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Abstract 

 

Low power techniques for continuous-time bandpass delta-sigma modulators (CTBPDSMs) 

are introduced. First, a 800MS/s low power 4
th

-order CTBPDSM with 24MHz bandwidth at 

200MHz IF is presented. A novel power-efficient resonator with a single amplifier is used in the 

loopfilter. A single op-amp resonator makes use of positive feedback to increase the quality 

factor. Also, a new 4
th

-order architecture is introduced for system simplicity and low power. Low 

power consumption and a simple modulator structure are achieved by reducing the number of 

feedback DACs. This modulator achieves 58dB SNDR, and the total power consumption is 

12mW. 

Second, a 6
th

-order CTBPDSM with duty cycle controlled DACs is presented. This prototype 

introduces new architecture for low power consumption and other important features. Duty cycle 

control enables the use of a single DAC per resonator without degrading the signal transfer 

function (STF), and helps to lower power consumption, low area, and thermal noise. This ADC 

provides input signal filtering, and increases the dynamic range by reducing the peaking in the 

STF. Furthermore, the center frequency is tunable so that the CTBPDSM is more useful in the 

receiver. The prototype second modulator achieves 69dB SNDR, and consumes 35mW, 

demonstrating the best FoM of 320fJ/conv.-step for CTBPDSMs using active resonators. 

The techniques introduced in this research help CTBPDSMs have good power efficiency 

compared with the other kinds of ADCs, and make the implement of a software-defined radio 



xvii 

 

architecture easier which is appropriate for the future multiple standard radio receivers without a 

power penalty. 
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Chapter 1. Introduction 

1.1 Software Defined Radio (SDR) 

Our daily lives depend on the mobile devices such as cellphones and tablets more than ever as 

these devices are absorbing the features of other individual wireless devices. This means that 

mobile devices need to utilize several RF transceiver chips with different RF frequencies and 

bandwidths. Having more ICs on the board tends to increase the power consumption of mobile 

devices, and hence also increases the battery size. Therefore, a single receiver that supports 

multiple standards is very attractive for wireless communication since low power and small size 

are essential for handheld devices. The RF front-end not only has to be reconfigurable but also 

has to have wide bandwidth. However, most current wireless receivers rely on several inflexible 

analog blocks and at most support only a few standards.  

One of the most popular receiver architectures is the super-heterodyne architecture, shown in 

Figure 1. This architecture is very good for frequency selectivity and sensitivity in an 

environment with strong interferers[1]. However, this architecture suffers from the complexity of 

receiver chain and the lack of reconfigurability. It also requires several stages of filtering,  

 

Figure 1. Super-heterodyne Receiver Architecture 
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mixing and amplification, which leads to a large area and high cost. In addition, the power 

consumption increases as more blocks are needed in the receiver. Furthermore some of the 

blocks such as SAW filters are off-chip, and this increases a board area needed.  

A software-defined radio (SDR) is a good choice for future receivers. SDR is not a new 

concept, and was introduced in the 1980s[2]. However, SDR is currently used mainly for 

military applications which require flexible wireless communication for to a variety of protocols. 

Also, SDR can help enable cognitive radio, where the receiver is configured depending on the 

current usage of the channels to utilize the limited bandwidth efficiently[3].  

 

Figure 2. Software-defined radio 

Currently, SDR is not practical due to the difficulties of implementation and the large power 

consumption[4]. Thanks to recent improvements in analog-to-digital converters (ADCs) and to 

the scaling of technology, SDR is again being strongly considered. As in Figure 2, an SDR omits 

many blocks in the super-heterodyne architecture by digitizing a wide band signal without down-

converting to the baseband. Once the ADC passes the digitized signal to the digital signal 

processor (DSP), the DSP takes care of filtering, channel selection and mixing in the digital 

domain[5][6]. In most cases, digital processing costs less in terms of area and power because it is 
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not affected by thermal noise and mismatch, and therefore if the performance of the ADC can be 

addressed then SDR architecture is attractive for future mobile devices.  

1.2 ΔΣ Modulators (DSM) 

1.2.1 Oversampling ADC 

ADCs convert analog inputs to digital signals based on sampling. Microprocessors are 

designed to process digital signals but every real signal exists in the analog domain[7]. Therefore, 

it is necessary to convert analog signals into the digital equivalents to make use of computing 

systems and to process data effectively. The quality of A-D conversion is very important in order 

not to lose the original information during the conversion, and it is mostly related with the 

resolution of the ADC. Due to the truncation, quantization noise is added to the original signal. 

This truncation error or quantization noise usually behaves like white noise. The quantization 

noise decreases the quality of the original signal by decreasing the signal-to-noise ratio (SNR). It 

is known that the fundamental limit of SNR in dB when one sample has 2
N
 possible levels which 

are evenly spaced is : 

                dB] 

This assumes that the quantization noise is uniformly distributed between the levels[8][9]. The 

quantization noise is summed up between DC and Fs/2 which is the highest frequency in 

discrete-time domain. Fs/2 is called Nyquist-rate. Nyquist-rate ADCs convert signals with 

frequencies up to Nyquist-rate and the quantization noise floor is flat in terms of the output 

power spectral density.  
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However, Nyquist-rate ADCs have shown limitations as technology develops and struggle to 

meet the requirements of high speed and high resolution for many applications. For Nyquist-rate 

ADCs, it is difficult to have both high speed and high resolution due to analog component 

imperfections[10][11]. For example, the mismatch between the passive components such as 

capacitors in SAR ADCs causes harmonics and distorts the signal. As CMOS technology scales, 

it gets more difficult to have good matching between components and the maximum resolution is 

becoming saturated[12].  

Instead, an oversampling ADC improves resolution by increasing the sampling rate instead of 

increasing the number of sampled levels[13]. The higher sampling rate can cause more power 

consumption, but oversampling easily achieves high resolution. Thanks to the scaling of CMOS 

technology, high speed sampling is more feasible and oversampling ADCs are becoming 

attractive in many applications.  

∫

DAC

X(z) Y(z)

E(z)

 

Figure 3. ΔΣ ADC 

A ΔΣ modulator is commonly used in oversampling ADCs, and it cancels out the error 

coming from the analog component imperfections with the help of excessive sampling and 
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feedback loops[14]. The basic configuration is a feedback loop with filters, a local low-

resolution ADC and feedback digital-to-analog converter (DAC) as shown in Figure 3. The 

transfer function from the input X to the output Y is called signal transfer function (STF), and the 

transfer function from the quantization noise E to the output Y is noise transfer function (NTF). 

Both STF and NTF are determined by the loop transfer function, but they differ since the 

summing nodes are different. Through the feedback loop, the quantization noise e(n) is reduced 

by e(n-1), which is the quantization noise from the previous sample. This makes the NTF 

highpass, and causes the quantization noise distribution over frequency to be non-uniform. In 

other words, the feedback loop generates a notch at DC in the NTF and shapes the quantization 

noise, decreasing the in-band noise floor level as in Figure 4. The STF is not affected by this 

noise shaping since STF and NTF are different as mentioned and STF can be flat in-band with 

appropriate loop configurations. A high SNR can be achieved by considering the signal and the 

noise only in a specific frequency range where the noise floor level is lowered through noise 

shaping.  

Fs/20

STF NTF

 

Figure 4. STF and NTF of ΔΣ modulators 
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The advantage of ΔΣ modulators is their immunity to the analog component imperfections 

which is a problem even in modern CMOS technology[15]. For example, a coarse ADC can be 

used because the imperfections of the coarse ADC are also frequency-shaped by the same 

feedback loop as the quantization noise, and therefore do not affect the SNR. Also, the input 

offset of the filters are dithered out by a large amount of sampling and averaging. Recent 

development in ΔΣ modulators has lead to high resolution, wide bandwidth and good power 

efficiency, so ΔΣ modulators are becoming more important in wireless systems[16]-[20]. 

1.2.2 Discrete-time ΔΣ Modulator  

The first time ΔΣ modulators were implemented in the discrete-time domain by using 

switched-capacitor circuits in standard CMOS technology[21]. The system is represented in z-

domain, so the analysis of pole-zero in the STF and NTF is apparent as in the example in Figure 

5. Therefore, fine tuning is possible even in a higher order modulator since every block can be 

expressed with linear model.  

X(z) Y(z)
1

z - 1

 

Figure 5. 1
st
-order discrete-time ΔΣ modulator 

While a discrete-time ΔΣ modulator (DTDSM) is suited to optimization[22], the circuit 

implementation brings up some problems. Although the use of switched-capacitors can easily 
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map the transfer functions to circuits, switched-capacitors are very slow due to the required 

settling time[23]. The settling error at the frontend of the modulator causes nonlinearity and 

decreases SNDR (signal-to-noise and distortion ratio)[24]. Also, switched-capacitor circuits have 

issues such as charge injection and clock feed-through and require a very accurate sample-and-

hold circuit at the front. Therefore, although they provide high resolution, DTDSMs are not 

appropriate for high speed applications.  

