition	itself,	in	altering	the	resistance	
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capacity	 of	 the	 stratum	 corneum	 (i.e.	 the	 electrical	 properties	 of	 the	 skin),	 lipids,	

transepidermal	 water	 loss,	 and	 pH,	 which	 could	 consequently	 affect	 the	 microbial	

community	 structure	 (Larson,	2001).	 	Hand	washing	 can	be	 seen	as	a	disturbance	 to	 the	

microbial	 community	 structure,	 possibly	 perturbing	 the	 existing	 trade‐off	 between	 its	

microbial	colonizers	and	competitors.	

	 Individuals	 differ	 widely	 in	 their	 behavioral	 habits,	 which	 may	 have	 potentially	

meaningful	 consequences	 in	 altering	 the	 skin	microbiota.	 	 Just	 in	 terms	 of	 hand	 hygiene	

alone,	 the	 frequency	 and	 duration	 of	 washes	 and	 type	 of	 soap	 product	 use	 (plain	 soap,	

antimicrobial	 soap,	 and/or	 alcohol	 sanitizers),	 can	 account	 for	 some	 of	 the	 variation	 in	

microbial	community	structure	between	individuals	

Environmental	Characteristics	

	 Temperature,	 moisture,	 and	 exposure	 to	 ultraviolet	 radiation,	 are	 all	 known	

examples	of	environmental	factors	that	can	alter	skin	conditions	and	have	the	potential	to	

influence	the	microbial	community	structure	of	the	skin	(Figure	2‐1).	 	For	colonization	to	

take	place,	microorganisms	must	adhere	to	a	host	by	binding	to	specific	receptors	on	the	

host	epithelial	cell,	and	have	been	shown	to	do	so	with	varying	affinities	(Romero‐Steiner	

et	al,	1990).		Though	skin	dryness	may	help	to	prevent	the	acquisition	of	certain	transient	

microorganisms,	consequent	breaks	on	the	skin	surface	may	expose	such	receptors	(Roth	

and	James,	1988).	 	Seasonality	has	been	demonstrated	in	influencing	diseases	of	the	skin,	

likely	as	a	result	of	microbiota	alterations	in	response	to	climate	changes	(Jha	and	Gurung,	

2006).	 	 Moreover,	 ultraviolet	 B	 (UVB)	 radiation,	 known	 to	 impact	 skin	 conditions,	 was	

observed	 to	 have	 disparate	 microbicidal	 effects	 on	 the	 skin	 microbiota	 (Dotterud	 et	 al,	
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2008).	 	 In	particular,	S.	aureus	 appeared	 to	 be	more	 sensitive	 to	 the	 radiation	 treatment	

than	S.	epidermidis.	

	 Individuals	are	constantly	being	exposed	to	the	microbial	fluctuations	of	the	indoor	

environment	 (Rintala	 et	 al,	 2008).	 	 In	 addition,	 individuals	 differ	 widely	 in	 their	

occupational	exposures	(e.g.	nurses,	gardeners,	teachers),	which	may	also	account	for	the	

variation	 between	 the	 community	 structures	 of	 their	 skin	 microbiota.	 	 For	 example,	

significant	 skin	microbiota	differences	were	observed	between	chronically	 ill	 outpatients	

and	hospitalized	inpatients,	controlling	for	chronic	illness	as	a	potential	confounder,	which	

may	indicate	hospitalization	as	a	potential	driver	of	variability	(Larson	et	al,	2000).			

	 Just	as	the	skin	microbiota	of	humans	harbor	resident	microorganisms,	the	physical	

environment	 (e.g.	 door	 handles,	 kitchen	 surfaces)	 surrounding	 the	 individual	 may	 be	

"reservoirs"	 for	microbial	 colonization	 (Kagan	et	al,	2002).	 	Even	house	dust	has	 its	own	

characteristic	 microbial	 composition	 (Maier	 et	 al,	 2010;	 Rintala	 et	 al,	 2008).	 	 Microbial	

communities	within	showerhead	biofilms	across	 the	United	States	were	 found	 to	contain	

opportunistic	 human	 pathogens	 (Feazal	 et	 al,	 2009).	 	 These	 potential	 reservoirs	 likely	

increase	the	risk	of	microbial	transmission,	and	thus	the	opportunity	for	disease.		Concerns	

about	 the	 impact	 of	 environmental	 determinants	 of	 health	 are	 important,	 but	 their	

influence	 in	 altering	 the	 microbial	 community	 structure	 of	 skin	 microbiota,	 thereby	

resulting	 in	 adverse	 health	 outcomes,	 has	 not	 been	 sufficiently	 investigated.	 	 The	 fact	

remains	 that	 not	 much	 is	 known	 about	 the	 microbial	 composition	 of	 environmental	

settings	 (Feazel	 et	 al,	 2009),	nor	how	 it	 influences	 the	microbial	 community	 structure	of	

skin.	
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The	Impact	of	Microbial	Community	Structure	on	Health	Outcomes	

	 Underlying	 biological	 mechanisms	 explaining	 why	 an	 altered	 skin	 microbiota	

diversity	 may	 result	 in	 disease,	 thus	 explaining	 the	 arrow	 from	 ‘species	 diversity	 /	

microbial	 community	 structure’	 to	 ‘health	outcomes’	 in	Figure	2‐1,	 include	 inflammation,	

absence	 of	 necessary	members	 of	 the	microbial	 community,	 and	 a	 decrease	 in	microbial	

antagonistic	 interactions	 (Stecher	 and	 Hardt,	 2008).	 	 Other	 possible	 mechanisms	 may	

consist	 of	 modifications	 to	 normal	 microbial	 signal	 transduction	 and	 quorum‐sensing,	

resulting	in	cascades	that	may	lead	to	damaging	cellular	changes	in	the	host.		Lateral	gene	

transfer	 may	 allow	 skin	 microbiota	 to	 share	 functional	 roles,	 possibly	 eliminating	

redundant	species	and	consequently	impacting	host	health	outcomes.	

	 Given	the	many	different	ways	in	which	the	skin	microbial	community	structure	can	

be	modified	to	potentially	play	a	role	in	disease,	it	is	clear	that	it	is	not	the	mere	acquisition	

of	a	pathogen	that	causes	disease,	or	hand	washing	that	directly	prevents	disease,	or	that	

contaminated	surfaces	result	 in	disease,	or	even	that	antibiotics	eliminate	disease.	 	These	

events	 are	 all	 mediated	 by	 the	 resident	 skin	 microbial	 community	 structure	 of	 the	

individual.	 	 It	 is	what	happens	 to	 that	microbial	 diversity	 that	 governs	whether	or	not	 a	

host	immune	response	is	elicited,	thereby	establishing	disease.	 	In	demonstrating	that	the	

skin	microbiota	 is	responsible	 for	controlling	cutaneous	 inflammatory	responses,	 thereby	

protecting	 the	host	 from	unintended	 inflammatory	diseases,	 Lai	 and	 colleagues	provided	

evidence	of	a	 relationship	between	 the	microbiota,	host	 immunity,	and	disease	 (Lai	et	al,	

2009).	
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	 The	 microbial	 diversity	 present	 in	 and	 on	 humans	 is	 associated	 with	 several	

infectious	 and	 non‐communicable	 diseases.	 	 Changes	 in	 resident	microbial	 communities	

have	been	shown	to	be	associated	with	skin	conditions	such	as	acne,	atopic	dermatitis,	and	

psoriasis	(Bek‐Thomsen	et	al,	2008;	Dekio	et	al,	2007;	Gao	et	al,	2008).		Even	more	broadly,	

The	 Human	 Microbiome	 Project	 has	 inspired	 exciting	 new	 studies	 demonstrating	 how	

changes	 in	 resident	 microbial	 communities	 play	 a	 role	 in	 disease,	 including	 antibiotic‐

associated	 diarrhea,	 bacterial	 vaginosis,	 human	 immunodeficiency	 virus,	 obesity	 and	

cardiovascular	disease	(Oakley	et	al,	2008;	Ordovas	and	Mooser,	2006;	Othman	et	al,	2008;	

Price	et	al,	2010;	Young	et	al,	2008).		Insights	into	the	effects	of	resident	microbial	diversity	

of	 the	 human	 microbiota	 on	 health	 outcomes	 provide	 encouragement	 for	 further	

characterization	of	the	skin	microbiota.	

Conclusions	

Challenges	in	Assessing	Multilevel	Associations	

	 Describing	 associations	 between	 the	microbial	 community	 structure	 found	 on	 the	

skin	and	the	health	outcomes	of	individuals	requires	an	integrative	approach	across	several	

disciplines.	 	 Studying	 the	 human	 microbiota	 involves	 the	 fields	 of	 microbial	 ecology,	

population	biology	and	microbiology.		Further	linking	the	skin	microbiota	to	individual	and	

population	 health	 outcomes	 also	 incorporates	 medicine,	 immunology,	 epidemiology	 and	

biostatistics.		Thus,	a	comprehensive	understanding	of	correlations	between	changes	in	the	

human	microbiota	and	disease,	with	the	consequent	translation	into	public	health	benefits,	

requires	an	interdisciplinary	endeavor.			



32 
 

	 Without	 an	 understanding	 of	 the	 normal	 range	 of	 microbial	 diversity	 within	 and	

between	 individual	hosts,	 it	 is	difficult	 to	relate	microbiota	composition	 to	disease	status	

(Mai	 and	Draganov,	 2009).	 	 Further	 complication	 arises	 from	 recognizing	 that	microbial	

diversity	 involves	 many	 levels:	 the	 microbial	 level	 (individual	 microbes	 as	 well	 as	

populations	 and	 communities	 of	 microbes),	 the	 individual	 level	 (host	 factors),	 and	 the	

human	 population	 level.	 	 Despite	 a	 number	 of	 ecological	 studies	 that	 assess	 population‐

level	 risk	 factors	 for	 disease,	 most	 epidemiological	 studies	 have	 traditionally	 looked	 at	

individual‐level	risk	factors	(Diez	Roux	and	Aiello,	2005).		Recently,	however,	it	has	become	

more	 apparent	 that	 focusing	 on	 the	 individual	 level	 does	 not	 account	 for	 other	 equally	

important	 health	 determinants	 such	 as	 the	 influence	 of	 social	 norms	 (a	 population	 level	

factor),	like	hygiene	practices,	on	disease	risk	(Larson	et	al,	2004).	

	 In	any	attempt	to	infer	a	causal	association	between	human	microbiota	and	disease,	

it	 is	 necessary	 to	 determine	 the	 risk	 of	 developing	 disease	 given	 the	 present	 microbial	

community	on	a	host	population.	 	Therefore,	another	challenge,	one	effectively	explained	

by	Mai	and	Draganov,	 is	 the	need	 for	 longitudinal	 studies	with	enough	power	 to	 identify	

microbiota	 differences	 between	 groups	 despite	 the	 large	 variation	 that	 is	 likely	 to	 be	

observed	within	groups	(Mai	and	Draganov,	2009).	

Implications	for	Health	

	 In	 this	 review,	we	 have	 shown	 that	 skin,	 the	 largest	 organ	 of	 the	 human	 body,	 is	

normally	 colonized	 by	 a	 diverse	 community	 of	 microorganisms,	 some	 of	 which	 are	

potentially	 pathogenic	 under	 certain	 conditions.	 	 It	 is	 the	 continuing	 inter‐	 and	 intra‐

species	 interactions	of	 the	microbial	 community,	along	with	host	 immunity,	 that	 regulate	
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these	conditions	to	avoid	disease.		An	implication	of	this	regulation	is	that	when	microbial	

community	 interactions	 are	 altered,	 certain	 microorganisms	 may	 become	 more	 easily	

dispersed	 and	 thus	 be	more	 readily	 transmitted	 to	 another	 person	 or	 even	 oneself	 (i.e.	

autoinfection).	 	 Additionally,	 keeping	 the	 skin	 microbiota	 in	 check	 may	 allow	 the	 host	

immunity	 to	 be	 continually	 primed,	 so	 that	 in	 the	 event	 of	 disease	 onset,	 it	 is	 better	

equipped	at	controlling	its	progression.	

	 We	have	also	shown	that	 the	microbial	 community	structure	of	 the	human	skin	 is	

continuously	 influenced	by	microorganism	dispersal,	 host	 behavioral	 characteristics,	 and	

the	 environment.	 	 These	 driving	 factors	 may	 lead	 to	 significant	 and	 potentially	 harmful	

alterations	of	the	skin	microbiota.		The	implication	is	that	by	manipulating	the	human	skin	

microbiota	 community	 structure	 via	 its	modifiable	 transmission‐related,	 behavioral,	 and	

environmental	 pathways	 (Figure	 2‐1),	 disease	 could	 potentially	 be	 prevented	 or	 treated,	

especially	given	the	recent	advances	in	molecular	technology.	 	The	most	obvious	example	

lies	 in	 the	 use	 of	 oral	 and	 topical	 probiotics,	 intended	 to	 limit	 the	 growth	 of	 pathogenic	

microorganisms	 while	 enhancing	 commensal	 ones	 (Krutmann,	 2009;	 Ouwehand	 et	 al,	

2003).	 	 Clinically,	 controlling	 the	 microbial	 community	 structure	 of	 the	 skin	 has	 the	

potential	 to	 decrease	 the	 rejection	 of	 viable	 skin	 grafts	 between	 individuals,	 as	 well	 as	

between	different	body	locations	within	the	same	individual.	

	 Identifying	 specific	 microbial	 community	 structure	 patterns	 of	 the	 human	 skin	

microbiota	 associated	with	disease	will	 identify	new	potential	 intervention	measures	 for	

improving	health.	 	 It	 is	anticipated	that	exploration	of	this	new	and	different	approach	to	

human	health	will	provide	insights	into	disease	etiology,	management,	and	prevention.	
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Summary	

	 Given	 the	 recent	 interest	 and	 technological	 advances	 in	 characterizing	 the	 human	

skin	 microbiota,	 it	 is	 important	 to	 learn	 whether	 certain	 diversity	 patterns	 or	 species	

composition	 of	 human	microbiota	 are	 predictive	 or	 diagnostic	 of	 disease.	 	 A	 conceptual	

framework	 for	 understanding	 the	 interactions	 between	 skin	microbiota,	 the	 human	 host	

and	the	environment	is	presented	here	in	order	to	organize	what	host,	dispersal,	behavior,	

and	 environmental	 factors,	 or	 combination	 thereof,	 have	 the	 potential	 to	 drive	 the	

variability	 of	 the	 microbial	 community	 structure,	 thereby	 altering	 the	 skin	 microbiota	

diversity	in	such	a	way	to	cause	disease.	
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Figure	 2‐1.	 Conceptual	 framework	 of	 the	 driving	 forces	 behind	 the	 relationship	
between	microbial	species	diversity	/	community	structure	of	the	human	microbiota	
and	health	outcomes.		Specific	examples	are	shown	as	bullet	points	within	each	factor.	
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Figure	2‐2.		Schematic	representations	of	the	potential	temporal	variability	of	the	
human	skin	microbiome.	
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Table	2‐1.		A	summary	of	selected	skin	microbiota	studies	that	included	temporal	
dynamics.		

 

 

 

 

 

 

 

Main Study Aim Temporal Sampling Done

Costello et al, 

2009 (Science)

Obtained an integrated view of the spatial 

and temporal distribution of the human 

microbiota from up to 27 sites in 7 to 9 

healthy adults, using a multiplexed barcoded 

pyrosequencing approach.

Microbiota samples were donated on 17 

and 18 June and 17 and 18 September 

2008. 

Dekio et al, 

2007 (J Med 

Microbiol)

Compared the skin microbiota profiles in 13 

patients with atopic dermatitis and 10 

healthy controls, using terminal RFLP analysis 

of bacterial 16S rRNA genes.

Sampled 2 atopic dermatitis patients 

twice over 7 days.

Fierer et al, 

2008 (PNAS)

Examined the palmar surfaces of the hands 

of 51 healthy young adult volunteers to 

characterize bacterial diversity and to assess 

its variability within and between individuals, 

using a novel pyrosequencing‐based method.

Swabbed the palms of 4 men and 4 

women every 2 h for a 6‐h period after 

hand washing.

Gao et al, 2007 

(PNAS)

Examined the diversity of the skin biota from 

the superficial volar forearms of 6 healthy 

subjects, using 16S rRNA genes PCR‐based 

sequencing of randomly selected clones.

Re‐sampled 4 of the 6 subjects 8 or 10 

months later.

Grice et al, 

2009 (Science)

Characterized the topographical and temporal 

diversity of the human skin microbiome from 

20 diverse skin sites of 10 healthy volunteers, 

using 16S rRNA gene phylotyping.

Collected samples 4 to 6 months after 

initial visit from 5 of the 10 healthy 

volunteers. 

Paulino et al, 

2006 (J Clin 

Microbiol)

Used molecular methods to identify the 

fungal species present in 25 skin samples 

from 5 healthy subjects (flexor forearm) and 

3 patients with psoriasis.

2 samples from each forearm of 2 healthy 

subjects, obtained 10 months apart;  2 

samples from same lesion of 1 patient, 

obtained 6 months apart.
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Chapter	3:		Hand	Microbiome	Dynamics	Among	Healthcare	Workers	in	a	Surgical	

Intensive	Care	Unit	

 

Abstract	

	 We	 assess	 the	 dynamics	 of	 skin	microbial	 community	 structure	 of	 34	 health	 care	

workers	from	a	single	surgical	intensive	care	unit	over	a	short	(3	week)	time	period,	whilst	

taking	into	account	the	variability	introduced	by	specimen	collection,	DNA	extraction,	and	

sequencing.	 	 Sample	 collection	 took	 place	 at	 3	 different	 time	 points.	 	 Only	 sampling	

collection	method	appeared	 to	have	a	 significant	 impact	on	 the	 observed	hand	microbial	

community	structure	among	the	healthcare	workers.	 	Analysis	of	samples	collected	using	

glove	 juice	 showed	 	 hands	 within	 individuals	 were	 slightly	 more	 similar	 in	 microbial	

composition	 over	 time	 than	 hands	 between	 individuals.	 	 This	 was	 not	 true	 for	 samples	

collected	using	swab,	where	samples	from	a	single	individual	were	no	more	similar	to	each	

other	than	those	among	other	individuals,	suggesting	they	were	essentially	independent.	
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Introduction	

	 The	human	skin	 is	made	up	of	dermal	 layers,	hairs,	nerves,	glands,	and	a	complex	

ecosystem	 of	 microorganisms,	 the	 microbiota.	 	 Next‐generation	 deep	 sequencing	

techniques	have	made	characterization	of	the	microbiota	rapid	and	economically	feasible,	

leading	to	a	surge	of	studies.		From	these	studies,	including	those	funded	by	the	first	phase	

of	The	Human	Microbiome	Project	(HMP),	we	are	gaining	an	increasingly	complete	picture	

of	 the	 skin	 microbiota.	 	 However,	 obtaining	 an	 accurate	 profile	 of	 the	 skin	 microbiota	

requires	 an	 assessment	 of	 the	 variation	 in	 biological	 patterns	 between	 individuals	 and	

within	 individuals	over	time.	 	This	 is	challenging	because	true	biological	variation	can	be	

obscured	 by	 technical	 variation	 due	 to	 (i)	 specimen	 collection	 technique,	 (ii)	 DNA	

extraction	methods,	and	(iii)	sequencing.	

	 Earlier	 studies	 suggest	 that	 the	 composition	 of	 hand	microbiota	 varies	widely.	 	 A	

study	of	the	right	and	left	hands	of	51	healthy	young	adults	found	an	average	of	158	unique	

bacterial	phylotypes	per	hand:	only	17%	were	shared	within	individuals	and	13%	between	

individuals	(Fierer	et	al,	2008).		A	high	level	of	intra‐personal	variability	in	hand	microbiota	

was	also	found	by	Caporaso	and	colleagues,	who	compared	the	right	and	left	palms	of	two	

individuals	 over	 several	 months:	 the	 phylotypes	 present	 on	 each	 hand	 were	 not	

significantly	 correlated	 (at	 the	 species	 level)	 (Caporaso	 et	 al,	 2011).	 	 However,	 despite	

recognizing	that	the	way	in	which	skin	samples	are	collected	can	impact	the	diversity	of	the	

microbiota	(Grice	et	al,	2008),	that	DNA	is	more	easily	extracted	from	gram	negative	than	

gram	positive	 cells	 (Salazar	 and	Oriana,	 2007),	 and	 that	 sequencing	 introduces	 errors	 in	

terms	 of	 obtaining	 an	 accurate	 profile	 (Schloss	 et	 al,	 2011),	 to	 our	 knowledge,	 no	

metagenomic	 study	 of	 the	 human	 skin	microbiome	 has	 determined	 the	 effect	 that	 these	
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technical	sources	of	variation	have	on	the	true	biological	variability	of	the	skin	microbiome.		

We	address	this	gap	in	this	paper,	while	characterizing	the	hand	microbiome	of	healthcare	

workers	(HCW).		

	 Understanding	 the	 biological	 variability	 of	 the	 skin	 microbiome	 of	 the	 hands	 of	

HCWs	is	particularly	important	for	gaining	insight	into	the	role	of	microbiota	in	pathogen	

resistance	 and	 susceptibility,	 and	 the	 potential	 for	 transmission	 to	 others,	 which	 occurs	

among	HCWs	despite	their	generally	elevated	hand	hygiene	efforts.		In	this	study,	we	assess	

the	 dynamics	 of	 skin	microbial	 community	 structure	 of	 34	HCWs	 at	 a	 surgical	 intensive	

care	 unit	 over	 a	 short	 (3	 week)	 time	 period,	 whilst	 taking	 into	 account	 the	 variability	

introduced	by	 specimen	 collection	 techniques,	DNA	 extraction	methods,	 and	 sequencing.	

Specifically,	we	 compared:	 1)	 a	 swab	 versus	 glove	 juice	 technique,	 2)	DNA	extraction	by	

lysozyme	only	versus	enzyme	cocktail,	and	3)	sequencing	one	replicate	versus	another.	

