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PREFACE 

 This written dissertation summarizes the labor and thought invested in my 

graduate studies to develop a better understanding of how Bacillus anthracis reacquires 

the vital siderophore petrobactin back into the cytoplasm after sequestering iron from its 

host. The identification of this system and the elucidation of the mechanisms involved in 

the reacquisition of iron-bound petrobactin will greatly improve our current knowledge of 

Bacillus anthracis pathogenesis.  

This body of work is divided into four chapters.  Chapter 1 introduces the general 

importance of iron in microbial biology and aspects of iron acquisition in Bacillus 

anthracis.  A n emphasis is placed on c urrent research surrounding the virulence-

associated siderophore petrobactin and introduces the uptake mechanisms employed by 

bacteria to reacquire iron-bound siderophores. Additionally, Chapter 1 describes work I 

performed along with my colleagues during my first year in the Hanna laboratory which 

provides the first description of the only receptor protein required for the reacquisition of 

petrobactin. This research has been published as an article in the journal Molecular 

Microbiology (Carlson PE Jr, Dixon SD, Janes BK, Carr KA, Nusca TD, Anderson EC, 

Keene SE, Sherman DH, and Hanna PC 2008. “Genetic analysis of petrobactin transport 

in Bacillus anthracis.” Mol Microbiol. 2010 Feb;75(4):900-9).  

Chapter 2 describes work performed to identify the remaining components of the 

petrobactin import system. Mutants of candidate permease and ATPase genes were 
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generated allowing for characterization of multiple petrobactin ATP-binding cassette 

(ABC)-import systems. The research put forth in Chapter 3 ha s been published in the 

journal of Molecular Microbiology (Dixon SD, Janes BK, Bourgis A, Carlson PE Jr, and 

Hanna PC. 2012. “Multiple ABC transporters are involved in the acquisition of 

petrobactin in Bacillus anthracis”. Mol Microbiol. 2012 Apr;84(2):370-82.) 

Findings in Chapter 2 directed my focus onto designing a biochemical assay to 

identify small molecule inhibitors of petrobactin ABC-import machinery. The identified 

ABC-transport proteins described in Chapter 2 are essential in cell viability, virulence 

and pathogenicity, and have conserved sequences across all bacterial species, making 

these proteins intriguing targets for therapeutics. Because active ATPases can be easily 

purified and only requires ATP as a substrate, these enzymes are prime candidates for a 

high-throughput inhibitor search. Chapter 3 describes my efforts to design and implement 

a high-throughput screen (HTS) at the University of Michigan Center for Chemical 

Genomics (CCG) to search for novel molecules capable of inhibiting the activity of these 

crucial ATPase proteins. By investigating methods to inhibit the activity of these 

ATPases, my overall goal was to devise a strategy to shut down siderophore import and 

thus the necessary act of iron acquisition by B. anthracis and other dangerous pathogens. 

As a closing section, Chapter 4 a ims to summarize the research presented in 

Chapters 2 and 3 as well as its possible implications in the fields of microbial iron-

acquisition and the development of novel therapeutics against bacterial infection.  

Generally, Chapter 4 encompasses hypothetical and future avenues of experimentation 

that were made more apparent by the body of this dissertation; however, in some 

instances, preliminary data is presented. 
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ABSTRACT 

 

In Bacillus anthracis the siderophore petrobactin is vital for iron acquisition and 

virulence. The petrobactin-binding receptor FpuA is required for these processes. FpuA 

has high homology to the receptors associated with ATP-binding Cassette (ABC) 

transporter complexes, indicating that the mechanism of petrobactin reacquisition 

requires an ABC transport system. ABC transporters are used by bacteria for cross-

membrane transport of many small molecules. Recently, the additional components of 

petrobactin reacquisition have been identified. We have shown that either of two distinct 

permeases, FpuB or FatCD, are required for iron acquisition and play redundant roles in 

petrobactin transport. Additionally, three ATPase proteins are sufficient to provide the 

energy required for petrobactin reacquisition. These results provide the first description 

of the permease and ATPase proteins required for the import of petrobactin in B. 

anthracis. Furthermore, these ABC-transport proteins are essential in cell viability, 

virulence and pathogenicity.  The ABC ATPases share conserved sequences across all 

bacterial species, and only requires ATP as a substrate, making these proteins prime 

candidates for a high-throughput inhibitor search for small molecules that can potentially 

block siderophore import and thus the necessary act of iron acquisition by B. anthracis 

and other dangerous pathogens. Sixteen top ATPase inhibitor hits were identified in a 

pilot high-throughput screen at the University of Michigan Center for Chemical 
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Genomics. Eight of which were reconfirmed at the bench-top to reveal three compounds 

as promising leads in the development of therapeutics or tools to probe ATPase activity. 
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Chapter 1 

Introduction 

1.1 Introduction 

Bacillus anthracis is a member of the Bacillus cereus group species which are a 

collection of Gram-positive, rod shaped, spore-forming bacteria that typically exist in the 

soil (Hanna, 1998a). Despite the fact that members of the B. cereus group are closely 

related in genetics and physiology, there are very distinct species-specific phenotypes 

displayed by each, and importantly, a n umber of these are related to pathogenicity 

(Hanna, 1998a). This is the case with B. anthracis, in which respiratory, gastrointestinal, 

or cutaneous entry of spores into a mammalian host can lead to anthrax infection. Each of 

these routes results in a different disease manifestation with the inhalational form being 

most severe (Hanna, 1998b, Dixon et al., 1999, Doganay & Welsby, 2006). In the 

inhalational route of infection, the spore is the infectious form of the organism (Bartrand 

et al., 2008, Dutz & Kohout, 1971, Dutz & Kohout-Dutz, 1981, Guidi-Rontani et al., 

1999).  Once latent spores make their way to the lung epithelium, host antigen-presenting 

cells, primarily macrophages and dendritic cells, phagocytose the infectious spore and 

shuttle it to other parts of the lymphatic system (Dixon et al., 1999, Doganay & Welsby, 

2006, Dutz & Kohout, 1971, Moayeri et al., 2012).  It is at this later stage of host ingress 

where the spore finally germinates into vegetative cells and begins to rapidly replicate to 

extremely high titers, up t o 108 organisms per milliliter in the blood and, through the 
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effects of secreted toxins, cause severe edema that directly contributes to lethality 

(Frankel et al., 2009, H onsa & Maresso). The rapid and high lethality of anthrax, 

combined with the resilience of latent spores both in the environment and in a 

weaponized form, have made B. anthracis a practical system in which to study 

mechanisms of bacterial pathogenesis (Sweeney et al., 2011).  

 It has been demonstrated that the metal iron facilitates activities including DNA 

replication, amino acid synthesis, electron transport and lipid conversion that can be 

associated with the extensive cell division observed by B. anthracis in the blood. 

Furthermore, the secondary metabolite petrobactin, nearly unique to B. anthracis and 

closely related species in the B. cereus group, is required for necessary levels of iron 

acquisition in the host. Despite the importance of petrobactin, and having had its 

biosynthetic pathways elucidated, little was known regarding how this molecule was 

recognized and transported by B. anthracis.  Based on t his, I describe in this thesis 

studies identifying the key components of the petrobactin-iron import machinery in B. 

anthracis, and explore how these proteins may be inhibited with the goal of shutting 

down requisite iron acquisition of dangerous and problematic bacterial pathogens.  

 

1.2 Importance of Iron during Anthrax Infection 

 For pathogenic bacteria, including B. anthracis, iron acquisition is essential for 

survival under iron limited conditions (Ratledge & Dover, 2000). The transition metal, 

iron, is involved in multiple biological phenomena essential to life that include a variety 

of metabolic and signaling functions such as oxygen transport and respiration, electron 

transfer, and DNA synthesis and repair (Latunde-Dada, 2009). The roles of iron in these 
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vital processes make this metal a necessary nutrient for the growth and proliferation of 

bacteria (Ratledge & Dover, 2000, Faraldo-Gomez & Sansom, 2003, Wandersman & 

Delepelaire, 2004). Bacteria must acquire iron from the extracellular milieu they occupy 

by employing dedicated mechanisms for iron acquisition, transport and storage (Schaible 

& Kaufmann, 2004). This includes within the context of a host, in which ability of a 

microorganism to sequester iron is one of the major determinants of its survival and 

virulence (Andrews et al., 2003, Barclay & Ratledge, 1986, Garénaux et al., 2011, 

Ratledge, 2007, Ratledge & Dover, 2000, Ratledge & Winder, 1964, Wandersman & 

Delepelaire, 2004). 

 Iron is typically found in the +2 (ferrous) and +3 (ferric) oxidation states in 

biological systems (Ratledge, 2007, Ratledge & Dover, 2000, Miethke & Marahiel, 2007, 

Davidson et al., 2008). Free ferric iron has inherent toxicity arising from the tendency of 

the metal to cycle between the Fe3+ / Fe2+ oxidation states thereby generating damaging 

hydroxyl radicals through Fenton chemistry (Wardman & Candeias, 1996). Because of 

this, the majority of free iron in the mammalian host is bound to carrier proteins such as 

lactoferrin, transferrin and ferritin, or the protoporphyrin ring in hemoproteins such as 

hemoglobin (Ratledge & Dover, 2000, Glanfield et al., 2007, Nemeth & Ganz, 2006, 

Ganz & Nemeth, 2006). This tight regulation results in a free iron concentration of 

virtually zero in extracellular body fluids (Andrews et al., 2003). The limited availability 

of free iron serves as a barrier against bacterial infection, an example of a strategy often 

referred to as “nutritional immunity” (Hood & Skaar, 2012, Cassat & Skaar, 2012, 

Dragomirescu et al., 1979, Weinberg, 1975), as bacteria that are unable to obtain iron are 

rendered helpless against host defenses as a result of iron starvation (Lewin, 1984). 
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During early stages of infection, iron is also necessary for mounting specific bacterial 

countermeasures against host immune defenses.  The release of reactive oxygen species 

by neutrophils and other immune cells has a strong antibacterial effect, and infection by 

B. anthracis is highly reliant on pr oteins requiring iron as a cofactor, including 

cystathionine β-synthase, responsible for accumulation of reductive H2S (Shatalin et al.), 

and a suite of redundant superoxide dismutases (SODs) to combat oxidative stress 

(Cybulski et al., 2009, Passalacqua et al., 2006).  In fact, copies of SOD constitute one of 

the three main iron reservoirs in B. anthracis along with the bacterioferritin Dps2 and 

ferredoxin (Tu et al., Passalacqua et al., 2007a). 

Faced with this strict iron shortage, B. anthracis and several other bacterial 

species have evolved a variety of iron acquisition mechanisms to sequester the metal 

from host proteins and compete with other organisms sharing the same biological niche. 

There are two primary mechanisms of iron-acquisition in B. anthracis which include 

siderophore-mediated iron sequestration and import and heme uptake, both of which are 

elaborated on further in following sections (Dixon et al., 1999, Passalacqua & Bergman, 

2006).  

 

1.3 Heme-iron Acquisition 

 Approximately 80% of mammalian iron is bound in its ferrous state to iron-

protoporphyrin IX, or heme (Mazmanian et al., 2003, Maresso et al., 2008). A large 

amount of this is further bound t o the oxygen-carrier protein hemoglobin found in red 

blood cells, making this protein an obvious target for bacterial iron acquisition during 

replication in the extracellular environment (Wandersman & Delepelaire, 2004, Nobles & 
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Maresso, 2011, Honsa & Maresso, 2011).  The heme iron acquisition system is depicted 

in Figure 1-1.  S ince heme is bound i n hemoglobin, which is packaged at high levels 

within red blood cells, a multi-step process is required for B. anthracis to utilize this iron 

source. One mechanism that is thought to facilitate heme release involves the secretion of 

hemolysins that lyse red blood cells to expose hemoglobin, followed by the secretion of 

bacterial hemophores, namely IsdX1 and IsdX2, which sequester heme from hemoglobin, 

and subsequently pass it off to the cell wall anchored IsdC proteins (Honsa et al., 2011, 

Maresso et al., 2006, Maresso & Schneewind, 2006). These cell surface proteins are part 

of an iron-regulated surface determinant (Isd) network that uses receptors to specifically 

recognize heme and subsequently transfer it to the heme-specific IsdEFD ABC transport 

system in the cell membrane which consists of NEAr-iron transporter (NEAT) domains 

(Gat et al., 2008, Maresso et al., 2006, Maresso & Schneewind, 2006, Honsa et al., 2011). 

Once inside the bacterial cytoplasm, iron is then released from heme by the action of the 

bacterial heme monooxygenase, IsdG (Skaar et al., 2006). 

 Using this system, B. anthracis is able to grow in vitro with only heme as its iron 

source; however the complete role of heme acquisition in the life cycle or pathogenesis of 

B. anthracis, remains to be elucidated.  It is hypothesized that acquisition of iron from 

heme would occur during later stages of infection, when B. anthracis is growing 

extracellularly in the host bloodstream (Honsa & Maresso, 2011).  When directly tested, 

some B. anthracis strains lacking the ability to utilize heme retain wild-type levels of 

virulence in mice, while mutant strains lacking other NEAT domain containing proteins 

have exhibited only a mild attenuation (Honsa et al., 2011, Gat et al., 2008).  While these 

data do not strongly support a major role for iron acquisition from heme during anthrax 
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infection in mice, it is possible that iron acquisition from heme is necessary for infection 

of more common mammalian hosts such as large herbivores, or rare hosts such as 

humans.  Future experimentation with different experimental systems will be necessary to 

determine the role of heme-iron acquisition in the pathogenesis of B. anthracis as it is  

highly possible that current animal models of inhalational anthrax do not  accurately 

portray late stage infection. 
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Figure 1-1. Known mechanisms of iron acquisition from heme or bacillibactin in 
Bacillus anthracis. The pathways for iron acquisition using heme (left), and bacillibactin 
(right) are shown here.  S tructure of each molecule is shown above its respective 
transport system (red residues interact directly with iron).  Iron binding molecules are 
represented by red squares (heme), and maroon triangles (bacillibactin).  A ll known 
components of these two specific transport systems are represented.  Specific components 
and functions of each iron acquisition system are discussed within the text.  C artoon 
representation of the genes in the biosynthetic operon for bacillibactin is shown beneath 
its transport system. 
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1.4 Bacillus anthracis Siderophores  

The second and primary mechanism of iron acquisition in B. anthracis is the 

production and secretion of siderophores. Siderophores are high-affinity iron chelating 

molecules that are secreted into the extracellular environment where they are able to 

scavenge ferric iron from host sources (Raymond et al., 2003, Honsa & Maresso, 2011, 

Koster, 2001, Miethke & Marahiel, 2007, Ratledge & Dover, 2000, Neilands, 1995). 

Briefly, within the low iron environment of the host, siderophores’ extremely high 

affinity for iron confers the ability to sequester the metal from host proteins (Braun & 

Braun, 2002). Following the scavenging of host iron, holo-iron-siderophore complexes 

are recognized by high affinity substrate-binding proteins on the surface of the cell 

membrane and are transported into the cytoplasm of the bacterium through specific 

membrane associated ATP Binding Cassette (ABC)-transport systems for utilization 

(Radnedge et al., 2003, Ratledge & Dover, 2000, Beasley & Heinrichs, 2010). Bacillus 

anthracis is capable of synthesizing two siderophores, bacillibactin and petrobactin 

(Wilson et al., 2006, H otta et al., Cendrowski et al., 2004c).  While both of these 

molecules exhibit high affinity binding to ferric iron (bacillibactin Kf = 1048; petrobactin 

Kf = 1023), they differ significantly in both structure and role in bacterial pathogenesis 

(Cendrowski et al., 2004c, Koppisch et al., 2005, Lee et al., 2007). 
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Bacillibactin Petrobactin

Bacillus anthracis Siderophores

Bacillibactin Petrobactin

Bacillus anthracis Siderophores

 

 

Figure 1-2. The two siderophores produced by Bacillus anthracis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

Bacillibactin is a tris-catecholate siderophore that is generated by a non-ribosomal 

peptide synthetase (NRPS) pathway encoded by the dhb operon (May et al., 2001) and 

has three dihydroxybenzoate moieties with hydroxyls in a 2,3 ( ortho, para) orientation 

(Koppisch et al., 2005) commonly found in several Bacillus species. Most of the data 

regarding the function of this siderophore is inferred from studies using B. subtilis.  In 

this organism, bacillibactin is secreted through the major facilitator-superfamily protein 

YmfE (Miethke et al., 2008).  Following secretion, iron bound bacillibactin is specifically 

imported by an ABC import system, which is encoded by feuABC and yusV, (Figure 1-1, 

right) (Miethke et al., 2006, Dertz et al., 2006a, Dertz et al., 2006b). Once inside the 

cytoplasm of the cell, the iron-bacillibactin complex is then hydrolyzed by the YuiL 

esterase (encoded by besA), allowing for release of imported iron ions in the cytoplasm 

for use by the bacterium (Figure 1-1, left) (Miethke et al., 2006, Dertz et al., 2006b). 

Although bacillibactin is produced by many Bacillus species, it is not required for 

growth of B. anthracis under iron-limited conditions (Cendrowski et al., 2004c) even 

though the B. anthracis genome encodes orthologs of all of the proteins for synthesis and 

uptake of this siderophore found in other Bacillus spp. One possible explanation for this 

could be altered patterns of bacillibactin secretion.  In B. anthracis, as compared to B. 

subtilis, secretion of bacillibactin in vitro appears to occur late in the life cycle, with 

measureable amounts of the siderophore only being detected after nearly ten hours of 

growth in iron limited media (Wilson et al., 2010). The late secretion of this siderophore 

could be due to the fact that B. anthracis has no clear homolog of YmfE, which is largely 

responsible for bacillibactin secretion in B. subtilis (Miethke et al., 2008, Wilson et al., 

2006).  Similar to our current knowledge of heme-iron acquisition, there are currently no 
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data associating bacillibactin with virulence, suggesting that it p lays, at most, a minor 

role during infection (Cendrowski et al., 2004a).  It is possible, however, that 

bacillibactin plays some role in the colonization of B. anthracis in a host organism or 

other niche that has yet to be studied. 