1.2.3 Continuous-time ΔΣ Modulator  

DAC

x(t) y(n)
1

s

 

Figure 6. 1
st
-order continuous-time ΔΣ modulator 

A continuous-time ΔΣ modulator (CTDSM) uses continuous-time analog filters instead of 

switched capacitors as in Figure 6. For example, an active RC integrator can be used in the place 

of the discrete-time integrator which is based on the feedback with a delay. The sampling occurs 

only at the local ADC, and the sampling error is not critical as mentioned in 1.2.1. The use of 

continuous-time analog filters allows the modulator to operate at higher frequency and have a 

wider bandwidth since the filter does not need to settle within the clock period[25]. Also, the 

power consumption is lower[26] compared to discrete-time counterparts, since the switching 

circuitry requires a lot of power. Another important advantage is the intrinsic anti-alias filtering, 
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which is important because it makes the anti-alias filter at the input of the ADC unnecessary, 

saving power and area[27]. 

However, the CTDSM architecture has two critical drawbacks, namely, excess loop delay[28] 

and high clock jitter sensitivity[29]-[31]. The excess loop delay is the delay from the quantizer 

output to the output of DACs, and causes the loop to be instable. The problem is that it is 

impossible to totally remove the excess loop delay in a continuous-time system. And clock jitter 

varies the charge amount from the DAC to the filter. The change in the charge amount appears as 

input noise, and decreases SNR. The effect of clock jitter becomes severe as the sampling 

frequency goes higher. However, these problems are becoming easier to tackle with scaling and 

the use of new CTDSM architectures[32][33]. Therefore, CTDSMs are becoming more attractive 

than DTDSMs for mobile environment because of the high speed and good power efficiency. 

1.2.4 Bandpass ΔΣ Modulator 

 

Figure 7. Bandpass ΔΣ modulator 

The DSMs explained previously are lowpass modulators which use integrators in the 

loopfilter. Lowpass modulators have notches around DC in the NTF, thus the signal band is 

located at low frequency as in Figure 4. By using another kind of filters in the loopfilter, it is 
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possible to modify the STF and NTF to provide different noise shaping to that of lowpass 

modulator. The use of a resonator in the loopfilter leads to the bandpass ΔΣ modulator (BPDSM) 

in Figure 7, which has notches in the NTF at a mid or high frequency region[34][35]. This means 

that the noise shaping lowers the noise floor level at RF or IF as shown in Figure 8. Accordingly, 

the signal band can be at RF or IF, and in this way it becomes possible to digitize the signal 

directly without down-converting when the signals are transmitted with modulation[36]. 

Fs/20

NTF

 

Figure 8. NTF of bandpass ΔΣ modulator 

We can easily get the transfer function for discrete-time bandpass ΔΣ modulators 

(DTBPDSMs) by replacing z with -z
2
 in the discrete-time transfer function of LPDSMs[37], as 

in Figure 9. The discrete-time resonator consists of two-delay block in the feedback path. The 

continuous-time resonator can be an LC resonator or a bi-quadratic resonator, but the feedback 

DAC topology requires some modification since the continuous-time resonator is not mapped to 

the discrete-time transfer function correctly[38]-[40].            
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X(z) Y(z)

 z
-1

 z
-1

 z
-1

 z
-1

 

Figure 9. Discrete-time bandpass ΔΣ modulator 

 

1.3 Continuous-time Bandpass ΔΣ Modulator (CTBPDSM) 

1.3.1 CTBPDSM in SDR 

The bottleneck in the realization of SDR is the design of an ADC with wide bandwidth, high 

resolution, and reasonable power consumption[4]. The use of Nyquist-rate ADCs is not a good 

solution, since it is difficult to achieve a very high sampling rate at high resolution because of 

component mismatches and power consumption[41]. Furthermore there is no channel selectivity 

with a Nyquist ADC since it digitizes the entire spectrum below the Nyquist frequency. A 

continuous-time lowpass ΔΣ modulator (CTLPDSM) is better in terms of power efficiency, but 

its lowpass nature is not appropriate for SDR. On the other hand a CTBPDSM has features that 

make it very attractive for SDR. A CTBPDSM digitizes RF or IF signals directly, and the 

frequency band can be tuned in some architectures [42]. 
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Figure 10. Power efficiency of CTLPDSMs vs. CTBPDSMs 

Although noise shaping enables high resolution, CTBPDSMs still consume a lot of power. 

Continuous-time operation helps achieve good power efficiency, however state-of-the-art 

CTBPDSMs show worse energy efficiency compared to other kinds of ADCs. The poor energy 

efficiency of CTBPDSMs limits their use in receivers.  

CTLPDSMs are dominant in many applications due to their performance and simplicity as 

well as power efficiency. Figure 10 compares the power efficiency of recently published lowpass 

and bandpass ΔΣ modulators[43]-[56]. There is a big difference between the best figure-of-merit 

(FoM) for CTLPDSMs and CTBPDSMs. While the CTLPDSM architecture is not suitable for 

SDR because it cannot digitize signals at RF or IF, it is very power-efficient and is an attractive 

ADC architecture for the complex super-heterodyne architecture. However, CTBPDSMs still 
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have enormous potential considering that the SDR architecture is more desirable for the future 

wireless communication systems.  

1.3.2 Conventional CTBPDSM Architectures 

             

(a) Passive Resonator                                    (b) Active Resonator 

Figure 11. Conventional CTBPDSM architectures 

An LC tank resonator can be used as the filter in a CTBPDSM[57]. Figure 11(a) shows the 

conventional CTBPDSM architecture using an LC tank resonator[58]. It requires two DACs per 

resonator. These DACs are a return-to-zero (RZ) DAC and a half-clock-delayed return-to-zero 

(HZ) DAC. Two kinds of DACs with different phases are used in the feedback loop to map the 

discrete-time transfer function to the continuous-time transfer function correctly regardless of the 

reduced number of summing nodes. 

For example, in second-order modulation, the discrete-time loop transfer function of the 

modulator is : 

   

     
                                                                          

The transfer function of a continuous-time resonator is expressed as : 
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and the impulse response of the resonator is : 

      

                                      

    
      

 
                 

                                         

An RZ DAC has a transfer function in the continuous-time domain of : 

         

 
                                                                        

Then, the loop transfer function coming from the resonator and the RZ DAC can be 

transformed into a discrete-time form by sampling the impulse response with Fs. 

         
                      

     
                                        

         
                      

     
                                       

(5) and (6) are the sampled loop transfer function using RZ DAC and HZ DAC, respectively. 

The goal is to get (1), and this can be achieved by a linear combination of (5) and (6). Therefore, 

the perfect mapping from the discrete-time domain to the continuous-time domain is possible 

thanks to the use of two DACs with different phases. 

The main advantages of this architecture are low power, low noise and the high quality factor 

of the resonator. However, this approach requires two feedback DACs per resonator, and this 

increases both the silicon area and the overall power consumption. In contrast there is one 

feedback DAC per integrator in a CTLPDSM. Also, the chip is large due to the size of the 

inductors and the inductors do not get smaller as the technology scales.  

A bi-quadratic resonator can be used instead of LC tank resonators[59][60]. A bi-quadratic 

resonator consists of two integrators in a loop. A bi-quadratic resonator provides two summing 
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nodes, which allows a different CTBPDSM architecture as shown in Figure 11(b). This 

architecture is from the direct mapping from a discrete-time transfer function to a continuous-

time transfer function since both need two integrators to implement a resonator. Two feedback 

DACs are connected to each summing node, and these are both non-return-to-zero (NRZ) DACs. 

The use of an active resonator avoids large inductors, but each integrator uses an op-amp which 

is power hungry and contributes thermal noise to the modulator. 

 

1.4 Single Op-amp Resonator 

     

             (a) Twin-T filter                                       (b) Modified Twin-T filter   

Figure 12. Single op-amp resonators 

A single op-amp resonator can replace conventional resonators in CTBPDSMs, and achieve 

both low power consumption and small silicon area. In this way, only one op-amp generates 

thermal noise into the loop, so that the total noise is lower. This means lower power consumption 
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for a given noise requirement. Also, the use of a single op-amp makes the chip design easier due 

to the reduced number of components and reduced silicon area.  

Several single op-amp resonators have been reported[61][62]. The twin-T filter in Figure 12(a) 

has two feedbacks which cause resonance, but this filter is not suitable for CTBPDSMs because 

the transfer function is different to that of an ideal resonator. It resonates at a certain frequency, 

but it does not filter the low frequency perfectly. The modified twin-T filter in Figure 12(b) is 

based on the twin-T filter, and the transfer function is improved and also flexible. However, the 

input stage is not purely resistive, and it is difficult to be integrated with current-mode DACs 

because the summing nodes for the two feedback DACs see a different transfer function to the 

inputs. Also, this resonator has many passive components that contribute to the total thermal 

noise. Therefore, a new single op-amp resonator with an appropriate transfer function and 

summing nodes, as well as fewer passive components, is the key for low power CTBPDSMs. 

 

1.5 Application Specifications 

The target of this research is to design a CTBPDSM modulator which can cover the following 

standards: 

 UMTS (US) : 5MHz @ 2100MHz with 12b 

 CDMA2000 (Europe) : 1.25MHz @ 2100MHz with 13b 

 802.11b/g : 22MHz @ 2400MHz with 6b 

The carrier frequencies of these three standards are close to each other, and a receiver with a 

tunable CTBPDSM can be reconfigured for them without standard-specific analog components. 
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The prototype does not include the LNA and mixer, and the modulator converts input signals 

at 200MHz with 24MHz bandwidth and 10bit (1
st
 prototype) or 12bit (2

nd
 prototype) resolution. 