Methods	

Study	Population	

	 Healthcare	 workers	 were	 recruited	 from	 the	 University	 of	 Michigan	 Hospital	

Surgical	 Intensive	Care	Unit	 (SICU).	 	This	 is	 a	20‐bed	critical	 care	unit	 that	 specializes	 in	

patient	recovery	after	major	post‐operative	procedures	(e.g.	transplants,	aneurysm	repairs,	

resections,	 vascular	 endarterectomies,	 and	 amputations)	 or	 those	 requiring	 extensive	

physiological	monitoring.		The	SICU	also	accommodates	patients	from	other	surgical	units	

(trauma‐burn,	 neurosurgery,	 medical,	 and	 cardiovascular).	 	 To	 qualify	 for	 inclusion,	

volunteers	 had	 to	 be	 a	 healthcare	 worker	 working	 at	 the	 SICU,	 and	 not	 have	 received	

topical	or	systemic	steroids	or	antibiotics	for	a	period	of	3	months	before	the	start	of	the	
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study.		Physicians	were	excluded	from	the	study	due	to	their	high	mobility.		The	study	was	

presented	 at	 staff	meetings	 and	 the	 first	 35	 HCWs	who	met	 eligibility	 criteria	 and	 gave	

written	consent	were	included	in	the	study.		One	HCW	was	lost	to	follow‐up	prior	to	sample	

collection	leaving	a	total	sample	size	of	34.		The	study	took	place	July	5‐28,	2011.		The	study	

protocol	was	reviewed	and	approved	by	the	institutional	review	board	of	the	University	of	

Michigan	(IRBMed	#HUM00042622).	

Sample	Collection	

	 To	minimize	sample	cross‐contamination	the	study	recruiters	donned	a	new	pair	of	

sterile	gloves	prior	 to	each	sample	collection.	 	Negative	controls	consisting	only	of	buffer	

solution	 (20	 mM	 Tris	 pH	 8,	 2	 mM	 EDTA,	 and	 1.2%	 Triton	 X‐100)	 were	 collected	 and	

analyzed	for	each	sampling.		The	palm,	fingertip	surfaces,	and	in‐between	the	fingers	of	the	

participant's	dominant	hand	were	swabbed	using	sterile	cotton‐tipped	swabs	soaked	in	the	

buffer	solution.	 	Swabbing	was	performed	 in	two	perpendicular	directions	to	ensure	 that	

the	maximum	surface	 area	was	 represented	 in	 the	 sample.	 	 Immediately	 after	 swabbing,	

the	 participant's	 dominant	 hand	was	 inserted	 into	 a	 sterile,	 polyethylene	 bag	 containing	

50ml	buffer	solution	(0.07	M	PBS,	0.1%	Tween‐80)	and	massaged	through	the	wall	of	the	

bag	 for	 1	minute.	 	 The	 buffer	 solution,	 here	 termed	 glove‐juice,	 was	 then	 collected.	 	 All	

samples	were	stored	at	‐20°C	until	further	processing.	

DNA	Extraction,	Purification	and	Amplification	

	 All	swab	samples	and	the	pellet	of	1	ml	of	all	glove‐juice	samples	were	lysed	using	

enzyme	 cocktail	 (mutanolysin	 @	 160U/ml,	 Rnase	 A	 @	 0.07mg/ml,	 lysostaphin	 @	 0.16	

mg/ml,	 and	 lysozyme	 @	 7mg/ml)	 for	 30	 minutes	 at	 37°C.	 	 A	 subset	 of	 ten	 glove‐juice	
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samples	 from	the	 first	 collection	visit	were	 lysed	using	only	 lysozyme	@	20	mg/mL	(per	

manufacturer's	 recommendations)	 for	 30	 minutes	 at	 37°C.	 	 The	 standard	 protocol	 for	

lysing	 gram‐positive	 bacterial	 cell	 lysates	 of	 the	 PureLink	 Genomic	 DNA	 kit	 (Invitrogen	

Corp.;	#K1820‐02)	was	followed	for	all	subsequent	steps,	with	an	additional	incubation	at	

95°C	 for	 2	 minutes,	 prior	 to	 the	 addition	 of	 96‐100%	 ethanol	 to	 the	 lysates.	 	 Purified	

genomic	DNA	were	re‐suspended	in	50	μl	of	PureLink	Genomic	Elution	Buffer	and	stored	at	

‐80°C	until	sent	for	sequencing.	

	 DNA	was	tested	for	PCR	competency,	using	the	following	procedure.			 The	 primers	

L‐V6	 (5'‐CAACGCGARGAACCTTACC‐3')	 and	 R‐V6	 (5'‐CAACACGAGCTGACGAC‐3')	 were	

chosen	 to	 amplify	 the	 V6	 hypervariable	 region	 of	 the	 16S	 rRNA	 gene	 (Hummelen	 et	 al,	

2011).		After	extraction,	1	uL	of	the	purified	genomic	DNA	was	used	as	template	for	a	25	uL	

PCR	 reaction	 on	 a	MyCycler	 Thermal	 Cycler	 (Bio‐Rad	 Laboratories,	 Inc.).	 	 The	 following	

PCR	 reactions	 were	 used:	 22.5	 ul	 of	 Platinum	 Blue	 PCR	 SuperMix	 (Invitrogen	 Corp.,	

#12580‐023)	1	ul	of	10	uM	primer	pair,	and	0.5	ul	of	water.		PCR	conditions	included:	94°C	

for	2	minutes;	30	cycles	of	[94°C	for	30	seconds;	55°C	for	30	seconds;	72°C	for	30	seconds];	

and	hold	at	4°C.		A	negative	control	including	all	ingredients	but	with	water	instead	of	DNA	

template	was	included	alongside	all	test	reactions.		A	constant	volume	aliquot	of	each	PCR	

amplification	product	was	run	on	a	1.5%	agarose	gel	to	determine	PCR	competency	as	well	

as	the	approximate	amount	of	product.		10‐20	ul	of	the	purified	genomic	DNA	were	sent	for	

sequencing	at	The	London	Regional	Genomics	Centre	at	the	University	of	Western	Ontario	

(London,	ON,	Canada).	
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DNA	Preparation	for	Sequencing	

	 The	 bacterial	 V6	 rRNA	 region	 was	 amplified	 with	 the	 left‐side	 primer	

CWACGCGARGAACCTTACC	 and	 the	 right‐side	 primer	 ACRACACGAGCTGACGAC.	 	 These	

primer	 sequences	 are	 exact	 matches	 to	 >95%	 of	 the	 rRNA	 sequences	 from	 organisms	

identified	in	the	human	microbiome	project	(GBG,	unpublished	observations).	The	left‐side	

primers	 contained	 the	 standard	 Ion	 Torrent	 (Ion	 Torrent	 Systems,	 Guilford,	 CT,	 USA)	

adapter	and	key	sequence	at	their	5′	end	(CCATCTCATCCCTGCGTGTCTCCGACTCAG).	 	The	

right‐side	 primer	 had	 the	 other	 standard	 Ion	 Torrent	 adapter	 sequence	

(CCTCTCTATGGGCAGTCGGTGAT)	attached	to	its	5′	end.	 	Amplification	was	performed	for	

25	 cycles	 in	 40	 μl	 using	 the	 colorless	 GO‐Taq	 hot	 start	master	mix	 (Promega;	 #M5133)	

according	 to	 the	 manufacturer's	 instructions	 with	 the	 following	 three‐step	 temperature	

profile:	95°C,	55°C	and	72°C	for	1	minute	each	step.		5	μl	of	the	resulting	amplification	were	

quantified	 using	 the	 QuBit	 broad‐range	 double‐stranded	 DNA	 fluorometric	 quantitation	

reagent	 (Invitrogen	 Corp.;	 #Q32854).	 	 Samples	 were	 pooled	 at	 approximately	 equal	

concentrations	and	purified	using	a	Wizard	PCR	Clean‐Up	Kit	(Promega;	#A9285).	

DNA	Sequencing	and	Sequence	Reads	Filtering	

	 Sequencing	 reactions	 were	 carried	 out	 on	 three	 Ion	 Torrent	 316	 platform	 chips,	

multiplexing	up	to	96	samples	per	run	using	the	200	bp	sequencing	reagent	kit.		Data	from	

all	 runs	were	 pooled.	 	 The	 sequence	was	 provided	 in	 fastq	 format.	 	 All	 sequences	were	

filtered	 according	 to	 the	 following	 criteria	 in	 order:	 	 exact	match	 to	 the	 left‐side	 primer	

including	redundant	positions	in	the	primer,	exact	matches	to	the	barcodes	used,	an	exact	

match	to	the	first	six	nucleotides	of	the	right‐side	primer,	and	a	length	between	the	left‐side	

and	right‐side	primer	of	between	71	and	90	nucleotides.		This	length	was	chosen	because	it	
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encompasses	 the	 predicted	 amplicon	 product	 size	 from	 all	 human‐associated	 bacterial	

organisms	that	have	been	cultured	and	sequenced	as	part	of	the	HMP.		Table	1	shows	the	

number	 of	 raw	 and	 filtered	 reads	 obtained	 from	 each	 run.	 	 Run	 number	 3	 had	 the	 least	

number	 of	 sequences	 because	 of	 sub‐optimal	 loading	 efficiency.	 	 However,	 as	 the	

reproducibility	of	the	Ion	Torrent	platform	for	these	types	of	analyses	is	excellent	provided	

the	number	of	reads	per	sample	 is	greater	than	1000	(Allen‐Vercoe	et	al,	2012),	 this	was	

not	a	concern.	

	 Between	46	 to	71%	of	 the	 reads	passed	 these	 filters;	 reads	not	passing	 the	 filters	

were	 not	 examined	 further.	 	 Reads	were	 processed	 as	 previously	 described	 (Gloor	 et	 al,	

2010)	 except	 that	 clustering	 with	 USEARCH	 was	 performed	 at	 97%	 identity.	 	 Chimera	

detection	was	performed	with	UCHIME	(version	v5.2.32)	using	the	de	novo	method	(Edgar	

et	 al,	 2011).	 	 Chimeric	 sequences	 in	 less	 than	 0.05%	 in	 any	 sample	 (see	 below)	 were	

discarded.		A	table	of	counts	for	sequences	grouped	at	100%	identical	sequence	unit	(ISU)	

identity	 level	were	 generated	 for	 each	 sample	 (Gloor	 et	 al,	 2010),	 keeping	 all	 sequences	

that	 were	 represented	 in	 any	 sample	 at	 a	 frequency	 >0.5%.	 	 Reads	 that	 were	 never	

abundant	in	any	sample	(<0.5%)	were	discarded.		

Taxonomic	Classification	

	 Classification	of	the	sequences	by	either	the	Greengenes	or	RDP	classifiers	proved	to	

be	unreliable	because	of	the	short	length	of	the	V6	region.		Classification	of	the	sequences	

present	in	the	count	table	was	therefore	performed	using	the	RDP	closest	match	option	on	

the	 full‐length,	 high‐quality,	 isolated	 subset.	 	 The	 20	 best	 hits	 were	 identified,	 and	 the	

taxonomic	classification	of	the	best	match	and	ties	was	collected.		The	classification	of	those	
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hits	was	adopted	for	all	levels	where	the	classification	was	identical	across	all	best	matches,	

otherwise	 the	 classification	was	marked	 as	 undefined.	 	 The	 taxonomic	 classification	was	

added	 to	 the	sequence	count	 table	and	 the	data	were	presented	 in	 formats	 that	could	be	

accepted	by	QIIME	1.5.0	(Caporaso	et	al,	2010)	as	follows.	Sequence	alignments	were	built	

using	Muscle	 (Edgar	 RC,	 2004)	 and	 a	 neighbor‐joining	 tree	was	 generated	 by	 ClustalW2	

(Larkin	et	al,	2007).	

Statistics	

	 Quantitative	Insights	into	Microbial	Ecology	(QIIME,	version	1.5.0),	an	open	source	

software	 package	 for	 comparison	 and	 analysis	 of	 microbial	 communities,	 was	 used	 to	

process	 data	 from	 the	 Ion	 Torrent	 sequence	 reads.	 	 Analyses	 included	 removal	 of	

chloroplast	 sequences	 to	 the	 development	 of	 heatmaps,	 taxonomic	 summaries	 of	

communities,	computing	of	alpha	diversities,	rarefaction	curves,	 jackknifed	bootstrapping	

of	 beta	 diversities,	 hierarchical	 clustering,	 principal	 coordinate	 analyses,	 distance	

histograms,	and	ANOSIM.	 Rarefied	 operational	 taxonomic	 unit	 (OTU)	 tables	 were	

generated	to	compute	measures	of	alpha	diversity.	 	Metrics	computed	were	Chao1,	which	

estimates	the	species	richness;	observed	species,	which	counts	the	number	of	unique	OTUs	

in	 a	 sample;	 Shannon	 index,	 which	 estimates	 the	 species	 diversity;	 and	 PD_whole_tree,	

which	 is	a	phylogenetic	distance	metric.	 	Rarefaction	curves,	 showing	 the	alpha	diversity	

versus	simulated	sequencing	effort,	were	generated.	

	 To	compare	the	bacterial	communities	between	groups,	beta	diversity	metrics	were	

calculated	 based	 on	 the	 UniFrac	 algorithm,	 which	 measures	 the	 community	 similarity	

based	on	 shared	branch	 length	on	a	phylogenetic	 tree	 (Lozupone	and	Knight,	 2005).	 	To	
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remove	sample	heterogeneity	and	standardize	comparisons	so	that	sequencing	effort	does	

not	 influence	 diversity	 estimates,	 the	 OTU	 tables	 were	 rarefied.	 	 Weighted	 UniFrac	

dissimilarity	 matrices	 of	 each	 comparison	 group	 formed	 the	 basis	 for	 the	 distance	

histograms,	 distance	 boxplots,	 principal	 coordinate	 analysis	 (PCoA),	 and	 hierarchical	

clustering.	 	 The	 distribution	 of	 distances	 (weighted	 UniFrac)	 within	 one	 group	 was	

displayed	in	a	histogram,	and	overlayed	with	the	distribution	of	distances	between	groups.		

Boxplots	comparing	distances	within	and	between	groups	were	generated	from	the	sets	of	

weighted	UniFrac	distance	matrices.	 	 Jackknife	bootstrapping	was	performed	 to	estimate	

the	 uncertainty	 in	 the	PCoA	plots,	 by	 first	 creating	distance	matrices	 off	 of	 rarefied	OTU	

tables,	 computing	principal	 coordinates	on	each	 rarefied	distance	matrix,	 and	 comparing	

principal	 coordinates	 plots	 from	 each	 rarefied	 distance	 matrix.	 	 Unweighted	 pair	 group	

method	with	 arithmetic	mean	 (UPGMA),	 a	 type	 of	 hierarchical	 clustering	 technique	 that	

uses	 average	 linkage,	 was	 done	 to	 determine	 whether	 any	 clustering	 was	 formed	 per	

comparison	 group.	 	 To	measure	 the	 robustness	 of	 this	 result	 to	 the	 sequencing	 effort,	 a	

jackknife	 bootstrapping	 analysis	 was	 performed	 where	 a	 smaller	 number	 of	 sequences	

were	chosen	at	random	from	each	sample	and	the	resulting	UPGMA	tree	from	this	subset	

was	compared	with	the	tree	representing	the	entire	data	set.	

	 Statistical	 comparisons	 using	 a	 paired	 t‐test	 were	 made	 using	 the	 first	 principal	

components	 of	 the	 PCoA	 plots	 to	 assess	 significant	 differences	 between	 the	 comparison	

groups.	 	Analysis	 of	 similarity	 (ANOSIM),	which	 is	 a	modified	 version	of	 the	Mantel	Test	

based	on	a	standardized	rank	of	correlation	between	two	distance	matrices,	was	done	to	

statistically	test	for	significant	differences	between	the	comparison	groups.	
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Results	

	 We	assessed	the	dynamics	of	skin	microbial	community	structure	of	34	healthcare	

workers	at	a	surgical	intensive	care	unit	over	a	3	week	time	period	while	considering	the	

variability	 introduced	 by	 sampling	 collection	 method,	 DNA	 extraction	 method,	 and	

sequencing	 [Figure	 3‐1].	 	 Thirty‐four	 HCWs	 (and	 negative	 controls)	 were	 sampled	 at	 3	

different	 time	 points	 by	 swab	 and	 glove‐juice,	 resulting	 in	 105	 specimens	 each	

[Supplemental	Materials].		A	negative	control	for	each	time	point	consisted	of	either	a	swab	

buffer	or	glove‐juice	buffer	alone.	 	DNA	from	all	samples	was	extracted	using	the	enzyme	

cocktail.	 	Additionally,	 the	 first	10	 specimens	 collected	via	 glove‐juice	 from	 the	 first	 visit	

were	also	extracted	using	lysozyme	only,	and	sent	for	sequencing.		The	DNA	from	the	first	

10	specimens	at	each	time	point,	collected	from	both	swab	and	glove‐juice	samples,	were	

divided	into	two	and	sent	for	sequencing.		During	analysis,	DNA	sequence	identity	level	was	

kept	at	100%	so	that	true	differences	between	microbial	communities	could	be	assessed	in	

the	 several	 comparisons	 that	 follow.	 	 Moreover,	 all	 comparisons	 were	 made	 within	 the	

same	 OTU	 dataset	 without	 stratification,	 so	 as	 to	 control	 for	 the	 variability	 observed	

elsewhere.		The	mean	number	of	sequencing	reads	assigned	to	the	OTU	table	was	6,514	per	

sample	(min=4,	max=77,185).	

Comparison	of	Sampling	Collection	Method	

	 At	each	visit	(nv=3,	where	v=visit),	samples	(np=34,	where	p=participant)	were	first	

collected	 via	 swabs	 and	 immediately	 after,	 via	 glove‐juice,	 totaling	 102	 samples	 per	

collection	 method.	 	 Following	 DNA	 extraction,	 these	 were	 sent	 for	 sequencing.	 	 Initial	

analyses,	 such	 as	 alpha	 diversity,	 and	 bootstrapped	 UPGMA	 tree,	 suggested	 that	 the	

differences	 between	 the	 two	 methods	 were	 small	 [Supplemental	 Materials].	 	 The	 total	
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average	number	of	unique	phylotypes	obtained	by	glove‐juice	and	swab	was	129	and	125,	

respectively	 (t=1.32,	 p=0.19).	 	 Further	 investigation,	 however,	 revealed	 some	 important	

differences.		These	included	a	histogram	comparing	weighted	UniFrac	distances,	and	PCoA	

plots	 performed	with	 jackknife	 bootstrapping	 [Supplemental	Materials].	 	 The	2D	 and	3D	

plots	of	the	PCoA	show	clear	clusters	per	sampling	collection	method	[Figure	3‐2].		ANOSIM	

results	 indicate	 a	 statistically	 significant	 difference	 between	 the	 two	 sampling	 collection	

method	 sets	 of	weighted	UniFrac	distance	matrices	 (R=‐0.2649,	 p<0.001)	 [Table	 3‐2].	 	 A	

scatterplot	 of	 the	 first	 principal	 component	 of	 the	 PCoA	 comparing	 both	 sampling	

collection	methods	 show	most	 coordinates	 falling	 to	 the	 right	of	 the	 expected	 line	 (y=x),	

indicating	 that	 the	 two	sets	are	not	equivalent	 (t=10.51,	p<0.001)	 [Figure	3‐3].	 	Boxplots	

show	 that	 the	 mean	 weighted	 UniFrac	 distance	 between	 the	 two	 sampling	 collection	

methods	 is	 higher	 than	 the	 mean	 weighted	 UniFrac	 distance	 within	 either	 of	 the	 two	

methods,	 indicating	 a	 meaningful	 difference	 between	 them	 [Figure	 3‐4].	 	 Moreover,	 the	

mean	weighted	UniFrac	distance	within	 the	 samples	 collected	 via	 glove‐juice	was	higher	

than	the	mean	weighted	UniFrac	distance	within	the	samples	collected	via	swab,	indicating	

a	more	variable	community	composition.	

Comparison	of	DNA	Extraction	Technique	

	 To	 test	 whether	 DNA	 extraction	 techniques	 influence	 microbial	 community	

structure,	 the	 DNA	 of	 the	 first	 10	 glove‐juice	 samples	 from	 the	 first	 visit	 was	 extracted	

using	 two	 slightly	 different	methods.	 	 One	method	 used	 lysozyme	 (20	mg/ml)	 only;	 the	

other,	 an	 enzyme	 cocktail	 comprising	 of	 mutanolysin	 (60U/ml),	 Rnase	 A	 (0.07mg/ml),	

lysostaphin	(0.16	mg/ml),	and	lysozyme	(7mg/ml).		Both	sets	were	sent	for	sequencing.		At	

first,	 differences	 between	 both	 DNA	 extraction	 techniques	 appeared	 to	 be	 meaningful.		
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While	 the	 relative	 phylum	 abundance	 appeared	 to	 vary	 similarly	 by	HCW,	 samples	with	

DNA	extracted	with	the	enzyme	cocktail	consisted	mostly	of	Proteobacteria,	whereas	those	

extracted	 with	 lysozyme	 only	 consisted	 mostly	 of	 Firmicutes	 [Supplemental	 Materials].		

Differences	were	also	noted	on	a	histogram	comparing	weighted	UniFrac	distances,	as	well	

as	on	a	bootstrapped	UPGMA	tree	[Supplemental	Materials].		Boxplots	show	that	the	mean	

weighted	UniFrac	distance	between	 the	 two	DNA	extraction	 techniques	 is	 slightly	higher	

than	the	mean	weighted	UniFrac	distance	within	either	of	the	two	techniques,	indicating	a	

meaningful	 difference	 between	 them	 [Figure	 3‐4].	 	 Additionally,	 the	 mean	 weighted	

UniFrac	 distance	 within	 the	 cocktail	 set	 was	 slightly	 higher	 than	 the	 mean	 weighted	

UniFrac	 distance	 within	 the	 lysozyme	 set,	 indicating	 a	 more	 variable	 community	

composition.		However,	further	analyses	suggest	there	may	not	be	significant	differences	in	

microbial	 community	 structure	 introduced	 by	 the	 different	 DNA	 extraction	 techniques.		