 

1.5 Petrobactin Identification and Biosynthesis 

A second siderophore, petrobactin, is found only in select strains of the Bacillus 

genus, predominantly limited to members of the B. cereus sensu lato group (Wilson et al., 

2006). This catacholate siderophore was first isolated from the oil-degrading, Gram-

negative marine microbe Marinobacter hydrocarbonoclasticus (Koppisch et al., 2008a, 

Hickford et al., 2004, Barbeau et al., 2002, Homann et al., 2009). It was in this organism 

that the chemical structure of petrobactin was first determined and is in fact identical to 

that of petrobactin produced by B. anthracis. Transcriptional analysis of B. anthracis 

mutants deficient for growth in iron-depleted conditions enabled identification of the 

pathway responsible for siderophore biosynthesis and enzymatic machinery encoded by 

the B. anthracis siderophore biosynthesis (asb) operon (Fig. 1-3, A ) (Cendrowski et al., 

2004b, Koppisch et al., 2005, Liu et al., 2007). The symmetrical petrobactin molecule is 

comprised of a c entral citric acid and two selectively-oriented spermidine arms, each 

bound by an amide bond to a unique 3,4-dihydroxybenzoic acid (3,4-DHBA) chelating 

moiety, to this point unknown in any other siderophore (Fig. 1-3, B) (Koppisch et al., 

2008b, Abergel et al., 2008b, Pfleger et al., 2007, Pfleger et al., 2008, Lee et al., 2007).  
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Figure 1-3. B. anthracis virulence-associated siderophore petrobactin biosynthetic 
operon and molecular structure. (A) The anthracis siderophore biosynthesis (asb) 
operon which encodes all of the enzymes necessary for the synthesis of petrobactin. 
There are 6 genes, asbA-F, and listed above them are their designated locus numbers in 
B. anthracis str. Ames. (B) Petrobactin is comprised of three precursors, the central 
citrate, two spermidine arms, and the outer catechol moieties produced by 3,4-
dihydroxybenzoic acid (3,4-DHBA). Citrate and spermidine are found naturally in most 
bacteria, but 3,4-DHBA is a unique secondary metabolite. The orientation of the 
hydroxyl groups is unique and the source of petrobactin’s “stealth” abilities during host 
infection. Petrobactin forms a hexadentate complex with an iron atom and has six 
chelation points circled in red (two on each catechol and two on each citrate). 
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Previous genetic experiments have shown that products of the polycistronic 

operon consisting of the six genes asbABCDEF contribute to assembly of petrobactin in 

bacteria (Lee et al., 2007). Work done in David Sherman’s and Philip Hanna’s lab at the 

University of Michigan, has shown that mutation of individual asb genes allowed for the 

assignment of function to the encoded biosynthetic polypeptides, and confirmation of the 

metabolites that constitute the starting components of petrobactin biosynthesis (Pfleger et 

al., 2007, Pfleger et al., 2008).  All products of the asb operon have been heterologously 

purified and described individually in vitro through enzymatic assays. AsbA and AsbB 

are both members of the non-ribosomal peptide synthetase - independent siderophore 

(NIS) synthetase family (Oves-Costales et al., 2007, Oves-Costales et al., 2009b, Challis, 

2005). Incorporation of the unique 3,4-DHBA to the spermidine “arms” of petrobactin is 

facilitated by interactions of AsbC, -D, and –E (Pfleger et al., 2007). These polypeptides 

share homology with aryl-transferase modules of many NRPS pathways, including those 

for mycobactin, enterobactin, and vibriobactin; such similarity in mechanism and 

structure has characterized petrobactin biosynthesis as a m ixed NRPS/NIS pathway 

(Oves-Costales et al., 2009a, Barry & Challis, 2009, Schmelz et al., 2009, Kim et al., 

2008, Harrison et al., 2006, Challis, 2005, Crosa & Walsh, 2002). 

Pathogenic Bacillus species, including B. anthracis, B. cereus, and some isolates 

of B. thuringiensis, can produce petrobactin (Koppisch et al., 2005).  For B. anthracis 

under iron-starved conditions in vitro, the level of petrobactin secretion into culture 

supernatants is nearly five times greater than that of bacillibactin (Koppisch et al., 2005, 

Wilson et al., 2009a, Wilson et al., 2010).  There is also a significant difference in the 

production of siderophore secretion, with measureable levels of petrobactin present five 
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hours before detection of bacillibactin in vitro (Wilson et al., 2010, Wilson et al., 2009a). 

Unlike bacillibactin, petrobactin is required for normal growth rates in low iron media 

and growth in macrophages (La Scola et al., 2003, Lee et al., 2007, Pfleger et al., 2007).  

Furthermore, mutant strains lacking the ability to synthesize or import this siderophore 

are severely attenuated in murine models of anthrax infection (Carlson et al., 2010, 

Cendrowski et al., 2004c, Dixon et al., 2012) In fact, the level of attenuation observed for 

these mutants (approximately 1,000 fold) is similar to what has been observed for toxin-

deficient B. anthracis strains (Pezard et al., 1991).   

 

1.6 Petrobactin is a “Stealth” Siderophore 

Mammalian species protect themselves from invading pathogens through a vast 

array of host-defense mechanisms including the production of anti-microbial peptides and 

defensins which act on t he bacterial cell wall or disrupt bacterial cell membranes, 

respectively (Fleming 1992, Yang et al. 2007). Additionally, there is a group of host-

defense proteins that act on invading bacteria by preventing them from sequestering iron. 

Some of these proteins include lactoferrin and lipocalin-2, both of which keep host iron 

concentrations low and unavailable to bacteria. Lipocalin-2 proteins are secreted by 

neutrophils during infection and are capable of binding to ferric-siderophore complexes, 

preventing iron reuptake into the bacterial cell (Abergel et al., 2006b, Abergel et al., 

2008a, Abergel et al., 2006a, Lee et al., 2007). Since these proteins bind to siderophores, 

they have also been termed siderocalins (Hoette et al., 2008). Siderocalin proteins can 

bind catecholate siderophores containing 2,3-dihydroxybenzoic acid (DHBA) subunits, 

including the B. anthracis siderophore bacillibactin, which is effectively neutralized by 
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this protein during the host response to infection (Goetz et al., 2002, Fischbach et al., 

2006b, Fischbach et al., 2006a). However, siderocalin cannot accommodate the unique 

structure of petrobactin, specifically the presence of 3,4-dihydroxybenzoate moieties, 

leaving the siderophore free to function in iron acquisition in vivo and essentially making 

this molecule invisible to the human immune system (Abergel et al., 2006a, Abergel et 

al., 2006b). This lack of immune recognition by a mammalian host led to petrobactin 

being defined as a “stealth” siderophore (Abergel et al., 2006b, Pfleger et al., 2008, 

Zawadzka et al., 2009a).  Other organisms have also evolved methods to evade 

siderocalin sequestration including decoration of 2,3-DHBA moieties with sugars in the 

case of salmochelin produced by E. coli (Muller et al., 2009), or by not having catechols 

at all, as is the case with many other siderophores that use hydroxamate or carboxylate 

groups as their main chelating functionalities (Abergel et al., 2008a, Abergel et al., 

2006a, Abergel et al., 2006b, Abergel et al., 2009, Abergel et al., 2008b). 

The utility of petrobactin as a s tealth siderophore and virulence factor has been 

shown thus far only in B. anthracis. What's more, a survey of genetically similar strains 

showed that a large subset of Bacillus species contain genes homologous to asb on their 

genome, and though not all were reported to be pathogenic, the ability to synthesize 

petrobactin appeared essential for virulence in some of these strains (Abergel et al., 

2008b).  R ather than evolving mechanisms to facilitate iron scavenging during 

mammalian infection de novo, it seems plausible that the asb gene cluster may have been 

acquired by Bacillus through horizontal transfer from another unrelated species. Thus, the 

selective advantage gained during host infection by production of the stealth 3,4-DHBA 

component of petrobactin was an opportune advancement in iron acquisition lending to 
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pathogenesis.  To further highlight this, the asb biosynthetic gene cluster appears to be 

conserved in several different species that have had their genomes sequenced, including 

Gram-negative microbes like the above mentioned Marinobacter hydrocarboniclasticus, 

most of which are not regarded as pathogens (Homann et al., 2009, Koppisch et al., 

2008a).  It is unknown if the unique structure of petrobactin serves a higher purpose than 

simply scavenging iron.  W hile petrobactin biosynthesis is limited to bacterial species 

possessing homologs of asbA-F, “xenosiderophore” studies have shown that the 

pathogens S. aureus and B. subtilis, which lack asbABCDEF, are able to recognize 

petrobactin with their own siderophore receptors (Zawadzka et al., 2009b, Beasley & 

Heinrichs, 2010).  This is not surprising considering the structural similarity between NIS 

synthetase-derived siderophores like aerobactin (from E. coli), staphyloferrins (from S. 

aureus), and petrobactin, among others, and the selective advantage that may be acquired 

through the high-jacking of another species’ iron chelator (Grigg et al., 2010, Maresso & 

Schneewind, 2006, Wyatt et al., 2010, Wooldridge et al., 1992). This cross-recognition 

combined with the ubiquity of virulence associated NIS pathways makes petrobactin, due 

to its well-characterized pathway and unique stealth structure, useful in further 

understanding iron acquisition in bacterial pathogens (Tanabe et al., 2012). 

 

1.7 Iron Response Regulation 

The bacterial response to iron starvation is largely mediated by the ferric uptake 

response (Fur) regulator (Venturi et al., 1995, Ollinger et al., 2006b, Torres et al., 2010, 

de Lorenzo et al., 1988).  T he actual Fur protein is a d imeric AraC-like repressor that 

undergoes a conformational change in the absence of iron, resulting in release of bound 



 17 

DNA (Friedman & O'Brian, 2003, Pohl et al., 2003, Stojiljkovic & Hantke, 1995).  A 

canonical AT-rich DNA sequence constituting the “Fur box” precedes many iron 

acquisition genes in Bacillus spp., including dhb, responsible for bacillibactin 

biosynthesis, the elemental iron importer Ywb, and multiple ABC transporters 

hypothesized to be responsible for siderophore and heme uptake (Ollinger et al., 2006a, 

Honsa & Maresso).  In E. coli, an additional Fur-regulated gene constitutes a second level 

in low-iron response through expression of the siRNA RyhB, and the product FsrA 

appears to serve the analogous role in some Bacillus species (Gaballa et al., 2008, 

Smaldone et al.).  T hese polynucleotides post-transcriptionally affect multiple mRNAs 

with the end result of increasing precursor pools for siderophore biosynthesis, repressing 

translation of iron-dependent proteins, and repression of further expression of fur 

(Gaballa et al., 2008, Smaldone et al., MassÃ© et al., 2007).  While an exact homolog of 

FsrA does not show up in the B. anthracis genome, remnants of the recognition sequence 

for this small RNA are present near ORFs whose regulation is associated with iron 

starvation including chorismate biosynthesis and iron-sulfur enzyme gene clusters 

(NCBI-BLAST, unpublished data).  C onsidering this, it seems plausible that some 

undefined RNA mechanism would contribute to low-iron response in B. anthracis. 

Genetic and chemical analysis of B. anthracis revealed that the asb biosynthetic 

operon responsible for petrobactin biosynthesis is critical for infection of macrophages 

and in a mouse model (Lee et al., 2011, Koppisch et al., 2005, Cendrowski et al., 2004b).  

Interestingly, while petrobactin production is induced in iron-deficient conditions, there is 

no canonical Fur-box preceding any asb genes.  While there is some upstream sequence 

that may confer Fur-like regulator binding, multiple studies suggest additional factors 
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may control asb expression (Lee et al., 2011, W ilson et al., 2009b, Passalacqua et al., 

2007b).  Petrobactin production is also affected by paraquat- and H2O2-induced oxidative 

stress, variation in temperature, and oxygen availability (Lee et al., 2011, Passalacqua et 

al., 2007b, Wilson et al., 2010, Garner et al., 2004). Reinforcing this, global expression 

studies of Bacillus species demonstrate an overlap in expression profiles between 

response to oxidative stress and iron starvation (Passalacqua et al., 2007b, Pohl et al., Lee 

et al., 2011).  In addition to the requirement for iron-containing enzymes like catalase to 

prevent redox damage, an oxidative environment directly contributes to a loss of 

cytoplasmic and protein-bound ferrous (Fe2+) iron (Cornelis et al.). 

 

1.8 Siderophore Recognition  

 Since petrobactin plays such an important role in B. anthracis pathogenesis, early 

work in the Hanna lab sought to elucidate the role of two proteins implicated in 

petrobactin binding.  Deletion mutants lacking two putative siderophore binding proteins, 

FatB and FpuA, encoded by GBAA5330 and GBAA4766, respectively, were generated.  

Purified B. cereus homologs of these proteins were shown by others to have the ability to 

bind multiple forms of petrobactin, however their role in the pathogenesis of the 

bacterium remained untested (Zawadzka et al., 2009a).  Extensive work in our laboratory 

was done to demonstrate the role of these genes during growth in iron limited conditions 

in vitro as well as to determine their effect on murine virulence.   

 Despite the ability of both FpuA and FatB derived from B. cereus to bind 

petrobactin in vitro, only FpuA was shown to be important for the growth of B. anthracis 

under iron limiting conditions (Carlson et al., 2010). Importantly, mutants lacking the 
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FpuA substrate binding protein exhibited a severe growth defect when either vegetative 

bacteria or spores were tested for growth in iron depleted media (IDM) (Fig. 1-4, A).  

These cultures exhibited growth kinetics nearly identical to those of B. anthracis strains 

unable to synthesize petrobactin, ΔasbABCDEF (Dixon et al., 2012, Cendrowski et al., 

2004c, Lee et al., 2007, Carlson et al., 2010). Furthermore, a B. anthracis strain with 

deletions in both putative petrobactin binding proteins (ΔfpuA ΔfatB) grew to the same 

levels as ΔfpuA single mutants, while mutants lacking the single FatB protein were not 

impaired in their ability to grow in IDM (Carlson et al., 2010).  These data showed that 

the substrate binding protein, FatB does not play a critical role in petrobactin uptake by 

B. anthracis. Additionally, we showed that strains lacking the petrobactin binding 

protein, FpuA were severely attenuated in a murine inhalational anthrax infection model, 

with an LD50 nearly 3,000 times that of wild-type B. anthracis Sterne 34F2 (Fig. 1-4, 

B)(Carlson et al., 2010). This finding further emphasized the significance of petrobactin-

associated iron acquisition and the importance of FpuA in B. anthracis pathogenesis.  

The observed attenuation of the ΔfpuA strain is consistent with published reports on the 

attenuation of petrobactin biosynthesis mutants (Cendrowski et al., 2004c, Pfleger et al., 

2008), and  although the growth phenotypes of these two  strains appear very similar in 

IDM, slight differences in murine virulence were observed at higher doses, with LD50 of 

ΔasbABCDEF mutants approximately eight fold lower than that of the ΔfpuA strain. 

These results indicate that ΔfpuA mutants are slightly less virulent than even the 

petrobactin biosynthesis mutant, leading to the hypothesis that this receptor protein plays 

a secondary function during mammalian infection.  It is possible that this receptor is able 

to recognize exogenous siderophore-like molecules, or other ligands 
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Figure 1-4. Growth of B. anthracis mutant strains in iron depleted media and 
attenuation of virulence of the ΔfpuA strain in a murine model of infection.  (A) 
Wild-type (solid diamonds), ΔfatB (solid squares), ΔfpuA (open triangles), ΔfpuA ΔfatB 
(open squares), and ΔasbABCDEF (open circles) were grown in iron depleted media. All 
cultures were inoculated with vegetative bacilli at an initial OD600 = 0.05 and growth 
was monitored by measuring change in OD600 over time.  Data presented are 
representative of four individual experiments. (B) DBA/2J mice were infected by 
intratracheal infection with WT (filled diamonds) or ΔfpuA (open triangles) spores at 
1x105 spores per mouse.  Mice were monitored for fourteen days.  Survival curves for 
ΔfpuA were significantly different from wild-type by the log-rank test (p value is 
indicated above) (Figure adapted from Carlson and Dixon et al., 2010)  
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providing the bacterium with an increased survival advantage during infection.  Uptake 

of exogenous siderophores has been shown in other bacterial species including B. cereus 

and Pseudomonas aeruginosa (Greenwald et al., 2009, Ollinger et al., 2006b), however 

an exact mechanism for this in B. anthracis remains to be elucidated and will be 

discussed in Chapter 4. 

Taken together, these results provided the first genetic evidence demonstrating the 

role of FpuA in petrobactin uptake. Because FpuA has significant homology to the 

substrate binding proteins associated with the ATP binding cassette (ABC) transport 

systems used in other bacterial species for the import of iron-siderophore complexes, we 

hypothesized that petrobactin-associated iron acquisition in B. anthracis also occurs 

through an ABC-transport system (Quentin et al., 1999, Miethke & Marahiel, 2007, 

Koppisch et al., 2005, Koster, 2001).    

 

1.9 ATP-Binding Cassette Transport Systems 

 ATP-binding cassette (ABC) transporters play a crucial role in the life cycles of 

bacteria, archaea and eukaryotes and constitute one of the largest and most ancient 

superfamilies (Fuellen et al., 2005, Guidotti, 1996, Koster, 2001, Schneider & Hunke, 

1998, Lewis et al., 2012, Davidson et al., 2008). ATP systems couple the energy 

provided by ATP hydrolysis to drive the translocation of solutes (allocrites) across lipid 

membranes against a concentration gradient (Davidson et al., 2008, Davidson, 2002, 

Holland & Holland, 2005). Interestingly, there is phylogenetic evidence to support the 

notion that the ABC transport family may have diversified before the divergence of 

bacteria, archaea and eukaryotes on separate evolutionary paths (Lewis et al., 2012, 
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Albers et al., 2004, Annilo et al., 2003). Given the importance of these ABC systems in 

selective permeability to nutrients and metabolites, their development may have been one 

of the first distinctive properties of primitive cells (Schneider & Hunke, 1998, Seeger & 

van Veen, 2009, Higgins, 1992). Eukaryotic ABC transport systems have more recently 

gained attention due to their role in several severe human diseases, however bacterial 

ABC transport systems were first identified and characterized in detail in the 1970’s 

(Ames & Lever, 1970, Ferenci et al., 1977, Kellermann & Szmelcman, 1974). Examples 

of these include the histidine and maltose importers of Salmonella enterica serovar 

typhimurium and E. coli, respectively (Morbach et al., 1993, Gilson et al., 1982, Saurin et 

al., 1989, Walter et al., 1992, Nikaido et al., 1997, Liu & Ames, 1997). Almost 20 years 

ago now, following the completion of the nucleotide sequencing of these two systems, it 

became obvious that these ABC transport systems exhibited high similarity in the overall 

nature of their components (Davidson et al., 2008, Ames & Lecar, 1992). Furthermore, 

the components thought to be involved in driving translocation through the cell 

membrane via ATP hydrolysis shared up to 32% amino acid sequence identity (Gilson et 

al., 1982). Importantly, later work showed that bacterial proteins functioning in a wide 

array of translocation processes such as nutrient uptake, toxin export, DNA repair, etc., 

all shared similar sequences (Higgins et al., 1986, Doolittle et al., 1986). These findings 

suggested that conserved “ATP-binding” proteins provide the energy required to drive 

the transport of various substances in the systems mentioned above (Doolittle et al., 

1986). 

ABC systems can be divided into three main functional categories, as follows. 