This modulator specification is enough for the standards above, and it can also support more 

standards between 2GHz-2.4GHz. 

 

1.6 Research Contributions 

A single op-amp resonator with positive feedback is used for lower power consumption and 

area. This new single op-amp resonator can replace the existing resonators which have either 

large area or high power consumption. 

Also, new CTBPDSM architectures are presented; one reduces the number of feedback DACs 

and achieves good power efficiency, while the other uses duty-cycle-controlled DACs for low 

power consumption and other features. The duty cycle control enables the modulator to have 

frequency tuning and to bandpass-filter input signal. And the redesign of op-amps and DACs 

provides the latter architecture 11dB more SNDR in the test compared with the first one by 

reducing the noise from the circuits. 

 

1.7 Research Overview 

By improving the power efficiency of CTBPDSMs to that of CTLPDSMs, SDR can be made 

practical receiver architecture for mobile platforms. The goal of this research is to reduce the 

power consumption of CTBPDSMs by adopting a new architecture and a new single op-amp 

resonator. In Chapter 2, a new CTBPDSM architecture, which minimizes the number of 
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components in the feedback loop, is introduced. This architecture lowers the total power 

consumption and the silicon area. Also, the circuitry for each block, including the new single op-

amp resonator, is explained.  Chapter 2 also presents the evaluation results of the CTBPDSM 

prototype. Chapter 3 introduces an improved prototype with a higher-order CTBPDSM 

architecture and better performance. This chapter also describes new blocks that improve the 

noise and linearity performance of the modulator, and presents measurement results. Chapter 4 

suggests future work and Chapter 5 summarizes the research contributions. 
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Chapter 2. CTBPDSM with a Reduced Number of DACs and Single Op-amp 

Resonators 

2.1 System Architecture 

 

Figure 13. System block diagram 

2.1.1 Overview 

The modulator performance mostly depends on the modulator architecture. There are many 

factors for the architecture such as the modulation order, the quantizer bit number, and the 

feedback or feedforward topology. Therefore, the architecture design is important to achieve the 

required performance with the best power efficiency. This new CTBPDSM has a 4
th

-order 

architecture with 3bit quantization as shown in Figure 13. Two resonators and two DACs are 
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used to achieve 4
th

-order bandpass noise shaping. Both resonators are single op-amp resonators 

and capacitor banks tune both the resonant frequencies and the quality factor. As discussed in the 

next section (2.1.2), the modulator has two DACs instead of four DACs. The DACs are both 

current-steering DACs. DAC1 connected to Resonator 1 is a half-clock-delayed return-to-zero 

(HZ) DAC while DAC2 connected to Resonator 2 is a return-to-zero (RZ) DAC. Resonator1 and 

DAC1 are more critical in regards to noise performance. The summing amplifier sums the output 

of Resonator2 and the feedforward paths (which are the modulator input) and the Resonator1 

output. A 9-level flash ADC quantizes the output of the summing amplifier. An auxiliary current 

DAC, dedicated to the flash ADC, calibrates the offset of the comparators. The clock generator 

receives a sine wave from off-chip and generates a square clock waveform appropriate for this 

modulator. To compensate for the clock timing difference between the DACs and the flash ADC, 

a clock delay controller is used to clock the flash ADC. 

2.1.2 Reduction of the number of current-mode DACs  

As discussed in 2.2.1, we use a single op-amp resonator as the resonator in this CTBPDSM. 

This single-opamp resonator has only one summing node for the feedback loop paths. As with 

LC resonators in other CTBPDSMs, which similarly present only one summing node, this 

motivates the use of a multi-path feedback design for the modulator shown in Figure 14(a), 

which perfectly transforms a DTBPDSM into a CTBPDSM with LC resonators. However, the 

use of multiple feedback paths per resonator increases static power and adds more noise to the 

first resonator. Adding feedforward paths can replace the feedback DACs since it leads to the 

same loop transfer function as when only feedback paths exist[63]. Therefore, a feedforward 

path from the first resonator output to the quantizer removes two feedback DACs in a 4
th

-order 
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CTBPDSM, but even with a feedforward path, the two DACs at the front of the modulator 

remain the same and still add noise to the first resonator input which is critical to the total 

modulator input referred noise. In this work, a different analysis of a multi-path feedback design 

leads to noise reduction as well as power consumption reduction by using only one feedback 

DAC per resonator along with signal feedforward paths around the resonators. 

 

Figure 14. 4
th

-order CTBPDSM architecture (a) conventional (b) simplified 

Due to the delay block and the excess loop delay a classic discrete-time to continuous-time 

pole-zero mapping to synthesize a continuous-time transfer function from a discrete-time transfer 

function is not easy and the final pole-zero needs to be tweaked after the transformation[64]. 

Also, imperfections of system blocks, including the finite quality factor of the resonators, make 
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the tweaking necessary. Therefore the use of ideal modulator coefficients might not lead to 

optimal performance in a real system. However, this characteristic also provides the possibility 

for the modulator coefficients to be flexible to some degree. Even though one of the feedback 

coefficients varies slightly due to any analog imperfections, a small change of the other 

coefficients can compensate for this to keep the stability and the performance. With the original 

coefficients of the two DACs connected to the first resonator ( Figure 14(a)), K2 is much smaller 

than K1 when the coefficients are calculated as in [58] and optimized for 3bit quantization. And 

the result of the removal of K2 does not lead to instability, but it causes peaking in the NTF and 

degrades the SNDR. However, the original value of K2 is small, and K1, K3-4 can be tuned to 

compensate for the nulling of K2. Suitable tuning of K1, K3-4 removes the NTF peaking and 

provides essentially the same noise shaping as with a non-zero K2. The only difference is the 

symmetry of the overall power spectral density centered at the quarter of the sampling frequency: 

zeroing K2 makes the slopes of the NTF on the left and right side of the center frequency slightly 

different, as shown in Figure 15. However this asymmetry does not affect the noise shaping 

within the passband and the performance in the in-band, including the maximum SNDR, is the 

same. The key point is that K2 < K1 allows removal of K2. On the other hand, removing K1 

instead of K2 is difficult since in this case coefficients’ sensitivity introduces instability and 

performance degradation.  

Similarly, K3 or K4 cannot be nulled once K2 is zeroed or two other coefficients, instead of 

three, have to be tuned to compensate, and this leads to a large variation in the coefficients and 

ultimately to a significant performance degradation. Thus a feedforward path is used to remove 

another feedback DAC, K3. The feedforward path from the first resonator output to the quantizer 
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provides the same feedback loop represented by one HZ DAC, K3 and the second resonator 

because the loop consisting of the first resonator and the feedforward path also contains one HZ 

DAC and one resonator. Figure 14(b) shows the architecture after the modifications.  

Next we show that by using a half-width DAC[66] instead of a NRZ DAC, the NTF in the 

passband does not change for the architecture introduced here.  

Traditionally, an NRZ DAC is represented by a constant coefficient in a z-domain 

representation of the modulator. But in a continuous-time system, an NRZ pulse with a sampling 

period of Ts has a transfer function of 

                                                                           (7) 

At lower frequencies, the exponential term can be approximated as : 

                                                                              (8)                             

This is because, for a high oversampling ratio, sTs is very small in the frequency range of 

interest. Hence (7) is close to Ts, leading to a constant value as required. On the other hand, this 

approximation is not accurate for the passband (e.g. at Fs/4) of a bandpass modulator.  

Instead, a half-width RZ or HZ pulse represented by 

                                                                             (9) 

can be approximated by the exponential term           giving a much better approximation to 

a constant value within the passband of a bandpass system thanks to the halved exponential term.  
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Equation (10) is the NTF of the 4
th

-order multi-path feedback design in Figure 14(a), and we 

get the NTF around the center frequency by assuming that the DAC coefficients are constants. 

       
      

    

                       
             

     
 
                  

And (12) is the NTF of the new architecture in Figure 14(b) with the same assumption on the 

DAC coefficients. A key observation about the two NTFs is that they can have the same noise 

shaping around the center frequency if the coefficients are properly chosen. This is why this new 

architecture can keep the same SNDR as the conventional CTBPDSMs even though the number 

of DACs is reduced.  

The feedforward path from the input to the quantizer decreases signal swing through the 

analog signal path[67][68], which is helpful for low power consumption and for the linearity of 

resonators. As a result, this modulator architecture is advantageous in terms of power, 

complexity, and silicon area compared to existing architectures. 

2.1.3 Noise Transfer Function (NTF) 

The sampling frequency of the prototype modulator is 800MHz, and the center frequency is 

200MHz. The required bandwidth is 24MHz as specified in the previous chapter, so the OSR is 

16.7. Based on a target SNDR of 70dB and this OSR, at least a 4
th

-order architecture with 3bit 

quantization or a 6
th

-order one with 2bit quantization is required[10]. A 2
nd

-order architecture or 

an 8
th

-order one is not suitable due to higher power consumption and instability[69]. The 4
th

-

order architecture is adopted for this modulator because it is more stable even with analog 

component mismatches but the total power requirement is similar to the 6
th

-order one.  
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The two notches generated by the two resonators are located at the same frequency as in 

Figure 15 and the simulation of this modulator shows 70dB SNDR when the input is a 200MHz 

tone. The STF is flat because the feedforward paths are used in this architecture[67], but there is 

still attenuation at higher frequency region for anti-aliasing. 