The	2D	and	3D	plots	of	the	PCoA	fail	to	show	clear	clusters	per	DNA	extraction	technique	

[Figure	 3‐2].	 	 ANOSIM	 results	 indicate	 no	 statistically	 significant	 difference	 between	 the	

DNA	extraction	technique	sets	of	weighted	UniFrac	distance	matrices	(R=0.0901,	p=0.067)	

[Table	 3‐2].	 	 Rarefaction	 curves	 of	 phylogenetic	 distance	 show	 that	 the	 average	 alpha	

diversity	 is	 equivalent	 for	 both	 extraction	 techniques;	 and,	 PCoA	 plots	 performed	 with	

jackknife	 bootstrapping	 do	 not	 show	 any	 clusters	 by	 DNA	 extraction	 technique	

[Supplemental	 Materials].	 	 A	 scatterplot	 of	 the	 first	 principal	 component	 of	 the	 PCoA	

comparing	 both	 DNA	 extraction	 techniques	 show	 most	 coordinates	 falling	 around	 the	

expected	 line	 (y=x),	 also	 indicating	 that	 the	 two	 sets	 are	 equivalent	 (t=‐0.68,	 p=0.5047)	

[Figure	3‐3].	
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Comparison	of	Sequencing	Replicates	

	 Duplicate	 sets	 of	 the	 first	 10	 samples	 from	 each	 visit	 (n=30)	 were	 sent	 for	

sequencing.		Sequencing	replicates	had	similar	relative	abundances	of	taxa,	and	equivalent	

average	alpha	diversity,	indicating	a	consistent	sequencing	effort	[Supplemental	Materials].		

The	2D	and	3D	plots	of	the	PCoA	do	not	show	any	clustering	by	replicate	set	[Figure	3‐2].		

Other	 tests,	 including	 a	 histogram	 comparing	 weighted	 UniFrac	 distances,	 bootstrapped	

UPGMA	tree,	and	PCoA	plots	performed	with	jackknife	bootstrapping,	found	no	significant	

differences	 between	 the	 replicates	 [Supplemental	 Materials].	 	 A	 scatterplot	 of	 the	 first	

principal	 component	 of	 the	 PCoA	 comparing	 both	 replicate	 sets	 show	most	 coordinates	

falling	around	the	expected	line	(y=x),	 indicating	that	the	two	sets	are	equivalent	(t=0.36,	

p=0.7536)	 [Figure	 3‐3].	 	 ANOSIM	 results	 indicate	 no	 statistically	 significant	 difference	

between	the	two	replicate	sets	of	weighted	UniFrac	distance	matrices	(R=0.0122,	p=0.326)	

[Table	 3‐2].	 	 Boxplots	 show	 that	 weighted	 UniFrac	 distances	 within	 replicate	 sets	 were	

similar,	and	no	different	than	between	replicate	set	distances	[Figure	3‐4].	

Comparison	of	Between	Versus	Within	Healthcare	Worker	

	 To	 assess	 the	 biological	 variability	 of	 skin	microbial	 community	 structure	 within	

and	between	HCWs,	we	sampled	participants	at	three	time	points.	 	The	weighted	UniFrac	

distribution	of	distances	within	HCWs	are	slightly	shifted	from	the	distribution	of	distances	

between	HCWs	[Supplemental	Materials].		Moreover,	the	mean	weighted	UniFrac	distance	

between	HCWs	 is	 slightly	higher	 than	 the	mean	weighted	UniFrac	distance	within	HCWs	

[Figure	3‐4].	 	These	 results	 compare	between	and	within	HCWs	over	 time,	 among	glove‐

juice	and	swab	samples	combined.	 	However,	 since	significant	differences	were	observed	

between	samples	collected	via	glove‐juice	and	swab,	the	same	comparisons	were	stratified	
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by	sampling	collection	method.		The	difference	in	mean	weighted	UniFrac	distances	within	

and	between	HCWs	by	sampling	collection	method,	as	shown	by	the	boxplots	of	weighted	

UniFrac	 distances,	 is	more	 pronounced	 among	 the	 glove‐juice	 samples,	 where	 the	mean	

weighted	UniFrac	distance	between	HCWs	is	much	higher	than	within	HCWs	[Figure	3‐4].		

Furthermore,	 	PCoA	of	 the	HCWs	were	stratified	by	sampling	collection	method,	showing	

more	 clustering	 by	 HCW	 among	 the	 glove‐juice	 samples,	 indicating	 that	 HCWs'	 hand	

microbiota	are	more	similar	to	their	own	hands	over	time	than	to	other	HCWs	at	the	same	

time	 [Figure	 3‐5].	 	 A	 two‐sample	 t	 test	 comparing	 weighted	 UniFrac	 distances	 within	

versus	 between	 HCWs,	 found	 a	 significant	 difference	 among	 the	 samples	 collected	 via	

glove‐juice	(t=5.35,	p‐value	<0.0001)	but	not	swabs	(t=1.43,	p‐value	=0.1516).	

Discussion	

	 Analysis	 of	 the	 microbiome	 of	 34	 HCWs	 tested	 weekly	 over	 3	 weeks	 showed	

variability	 between	 and	within	 HCWs	 that	 could	 not	 be	 attributed	 to	 technical	 variation	

introduced	by	sampling	collection	method,	DNA	extraction	technique,	and	sequencing.		Our	

key	 findings	 are	 these.	 	 First,	 using	 swab	 samples	HCWs'	hands	were	 likely	 as	 similar	 in	

microbial	composition	to	themselves	as	they	were	to	the	hands	of	other	HCWs	in	the	study.		

However,	using	samples	from	glove‐juice,	microbiota	was	slightly	more	similar	within	HCW	

than	 between	 HCW.	 	 This	 is	 consistent	 with	 the	 study	 of	 Caporaso	 and	 colleagues,	 who	

tested	swab	samples	from	hands	of	two	individuals	sampled	at	over	396	time	points.		That	

study	found	high	variability	within	an	individual	across	time,	as	measured	in	days,	weeks	

and	months;	and,	no	significant	correlation	between	the	species‐level	taxa	presence	on	the	

right	palm	compared	to	the	left	(Caporaso	et	al,	2011).	 	Although	each	HCW	cared	for,	on	

average,	one	to	two	patients,	and	were	thus	likely	exposed	to	different	microbes,	it	may	be	
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that	their	high	level	of	handwashing	and	use	of	alcohol	gel	were	sufficient	to	remove	from	

their	palms	whatever	would	differentiate	one	HCW	from	another	in	terms	of	the	microbiota	

gathered	from	their	patients.	 	 It	 is	 infection	control	policy	to	perform	hand	hygiene	upon	

leaving	 a	 patient's	 room.	 	 The	 increased	 similarity	 between	 glove‐juice	 samples	within	 a	

HCW	 may	 reflect	 the	 larger	 surface	 area	 surveyed	 providing	 more	 opportunities	 for	

differences	between	individuals	to	arise.		Ours	is	the	first	study,	to	our	knowledge,	that	has	

compared	 two	different	methods	 that	 have	 been	 used	 in	 the	 hand	 hygiene	 literature	 for	

identifying	 bacterial	 counts	 and	 pathogens	 on	 the	 hands,	 for	 assessing	 overall	microbial	

composition.		Skin	microbiome	studies	of	the	Human	Microbiome	Project	(HMP)	mostly	use	

swabs	 to	 characterize	 the	 microbial	 communities	 of	 the	 skin;	 and,	 not	 much	 is	 known	

regarding	skin	microbiota	dynamics.		Hand	hygiene	studies	in	healthcare	setting	generally	

use	 the	 glove‐juice	 method,	 mostly	 for	 obtaining	 microbial	 loads	 for	 culturing.	 	 A	

comparison	 of	 the	 two	 sampling	 collection	 methods	 ‐‐	 research	 that	 is	 lacking	 in	 the	

literature	‐‐	and	the	dynamics	observed	in	each,	is	meaningful	for	bridging	the	two	research	

fields.	 	 Using	 a	 taxonomic	 classification	 at	 100%	 sequence	 identity,	 based	 on	 glove‐juice	

samples	(but	not	swab	samples),	HCWs	were	slightly	more	similar	to	themselves	than	they	

were	 to	 other	 HCWs	 over	 a	 short	 time	 period.	 	 However,	 the	 microbial	 community	

structure	of	the	hand	microbiota	within	a	HCW	over	3	weeks	was	as	variable	as	between	

HCWs,	 suggesting	 that	 ‐	 at	 least	 for	 swab	 specimens	 ‐	 each	 sample	 may	 be	 essentially	

considered	as	a	unique	sample.	

	 Second,	the	findings	obtained	using	glove‐juice	were	somewhat	different	from	those	

found	using	swab.		Glove‐juice	involves	inserting	a	participant's	hand	inside	a	sterile	plastic	

bag	containing	a	buffered	medium	and	massaging	the	hand	from	the	outside	of	the	bag	for	
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one	minute.		It	is	termed	the	'gold	standard'	for	infection	control	as	it	provides	a	thorough	

collection	of	transient	microbial	contamination	as	well	as	whole	hand	and	nail	microbiota	

(Banfield	and	Kerr,	2005).		If	transmission	is	presumed	to	arise	solely	from	direct	contact,	

swabbing	may	 provide	 adequate	 representation	 of	 the	microbiota	 present.	 	 However,	 if	

transmission	is	thought	to	arise	both	from	direct	contact	and	from	shedding	of	skin	cells,	

then	 sampling	 via	 glove‐juice	 would	 give	 a	 more	 complete	 picture	 of	 the	 potential	 for	

transmitting	 both	 transient	 and	 colonizing	 microbiota.	 Of	 note,	 we	 detected	 a	 higher	

proportion	 of	 Staphylococcus	aureus	and	 Pseudomonas	 spp.	 with	 the	 glove‐juice	 method	

than	with	the	swab	method	[Figure	3‐6].		The	incidence	of	infections	acquired	by	patients	

in	 an	 intensive	 care	 unit	 (ICU)	 is	 a	 great	 public	 health	 concern.	 	 A	 2007	 study	 of	 the	

prevalence	of	infection	in	1265	ICUs	from	75	countries	found	that	in	patients	with	positive	

isolates,	 the	 most	 common	 organisms	 were	 Staphylococcus	 aureus	 (20.5%)	 and	

Pseudomonas	spp.	(19.9%)	(Vincent	et	al,	2009).		Thus,	the	glove‐juice	method	may	provide	

a	better	representation	of	the	organisms	of	interest	for	hospital	infections.	

	 Third,	not	all	methods	of	DNA	extraction,	a	required	step	in	all	metagenomic	studies	

of	 microbiomes,	 are	 equivalent.	 	 This	 could	 impact	 the	 true	 representativeness	 of	 the	

metagenomic	 study	 and	 the	 generalizability	 of	 results	 between	 studies	 (Weaver,	 2012).		

Extraction	method	affected	the	beta	diversity	observed,	however	this	was	not	consistently	

demonstrated,	 probably	 due	 to	 the	 low	 sample	 size	 (n=10)	 we	 had	 for	 comparison.	 	 A	

recent	 study	 using	 six	 different	 DNA	 extraction	 techniques	 to	 compare	 the	 microbial	

profiles	of	11	bacterial	species	and	a	mock	community	comprised	of	all	these	species	found	

that	 none	 of	 the	 techniques	 were	 accurate	 in	 describing	 the	 composition	 of	 the	 mock	

community	 (Yuan	 et	 al,	 2012).	 	 However,	 they	 determined	 that	 protocols	 using	 bead	
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beating	 and	 mutanolysin	 (25KU/ml)	 together,	 best	 represented	 the	 true	 microbial	

community	 structure.	 	We	 used	 a	 lower	 concentration	 of	mutanolysin	 (160U/ml)	 in	 our	

enzyme	cocktail,	however	the	cocktail	also	contained	Rnase	A,	lysostaphin,	and	lysozyme.			

Fourth,	we	obtained	the	same	results	 for	duplicate	samples	sequenced	in	different	

runs	 using	 the	 Ion	 Torrent	 Personal	 Genome	 Machine	 (PGM)	 technology.	 	 This	 is	 a	

relatively	 new	 technology	 that	 has	 not	 been	 extensively	 implemented	 in	 microbiome	

studies.		To	our	knowledge,	despite	there	being	a	few	papers	describing	this	new	platform's	

performance	(Rothberg	et	al,	2011;	Loman	et	al,	2012;	Quail	et	al,	2012;	Liu	et	al,	2012),	

only	one	other	metagenomic	study	of	human	microbiome	has	been	published	to	date	using	

this	 platform	 (Jünemann	 et	 al,	 2012).	 	 This	 study	 is	 the	 first	 skin	 microbiome	 study	 to	

compare	 microbiome	 samples	 to	 themselves	 in	 order	 to	 assess	 technical	 variability	

introduced	by	the	Ion	Torrent	PGM.	

Hands,	 intrinsically,	 are	 constantly	 exposed	 to	 contaminants	 in	 the	 environment.		

Oversampling	of	transients	picked	up	from	the	environment	may	have	been	more	apparent	

among	swab	samples.	 	Glove‐juice	samples	were	 likely	more	representative	of	 the	HCWs'	

endogenous	 hand	 microbiota.	 	 Overall,	 there	 was	 a	 positive	 correlation	 between	 the	

microbial	community	structure	observed	from	both	sampling	methods.	 	This	may	suggest	

that	 the	microbiota	 detected	 by	 the	 swabs	 is	 a	 subset	 of	 the	microbiota	 detected	 by	 the	

glove‐juice	method.		Further	work	is	needed	to	establish	whether	the	microbiota	detected	

by	swabs	are	indeed	nested	within	the	microbiota	detected	by	glove‐juice.		A	limitation	of	

this	study	may	be	that	our	sample	size,	34	participants	sampled	at	three	points	in	time,	may	

still	not	be	sufficient	 to	accurately	determine	the	short‐term	stability	of	hand	microbiota.		
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Additional	 samples	 comparing	 DNA	 extraction	 techniques	 would	 also	 have	 proven	

beneficial.		However,	we	feel	that	if	there	is	an	effect,	it	is	small	given	that	we	were	able	to	

account	for	known	sources	of	technical	variability	(e.g.	sampling	collection,	DNA	extraction	

technique,	 and	 sequencing).	 	 In	 addition,	 it	would	 have	 been	 preferable	 to	 have	 had	 the	

HCWs	 perform	 the	 same	 hand	 hygiene	 protocol	 before	 sampling.	 	 However,	 the	 high	

frequency	of	overall	hand	hygiene	per	work	shift	reported	among	the	participants	do	not	

suggest	 that	 keeping	 their	 handwashing	 and	 alcohol	 rub	 use	 constant	 would	 have	

prevented	any	meaningful	confounding.	

	 In	 conclusion,	 analyses	 of	 the	microbiota	 found	on	HCWs'	 hands	 indicate	 that	 the	

dynamics	of	the	microbial	community	structure	is	dependent	on	sample	collection	method.		

Using	the	glove‐juice	method,	hands	from	within	an	individual	were	slightly	more	similar	in	

microbial	 composition	 over	 time	 than	between	 individuals.	 	 Using	 swab,	 samples	 from	a	

single	individual	were	no	more	similar	to	each	other	than	those	between	individuals.		Other	

sources	 of	 technical	 variation	 assessed,	 specifically	 DNA	 extraction	 techniques	 and	

sequencing,	were	not	influential	to	the	microbial	community	structures. 
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Figure	 3‐1.	 	 Study	 Design	 Showing	 Levels	 of	 Comparisons	 of	 Hand	 Microbiota	
Samples	 Sent	 for	 Sequencing,	 from	 34	 Healthcare	 Workers	 at	 the	 University	 of	
Michigan	Surgical	Intensive	Care	Unit,	July	5‐28,	2011.		Level	A	shows	the	comparison	
of	within	versus	between	HCWs	 (n1=34,	n2=34,	n3=34);	 level	B	 shows	 the	 comparison	of	
sampling	 collection	 methods	 (nSW=102,	 nGJ=102);	 level	 C	 shows	 the	 comparison	 of	
sequencing	replicates	(n1=30,	n2=30);	and,	level	D	shows	the	comparison	of	DNA	extraction	
methods	(nC=10,	nL=10).	
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Figure	3‐2.		2D	and	3D	Principal	Coordinate	Analysis	(weighted	UniFrac)	of	the	Hand	
Microbiota	 from	 34	 Healthcare	 Workers	 at	 the	 University	 of	 Michigan	 Surgical	
Intensive	Care	Unit,	July	5‐28,	2011.		Stratification	by	Sampling	Collection	Method	(Panel	
A:	Glove‐Juice	(red)	and	Swab	(blue)),	DNA	Extraction	Method	(Panel	B:	Lysozyme	(blue)	
and	Cocktail	(red)),	and	Sequencing	Replicates	(Panel	C:	Set	#1	(blue)	and	Set	#2	(red)).	
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Figure	 3‐3.	 	 Scatterplots	 of	 the	 First	 Principal	 Components	 of	 the	 Principal	
Coordinate	Analysis	(weighted	UniFrac)	of	the	Hand	Microbiota	from	34	Healthcare	
Workers	at	the	University	of	Michigan	Surgical	Intensive	Care	Unit,	July	5‐28,	2011.		
Stratification	 by	 Sampling	 Collection	Method	 (Panel	 A:	 Glove‐Juice	 (x‐axis)	 and	 Swab	 (y‐
axis)),	 DNA	 Extraction	 Method	 (Panel	 B:	 Lysozyme	 (x‐axis)	 and	 Cocktail	 (y‐axis)),	 and	
Sequencing	Replicates	(Panel	C:	Set	#1	(x‐axis)	and	Set	#2	(y‐axis)).	
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Table	 3‐1.	 	 Number	 of	 Raw	 and	 Processed	 Sequencing	 Reads	 per	 Ion	 Torrent	
Personal	Genome	Machine	(PGM)	Sequencing	Run,	Using	316	Chips,	of	280	Samples	
of	 Hand	 Microbiota	 from	 34	 Healthcare	 Workers	 at	 the	 University	 of	 Michigan	
Surgical	Intensive	Care	Unit,	July	5‐28,	2011.	
 

 
 
 
 
 
 
 
 
Table	 3‐2.	 	 ANOSIM	 of	 the	 Hand	Microbiota	 from	 34	 Healthcare	Workers	 at	 the	
University	 of	 Michigan	 Surgical	 Intensive	 Care	 Unit,	 July	 5‐28,	 2011,	 Comparing	
Sampling	 Collection	 Method	 (Glove‐Juice	 and	 Swab),	 DNA	 Extraction	 Method	
(Lysozyme	and	Cocktail),	and	Sequencing	Replicates	(Set	#1	and	Set	#2).	
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Figure	3‐4.		Within	and	Between	Weighted	UniFrac	Distances	of	the	Hand	Microbiota	
from	34	Healthcare	Workers	at	 the	University	of	Michigan	Surgical	 Intensive	Care	
Unit,	July	5‐28,	2011.	 	Stratification	by	Sampling	Collection	Method	(Panel	A:	Glove‐Juice	
and	 Swab),	 DNA	 Extraction	 Method	 (Panel	 B:	 Lysozyme	 and	 Cocktail),	 Sequencing	
Replicates	 (Panel	 C:	 Set	 #1	 and	 Set	 #2),	 Healthcare	 Workers	 (Panel	 D:	 Within	 and	
Between),	 and	Healthcare	Workers	 by	 Sampling	 Collection	Method	 (Panel	 E:	Within	 and	
Between).	
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Figure	3‐5.		2D	and	3D	Principal	Coordinate	Analysis	(weighted	UniFrac)	of	the	Hand	
Microbiota	 from	 34	 Healthcare	 Workers	 at	 the	 University	 of	 Michigan	 Surgical	
Intensive	 Care	 Unit,	 July	 5‐28,	 2011.	 	 Stratification	 by	 Sampling	 Collection	 Method	
(Glove‐Juice	and	Swab).	

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

Figure	3‐6.	 	Relative	Abundances	of	the	Top	80%	Most	Abundant	Taxa	Detected	per	
Sampling	Method	(Glove‐Juice	and	Swab)	of	the	Hand	Microbiota	from	34	Healthcare	
Workers	at	the	University	of	Michigan	Surgical	Intensive	Care	Unit,	July	5‐28,	2011.	
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Chapter	4:		The	Role	of	the	Surgical	Intensive	Care	Unit	Healthcare	Workers'	Hand	

Microbiota	in	Pathogen	Carriage	

	

Abstract	

	 The	human	microbiome	is	known	to	play	many	roles	in	health	and	disease.		The	skin	

microbiome	protect	the	skin	from	being	infected	by	external	microorganisms.		In	this	study,	

we	sought	to	determine	whether	the	hand	microbiota	of	34	healthcare	workers	(HCW)	in	a	

surgical	intensive	care	unit	play	a	role	in	the	relationship	between	potential	demographic	

and	 behavioral	 risk	 factors	 for	 pathogen	 carriage,	 and	 pathogen	 carriage.	 	We	 screened	

their	dominant	hands	for	four	potential	nosocomial	pathogens,	specifically	Staphylococcus	

aureus,	Enterococcus	spp.,	methycillin‐resistant	Staphylococcus	aureus	(MRSA),	and	Candida	

albicans;	 and,	 evaluated	 age,	 hand	 hygiene,	 and	work	 shift	 as	 significant	 risk	 factors	 for	

pathogen	 carriage.	 	 Risk	 factors	 for	 pathogen	 carriage	 were	 pathogen	 dependent.		

Additionally,	HCW	hand	microbiota	was	associated	pathogen	carriage.		The	role	of	the	hand	

microbiota	 in	 pathogen	 carriage	 has	 important	 implications.	 	 The	 hand	 microbiota	

community	 structure	 can	 not	 only	 act	 as	 a	 biomarker	 of	 pathogen	 carriage,	 but	 also	 be	

modified	to	enhance	resistance	to	colonization	by	important	nosocomial	pathogens.	
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Introduction	

	 Host	 intrinsic	 and	 extrinsic	 properties	 help	 to	 resist	 pathogen	 colonization	 and	

infection.		Pathogen	resistance	mechanisms	include	the	presence	of	barriers	to	colonization	

(e.g.	hand	hygiene),	mechanisms	that	rapidly	clear	colonization	and/or	infection	(e.g.	host	

immunity),	 and,	 arguably,	 ecological	 relationships	 between	 the	 pathogen(s)	 and	 the	 host	

microbiota.	 	 In	 a	 clinical	 setting,	 healthcare	 workers	 (HCW)	 are	 continually	 exposed	 to	

pathogens,	 however,	 for	 the	most	 part	 remain	 healthy.	 	 This	 pathogen	 resistance	 can	 be	

explained	 by	 their	 strict	 hand	 hygiene	 regimen,	 effective	 hospital	 infection	 control	

practices,	 the	 extent	 of	 their	 exposure,	 and	 inherently	 by	 their	 immunocompetency.	 	 It	

might	also	be	explained	by	 the	composition	of	 the	microbial	 community	present	on	 their	

hands.		Here,	we	aim	to	evaluate	the	risk	factors	for	nosocomial	pathogen	carriage	among	

HCWs	in	a	surgical	intensive	care	unit,	and	assess	the	role	HCWs'	hand	microbiota	play	in	

the	relationship	between	risk	factors	for	pathogen	carriage,	and	pathogen	carriage	(Figure	

4‐1).	