The first of these are importers which mediate the uptake of nutrients in prokaryotes. A 
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schematic of typical iron uptake in Gram-positive bacteria using siderophore secretion 

and ABC-transport is illustrated in Figure 1-5. The list of substrates that are transported 

via ABC importers includes, but is not limited to, amino acids, peptides, organic and 

inorganic ions, mono- and oligosaccharides, metals, vitamins and iron-siderophore 

complexes (Davidson et al., 2008). Second are the exporters that are involved in secretion 

of various molecules such as toxins, hemolysins, hydrophobic drugs, and lipids just to 

name a few (Fath & Kolter, 1993). The third group of ABC systems is not actually 

involved in transport at all, and is instead required in other important cellular processes 

such as DNA repair and the translation of mRNA (Higgins, 1992). Bacterial ABC 

transport systems are associated with the inner membrane and are involved in both import 

and export of a variety of diverse secreted substrates as mentioned above (Davidson & 

Maloney, 2007).  In eukaryotes, however, these transporters are found in the plasma 

membranes as well as intracellular membranes, and unlike ABC transport systems of 

prokaryotes, these transporters are unidirectional out of the cytoplasm (Gottesman & 

Ambudkar, 2001, Higgins, 1992).   

 



 24 

 

 

Figure 1-5. Iron acquisition in Gram-positive bacteria using siderophore secretion 
and ABC-transport. Following the scavenging of iron from host proteins, such as 
transferrin, iron-siderophore complexes are recognized by a high affinity substrate-
binding protein on t he surface of the cell membrane and are transported into the 
cytoplasm of the bacterium through membrane associated ABC-transport systems for 
utilization.  
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ABC Transporter Structure 

 Despite the extremely diverse population of substrates and differences that exist 

in transport polarity, all ABC transporters share a common, prototypical structure 

containing four distinct domains: two membrane-spanning domains, or permease 

proteins, and two nucleotide-binding domains (NBDs), or ATPase proteins (Fig. 1-6, A) 

(Eitinger et al., 2011, Davidson et al., 2008, Kerr, 2002, Moody & Thomas, 2005). These 

domains, however, can be organized in a variety of ways. In importers, these four 

domains are almost always found in distinct polypeptide chains that come together to 

form a multimeric complex (Chen et al., 2003). Meanwhile, some ABC transporters can 

be encoded in a s ingle polypeptide, where the permease and the ATPase subunits are 

fused and allow for the formation of a homodimer protein in the active form (Locher, 

2009). Alternatively, bacterial ABC transporters can be encoded by two separate 

polypeptides, one permease and one ATPase, this would allow for a homodimer of 

heterodimers to form. More complex versions can also exist where one or more of either 

of the subunits, permease or ATPase, are distinct and come together to form an active 

transport complex (Jones et al., 2009). Conversely, in many eukaryotic ABC transport 

systems, all four domains are typically found in a single polypeptide (Higgins, 1992).  

 The permease components of ABC transporters form the channel across the 

bacterial membrane through which the allocrite is translocated (Hollenstein et al., 2007). 

The diversity of these transported elements is immense and has been reflected in the 

relatively low sequence similarities found amongst the permeases of various transporters. 

Inspection of the crystal structures of ABC permeases that have been determined so far 

reveals that some structural flexibility exists as demonstrated with the identification of 



 26 

three different folds (types I, II, and III) (Chen et al., 2003). Yet, there is one conserved 

characteristic that has been found in some bacterial import permease subunits, this is the 

EEA motif or L-loop, which provides a point of interaction between the ATPase and the 

permease subunits (Mourez et al., 1997, Schmitt et al., 2003). 

 

ATPase Domains 

 ATPase subunits of ABC transporters, unlike the permease subunits, have highly 

conserved “cassette” domains, or characteristic sequences that span a ~200 amino acid 

region (Higgins, 1992, Higgins, 2001, Higgins & Linton, 2001). In fact, all functional 

ATPases have a two-domain architecture that consists of a R ecA-like catalytic domain 

and a second, smaller helical domain (Story & Steitz, 1992, Story et al., 1992, Ames & 

Lecar, 1992), with the overall appearance of an ATPase having an L-shape. The signature 

motif, which is found between the Walker A and Walker B motifs (Fig. 1-6, B), is also 

known as the linker peptide or LSSGQ motif, and is traditionally used to identify ABC 

transporters of different species (Jones et al., 2009). It is only when an ATPase dimer is 

formed that the signature sequence comes into play allowing for interaction with ATP 

(Mourez et al., 1997). Two ATPase monomers orient in a “head-to-tail” fashion forming 

a sandwich where opposing Walker A and Walker B motifs come together to form the 

ATP binding pocket (Locher, 2009). The Walker A motif is common to several ATP- and 

GTP-hydrolyzing proteins and interacts with the phosphate moieties of ATP (Walker et 

al., 1982, Saraste et al., 1990).  Approximately 25 residues downstream of the Walker A 

motif is the A-Loop, which contains a well conserved tyrosine residue that is involved in 

interactions with the adenine moiety of ATP (Ambudkar et al., 2006, Kim et al., 2006). 
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The Walker B motif also interacts with ATP and forms a contact between the γ-phosphate 

and the Mg2+ cofactor through water molecules (Schneider & Hunke, 1998). Immediately 

following the Walker B motif is a highly conserved glutamate residue that has been 

shown to act as a general base in the ATP hydrolysis reaction (Lomovskaya et al., 2007). 

Approaching the C-terminal end of the ATPase domain, another motif called the D-loop 

contains the consensus sequence SALD and functions in communication between the 

ATP-binding sites of the two ATPase monomers by forming contacts between both cis 

and trans residues (Fig. 1-6, B)(Jones et al., 2009). The Q-loop, like the Walker B motif, 

contacts γ-phosphate of ATP through its single conserved glutamine reside (Fig. 1-6, B) 

(Schneider & Hunke, 1998). 
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Figure 1-6. Gram-Positive ATP-Binding Cassette (ABC) Transporter Domains and 
Conserved motifs in the ATPase. A. The structural organization of ABC- transporter 
consists of two hydrophobic membrane-spanning domains, or permeases, and two 
hydrophilic ATPase domains on t he inner surface of the cytoplasmic membrane that 
couple the energy of ATP hydrolysis to transport across the membrane-spanning 
permease channel. Gram-positive bacteria lack an outer membrane and periplasmic space 
,thus their importers rely on high-affinity substrate-binding proteins bound to the external 
side of the cytoplasmic membrane. Three characteristic motifs found in all ABC ATPases 
are represented by red boxes. B. The Walker A motif and the Walker B motif form the 
nucleotide binding  fold of the P-Loop ATPase family. The signature motif is unique to 
ABC ATPase proteins and interacts with ATP. Other characteristic motifs including the 
Q-Loop and H-Loop, contain just one highly conserved residue and are represented by 
blue boxes. These residues make contacts with the γ-phosphate of ATP. In the formation 
of the ATP dimer, the D-Loop makes contacts with the Walker A motif of the opposing 
monomer and is represented by a green box. The structurally diverse region (SDR) is 
located between the Q-Loop and the Signature sequence and constitutes a helical domain 
important for the formation of contacts between ATPases and their permease partners. 
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ABC Transporter Assembly 

 In bacteria, a vast number of ABC proteins with various transport roles exist, and 

as mentioned above, several of these have their ATPase and permease subunits expressed 

as separate polypeptides. This brings forth the dilemma of molecular recognition and the 

ability to dock to the correct counterpart for the formation of a functional ABC transport 

complex. For that reason, specificity and diversity in the primary and tertiary structures 

of these proteins helps to ensure the correct “fit”. Between the Q-Loop and the signature 

sequence lays a structurally diverse region (SDR) that is thought to facilitate the correct 

pairing of permeases to their cognate ATPase subunits (Fig. 1-6, B) (Schmitt et al., 2003, 

Schneider & Hunke, 1998).  

 In short, the ATPase components of the ABC transport complexes are highly 

conserved among bacterial species and provide the “motor” of the translocation process 

through the binding and hydrolyzing of ATP, while the Walker A and B motifs, H-Loop, 

and signature motif are responsible for the binding and hydrolysis of ATP (Fig. 1-6, B) 

(Smith et al., 2002).  Furthermore the Q-and D-Loops are thought to couple the substrate 

binding sites of the permease proteins to the ATP-binding sites of the ATPases and 

assists in forming dimer interactions (Fig. 1-6, B) (Davidson et al., 2008, Davidson & 

Maloney, 2007). Much investigation has gone into showing that the free energy change 

provided by ATP hydrolysis is coupled to the translocation of solutes across the 

membrane, however there is still some debate as to whether ATP is actually necessary to 

drive the initial transport events or whether its role is to merely reset the permease 

channel configuration to an open, solute-accepting “ready” state (Higgins & Linton, 
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2004). Nevertheless, the action of coupling ATPase activity to a change in the 

conformation of the permease channel to drive transport is key. 

 The majority of bacterial ABC transport systems relies on the presence of high-

affinity extracytoplasmic substrate binding proteins (SBP) and can be referred to as 

binding protein dependent (BPD) transport systems (Fig. 1-6, A) (Wolters et al., 2010, 

Berntsson et al., 2010). In gram-positive bacteria, such as in the case of B. anthracis, 

which lack a periplasm, the SBP are often lipoproteins that are found bound to the 

external face of the cytoplasmic membrane by N-terminal acyl-glyceryl cysteines 

(Davidson et al., 2008). SBP typically bind their substrates with extremely high affinities 

in the range of 0.01 to 1 μM allowing for high transport efficiency even at very low 

substrate concentrations (Koster, 2001, Dippel & Boos, 2005). In fact, many cells can 

actually concentrate translocated nutrients up to 106-fold when found at submicromolar 

levels in the extracellular environment (Dippel & Boos, 2005). While most transporters 

are specific for a single type of substrate, it is possible that a single SBP can have wide 

substrate specificity as is the case in the multiple-sugar transporter Msm of Streptococcus 

mutans, which can recognize five diverse sugar molecules (Russell et al., 1992, Tao et 

al., 1993). It is also possible for multiple SBP’s to have different binding specificities and 

interact with a single transporter. An example of this is illustrated by the histidine, lysine, 

and arginine transport system of Enterobacteriaceae (Higgins & Ames, 1981). 

  

ABC Transport and Petrobactin Utilization 

 FpuA, the virulence associated petrobactin-recognition protein characterized by 

my early work in the Hanna lab, has significant homology to the substrate binding 
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proteins found in the ATP-binding cassette transport systems referred to above. Since this 

mechanism is used in other bacterial species for the import of iron-siderophore 

complexes (Miethke & Marahiel, 2007), it was hypothesized that petrobactin-associated 

iron acquisition in B. anthracis also occurs through an ABC-transport mechanism.   With 

key aspects of the structure and function of these vital transport systems now introduced, 

the remaining chapters in this thesis will demonstrate the importance of specific ABC 

transport components in B. anthracis pathogenesis, particularly iron acquisition, and the 

utility of these systems in anthrax therapeutic design. 
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Chapter 2 

Multiple ABC Transporters are Involved in the Acquisition of Petrobactin by 

Bacillus anthracis 

 

2.1 Introduction 

 The production and secretion of siderophores is the primary mechanism of iron 

acquisition by Bacillus anthracis (Ratledge & Dover, 2000). B. anthracis produces two 

distinct siderophore molecules, bacillibactin and petrobactin (Wilson et al., 2006, Hotta 

et al., Cendrowski et al., 2004b, Koppisch et al., 2005, Lee et al., 2007, Pfleger et al., 

2007, Pfleger et al., 2008b, Zawadzka et al., 2009b, Zawadzka et al., 2009a); however, in 

this species, petrobactin is the only siderophore essential for growth in macrophages and 

murine virulence (Koppisch et al., 2005, Cendrowski et al., 2004b, Garner et al., 2004, 

Abergel et al., 2006a, Abergel et al., 2008). This compound has a 3,4-hydroxyl 

orientation on its catecholate moieties (3,4-dihydroxybenzoate) that is unique among 

siderophores. This uncommon orientation allows petrobactin to evade recognition by the 

human immune protein siderocalin, thus petrobactin has been termed the “stealth 

siderophore” of B. anthracis (Abergel et al., 2006a, Pfleger et al., 2008b, Zawadzka et 

al., 2009b). 

The stages of petrobactin biosynthesis have been well studied in B. anthracis 

(Abergel et al., 2008, Abergel et al., 2006b, B arbeau et al., 2002, C endrowski et al., 
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2004a, Challis, 2005, F ox et al., 2008, K adi & Challis, 2009, K oppisch et al., 2008a, 

Koppisch et al., 2005, Koppisch et al., 2008b, Lee et al., 2007, Lee et al., 2011, Liu et al., 

2007, Oves-Costales et al., 2009, Oves-Costales et al., 2007, Oves-Costales et al., 2008, 

Pfleger et al., 2008a, Pfleger et al., 2007, Wilson et al., 2009, Wilson et al., 2006). 

However, only some of the details about iron-petrobactin import are known. We have 

previously shown that FpuA is the receptor protein required for normal growth under 

iron-depleted conditions and for murine virulence (Carlson et al., 2010). Furthermore, 

FpuA shows high sequence homology with the receptor components of ATP-binding 

cassette (ABC)-transport systems from other bacteria; therefore transport of iron-

petrobactin most likely occurs through an ABC-transport system. 

A bioinformatic search produced six candidate permease and seven ATPase genes 

that were hypothesized to be involved in ferri-siderophore transport based on sequence 

homology to well-characterized systems in other species. Markerless deletion of these 

genes were made in a Sterne 34F2  background. Through subsequent observation of the 

mutants for phenotypes in iron-depleted conditions and a mouse model of anthrax, I now 

present the identification and characterization of all permease and ATPase components of 

the ABC-import system required for iron uptake via the virulence-associated siderophore 

petrobactin in B. anthracis. 
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2.2 Results  

Identification of two individual permeases involved in petrobactin reacquisition 

Seven iron-hydroxamate transporter permeases were identified as putative 

components of the B. anthracis petrobactin import system. Each of these proteins has 

significant sequence homology to the well characterized ATP-dependent iron (III) 

hydroxamate permease (FhuB) from Escherichia coli (Koster, 2001, Koster, 2005), and 

all are induced by iron starvation (Carlson et al., 2009). Genetic organization of these 

putative permeases fall into two classes: those that are encoded by a s ingle gene 

(GBAA4767, GBAA4596, GBAA4785, and GBAA5630), and those that are encoded by 

two consecutive genes (GBAA5328-5329, GBAA3865-3866, and GBAA0616-0617) 

(Fig. 2-1). Of these predicted permeases, the most obvious candidate for a role in 

petrobactin import was GBAA4767 (fpuB), as it is located directly downstream and likely 

co-transcribed with fpuA, which encodes the petrobactin receptor protein (Carlson et al., 

2010). Another attractive candidate was the heterodimeric permease FatCD (GBAA5328-

5329). An orthologue of this permease, YclNO, was previously shown to be required for 

petrobactin reacquisition in B. subtilis (Zawadzka et al., 2009b).  

To test if any of these putative permease proteins were required for the import of 

petrobactin, individual mutants lacking each of the seven permeases were constructed and 

analyzed. Each mutant was examined for the ability to grow in iron-depleted media 

(IDM).  M utants unable to synthesize or import petrobactin display a severe growth 

defect under these conditions (Carlson et al., 2010, C endrowski et al., 2004b). 

Surprisingly, none of the single permease mutants, including ∆fpuB and ∆fatCD,  
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Figure 2-1.  Organization of genes investigated in this work. The genes encoding the 
iron associated ABC transporter components investigated in this work reside in seven 
separate clusters. Those found to be involved in the reacquisition of petrobactin belong to 
four of these clusters; individual genes directly involved in this process are marked with 
asterisks. Gene names for fpuB (GBAA4767; previously annotated as fhuB), fpuC 
(GBAA4595), fpuD (GBAA0618), and fatE (GBAA5327) have been updated to reflect 
their involvement in petrobactin transport. The three other gene clusters investigated here 
showed no i nvolvement in this process. All clusters are aligned in the order 
receptor/permease/ATPase, with the exception of GBAA5629, which is labeled 
separately as this ATPase gene is positioned between the receptor and permease genes in 
its cluster.  Dotted lines between consecutive genes were used for alignment purposes and 
do not indicate actual space between the genes. The annotated or predicted functions of 
all genes flanking each cluster are also shown. Intergenic region between the clusters and 
the flanking genes are not to scale. 
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exhibited a growth defect in IDM (Fig. 2-2A, solid squares and solid triangles, Fig. 2-S1 

and Table 1-S1). It was therefore hypothesized that more than one of the putative 

permeases could facilitate the import of petrobactin. To test this, a mutant lacking the two 

most likely candidate permeases, FpuB and FatCD, was generated. The ΔfpuBΔfatCD 

mutant exhibited a severe growth defect in IDM (Fig. 2-2A, open diamonds), similar to 

that of mutants deficient in both petrobactin transport (ΔfpuA) and petrobactin 

biosynthesis (ΔasbABCDEF) (Fig. 2-2A, open squares and open triangles, respectively). 

These results suggest that these proteins play redundant roles in petrobactin transport.  It 

is important to note that this growth defect was iron dependent, as all mutants tested 

exhibited wild-type growth levels in rich media (Fig. 2-2B, and data not shown).   

To further demonstrate the role of these permeases in petrobactin import, it was 

necessary to eliminate the possibility that these mutants were unable to produce or secrete 

the siderophore. There are several phenotypes that can distinguish an import deficient 

mutant (e.g. ΔfpuA), from a biosynthetic mutant (e.g. ΔasbABCDEF), including the 

inability to be chemically rescued with supplemental petrobactin, accumulation of 

extracellular catechol, and resistance to gallium toxicity (Carlson et al., 2010). The first 

phenotype tested was the ability to be chemically rescued to wild-type growth levels in 

IDM by the addition of exogenous petrobactin.  This supplementation allows for recovery 

of growth of petrobactin biosynthetic mutants, while transport deficient mutants are not 

complemented in this manner. Spores of wild-type, ΔasbABCDEF, ΔfpuA, or 

∆fpuB∆fatCD strains were grown in IDM with or without supplemental petrobactin (2.5 

µM).  As expected, the growth of the petrobactin biosynthetic mutant was fully restored  
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Figure 2-2.  Growth phenotypes of B. anthracis mutant strains. All cultures were 
inoculated with actively growing vegetative bacilli at an initial OD600 of 0.05.  Growth 
was monitored hourly by measuring OD600. Wild-type and ΔasbABCDEF strains were 
used in all experiments as controls. (A, B) Growth of permease deletion mutants. Wild-
type (solid diamonds), ∆fpuB (solid squares), ∆fatCD (solid triangles), ∆fpuB∆fatCD 
(open diamonds), ΔfpuA (open squares), and ΔasbABCDEF (open triangles) strains were 
grown in either IDM media (A) or BHI media (B). (C, D) Growth of ATPase deletion 
mutants. Wild-type (solid diamonds), ∆fpuB∆fatE (solid squares), ∆fatCD∆fpuC∆fpuD 
(solid triangles), ∆fatE∆fpuC∆fpuD (open diamonds), and ΔasbABCDEF (open triangles) 
strains were grown in either IDM media (C) or BHI media (D). Data are presented as 
mean ± standard deviation of triplicate measures from one experiment and represent at 
least three independent experiments. 
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Figure 2-3. Petrobactin supplementation does not restore growth of transport 
deficient mutants in IDM. Cultures of either IDM (A) or in IDM supplemented with 2.5 
µM purified petrobactin (B) were inoculated with 1×105 spores of wild-type (solid 
squares), ΔasbABCDEF (solid triangles), ΔfpuA (solid circles), ∆fpuB∆fatCD (open 
squares), ∆fpuB∆fatE (open triangles), or ∆fatCD∆fpuC∆fpuD (open circles). Growth 
was monitored by measuring OD600 over nine hours. Data are presented as mean ± 
standard deviation of triplicate measures from one experiment and represent at least three 
independent experiments. 
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by this supplementation (Fig 2-3. A and B, solid triangles).  However, this treatment did 

not restore growth of the double permease mutant (∆fpuB∆fatCD), indicating an inability 

to import petrobactin (Fig 2-3. A and B, open squares).  This result was identical to that 

of the known petrobactin transport mutant (ΔfpuA) (Fig. 2-3 A and B, solid circles) 

(Carlson et al., 2010, Arnow, 1937). 