200MHz

24MHz

4
th
 order + 3bit + OSR 16.7 

=> ~70dB SNR
 

Figure 15. Noise transfer function of the modulator 
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2.2 Circuit Blocks 

2.2.1 Single Op-Amp Resonator 

2.2.1.1 Positive Feedback 

 

Figure 16. Quality factor enhancement by positive feedback 

In this work, by applying positive feedback[70] to a conventional active filter, a high quality-

factor resonator is realized with a single amplifier, replacing the LC or bi-quadratic resonators in 

a conventional CTBPSDM. We begin with the low-quality-factor single-amplifier bandpass filter 

(BPF) consisting of a lowpass filter (LPF) and a passive highpass filter (HPF) in series shown in 

Figure 16(a). The transfer function of this BPF is expressed as: 
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The first-order term in the denominator decides the quality factor, which is very low for this 

BPF as in Figure 16(b). To enhance the quality factor we add a positive feedback path (Figure 

16(c)) to the BPF. The positive feedback path boosts the low quality-factor BPF output, therefore 

it resonates around the resonant frequency ωo while suppressing the out-of-band signals. The 

positive feedback path results in the transfer function: 

       
   

                 
                                               

The quality factor of this filter can be increased to the level required for this modulator 

depending on the feedback gain β. As β approaches 1, the first-order term in the denominator 

approaches zero and the quality factor goes to infinity making this filter have the same transfer 

function as that of an ideal 2
nd

-order resonator. However, this requires the positive feedback of -1 

(=β) and another resistor Rf. The HPF outputs are directly fed back to inputs not to add these 

components. The gain of -1 can be easily realized in the differential mode, and Rp can replace Rf. 

Rp is located between the resonator output and the ground while Rp is between the resonator 

output and the virtual ground node. This similarity enables the replacement and prevents the use 

of additional resources for the resonator implementation. 

A differential mode circuit implementation of the resonator is shown in Figure 17. The 

feedback gain is fixed to -1, and the resonance condition and quality factor now depend only on 

passive component values. The transfer function of this circuit is expressed as : 
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Figure 17. Differential-mode implementation of single op-amp resonator  

        
   

             
                                                 

                                                                     

                                                                     

The resonance condition of the differential circuit is k=0 from (16). There are innumerable 

solutions for k=0, and a solution of Cp=2Cn, Rn=2Rp is chosen so that the filter has the best noise 

performance and the smallest passive area since this solution minimizes the resistors and the 

capacitors while the resonant frequency is fixed. 

The main advantage of this resonator in CTBPDSMs is that it consumes 40% less power 

compared to the traditional bi-quadratic resonator, which has two amplifiers while keeping the 

same noise performance. The power and area savings are significant, especially in higher order 

modulators. The block linearity of this type of resonator may be inferior to a more traditional 

circuit with negative feedback, but this is significantly mitigated when the resonator is used in a 



28 

 

modulator with a feedforward architecture since the latter reduces the swing where the 

nonlinearity occurs. That is the case of the modulator presented here. 

2.2.1.2 Op-Amp 

 

Figure 18. Multi-path amplifier 

A high-gain op-amp is required for the resonator to get good linearity and a small error in the 

resonant frequency. However, it is difficult to use a cascode structure to achieve the required 

high gain because the supply voltage has become low in advanced CMOS process nodes[71]. A 

multi-stage amplifier is a good alternative for a continuous-time modulators[72]-[75]. Cascading 

of individual low gain amplifiers can provide high overall gain and also achieve a sufficient 

voltage swing even with a low supply voltage. As shown in Figure 18, there are two paths in 

parallel; one is a high-gain narrow-bandwidth amplification path with four amplifying stages 

(slow path) while the other is a low-gain high-bandwidth one consisting of a single stage (fast 

path). The fast path provides the wide bandwidth of the op-amp. At high frequencies, the gain of 

the fast path, which has a much higher bandwidth than the slow path, dominates because the gain 

of the slow path falls off at lower frequency. Furthermore, the fast path also helps the stability 
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compensation. The phase of the fast path dominates the total phase response at high frequency 

and more phase margin is achieved because this path does not have a cascode structure.  

 

Figure 19. Stage units of the amplifier (a) w/o summing (b) w/ summing 

In the multi-stage amplifier described here, each stage is a single common-source amplifier 

with a current source as the load (Figure 19(a)). Even when the circuit is implemented in a 

differential manner, there is still a signal headroom of more than half the supply voltage, for a 

1.25V supply. The amplifier on the fast path is a single common-source amplifier for fast 

operation. The technology used in this work is 65nm CMOS, and considering the balance 

between the speed and the gain, the optimal gain for each stage is estimated to be 15-20dB in 

simulation. In total, four stages are used to provide enough gain, and the fourth amplifier stage 

uses a different scheme to sum the fast path and the slow path. As in Figure 19(b), a push-pull 

structure enables the summing of two paths and each PMOS or NMOS common-source amplifier 

sees the other as the load. To get a 60 degree phase margin, nested Miller-compensation is 

used[76]. The total gain and phase margin response of this amplifier is shown in Figure 20. The 
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DC gain is 73dB and the phase margin is 65 degrees. The gain at 200MHz is 30dB. The total 

power consumption is 2mW, and half of the power is consumed by the last stage. The first stage 

consumes one quarter of the total power to achieve a low thermal noise. In addition the input 

devices are very large for good matching and low input referred noise. 

 

Figure 20. Gain and phase response of the amplifier 

2.2.1.3 Center Frequency and Quality Factor Tuning 

Both the mismatch of the passive components and process variation change the resonant 

frequency. The resonant frequency of the resonators decides the center frequency of the 

CTBPDSM, so calibration is required for the passive components to get the exact center 

frequency. Calibration of the capacitors Rp and Rn in the positive and negative feedbacks in 

Figure 17 enables the calibration of both the center frequency and quality factor. Calibrating only 

capacitors is enough to correctly set the center frequency. Digitally controlled capacitor 
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banks[65] are placed in parallel with the main capacitors in Figure 21. The quality factor of this 

resonator is also related to the capacitances since they decides the first order coefficient in the 

numerator, therefore fine tuning of the capacitance is required to have a good control on the 

quality factor. 4bit capacitor banks are used for each capacitor. It is clear that the capacitances 

are inversely proportional to the center frequency ωo in (18). And from (17), Cp is proportional to 

the quality factor while Cn is the opposite. So the change of each capacitor affects both the center 

frequency and the quality factor as in Figure 22. 

 

Figure 21. Resonator RC tuning with capacitor banks 

The center frequency has to be accurate while the quality factor just needs to be above a 

certain threshold. So the center frequency is calibrated first, and then the quality factor is 

adjusted by the two capacitors keeping the same center frequency. A quality factor of 20 is 

sufficient for the target modulator performance and is used in test, even though a higher Q can be 

achieved.  

And due to the mismatch and process variation or depending on the calibration activity, (17) 

can have a negative value. This means that the resonator becomes unstable, but this does not lead 
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to the instability of the modulator because the feedback loop of the delta-sigma modulator 

cancels out the resonating signal. Therefore, this resonator is robust in the delta-sigma modulator 

regardless of the calibration accuracy of the quality factor, but has to have a sophisticated 

calibration method in other systems without the feedback loop. 

 

Figure 22. Quality factor and center frequency tuning 

2.2.1.4 Resonator Outputs 

Although the original resonator outputs are OUT+’ and OUT-’ in Figure 17 an alternative 

configuration gives more flexibility and reduces kickback. When this resonator feeds a block 

with resistive inputs, the time constant of the feedback paths changes and this also changes the 

resonant frequency and the quality factor. In Figure 23 the amplifier outputs OUT+ and OUT- 

directly feed the next block through another RC HPF formed by Rp’ and Cp’. This HPF does not 
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affect the feedback around the amplifier and enables the connection with any other blocks with 

resistive inputs in CTBPDSMs.  

The time constant of this HPF is the same as RpCp. This helps reduce kickback and improve 

flexibility. Kickback from other blocks can be injected to the inputs through the resistor in the 

original configuration, but the new configuration suppresses it with the help of the HPF. An 

advantage is that here, Rp’ which is bigger than Rp is used to reduce the amplifier’s load without 

affecting the total noise performance. Furthermore, these capacitors are not calibrated since they 

barely change the resonance characteristic of the feedback loops. 

 

Figure 23. Output node change 

2.2.2 Current-steering DAC 

2.2.2.1 Current Sources 

The current-steering DAC is connected to the virtual ground nodes of the resonator, so the 

output impedance of the DAC has to be very high for good linearity[77]. The triple cascode 
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structure in Figure 24 provides high output impedance and isolates the current source at the 

bottom from the switches. Without this isolation, the current source is affected by switching 

noise and generates a data dependent current output instead of constant one, which causes 

nonlinearity.  