	 Human	 skin	 is	 a	 complex	 ecosystem	 comprised	 of	 resident	 and	 transient	

microorganisms	 (Kampf	 and	 Kramer,	 2004).	 	 The	 resident	 bacteria,	 viruses,	 fungi	 and	

protozoa,	 our	 microbiota,	 far	 outnumber	 human	 cells	 on	 and	 in	 our	 bodies.	 	 While	 the	

human	microbiota	 have	 increasingly	 been	 shown	 to	 be	 associated	with	 host	 health	 and	

disease,	it	is	not	yet	clear	whether	they	influence	our	capacity	to	carry	or	resist	a	pathogen.		

Human	 skin	 microbiota	 diversity	 is	 thought	 to	 arise	 via	 many	 factors	 such	 as	 the	

environment,	 host	 genetics,	 host	 demographics,	 and	 social/behavioral	 factors	 ‐	 some	 of	

which	are	themselves	thought	of	as	potential	risk	factors	for	pathogen	carriage	(Rosenthal	
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et	al,	2011).	 	Microbiota	disruptions	by	hand	hygiene	regimens,	 for	example,	may	 impact	

the	microbial	community	structure	in	ways	that	enhance	pathogen	resistance.	

	 Understanding	the	association	between	pathogen	carriage	and	factors	such	as	host	

demographics	like	age,	gender,	and	job	title,	behavioral	factors	like	hand	hygiene	practices,	

host	 factors	 like	overall	 	health	and	health	of	 their	hands,	and	environmental	 factors	 like	

their	level	of	patient	contact,	provides	important	insight	into	public	health	interventions	in	

the	 clinical	 setting.	 	 The	 role	 of	 the	 hand	 microbiota	 in	 pathogen	 carriage	 can	 provide	

insight	into	the	transmission	potential	of	HCWs,	and	this	has	significant	hospital	infection	

control	 implications.	 	 We	 sought	 to	 assess	 whether	 HCW	 hand	 microbiota	 helped	 to	

potentially	mediate	or	modify	 the	effect	of	 certain	 risk	 factors	 for	pathogen	carriage	and	

carriage	 of	 Staphylococcus	aureus,	Enterococcus	 spp.,	MRSA,	 and	Candida	albicans	 among	

HCWs	in	a	20‐bed	surgical	intensive	care	unit	(Figure	4‐1).	

Methods	

Study	Overview	

	 To	determine	whether	HCWs'	hand	microbiota	play	a	role	 in	nosocomial	pathogen	

carriage,	 we	 first	 assessed	 (i)	 potential	 risk	 factors	 for	 pathogen	 carriage,	 (ii)	 pathogen	

carriage,	and	(iii)	the	relationship	between	them.		Next,	we	examined	(iv)	the	relationship	

between	the	potential	risk	factors	for	pathogen	carriage	and	the	hand	microbiota,	and,	(v)	

the	relationship	between	the	hand	microbiota	and	pathogen	carriage.	 	These	associations	

can	 be	 visualized	 in	 the	 conceptual	 framework	 in	 Figure	 4‐1.	 	 As	 illustrated,	 the	 hand	

microbiota	is	hypothesized	to	play	several	roles.		One,	it	may	act	as	a	partial	mediator	in	the	

relationship	 between	 host	 demographics,	 behavior,	 and	 environment,	 and	 pathogen	
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carriage.		Two,	it	can	potentially	act	as	effect	modifier	of	that	same	relationship.		Or	three,	it	

can	be	completely	unrelated	to	either	the	potential	risk	factors	for	pathogen	carriage,	and	

pathogen	carriage.	

Study	Population	

	 Healthcare	 workers	 were	 recruited	 from	 the	 University	 of	 Michigan	 Hospital	

Surgical	 Intensive	Care	Unit	 (SICU).	 	This	 is	 a	20‐bed	critical	 care	unit	 that	 specializes	 in	

patient	recovery	from	major	post‐operative	procedures	(e.g.	transplants,	aneurysm	repairs,	

resections,	 vascular	 endarterectomies,	 amputations)	 or	 those	 requiring	 extensive	

physiological	monitoring.		The	SICU	also	accommodates	patients	from	other	surgical	units	

(trauma‐burn,	 neurosurgery,	 medical,	 and	 cardiovascular).	 	 To	 qualify	 for	 inclusion,	

volunteers	had	to	be	a	healthcare	worker	working	at	 the	University	of	Michigan	Hospital	

SICU,	 and	 not	 have	 received	 topical	 or	 systemic	 steroids	 or	 antibiotics	 for	 a	 period	 of	 3	

months	before	the	start	of	the	study.		Physicians	were	excluded	from	the	study	due	to	their	

high	mobility.	 	The	study	was	presented	at	staff	meetings	and	the	first	35	HCWs	who	met	

eligibility	criteria	and	gave	written	consent	were	included	in	the	study.		One	HCW	was	lost	

to	 follow‐up	prior	 to	 sample	collection	 leaving	a	 total	 sample	 size	of	34.	 	The	study	 took	

place	July	5‐28,	2011.		The	study	protocol	was	reviewed	and	approved	by	the	institutional	

review	board	of	the	University	of	Michigan	(IRBMed	#HUM00042622).	

Survey	Instruments	for	Acquiring	Potential	Risk	Factors	Pathogen	Carriage	

	 At	 enrollment,	 study	 participants	 were	 given	 a	 self‐administered	 questionnaire	

regarding	 basic	 demographics,	 overall	 health,	 hand	 health,	 hand	 hygiene	 practices,	 and	

levels	 of	 patient	 contact	 [Appendix	 A].	 	 Questionnaire	 items	were	 developed	 based	 on	 a	
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comprehensive	 literature	 review	 that	 identified	elements	 important	 in	 shaping	microbial	

community	structure	of	healthcare	worker	hands	(Rosenthal	et	al,	2011).		Included	was	the	

Hand	Skin	Assessment	(HSA),	a	self‐rating	scale	used	by	the	study	participants	to	assess	the	

current	 condition	of	 the	 appearance,	 intactness,	moisture	 content,	 and	 sensation	of	 their	

hands.	 	This	scale,	used	extensively	in	other	studies,	has	been	used	in	previous	studies	of	

skin	 condition,	 and	 the	 scores	 correlate	with	other	physiologic	measures	of	 skin	damage	

(Larson	et	al,	1988;	Larson	et	al,	1990;	Berg	M,	1991;	Simion	et	al,	1993;	Smit	et	al,	1992;	

Larson	et	al,	1997).	

	 Upon	 completion	 of	 the	 questionnaire,	 a	 visual	 scoring	 of	 skin	 scale	 (VSS)	 was	

performed	by	 the	 two	 trained	 data	 collectors	 (Cronbach's	 alpha	 =	 0.7;	 ICC=0.59,	 95%CI:	

0.09‐0.86),	by	visually	inspecting	the	participant's	dominant	hand	with	a	magnifying	glass	

(30X	magnification)	for	degrees	of	skin	irritation.	 	The	possible	range	of	scores	indicating	

no	observable	scale	or	irritation	of	any	kind	to	extensive	cracking	of	skin	surface,	was	0	to	

5,	respectively.		VSS	scores	are	highly	correlated	with	study	participants'	own	ratings	of	the	

dryness	 of	 the	 skin	 of	 their	 hands,	 indicating	 good	 validity	 (Larson	 et	 al,	 1997).	 	 Visual	

assessment	is	considered	a	cost‐effective,	practical,	and	accurate	method	of	evaluating	skin	

irritation	(Farage	et	al,	2011;	Larson	et	al,	1997).	

Sample	Collection	

	 To	minimize	sample	cross‐contamination	the	study	recruiters	donned	a	new	pair	of	

sterile	gloves	prior	 to	each	sample	collection.	 	Negative	controls	consisting	only	of	buffer	

solution	 (20	 mM	 Tris	 pH	 8,	 2	 mM	 EDTA,	 and	 1.2%	 Triton	 X‐100)	 were	 collected	 and	

analyzed	for	each	sampling.		The	palm,	fingertip	surfaces,	and	in‐between	the	fingers	of	the	



70 
 

participant's	dominant	hand	were	swabbed	using	cotton‐tipped	swabs	soaked	in	the	buffer	

solution.	 	 Swabbing	 was	 performed	 in	 two	 perpendicular	 directions	 to	 ensure	 that	 the	

maximum	surface	 area	was	 represented	 in	 the	 sample.	 	 Immediately	 after	 swabbing,	 the	

participant's	dominant	hand	was	inserted	into	a	sterile,	polyethylene	bag	containing	50ml	

buffer	solution	(0.07	M	PBS,	0.1%	Tween‐80)	and	massaged	through	the	wall	of	the	bag	for	

1	minute.	 	This	is	termed	the	glove‐juice	method.	 	The	buffer	solution	was	then	collected.		

All	 samples	 were	 stored	 at	 ‐20°C	 until	 further	 processing.	 	 Study	 participants	 were	

followed	for	2	weeks,	until	 three	hand	swab	and	glove‐juice	samples	were	obtained	from	

each	individual.		HCWs	were	randomly	sampled	at	the	start,	middle,	and	end	of	their	shifts,	

and	were	not	asked	 to	wash	 their	hands	prior	 to	collection,	but	were	also	not	prevented	

from	 doing	 so.	 	 Although	 investigators	 did	 not	 observe	 the	 practices	 of	 all	 subjects	

throughout	 the	 study,	 subjects	 were	 visited	 on	 an	 unannounced,	 regular	 basis	 by	

investigators,	 usually	 at	 least	 once	 a	 day,	 during	 the	 data	 collection	 period	 (July	 5‐18,	

2011).		

DNA	Extraction,	Purification	and	Amplification	

	 All	swab	samples	and	the	pellet	of	1	ml	of	all	glove‐juice	samples	were	lysed	using	

enzyme	 cocktail	 (mutanolysin	 @	 160U/ml,	 Rnase	 A	 @	 0.07mg/ml,	 lysostaphin	 @	 0.16	

mg/ml,	and	lysozyme	@	7mg/ml)	for	30	minutes	at	37°C.			The	standard	protocol	for	lysing	

gram‐positive	 bacterial	 cell	 lysates	 of	 the	 PureLink	 Genomic	 DNA	 kit	 (Invitrogen	 Corp.;	

#K1820‐02)	was	 followed	for	all	 subsequent	steps,	with	an	additional	 incubation	at	95°C	

for	2	minutes,	prior	 to	 the	addition	of	96‐100%	ethanol	 to	 the	 lysates.	 	Purified	genomic	

DNA	were	re‐suspended	in	50	μl	of	PureLink	Genomic	Elution	Buffer	and	stored	at	‐80°C	

until	sent	for	sequencing.	
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	 DNA	was	tested	for	PCR	competency,	using	the	following	procedure.			 The	 primers	

L‐V6	 (5'‐CAACGCGARGAACCTTACC‐3')	 and	 R‐V6	 (5'‐CAACACGAGCTGACGAC‐3')	 were	

chosen	 to	 amplify	 the	 V6	 hypervariable	 region	 of	 the	 16S	 rRNA	 gene	 (Hummelen	 et	 al,	

2011).		After	extraction,	1	uL	of	the	purified	genomic	DNA	was	used	as	template	for	a	25	uL	

PCR	 reaction	 on	 a	MyCycler	 Thermal	 Cycler	 (Bio‐Rad	 Laboratories,	 Inc.).	 	 The	 following	

PCR	 reactions	 were	 used:	 22.5	 ul	 of	 Platinum	 Blue	 PCR	 SuperMix	 (Invitrogen	 Corp.,	

#12580‐023)	1	ul	of	10	uM	primer	pair,	and	0.5	ul	of	water.	PCR	conditions	included:	94°C	

for	2	minutes;	30	cycles	of	[94°C	for	30	seconds;	55°C	for	30	seconds;	72°C	for	30	seconds];	

and	hold	at	4°C.		A	negative	control	including	all	ingredients	but	with	water	instead	of	DNA	

template	was	included	alongside	all	test	reactions.		A	constant	volume	aliquot	of	each	PCR	

amplification	product	was	run	on	a	1.5%	agarose	gel	to	determine	PCR	competency	as	well	

as	the	approximate	amount	of	product.		10‐20	ul	of	the	purified	genomic	DNA	were	sent	for	

sequencing	at	The	London	Regional	Genomics	Centre	at	the	University	of	Western	Ontario	

(London,	 ON,	 Canada).	 	 Further	 methodological	 information	 on	 DNA	 preparation	 for	

sequencing,	 sequencing	 and	 filtering,	 and	 taxonomic	 classification	 are	 provided	

(Supplemental	Materials).	

Real‐time	Quantitative	PCR	for	Pathogen	Carriage	Detection	

	 Relative	abundances	of	four	nosocomial	pathogens	were	assessed	among	all	glove‐

juice	 samples.	 	 These	 include	 Enterococcus	 spp.,	 Staphylococcus	 aureus,	 methycillin‐

resistant	 Staphylococcus	 aureus	 (MRSA),	 and	 Candida	 albicans.	 	 These	 pathogens	 were	

selected	 based	 on	 the	 most	 prevalent	 ICU	 pathogens	 reported	 to	 the	 US	 National	

Healthcare	Safety	Network.	



72 
 

Primers	sets	 for	Enterococcus	 spp.,	Staphylococcus	aureus,	 and	MRSA	were	obtained	 from	

the	literature,	targeting	the	16S	rRNA	gene,	the	nuc	gene,	and	the	single‐locus	mecA|orfx,	

respectively	(Table	4‐1).		The	primer	set	for	Candida	albicans	was	developed	targeting	the	

18S	rRNA	gene.			

	 We	 optimized	 real‐time,	 quantitative	 PCR	 (qPCR)	 protocols	 using	 SYBR	 Green	

technology,	 namely	 SsoFast	 EvaGreen	 Supermix	 (Bio‐Rad;	 #172‐5200),	 on	 a	 CFX‐96	

thermocycler	platform	(Bio‐Rad;	#185‐5195).		Final	optimal	conditions	are	shown	on	Table	

4‐2.		Standard	curves	from	a	10‐fold	dilution	series	(108‐102)	were	run	using	genomic	DNA	

or	cloned	target	DNA	from	the	following	positive	controls,	obtained	from	the	University	of	

Michigan's	Clinical	Microbiology	and	Virology	Laboratories	and	the	Molecular	and	Clinical	

Epidemiology	 Laboratory:	 Enterococcus	 spp.	 (ATCC#	 29212),	 S.	aureus	 (ATCC#	 25923),	

MRSA	(ATCC#	1026),	and	C.	albicans	(ATCC#	MYA‐2876).	

Statistics	

	 Four	 separate	marginal	models	 that	 accounted	 for	 repeated	measures	were	 fit	 to	

assess	 the	 association	 between	 the	 potential	 risk	 factors	 for	 pathogen	 carriage,	 and	

pathogen	 carriage.	 	 This	 type	 of	 model	 describes	 the	 fixed	 effects	 of	 covariates	 on	 the	

population	mean	response	over	the	study	period	time.		A	backward	selection	model	fitting	

strategy,	where	all	covariates	of	interest	were	included,	and	then	removed	one	at	a	time	if	

found	non‐significant,	was	done	 to	obtain	mean	predicted	values	of	pathogen	carriage	of	

the	 HCW	 SICU	 population.	 	 The	 variance‐covariance	matrix	 of	 the	 random	 errors	 (i.e.	 R	

structure)	 was	 chosen	 by	 trying	 different	 R	 structures	 and	 comparing	 their	 model	 fit	

criteria.	 	The	structure	that	yielded	the	most	parsimonious	(lowest	number	of	covariance	
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parameters)	 and	 lowest	 AIC	 and	 BIC,	 was	 selected.	 	 Most	 fixed	 effects	 that	 were	 non‐

significant,	based	on	the	Type	3	Tests,	were	removed	from	the	model.		Residual	diagnostics	

were	then	evaluated	(Supplemental	Materials).			

	 The	UniFrac	distance	metric	measures	the	difference	between	two	groups	in	terms	

of	 the	 phylogenetic	 branch	 length	 that	 is	 unique	 to	 one	 group	or	 the	 other.	 	 The	 branch	

lengths,	 in	this	case,	are	proportional	 to	 the	number	of	base	changes	 in	 the	V6	16S	rRNA	

gene.	 	 Because	 the	 relative	 abundance	 of	 different	 kinds	 of	 bacteria	 are	 critical	 for	

describing	 microbial	 community	 changes,	 the	 weighted	 UniFrac,	 which	 weights	 the	

branches	based	on	abundance,	was	used.		Distance	plots	are	a	way	to	compare	microbiota	

samples	 from	 different	 categories	 and	 see	which	 categories	 tend	 to	 have	 larger/smaller	

beta	 diversity	 than	 others.	 	 Beta‐diversity	 metrics	 thus	 assess	 the	 differences	 between	

microbial	 communities.	 	Associations	between	 the	HCWs'	hand	microbiota	 and	pathogen	

carriage	[Figure	4‐1],	were	assessed	by	comparing	the	distribution	of	the	weighted	UniFrac	

distances	 among	 HCWs	with	 Enterococcus	 spp.	 or	 S.	aureus	 present	 with	 those	 without.		

Similarly,	 to	 investigate	 the	 association	between	 the	 significant	 risk	 factors	 for	 pathogen	

carriage	and	the	HCWs'	hand	microbiota	[Figure	4‐1],	the	distribution	of	weighted	UniFrac	

distances	between	groups	of	HCWs	that	belonged	to	a	certain	category	of	a	potential	risk	

factor,	 were	 examined.	 	 A	 higher	 mean	 weighted	 UniFrac	 distance	 reflects	 a	 group	 of	

individuals	 with	 a	 more	 diverse	 microbial	 community.	 	 A	 wider	 distance	 distribution	

reflects	 a	 group	 of	 individuals	 that	 comprise	 highly	 diverse	 and	 less	 diverse	 microbial	

communities.		According	to	previous	analyses	(see	Chapter	2),	HCWs	sampled	using	swabs	

were	determined	to	be	statistically	no	more	similar	 to	 themselves	over	the	3	time	points	

than	to	other	HCWs	in	the	study,	and	therefore	in	this	analysis,	weighted	UniFrac	distances	
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were	obtained	from	samples	collected	via	swabs	analyzed	collectively.		This	analysis	takes	

into	account	the	microbial	community	structure	of	the	microbiota	as	a	whole.	

	 Moreover,	 to	 confirm	 potential	 associations	 between	 the	 HCWs'	 hand	microbiota	

and	 (i)	 risk	 factors	 for	 pathogen	 carriage,	 and	 (ii)	 pathogen	 carriage,	 a	 mixed	 model	

accounting	 for	 repeated	 measures	 was	 fit	 using	 the	 first	 principal	 components	 of	 the	

microbiota	principal	coordinate	analyses	as	the	outcome,	and	the	risk	factors	for	pathogen	

carriage,	 as	well	 as	 levels	 of	 pathogen	 carriage,	 as	 the	 explanatory	 variables.	 	 The	 same	

previous	 model	 fitting	 strategy,	 variance‐covariance	 matrix	 structure	 selection	 for	 the	

random	errors,	and	residual	diagnostics,	were	done.	

	 To	 further	 evaluate	 the	 relationship	 between	 the	HCWs'	 hand	microbiota	 and	 the	

risk	 factors	 for	 pathogen	 carriage,	 correlations	 between	 individual	 OTUs	 within	 the	

microbiota	 and	 the	 risk	 factors	 for	 pathogen	 carriage,	 were	 assessed.	 	 Similarly,	 the	

relationship	 between	 the	 HCWs'	 hand	 microbiota	 and	 pathogen	 carriage	 was	 evaluated		

using	correlations	between	individual	OTUs	within	the	microbiota	and	levels	of	pathogen	

carriage.	 	These	analyses	do	not	compare	the	microbial	community	structures	as	a	whole	

(e.g.	beta	diversities	as	shown	via	 the	weighted	UniFrac	distances)	but	 instead	each	OTU	

within	the	community.		Given	the	high	degree	of	granularity	of	this	analysis,	samples	were	

not	assessed	collectively.	 	 Instead,	 samples	were	analyzed	one	 time	point	at	 a	 time.	 	The	

correlation	coefficients	were	then	converted	to	a	set	of	Z	scores	via	Fisher	transformation,	

and	a	normal	quantile	plot	was	done	for	each	set	(Supplemental	Materials).	 	This	analysis	

takes	 into	 account	 the	 specific	 members	 of	 the	 microbial	 community	 structure	 of	 the	

microbiota.	
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Results	

Survey	Results	

	 The	 self‐reported	 questionnaire	 was	 designed	 to	 focus	 on	 a	 few	 potential	 risk	

factors	of	both	pathogen	carriage	and	hand	microbiota.	 	 It	 included	questions	about	host	

demographics,	behavioral	 factors,	host	 factors,	and	environmental	 factors.	 	The	34	HCWs	

were	mostly	 	 female	 (76.5%),	Caucasian	 (91.1%)	and	born	 in	 the	United	States	 (91.1%).		

They	 averaged	34.5	years	 of	 age	 (range	20‐59),	 and	7	 (20.6%)	had	 at	 least	 one	 child	<5	

years	old	living	within	their	household.		Twenty‐four	(70.6%)	HCWs	were	RNs,	6	(17.6%)	

were	Respiratory	Specialists,	and	4	(11.8%)	were	Nurse	Technologists.	

	 In	 terms	 of	 their	 hand	 hygiene	 practices,	 during	 a	 typical	 12‐hr	work	 shift,	 about	

half	(52.9%)	HCWs	washed	their	hands	with	soap	and	water	6‐20	times,	and	41.2%	used	

alcohol	rub	>40	times.		Two‐thirds	(61.8%)		donned	>40	pairs	of	gloves	during	a	typical	12‐

hr	 work	 shift,	 mostly	 nitrile,	 powder‐free	 (Figure	 4‐2).	 	 Washing	 hands	 with	 soap	 and	

water,	using	alcohol	rub,	and	donning	pairs	of	gloves	were	not	correlated	with	each	other.		