A second phenotype of mutants unable to import petrobactin is significant 

accumulation of catechol in the culture supernatant, compared to that seen in wild-type 

strains (Carlson et al., 2010). The individual permease mutants, ∆fpuB and ∆fatCD, and 

the double mutant, ∆fpuB∆fatCD, were assayed for extracellular catechol using the 

Arnow assay (Arnow, 1937). The petrobactin biosynthetic mutant was included as a 

control for non-petrobactin catechols.  A s reported previously (Carlson et al., 2010), 

culture supernantants from this strain exhibited minimal levels of catechol, indicating that 

the majority of what was observed is petrobactin (Fig. 2-4, ΔasbABCDEF).  C atechol 

levels detected in the supernatants of all single permease mutants were nearly identical to 

those found in wild-type supernatants (Fig. 2-4). However, extracellular catechol levels in 

the culture supernatant of ∆fpuB∆fatCD were significantly higher than those detected in 

wild-type (Fig. 2-4). These results are similar to those obtained for ∆fpuA, which is 

unable to import petrobactin (Fig. 2-4 and (Carlson et al., 2010)).  

The final phenotype tested was resistance to gallium toxicity. Gallium resistance 

has been used to show siderophore transport in several bacterial systems (Olakanmi et al., 

2000, Banin et al., 2008, Ecker & Emery, 1983, Carlson et al., 2010). Gallium is able to 

bind to siderophores with high efficiency (Zawadzka et al., 2009b, Banin et al., 2008)  
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Figure 2-4. Accumulation of extracellular catechols in petrobactin transport 
deficient strains. Catechols were measured in filtered culture supernatants following six-
hour growth of either control strains (black bars), permease mutants (white bars), or 
ATPase mutants (grey bars) using the Arnow assay.  Data were normalized to the OD600 
of cultures and are presented as percent of wild-type catechol levels. Data are presented 
as mean ± standard deviation of triplicate measures from one experiment and represent 
three or more independent experiments.   * = p ≤ 0.005. The level of catechol observed 
from ∆fpuB∆fatCD is not statistically significant (p = 0.52) from ∆fpuA. 
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Figure 2-5. Resistance of petrobactin transport deficient strains to gallium toxicity. 
Control strains (black bars), permease mutants (white bars), or ATPase mutants (grey 
bars) were grown in IDM with or without 20 µM gallium sulfate and examined for 
change in OD600 after two hours. Results are presented as percent growth inhibition in the 
presence of 20 µM gallium sulfate. Data are presented as mean ± standard deviation of 
triplicate measures from one experiment and represent at least three independent 
experiments. * =   p ≤ 0.0001.  Percent growth inhibition was calculated as {[(OD600 
IDM + gallium)/ (OD600 IDM)]*100}. 
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and is toxic when imported into the bacterial cytoplasm (Banin et al., 2008). Previous 

studies have shown that the addition of 20 µ M gallium sulfate to IDM culture media 

results in a petrobactin-dependent growth defect in wild-type B. anthracis (Carlson et al., 

2010). To further test the ability of ∆fpuB∆fatCD to import petrobactin, growth of this 

strain was examined in the presence of gallium. Wild-type, ΔasbABCDEF, ΔfpuA, 

ΔfpuB, ΔfatCD, and ∆fpuB∆fatCD strains were incubated in the presence or absence of 

gallium sulfate and growth was measured by change in OD600 after two hours. The 

addition of gallium sulfate to wild-type B. anthracis resulted in a significant growth 

inhibition when compared to cultures grown without gallium (Fig. 2-5). In contrast, 

strains unable to produce or import petrobactin are protected from this toxicity (Fig. 2-5, 

∆fpuA and ΔasbABCDEF) (Carlson et al., 2010, Cendrowski et al., 2004b).   As predicted 

by their ability to grow in IDM, both single permease mutants (ΔfpuB and ΔfatCD) were 

significantly inhibited by the presence of gallium (Fig. 2-5).  Much like the petrobactin 

biosynthetic mutant, the double permease mutant, ∆fpuB∆fatCD, was not significantly 

inhibited by the presence of gallium (Fig. 2-5).   

The ∆fpuB∆fatCD mutant is attenuated for virulence in a murine model of 

inhalational anthrax 

 Known petrobactin biosynthetic (ΔasbABCDEF) and receptor (∆fpuA) mutants 

exhibit significant attenuation in murine virulence (Cendrowski et al., 2004b, Carlson et 

al., 2010). Therefore, it was hypothesized that a strain lacking all permease components 

of the petrobactin import system would exhibit a similar attenuation. To test this 

hypothesis, a murine model of inhalational anthrax was used (Cendrowski et al., 2004b). 

Mice were inoculated intratracheally with either wild-type (n=8) or ΔfpuBΔfatCD (n=16) 
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spores at a dose of approximately 20 times the LD50  (1 x 105 spores/mouse).  Mice were 

then monitored for 14 days post-infection. As expected, all mice infected with wild-type 

spores succumbed to infection within four days (Fig. 2-6A, circles) (Cendrowski et al., 

2004b). In sharp contrast, mice inoculated with the ΔfpuBΔfatCD strain exhibited a 

significant increase in survival (p ≤ 0.0001), with the majority of mice (15 of 16) 

surviving the full two-week experiment (Fig. 2-6A, solid squares).  
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Figure 2-6. Attenuation of double permease mutant and ATPase mutants in murine 
model of inhalational anthrax. DBA/2J mice were infected via intratracheal inoculation 
with either wild-type (solid circles, n=8, A and B), ∆fpuB∆fatCD (solid squares, n=16, 
A), ∆fatCD∆fpuC∆fpuD (solid squares, n=8, B) or ∆fpuB∆fatE (solid triangles, n=8, B) 
mutant spores at a dose of 1 x 105 spores/mouse.  Mice were monitored for fourteen days 
after infection. The survival curve for all mutant strains tested here were significantly 
different from wild-type by the log-rank test (p ≤ 0.0001).  
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Identification of three ATPase components involved in petrobactin transport 

 Six ATPase proteins were identified as candidates for a role in petrobactin import. 

These putative ATPases are encoded by GBAA4595, GBAA0618, GBAA5629, 

GBAA4784, GBAA3864, and GBAA5327 (Fig. 2-1). To assess the putative role of these 

candidate proteins in petrobactin transport, six single deletion mutants were generated, 

each lacking one of these genes.  Similar to what was observed for the permeases, none 

of these single mutants exhibited a growth defect in IDM (Fig. 2-S1 and Table 2-S1).  

These findings, and the identification of two distinct petrobactin-specific permeases as 

described above, suggested the possibility that distinct ATPases could be functioning 

individually with each permease. Of the six putative ATPases, fatE is located directly 

downstream of the fatCD and was, therefore, the most likely candidate to function with 

this permease. To determine whether FatE was functioning with the FatCD permease, it 

was necessary to prevent transport through the other permease, FpuB. Therefore, a 

mutant lacking the FatE ATPase was generated in the ΔfpuB background. This mutant, 

∆fpuB∆fatE, displayed all of the hallmark characteristics of a petrobactin import mutant 

including a growth defect in IDM (Fig. 2-2C, solid squares), an inability to be restored to 

wild-type growth levels by the addition of exogenous petrobactin (Fig. 2-3A and B, open 

triangles), increased extracellular catechol levels in culture supernatants (Fig. 2-4, grey 

bars), and resistance to gallium induced growth inhibition (Fig. 2-5, grey bars).  These 

phenotypes combined implicate FatE in petrobactin import through interaction with the 

FatCD permease. 

 In order to identify the ATPase(s) functioning with the FpuB permease, an 

analogous approach was taken. Each of the remaining five putative ATPase genes was 
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deleted individually in the ΔfatCD background. However, none of these mutants 

exhibited a growth defect in IDM (data not shown). This result suggested that multiple 

ATPases were functioning with this single permease. To test this, a double ATPase 

deletion mutant was generated in the ΔfatCD background targeting the two genes 

(GBAA4595 and GBAA0618) having the highest amino acid sequence identity to the 

FhuC ATPase from Escherichia coli (45% and 42% identity, respectively). This mutant, 

∆fatCD∆fpuC∆fpuD, displayed all of the phenotypic characteristics of a mutant deficient 

in petrobactin import. These included an inability to grow to wild-type levels in IDM 

(Fig. 2-2C, solid triangles), an inability to be restored to wild-type growth levels by the 

addition of exogenous petrobactin (Fig. 2-3A and B, open circles), increased extracellular 

catechol levels in culture supernatants (Fig. 2-4, grey bars), and protection from gallium 

induced growth inhibition (Fig. 2-5, grey bars).  W e therefore propose naming these 

genes fpuC (GBAA4595) and fpuD (GBAA0618). A mutant lacking only these two 

ATPases, but still encoding the FatCD permease (∆fpuC∆fpuD) did not have a growth 

defect in IDM (data not shown).  Indeed, no mutant lacking two of these ATPases (fatE, 

fpuC, or fpuD) showed any phenotype. Furthermore, to test whether these ATPases were 

also importance for virulence, mice were inoculated intratracheally with either wild-type 

(n=8), ∆fatCD∆fpuC∆fpuD (n=8), or ∆fpuB∆fatE (n=8) spores at a dose of approximately 

20 times the LD50 (1 x 105 spores/mouse).  Mice were then monitored for 14 days post-

infection. All mice infected with wild-type spores succumbed to infection within four 

days (Fig. 2-6, A and B circles) while, mice inoculated with either ∆fatCD∆fpuC∆fpuD 

or ∆fpuB∆fatE strains were highly attenuated for virulence (p ≤ 0.0001), compared to that 

of wild-type (Fig. 2-6B, solid squares or solid triangles). All of these data combine to 



 
 

64 

implicate the ATPases encoded by fpuC and fpuD in the import of petrobactin through 

interaction with the FpuB permease.  

 Finally, a m utant lacking all three ATPase components was constructed 

(∆fatE∆fpuC∆fpuD).  T his strain retained wild-type copies of both of the identified 

petrobactin reacquisition permeases. The triple ATPase mutant exhibited the expected 

growth defect in IDM (Fig. 2-2C, open diamonds). As expected, the ∆fatE∆fpuC∆fpuD 

mutant also exhibited increased catachol levels (Fig. 2-4, grey bars), and no sensitivity to 

gallium (Fig. 2-5, grey bars).  However, in addition to the growth defect observed in 

IDM, this mutant grew poorly in sporulation media, and failed to sporulate efficiently. 

Due to the inability to isolate spores, the petrobactin supplementation assay could not be 

performed. Although the mutant failed to grow well in sporulation media, it did not 

exhibit a general growth defect, as it grew as well as wild-type in rich media, (Fig. 2D, 

open diamonds) or in IDM supplemented with 20 µM ferrous sulfate (data not shown). 

The growth and sporulation defects observed for the ∆fatE∆fpuC∆fpuD mutant could be 

complemented in trans.  Growth in IDM was restored to wild-type levels when either 

fpuD or fatE was expressed from a plasmid, (Fig. 7, s olid triangles and solid circles, 

respectively). The ability to grow well in sporulation media and produce spores was 

restored in the complemented strains as well (data not shown). For unknown reasons, 

attempts to complement fpuC are so far unsuccessful. 
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Figure 2-7. Complementation of triple ATPase mutant. All cultures were inoculated 
with vegetative bacilli at an initial OD600 of 0.05 and growth was monitored hourly for 
six hours by measuring increase in OD600. Wild-type/pMJ01+ and 
∆fatCD∆fpuC∆fpuD/pMJ01+ strains were used as empty vector controls. Wild-
type/pMJ01+ (solid squares), ∆fatE∆fpuC∆fpuD/pMJ01+ (open diamonds), 
∆fatE∆fpuC∆fpuD/pfpuD+ (solid triangles), ∆fatE∆fpuC∆fpuD/pfatE+ (solid circles) 
strains were grown in IDM media containing 10µg ml-1 chloramphenicol. Data are 
presented as mean ± standard deviation of triplicate measures from one experiment and 
represent at least three independent experiments.  
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2.3 Discussion 

B. anthracis encodes a number of genes involved in scavenging iron from a variety of 

sources, including those responsible for the biosynthesis of two siderophores (Carlson et 

al., 2009, Lee et al., 2007).  However, both murine virulence and the ability to grow in 

iron depleted medium in vitro are only dependent on the ability to produce and reacquire 

one of these molecules, petrobactin.  Previous work established both the importance of 

petrobactin biosynthesis, and the requirement of the petrobactin receptor FpuA in its 

utilization (Lee et al., 2007, Carlson et al., 2009, Carlson et al., 2010, Cendrowski et al., 

2004b, Garner et al., 2004).  The work presented here identifies two permeases and three 

ATPases that also function in petrobactin import. These proteins appear to function with 

the petrobactin receptor FpuA, presumably making at least three ABC transporter 

complexes, each independently sufficient for the reacquisition of petrobactin (Fig. 2-8). 

Two of these transporter complexes involve association of the receptor, FpuA, with the 

FpuB permease. In turn, FpuB can function with either of two separate ATPases, FpuC or 

FpuD (Fig. 2-8, complexes A and B). The third transporter complex consists of FpuA 

associated with the FatCD permease and the FatE ATPase (Fig. 2-8, complex C).   

 While it is common for all of the components of a bacterial ABC transporter to be 

encoded within a single operon, instances exist where the genes encoding these 

components are located in separate positions on the genome. The genes that encode the 

components for petrobactin acquisition exhibit this partially unclustered genetic 

organization. The genes encoding FpuA and FpuB belong to a single operon lacking a 

gene encoding an ATPase (Fig. 2-1). Two distinct genes (fpuC and fpuD), found at  
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Figure 2-8.  Proposed model for Bacillus anthracis petrobactin ATP-Binding 
Cassette (ABC) Import. Extracellular petrobactin (black crescents) binds to ferric iron 
ions (grey ovals) prior to reacquisition. The proteins required for the import of 
petrobactin include the substrate-binding receptor protein FpuA (required in all three 
complexes), two hydrophobic membrane-spanning domains, or permeases, FpuB 
(complex A and B) and FatCD (complex C), and three cytoplasmic ATPase domains, 
FatE, and proteins FpuC and FpuD that couple the energy of ATP hydrolysis to import 
petrobactin. It is presumed that the iron-siderophore complex is imported through the 
cytoplasmic membrane via one of these three canonical (substrate-binding protein 
dependent) ABC- transport protein complexes. 
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separate locations on the chromosome, encode ATPase components that can individually 

energize import through FpuB (Fig. 2-8, complex A and B). These genes belong to 

otherwise uncharacterized iron-transport clusters containing both putative receptor and 

permease genes (Fig. 2-1) that play no apparent role in petrobactin reacquisition. For the 

FpuA/FatCDE transport complex (Fig.2-8, complex C), the genes encoding the permease 

and ATPase components are contained within the same operon, fatBCDE. FatB, an 

apparent substrate binding protein, is not required for petrobactin import, but may serve 

some other undefined role (Carlson et al., 2010).  

 Often the components of ABC transporters are unique to an individual transporter, 

although some promiscuity, similar to what is reported here for petrobactin import, has 

been observed. For example, the MsmK ATPase from Streptococcus  pneumoniae 

associates with the transmembrane domains of multiple carbohydrate transporters, 

including those involved in the import of sialic acid (SatABC), raffinose (RafEGF) and 

maltotetraose (MalXCD) (Marion et al., 2011). Additionally, the FhuC ATPase from 

Staphylococcus aureus functions as the ATPase component of three distinct iron-

siderophore transporters, HtsABC, SirABC and FhuCBG. These transporters are required 

for staphyloferrin A, staphyloferrin B, and  hydroxamate-mediated iron acquisition, 

respectively (Beasley & Heinrichs, 2010). Similarly, the plasmid-encoded anguibactin 

uptake system of Vibrio anguillarum lacks an ATPase, and relies on a yet unidentified 

enzyme encoded on the chromosome (Koster et al., 1991, Lopez & Crosa, 2007). The 

work presented here reports an unusual inverse of these configurations in which a single 

substrate-binding protein, FpuA, presents petrobactin to two distinct permeases and 

furthermore, these two permease proteins display association with discrete ATPases. 
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 Despite the compelling genetic analysis presented here suggesting three 

complexes following the canonical model for ABC transporters (Eitinger et al., 2011), we 

note that protein-protein interaction studies have not been performed.  Additional 

characterizations, including the relative abundance of each transporter on the cell surface 

and preference of the receptor FpuA for the permeases FpuB or FatCD remain to be 

determined. Also, the question of when iron is removed from petrobactin, before or after 

import, remains. Considering the similarity in structure of petrobactin to other well-

characterized siderophores including aerobactin (Koster & Braun, 1990a, Koster & 

Braun, 1990b, Wooldridge et al., 1992) and bacillibactin (Miethke et al., 2006), it is 

likely that the intact ferric-petrobactin holo-complex is transported across the membrane.  

According to this model, reduction of the metal (Miethke & Marahiel, 2007) or 

degradation of the siderophore (Miethke et al., 2006, Garénaux et al., 2011) by currently 

unidentified enzymes would then allow for release of iron in the bacterial cytoplasm. 

However, the possibility exists that the release of iron from petrobactin occurs prior to 

internalization. This has been observed in Salmonella typhimurium and in 

Mycobacterium tuberculosis where the enzymatic reduction and release of iron from 

either ferrioxamine or mycobactin, respectively, occurs by extracellular iron reductases 

(Cowart, 2002, Ratledge, 2004).  

 We propose that the permeases FpuB and FatCD play redundant roles in 

petrobactin import, with either protein able to associate with their respective ATPases 

and the FpuA receptor in the formation of a canonical ABC transport complex.  