 

Figure 24. Triple cascode structure for DAC 

The thermal noise from the current source is directly injected to the resonator. Due to the 

switching, the differential mode implementation does not cancel the thermal noise. The thermal 

noise from the current source in DAC1 significantly contributes to the total noise[78], thus it has 

to be minimized so as not to limit the maximum SNDR. On the other hand, flicker noise is 

filtered by the resonator, so can be ignored. By increasing the overdrive voltage of the current 

source, the thermal noise can be reduced. However, the headroom for the triple cascode structure 

is not enough for strong overdrive with a 1.25V supply voltage, and so a certain amount of noise 

being fed into the modulator is inevitable. In this work, the total voltage headroom for the triple 

cascode is 750mV and 400mV out of this is assigned to the current source.  
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The device size is also important for the linearity. Mismatch between the current sources can 

modulate the output current and introduce nonlinearity, regardless of the resonator 

performance[79][80]. Dynamic element matching (DEM) can cancel this nonlinearity by 

shuffling the mismatch, but DEM is complex and increases the power consumption. Here, the 

target SNDR is met by increasing the device sizes and achieving sufficient matching by design. 

By using very large devices for the current sources while maintaining the W/L ratio, the 

mismatch is minimized. Monte-Carlo simulations indicate a 0.2% mismatch, which is sufficient 

for the target performance.  

The current source of DAC2 does not need to be as large as that of DAC1. Any nonlinearity 

caused after the Resonator1 barely appears at the output. The same is true for the thermal noise, 

and a large overdrive is not necessary in DAC2. 

2.2.2.2 DAC Switches 

The switching devices change the current direction to the resonator, so they are sized as small 

as possible for fast switching. This is also helpful in reducing the clock injection to the resonator 

by decreasing the parasitic capacitance. Also, small switch size reduces the parasitic capacitance 

at the interface with the resonator, which can affect the feedback gain of the amplifier. The 

voltage headroom is slightly larger than VDSAT to give more overdrive to the current source while 

keeping the switching devices in saturation. With a gate voltage of 900mV, the switching device 

is turned on and fully saturated, which gives the maximum output impedance. The two switching 

devices are completely symmetric in the layout since any mismatch can cause nonlinearity[82]. 

The cascode device is also sized small for fast operation.  
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2.2.2.3 DAC Latch 

 

Figure 25. Return-to-zero pulse DAC latch 

Both the RZ DAC and HZ DAC require a return-to-zero pulse, and both the outputs are zero 

for half of the clock period. We use an even number of current sources to implement this pulse. 

The differential-mode current output of the DAC is zero when the same amount of current flows 

on both sides of the output. There are total eight current sources, and four current sources are 

directed to each of the differential outputs when the overall differential output returns to zero. 

Figure 25 shows the bitwise implementation, which is one side of the differential implementation. 

The mux has two inputs; the comparator output from the quantizer and the pre-decided value ‘0’ 

or ‘1’ that refers the current direction since '1' turns on the switch and '0' turns off the switch. 

Four of the eight DAC latches have a pre-decided value of ‘0’, and the others have ‘1’. The clock 

controls the mux output, and therefore the mux passes the comparator output for half a clock 

period and passes the pre-decided value for the other half clock period. While the mux outputs 

are at the pre-decided values, the current flow on both sides of the DAC output is equal, and this 

becomes the return-to-zero phase. The mux output drives an inverter which controls the 

switching devices coming after the inverter. The inverter is supplied with 900mV. The switches 
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are intended to be in saturation and go into the linear region if the gate voltage goes higher than 

900mV. The use of the dedicated supply voltage also helps to set the exact switching timing. If 

the supply rail becomes noisy because of other digital blocks, the transition timing changes and 

this is considered as a kind of clock jitter noise[83].  

2.2.3 Quantizer 

2.2.3.1 Comparator 

 

Figure 26. Comparator of the flash ADC 

The quantizer is a flash ADC with 8 comparators and generates a 9-level digital output. The 

comparator is shown in Figure 26, and consists of two stages[81]. When the clock is low, M1-2 

are off and M7-8 reset the first stage outputs to high. These first stage outputs also reset the 

nodes in the second stage, and the comparator outputs go low. When the clock goes high, M7-8 

are turned off and M1-2 discharge the first stage output nodes. The discharge speed differs for 
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both sides depending on the input and reference voltages, and this makes the output voltage 

different. As both of the first stage outputs go low with a small voltage difference between them, 

M17-18 are turned on and M9, M12 are turned off. This makes the second stage a back-to-back 

latch, and the small voltage difference from the first stage is regenerated by this latch. The 

comparator outputs are valid only for half a clock period, so there is an SR latch after the 

comparator to hold the value for the rest half clock period.  

2.2.3.2 Input Offset Calibration 

 

Figure 27. Comparator input offset calibration 

M3 and M6 in Figure 26 are sized minimum to reduce the load of the summing amplifier 

which drives this quantizer. Large input devices are good for matching and reduce the input 

offset of the comparator[84], but the summing amplifier has to drive 8 comparators. A big load 

causes a pole at the output of the summing amplifier and this limits the bandwidth[85]. For this 

reason, minimum size input devices are used for fast operation, but this causes a large input 

offset, even with careful layout. An auxiliary current-mode DAC[65] is assigned to each 
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comparator to calibrate the input offset. This 4bit DAC is between the first stage outputs, and 

sinks a different amount of current from both sides. Figure 27 shows how this DAC cancels the 

input offset. During the startup, all inputs and references are tied together and the digital logic 

slowly varies the DAC current and finds the current value which flips the comparator output. The 

input offset is compensated by keeping this auxiliary DAC current fixed at this value during 

normal operation.  

2.2.3.3 Clock Delay Controller 

 

Figure 28. Clock delay controller 

The clock generator has to feed the DACs as well as the quantizer. However, there is a clock 

path mismatch between these blocks, and more timing difference is caused because the clock 

receiving devices have different sizes. Also, the summing amplifier is not ideal and causes a 

slight delay. A clock delay controller compensates all of these mismatches and aligns the 
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sampling and the current triggering. The clock delay controller in Figure 28 is placed between 

the clock generator and the quantizer, and consists of a series of buffers and muxes. Each buffer 

is two inverters in series, and makes a delay of approximately 30ps. The mux selects one of the 

delayed clocks and sends it to the quantizer. The total tuning range is 210ps with 7 buffers. This 

block is controlled manually from off-chip. Tuning is based on the measured power spectral 

density of this modulator. The difference in the clock timing shows up as a noise peak in the 

power spectral density as in Figure 29. 

 

Figure 29. Effect of clock path mismatch 

2.2.4 Summing Amplifier 

A summing amplifier is necessary before the quantizer to sum the second resonator output 

and the feedforward paths. Nonlinearity or thermal noise added at this position hardly affects the 

modulator performance, so the op-amp can have very simple design. A multi-stage amplifier is 

also used, but without a feedforward path. The amplifier has three stages and no feedforward 
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path, and Miller-compensation is used. Miller-compensation is sufficient for this three-stage 

amplifier because the third stage is low gain high swing stage. The open-loop gain of this 

amplifier is 120, and the phase margin is 50 degree. Resistive feedback is applied to achieve a 

gain of 1, and the HPF at the output of the resonator is connected to the virtual ground nodes. 

Large resistors are used for low power consumption, since the thermal noise from these resistors 

is not significant. 

2.2.5 System Implementation 

 

Figure 30. System implementation 

Figure 30 shows the circuit implementation of the core loop. The first resonator drives the 

second resonator through an HPF, and the second resonator drives the summing amplifier in the 
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same way. There are two feedforward paths, and they also consist of HPFs due to the 

characteristic of the resonator. The current-mode DAC outputs are connected to the virtual 

ground nodes of the amplifiers. The extra delay coming from the resonators and the summing 

amplifier is also compensated by the clock delay controller connected to the quantizer.  

 

2.3 Prototype Test Results 

The prototype[86] is fabricated in 65nm CMOS with 9 metal layers and the active die area is 

0.2mm
2
. Figure 31 shows the die micrograph. The two resonators take the most of the area due to 

the passive components. The first DAC occupies most of the DAC block area since the current 

sources are very large. A 48-pin QFN package is used for this test.  

 

Figure 31. Die micrograph of the prototype 



43 

 

2.3.1 Power Spectral Density 

Figure 32 shows the measured power spectral density of this modulator output. The top-left 

graph shows the entire spectrum from DC to Fs/2. And the main graph is in-band spectrum over 

a 24MHz bandwidth. A 200MHz tone with -3.9dBFS amplitude is used as an input, and the 

measured SNDR of 58dB while operating with 1.25V supply. The third harmonic is next to the 

fundamental tone because it is folded down from higher frequency. The third harmonic is mainly 

caused by the amplifier and the DAC nonlinearity, but it is comparable to the in-band noise and 

does not reduce the SNDR. 

 

Figure 32. Power spectral density 

2.3.2 Dynamic Range 

The dynamic range is also tested with a 200MHz tone, and the minimum detectable signal 

amplitude is -63.9dBFS. The input amplitude showing the maximum SNDR is -3.9dBFS, and the 
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dynamic range of this modulator is 60dB as in Figure 33. The dynamic range is limited by the 

thermal noise from the first resonator and the first DAC. 

 

Figure 33. Dynamic range 

2.3.3 Two-tone Test 

 

Figure 34. Power spectral density with two-tone inputs 
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A two-tone test is done with two tones 1MHz apart, and amplitudes are -9.9dBFS. In Figure 

34, the inter-modulated tones are -74.72dBFS and -74.47dBFS, and this indicates a modulator 

IM3 of 65dB.  