The	majority	(64.7%)	used	lotion	or	moisturizer	on	their	hands	1‐5	times	per	12‐hr	work	

shift.	 	 Based	 on	 the	 6‐point	 visual	 scoring	 skin	 scale	 (VSS),	 only	 6	 (17.7%)	 HCWs	 had	

slightly	 scaly	 hands;	 the	 rest	 had	 either	 very	 slightly	 scaly	 or	 normal	 hands.	 	 Inter‐rater	

agreement	was	good	(Cronbach's	alpha	=	0.75)	(Supplemental	Materials).		Based	on	the	7‐

point	self‐reported	healthy	skin	assessment	(HSA)	scale,	with	7	being	the	healthiest	state,	

many	 HCWs	 reported	 a	 6	 on	 appearance	 (55.9%),	 intactness	 (38.2%),	 and	 moisture	

content	 (32.4%),	 and	 a	 7	 on	 sensation	 (64.7%)	 of	 their	 hands.	 	 In	 addition,	most	HCWs	

(97.1%)	rated	themselves	in	excellent	or	good	overall	health	(Supplemental	Materials).	
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	 Regarding	 the	 level	 of	 patient	 contact,	 most	 (58.8%)	 HCWs	 cared	 directly	 for	 an	

average	of	1‐2	patients	per	12‐hr	work	 shift.	 	 The	majority	 took	vital	 signs	 (73.5%)	 and	

turned	patients	 (55.9%)	>10	 times	per	12‐hr	work	 shift.	 	Tasks	performed	by	HCWs	1‐4	

times	 per	 12‐hour	work	 shift	 included	 blood	 draws	 (41.2%),	 dressing	wounds	 (73.5%),	

caring	for	IVs,	urinary	catheters,	endotracheal	tubes,	and/or	drains	(38.2%),	performing	a	

physical	examination	(55.9%),		handling	soiled	bedpans	(50.0%)	and	soiled	linen	(51.5%),	

and	performing	patient	hygiene	functions	(61.8%)	(Supplemental	Materials).	

qPCR	Results	

	 HCWs	were	 sampled	using	 swabs	 at	 the	 start,	middle,	 or	 end	of	 their	 12‐hr	work	

shift.		In	an	effort	to	ascertain	the	microbial	load	on	HCWs'	hands,	HCWs	were	not	asked	to	

perform	hand	hygiene	before	sample	collection.	 	However,	they	were	not	prevented	from	

doing	 so.	 	 In	 fact,	most	HCWs	performed	hand	hygiene	within	10	minutes	before	 sample	

collection,		ranging	from	immediately	before	to	160	minutes	before	(median	of	10	minutes,	

mean	 of	 24.5	minutes,	 std	 dev	 of	 32.3	minutes).	 	 The	 proportion	 of	 potential	 pathogens	

detected	 using	 qPCR	 varied	 by	 collection	 visit:	 	 S.	aureus	 ranged	 from	 41.2%	 to	 52.9%;	

Enterococcus	spp.	ranged	from	52.9%	to	61.8%;	C.	albicans	ranged	from	2.9%	to	8.8%	and	

MRSA	ranged	from	2.9%	to	5.9%	(Table	4‐3).		A	closer	look	at	whether	these	pathogens	co‐

occurred,	 shows	 that	 S.	aureus	 and	 Enterococcus	 spp.	 co‐occurred	 the	 most	 frequently,	

ranging	from	29.4%	to	35.3%	over	the	three	collection	visits	(Supplemental	Materials).	

Risk	Factors	for	Pathogen	Carriage	

	 The	four	mixed	models,	which	looked	at	the	fixed	effects	of	the	survey	covariates	on	

the	mean	level	of	pathogen	detected,	were	as	follows:	Pathogeni	=	(survey	covariates)iβ	+	εi,	
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where,	 	εi	~	N(0,Ri)	and	Pathogeni	=	[S.	aureus,	Enterococcus	spp.,	MRSA,	C.	albicans].	 	The	

Toeplitz	 R	 structure	 was	 selected	 as	 the	 appropriate	 structure	 for	 the	 variances	 and	

covariances	of	the	random	errors	(Supplemental	Materials).		It	has	homogenous	variances	

and	 heterogeneous	 correlations	 between	 the	 elements.	 	 Since	 we	 have	 no	 reason	 to	

suppose	 that	 the	 error	 structure	 is	 changing	 over	 time,	 this	 R	 structure	 is	 suitable	 as	 it	

assumes	 no	 exponential	 decay	 (i.e.	 correlations	 among	 the	 errors	 do	 not	 decline	

exponentially	with	distance).		Models	predicting	C.	albicans	carriage	and	MRSA	carriage	did	

not	 converge	 because	 there	 were	 not	 enough	 HCWs	 carrying	 these	 pathogens.	 	 Models	

predicting	mean	level	of	S.	aureus	carriage	and	Enterococcus	spp.	carriage	were	as	follows:	

S.	aureusi	 =	 (alcohol	 rub)iβ	 +	 (glove	 use)iβ	 +	 (shift	 time)iβ	 +	 εi,	 and	Enterococcus	 sppi	 =	

(age)iβ	+	(handwashes)iβ	+	εi.		The	outcome	variable	for	both	models	were	log	transformed	

because	they	were	not	normally	distributed.		Also,	this	facilitated	interpretation,	since	one	

unit	increase	in	copy	number	is	not	biologically	relevant.	

	 According	to	the	type	3	tests	of	fixed	effects,	the	mixed	model	predicting	levels	of	S.	

aureus	detection	on	the	HCWs'	hands,	shows	that	the	frequency	of	alcohol	rub	use	(F=	7.86,	

p‐value=	0.0006),	frequency	of	glove	use	(F=	8.59,	p‐value=	0.0007),	and	time	within	shift	

(e.g.	 start,	 middle	 or	 end	 of	 work	 shift)	 (F=	 4.28,	 p‐value=	 0.0339),	 were	 statistically	

significantly	associated	with	 frequency	of	S.	aureus	 carriage	(Supplemental	Materials).	 	 In	

comparison	 to	 not	 using	 any	 alcohol	 rub,	HCWs	who	used	 it	 1‐5	 times/work	 shift	 had	 a	

20%	 decreased	 level	 of	 S.	 aureus	 (p=0.03)	 [Table	 4‐4].	 	 This	 trend,	 however,	 was	 not	

statistically	 significant.	 	 Higher	 frequency	 of	 donning	 gloves	 during	 the	 12‐hr	work	 shift	

was	associated	with	a	greater	frequency	of	S.	aureus	on	HCWs'	hands	[Table	4‐4].		Sampling	

HCWs	 in	 the	middle	 of	 their	 work	 shift	 was	 associated	 with	 a	 43%	 lower	 amount	 of	 S.	
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aureus,	 in	 comparison	 to	 the	 start	 of	 their	 shift	 (p=0.01);	 sampling	 at	 the	 end	 was	

associated	with	an	even	lower	amount,	though	this	was	not	statistically	significant	[Table	

4‐4].	

	 According	 to	 the	 type	3	 tests	of	 fixed	effects,	 the	mixed	model	predicting	 levels	of	

Enterococcus	 spp.	 detection	 on	 the	 HCWs'	 hands,	 shows	 that	 frequency	 of	 handwashes	

(F=4.95,	 p‐value=	 0.0070)	 and	 age	 (F=29.24,	 p‐value<	 0.0001)	 were	 statistically	

significantly	 associated	 with	 frequency	 of	 Enterococcus	 spp.	 carriage.	 (Supplemental	

Materials).		For	every	year	increase	in	age,	there	was	an	approximate	9%	greater	frequency	

of	Enterococcus	 spp.	 carriage	 (p<0.0001)	 [Table	4‐4].	 	 In	 terms	of	hand	hygiene,	washing	

hands	 with	 soap	 and	 water	 >40	 times	 per	 12‐hr	 work	 shift	 resulted	 in	 a	 9%	 lower	

frequency	of	Enterococcus	spp.	carriage	(p=0.02)	[Table	4‐4].	

Association	Between	Risk	Factors	for	Pathogen	Carriage	and	HCW	Hand	Microbiota	

	 Swab	 samples	 from	 a	 single	 individual	 HCW	were	 no	more	 similar	 to	 each	 other	

over	 time	 than	 those	 between	 HCWs	 (MR,	 unpublished	 data),	 in	 terms	 of	 their	 hand	

microbiota	 profile.	 	 Consequently,	 associations	 assessed	 between	 HCW	 hand	microbiota	

and	potential	 risk	 factors	 for	pathogen	carriage,	as	well	 as	pathogen	carriage	 itself,	were	

done	so	using	swab	samples.		Of	all	potential	risk	factors	for	pathogen	carriage,	only	hand	

hygiene	 (i.e.	 handwashing,	 alcohol	 rub	 use,	 and	 donning	 of	 gloves)	 was	 associated	 with	

HCW	hand	microbiota,	as	shown	by	the	differences	observed	in	weighted	UniFrac	distance	

distributions	across	different	 levels	of	hand	hygiene	[Figure	4‐3].	 	HCWs	who	did	not	use	

alcohol	 rub	had	a	wider	distribution	of	weighted	UniFrac	distances	 than	all	 other	HCWs.		

However,	 the	 mean	 distance	 within	 all	 levels	 of	 alcohol	 rub	 use	 did	 not	 differ.	 	 This	
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association	was	different	regarding	handwashing.		All	frequencies	of	handwashing,	except	

those	who	do	 so	>40	 times	per	12‐hr	work	 shift,	 had	 similar	 and	notably	 higher	means.		

Washing	 hands	 >40	 times	 per	 12‐hr	 work	 shift	 had	 a	 reduced	 mean	 distance	 of	 the	

microbial	 communities,	 in	 a	 way,	 a	 reduced	 overall	 diversity	 between	 those	 samples.		

Donning	only	1‐5	pairs	of	gloves	per	12‐hr	work	shift	was	associated	with	a	slightly	higher	

mean	 distance	 than	 other	 frequencies,	 however,	 donning	 gloves	 over	 20	 times	 was	

observed	 to	 have	 a	 wider	 distribution	 range.	 	 The	 distribution	 of	 weighted	 UniFrac	

distances	by	age	and	by	time	within	work	shift	(e.g.	start,	middle,	or	end	of	work	shift)	did	

not	differ,	suggesting	that	there	is	no	association	between	these	risk	factors	for	pathogen	

carriage,	and	the	HCW	hand	microbiota.	

	 The	 following	mixed	model	 predicting	 the	 first	 principal	 components	 of	 the	 hand	

microbiota	principal	coordinate	analyses,	by	the	fixed	effects	of	the	significant	risk	factors	

for	pathogen	carriage,	as	well	as	 levels	of	pathogen	carriage	 (log‐transformed	 levels	of	S.	

aureus	and	Enterococcus	spp.),	resulted	in	no	statistically	significant	associations:	PCi	=	(log	

S.	aureus)iβ	+	(log	Enterococcus	spp.)iβ	+	(handwashes)iβ	+	(alcohol	rub)iβ	+	(glove	use)iβ	+	

(age)iβ	+	(shift	time)iβ	+	εi	(Supplemental	Materials).	

Association	Between	HCW	Hand	Microbiota	and	Pathogen	Carriage	

	 To	 assess	 the	 association	 between	 HCW	 hand	microbiota	 and	 pathogen	 carriage,	

distributions	 of	 weighted	 UniFrac	 distances	 of	 the	 microbial	 communites	 among	 HCWs	

with	 pathogens	 detected	 (e.g.	 S.	aureus,	 Enterococcus	 spp.,	 MRSA,	 and	 C.	albicans)	 were	

compared	to	those	without.	 	In	general,	the	presence	of	a	pathogen	was	associated	with	a	

lower	mean	weighted	 UniFrac	 distance	 [Figure	 4‐4].	 	Meaning,	 HCWs	with	 a	 lower	 beta	
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diversity	 of	 their	 hand	microbiota	were	more	 likely	 to	have	 a	pathogen	present	 on	 their	

hands	than	those	without.		As	previously	mentioned,	no	statistically	significant	associations	

were	observed	between	HCW	hand	microbiota	and	levels	of	pathogen	carriage,	when	using	

the	first	principal	components	of	the	hand	microbiota	principal	coordinate	analyses	as	the	

outcome	of	interest	in	the	mixed	model	(Supplemental	Materials).	

OTU	Correlations	with	Risk	Factors	for	Pathogen	Carriage	and	with	Levels	of	

Pathogen	Carriage	

	 The	 comparison	 of	 the	 raw	 correlations	 with	 that	 of	 the	 Fisher	 transformed	

correlations,	 indicate	 that	 in	 terms	 of	 individual	 OTUs	 (as	 opposed	 to	 the	 microbial	

community	 structure	 as	 a	 whole),	 sampling	 time	 point	 collected	 matters	 (Supplemental	

Materials).	 	 For	 each	 sampling	 time,	 correlation	 coefficients	 higher	 than	 |0.6|	 were	

observed	 between	 levels	 of	 MRSA	 carriage	 and	 of	 C.	albicans	 carriage,	 with	 the	 relative	

abundance	 of	 certain	 OTUs	 [Table	 4‐4].	 	 In	 particular,	 increasing	 amounts	 of	MRSA	was	

positively	 correlated	with	 increasing	 amounts	 of	Bifidobacteriaceae	vaginalis.	 	 Increasing	

amounts	 of	 C.	 albicans	 was	 positively	 correlated	 with	 increasing	 amounts	 of	

Corynebactericeae,	 Micrococccineae	 mucilaginosa,	 and	 Methylobacterium.	 	 Levels	 of	 S.	

aureus	 and	of	Enterococcus	 spp.	on	HCWs	hands	were	not	 correlated	with	any	particular	

OTU.	 	 Correlation	 coefficients	 higher	 than	 |0.6|	were	 also	 observed	 between	 certain	 risk	

factors	 for	 pathogen	 carriage	 and	 the	 relative	 abundance	 of	 certain	 OTUs	 [Table	 4‐4].		

Increasing	the	number	of	patients	per	HCW	and	having	children	<5y	living	with	the	same	

household,	were	 positively	 correlated	with	 particular	 OTUs.	 	 A	 negative	 correlation	was	

observed,	 as	 expected,	 with	 increasing	 frequency	 of	 hand	 hygiene	 (alcohol	 rub	 use	 and	

glove	use)	and	certain	OTUs	[Table	4‐4].	



81 
 

Discussion	

	 Analyses	 of	 the	 hands	 of	 34	 HCWs	 showed	 several	 key	 findings.	 	 First,	 the	

proportion	of	potential	pathogens	detected	on	their	hands	varied	by	collection	visit,	with	S.	

aureus	 and	Enterococcus	 spp.	 having	 relatively	high	proportions,	 in	 comparison	 to	MRSA	

and	 C.	albicans.	 	 Second,	 assessing	 various	 potential	 risk	 factors	 for	 pathogen	 carriage,	

including	host	demographics,	hand	hygiene	practices,	and	level	of	patient	contact,	showed	

that	significant	predictors	differed	by	specific	pathogen	carriage.		Third,	and	perhaps	most	

important,	 HCWs'	 hand	 microbiota	 play	 a	 meaningful	 role	 in	 the	 relationship	 between	

potential	risk	factors	for	pathogen	carriage,	and	pathogen	carriage.	

	 Real‐time,	 qPCR	 is	 a	 sensitive,	 effective,	 and	 valuable	 tool	 that	 can	 determine	

microbial	counts	on	HCWs'	hands.	 	Using	this	technique,	a	Danish	 longitudinal	study	of	S.	

aureus	 carriage	 on	 the	 hands	 of	 20	 HCWs	 showed	 that	 45%	 of	 the	 participants	 were	

positive	 on	 all	 10	 days	 (Horn	 et	 al,	 2007).	 	 Moreover,	 the	 average	 amount	 of	 S.	aureus	

detected	 per	 hand	 was	 2300.	 	 In	 our	 study,	 we	 found	 exactly	 the	 same	 proportion	 of	

positive	 HCWs	 over	 3	weeks,	with	 an	 average	 of	 2642	 S.	aureus	 per	 hand.	 	 A	molecular	

quantitation	 of	 the	 carriage	 of	 non‐resistant	Enterococcus	 spp.	 on	HCWs'	 hands	was	 not	

found	 in	 the	 literature.	 	Although	 less	 than	10%	of	E.	faecalis	isolates	 from	intensive	care	

unit	patients	infected	with	Enterococci	are	resistant	to	vancomycin,	70%	of	the	E.	faecium	

isolates	 are	 resistant	 (Tenover	 and	 McDonald,	 2005).	 	 Epidemiologic	 investigations	 of	

contamination	of	HCWs'	hands	with	vancomycin‐resistant	Enterococci,	have	shown	a	range	

of	0	 to	41%	of	hands	positive	(Hayden,	2000).	 	 In	our	study,	we	sought	 to	determine	the	

levels	of	Enterococcus	spp.,	which	may	have	included	resistant	and	non‐resistant	bacteria.		

We	 found	 a	 relatively	 high	 prevalence	 of	 62%	 over	 3	 weeks,	 with	 an	 average	 of	 2135	
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Enterococcus	spp.		MRSA	and	C.	albicans	were	detected	at	a	much	lower	prevalence,	at	3.9%	

and	5.9%	positive	over	3	weeks,	 respectively.	 	 In	a	 recent	 study,	 the	 fingertips	 from	523	

HCWs	 were	 sampled	 on	 822	 occasions,	 showing	 38/822	 (5%)	 positive	 (Creamer	 et	 al,	

2010).	 	 An	 8	month	 study	 of	C.	albicans	 carriage	 among	 patients	 and	 nursing	 staff	 at	 an	

intensive	care	unit	in	Kuwait	showed	that	of	the	90	swab	samples	taken	from	the	hands	of	

the	 nursing	 staff,	 4	 (4.4%)	 isolates	 were	 detected	 (Khan	 et	 al,	 2003).	 	 Therefore,	 our	

findings	are	consistent	with	other	studies	among	healthcare	workers	in	the	literature.	

	 Significant	risk	factors	for	pathogen	carriage	depended	on	the	pathogen.		Frequency	

of	 alcohol	 rub	use,	 frequency	 of	 glove	use,	 and	 time	within	work	 shift	were	 significantly	

associated	with	S.	aureus	carriage.		In	comparison	to	not	using	any	alcohol	rub,	HCWs	who	

used	 it	 1‐5	 times/work	 shift	 had	 a	 20%	decreased	 level	 of	S.	aureus.	 	 A	 crossover	 effect	

happened,	however,	where	using	alcohol	rub	>5	times	per	12‐hr	work	shift	was	associated	

with	higher	frequency	of	S.	aureus	carriage.		This	may	be	explained	by	the	effective	killing	

or	 removal	 of	 bacterial	 species	 that	 compete	 with	 S.	aureus	 occurred	 allowing	 them	 to	

flourish.		Or,	the	ecosystem	created	on	the	HCWs'	hands	by	the	gloves	resulted	in	a	suitable	

environment	(e.g.	higher	moisture,	warmer	temperatures)	for	the	specific	perpetuation	of	

S.	aureus.	 	A	2004	review	reports	that	a	30‐second	application	of	70%	ethanol	achieved	a	

2.6‐3.7	 log10	 unit	 reduction	 in	 S.	aureus	 on	 artificially	 contaminated	 hands	 (Kampf	 and	

Kramer,	 2004).	 	 However,	 the	 authors	 also	 indicate	 studies	 whereby	 an	 increase	 in	

microbial	 load	happens	after	handwashing.	 	Our	observed	crossover	effect	of	alcohol	 rub	

use	on	the	frequency	of	S.	aureus	carriage	may	possibly	reflect	the	combined	use	of	these	

two	hand	hygiene	regimens	performed	by	our	study	participants.	 	Sampling	HCWs	 in	the	

middle	 of	 their	 work	 shift	 was	 associated	 with	 a	 43%	 lower	 amount	 of	 S.	 aureus,	 in	
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comparison	to	the	start	of	their	shift.		This	association	was	not	found	in	the	literature;	we	

suggest	 that	 it	may	 reflect	 the	 cumulative	 effect	 of	 hand	 hygiene	 performed	 throughout	

their	12‐hr	shifts,	or,	the	modifying	effect	of	their	hand	microbiota	throughout	their	shifts.	

	 Other	 risk	 factors	 for	 pathogen	 carriage	 were	 significant	 for	 the	 carriage	 of	

Enterococcus	 spp.	 	 Unlike	 S.	aureus	 carriage,	 Enterococcus	 spp.	 carriage	 was	 statistically	

significantly	 associated	with	 the	 frequency	 of	 handwashing.	 	However,	 this	was	 only	 the	

case	 among	 HCWs	 who	 reported	 washing	 their	 hands	 >40	 times	 per	 12‐hr	 work	 shift.		

Curiously,	the	use	of	alcohol	rub	was	not	associated	with	the	frequency	of	Enterococcus	spp.	

carriage,	reflecting	the	differential	effect	of	this	type	of	hand	hygiene	on	different	bacterial	

species.		For	every	year	increase	in	age,	there	was	an	approximate	9%	greater	frequency	of	

Enterococcus	spp.	carriage.		This	is	likely	explained	by	either	the	modifying	effects	of	their	

hand	microbiota,	or	the	activities	performed	outside	the	SICU.		All	the	tasks	performed	by	

HCWs	in	the	SICU	that	were	evaluated	in	this	study	were	not	associated	with	frequency	of	

Enterococcus	 spp.	 carriage.	 	 Frequency	 of	 MRSA	 carriage	 and	 C.	albicans	 carriage	 were	

likely	too	low	to	show	any	significant	associations	with	any	potential	risk	factors.	

	 Frequency	of	alcohol	rub	use	and	glove	use	were	both	associated	with	both	S.	aureus	

carriage	 and	with	 the	HCWs'	hand	microbiota.	 	 Similarly,	 frequency	of	handwashing	was	

associated	 with	 both	 Enterococcus	 spp.	 carriage	 and	 with	 the	 HCWs'	 hand	 microbiota.		

Hand	microbiota	was	associated	with	the	carriage	of	both	pathogens.		Therefore,	the	HCWs'	

hand	microbiota	may	act	as	a	partial	mediator	 in	 the	relationship	between	hand	hygiene	

and	pathogen	carriage.		Alternatively,	time	within	work	shift	was	associated	with	S.	aureus	

carriage	 but	 not	 with	 the	 HCWs'	 hand	 microbiota.	 	 Similarly,	 age	 was	 associated	 with	
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Enterococcus	 spp.	carriage	but	not	with	the	HCWs'	hand	microbiota.	 	Therefore,	 the	hand	

microbiota	may	act	as	an	effect	modifier	in	the	relationship	between	these	risk	factors	and	

pathogen	carriage.	 	Results	 from	 the	mixed	model	using	 the	 first	principal	 component	of	

the	 principal	 coordinate	 analysis	 of	 the	HCWs'	 hand	microbiota	 as	 the	 outcome,	 did	 not	

show	any	 statistically	 significant	 associations	 to	 confirm	 the	 associations	observed	using	

the	distribution	of	weighted	UniFrac	distances.	