Additional redundancy is observed by the association of FpuB with two ATPases, FpuC 

or FpuD (Fig. 2-8, Complexes A and B), either of which is sufficient for petrobactin 
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import.  The genes that encode these two ATPases belong to gene clusters that contain 

both receptor and permease components and have high homology to other ABC 

transporters involved in ion transport (Fig. 2-1, GBAA4597 and GBAA0615 gene 

clusters).  It seems likely, therefore, that these ATPases are functional components of 

transporters with roles other than petrobactin acquisition.  A possible example of this 

multi-functionality is demonstrated by the growth defect of the triple mutant 

(ΔfatEΔfpuCΔfpuD) in sporulation media, a defect not present in any other mutant, 

independent of their growth phenotypes in IDM. This inability to produce spores is most 

likely the result of the poor growth in the sporulation media, versus a defect in the 

sporulation machinery.  However, the exact nature of this defect is unknown. 

 Petrobactin-facilitated iron uptake is a determinant of B. anthracis virulence.  

Through this, and previous work, we have completed the identification of components 

composing the import machinery facilitating this process.  The petrobactin import system 

consists of redundant gene products that interact with specific partners in the formation of 

three canonical ABC transport complexes (Fig. 2-8, complexes A, B, and C).  The 

description of siderophore uptake systems provides the identification of potential 

therapeutic targets for combating bacterial infections and creates a more accurate model 

of steps critical to the life cycle B. anthracis during pathogenesis. These findings also 

highlight the importance of host iron acquisition mechanisms during bacterial infection.   
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2.4 Experimental Procedures: 

Bacterial growth and sporulation conditions 

 Bacterial strains used for this study are described in Table 2-1. All mutant strains 

were derived from the B. anthracis Sterne 34F2 strain (pXO1+, pXO2-). Spores were 

generated as described previously (Passalacqua & Bergman, 2006), except that growth of 

the cultures was performed at 37°C and purified by passage through a 3.1 micron glass 

microfiber filter (National Scientific Company) to increase purity. Spore stocks were 

stored at room temperature in sterile water and titered using a hematocytometer to the 

desired concentration for use in mouse infection and petrobactin supplementation studies. 

All subsequent experiments were performed from these stocks. For experiments 

performed under low iron conditions, iron-depleted media (IDM) was prepared as 

previously described (Cendrowski et al., 2004b). For IDM growth experiments, overnight 

cultures grown in brain heart infusion broth (BHI) were back-diluted 1:50 in fresh 

medium and allowed to grow for 1 hour at 37°C. Actively growing cells were collected 

by centrifugation at 1600 ×g, and the pellets were washed five times in IDM to remove 

residual iron. The washed cells were inoculated into IDM at a final optical density at 600 

nm (OD600) of 0.05. For complementation experiments, cultures were supplemented with 

10 µg ml-1 of chloramphenicol where indicated for plasmid maintenance. Cultures were 

grown at 37°C with aeration, and the OD600 was measured hourly for six hours. For 

experiments performed with supplemental petrobactin, cultures were inoculated with 1 x 

105 spores of the specified strains in 2 ml IDM with or without the addition of 2.5 µM 

petrobactin (Carlson et al., 2010), and were monitored for change in OD600 over nine  
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Table 2-1. Bacillus anthracis strains used in this study 

Strain/ Genotype Relevant Characteristics Reference 

Sterne 34F2 Wild type (pXO1+, pXO2−)  (Sterne, 1939) 
34F2, ΔasbABCDEF Petrobactin biosynthesis mutant  (Lee et al., 2007) 
34F2, ΔfpuA  Petrobactin receptor mutant (Carlson et al., 2010) 
34F2, ΔfpuB    This work 
34F2, ΔfatCD    This work 
34F2, ΔfpuBΔfatCD   ΔfatCD into ΔfpuB This work 
34F2, Δ GBAA0616-0617  This work 

34F2, Δ GBAA3865-3866  This work 

34F2, ΔGBAA4596  This work 

34F2, ΔfpuC   This work 
34F2, ΔfpuD   This work 
34F2, ΔGBAA5629   This work 
34F2, ΔGBAA4784   This work 
34F2, ΔGBAA3864   This work 
34F2, ΔfatE   This work 
34F2, ΔfpuBΔfatE  ΔfatE into ΔfpuB This work 
34F2, ΔfatCDΔfpuC ΔfpuC into ΔfatCD This work 
34F2, ΔfatCDΔfpuD ΔfpuD into ΔfatCD This work 
34F2, ΔfatCDΔfpuCΔfpuD ΔfpuD into ΔfatCDΔfpuC This work 
34F2, ΔfpuCΔfpuD ΔfpuC into ΔfpuD This work 
34F2, ΔfatEΔfpuC ΔfatE into ΔfpuC This work 
34F2, ΔfatEΔfpuD ΔfatE into ΔfpuD This work 
34F2, ΔfatEΔfpuCΔfpuD ΔfatE into ΔfpuCΔfpuD This work 
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hours.  F or gallium sensitivity assays, strains were inoculated into IDM, as described 

above, with or without the addition of 20 µ M gallium sulfate. Results of the gallium 

sensitivity assay were normalized to culture OD600 and are presented as percent growth 

inhibition and calculated as ([(OD600 IDM+gallium)/(OD600 IDM)]*100) at two hours 

(Carlson et al., 2010).  

Isolation of mutants and construction of complementation plasmids 

 Mutant strains isolated for this work were all constructed via allelic exchange. 

Each mutant allele was constructed via PCR using Phusion High Fidelity DNA 

polymerase (New England Biolabs) according to the manufacturer’s instructions. The 

PCR products were first cloned into the TOPO® cloning vector (Invitrogen), using 

manufacturer protocols, and the DNA sequence was verified (University of Michigan 

DNA sequencing core).  The mutant allele was then cloned into the NotI site of the allelic 

exchange vector pBKJ258 (Janes & Stibitz, 2006) using standard methods. Each 

construct contained approximately 500 bp bot h upstream and downstream of the target 

gene with NotI restriction sites on each end for subsequent cloning.  Each mutant allele 

retained the first ten codons, followed by the DNA sequence 

GGGCCCTCCGGATCCCCCGGG, and then the last nine codons plus the predicted stop 

codon. A similar strategy was followed for each single gene deletion mutant. For 

mutations where two sequential genes were deleted, the initial ten codons of the first gene 

were fused with the final nine codons of the second gene, in the same manner described 

above. Allelic exchange was performed as described previously (Janes & Stibitz, 2006). 

The presence of the mutant alleles was verified by PCR, and each resulting mutant was 

otherwise isogenic to the parental strain. Sequences of all oligonucleotides used in the 
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creation and screening of these mutants are available upon request.  Spore stocks for each 

mutant were generated and stored as described above. 

 PCR was used to amplify fatE and fpuD by standard methods.  DNA fragments 

were cloned and each DNA sequence verified as described above for mutant allele 

construction.  Primers were designed such that an XbaI site was inserted directly 

upstream of the intiation codon of the gene of interest, and a HindIII site directly 

downstream of the native stop codon.  Each gene was cloned into the XbaI and HindIII 

sites of pGFP (Wilson et al., 2011a, Wilson et al., 2011b), replacing the gfpmut3a allele 

with the gene of interest, expressed by the p43 promoter present on the plasmid. The 

plasmid pMJ01, a version of pGFP lacking the gfpmut3a allele was used as a 

control(Wilson et al., 2011b).   Plasmids were passaged through SCS110 (dam dcm) and 

then transferred into the appropriate B. anthracis strain via electroporation (Passalacqua 

& Bergman, 2006).  

Measurement of catechol accumulation  

 The levels of extracellular catechol were measured using the Arnow assay 

(Arnow, 1937, Carlson et al., 2010). Strains were grown as described above for six hours 

and supernatants were collected and filtered using a 0 .22 µm syringe filter. Culture 

supernatants were then mixed with equal volumes of 0.5 M  HCl, followed by the 

sequential addition of equal volumes of nitrate-molybdate reagent (10% sodium nitrate 

and 10% sodium molybdate), 1 N  NaOH, and distilled H2O in 96-well plates. Sample 

reactions positive for the presence of catechol moieties produced a red color and 

absorbance was measured at 515 nm. Absorbance values were normalized to OD600 of 
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the original culture. Data are presented as the percentage of wild-type extracellular 

catechol in culture supernatants at six hours. 

Murine virulence assays 

 DBA/J2 mice (Jackson Laboratories) were infected via intratracheal inoculation 

as previously described (Heffernan et al., 2007).  Groups of eight female mice age 6-8 

weeks were infected with either wild-type or ∆fpuB∆fatCD mutant spores at a dose of 1.5 

x 105 spores/mouse. Mice were monitored for 14 da ys following infection. All mouse 

experiments were performed using protocols approved by the University of Michigan on 

the Use and Care of Animals. 
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2.5 Supplemental Material 

 
 

 

2-S1 and Table 2-S1. Growth patterns of all single and combinatorial B. anthracis 
mutant strains. 

This supplemental figure contains all strains described in this work, including those from 
Figure 2. It should be noted that any mutant strain included here that was not in Figure 2 
grew as well as wild-type. All cultures were inoculated with actively growing vegetative 
bacilli at an initial OD600 of 0.05. Growth was measured hourly by measuring OD600. 
Table S1 contains the optical density (600nm) of all strains tested in this study at 6 hours 
growth in IDM. 
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Chapter 3 

A High Throughput Screen for Inhibitors of the Bacillus anthracis Petrobactin 
ABC-Transporter ATPases 

 
 

3.1 Introduction 

 Bacillus anthracis is the causative agent of the disease anthrax, a co nsistently 

lethal and a proven bioweapon and bioterrorism agent with a limited amount of treatment 

options (Dixon et al., 1999, Bouzianas, 2009, Frankel et al., 2009, Friedlander, 2001).  

Current methods for treating anthrax infection require improvement, as the use of 

antibiotics against infection does not target the early stages of B. anthracis colonization 

and subsequent expression of toxins, mechanisms of nutrient acquisition, and other 

virulence factors (Bouzianas, 2009). Because of the ability of B. anthracis to replicate 

rapidly in the host once disseminated (Frankel et al., 2009), it is  likely that antibiotic 

treatment targeting later stages in pathogenesis will fail to be effective in preventing the 

death of the host. Like many bacteria, B. anthracis is reliant on biosynthesis, secretion, 

and re-uptake of small, Fe3+-specific chelators called siderophores for the biologically 

necessary purpose of iron sequestration (Cendrowski et al., 2004). In Bacillus anthracis 

the siderophore petrobactin is the only siderophore vital for iron acquisition and virulence 

(Cendrowski et al., 2004). In fact, our lab has shown that mutants deficient in petrobactin 

biosynthesis are highly attenuated in a murine model of inhalational anthrax infection 

(Pfleger et al., 2008{Cendrowski, 2004 #13 5). These findings demonstrate the 
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requirement for petrobactin-mediated iron acquisition in the establishment of infection. 

Furthermore, recent studies in our laboratory have led to the identification of proteins 

comprising multiple adenosine triphosphate (ATP)-binding cassette (ABC)-transporters 

required for the reacquisition of this siderophore. ABC transport systems function by 

coupling ATP hydrolysis to the translocation of essential solutes across the biological 

membrane (Carlson et al., 2010, Dixon et al., 2012). Typically, an ABC transporter is 

composed of four parts: two transmembrane domains, or permeases, and two ATP-

hydrolyzing domains, or ATPases (Higgins, 1992). We have found that two distinct 

permeases, FpuB or FatCD, and three distinct ATPases, FpuC, FpuD, and FatE are 

sufficient for iron acquisition and play redundant roles in petrobactin transport across the 

cell membrane.  Our studies show that these ABC-transport systems are essential in cell 

viability in iron depleted conditions, virulence and pathogenicity (Dixon et al., 2012). 

ABC transporters are required by most bacteria for membrane transport of various small 

molecules vital for their metabolism (Davidson et al. 2008) and, for pathogenic bacteria, 

their ability to cause infection. Members of this family have been identified in all three 

major domains of life including bacteria, archaea, and eukarya (Higgins, 1992, Holland & 

A. Blight, 1999, Koster, 2001). 

The ATPase components of ABC transporters are characterized by the presence 

of highly conserved sequence motifs involved in ATP binding and hydrolysis with   

amino acid identities ranging from 25-35% (45-50% similarity) across bacterial species 

(Holland & A. Blight, 1999). With a well-developed repertoire for studying B. anthracis 

pathogenesis and disease, this system serves as an excellent experimental model for 

directly exploring ABC transporters, and specifically ATPase enzymes, as targets for new 
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types of therapeutics for the treatment of both anthrax and potentially many other 

bacterial infections reliant on t hese systems for pathogenesis. As mentioned above, 

humans and other mammals also use a v ariety of ABC-transport pathways, and while 

maintaining many features in common with each other, have very few, if any, direct 

sequence homologies with the bacterial systems (Davidson et al., 2008a, Rosenberg et 

al., 2005). Of the many inhibitory compounds used against mammalian ABC transport to 

treat a large variety of diseases in humans, none of these, to the best of our knowledge, 

have been reported to have anti-bacterial properties. The reciprocal may also be true, in 

which potential small molecule inhibitors of petrobactin-associated transport or other 

bacterial ABC transport systems may not readily affect mammalian cells, leading to a low 

toxicity potential in people. 

 Because active FpuC, FpuD, and FatE ATPases can be easily purified and only 

require ATP as a substrate, these proteins are prime candidates as targets for a high-

throughput inhibitor search. Furthermore, established biochemical assays are available 

for the detection of ATPase activity and subsequent inhibition. By investigating methods 

to inhibit the activity of these ATPases, we hope to devise strategies to shut down import 

of the vital siderophore petrobactin and thus the necessary act of iron acquisition by B. 

anthracis and other dangerous pathogens. To achieve this goal, a high-throughput assay 

was developed utilizing the chemical libraries and high-throughput (HTP) facilities at the 

University of Michigan Center for Chemical Genomics to discover novel molecules in 

inhibiting the activity of these crucial ATPase enzymes. 
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3.2 Results 

Heterologous Over-Expression and Purification of Three ATPases 

To screen for inhibitors of the petrobactin ABC transport ATPases, purified active 

versions of the enzymes were generated by first cloning the open reading frames of each 

ATPase into an expression vector that simultaneously incorporated a hexahistidine tag on 

the N terminus of each of the proteins. Each of the three His6-ATPase proteins were then 

over-expressed in E. coli and purified via nickel-affinity chromatography. While soluble, 

functional enzymes were generated for all three ATPases (FpuC, FpuD, and FatE), the 

most consistently over-expressed of these, FpuD, was selected for transitioning to a HTP 

screen (HTS). It was hypothesized that due to the high sequence similarity between the 

three petrobactin import ATPases, candidate inhibitors obtained from a small molecule 

screen would display some efficacy against the other two ATPases, FpuC and FatE as 

well. The highly conserved primary structure of these three enzymes, particularly in the 

canonical ATPase catalytic domains, has been highlighted through primary sequence 

alignment (Clustal, EMBIO) (Figure 3-1A).  

Among the ATPases purified, highly-conserved domains include the Walker A 

motif (GxxGxGKS/T), the Walker B motif (DEP/AxxxLD) and the Signature sequence 

(LSGGxxQRV). Both the Walker A and Walker B motifs are common to most ATPases 

that are involved in the binding and hydrolysis of ATP, while the signature sequence is 

unique to ABC type ATPases (Holland & A. Blight, 1999, Davidson et al., 2008b). All 

three of these motifs can be identified in the sequences of the petrobactin ABC-transport 

ATPases (Figure 3-1A). To determine whether these regions were important for the 

catalytic function of these ATPases we chose to begin by mutating the highly conserved 
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E163 of the FpuD Walker B motif to generate FpuD(E163Q). The Walker B motif has 

been demonstrated to coordinate with Mg2+ ions to stabilize attack by H2O molecules 

during ATP hydrolysis (Davidson et al., 2008a, Schneider & Hunke, 1998); thus an 

amino acid change from an acidic glutamic acid (Glu) to a polar glutamine (Gln) residue 

should hypothetically result in either full or partial loss of the ability of the ATPase to 

hydrolyze ATP.  

 

 

 

 

 

 



 
 

90 

 

 

Figure 3-1. Representation of prototypical ABC transporter ATPases and sequence 
alignment of conserved domains.  A)The Walker A, ABC signature, and Walker B 
motifs can be detected in B. anthracis petrobactin uptake ABC transporter  ATPases as 
well as in other well characterized bacterial ABC transporter ATPases.  B) The highly 
conserved Glu 163 of B. anthracis petrobactin ABC transporter ATPase, FpuD was 
mutated to Gln to produce a nonfunctional FpuD(E163Q). The conserved Glu (E) residue 
is shown boxed in black in panel A.  C) Malachite green ATP turnover assay with 
purified wild type FpuD, FpuD(E163Q), and a no-enzyme control. The single amino acid 
replacement at E163 in the Walker B site largely abrogates FpuD activity.  
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Colorimetric Determination of ATPase Activity 

 Following successful purification of the ATPase enzymes, an assay was 

developed that would allow for the detection of enzymatic activity. A malachite green-

based assay was selected to test for initial activity of the target ATPase FpuD and its 

mutant FpuD(E163Q). In this reaction, the ATPase catalyzes hydrolysis of the ATP 

substrate to adenosine diphosphate (ADP) and inorganic phosphate (Pi). The released 

phosphate will then complex with 12 molecules of molybdate to form a 

phosphomolybdate complex (Cogan et al., 1999). The complex is then stained with 

malachite green dye to form a blue-green product which can be detected as an increase in 

absorbance at 635 nm (McQuade et al., 2009, Pegan et al., 2010). Because increased 

ATP turnover by FpuD activity is directly proportional to the amount of free inorganic 

phosphate in the reaction mixture, a nearly linear increase in A635nm is observed with 

increasing concentration of enzyme, and reaction rate appears consistent up to one hour 

(Fig. 3-2A). The enzymatic activities of ATPases have been shown to be influenced by 

their surrounding physiochemical conditions (Holland & Blight, 1999). Therefore, to 

determine the conditions required for FpuD to display optimal enzymatic activity and to 

probe the sensitivity of this enzyme to perturbations in the reaction conditions, the effects 

of temperature, metal cofactor (Mg2+) concentrations, and substrate (ATP) concentrations 

on the activity of FpuD were tested.  

 As expected, the enzyme activity of FpuD at 4°C was nearly identical to that of 

the no e nzyme control at 37°C as most ABC ATPases do not display activity at low 

temperatures (Stauff et al., 2008, Davidson et al., 2008b). FpuD did, however, exhibit 

robust activity at 25°C with peak activity at 37°C (Fig. 3-2B). This result was not 
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surprising as several ATPases involved in ABC transport demonstrate maximal activity at 

physiological temperatures (Koster, 2001, Stauff et al., 2008), and given the function of 

the FpuD ATPase in the import of petrobactin during infection of the mammalian host, 

maximal activity at or near 37°C would be expected.  An effort was made to determine 

the optimal reaction conditions allowing for maximal FpuD activity at 25°C. This 

temperature was chosen for all subsequent enzymatic experiments since measurable 

FpuD activity could be obtained at this temperature and experimentation near ambient 

temperature would allow for an easier transition to a high throughput format. Divalent 

metal cations are critical for the catalytic activity of ATPase enzymes (Davidson et al., 

2008b). A range of Mg2+ concentrations from 0-2.5 mM was tested showing that a 

concentration of approximately 0.625 mM supported the maximal catalytic activity of 

FpuD when ATP was kept at 0.5 mM (Fig. 3-2C). For simplicity, a concentration of 0.5 

mM Mg2+ was chosen to proceed with the subsequent activity assays. FpuD ATPase 

activity reached a m aximal level with a substrate concentration of 1 mM and began to 

plateau at 0.5 mM when a range of ATP concentrations from 0 mM to 1 mM was tested 

at 25°C with 0.5 mM Mg2+ for 30 minutes (Fig. 3-2D). Under these conditions, mutation 

of the residue E163 almost completely eliminated the ability of FpuD to cleave ATP (Fig. 