2.3.4 Power Consumption 

Table 1. Supply voltage and power consumption by blocks 

 

The total power consumption including that of the clock generator is 12mW. Table 1 shows 

the power consumption of each block. The analog part, including the resonators, the DAC 

current sources and the summing amplifier, consumes 5mW. A 1.25V supply voltage is used to 

ensure headroom for the triple cascode structure of the DAC current source. The first resonator 

consumes 2mW, and the second resonator consumes 1.5mW. The two DACs consume 1mW, 

and the summing amplifier consumes 0.5mW. The digital part consists of the quantizer and the 

DAC latch. The DAC latch consumes most of the digital power due to the switching, and the 

calibration circuits do not consume any power during normal operation. The DAC driver uses 

0.9V supply voltage, and consumes 1mW. The clock generator includes the clock delay 

controller, and consumes 2mW. Figure 35 compares the power consumption of the different 

blocks in a pie graph. 
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Figure 35. Power consumption details 

2.3.5 Performance Summary and State of the Arts 

Table 2 shows a performance summary of this prototype. The sampling rate is 800MHz, and 

the center frequency is 200MHz, which is the quarter of the sampling frequency. The FoM is 

385fJ/conversion which to our knowledge is the best for CTBPDSMs using active resonators.  

Table 3 compares this work with the state-of-the-art. 

Table 2. Performance summary 
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Table 3. State of the arts  
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Chapter 3. CTBPDSM with DAC Duty Cycle Control 

The first prototype achieves good power efficiency, but the SNDR and dynamic range are not 

enough for practical SDR. Considering that a higher resolution and a wide bandwidth, such as 

12bit resolution at 24MHz, is required in mobile environments[91], the first prototype can 

achieve 2 more bits by increasing the modulation order or the quantizer resolution. Also, the first 

resonator and the first DAC need to have lower in-band thermal noise to reduce the noise floor 

and improve SNDR. 

Bandpass filtering of the input signal also makes CTBPDSMs more suitable for SDR since 

this filtering suppresses interferers and prevents saturation of the modulator [92]-[95]. 

Furthermore, filtering helps to increase the dynamic range. The STF of the first prototype is 

almost flat due to the feedforward paths, and a modification of this architecture adds a bandpass 

characteristic to the STF. To keep the power consumption low, another new technique reduces 

the number of feedback DACs. 

We introduce a 6
th

-order CTBPDSM architecture with 4bit quantization in this chapter. This 

device has better resolution than the first prototype and also provides bandpass filtering of the 

input signal. This new architecture has total two DACs thanks to DAC duty cycle control. With 

the help of a new duty-cycle-controlled feedback DAC scheme, we can make an architecture that 

is both simple and reconfigurable. A single, duty-cycle-controlled DAC replaces the 

conventional combination of RZ and HZ DACs that usually feed each resonator. This new 

scheme does not rely on feedforward paths to eliminate feedback DACs, and importantly this 

enables input signal filtering without peaking in the STF. Also, the duty-cycle controlled DAC 

enables the center frequency to be easily reconfigurable.  
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Table 4. Target spec of the new prototype 

 

Table 4 shows the new target specifications. The target SNDR and dynamic range are 75dB 

and 80dB, respectively. The amplifiers and the DAC current sources are newly designed for 

lower thermal noise and the better linearity to achieve the target performance. Other peripheral 

circuits are also modified appropriately. Although it introduces reconfigurability and STF 

filtering, the prototype achieves the best energy efficiency of any CTBPDSM using active 

resonators. 

 

Figure 36. System block diagram 
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3.1 New Architecture 

The 6
th

-order CTBPDSM architecture in Figure 36 has three resonators, and there is no 

summing amplifier. Single-opamp resonators are used for low power consumption. The two 

DACs are connected to Resonator1 and Resonator3, and one feedforward path exists between 

the Resonator1 output and the Resonator3 input for low power. The quantizer is expanded to a 

17-level flash ADC, and this, together with the 6
th

-order modulation, increases the SNDR. The 

feedforward path from the input is removed, and Resonator3 drives the quantizer directly. The 

absence of the feedforward path in front of the quantizer helps the bandpass filtering. 

 The two DACs are not RZ DACs, but change the current direction depending on the preset 

duty cycle. This makes one DAC look like two DACs, and this helps to further reduce the total 

number of DACs in this modulator. 

The simulation results with this architecture show 75dB SNDR with the STF peaking 

minimized. The maximum SNDR with 6
th

-order modulation and 4bit quantization is higher than 

this, but it causes STF peaking when there is a feedforward path in the modulator. The degrade 

in the SNDR can lead to the STF with the minimum peaking, and this still satisfies the original 

target SNDR. 

 

3.2 Frequency Tuning 

A flexible modulator center frequency[96] requires adjustment of both the feedback and/or 

feedforward coefficients, as well as modification of the resonant frequency of resonators. [58] 

transforms a DTBPDSM to a CTBPDSM with RZ and HZ DACs. This transformation is not 
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limited to the condition that the center frequency Fc is Fs/4, and can be used for the 

transformation of DTBPDSMs with any Fc between DC and Fs/2. If the resonator is tunable then 

from analysis of the loop impulse response, the modulator can operate with any Fc by changing 

the amplitudes of the RZ and HZ pulses (Figure 37). Different combinations of RZ and HZ DAC 

amplitudes (a1,b1) and (a2,b2) enable different center frequencies, Fc1 and Fc2 since they lead to 

the appropriate sampled loop impulse response required for different values of Fc.  

 

Figure 37. Center frequency tuning with RZ and HZ DACs 

The general expression for the 2
nd

-order loop transfer function of a DTBPDSM is 
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  is the center frequency location with regard to the sampling frequency (   °) and when 

    °, the center frequency is at the quarter of the sampling frequency and the loop transfer 

function becomes: 

   

     
                                                                           

A CTBPDSM can be designed by making the loop transfer function of the CTBPDSM, 

sampled at every Ts the same as that of the DTBPDSM as in [58]. And this method can be 

applied generally regardless of the center frequency location.  

The transfer function of a resonator is expressed as: 

   

     
 
                                                                          

                                                                           

The RZ DAC and the HZ DAC have the transfer functions of: 

         

 
                                                                    

                   

 
                                                          

The loop transfer function is the product of the transfer functions of the resonator and the 

DAC. The two loop transfer functions with the two kinds of DACs are expressed as: 

             

     
 

                                                                 

   
                  

     
 

                                                        

The loop impulse response for the case with the RZ DAC is  
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where u(t) is a unit step function. 

By sampling this impulse response with the sampling period of Ts, we get 

                      
  
 
        

  
 
                                

The z-transform with this discrete-time impulse response gives  

                         
               

  

                   
                             

Another loop impulse response with the HZ DAC can be written in the same method and it is 

            
                             

  

                   
                               

A linear combination of the two discrete-time transfer functions, (29) and (30) can result in 

(19), and this completes the transformation of the DTBPDSM to the CTBPDSM with an 

arbitrary center frequency. The only variables here are the amplitudes of the two kinds of DACs, 

and the resonator frequency should be changed as well. 

Therefore, reconfiguration of Fc is achieved by adjusting the RZ and HZ DAC currents but 

conventionally this requires both RZ and HZ DACs. 

 

3.3 Duty Cycle Control 

A problem with the conventional approach to frequency reconfiguration in 3.2 is that it 

requires both an RZ and an HZ feedback DAC for each resonator. This prevents the use of the 

new architecture in 2.1.2 that halves the number of feedback DACs. That architecture requires 
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only one feedback DAC per resonator thereby significantly reducing power consumption, 

thermal noise and silicon area. However, the scheme in 2.1.2 requires a feedforward path to 

remove one DAC and this has the disadvantage of causing STF peaking. Furthermore, 

reconfiguration of Fc is not possible because the approximation made to remove another 

feedback DAC is only valid for Fc =Fs/4.  

 

Figure 38. Replacement of two DACs with one duty-cycle-controlled DAC 

Instead, without affecting the STF, we introduce a single, variable-duty-cycle NRZ DAC to 

replace the combination of the RZ and HZ DACs. Here adjustment of the duty cycle allows one 

single DAC to operate as two DACs (i.e. RZ and HZ) in a CTBPDSM, since both the pulse 

width and pulse amplitude convey information. Figure 38(a) shows the waveform resulting from 
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the combination of RZ and HZ pulses with RZ and HZ DAC amplitudes of ‘a’ and ‘b’. The duty-

cycle controlled DAC waveform in Figure 38(b) is NRZ and has constant amplitude ‘c’, and the 

duty cycle is no longer 50%. Thanks to the variable duty cycle, the waveform has information in 

the amplitude ‘c’ and the duty cycle ‘ ’, while the conventional combination of RZ and HZ 

DACs only has the information of the amplitudes of the two pulses. Therefore, the duty-cycle 

controlled DAC waveform of Figure 38(b) is made equivalent to that of Figure 38(a) in one 

clock period of a CTBPDSM by choosing ‘c’ and ‘ ’. It can be easily shown that the sampled 

loop impulse response of this duty-cycle-controlled DAC, plus resonator, in a CTBPDSM is 

exactly the same as that for the two DAC systems. Similarly by adjusting the duty cycle, this 

new DAC facilitates a CTBPDSM with Fc≠Fs/4.  