	 In	terms	of	the	specific	bacterial	community	members	of	the	HCWs'	hand	microbiota	

that	 were	 correlated	 with	 either	 the	 levels	 of	 pathogen	 carriage,	 or	 with	 potential	 risk	

factors	for	pathogen	carriage,	we	first	found	that	levels	of	S.	aureus	and	of	Enterococcus	spp.	

on	HCWs	hands	were	not	correlated	with	any	particular	OTU.			 This	 may	 be	 due	 to	 the	

ubiquity	 of	 these	 potential	 pathogens	 on	 the	 HCWs'	 hands.	 	 We	 observed	 a	 positive	

correlation	 between	 levels	 of	MRSA	 and	Bifidobacteriaceae	vaginalis.	 	 This	 association	 is	

not	 very	 well	 characterized	 in	 the	 literature.	 	 There	 have	 been	 reports	 of	 heterosexual	

transmission	of	MRSA,	but	also	of	rare	MRSA	prevalence	among	sexually	active	adolescents	

(Cook	et	al,	2007;	Handsfield	HH,	2007;	Huppert	et	al	 ,	2011).	 	C.	albicans	was	positively	

correlated	 with	 Corynebactericeae,	Micrococccineae	mucilaginosa,	 and	Methylobacterium.		

HCWs	who	had	children	<5y	living	within	their	household	were	positively	associated	with	

having	Acinetobacter	 and	Veillonella	 on	 their	 hands.	 	 Associations	 between	 children	 and	

presence	 of	 Acinetobacter	 are	 not	 uncommon	 (Andersson	 et	 al,	 1999;	 Ege	 et	 al,	 2012).		

Similarly,	 associations	 between	 children	 and	 presence	 of	 Veillonella	 have	 also	 been	

reported	 (Arif	 et	 al,	 2008;	 Duytschaever	 et	 al,	 2011).	 	 Positive	 correlations	 between	 an	

increase	in	the	number	of	patients	per	HCW	and	Vibrionaceae,	Propionibacteriaceae,	Delftia,	

and	 Acinetobacter,	 were	 observed.	 	 Delftia	 is	 a	 genus	 of	 Comamonads,	 that	 have	 been	
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implicated	 in	 healthcare‐associated	 infections	 (Kawamura	 et	 al,	 2011;	 Preiswerk	 et	 al,	

2011).	 	 Propionibacteriaceae	 are	 a	 common	 human	 skin	 commensal	 bacteria.	 	 And,	

Acinetobacter	have	been	increasingly	reported	in	the	nosocomial	infection	literature	(Doyle	

et	al,	2011;	Falagas	et	al,	2008).	 	As	expected,	all	correlations	observed	between	levels	of	

hand	hygiene	and	levels	of	specific	OTUs	were	negative.			

	 These	correlations	are	all	biologically	plausible	according	to	the	literature,	however,	

further	associative	criteria	need	to	be	fulfilled	in	order	to	establish	any	causal	relationships	

between	 these	 bacterial	 species	 and	 microbial	 community	 structure	 of	 HCWs'	 hand	

microbiota	and	pathogen	carriage.	 	 For	 instance,	none	of	 the	 correlations	observed	were	

consistent	 across	 collection	 visits.	 	 Overall,	 both	 the	HCWs'	 hand	microbiota	 and	 certain	

risk	factors	for	pathogen	carriage,	likely	predict	pathogen	carriage.		However,	a	limitation	

to	this	study	remains	the	directionality	of	the	association	between	pathogen	carriage	and	

HCWs'	 hand	microbiota.	 	While	 we	 concern	 ourselves	with	 the	 pathogen	 carriage	 as	 an	

important	public	health	outcome,	it	may	be	that	the	HCWs'	hand	microbiota	is	itself	a	result	

from	 the	 carriage	 of	 certain	 pathogens.	 	 This	 could	 also	 have	 meaningful	 health	

implications,	with	particular	microbial	community	structures	of	the	microbiota	resulting	in	

more	harmful	ecosystems	than	the	presence	of	one	pathogen	alone.			

	 A	 limitation	 to	 this	 study	was	 the	 small	 sample	 size	 of	 HCW	 participants	 (n=34).		

While	it	yielded	a	very	large	amount	of	microbiota	samples	to	analyze	(n=102),	in	terms	of	

the	epidemiologic	component	of	this	study,	34	HCWs	was	likely	an	insufficient	sample	size	

for	two	of	the	four	models	of	pathogen	carriage	to	run.		Additionally,	the	lack	of	consistency	

concerning	 the	 HCWs'	 hand	 hygiene	 practices	 before	 sample	 collection	 may	 have	
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contributed	 to	 some	 confounding	 in	 the	 results	 of	 the	 effect	 of	 their	 microbiota	 on	

pathogen	 carriage.	 	 Lastly,	 problems	 associated	 with	 multiple	 comparisons	 may	 have	

occurred,	 given	 the	 need	 to	 assess	 each	 relationship	 (e.g.	 HCW	 hand	 microbiota	 and	

pathogen	 carriage)	 [Figure	4‐1]	one	at	 a	 time	as	 a	 result	 of	 combining	 cross‐disciplinary	

analytical	techniques	(i.e.	microbial	ecology	and	epimediology).	

	 In	conclusion,	risk	factors	for	pathogen	carriage	were	pathogen	dependent.		Alcohol	

rub	use,	donning	of	gloves,	and	work	shift	were	associated	with	S.	aureus	carriage.		Age	and	

handwashing,	 were	 associated	 with	 Enterococcus	 spp.	 carriage.	 	 HCW	 hand	 microbial	

community	 structure	 was	 associated	with	 pathogen	 carriage.	 	 HCWs	with	 a	 lower	 hand	

microbiota	 diversity	 were	 more	 likely	 to	 have	 a	 pathogen	 present	 on	 their	 hands.		

Ultimately,	HCW	hand	microbiota	may	play	a	role	in	the	relationship	between	certain	risk	

factors	for	pathogen	carriage,	and	pathogen	carriage.		It	may	act	as	a	partial	mediator	in	the	

relationship	between	hand	hygiene	and	pathogen	carriage.	 	In	addition,	it	may	also	act	as	

an	 effect	 modifier	 in	 the	 relationship	 between	 some	 demographic	 factors	 and	 pathogen	

carriage.		Understanding	the	different	risk	factors	for	pathogen	carriage	is	important.		But	

more	 importantly,	 we	 need	 to	 start	 thinking	 about	 the	 HCWs’	 hand	 microbiota	 in	 that	

relationship.		The	role	of	the	hand	microbiota	in	pathogen	carriage	can	provide	insight	into	

the	 transmission	 potential	 of	 HCWs,	 and	 this	 has	 significant	 hospital	 infection	 control	

implications.			
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Table	 4‐1.	 	 Primer	 Sets	 Used	 in	 the	 Real‐time	 qPCR	 Assays	 of	 Enterococcus	 spp.,	
Staphylococcus	 aureus,	 Methycillin‐resistant	 Staphylococcus	 aureus	 (MRSA),	 and	
Candida	albicans.	

 Target Primers (5' --> 3') Reference 
Staphylococcus 
aureus 

nuc 
GCGATTGATGGTGATACGGTT 

AGCCAAGCCTTGACGAACTAAAGC
Brakstad et al, 1992 

MRSA mecA|orfX 
TATGATATGCTTCTCC 

AACGTTTAGGCCCATACACCA 
Cuny and Witte, 2005 

Enterococcus spp.* 16S 
CCCTTATTGTTAGTTGCCATCATT 

ACTCGTTGTACTTCCCATTGT 
Rintilla et al, 2004 

Candida albicans 18S 
GGATCGCTTTGACAATGG 

GCGGGTAGTCCTACCTGATTT 
Developed in-house 

* Enterococcus faecalis , E. faecium, E. asini, E. saccharolyticus, E. casseliflavus, E. gallinarum, E. dispar, E. 
flavescens, E. hirae, E. durans, E. pseudoavium, E. raffinosus, E. avium, E. malodoratus, E. mundtii, E. azikeevi, E. 
canis, E. gilvus, E. haemoperoxidus, E. hermanniensis, E. moraviensis, E. pallens, E. phoeniculicola, E. villorum, E. 
rottae. 

	

	

Table	 4‐2.	 	 Real‐time	 qPCR	 Conditions	 Used	 for	 Enterococcus	 spp.,	 Staphylococcus	
aureus,	methycillin‐resistant	 Staphylococcus	 aureus	 (MRSA),	 and	 Candida	 albicans	
Assays,	on	a	CFX‐96	Thermocycler.	

Enterococcus spp. Staphylococcus aureus 

98C for 2min 98C for 2min 
40 cycles of [98C for 1sec; 60C for 1sec] 40 cycles of [98C for 4sec; 60C for 4sec] 
65C-95C (increment of 0.5C) for 5sec 65C-95C (increment of 0.5C) for 5sec 

MRSA Candida albicans 

98C for 2min 98C for 2min 
40 cycles of [98C for 2sec; 56C for 2sec] 40 cycles of [98C for 1sec; 63C for 1sec] 
65C-95C (increment of 0.5C) for 5sec 65C-95C (increment of 0.5C) for 5sec 

	

	

	

	

	



89 
 

Figure	4‐1.		Conceptual	Framework	Describing	the	Role	of	the	Hand	Microbiota	in	the	
Relationship	 Between	 Potential	 Risk	 Factors	 for	 Pathogen	 Carriage	 and	 Pathogen	
Carriage,	 among	 Surgical	 Intensive	 Care	Unit	Healthcare	Workers	 Participating	 in	
the	Healthy	Hands	Study,	July,	2011	(N=34).		

	

	

	

	

Figure	 4‐2.	 	 Frequency	 of	Hand	Hygiene	 Practices	 per	 12‐hour	Work	 Shift	 among	
Surgical	Intensive	Care	Unit	Healthcare	Workers	Participating	in	the	Healthy	Hands	
Study,	July,	2011	(N=34).	
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Table	4‐3.		Relative	Abundances	of	Potential	Pathogens	Detected	per	Collection	Visit	
on	the	Hands	of	Surgical	Intensive	Care	Unit	Healthcare	Workers	Participating	in	the	
Healthy	Hands	Study,	July,	2011	(N=34).	
	

Pathogen (targeted gene) Collection Visit Ɏ * Mean copies/ul * Positive (%, n=34) 

Staphylococcus aureus (nuc) 
1 951.3 41.2 
2 6623.1 41.2 
3 351.4 52.9 

Enterococcus spp. (16S) 
1 1702.9 52.9 
2 2877.1 70.6 
3 1823.6 61.8 

Candida albicans (18S) 
1 663.8 8.8 
2 336.3 5.9 
3 142.7 2.9 

MRSA (mecA/orfX) 
1 173.5 2.9 
2 1405.8 5.9 
3 3763.5 2.9 

Ɏ nuc (~1 copy / cell); Enterococcus (~5 16S rRNA copies / cell); C. albicans (~100 copies / cell). 
* qPCR cut-off of 100 copies / ul defined as limit of qPCR detection used to identify a healthcare worker as positive. 
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Table	4‐4.	 	Analysis	Of	Mixed	Model	Parameter	Estimates,	Accounting	 for	Repeated	
Measures,	Predicting	Mean	Level	of	Staphylococcus	aureus	and	Enterococcus	spp.,	as	
Measured	by	 the	 log	of	Gene	Copy	Numbers	Detected	using	qPCR,	 among	 Surgical	
Intensive	Care	Unit	Healthcare	Workers	Participating	 in	 the	Healthy	Hands	 Study,		
July,	2011	(N=34).	
	
 Staphylococcus aureus Enterococcus spp. 

Parameter Estimate 0.95 CL p-value Estimate 0.95 CL p-value
Intercept 3.063 (1.827, 4.299) <.0001 2.779 (1.197, 4.360) 0.0012 
Age    0.087 (0.0543, 0.121) <.0001 
Handwashes  

1-5 times ref ref ref ref ref ref 
6-20 times -0.045 (-0.626, 0.535) 0.87 0.462 (-0.513, 1.437) 0.34 

21-40 times -0.354 (-1.172, 0.464) 0.38 -0.493 (-1.555, 0.570) 0.35 
>40 times -0.125 (-0.847, 0.597) 0.72 -2.382 (-4.318, -0.446) 0.02 

Alcohol Rub Use  
None ref ref ref    

1-5 times -1.546 (-2.892, -0.201) 0.03    
6-20 times 0.933 (0.207, 1.658) 0.01    

21-40 times -0.017 (-0.713, 0.679) 0.96    
>40 times 0.115 (-0.694, 0.924) 0.77    

Pairs of Gloves Donned  
1-5 times ref ref ref    

6-20 times 1.795 (0.272, 3.318) 0.02    
21-40 times 2.812 (1.592, 4.032) 0.0001    

>40 times 2.709 (1.384, 4.034) 0.0004    
Time within Shift  

start ref ref ref    
mid -0.833 (-1.443, -0.222) 0.01    
end -0.366 (-1.279, 0.548) 0.41    

Note: ref=referent group; CL=confidence limits (p-value based on 95% level of significance). 
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Figure	4‐3.		Distributions	of	Weighted	UniFrac	Distances	Within	Categories	of	Survey	
Variables,	 of	 Surgical	 Intensive	Care	Unit	Healthcare	Workers	Participating	 in	 the	
Healthy	Hands	Study,	July,	2011	(N=34).	 	Panel	A:	Frequency	of	Alcohol	Rub	Use;	Panel	
B:	Frequency	of	Handwashes;	Panel	C:	Number	of	Gloves	Donned;	Panel	D:	Age;	and,	Panel	
E:	Time	Within	Shift.	
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Figure	 4‐4.	 	 Distributions	 of	 Weighted	 UniFrac	 Distances	 Within	 Presence	 and	
Absence	Categories	of	Potential	Pathogens	Detected	among	Surgical	 Intensive	Care	
Unit	 Healthcare	 Workers	 Participating	 in	 the	 Healthy	 Hands	 Study,	 July,	 2011	
(N=34).	 	 Panel	 A:	 Candida	 albicans;	 Panel	 B:	 Enterococcus	 spp.;	 Panel	 C:	 Methycillin‐
resistant	Staphylococcus	aureus	(MRSA);	and,	Panel	D:	Staphylococcus	aureus.	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

A  B 

C  D 
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Table	 4‐5.	 	 List	 of	 Highly	 Correlated	 Operational	 Taxonomic	 Units	 (OTU)	 with	
Potential	Pathogens	Detected	and	with	Potential	Risk	Factors	for	Pathogen	Carriage,	
among	Surgical	Intensive	Care	Unit	Healthcare	Workers	Participating	in	the	Healthy	
Hands	Study,	July,	2011	(N=34).	
	

Potential Pathogen  Correlation  OTU 

Staphylococcus aureus  n/a  none 

Enterococcus spp.  n/a  none 

MRSA*  0.66  Bifidobacteriaceae vaginalis 

Candida albicans 

0.66 
0.74 
0.75 

Corynebacteriaceae 
Micrococccineae mucilaginosa 

Methylobacterium 

Potential Risk Factor  Correlation  OTU 

Children <5y 
0.63 
0.75 

Acinetobacter 
Veillonella 

Alcohol Rub Use 
‐0.63 
‐0.66 

Neisseriaceae 
Conchiformibius 

Glove Use 

‐0.62 
‐0.63 
‐0.62 

Conchiformibius 
Proteobacteria 

Micrococcineae aeria 

Number of Patients 

0.6 
0.63 
0.62 
0.7 

Vibrionaceae 
Propionibacteriaceae 

Delftia 
Acinetobacter 

*MRSA=methycillin-resistant Staphylococcus aureus; n/a=not applicable. 
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Chapter	5:		Conclusions	

Key	Findings	

	 As	 beautifully	 asked	 by	 Blaser,	 "How	 can	 we	 make	 sense	 of	 our	 microbial	 and	

metagenomic	 diversity	 and,	 importantly,	 use	 the	 information	 to	 improve	 the	 human	

condition?"	(Blaser,	2010).			It	was	the	goal	of	this	dissertation	to	shed	insight	into	the	HCW	

hand	microbiota	and	its	role	in	one	aspect	of	public	health	within	a	healthcare	setting,	that	

of	pathogen	carriage.	

  This	 dissertation	 presents	 key	 findings	 that	 have	 several	 potentially	 important	

public	health	implications.		From	Chapter	2,	a	conceptual	framework	for	understanding	the	

interactions	 between	 skin	 microbiota,	 the	 human	 host,	 and	 the	 environment,	 was	

presented	 to	 help	 organize	what	 host,	 dispersal,	 behavior,	 and	 environmental	 factors,	 or	

combination	thereof,	have	the	potential	to	drive	the	variability	of	the	microbial	community	

structure,	thereby	altering	the	skin	microbiota	community	structure	in	such	a	way	to	cause	

disease.	 	Chapters	3	and	4	followed	this	conceptual	framework	in	their	design.	 	Chapter	2	

also	gave	a	detailed	description	of	the	very	diverse	human	skin	microbiota:		Actinobacteria,	

Firmicutes,	 and	 Proteobacteria,	 consistently	 make	 up	 the	 majority	 of	 the	 endogenous	

bacteria.	 	 The	 concept	 of	 time	 in	 sampling	 for	 microbiota	 profiling	 accuracy	 was	 also	

discussed;	microbial	communities	cluster	first	by	body	site,	followed	by	individuals	in	time.		
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Finally,	 Chapter	 2	 presents	 some	 challenges	 and	 implications	 for	 studying	 the	 skin	

microbiota.	

	 In	Chapter	3,	analyses	of	the	microbiota	found	on	HCWs'	hands	who	participated	in	

a	pilot	 study	called	 'Healthy	Hands	Study',	where	34	participants	were	 sampled,	 indicate	

that	the	dynamics	of	the	microbial	community	structure	is	dependent	on	sample	collection	

method.		Using	the	glove‐juice	method,	hands	from	within	an	individual	HCW	were	slightly	

more	 similar	 in	microbial	 composition	 over	 time	 than	 between	 individual	 HCWs.	 	 Using	

swabs,	samples	from	a	single	HCW	in	time	were	no	more	similar	to	each	other	than	those	

between	HCWs.	 	 In	 addition,	 the	 glove‐juice	method	 captured	 higher	 amounts	 of	 known	

hospital	pathogens,	such	as	Streptococcus,	Acinetobacter,	and	Pseudomonas.		Other	sources	

of	 technical	 variation	 assessed,	 specifically	 DNA	 extraction	 techniques	 and	 sequencing,	

were	not	influential	to	the	microbial	community	structures.	

	 In	Chapter	4,	we	learned	the	important	influence	the	hand	microbiota	can	have	on	a	

significant	public	health	problem,	nosocomial	pathogen	carriage	among	HCWs.	 	We	found	

that	 risk	 factors	 for	 pathogen	 carriage	 among	 HCWs	 were	 dependent	 on	 the	 specific	

pathogen	 present:	 frequency	 of	 alcohol	 rub	 use,	 frequency	 of	 glove	 use,	 and	 time	within	

work	shift	(i.e.	start,	middle,	or	end)	were	associated	with	Staphylococcus	aureus	carriage;	

and,	age	and	frequency	of	handwashing,	were	associated	with	Enterococcus	spp.	carriage.		

In	addition,	the	HCW	hand	microbial	community	structure	was	shown	to	be	associated	with	

pathogen	carriage:	HCWs	with	a	lower	hand	microbiota	diversity	were	more	likely	to	have	

a	 pathogen	 present	 on	 their	 hands.	 	 The	 HCW	 hand	 microbiota	 may	 act	 as	 a	 partial	

mediator	 in	 the	 relationship	 between	 hand	 hygiene	 and	 pathogen	 carriage;	 and	
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alternatively,	that	it	may	act	as	an	effect	modifier	in	the	relationship	between	certain	risk	

factors	and	pathogen	carriage.	

Strengths	and	Limitations	

	 There	are	several	strengths	to	this	dissertation,	most	of	which	concern	the	design	of	

the	pilot	study	"Healthy	Hands".	 	The	first,	however,	 is	 the	thorough	review	outlining	the	

conceptual	framework	of	how	the	skin	microbiota	is	relevant	to	the	epidemiological	study	

of	disease	causation.	 	Given	the	introduction	of	this	concept	(Chapter	2),	we	then	used	an	

interdisciplinary	 approach	 integrating	 ecological	 and	 laboratory	 analyses	 within	 an	

epidemiological	context,	to	investigate	hand	microbiota	dynamics	among	surgical	intensive	

care	unit	healthcare	workers	while	accounting	for	technical	sources	of	variation	(Chapter	

3),	and	to	assess	the	role	hand	microbiota	play	 in	specific	pathogen	carriage	(Chapter	4).		

The	advantages	of	taking	an	interdisciplinary	approach	to	this	dissertation	are	invaluable.		

Here,	 we	 were	 able	 to	 bridge	 a	 gap	 between	 fields	 of	 microbial	 ecology	 of	 the	 human	

microbiome	and		epidemiological	practice.		The	significant	implications	of	this	bridge	to	the	

public	health	potential	of	human	microbiome	studies	cannot	be	undermined.		The	design	of	

the	 'Healthy	 Hands'	 pilot	 study	 is	 another	 strength	 to	 this	 dissertation,	 because	 it	

accounted	for	the	effect	of	time	in	the	variation	of	hand	microbiota	in	HCWs,	and	not	just	

differences	 between	 individuals.	 	 The	 longitudinal	 sampling,	 albeit	 short	 in	 time	 frame,	

added	 a	 level	 of	 complexity	 that	 allowed	 us	 to	 determine	 the	 dynamics	 of	 the	 hand	

microbiota	within	and	between	study	participants.	 	Another	advantage	of	'Healthy	Hands'	

is	 that	 the	 hand	 microbiota	 of	 a	 particular	 section	 of	 the	 population	 ‐	 HCWs	 ‐	 were	

evaluated.	 	 This	 offered	 direct	 public	 health	 implications.	 	 Chapter	 3	 is	 enriched	with	 a	

plethora	of	comparisons,	ensuring	that	the	true	biological	dynamics	of	the	hand	microbiota	
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observed	were	done	so	accounting	for	technical	sources	of	variation.		No	other	study	of	the	

skin	microbiome	looked	at	the	glove‐juice	method	of	sampling,	which	is	a	gold	standard	in	

the	clinical	and	hand	hygiene	literature.		In	addition,	this	was	the	first	metagenomic	study	

of	 the	 human	 skin	 microbiome	 to	 use	 the	 third	 generation	 sequencing	 platform,	 'Ion	

Torrent'	PGM.		In	Chapter	4,	we	were	successful	to	show	how	the	hand	microbiota	of	HCWs	

fit	 into	 the	 relationship	 between	 certain	 risk	 factors	 pathogen	 carriage	 and	 S.	 aureus	

carriage	and	Enterococcus	spp.	carriage.		This	chapter	tied	together	the	microbial	ecology	of	

the	microbiota,	 the	advantages	of	qPCR	 in	 the	detection	of	pathogen	carriage,	 the	survey	

instrument	 response	 of	 every	 study	 participant	 (100%	 response	 rate),	 and	 advanced	

epidemiological	methods.	