3-1C, 3-2A). These data indicate that the highly conserved E163 residue in the Walker B 

motif is essential for ATP hydrolysis. Furthermore, the abolished ATPase catalytic 

activity of the FpuD(E163) ATPase allows this mutant to serve as a positive control for 

ATPase inhibition in subsequent activity assays. 
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Figure 3-2. Optimization of the malachite green-based ATPase activity assay.  A)  
Under preliminary conditions over one hour, reaction rate is exclusively and directly 
dependent on FpuD catalysis up to 1 µM (blue line) while the E163Q mutant is largely 
inactive (pink line). Inset photograph shows the colorimetric readout of increased Pi due 
to enzymatic activity.  B) Temperature dependence of FpuD activity. Only basal Pi 
release occurs at 4º C for wild-type FpuD or with FpuD(E163Q) and the no-enzyme 
control at any temperature.  C) When 1 mM ATP was used to start the reaction, all three 
petrobactin uptake associated ATPases displayed peak activity with ~0.5-0.65 mM 
MgCl2 present. Enzymatic activity was dependent on the presence of Mg2+.  D) With 1 
µM ATPase present, enzymatic ATP turnover begins to plateau at ~1 mM substrate. 
Unless otherwise noted, 0.5 mM MgCl2 was used in all activity assays.  E.) Timecourse 
demonstrating a nearly linear reaction rate up to an hour. 
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Optimization of the Malachite Green Based ATPase Activity Assay 

 With a suitable assay validated for the initial detection of in vitro FpuD activity, 

the assay underwent further optimization to make it more amenable for HTS format. As 

an alternative to the absorbance method described above, a recent adaptation by 

University of Michigan researchers utilizes the aforementioned color change of malachite 

green dye to quench the inherent fluorescent properties of white plastic 384-well micro-

plates (Zuck, 2005). Thus, instead of monitoring an increase in absorbance at 630 nm, a 

decrease in light emitted off of the plate is measured as inorganic phosphate is released. 

This is achieved by using an excitation and emission pair where either the excitation or 

the emission matches the absorbance maximum of the colored sample. In this case, a 

wavelength of 430 nm was chosen to excite the plate and then measure a d ecrease in 

fluorescence at 600nm as emitted light is absorbed in the presence of malachite green 

stained phosphomolybdate complexes (Fig. 3-3).  This reduction in light output is directly 

proportional to the amount of ATP turnover catalyzed by the FpuD ATPase as shown in 

our initial experiments where increasing FpuD concentration (0 -1 µM) in a final reaction 

volume of 12 µL results in a linear decrease in fluorescence intensity at 600 nm (Fig. 3-

3). This method permits for a dramatic downsizing of the standard absorbance based 

malachite green assay allowing for conversion to a HTS format which requires small 

volumes near 10 µL and increased sample density. The increased sensitivity of this 

method coupled to the use of plastic 384-well plates allowed for reduction of both 

purified FpuD enzyme and reagent consumption by 90%.  



 
 

95 

 

Figure 3-3 Schematic of the malachite-green fluorescence quench ATPase activity 
assay.  A. The malachite green phosphate detection assay is based on the change in 
absorbance of the dye malachite green in the presence of phosphomolybdate complexes 
which are formed from inorganic phosphate (Pi) released during ATPase-catalyzed 
hydrolysis of ATP. When performed in a fluorescing plate, a reduction in emitted light 
(630 nm) corresponds to this color change. B. The inset graph shows reduced emitted 
light traveling to the detector with increased FpuD enzymatic activity. 
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High-Throughput Screen for Small Molecule Inhibitors of FpuD Mediated ATP 
Hydrolysis 

 With a reliable malachite green based ATPase activity assay optimized for HTS, a 

pilot screen for inhibitors of FpuD activity was now possible.  Utilizing the facilities at 

the University of Michigan Center for Chemical Genomics (CCG), a primary screen was 

devised by selecting roughly 4,000 compounds obtained from four small molecule 

libraries available at the CCG (MS-Spectrum 2000, BioFocus NIH Clinical Collection, 

Focused Collections of Natural Products, and Focused Collections of Target Specific 

compounds). Plate layout and assay flow are outlined in Figure 3-4.  Briefly, the “pin” 

tool on t he Biomek FX (Beckman) liquid handling robot was used to rapidly transfer 

compounds from library stock plates to 384-well assay plates, leaving two rows on either 

side of the plate empty to allow for the addition of positive and negative controls. Since 

our assay was designed to identify inhibitors of FpuD ATPase activity, the positive 

control for inhibition consisted of all reaction components except FpuD, indicating 100% 

inhibition. The negative control for inhibition consisted of all reaction components, 

including FpuD, with the addition of DMSO instead of test compound, indicating full 

enzyme activity with 0% inhibition. Positive and negative controls on each plate allowed 

for reliable calculation of the percent inhibition exhibited by test compounds against the 

assay target and were used for scoring compounds with inhibitory action as “hits”.  Assay 

buffer containing the FpuD enzyme was added to all wells except the positive control and 

the reaction was then started by the addition of ATP. Following 30 minute incubation, the 

Malachite green phosphate detection dye was added to each well. Due to the acidic nature 

of the malachite green preparation lending to the possibility of non-enzymatic breakdown 

of ATP (Hohenwallner & Wimmer, 1973), a citrate solution was added to the reaction 



 
 

97 

 

Figure 3-4. HTS Flow Chart.  The 384-well plate is filled to half the final reaction 
volume with assay buffer. Test compounds dissolved in DMSO are added with an 
automated pin tool (1.). This is with the exception of the two outermost left and right 
columns, which receive DMSO free of test compound and serve as control wells. Purified 
FpuD diluted in assay buffer is added to all but the two right-most “positive control” 
columns, which receive assay buffer alone (2.). ATP dissolved in assay buffer is added to 
all wells to start the reaction (3.). The reaction is quenched with malachite green 
development solution after 30 m inute room temperature incubation (4.). Development 
occurs for 2 minutes prior to addition of a reaction stabilizer (5.) to prevent detection of 
spontaneous ATP hydrolysis. Quenching of plate fluorescence at 600 nm is observed (6.) 
after an additional 20-minute incubation. 

 

 

 



 
 

98 

mix as a stabilizer. All assay plates were then monitored for a ei ther a d ecrease in 

fluorescence intensity or a signal similar to that of the positive control (no enzyme) as an 

indicator of FpuD inhibition by the test compounds.  

 The University of Michigan MScreen software, a web-based open source 

cheminformatics application (Jacob et al., 2012), was used for the management of all data 

obtained in the primary HTS, secondary screen and dose-response assays presented here. 

The “campaign view” shown in figure 3-5 displays the results obtained from the primary 

HTS and presents the data from all 14 assay plates in one scatter plot. The Z’ value was 

calculated for each plate and averaged 0.85, with individual plate Z’ values ranging from 

0.81 to 0.88.  F ollowing the primary screen, a total of 447 compounds were categorized 

as active hits from the 3892 compounds tested. The initial triage of these hit compounds 

followed a standard cut-off criteria in which compounds with ≥ 50% inhibition of FpuD 

and ≥ 3SD from the negative control are selected for further analysis. These criteria 

limited the number of compounds to be further tested to approximately 60; however, to 

take advantage of the “per plate” nature of the HTS facility, it was equally cost-efficient 

to screen double that number of compounds. Therefore, the range of cutoff criteria was 

increased to include compounds with ≥10% inhibition against FpuD to reach a total 120 

compounds for secondary and dose response assays. 

 To quantify the inhibition of FpuD, dose response curves were generated for the 

120 compounds remaining after the initial triage of the primary screen. Each compound  
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Figure 3-5. HTS results for primary screen of small molecule ATPase inhibitor 
compounds. A) The y axis represents the relative fluorescence units (RFU) for an 
equivalent number of positive controls (red squares, n = 448) and negative controls (blue 
squares, n = 448) for inhibition from all 14 384-well plates assayed in the primary screen. 
Each plate contained 32 positive controls and 32 negative controls. These data were used 
to calculate the Z' value of the HTS assay. The calculated average plate Z’ for the 
primary screen was Z’ = 0.85.  B) The x axis represents the compounds screened (green 
squares), the positive controls for inhibition (red squares), and the negative controls for 
inhibition (blue squares). The y axis corresponds to the % inhibition of the test 
compounds against the FpuD ATPase when compared to the negative and positive 
controls. The red line represents 3 standard deviations as calculated from the negative 
controls and potential inhibitory compounds. 
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was assayed in duplicate in two-fold serial dilutions ranging from 6.9 to 250 µ M 

following the primary assay protocol described above.  

 This same experiment was performed simultaneously in the presence of excess 

MgCl2 (10 mM) as a s econdary screen to rule out any compounds whose inhibitory 

activity was a result of general metal chelation. Following the secondary screen, 55 hi t 

compounds were retained after selectively filtering for compounds that maintained 

inhibitory activity both in the presence and absence of excess MgCl2. Of these 55 

remaining compounds, all exhibited sigmoidal dose-response behaviors for which AC50 

values were calculated, ranging from less than 6 to 95µM. Active concentration, or AC50, 

is the concentration of a test compound that leads to 50% inhibition of the target’s 

activity. By establishing more stringent cutoff criteria for compounds with AC50 values ≤ 

30 µM, a maximal efficacy of at least 70% inhibition, and non-magnesium chelators, a 

manageable number of 16 top hits were selected for further testing (Table 3-1).    

 

 

 

 

Table 3-1 (following page). Key information of the 16 “top hits” from the primary 
high-throughput FpuD inhibitor screen.   An asterisk (*) denotes compounds which 
have been ordered and retested for inhibitory activity against purified FpuD enzyme and 
live cell assays with either ΔfpuCΔfatE or wild-type B. anthracis str. 34F2 under iron-
depleted conditions. 
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Figure 3-6. Top 16 hit compounds from the FhuD inhibitor pilot screen. 
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Reconfirmation of Inhibitory Activity of Hit Compounds 

The top 16 lead compounds from the HTS were re-ordered from their respective 

distributors; however, due to supply issues, only eight could be obtained for follow-up 

testing. Using the original bench-top malachite green assay described previously, these 

eight compounds were tested to reconfirm inhibitory activity against FpuD. A similar 

degree of inhibition of the target enzyme was expected in this “low-throughput” version 

of the assay. Indeed some target compounds displayed dose-dependent efficacy, 

including meclocycline, dichlorophene, hexachlorophene, naftopidil, gambogic acid, and 

niguldipine; however, tanshinone and triclabendazole lost apparent efficacy during this 

reconfirmation experiment (Fig. 3-7). This is not without precedent, as hits from HTS 

screens occasionally fail to reconfirm.  Often, this is explained by the actual inhibitory 

agent being a degradation product of the catalogued chemical. Future experiments 

including elucidating the structures of purchased compounds using NMR and mass 

spectrometry as well as high-temperature incubations to induce compound degradation 

will resolve the observed inconsistency between the HTS data and reconfirmation 

screens. 
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Figure 3-7. Reconfirmation of top hits from the primary screen. Dose response 
curves of lead compounds using the bench-top malachite green assay in 96-well plate 
format recapitulate enzyme inhibition by six of the eight compounds tested. 
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In vitro Antimicrobial Activity of Top FpuD Inhibitors 

Live cell assays in iron-depleted medium were conducted with the B. anthracis 

Sterne 34F2 ∆fpuC,∆fatE mutant. This strain expresses only one of the 3 pe trobactin 

uptake ATPase genes, the target of the HTP screen, fpuD. This would ensure any effects 

of test compounds on cell replication could be more reliably related to the inhibition of 

the individual ATPase.  Serial dilutions of the available 8 hit compounds were prepared 

for a final concentration ranging from 250 to 1.79 µM in 200 µl iron depleted medium 

(IDM) cultures using a 96-well plate format. Wells were inoculated with 1x104 spores/ml 

and monitored over 18 hours. Because spore outgrowth in IDM is reliant on petrobactin 

production, it was hypothesized significant inhibition of petrobactin uptake should result 

in delayed or abrogated bacterial growth, with the minimum inhibitory concentration 

(MIC) for each test compound being defined as the minimum concentration required to 

completely prevent outgrowth from spores. Raw data is presented in figure 3-8 with all 

compounds indeed displaying a dose-dependent inhibition of bacterial growth in IDM. 

A question remained whether or not the redundancy of ATPases in a wild type 

genetic background would affect the efficacy of the above compounds on l ive, iron-

depleted cultures. For the majority of the compounds, no significant increase in minimal 

inhibitory concentration (MIC) was noted when tested on WT as opposed to ∆fpuC,∆fatE 

B. anthracis str. Sterne 34F2. In some instances, the lowest concentration tested (1.79 

µM) still completely inhibited growth; therefore a secondary dose-response experiment 

with a smaller range of test compound concentrations was also applied where appropriate 

to approximate MIC. Representative curves showing dose-response inhibition of bacterial 

growth are shown in Figure 3-9. A higher MIC was observed for gambogic acid and 
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tanshinone IIA against wild type Sterne 34F2 with the capacity to express all three 

petrobactin uptake ATPases than against a strain with the ∆fpuC,∆fatE background. 

MICs for all compounds tested under iron depleted conditions are given in Table 3-2.  
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Figure 3-8. Live cell dose-response assay with the ∆fpuC∆fatE mutant. IDM 
containing two-fold serial dilutions of 0-250 µM test compound was inoculated with 
spores (1x104 spores/ml) of B. anthracis possessing only one (fpuD) of the three 
petrobactin import ATPase genes. OD600 was observed every 10 minutes. 
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Figure 3-9 Live cell dose-response assay with Sterne 34F2. IDM containing two-fold 
serial dilutions of 0-250 µM test compound was inoculated with wild type spores 
(1x104 spores/ml) of B. anthracis str. 34F2 possessing all three petrobactin import 
ATPase genes. OD600 was observed every 10 minutes. 
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Figure 3-10 Live cell dose-response assay with Sterne 34F2 using reduced 
concentrations. IDM containing two-fold serial dilutions of 0-3.9 µM test compound 
was inoculated with wild type spores (1x104 spores/ml) of B. anthracis str. 34F2 
possessing all three petrobactin import ATPase genes. OD600 was observed every 10 
minutes. 
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Table 3-2 Minimal Inhibitory Concentration (MIC) Values for Inhibitor 
Compounds tested in live cell assays with Sterne 34F2 or ΔfpuCΔfatE. 
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3.3 Conclusion and Future Directions 

 Aside from the challenges faced in identifying potential outbreaks and infected 

individuals, antibiotic resistant strains of B. anthracis engineered for deployment as a 

weapon is a looming biodefense concern (Inglesby et al., 1999, Jernigan et al., 2001). 

Although naturally occurring antibiotic resistant B. anthracis strains are rare, partially 

due to the decreased prevalence of these infections compared to that of other organisms, 

the possibility of resistance arising due to the extended lengths of time required for 

antibiotic treatment remains (Aldred et al., 2012, Beierlein & Anderson, 2011).  The 

increasing likelihood that bacteria are exposed to sub-lethal doses of antibiotics, and the 

long standing problem of patient compliance in chemotherapeutic regimens can also play 

a major role in the rise of resistant strains of B. anthracis as well as several other 

pathogenic bacteria including MRSA and Mycobacterium tuberculosis (Calfee, 2012, 

Morris et al., 2005). Current vaccines used to induce immunity to anthrax infection have 

several inherent problems of their own and require much improvement. Currently, an 

acellular vaccine using protective antigen produced from the avirulent non-encapsulated 

Sterne strain called Anthrax Vaccine Adsorbed (AVA, also known as Biothrax®) is the 

only FDA approved vaccine used to prevent anthrax infection in the US (Chitlaru et al., 

2011). Yet, as mentioned above, the lack of patient compliance and the extended nature 

of administration of this vaccine, lends to the burdensome and ineffectual nature of this 

method. Such concerns with current vaccines and therapies along with the recognition of 

B. anthracis as not only a bioterrorist threat but also a model organism for studying Gram 

positive bacterial infections, highlights the need for research and identification of new 

targets for small molecule drug design to treat both anthrax and many other diseases. 
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One of the best avenues to more effectively combat future biological threats like 

anthrax is by developing strategies that more selectively target factors and pathways 

exclusively involved in virulence. Almost without exception, current antimicrobials 

target pathways required for general survival of a cell in both environmental and host 

niches like cell wall synthesis, DNA replication, or translation of polypeptides (Sanyal & 

Doig, 2012, Fischbach & Walsh, 2009).  By creating new chemotherapeutics that would 

exclusively target virulence factors, the time in which selective pressure is applied to an 

invading strain (only during infection, and not within the environment) to develop a 

resistance de novo or acquire one by horizontal gene transfer is significantly reduced.   

Furthermore, this strategy holds the potential to more directly target invading microbes, 

and not commensal strains, reducing the likelihood of side-effects associated with 

depletion of beneficial microbiota with broad-spectrum antibiotics.  On the vaccine side, 

surface-associated proteins up-regulated during host infection would likely serve as prime 

candidates for formulations with higher immunogenicity than those currently on t he 

market. In both areas, siderophore-facilitated iron acquisition pathways serve as logical 

targets to explore as they are often only active during infection and require transport 

mechanisms with several surface-associated components easily targeted by the immune 

system and chemotherapeutics.  E xamples of successes in this area have already been 

reported in E. coli and S. aureus, with regard to vaccines, and in M. tuberculosis with 

small molecule inhibitors (Arimitsu et al., 2012, Mariotti et al., 2012, Mishra et al., 2012, 

Miller et al., 2011, Ji et al., 2012). 

 It stands to reason that petrobactin utilization is an ideal pathway for developing 

new anti-infectives.   R ecent identification of the permease and ATPase components of 
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the petrobactin import system have revealed two distinct permeases, FpuB or FatCD, and 

three distinct ATPases, FpuC, FpuD, and FatE (Dixon et al., 2012). These proteins are 

sufficient for iron acquisition and play redundant roles in petrobactin transport across the 

bacterial cell membrane. Not only are these ABC-transport proteins essential in cell 

viability, virulence and pathogenicity, but they also share conserved sequences across all 

bacterial species, making these proteins intriguing targets for therapeutics that can 

potentially treat a wide range of bacterial infections. The results presented here represent 

the first effort to employ HTS to identify small molecule inhibitors of petrobactin ABC-

import machinery. Because active ABC transporter ATPases can be easily purified and 

require a single substrate for activity, these enzymes are prime candidates for a h igh-

throughput inhibitor search. Novel molecules capable of inhibiting these crucial ATPase 

proteins in the petrobactin transport system have been identified using an adapted 

malachite green assay. A pilot screen was conducted using select small libraries 

consisting of 3892 c hemically diverse and biologically active compounds at the CCG. 