An NRZ current waveform with the duty cycle of   (     ) and a constant amplitude is 

expressed as: 

        

 
 
                     

 
                                             

      
               

 
           

Next, the loop transfer function when combined with a resonator in the 2
nd

–order CTBPDSM 

is 

                   

     
 

                                                       

The impulse response of this transfer function is: 

                                                                         

And the z-transform of this impulse response gives 
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The goal is to make (34) and (19) the same, and the variables are     . The center frequency 

is related to      (in (19)). So even though the center frequency varies, the equivalence can be 

kept by changing  . For example, when the center frequency is at Fs/4,           . This 

makes (19) become (20), and in (34) we can figure out that  

                                                                      (35) 

since there should not be the term for     in the numerator. We can get       easily from 

this, and the same method can be used for any other center frequency location. 

The advantage of the duty-cycle-controlled DAC scheme is that it has constant amplitude and 

can be implemented with one DAC. This reduces the power consumption and thermal noise of 

the DACs, and simplifies the modulator architecture. The new DAC scheme halves the total 

number of DACs without any detrimental modification of the architecture (such as additional 

feedforward paths), and therefore the CTBPDSM can have at most one DAC per resonator in any 

combination of feedback and feedforward paths. 

 

3.4 Input Signal Filtering 

The feedback-only architecture is the best for the bandpass filtering of the input signal, but 

this increases the number of DACs and also has large signal swings through the signal path. 
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Therefore it consumes a lot of power, and this is one of the reasons why many CTDSMs 

combine the feedback and feedforward paths[10].  

In this architecture, the feedforward paths to the quantizer are all removed because these 

prevent filtering of out-of-band signals and make the STF flat. However, the feedforward path 

from Resonator1 to Resonator3 in Figure 36 barely affects the STF if the gain of Resonator2 is 

adjusted, and so it can be used to reduce the output swing of Resonator1, which is the most 

power hungry block in the modulator. This feedforward path also allows the removal of the DAC 

for Resonator2. Any peaking in the STF due to this path is minimized with little penalty in 

SNDR by reducing the gain of Resonator2. This method relaxes the power and linearity 

requirements. Furthermore, it does not require a summing amplifier before the quantizer, which 

can take a large portion of the total power consumption. At the same time, we minimize STF 

peaking to below 1dB and achieve a bandpass STF.  

Even though this architecture is not able to filter the input signal as well as a resonator since it 

has a wide bandwidth, it definitely helps suppress interferers that are far away, and prevents the 

modulator from being saturated by them.  

 

3.5 Circuit Blocks 

3.5.1 Op-amp 

For better noise performance, the resonator has to have smaller input resistors since the input 

resistors mainly decide the input referred noise of the modulator. Accordingly, all the resistor 

sizes in the RC network are decreased and the capacitor sizes are increased in order to keep the 
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same resonator gain and resonant frequency. The thermal noise caused by the amplifier itself 

also has to be reduced below the thermal noise of the input resistors. This makes increased power 

consumption inevitable. The increased linearity requirement also leads to an increase in power 

consumption. The amplifier has a larger load, so the output stage has to drive more current to 

prevent slewing. The increase in current leads to large device sizes, which limit the bandwidth of 

the amplifier. 

 

Figure 39. Multi-stage amplifier with gm-C compensation 

The amplifier structure is modified to ensure large bandwidth as well as high gain. The new 

amplifier uses a multi-stage scheme like the first prototype, but has gm-C compensation instead 

of nested Miller-compensation[97]. Figure 39 shows the amplifier structure. The gain gradually 

decreases as the frequency goes up due to the capacitor C1-3 after each stage. These capacitors 

limit the bandwidth of each path, and let the fastest path with a single stage keep the phase shift 

low at higher frequency and guarantee a good phase margin. The longest path with four stages 
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has the highest gain but the narrowest bandwidth. The next longest path has three stages, and the 

gain is lower but the bandwidth is wider compared to the longest path. Therefore, this path gets 

dominant over the longest path above a certain frequency, and the same thing happens to the 

other paths. By using feedforward paths to the internal nodes, the stages are shared by several 

paths and the total power consumption as well as the total number of stages are reduced[92]. The 

total of four paths give wider bandwidth and higher gain compared to the amplifier used in the 

first prototype.  

 

Figure 40. Gain and phase response of the amplifier 
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Introducing capacitors C4-5 from the input and output of the first two stages (between the 

same polarity) generates left-plane zeros[98]. These effectively reduce the bandwidth of each 

stage and can reduce the capacitor size C1-2 between the stages due to Miller-effect. Since these 

cause slight peaking in the open-loop gain response of the amplifier, it is possible to get more 

gain around the edge of the bandwidth and thus wider total open-loop bandwidth of the amplifier. 

The left-plane zero due to C4-5 prevents the gain attenuation at high frequency, but it also 

recovers the phase response close to 0 degree and does not decrease the total phase margin. The 

simulation result in Figure 40 compares the gain and phase response of the amplifier for the first 

resonator with or without the load which are the passive components in the feedback network. 

The amplifier has a 450MHz 3dB bandwidth with 57dB DC gain even with a load. The phase 

margin is around 50 degree.  

 

Figure 41. First stage of the amplifier with CMFB 

Figure 41 shows the first stage of the amplifier in the longest path, and includes the common 

mode feedback circuit. The thermal noise from this stage is critical for the input referred noise, 

so the output common mode voltage sensing is done through source followers since the direct 

use of resistors at the output for sensing adds thermal noise to the amplifier output. The other 



61 

 

stages are less critical for the thermal noise, and use resistive common mode feedback circuits. 

The width of the input devices is sized large to decrease the input referred noise. The noise 

voltage at the output is proportional to     while the gain is proportional to gm, which means 

that increasing gm by adopting large (W/L) helps reduce the input referred noise. 

For a large voltage headroom in the last stage of the amplifier, a separate high supply voltage 

of 1.7V is used only for the last stage, while the other stages run from 1.2V supply. Larger 

voltage swing at the output helps reduce the input referred noise because it allows the resonator 

to have more gain. The power consumption of the first resonator is 7.5mW, and the other two 

resonators consume a total of 9mW. 

3.5.2 DAC 

The regular supply voltage is not enough to suppress the thermal noise of the current source 

when a triple cascode structure is used. So I/O devices and a 2.5V supply voltage are used to get 

a very large gate overdrive of the current sources[92] since this helps lower the gm of the current 

source and reduce the thermal noise. The virtual ground node voltage of the resonator is 1V, so 

PMOS devices are used for the current source as in Figure 42. The voltage headroom is 1.5V 

now, and 1V is assigned to the current source. The remainder of the headroom is assigned 

equally to the cascode device and the switching devices. This reduces the thermal noise 

significantly, and the input referred noise of this modulator also decreases to the required level. 
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Figure 42. Triple-cascode PMOS DAC and counterpart NMOS current source 

 

 

Figure 43. DAC bias circuit 
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The biasing circuit in Figure 43 is used to generate a bias voltage to maintain the source-to-

drain voltage, VDS, assigned to each transistor. The first step is to generate the gate voltage of the 

PMOS current source M1 with the bias current set to current 1 LSB of the current DAC and the 

drain voltage is set to 1.5V by a feedback loop with Amp1. The gate bias voltage of M1 is 

applied to another current source device M2 with the same size, and then the cascode device M3 

is biased by another feedback loop with Amp2. A PMOS transistor M4 with the same size as the 

switching device is connected to the drain of M3. The other side of M4 is fixed at 1V to get the 

exact same condition as the triple cascode structure in the DAC. For this, a unity gain buffer with 

Amp3 provides the 1V bias based on a 1V reference generated by a resistor ladder connected 

between the supply rails. The generated bias voltage VBP1 goes through an LPF comprised of a 

resistor and a capacitor to suppress thermal noise injection through the gate of the current source 

M5. There is no filtering for VBP2 to M6 since this is not critical for thermal noise. 

The counterpart NMOS current source to sink the current from the PMOS current source has 

an active cascode structure as shown in the lower part in Figure 42. This keeps the output 

impedance high, and also gives enough headroom to overdrive the NMOS current source to 

reduce thermal noise. Similarly with the biasing of the triple cascode structure, the VDS of the 

NMOS current source device is assigned to 750mV, and the active cascode structure generates 

the gate voltage of the cascode devices to set the drain voltage of the current source to 750mV. 

And another feedback loop not shown in the figure generates the gate voltage of the NMOS 

current sources to get 1V at the DAC outputs, which makes the NMOS bias current the same as 

the PMOS bias current.  
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Figure 44. Layout of the DAC current sources 

Matching between the current sources is very important to suppress harmonics at the 

modulator output. So as not to use DEM circuits which consume more power, the size of the 

PMOS current sources is made very large for good matching. For even better matching between 

the current sources, the devices are split into several fingers and the fingers are mixed as 

common-centroid layout to avoid local mismatch. Figure 44 shows how the current sources are 

configured. There are eight current sources in the example shown here, and each device has eight 

fingers (total 64 transistors). None of the fingers for the same current source exist in the same 

row, but every row has one finger from each current source. Even though the fingers are 

distributed evenly over the layout, the mismatch in the connection length can contribute to 

nonlinearity. Each current source is connected to the cascode device on either left or right side of 

the whole layout. The connection length of eight fingers from the same current source has to be 

the same for every current source. To solve this, each finger in a column is connected to the 

finger in the next column with the same distance for every current source. From the first column 



65 

 

to the second column, every finger is switched with the neighbor in pair, which fixes the 

connection length between two fingers in the two columns from the same current source to 1. 