	 Unfortunately,	 there	 were	 some	 limitations	 to	 this	 dissertation.	 	 The	 first	 is	 the	

natural	limitations	of	any	pilot	study.		Given	the	limited	time	and	money	available,	we	were	

only	 able	 to	 sample	 34	HCWs	 at	 three	 points	 in	 time.	 	 This	 already	 yielded	 a	 very	 large	

amount	 of	 samples	 to	 study	 microbiome	 dynamics,	 however,	 when	 adding	 the	

epidemiological	component,	 the	sample	size	 interfered	with	 the	ability	of	 two	of	 the	 four	

models	of	pathogen	carriage,	for	instance,	to	converge.		Additionally,	the	lack	of	consistency	

concerning	 the	 HCWs'	 hand	 hygiene	 practices	 before	 sample	 collection	 may	 have	

contributed	 to	 some	 confounding	 in	 the	 results	 of	 the	 effect	 of	 their	 microbiota	 on	

pathogen	carriage.	 	Another	 limitation	was	 the	 low	yield	of	bacterial	DNA	retrieved	 from	

sampling	the	skin.	 	Considerable	 laboratory	troubleshooting	was	done	to	understand	and	

overcome	this	limitation,	later	discovered	to	be	universal	among	skin	microbiome	studies.		

The	consequent	sequencing	techniques	implemented	were	PCR	based,	itself	susceptible	to	

certain	limitations	(e.g.	artifacts,	inhibitors,	etc).	 	Finally,	the	questionnaire	used	to	assess	
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the	 determinants	 of	 pathogen	 carriage	was	 self‐reported,	 thus	 potentially	 suffering	 from	

bias,	especially	in	terms	of	the	frequency	of	hand	hygiene	practices.	

Implications	

	 Understanding	 the	 different	 risk	 factors	 for	 pathogen	 carriage	 is	 important.		

However,	the	role	of	the	healthcare	workers'	hand	microbiota	in	the	relationship	between	

risk	 factors	 for	 pathogen	 carriage	 and	 pathogen	 carriage,	 is	 even	 more	 important.	 	 For	

instance,	 it	 can	 provide	 insight	 into	 the	 transmission	 potential	 of	 healthcare	 workers,	

resulting	 in	 significant	 hospital	 infection	 control	 implications.	 	 Additionally,	 the	 hand	

microbiota	 community	 structure	 can	ultimately	 act	 as	 a	 biomarker	of	 pathogen	 carriage.		

That	 is,	knowing	how	the	structure	changes	 in	relation	to	pathogens	will	possibly	 inform	

infection	control	what	to	 look	for	or	what	to	expect	given	a	certain	community	structure.		

In	addition,	the	bacteria	found	on	healthcare	workers'	hands	might	be	modified	to	enhance	

resistance	to	colonization	by	 important	nosocomial	pathogens.	 	Biotechnology	companies	

are	 already	 focusing	 on	 the	 idea	 that	 probiotics	 can	be	protected	 (or,	 encapsulated)	 and	

incorporated	 into	alcohol	 rubs	as	a	way	 to	recolonize	 the	hands	with	good	bacteria	after	

killing	the	bad.		And	finally,	since	the	glove‐juice	method	of	sample	collection	was	shown	to	

capture	higher	amounts	of	known	hospital	pathogens,	 it	may	very	well	be	 the	method	of	

choice	in	hand	hygiene	studies	in	the	healthcare	setting.		

Future	Directions	

	 It	 is	 our	 intention	 that	 this	 dissertation	 informs	 future	 researchers	 about	 (i)	 the	

need	 to	 account	 for	 technical	 sources	of	 variation	 in	 their	 characterization	of	 the	human	

microbiota,	 (ii)	 the	 careful	 consideration	 of	 sampling	 method	 necessary	 to	 adequately	
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answer	 their	 question,	 and	 (iii)	 the	 utility	 of	 implementing	 the	 human	microbiome	 into	

epidemiological	studies	to	further	elucidate	health	and	disease,	and	transmission.	

	 While	 this	 dissertation	 was	 able	 to	 test	 for	 several	 things,	 it	 was	 also	 very	

hypothesis	 generating.	 	 This	 dissertation	 opens	 several	 doors	 of	 opportunities	 for	 future	

studies.	 	 First,	 it	 would	 be	 informative	 to	 explore	 the	 directionality	 of	 the	 association	

between	hand	microbiota	and	pathogen	carriage.		This	would	allow	us	to	better	understand	

the	 role	 of	 the	 hand	 microbiota	 in	 the	 association	 between	 risk	 factors	 for	 pathogen	

carriage,	and	pathogen	carriage.		Second,	it	would	be	useful	to	investigate	which	members	

of	 the	 microbial	 communities	 are	 key	 in	 helping	 structure	 the	 hand	 microbiota	 as	 it	

responds	 to	 the	presence	of	pathogens,	or	 to	hand	hygiene	practice.	 	Third,	eventually,	 it	

would	be	helpful	 to	combine	these	metagenomic	data	with	a	 functional	assessment	using	

transcriptomics,	 and	 metabolomics,	 for	 a	 more	 comprehensive	 view	 of	 the	 microbiota.		

Knowing	simply	what	microorganisms	are	there,	while	an	essential	first	step,	does	not	fully	

explain	the	functions	of	the	microbial	community	to	host	health.		While	Chapter	4	ends	with	

a	 list	 of	 highly	 correlated	 OTUs	with	 risk	 factors	 for	 pathogen	 carriage,	 as	 well	 as	 with	

specific	 pathogens	 themselves,	 we	 cannot	 be	 certain	 that	 the	 behavior	 of	 the	 microbial	

community	lies	solely	on	these	few	members.		And	last,	but	certainly	not	least,	we	need	to	

involve	more	epidemiologists	 into	the	design	and	analyses	of	microbiome	studies	as	they	

relate	 to	human	health	and	disease.	 	Advances	 in	 the	 field	of	 the	human	microbiome	are	

happening	 quickly,	 from	 cheaper	 sequencing	 technology	 to	 more	 powerful	 yet	 user‐

friendly	 analytical	 tools.	 	While	 this	 progress	moves	 forward,	 it	 is	 imperative	 that	more	

epidemiologists	 become	 involved	 into	 the	 design	 and	 analyses	 of	microbiome	 studies	 as	

they	relate	to	human	health	and	disease.			This,	is	a	future	direction	that	the	public	health	
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community	 must	 embrace.	 	 Characterizing	 human	 microbiota	 structure	 and	 function	 in	

well	 designed	 epidemiologic	 studies	will	 improve	 our	 understanding	 of	what	makes	 one	

host	 susceptible	 to	 a	 certain	pathogen	over	 another,	 possibly	 leading	 to	 the	discovery	of	

diagnostic	and	prognostic	markers.	
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Appendices	
 

Appendix	A	‐	Healthy	Hands	Study	Questionnaire	
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This  questionnaire  asks  about  factors  which  may  or  may  not  influence  the  amount  and  types  of 
microorganisms  that normally  live on our hands.   Results of  the questionnaire will be used  for  research 
purposes only.  The principal investigators for this study (Mariana Rosenthal, PhD student at the University 
of Michigan School of Public Health; Dr. Betsy Foxman, Professor at the University of Michigan School of 
Public Health; Dr. Allison Aiello, Associate Professor at the University of Michigan School of Public Health) 
will never know your name ‐ only your study identification number.  Your answers will not be linked to you 
and will not have any identifying information.  Your responses will not be used in any way that would affect 
your work record or used against you  in any way.    If you have any questions about this study please call 
Mariana Rosenthal at (619)808‐3992. 
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Thank you very much for your participation in our study.  If you have any general comments on this survey, 

please put them here: 
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These first questions ask about your hand hygiene practices. 

 

1. During a typical work shift, about how many times do you (please circle all that apply):  

 

 
never 

1‐5 
times 

6‐20 times 
21‐40 
times 

> 40 times 
don't 
know 

1a. wash your hands 
with soap and water?    

never 
[0] 

1‐5 
times 
[1] 

6‐20 times
 [2] 

21‐40 
times 
 [3] 

> 40 times 
 [4] 

don't 
know 
[8] 

1b. clean your hands 
with alcohol rub? 

never 
[0] 

1‐5 
times 
[1] 

6‐20 times
 [2] 

21‐40 
times 
 [3] 

> 40 times 
 [4] 

don't 
know 
[8] 

1c. clean your hands 
with non‐alcohol rub, 
hand sanitizer? 

never 
[0] 

1‐5 
times 
[1] 

6‐20 times
 [2] 

21‐40 
times 
 [3] 

> 40 times 
 [4] 

don't 
know 
[8] 

1d. don a pair of  
gloves?   

never 
[0] 

1‐5 
times 
[1] 

6‐20 times
 [2] 

21‐40 
times 
 [3] 

> 40 times 
 [4] 

don't 
know 
[8] 

1e. put lotion or 
moisturizer on your 
hands?  

never 
[0] 

1‐5 
times 
[1] 

6‐20 times
 [2] 

21‐40 
times 
 [3] 

> 40 times 
 [4] 

don't 
know 
[8] 

 

2. During a non‐work day at home, about how many times a day do you (please circle all that apply):  

 

 
never 

1‐5 
times 

6‐20 times 
21‐40 
times 

> 40 times 
don't 
know 

2a. wash your hands 
with soap and water?    

never 
[0] 

1‐5 
times 
[1] 

6‐20 times
 [2] 

21‐40 
times 
 [3] 

> 40 times 
 [4] 

don't 
know 
[8] 

2b. clean your hands 
with alcohol rub? 

never 
[0] 

1‐5 
times 
[1] 

6‐20 times
 [2] 

21‐40 
times 
 [3] 

> 40 times 
 [4] 

don't 
know 
[8] 

2c. clean your hands 
with non‐alcohol rub, 
hand sanitizer? 

never 
[0] 

1‐5 
times 
[1] 

6‐20 times
 [2] 

21‐40 
times 
 [3] 

> 40 times 
 [4] 

don't 
know 
[8] 

2d. don a pair of  
gloves?   

never 
[0] 

1‐5 
times 
[1] 

6‐20 times
 [2] 

21‐40 
times 
 [3] 

> 40 times 
 [4] 

don't 
know 
[8] 

2e. put lotion or 
moisturizer on your 
hands?  

never 
[0] 

1‐5 
times 
[1] 

6‐20 times
 [2] 

21‐40 
times 
 [3] 

> 40 times 
 [4] 

don't 
know 
[8] 
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3.  During the past week, what type of gloves did you most often use? (please circle) 

latex, powder‐free [1]    latex, powdered [2] 

 

nitrile, powder‐free [3]    nitrile, powdered [4] 

 

vinyl, powder‐free [5]    vinyl, powdered [6] 

 

other [7], specify_____________________________________________ 

 

don't know [8] 

 

 

These next few questions ask about your health. 

 

4.  During the past 6 months, have you taken any: 

4a. Oral antibiotics? (please circle)    yes [1]  no [0]  

4b. If YES, when did you last take these?  _mm_/_dd_/_yy_  [1]  don't know [8] 

4c. Topical antibiotics? (please circle)    yes [1]  no [0]  

4d. If YES, when did you last take these?  _mm_/_dd_/_yy_  [1]  don't know [8] 

4e. Oral steroids? (please circle)    yes [1]  no [0]  

4f. If YES, when did you last take these?  _mm_/_dd_/_yy_  [1]  don't know [8] 

4g. Topical steroids? (please circle)   yes [1]  no [0]  

4h. If YES, when did you last take these?  _mm_/_dd_/_yy_  [1]  don't know [8] 
 
 

5.  In general, would you say your health is: (please circle) 

excellent [4]  good [3]   fair [2]    poor [1] 

 

 
6.  Today, do you have: (please circle all that apply) 

 6a.  any chronic illnesses?     yes [1]  no [0]   

 6b.  any infections?       yes [1]  no [0]   

 6c.  any allergies?       yes [1]  no [0]   

 6d.  irritant contact dermatitis?     yes [1]  no [0]   
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7.  In the last month, have you had any of these symptoms: (please circle all that apply) 

7a.  Vomiting        yes [1]  no [0]   

7b.  Diarrhea        yes [1]  no [0]   

7c.  Fever        yes [1]  no [0]   

7d.  Runny Nose        yes [1]  no [0]   

7e.  Cough        yes [1]  no [0]   

7f.  Sore Throat        yes [1]  no [0]   

7g.  Skin Infection      yes [1]  no [0]   

8.  On a scale of 1‐7, rate the current condition of the skin on your hands: (please circle) 

 
  8a.  APPEARANCE     1  2  3  4  5  6  7 
          (abnormal)        (normal) 
 

  8b.  INTACTNESS      1  2  3  4  5  6  7 
                (many abrasions or fissures)              (no abrasions or fissures) 
 

  8c.  MOISTURE CONTENT    1  2  3  4  5  6  7 
          (extremely dry)            (normal amount of moisture) 
 

  8d.  SENSATION      1  2  3  4  5  6  7 
                                          (extreme itching, burning or soreness)                   (no itching, burning or soreness) 

 

These next few questions ask about your level of patient contact. 

 

9.  How long have you been working as a nurse?   _years_/_months_  [1]  don't know [8] 

10.  How long have you been working in this SICU?  _years_/_months_  [1]  don't know [8] 

11.  What is your current shift schedule [# shifts per week(s)]? 

  _shifts_/_week(s)_  [1]  don't know [8] 

12.  On average, how many patients do you directly care for during a shift? (please circle) 

  1‐2 patients [1]    3‐4 patients [2]    5‐6 patients [3]    7‐8 patients [4] 

  9‐12 patients [5]    13‐16 patients [6]  > 16 patients [7]    don't know [8] 
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13.  How many times during your last shift have you (if this is the end of your shift please respond based on 

this shift): (please circle all that apply)  

 
never 

1‐4 
times 

5‐9 
times 

> 10 
times 

don't 
know 

13a.  performed a physical 
examination on patients? 

never 
[0] 

1‐4 
times 
[1] 

5‐9 
times 
 [2] 

> 10 
times 
 [3] 

don't 
know 
[8] 

13b.  performed a wound dressing on 
patients? 

never 
[0] 

1‐4 
times 
[1] 

5‐9 
times 
 [2] 

> 10 
times 
 [3] 

don't 
know 
[8] 

13c.  performed a blood draw on 
patients? 

never 
[0] 

1‐4 
times 
[1] 

5‐9 
times 
 [2] 

> 10 
times 
 [3] 

don't 
know 
[8] 

13d.  bathed and/or performed 
another form of hygiene on patients? 

never 
[0] 

1‐4 
times 
[1] 

5‐9 
times 
 [2] 

> 10 
times 
 [3] 

don't 
know 
[8] 

13e.  used an intravascular catheter, 
urinary catheter, drain, and/or 
endotracheal tube, or cared for any of 
these sites on patients? 

never 
[0] 

1‐4 
times 
[1] 

5‐9 
times 
 [2] 

> 10 
times 
 [3] 

don't 
know 
[8] 

13f.  checked vital signs on  
patients? 

never 
[0] 

1‐4 
times 
[1] 

5‐9 
times 
 [2] 

> 10 
times 
 [3] 

don't 
know 
[8] 

13g.  touched or cleaned a soiled bed 
pan? 

never 
[0] 

1‐4 
times 
[1] 

5‐9 
times 
 [2] 

> 10 
times 
 [3] 

don't 
know 
[8] 

13h.  touched or cleaned a soiled 
sheet/linen/patient gown? 

never 
[0] 

1‐4 
times 
[1] 

5‐9 
times 
 [2] 

> 10 
times 
 [3] 

don't 
know 
[8] 

13i.  turned patients (to prevent skin 
sores)? 

never 
[0] 

1‐4 
times 
[1] 

5‐9 
times 
 [2] 

> 10 
times 
 [3] 

don't 
know 
[8] 

 

These last questions ask about basic demographic information. 

 

14.  What is your gender? (please circle)    Male [0]   Female [1] 

15.  In what month and year were you born?  _mm_/_yy_  [1] 

16.  What is your race/ethnicity? (please circle all that apply) 

White [1]  Hispanic [2]  Black/African American [3]  Native American [4] 

Asian [5]   Pacific Islander [6]  Other [7], specify_________________________ 
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17.  What is your country of birth? 

_________________________________________________________ [1] 

 
18.  What is your job title? 

_________________________________________________________ [1] 

 
19.  Do you have any children < 5 years old living in your household? (please circle) 

 
yes [1]  no [0]   

20.  If you answered 'YES' for question 19, what is/are their age(s), and do they attend daycare, homecare, 

and/or pre‐school? (please circle all that apply) 

  20a.   _mm_/_yy_  [1]    Daycare [2]  Homecare [3]  Pre‐school [4] 

  20b.   _mm_/_yy_  [1]    Daycare [2]  Homecare [3]  Pre‐school [4] 

  20c.   _mm_/_yy_  [1]    Daycare [2]  Homecare [3]  Pre‐school [4] 

  20d.   _mm_/_yy_  [1]    Daycare [2]  Homecare [3]  Pre‐school [4] 

  20e.   _mm_/_yy_  [1]    Daycare [2]  Homecare [3]  Pre‐school [4] 
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Appendix	B	‐	Chapter	3	Supplementary	Materials	

	 An	 overview	 of	 the	 organization	 of	 the	 hand	microbiota	 samples	 collected	 in	 the	

study	shows	a	total	of	280	samples	sent	for	sequencing	[Supplemental	Figure	1].	

Figure	 1.	 	 Organization	 of	 the	 280	 Hand	Microbiota	 Samples	 from	 34	 Healthcare	
Workers	at	the	University	of	Michigan	Surgical	Intensive	Care	Unit,	July	5‐28,	2011,	
Sent	for	Sequencing.	
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	 Rarefaction	curves	of	phylogenetic	distance	show	that	the	average	alpha	diversity	is	

equivalent	for	both	sets	of	sequencing	replicates,	and	slightly	yet	not	significantly	different	

by	collection	method	and	DNA	extraction	technique	[Supplemental	Figure	2].	

Figure	 2.	 	 Rarefactions	 of	 Phylogenetic	 Distance	 (PD_whole_tree)	 between	 the	
Comparison	Groups	
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	 Measures	 of	 average	 species	 richness	 and	 number	 of	 observed	 species	 appear	

higher	for	samples	collected	via	the	glove‐juice	method,	while	the	average	species	diversity	

seemed	equal	regardless	of	collection	method	[Supplemental	Figure	3].	

Figure	3.		Rarefaction	Curves	of	Alpha	Diversities	per	Collection	Method	
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	 Grouping	 the	 OTUs	 by	 samples	 and	 different	 taxonomic	 levels	 shows	 that	 the	

replicates	 were	 composed	 of	 Proteobacteria	 (46.7%	 and	 40.4%),	 Actinobacteria	 (28.9%	

and	 30.5%),	 Firmicutes	 (19.7%	 and	 22.4%),	 and	 Bacteroidetes	 (4.7%	 and	 6.1%)	 in	 a	

similarly	 proportioned	 fashion	 [Supplemental	 Figure	 4].	 	 Glove‐juice	 and	 swab	 samples	

were	composed	of	Proteobacteria	(35.9%	and	56.2%),	Actinobacteria	(38.8%	and	24.6%),	

Firmicutes	 (23.8%	 and	 11.0%),	 and	 Bacteroidetes	 (1.4%	 and	 8.0%),	 respectively	

[Supplemental	Figure	4].		While	the	relative	phylum	abundance	appeared	to	vary	similarly	

by	 healthcare	 worker,	 samples	 collected	 via	 swab	 consisted	 predominantly	 of	

Proteobacteria,	 whereas	 those	 collected	 via	 glove‐juice	 had	 a	 more	 even	 distribution	

among	the	top	three	phyla	(Proteobacteria,	Firmicutes,	and	Actinobacteria).		Samples	with	

DNA	 extracted	 using	 enzyme	 cocktail	 and	 those	 using	 lysozyme	 only	were	 composed	 of	

Proteobacteria	(38.2%	and	25.5%),	Firmicutes	(30.6%	and	37.6%),	Actinobacteria	(29.7%	

and	31.9%),	and	Bacteroidetes	(1.5%	and	4.5%),	respectively.	

Figure	4.		Average	Relative	Phylum	Abundance	per	Comparison	Groups	
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	 Distance	 (weighted	unifrac)	histograms	 comparing	both	 sets	 of	 replicates	 showed	

that	 the	 distribution	 of	 distances	within	 the	 replicate	 sets	was	not	 significantly	 different	

than	 the	 distribution	 of	 distances	 between	 the	 sets	 [Supplemental	 Figure	 5].	 	 The	

distribution	of	distances	within	sampling	collection	method	was	slightly	 shifted	 from	the	

distribution	 of	 distances	 between	 sampling	 collection	 method.	 	 The	 distribution	 of	

distances	 within	 DNA	 extraction	 method	 was	 slightly	 different	 than	 the	 distribution	 of	

distances	between	them.		Specifically,	then	mean	distance	between	extraction	methods	was	

higher,	and	the	two	distributions	were	also	shifted.					

Figure	5.		Distribution	of	Weighted	Unifrac	Distances	Between	and	Within	Each	
Comparison	Group	
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	 Additionally,	 the	 bootstrapped	 UPGMA	 tree	 does	 not	 show	 any	 hierarchical	

clustering	by	replicate	set	[Supplemental	Figure	6].	 	The	bootstrapped	tree	is	shown	with	

the	internal	nodes	colored	red	for	75‐100%	support,	yellow	for	50‐75%,	green	for	25‐50%,	

and	blue	for	<25%	support.	