The results of the pilot screen showed a robust assay with a Z’ = 0.85. 

Follow-up dose-response and metal chelation experiments were performed in 

HTS format and allowed 120 selected hits to be filtered down to 16 target compounds 

(Fig. 3-6). Among the compounds depicted in figure 3-6, some structural similarities are 

apparent, including the naphthalene-like functionalities on compounds 6, 12, and 13 and 

the tetracyclic cores of 3 and 7. Resemblance to the nucleoside of ATP seen in apo-

oxytetracycline, triclabendazole, homidium bromide, and GSK-3 suggests that some of 

the hit compounds may be competing with the ATPase’s natural substrate at the active 

site. Future studies testing inhibitory activity under varying concentrations of ATP may 
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delineate whether the top hits are acting as competitive inhibitors or having an allosteric 

effect on enzymatic activity. An idea of how specific FpuD inhibitors are will only be 

garnered from empirical observation of screen hit activity on ot her purified ATPases, 

including FatE and FpuC. The nature of the chemical collections used for the pilot screen 

means that most hits possess previously known modes of action or targets that must be 

taken into consideration when moving forward with drug design (Table 3-3). One 

compound in particular, gambogic acid, appears to be potent in the sub-micromolar 

range, and has already shown relatively low side effects when used as an antitumor 

chemotherapeutic in mice (Pandey et al., 2007)- a desirable trait when moving forward 

with SAR and other medicinal chemistry. 

Of the eight “top hits” used in subsequent whole cell assays, all showed some 

degree of inhibition of bacterial growth. Interestingly, a compound’s MIC was generally 

lower than the corresponding AC50 when incubated with purified FpuD. Perhaps 

inhibitory compounds are accumulating intracellularly so that the local concentration 

surrounding a native ATPase is higher than that administered to the culture.  It is also 

likely that multiple targets, and not just petrobactin import, are being affected by some 

test compounds, thus conferring higher-than-expected sensitivity. Repetition of live-cell 

experiments in iron-rich media may help determine if this is in fact occurring. With this 

pilot screen now validated, we aim to screen larger libraries for further inhibitors. The 

long term goal is to perform medicinal chemistry on lead hits of this and larger future 

screens to design druggable compounds that inhibit siderophore-facilitated iron uptake, or 

more broadly, ABC transport systems required by B. anthracis and other dangerous 

pathogens. 
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Table 3-3. Ordering information and know activities of the eight “top hits” tested at the 
bench. 

 

 

 

 

Com
pound

V
endor

Catalogue #
Lot #

Current Use / Target
Tanshinone IIA

Sigm
a Life Sciences

T4952
091M

1917V
A

nticoagulant, prevention of liver fibrosis, alpha glucosidase inhibitor
R

-(-)- Niguldipine Hydrochloride
Sigm

a Life Sciences
N162

118H4621V
Calcium

 channel blocker, α1-adrenergic receptor antagonist
Hexachlorophene

Sigm
a Life Sciences

45526
SZ138042XV

Disinfectant
G

am
bogic A

cid
Sigm

a Life Sciences
G

8171
111M

4710V
A

nti-tum
or, N-FκB repressor

M
eclocycline Sulfosalicylate

Sigm
a Life Sciences

M
1388

050H0682V
Topical antibiotic

Triclabendazole
Sigm

a Life Sciences
32802

SZBA
29ZXV

A
ntihelm

enthic, binds β-tubulin
Naftopidil

Sigm
a Life Sciences

N158
099K1235V

A
ntihypertensive α1-adrenergic receptor antagonist

Dichlorophene
Sigm

a Life Sciences
35992

SZB8121XV
Disinfectant, antiparasitic

Eight Top A
TPase Inhibitor C

om
pounds Re-tested at the Bench



 
 

116 

3.4 Experimental Procedures 

Bacterial Strains and Plasmids 

 Bacillus anthracis strain Sterne 34F2 (Turnbull, 1991, Sterne, 1946) and its 

derivatives were used in all experiments unless specified otherwise. Brain heart infusion 

media (BHI), iron depleted media (IDM), and iron replete media (IRM) were used for 

growth of B. anthracis. Luria broth (LB) (for genetic manipulations) and terrific broth 

(TB) (for protein purification) were used for growth of Escherichia coli; for plasmid 

selection kanamycin sulfate was used at a concentration of 50 µg/mL. 

Cloning and Over-Expression of B. anthracis ABC Transport ATPases and ATPase 
Mutants 

 The genes for each of the FpuC, FpuD, and FatE ATPases were PCR amplified 

from B. anthracis chromosomal DNA and introduced into expression vector pET-28a (+) 

(Novagen; Madison, WI) using restriction sites XbaI and XhoI to produce N-terminally 

6-histidine-tagged ATPases. The recombinant pET-28a plasmids were transformed into 

One Shot® Mach1™-T1R Chemically Competent E. coli non-expression cells. Positive 

clones were identified by selection of kanamycin resistant colonies on L B agar plates 

containing 50µg/mL kanamycin and each reading frame was verified by sequencing with 

a T7 terminator primer. For over-expression of the His6-tagged ATPases, confirmed 

plasmids were transformed into competent BLR expression host cells carrying T7 RNA 

polymerase gene (λDE3 lysogen). Flasks containing 50 mL of TB (Terrific Broth) media 

supplemented with 4% glycerol and 25 µg/mL kanamycin were inoculated individually 

with 500 µL overnight culture of BLR pET-28a-His6-ATPase (FpuC, FpuD, or FatE) and 

incubated at 37°C  to an optical density (600nm) of ~0.6-1.0, about 3-4 hours. At this 
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point the culture was cooled to 18°C with shaking for 30 minutes and expression of the 

His6-ATPase was induced for 16hrs with 0.25 mM IPTG at 18°C, the optimal 

temperature for the yield of soluble protein. Cells were then harvested by centrifugation 

at 8,000 x g for 20 minutes.   

 The fpuD(E163Q) insert was constructed using internal PCR primers that changed 

codon 167 f rom GAG (coding for Glu) to CAG (coding for Gln) to generate two 

fragments of the final insert gene.  These fragments were purified by a gel electrophoresis 

cleanup kit (Qiagen) and served together as the template to be stitched together as the 

product of a second round of PCR.  Cloning and overexpression of the pET-28a–His6-

fpuD(E163Q) construct was achieved using the same protocol as described above for the 

wild-type ATPases. 

Purification of B. anthracis ABC Transport ATPase-His and ATPase-E167Q-His 
Mutants 

 Cells over-expressing His6-ATPase were resuspended in 5 m L lysis buffer 

containing 20mM HEPES buffer, pH 8, c ontaining 300 m M sodium chloride, 20 m M 

imidazole, 1 m M (tris(2-carboxyethyl)phosphine) TCEP, and 10%  g lycerol. The cell 

suspension was transferred to a sonication-safe container kept within an ice water slurry. 

Cells were sonicated using a ½” disruptor horn at 60% intensity for 10 seconds on, 30  

seconds off for 2 minutes total “on” time. Crude cell lysate was then transferred to chilled 

high-speed centrifuge tubes for removal of insoluble material by ultracentrifugation at 

40,000 x g for 45 minutes at 4°C. The soluble lysate supernatant was transferred to a tube 

containing ~500µL Ni2+-NTA resin (Qiagen) that had been pre-equilibrated with lysis 

buffer and was mixed gently on a rocker for 2 hr at 4°C to allow binding of His6-ATPase 
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proteins to the Ni2+-NTA resin. Lysate-resin slurry was then centrifuged at 2,000 x g for 

2 minutes at 4°C, and supernatant was decanted by aspiration.  Two subsequent washes 

were conducted by resuspending pelleted His6-ATPase bound N i2+-NTA resin in wash 

buffer containing 20mM HEPES, pH 8, 250 m M sodium chloride, 40 mM imidazole, 1 

mM TCEP, and 10%  glycerol and rocking at 4°C for 30 min. The Ni2+-NTA resin was 

eluted by rocking for 20 min. with 4 mL elution buffer containing 20mM HEPES, pH 8, 

50 mM sodium chloride, 300 m M imidazole, 1 m M TCEP, and 10% glycerol and 

centrifuged for 5 m inutes at 4,000 x g . Supernatant containing eluted protein was 

removed and combined with an equal volume of storage buffer containing 50mM 

HEPES, pH 8, 150 mM sodium chloride, 1 mM TCEP, and 20% glycerol. The eluate was 

concentrated and exchanged into ~90% storage buffer using an Amicon centrifugation 

filter, 10 kD a MWCO (Amicon Ultra, Millipore). Aliquots of purified ATPases-His 

proteins were flash frozen in a liquid nitrogen/ethanol bath and stored immediately at -

80°C until further use. 

ATPase Activity Assay 

 ATPase activities were determined using the Pi ColorLock Gold ATPase assay 

system (Innova Biosciences) according to the manufacturer’s recommendations. This is a 

malachite green-based assay for the colorimetric detection of free phosphate. Reaction 

components were kept at 4° C  or on i ce until directly prior to experimentation. Initial 

characterization of all ATPases was performed in 96-well clear bottom plates (Corning). 

Unless specified differently, conditions were as follows: an enzyme reaction solution 

(76µL) containing 50 mM HEPES, 150 mM NaCl2, 0.5 mM MgCl2, 1.0 mM DTT, and 

0.5 µM purified ATPase (FpuC, FpuD, or FatE) was added to all wells except the 
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positive control for inhibition (no enzyme). The ATPase activity reaction was started by 

the addition of 4 µl 10 mM ATP for a final concentration of 0.5 mM ATP and was then 

incubated at 25° C for 30 minutes.  The reaction was quenched and developed with the 

addition of 1:4 the initial volume (20 µl) Innova Biosciences Gold Mix. Quenched 

reaction mixtures were incubated for 2 min, after which 1:10 the initial volume (8µl) of 

stabilizer reagent was added. Reaction mixtures were allowed to incubate an additional 

20 minutes after which an increase in absorbance at 635nm was measured on a 

SpectraMax m2 plate reader (Molecular Devices) and compared to that observed with the 

no-enzyme positive control reactions. 

 For high-throughput screening, the following changes were made to the assay 

conditions: briefly, recombinant FpuD was diluted to a final concentration of 1 µM in 10 

µl of assay buffer described above, and was added to all but the positive control (no 

enzyme). The reaction is then started by the addition of 2.0 µl 3.5 mM ATP and is then 

incubated at 25° C  for 30 minutes.  T he screen is quenched and developed with the 

addition of 2.5 µ l Innova Biosciences Gold Mix (1:100 dilution of Accelerator into 

PiColorLock Gold). Quenched reaction mixtures were incubated for 2 min, after which 1 

µl of stabilizer reagent is added. Reaction mixtures were incubated an additional 20 mins 

after which a decrease in fluorescence (Ex430nm/EmA630nm) compared to that 

observed with no-enzyme positive control reactions indicates enzymatic activity.  

Alternatively, an increase in fluorescence (Ex430nm/EmA630nm) upon que nching 

compared to that observed with no-compound negative control suggests a reduction in 

enzymatic activity.   
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Small-Molecule Libraries 

 Four small molecule libraries available at the University of Michigan Center for 

Chemical Genomics (CCG) were utilized for use in a primary high-throughput screen 

consisting of approximately 4000 compounds. These libraries included the MicroSource 

MS2000, BioFocus National Institutes of Health (NIH) Clinical Collection (NCC), 

Focused Collections Natural Products, and the Focused Collections Target Specific 

libraries. Briefly, the MicroSource MS2000 library contains approximately 2000 

bioactive compounds exceeding 95% purity. The collection includes 958 know n 

therapeutic drugs, 629 na tural products and derivatives, 343 c ompounds with reported 

biological activities, and 70 compounds that have been approved for use in agriculture. 

The BioFocus NIH Clinical Collection and NIH Clinical Collection 2 are plated arrays of 

446 and 281, respectively, small molecules that have a history of use in human clinical 

trials. The Focused Collections Natural Products library consists of over 30,000 c rude 

natural product extracts and the Focused Collections Target Specific libraries contain 

pure natural products, epigenetic/autophagy/redox compounds, and protease and 

proteostasis inhibitors. The activity of promising compounds was confirmed using 

repurchased samples from Sigma Aldrich (St. Louis, MO). All purchased compounds 

were tested without further purification. 

High Throughput Screening Protocol and Determination of Z’ 

 The high-throughput screen was conducted using a malachite green based 

fluorescence quench assay with all reagents prepared exactly as described above in 

“ATPase activity assay”. All components other than test compounds were added using a 
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Multidrop dispenser (Thermo Fisher Scientific, Inc.), and were kept at 4° C or on i ce 

directly prior to experimentation. The FpuD ATPase stock solution was prepared as 

described above so that the final concentration of FpuD was 1 µM in assay buffer. The 

FpuD/buffer solution (10µL) was then added to each well of opaque, white, low-volume, 

non-sterile, polystyrene 384-well plates (Grenier Bio-One, Monroe, NC) except for the 

last two outer columns on the right of the plate which were filled with assay buffer 

containing no FpuD enzyme to serve as a positive control for enzyme inhibition. The 

library screened consisted of ~ 4000 compounds selected from the libraries listed above 

in “Small Molecule Libraries”. Stock compounds (~30µM) or DMSO (left two outer 

columns) were then delivered by the HDR (high density replication) "pin" tool on t he 

Biomek FX (Beckman) liquid handling robot from the library plates to the 384-well assay 

plates (containing FpuD/buffer solution) at the rate of one plate/minute at ambient 

temperature at a volume 0.2 µL. To avoid false positives, the plates were read after the 

addition of compounds to identify any compounds that are inherently fluorescent. Finally, 

2 µL of a 3.5 mM ATP solution (final concentration of 0.5 mM ATP) was added to start 

the reaction. The plates were then incubated for 30 minutes at 25°C. After incubation, 

each well received 3 µL of Innova Biosciences Gold Mix, allowing 2 m inutes for 

development of the reaction, followed by the addition of 2 µL stabilizer reagent to 

quench the non-enzymatic release of inorganic phosphate. Plates were then incubated for 

an additional 20 minutes at 25°C and the fluorescence intensity was measured  (excitation 

430 nm, emission 600 nm) on a PHERAstar plate reader. Any compounds with inhibitory 

activity against FpuD resulted in a higher fluorescence reading compared to the negative 

control containing only DMSO. To evaluate the signal window and signal-to-noise ratio 



 
 

122 

of the assay, a test for Z’ factor calculation was performed for every 384-well plate based 

on the negative and positive control. Z’ was calculated using the following formula: Z’ = 

1-(|3SD+ + 3SD-|)/ |Ave+ -Ave-| where Ave+ = the average fluorescence units of the 

positive controls, Ave- = the average fluorescence units of negative controls, and SD+ and 

SD- is the standard deviation of the positive and negative controls, respectively. 

Dose Response Assays and Determination of AC50 for Inhibitors 

 To determine the AC50 values for the selected compounds, reactions were 

performed as described under the “ATPase Activity Assay” section above, with the 

exception that compounds were added using a TTP Labtech Mosquito X1 with "cherry-

picking" ability to transfer specific compounds from library plates to the 384-well assay 

plates. A Biomek FX serial dilution head was then used to sequentially dilute the 

compounds to desired concentrations ranging from 250 µ M – 6.9 µM. Activity was 

normalized to uninhibited controls containing only DMSO performed alongside these 

reactions. Each reaction was performed in duplicate. Data analysis was performed using 

MScreen software, a h igh-throughput screening data storage and analysis system at the 

University of Michigan Center for Chemical Genomics (Jacob et al., 2012). 

Secondary Screen Against Metal Chelating Compounds 

 To investigate whether inhibitors were Mg2+-competitive and eliminate any 

compounds whose inhibitory activity was due to metal chelation, reactions were run in 

the presence of 10mM excess MgCl2. Compounds resulting in loss of inhibitory activity 
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in the presence of 10mM excess MgCl2 were considered general metal chelators and were 

eliminated from the “hit” selection pool. 

Cytotoxicity Assays and Determination of MIC Values for Inhibitors 

 MIC values of eight of the 16 top hit compounds were obtained using a standard 

microdilution assay in clear 96-well tissue culture plates (Costar®, Corning Inc.). 

Compounds were diluted in iron depleted media (IDM, prepared as described previously) 

ranging from 0-250 μM as indicated.  Cultures started from spores (1x104 spores/ml) of 

either ∆fpuC∆fatE mutant strain or B. anthracis str. 34F2 in a final volume of 200 µl IDM 

and were grown at 37°C for 18 hours. Optical density (600nm) was monitored every ten 

minutes with 5 seconds of shaking prior to each read on a SpectraMax M2 plate reader 

(Molecular Devices). The MIC is defined as the lowest concentration of compound that 

resulted in no detectable growth. 
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Chapter 4 

Discussion of Research 

4.1 Summary 

 Work in the previous chapters describes the great majority of what is currently 

understood regarding petrobactin-associated iron uptake in Bacillus anthracis. Chapter 1 

has highlighted the importance of iron to all living organisms, provides an even deeper 

understanding of the essentiality of the siderophore petrobactin during mammalian 

infection by B. anthracis, and highlights the general structure and utility of ABC 

transporters in many bacterial processes. Chapter 2 out lines the identification and first 

description of the multiple ABC transport systems that are required for the reacquisition 

of iron-bound petrobactin following the sequestration of iron from mammalian proteins 

during infection. The third chapter in this thesis takes a step further to investigate the 

utility of the ATPase components of the petrobactin ABC transport system as potential 

targets for the identification of inhibitors of petrobactin-associated iron acquisition. 

 This chapter aims to discuss the implications and future directions of this 

research, including a re-exploration of the fate of the siderophores petrobactin and 

bacillibactin during inhalational anthrax infection and a discussion of new avenues in the 

discovery of novel small molecule compounds that can serve as probes in the 

development of inhibitors against siderophore-associated iron acquisition. 
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4.2 Iron Release 

 Though ferri-petrobactin recognition and import has now been thoroughly 

studied, questions remain surrounding how the iron atom is released prior to usage by the 

bacterial cell (Carlson et al., 2010, Dixon et al., 2012, Zawadzka et al., 2009a, Zawadzka 

et al., 2009b). The strategy employed for iron removal largely depends on the affinity the 

chelator has for ferric iron (Miethke & Marahiel, 2007).  R educed ferrous iron is not 

bound strongly to siderophores, thus the overall reductive environment of the cytoplasm 

is sufficient for dissociation of iron from relatively weaker siderophores (Kf ~1020) 

(Miethke & Marahiel, 2007, Harrington & Crumbliss, 2009).  This mechanism has been 

speculated for desferrioxamine in which iron dissociation can be facilitated by general 

cellular reducing agents like FADH (Harrington & Crumbliss, 2009).  In some instances, 

specific ferri-siderophore reductases have been identified, including FhuF and YqjH, 

which interact with hydroxamates and catecholates respectively in E. coli (Miethke et al., 

Matzanke et al., 2004).  A  unique example of reductases is found in Mycobacterium 

species in which iron reduction occurs extracellularly, and only the dissociated ion, as 

opposed to the siderophore-iron complex, is internalized (Ratledge, 2004).  T ris-

catecholate siderophores like bacillibactin and enterobactin (and its salmochelin 

derivatives) have the highest affinity for ferric iron of any known natural compounds, 

thus creating a redox potential unfavorable for conversion of bound i ron to the ferrous 

ion, even enzymatically.  In these instances, the siderophore must first be degraded by a 

specific hydrolase—FesA in E. coli and YuiI in Bacillus spp.—before iron liberation can 

occur (Miethke & Marahiel, 2007).  Interestingly, specific siderophore degradation 

enzymes have also been observed in some cases that are not required for iron utilization, 
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and thus seemingly serve another unknown metabolic function (Tomisic et al., 2008).  