Figure	6.		Bootstrapped	UPGMA	Tree	of	the	Replicate	Sets	
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	 A	 bootstrapped	 UPGMA	 tree	 shows	 some	 hierarchical	 clustering	 by	 sampling	

collection	 methods	 [Supplemental	 Figure	 7].	 	 The	 bootstrapped	 tree	 is	 shown	 with	 the	

internal	nodes	colored	red	for	75‐100%	support,	yellow	for	50‐75%,	green	for	25‐50%,	and	

blue	for	<25%	support.	

Figure	7.	Bootstrapped	UPGMA	Tree	of	the	Sampling	Collection	Methods	
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	 A	bootstrapped	UPGMA	tree	shows	some	hierarchical	clustering	by	DNA	extraction	

method	[Supplemental	Figure	8].		The	bootstrapped	tree	is	shown	with	the	internal	nodes	

colored	red	for	75‐100%	support,	yellow	for	50‐75%,	green	for	25‐50%,	and	blue	for	<25%	

support.	

Figure	8.	Bootstrapped	UPGMA	Tree	of	the	DNA	Extraction	Methods	
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	 PCoA	 performed	with	 jackknife	 bootstrapping	 shows	 considerable	 overlapping	 of	

both	replicate	sets	as	well	as	DNA	extraction	methods,	but	relative	clustering	by	sampling	

collection	method	[Supplemental	Figure	9].	

Figure	 9.	 	 3D	 Jackknifed	 Principal	 Coordinate	 Analysis	 (weighted	 unifrac)	 per	
Replicate	Set,	Sampling	Collection	Method,	and	DNA	Extraction	Method.	

	

	

	

Red = Glove-Juice 
Blue = Swab 

Red = Cocktail 
Blue = Lysozyme 
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	 Distance	 (weighted	 unifrac)	 histograms	 showed	 that	 the	 distribution	 of	 distances	

within	healthcare	workers	are	slightly	shifted	 from	the	distribution	of	distances	between	

healthcare	workers	 [Supplemental	Figure	10].	 	 Specifically,	distances	between	healthcare	

workers'	appear,	on	average,	greater	than	distances	within.	

Figure	10.		Distribution	of	Weighted	Unifrac	Distances	Between	and	Within	
Healthcare	Workers	

	

	

	

	

	

	

	

	



120 
 

	

	

Appendix	C	‐	Chapter	4	Supplementary	Materials	

DNA	Preparation	for	Sequencing	

	 The	 bacterial	 V6	 rRNA	 region	 was	 amplified	 with	 the	 left‐side	 primer	

CWACGCGARGAACCTTACC	 and	 the	 right‐side	 primer	 ACRACACGAGCTGACGAC.	 	 These	

primer	 sequences	 are	 exact	 matches	 to	 >95%	 of	 the	 rRNA	 sequences	 from	 organisms	

identified	in	the	human	microbiome	project	(GBG,	unpublished	observations).	The	left‐side	

primers	 contained	 the	 standard	 Ion	 Torrent	 (Ion	 Torrent	 Systems,	 Guilford,	 CT,	 USA)	

adapter	and	key	sequence	at	their	5′	end	(CCATCTCATCCCTGCGTGTCTCCGACTCAG).	 	The	

right‐side	 primer	 had	 the	 other	 standard	 Ion	 Torrent	 adapter	 sequence	

(CCTCTCTATGGGCAGTCGGTGAT)	attached	to	its	5′	end.	 	Amplification	was	performed	for	

25	 cycles	 in	 40	 μl	 using	 the	 colorless	 GO‐Taq	 hot	 start	master	mix	 (Promega;	 #M5133)	

according	 to	 the	 manufacturer's	 instructions	 with	 the	 following	 three‐step	 temperature	

profile:	95°C,	55°C	and	72°C	for	1	minute	each	step.		5	μl	of	the	resulting	amplification	were	

quantified	 using	 the	 QuBit	 broad‐range	 double‐stranded	 DNA	 fluorometric	 quantitation	

reagent	 (Invitrogen	 Corp.;	 #Q32854).	 	 Samples	 were	 pooled	 at	 approximately	 equal	

concentrations	and	purified	using	a	Wizard	PCR	Clean‐Up	Kit	(Promega;	#A9285).	

DNA	Sequencing	and	Sequence	Reads	Filtering	

	 Sequencing	 reactions	 were	 carried	 out	 on	 three	 Ion	 Torrent	 316	 platform	 chips,	

multiplexing	up	to	96	samples	per	run	using	the	200	bp	sequencing	reagent	kit.		Data	from	
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all	 runs	were	 pooled.	 	 The	 sequence	was	 provided	 in	 fastq	 format.	 	 All	 sequences	were	

filtered	 according	 to	 the	 following	 criteria	 in	 order:	 	 exact	match	 to	 the	 left‐side	 primer	

including	redundant	positions	in	the	primer,	exact	matches	to	the	barcodes	used,	an	exact	

match	to	the	first	six	nucleotides	of	the	right‐side	primer,	and	a	length	between	the	left‐side	

and	right‐side	primer	of	between	71	and	90	nucleotides.		This	length	was	chosen	because	it	

encompasses	 the	 predicted	 amplicon	 product	 size	 from	 all	 human‐associated	 bacterial	

organisms	that	have	been	cultured	and	sequenced	as	part	of	the	HMP.		Table	1	shows	the	

number	 of	 raw	 and	 filtered	 reads	 obtained	 from	 each	 run.	 	 Run	 number	 3	 had	 the	 least	

number	 of	 sequences	 because	 of	 sub‐optimal	 loading	 efficiency.	 	 However,	 as	 the	

reproducibility	of	the	Ion	Torrent	platform	for	these	types	of	analyses	is	excellent	provided	

the	number	of	reads	per	sample	is	greater	than	1000	(Petrof	et	al,	in	press	at	Microbiome),	

this	was	not	a	concern.	

Table	1.		Number	of	Raw	and	Processed	Sequencing	Reads	per	Ion	Torrent	Personal	
Genome	Machine	(PGM)	Sequencing	Run,	Using	316	Chips,	of	280	Samples	of	Hand	
Microbiota	 from	 34	 Healthcare	 Workers	 at	 the	 University	 of	 Michigan	 Surgical	
Intensive	Care	Unit,	July	5‐28,	2011.	

	

	 Between	46	 to	71%	of	 the	 reads	passed	 these	 filters;	 reads	not	passing	 the	 filters	

were	 not	 examined	 further.	 	 Reads	were	 processed	 as	 previously	 described	 (Gloor	 et	 al,	

2010)	 except	 that	 clustering	 with	 USEARCH	 was	 performed	 at	 97%	 identity.	 	 Chimera	

detection	was	performed	with	UCHIME	(version	v5.2.32)	using	the	de	novo	method	(Edgar	
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et	al,	2011).	 	Chimeric	sequences	in	less	than	0.05%	in	any	sample	(see	below)	and	were	

discarded.		A	table	of	counts	for	sequences	grouped	at	100%	identical	sequence	unit	(ISU)	

identity	 level	were	 generated	 for	 each	 sample	 (Gloor	 et	 al,	 2010),	 keeping	 all	 sequences	

that	 were	 represented	 in	 any	 sample	 at	 a	 frequency	 >0.5%.	 	 Reads	 that	 were	 never	

abundant	in	any	sample	(<0.5%)	were	grouped	into	the	remainder	and	discarded.		

Taxonomic	classification	

	 Classification	of	the	sequences	by	either	the	Greengenes	or	RDP	classifiers	proved	to	

be	unreliable	because	of	the	short	length	of	the	V6	region.		Classification	of	the	sequences	

present	in	the	count	table	was	therefore	performed	using	the	RDP	closest	match	option	on	

the	 full‐length,	 high‐quality,	 isolated	 subset.	 	 The	 20	 best	 hits	 were	 identified,	 and	 the	

taxonomic	classification	of	the	best	match	and	ties	was	collected.		The	classification	of	those	

hits	was	adopted	for	all	levels	where	the	classification	was	identical	across	all	best	matches,	

otherwise	 the	 classification	was	marked	 as	 undefined.	 	 The	 taxonomic	 classification	was	

added	 to	 the	sequence	count	 table	and	 the	data	were	presented	 in	 formats	 that	could	be	

accepted	by	QIIME	1.5.0	(Caporaso	et	al,	2010)	as	follows.	Sequence	alignments	were	built	

using	Muscle	 (Edgar	 RC,	 2004)	 and	 a	 neighbor‐joining	 tree	was	 generated	 by	 ClustalW2	

(Larkin	et	al,	2007).	

Detection	of	Pathogen	Co‐occurrence	

	 The	proportion	of	nosocomial	pathogens	that	co‐occurred	over	the	three	collection	

visits	were	as	follows:	
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Table	2.	Proportion	of	Pathogen	Co‐Occurrence	Among	34	Healthcare	Workers	at	the	
University	of	Michigan	Surgical	Intensive	Care	Unit,	July	5‐28,	2011.	
	

	

Raw	Results	of	Survey	Instruments	

Table	3.	Self‐Reported	Demographic	Characteristics	among	34	Healthcare	Workers	
at	the	University	of	Michigan	Surgical	Intensive	Care	Unit,	July	5‐28,	2011.	
	

	

Characteristics N (%)

Gender (n=34)

Male 8 (23.5)

Female 26 (76.5)

Age (n=34; mean=34.5; median=33)

20‐29 years 9 (26.5)

30‐39 years 15 (44.1)

40‐59 years 10 (29.4)

Race / Ethnicity

White 31 (91.1)

Black / African American 1 (2.9)

Other 2 (5.9)

Country of Birth

United States 31 (91.1)

Other 3 (8.8)

Job Title

Nurse Aide 4 (11.8)

RN 24 (70.6)

Respiratory Specialist 6 (17.6)

Has  children < 5 years  old 7 (20.6)
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Table	4.	Self‐Reported	Hand	Hygiene	Practices	among	34	Healthcare	Workers	at	the	
University	of	Michigan	Surgical	Intensive	Care	Unit,	July	5‐28,	2011.	
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Table	5.	Visual	Scoring	of	Skin	Scale	(VSS)	of	34	Healthcare	Workers	at	the	University	
of	Michigan	Surgical	Intensive	Care	Unit,	July	5‐28,	2011.	
	

	

	

Table	6.		Self‐Reported	Hand	Skin	Assessment	(HSA)	of	34	Healthcare	Workers	at	the	
University	of	Michigan	Surgical	Intensive	Care	Unit,	July	5‐28,	2011.	
	

	

	

	

	

	

VSS N (%)

normal 12 (35.3)

very slightly scaly 16 (47.1)

slightly scaly 6 (17.7)

scaly 0

scaly to very scaly 0

very scaly 0

Note: Visually inspected the skin on the dominant 

hand with a magnifying glass. Cronbach's alpha = 0.75;

ICC=0.59 (95%CI: 0.09, 0.86).

g g

Current appearance* of 

skin on hands, N(%)
Current intactness

#
 of 

skin on hands, N(%)

Current moisture content
¤ 
 

of skin on hands, N(%)

Current sensation
Ɏ
 of 

skin on hands, N(%)

1 0 0 0 0

2 0 1 (2.9) 0 0

3 1 (2.9) 1 (2.9) 4 (11.8) 1 (2.9)

4 2 (5.9) 3 (8.8) 9 (26.5) 2 (5.9)

5 2 (5.9) 5 (14.7) 7 (20.6) 2 (5.9)

6 19 (55.9) 13 (38.2) 11 (32.4) 7 (20.6)

7 10 (29.4) 11 (32.4) 3 (8.8) 22 (64.7)

* On a scale from 1 to 7, from abnormal (red, blotchy, rash) to normal (no redness, blotch, rash).
#
 On a scale from 1 to 7, from many abrasions or fissures to completely intact (no abrasions or fissures).

¤
 On a scale from 1 to 7, from extremely dry to normal amount of moisture.

Ɏ
 On a scale from 1 to 7, from extreme itching, burning, or soreness to no itching, burning, or soreness.
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Table	7.	 	Self‐Reported	Health	Status	of	34	Healthcare	Workers	at	the	University	of	
Michigan	Surgical	Intensive	Care	Unit,	July	5‐28,	2011.	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

Characteristics N (%)

Health Status

Excellent 16 (47.1)

Good 17 (50)

Fair 1 (2.9)

Poor 0

Current

Chronic Il lness 3 (8.8)

Infections 1 (2.9)

Allergies 6 (17.7)

Irritant Contact Dermatitis 1 (2.9)

Within the last month

Vomiting 1 (2.9)

Diarrhea 4 (11.8)

Fever 0

Runny Nose 3 (8.8)

Cough 2 (5.9)

Sore Throat 0

Skin Infections 1 (2.9)

In the past six months

Oral  Antibiotic 0

Topical  Antibiotic 0

Oral  Steroids 0

Topical  Steroids 1 (2.9)
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Table	8.	 	Level	of	Patient	Contact	Attained	During	Last	Work	Shift,	Reported	by	34	
Healthcare	Workers	at	the	University	of	Michigan	Surgical	Intensive	Care	Unit,	 July	
5‐28,	2011.	
	

	

	

	

	

	

Patient Contact N (%) Patient Contact N (%)

Performed Blood Draw Took Vital Signs

Never 5 (14.7) Never 1 (2.9)

1‐4 times 14 (41.2) 1‐4 times 7 (20.6)

5‐9 times 11 (32.4) 5‐9 times 1 (2.9)

10 or more 4 (11.8) 10 or more 25 (73.5)

Performed Wound Dressing Handled Soiled Bedpan

Never 8 (23.5) Never 13 (38.2)

1‐4 times 25 (73.5) 1‐4 times 17 (50)

5‐9 times 1 (2.9) 5‐9 times 3 (8.8)

10 or more 0 10 or more 1 (2.9)

Used (or cared for sites) IV, urinary catheters, Handled Soiled Linen

drain, endotracheal tube Never 0

Never 6 (17.6) 1‐4 times 17 (51.5)

1‐4 times 13 (38.2) 5‐9 times 5 (15.2)

5‐9 times 6 (17.6) 10 or more 11 (33.3)

10 or more 9 (26.5) Performed Hygiene Functions

Performed Physical Exam Never 5 (14.7)

Never 5 (14.7) 1‐4 times 21 (61.8)

1‐4 times 19 (55.9) 5‐9 times 6 (17.6)

5‐9 times 7 (20.6) 10 or more 2 (5.9)

10 or more 3 (8.8) Avg. No. Patients Directly Cared For During a Shift

Turned a Patient 1‐2 patients 20 (58.8)

Never 2 (5.9) 3‐4 patients 4 (11.8)

1‐4 times 7 (20.6) 5‐6 patients 4 (11.8)

5‐9 times 6 (17.6) 7‐8 patients 1 (2.9)

10 or more 19 (55.9) 9‐12 patients 3 (8.8)

13‐16 patients 2 (5.9)
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Mixed	Models	Fitting	Criteria	

Table	9.	 	Covariance	 Structure	Comparisons	of	 the	 Staphylococcus	aureus	Carriage	
Model.	
	

Covariance	
Structure	

Number	of	
Covariance	
Parameters	

	
AIC	

	
BIC	

Unstructured	 6	 1415.4	 1424.5	

Compound	
Symmetry	

2	 1442.9	 1446.0	

Compound	
Symmetry	

Heterogeneous*	
4	 1412.6	 1421.0	

Toeplitz	 3	 1440.7	 1445.3	

Toeplitz	
Heterogeneous*	

5	 1413.4	 1421.0	

Autoregressive*	 4	 1413.0	 1419.1	

	 *Convergence	criteria	met	but	final	hessian	is	not	positive	definite.	
	
	

	 The	model	with	the	Toeplitz(4)	R	structure	was	selected	as	the	final	model.		Among	

those	 that	 had	 the	 convergence	 criteria	 fully	 met,	 it	 was	 the	 most	 parsimonious	 model	

(least	parameterized),	with	the	lowest	AIC	and	BIC	results.		The	final	nuc	model	is:	

log(nuci)	=	(HANDWASH)iβ	+	(ALCOHOL	RUB)iβ	+	(GLOVE	USE)iβ	+	(SHIFT)iβ	+	εi				
	
where,		εi	~	N(0,Ri)	

	 The	type	3	tests	of	fixed	effects,	showing	the	statistical	significance	of	each	variable	

given	all	others	listed	in	the	model,	are:	
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Table	10.		Type	III	Tests	of	Fixed	Effects	of	the	Staphylococcus	aureus	Carriage	Model.	
	
	 	 																																								Num					Den	
								 	 																								Effect									DF						DF				F	Value				Pr	>	F	
																							 										HANDWASH										3						20								0.48							0.6982	
								 	 						ALCOHOL	RUB									4						20								7.86							0.0006	
																										 												GLOVE	USE										3						20								8.59							0.0007	
	 	 																							SHIFT										2						15								4.28						0.0339	
	

The	residual	diagnostics	performed		were	as	follows:	

Figure	1.		Studentized	Residuals	Diagnostics	for	the	Staphylococcus	aureus	model.	

	

	 According	to	the	plots,	the	variability	of	the	standardized	residuals	appears	similar	

across	all	predicted	values	(i.e.	homogeneous).			Also,	the	distribution	of	these	residuals	is	

normal	(with	very	few	outliers	at	both	ends).	
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Table	 11.	 	 Covariance	 Structure	 Comparisons	 of	 the	 Enterococcus	 spp.	 Carriage	
Model.	
	

Covariance	
Structure	

Number	of	
Covariance	
Parameters	

	
AIC	

	
BIC	

Unstructured	 6	 1643.6	 1652.8	

Compound	
Symmetry	

2	 1701.9	 1704.9	

Compound	
Symmetry	

Heterogeneous*	
4	 1643.5	 1649.6	

Toeplitz	 3	 1692.4	 1697.0	

Toeplitz	
Heterogeneous**	

5	 ‐	 ‐	

Autoregressive*	 4	 1640.1	 1646.2	

	 *Convergence	criteria	met	but	final	hessian	is	not	positive	definite.	
	 **Convergence	criteria	not	met.	
	

	 The	model	with	the	Toeplitz(4)	R	structure	was	selected	as	the	final	model.		Among	

those	 that	 had	 the	 convergence	 criteria	 fully	 met,	 it	 was	 the	 most	 parsimonious	 model	

(least	 parameterized),	 with	 the	 lowest	 AIC	 and	 BIC	 results.	 	 The	 final	Enterococcus	 spp.	

model	is:		

log	(Enterococcusi)	=	(HANDWASH)iβ	+	(AGE)iβ	+	εi				
	
where,		εi	~	N(0,Ri)	

	 The	type	3	tests	of	fixed	effects,	showing	the	statistical	significance	of	each	variable	

given	all	others	listed	in	the	model,	are:	
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Table	12.		Type	III	Tests	of	Fixed	Effects	of	the	Enterococcus	spp.	Carriage	Model.	

	
	 	 																														Num					Den	
																												 Effect									DF							DF					F	Value							Pr	>	F	
	 														HANDWASH										3									28									4.95							0.0070	
	 																															AGE										1								28							29.24							<.0001	
	

The	residual	diagnostics	performed		were	as	follows:	

Figure	2.		Studentized	Residuals	Diagnostics	for	the	Enterococcus	spp.	model.	

	

	
	
	

	 According	to	the	plots,	the	variability	of	the	standardized	residuals	appears	similar	

across	all	predicted	values	(i.e.	homogeneous).			Also,	the	distribution	of	these	residuals	is	

somewhat	normal	(with	few	outliers	at	both	ends).	

	 The	 following	mixed	model	 predicting	 the	 first	 principal	 components	 of	 the	 hand	

microbiota	principal	coordinate	analyses,	by	the	fixed	effects	of	the	significant	risk	factors	
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for	 pathogen	 carriage,	 as	 well	 as	 levels	 of	 pathogen	 carriage,	 resulted	 in	 no	 statistically	

significant	associations:		

PCi	=	(log	S.	aureus)iβ	+	(log	Enterococcus	spp.)iβ	+	(HANDWASH)iβ	+	(ALCOHOL	RUB)iβ	+	

(GLOVE	USE)iβ	+	(AGE)iβ	+	(SHIFT)iβ	+	εi	

where,		εi	~	N(0,Ri)	

	 The	type	3	tests	of	fixed	effects,	showing	the	statistical	significance	of	each	variable	

given	all	others	listed	in	the	model,	are:	

Table	 13.	 	 Type	 III	 Tests	 of	 Fixed	 Effects	 of	 the	 First	 Principal	 Component	 of	 the	
Principal	Coordinate	Analysis	of	the	Hand	Microbiota	Model.	
	
	 	 	 													 	 		Num					Den	
	 	 	 	 Effect									DF						DF				F	Value				Pr	>	F	
	 	 	 		log	S.	aureus										1						24							1.81				0.1905	
	 	 log	Enterococcus	spp.								1						24							0.01				0.9145	
	 	 	 HANDWASH											3						19							1.18				0.3452	
	 	 										ALCOHOL	USE											4						19							1.66				0.2005	
	 	 	 		GLOVE	USE											3						19							0.65				0.5939	
	 	 	 	 			AGE											1						19							0.12				0.7337	
	 	 	 WORK	SHIFT										2						15							2.01				0.1687	

	

Comparison	of	OTU	Correlations	

	 The	 comparison	 of	 the	 raw	 correlations	 (between	 OTUs	 and	 potential	 pathogens	

and	between	OTUs	and	potential	risk	factors	for	pathogen	carriage)	with	that	of	the	Fisher	

transformed	 correlations	 in	 the	 following	 Q‐Q	 plots	 indicate	 that	 in	 terms	 of	 individual	

OTUs	(as	opposed	to	the	microbial	community	structure	as	a	whole),	swab	sampling	time	

point	matters,	 especially	 concerning	collection	visit	3	where	deviations	 in	 the	end‐points	

indicate	higher	than	expected	correlations.			
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Figure	3.		Q‐Q	Plots	Comparing	the	Distribution	of	Raw	Correlation	Coefficients	with	
Fisher	 Transformed	 Correlation	 Coefficients,	 of	 the	 Associations	 Between	 Each	
Operational	Taxonomic	Unit	(OTU)	and	Each	Potential	Pathogen	and	Risk	Factor	for	
Pathogen	Carriage,	by	Swab	Collection	Visit.			

	

Note:	The	red	points	indicate	deciles;	the	blue	points	indicate	+/‐	0.5	correlation.	
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