The structure of petrobactin includes both carboxylate and catechol chelation points 

which combine to confer a unique, intermediate binding affinity for iron (Abergel et al., 

2008), thus the methods employed by Bacillus spp. for petrobactin iron release remain 

enigmatic as does the fate of the siderophore after interaction with the ABC transporter 

(Fig. 4-1, 4-2A). Future experiments to probe this are straight-forward in theory: whole 

cell extracts of B. anthracis grown under different conditions could be incubated 

anaerobically with petrobactin pre-complexed with iron. Because Fe3+-catechol 

complexes are chromophores, iron release or reduction may be tracked colorimetrically 

while possible breakdown of petrobactin could be tracked via mass spectrometry.  If iron 

release from petrobactin is reliant on enzymatic activity, this may represent yet another 

target in shutting down bacterial growth. 

In an attempt to identify enzymes that are involved in petrobactin degredation, I 

have identified candidate siderophore esterase/peptidase and reductase genes in B. 

anthracis.  In Escherichia coli and Salmonella typhymurium, iron is removed from their 

siderophore following breakdown of the molecule by the esterases Fes and IroD 

respectively.  Multiple candidate genes have been identified based on sequence identity 

to these two esterases. The most attractive of these candidates is GBAA2694 which is 

upregulated under iron limiting conditions and has ~25% sequence identity to the 

separate proteins encoded by both fes and iroD.  Gene products with high homology to 

canonical E. coli reductases have also been targeted for deletion.  Often genes serving a 

concerted cellular function, like iron acquisition, are in close proximity on the bacterial 

genome.  T his is possibly the case with GBAA_1859-1860, encoding both a putative 
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degradation enzyme and a reductase that binds catechol chemical groups like those on 

petrobactin.  The generation of mutant strains harboring deletions of all genes described 

is underway.  O nce obtained, these strains await further testing in iron-depleted 

conditions. 
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Figure 4-1. Hypothetical Iron Release Mechanisms of Petrobactin. Upon 
internalization of ferri-petrobactin via the ABC importers described in Chapter 2, i ron 
must be released from the siderophore for use by the cell. The factors required for this 
have not been identified but may include hydrolytic enzymes as well as specific reducing 
agents. 
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4.3 Petrobactin Efflux and Cycling 

 While the preceding chapters have comprehensively outlined the process of ferri-

petrobactin import, and previous reports have characterized biosynthesis of this 

siderophore, how petrobactin is secreted into the extracellular space to scavenge iron is 

still unknown (Fig 4-2A).  T here are a few examples of individual major facilitator 

superfamily (MFS) transporters previously identified as multi-drug resistance efflux 

pumps to also serve as siderophore exporters including NorA in the case of S. aureus 

(Deng et al., 2012) and YmfE of B. subtilis (Miethke et al., 2008). Alternatively, iron 

response operons in Azotobacter vinelandii (CsbX), and Bordetella pertussis (AlcS) 

encode MFS exporters specific for their operons (Brickman & Armstrong, 2005, Page et 

al., 2003). While no f unctional gene annotated as an exporter is associated with the 

petrobactin asb operon in B. anthracis, remnants of a downstream pseudogene 

resembling an ABC exporter component remain. Because it appears the capacity for 

petrobactin production was acquired by B. anthracis via horizontal gene transfer, it stands 

to reason that the ancestral asb operon was associated with an exporter of its own; 

however, its functionality over time could have been lost if compensated for by a 

functional homolog elsewhere on the Bacillus genome. Figure 4-2B depicts genes in B. 

anthracis str. Ames Ancestor with sequence homology to siderophore exporters of other 

species or genes annotated as exporters found in close association with asb-like clusters 

from marine microbes.  O f these candidate genes, some are moderately up-regulated 

during iron starvation (Carlson et al., 2009).  Problematically, both ABC and MFS-type 

genes appear to be associated with petrobactin excretion in different species, and the  
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 B 

Locus #
Iron Starved 
Expression Change NCBI Annotation

GBAA0528 ABC Exporter asb-associated ABC transporter in Oceanimonasspp.
GBAA0787 upregulated 1.5-fold MFS protein NorA from S. aureus
GBAA0835 BlT, putative polyamine exporter NorA from S. aureus
GBAA1642 MFS protein asb-associated MFS in Marinobacter and Verrucomicrobium spp.
GBAA1858 upregulated 2-fold MFS protein NorA from S. aureus
GBAA2004 Multidrug Resistance Protein CsbX from A. vinelandii and AlcS from B. pertussis
GBAA3296 MFS protein asb-associated MFS in Marinobacter and Verrucomicrobium spp.
GBAA5411 upregulated 4-fold ABC Exporter asb-associated ABC transporter in Oceanimonas spp.

Homology to Known Siderophore Exporters

 

Figure 4-2. The Petrobactin Iron-Acquisition Pathway. A. Biosynthesis, iron-
scavenging, and now uptake of petrobactin has been well studied.  The mechanisms for 
iron release from the siderophore and its initial export from the Bacillus cell have yet to 
be elucidated. B. Candidate petrobactin exporter genes from B. anthracis str. Ames 
Ancestor based on homology to known siderophore exporters or genes associated with 
asb-like operons in other species. 
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inherent redundancy of Bacillus proteins, exemplified by the multiple importers in 

previous chapters, may make finding all exporters responsible for petrobacitn excretion 

via reverse genetics alone a daunting task. 

Biosynthesis of siderophores is a metabolically costly activity. Looking past the 

depletion of primary metabolites like citrate and spermidine, Bacillus still expends at 

least 4 ATP in the construction of petrobactin (Nusca et al., 2012, Oves-Costales et al., 

2009, Oves-Costales et al., 2007, Pfleger et al., 2007).  Only a fraction of this expensive 

metabolite is taken back into the cytoplasm at the expense of another 2 ATP for re-uptake 

of the siderophore, accounting for import of a single iron atom (Dixon et al., 2012, 

Koster, 2001). Considering this, there is a clear advantage to a bacterial cell recycling 

imported petrobactin for another round of iron acquisition as opposed to solely relying on 

siderophore produced de novo. Indeed this strategy has already been suggested for 

pyoverdin in P. aeruginosa (Schalk et al., 2002) and aerobactin in E. coli (Braun et al., 

1984). Affinity for iron is relatively low for aerobactin, thus its degradation is not 

necessary for release of the metal into the cytoplasm, allowing the intact aerobactin to be 

re-secreted to scavenge additional iron. Preliminary studies I conducted showed that 

growth rate of the siderophore-deficient strain ∆asb in iron-depleted medium was directly 

dependent on c oncentration of supplemented petrobactin when in the sub-micromolar 

range (Fig. 4-3A). Under these conditions, supplementation with as low as 10 n M 

exogenous petrobactin eventually restored growth of ∆asb to wild type levels (Fig. 4-3B). 

Considering the Kd of the SBP FpuA for ferri-petrobactin in B. cereus is an order of 

magnitude higher (175±35 nM), it is likely that the retarded growth is in part a result of 

slower binding of the siderophore just prior to ABC import (Zawadzka et al., 2009a). It is 
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hard to imagine how such a low concentration of petrobactin could facilitate the iron 

uptake necessary to drive cell division to the point of a saturated culture without 

recycling occurring, but this idea is partially contradicted by a decrease in extracellular 

petrobactin detected by mass spectrometry over time during the same experiment (Fig. 4-

3C); however, this decrease does not account for the intracellular or surface bound-pool 

of petrobactin as cell-density increases in culture. It is likely that elucidation of the 

specific exporters and iron release mechanism for petrobactin utilization in B. anthracis 

will provide additional tools in determining whether or not petrobactin recycling occurs. 
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Figure 4-3. Sub-Micromolar Levels of Exogenous Petrobactin Restore growth of 
Iron-Depleted B. anthracis Cultures. A. A growth curve showing petrobactin-
dependent recovery of ∆asb during iron-depleted growth. B. Under iron-depleted 
conditions, as low as ~16 nM of supplemental petrobactin recovers liquid ∆asb cultures 
to saturated levels. C. LC-MS analysis of culture supernatants at 6 hours show that the 
extracellular level of supplemented petrobactin (peak under arrow) diminishes compared 
to a no-cell control (IDM) 
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4.4 The Role of Bacillibactin 

 Previous microarray analysis in iron-depleted conditions shows one of the most 

up-regulated transcriptional units in B. anthracis is the dhb operon, responsible for 

biosynthesis of the ubiquitous Bacillus siderophore bacillibactin (Hotta et al., 2010, May 

et al., 2001).  However, in the context of host infection and iron-depleted growth, B. 

anthracis has been shown to require petrobactin to facilitate necessary iron acquisition 

(Cendrowski et al., 2004).  T he asb operon of petrobactin biosynthesis in turn is only 

transcriptionally upregulated ~1.5-fold during iron starvation (Carlson et al., 2009). 

Adding to this, despite the clear abundance of dhb mRNA, bacillibactin is not detected in 

cellular supernatant until many hours after cells have entered latent growth in liquid 

culture, and even then at relatively low levels (Wilson et al., 2010, Lee et al., 2011). 

 These observations raise the question of why the capacity to biosynthesize 

bacillibactin is conserved in B. anthracis despite its dispensability in infection. One 

possibility is that low levels of cytoplasmic bacillibactin are serving as a high-affinity 

shuttle or storage molecule for metals in the cell, perhaps even involved in handoff of 

iron from lower-affinity petrobactin. While not apparent in low-iron conditions, perhaps 

additional environmental stressors will demonstrate a phenotype for a ∆dhb mutant. 

These stressors may include high metal concentrations that would be sequestered by 

bacillibactin or infection via a gastrointestinal model, an environment shown to harbor 

trilactone siderophores analagous to bacillibactin (Henderson et al., 2009). In the closely 

related soil microbes B. cereus and B. thuringiensis, bacillibactin is the exclusive 

siderophore and likely plays an important role for iron acquisition in the environment as 

well as infection of insects (Wilson et al., 2006). In contrast, relatively little is known 
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about iron uptake of B. anthracis in non-dormant life cycles outside the mammalian host, 

but conserved genes not shown to be essential for infection may still have more 

importance in this context. 

 One unique aspect of the dhb operon in B. anthracis is the inclusion of three 

additional genes (GBAA_2374-2376) not typically present in other species (Fig. 4-4). 

These include an MFS family exporter typically involved in drug resistance or secondary 

metabolite excretion; a phosphopantetheinyl transferase for activating biosynthetic carrier 

proteins; and a gene of unknown function whose translated polypeptide has closest 

sequence homology to mRNA stabilizing cold-shock proteins.  T he function of these 

genes could be traced to bacillibatin utilization, especially considering that close 

homologs of the sfp gene required for biosynthesis and ymfE implicated in export of 

bacillibactin in B. subtilis are not found within the B. anthracis genome (Ollinger et al., 

2006, Miethke et al., 2008). Because bacillibactin production and utility is so low during 

mammalian infection though, a separate theory arises, in which the products of 

GBAA_2374-2376 are contributing to petrobactin up-regulation instead. Indeed, 

petrobactin biosynthesis is also reliant on t he presence of a phosphopantetheinyl 

transferase and an efflux mechanism of the siderophore has yet to be elucidated. 

Furthermore, the lack of transcriptional change observed in the asb operon from high- to 

low-iron conditions suggest a post transcriptional step regulates the accumulation of 

petrobactin observed during this transition. Stabilization of asb mRNA by 

uncharacterized factors like GBAA_2376 or as of yet undefined sRNAs may contribute.  

Genetic analysis is now underway to probe any functionality the appended dhb operon of 

B. anthracis has in contributing to petrobactin production and survival in low-iron  
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Figure 4-4. Unique Genes Associated with the Bacillibactin-Producing dhb Operon 
of B. anthracis. NCBI database annotation and putative function are noted. 
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conditions. If a connection can be found, it may in part explain the heightened 

transcription of dhb observed in B. anthracis str. Sterne despite the fact that very little 

actual bacillibactin is detected or required for circumstances mimicking host infection. 

 

4.5 Xenosiderophore Recognition 

Some organisms have the capacity to use siderophores produced by neighboring 

species in the environment. Certain species of plants are reliant on siderophore producing 

soil bacteria for optimal growth (Dudeja et al., 2012).  M eanwhile, many previously 

“unculturable” strains have been shown to be reliant on s o-called “xenosiderophores” 

from symbiotic species (D'Onofrio et al., 2010). More broadly, the genomes of many 

organisms have been isolated that encode no functional siderophore biosynthetic systems 

but still contain ABC genes homologous to well-characterized siderophore import 

(Stewart, 2012, Miethke & Marahiel, 2007, Abergel et al., 2008). Within crowded 

bacterial environments like soil or the gut, siderophore piracy is documented, as are 

biosynthetic countermeasures to prevent it (Traxler et al., 2012, Indiragandhi et al., 

2008). An example of this is recognition of the triscatechol siderophore produced by 

Enterobacteriace, enterobactin, being recognized by its origin species as well as Bacillus 

spp.; meanwhile, ornate methylation of the analogous Bacillus siderophore bacillibactin 

allows this molecule to only be recognized by a narrow range of species (Peuckert et al., 

2011). 

It is likely promiscuity for siderophore compounds is facilitated by the binding 

pocket of receptor domains on the siderophore ABC importers. While previous research 

by the Raymond group  de monstrated two surface-associated lipoproteins, FpuA and 
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FatB, to be used in the B. cereus sensu lato group for petrobactin recognition (Zawadzka 

et al., 2009a), they appeared to have well-tuned affinities for different portions of the 

siderophore; FpuA, the only receptor shown to facilitate petrobactin import in B. 

anthracis (Carlson et al., 2010), interacts most tightly with the citryl moiety of 

petrobactin, suggesting analogous compounds with a similar central structure may also 

interact with the petrobactin import system (Zawadzka et al., 2009a). Preliminary data 

from a crossfeeding experiment in which supernatant from an aerobactin-producing strain 

of E. coli rescued iron-depleted growth of ∆asb B. anthracis supports this (Table 4-1).  

Considering the metabolic cost of synthesizing siderophores, there are many 

heterogeneous microbial environments that would make evolving promiscuous 

siderophore uptake machinery advantageous; this promiscuity may also confer more 

freedom in the design of siderophore-like compounds with additional antimicrobial 

activity. 
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Table 4-1. Evidence for Exogenous Siderophore Usage Mediated by the Petrobactin 
Receptors of Bacillus. B. anthracis strains grown on i ron-deficient plates were 
supplemented with 20 µl supernatant collected at 6 hours from an iron-starved culture of 
E. coli CFT073 entF::kan . This strain produces the NIS-derived siderophore aerobactin, 
hypothesized to be recognized by the petrobactin SBP FpuA, which has an affinity for the 
citryl moiety shared by the two siderophores. While the catecholate sideorphore 
enterobactin is not present, the supernatant still contains the enterobactin precursor 2,3-
DHBA, likely recognized by FatB, which has an affinity for catecholate moieties. Values 
are zone of growth diameters surrounding supernatant-soaked filter discs. ND = none 
detected. 
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4.6 Targeting B. anthracis Iron Import; The Search for a New Therapeutic 

Siderophore production in pathogenic bacteria has gained considerable attention 

due to its often-crucial function in iron uptake and the relevance of siderophore-

associated proteins as molecular markers of various infectious agents (Andrews et al., 

2003). Among catecholate siderophores from pathogenic microbes, eliminating 

petrobactin is particularly important as it e scapes sequestration by the mammalian 

immune protein siderocalin (Abergel et al., 2006, Fischbach et al., 2006) and is required 

for virulence.  

As touched upon i n chapter 3, ba cterial ABC-transport systems involved in the 

uptake of iron-siderophore complexes like petrobactin may serve as new targets for 

antibiotics that can treat anthrax infections and potentially many other bacterial 

infections. Importantly, eukaryotic ABC transporters have some structural deviations 

from bacterial systems (Rosenberg et al., 2005, Higgins, 1992, Holland & A. Blight, 

1999).  For that reason, inhibitors of bacterial ABC transport components have a reduced 

likelihood of harmfully affecting mammalian cells, hence resulting in low toxicity when 

used therapeutically. The high level of attenuation observed with the Bacillus anthracis 

petrobactin ABC import mutants detailed herein further implicate the petrobactin ABC-

transport system proteins as prime targets for the discovery of druggable inhibitors. 

In the future, there will probably be many ways to improve upon t his strategy. 

Further testing is required to truly determine the cross-reactivity of compounds analogous 

to the prelimiary FpuD inhibitor hits from Chapter 3, a s there are both drawbacks and 

benefits to a broad-range inhibitor of bacterial ATPases. A drug’s efficacy and 

indications may be more appealing from a pharmaceutical standpoint if many processes 
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or many different strains of bacteria are affected; however with a broad-spectrum drug, 

the specificity for only pathogenic bacteria is diminished and the likelihood of resistances 

arising is elevated. 

One strategy to improve specificity for compounds targeting petrobactin import, 

is to take into account the specialized receptor lipoprotein of the ABC transport 

complexes in the system described in Chapter 2, F puA.  While not enzymatic, and 

therefore more difficult to characterize, interaction of purified FpuA with small 

molecules has been tracked with fluorescence polarization (Zawadzka et al., 2009a), and 

this may be utilized in a high-throughput screen to look for potent blockers of 

siderophore recognition.  A lternatively, success has been had with “Trojan horse” 

antibiotics against other pathogens, including M. tuberculosis, K. pneumonia, and 

Plasmodium spp., in which analogs of desired compounds for import (e.g. ferri-

siderophores) are used, but contain an antimicrobial “warhead” functionality (Miethke & 

Marahiel, 2007, Miller et al., 2011). This encourages specific uptake by the target 

pathogen and a reduced MIC from that of the parent antimicrobial compound. With 

regard to inhibiting ABC importer ATPases like FpuD, this strategy is even more 

practical as the target protein for inhibitor delivery is in the same cellular location as 

where the Trojan horse compound would be internalized if analogous to petrobactin. 
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