From the second to the third column, two fingers are grouped and the groups are switched, and 

this fixes the distance to 2. In this way, the whole connection length of eight fingers from the 

same current source can be the same for all current sources. The local mismatch between the 

current sources is reduced substantially since the device size is large. 

3.5.3 DAC Latch 

 

Figure 45. DAC latch with duty cycle control 

To generate a DAC output signal with variable duty cycle, the DAC latch has to combine the 

quantizer output with the clock. The DAC latch consists of a flip-flop and a mux, and is shown in 

Figure 45. The flip-flop holds the comparator output since the comparator output is valid only for 

the first half clock period. The output of the flip-flop is inverted, and the clock switches the mux 

output between the comparator output and the inverted one. This generates the required output 
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signal with the duty cycle same as the clock. The mux and the following inverter chain use large 

(W/L) to reduce the jitter noise. 

3.5.4 Level Shifter 

The output common mode voltage of the DAC is 1V, so the switching devices of DACs 

become saturated at 0.6V and totally turn off at 1.4V. The digital output from the DAC latch 

swings between the supply rails of 0V and 1.2V, and therefore a level shifter is required to 

generate the switching signal that goes between 0.6V and 1.4V. Separate supply domains are 

necessary to isolate the DAC driver from other supplies since supply noise can be considered as 

clock jitter noise and reduces SNDR. 

 

Figure 46. Level shifter 

The level shifter has to operate fast enough to suppress the transient noise, and the differential 

output signals should cross with each other at lower voltage (close to 0.6V) to prevent both 

PMOS switches from being turned off at the same time[99]. Figure 46 shows the level shifter 

implementation. On the left side, the first inverter works faster when the input INP goes down 
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since the ground is tied to 0.6V and VGS of the NMOS decreases fast. Therefore, the inverter 

output increases quickly to 1.4V and the output OUTP drops down quickly to 0.6V. Due to the 

supply domain change from 0V and 1.2V to 0.6V and 1.4V, a low cross-over voltage of the 

differential output signals is inherently achieved, but the first inverter output goes down too 

slowly when INP goes up. If another inverter is used for the second stage, both the outputs stay 

low for a while since it takes time to turn on the PMOS of the second inverter. Instead, INM is 

directly connected to the PMOS gate instead of the inverter output. This makes pulling up OUTP 

faster, and prevents both the signals from being low together for a long time. To guarantee the 

low crossing of the signals at the same time, a high threshold voltage (hvt) device is used for the 

PMOS.  

 

Figure 47. Level shifter output waveform 

Figure 47 shows the differential outputs of the level shifter. The two signals cross close to 

0.6V, and the rising signal rises right after the crossing with the help of a hvt device. 
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3.5.5 Clock Generator 

 

Figure 48. Clock receiver 

 

    

                       (a) Latch                                    (b) Divider with two latches 

Figure 49. Clock divider 

The clock input twice faster than the sampling frequency is used to generate 25% duty cycle 

with minimum clock jitter. The 25% duty cycle is generated by ‘AND’ operation on the two 

divided clocks with different phases. The clock receiver in Figure 48 gets the clock input from 

off-chip, and generates a square waveform from the sine waveform input. It uses resistive 
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feedback to self-bias the amplifier and ac-couple the clock input. To generate I and Q phases 

from this clock signal, the clock divider in Figure 49 is used. This latch and the clock divider 

provide balanced clock and its complement as well as two phases. 

The default duty cycle for this modulator is 25%, but a different duty cycle is required for the 

frequency tuning as mentioned in 3.3. To adjust the clock duty cycle, a separate bias voltage is 

used for the clock receiver as in Figure 50. The voltage at node X is generated by another 

inverter with resistive feedback. This additional circuit changes only the bias voltage and keeps 

the original clock receiver transistor sizes, which are determined by the clock jitter noise. The 

bias generator inverter has smaller transistors to reduce power consumption, and the noise from 

this circuit barely gets into the main clock path because the gate noise at node X of the bias 

generator is very small. There are several PMOS transistors in parallel, and can be turned on and 

off depending on a digital control signal. This changes the voltage at node X, and also changes 

the duty cycle of the clock receiver output since it changes the midpoint of the sinusoidal input.  

 

Figure 50. Clock receiver bias circuit 

Clock jitter noise is important since it increases the noise around the NTF notch in a manner 

similar to the thermal noise caused by other blocks. Inverter chains with a large (W/L) ratio are 



70 

 

used from the clock receiver to reduce the clock jitter. The clock jitter requirement for this 

modulator is 500fs[100] to achieve around 80dB SNDR, but the inverters are sized to have the 

clock jitter of 250fs for margin, in case of inaccuracy of the simulator. The clock generation and 

distribution circuits run from a separate clean supply in order to have better jitter performance.  

3.5.6 Quantizer 

A 17-level flash ADC is used as the quantizer, and the comparator is the same as that used in 

the first prototype. The input swing to the quantizer is doubled compared to that of the first 

prototype to keep the LSB size the same. This enables the re-use of the comparator and the offset 

calibration circuits. 

3.5.7 Global Bias Circuit 

 

Figure 51. Global bias circuit 
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This modulator gets only one bias current from off-chip, and generates bias currents for every 

block from this current. The global bias generation circuit is shown in Figure 51. The bias 

current for each block is generated by a current mirror DAC and the magnitude is digitally 

controlled by the scan chain. The PMOS transistors with switches in parallel with the main 

transistor are turned on and off depending on the digital code to change the bias current to the 

individual blocks. For fine adjustment of the bias current to each block, the bias currents to three 

resonators and the second DAC are controlled to 5 bit resolution and the bias current to the first 

DAC is set to 6bit value. The bias current for the flash ADC calibration is a 4bit value since it 

does not need to be very accurate. While all the bias currents to the blocks are below 40uA, a 

100uA current is used as the off-chip reference bias current 'IRef' for more accuracy. 

3.5.8 System Implementation 

 

Figure 52. System implementation 



72 

 

Figure 52 shows the system implementation. Passive HPFs are used to connect resonators and 

to make a feedforward path. The output of the flash ADC is delayed by one clock. To implement 

a 6
th

–order CTBPDSM, three op-amps and two current-mode DACs are used with the help of 

duty cycle control, and this enable large savings in terms of power and area.  

There are also calibration circuits for resonator RC tuning, DAC biasing, flash ADC offset 

cancellation, clock duty cycle control, and clock path mismatch compensation. Several test point 

nodes are multiplexed to pads in order to facilitate the calibration. 

3.5.9 Output Buffer 

 

Figure 53. LVDS buffer for output 

This modulator operates with a sampling rate of 800MHz, however it is difficult to get the 

800MHz digital signal off the chip even with decent equipment. Therefore, the digital output of 

the flash ADC is interleaved by 2, and the digital output runs at 400MHz. More interleaving is 

not possible due to the limited number of I/O pads. However, 400MHz is still fast and inverters 
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are not suitable to drive the output pads because the outputs drive a large amount of current for 

high speed but it makes the supply rails too noisy. This can affect the other supply domains and 

cause harmonics at the modulator output. To avoid this, low-voltage differential signaling 

(LVDS) buffers drive the digital outputs[101]. Figure 53 shows the buffer structure. The 

differential output steers the current direction between the supply and the output pad. Only one 

side is connected to the output pad in order to reduce the number of output pads, and this is not 

critical since the current through the ground pad is still the same. The power pad for the LVDS 

buffers is isolated with other supply rails. The gate bias voltage of the current source of the 

LVDS driver does not need to be accurate, so a resistor ladder with switches is used for flexible 

biasing. The current output can vary from 1mA to 12mA per buffer, which provides a large 

dynamic range for the detection of the logic signal off-chip. 

 

3.6  Measurement 

 

Figure 54. Die micrograph 
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The prototype is fabricated in 65nm CMOS, and the active area of the die, which includes 

resonators, DACs, DAC latches, a clock generator, and a quantizer is total 0.25mm
2
. 9 metal 

layers are used, and Figure 54 shows the die micrograph. The biasing of the circuits is done on 

the chip, so most pads are assigned for power, ground, and digital I/O.  

Calibration of the resonators is performed before evaluating the normal operation of the 

modulator. The quality factor is measured by observing the test point from the resonator output 

with a spectrum analyzer. The calibration circuit is able to feed the input signal to each resonator 

directly while bypassing and disabling the other circuits. This makes it easier to calibrate 

individual resonators independently.  

The digital signals are read by a logic analyzer which can support up to 500MHz, and the 

interleaved signal is recovered by software. The LVDS output signal swing is around 300mV.   

3.6.1 SNDR 

Measurements show 69dB SNDR over a 24MHz bandwidth with a 800MHz sampling rate 

when Fc is set to 200MHz as in Figure 55. Thanks to the 6
th

-order modulation with more anti-

alias filtering and better design of the blocks, the third harmonic is suppressed enough not to 

affect the SNDR. The use of the duty-cycle-controlled DAC perfectly replaces the two DACs 

with RZ and HZ phases, and it does not cause any asymmetry in the measured power spectral 

density. The measured noise shaping slope is between 40dB/dec. and 60dB/dec. since the gain of 

the second resonator is reduced to suppress the peaking in the STF. 
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Figure 55. Power spectral density 

3.6.2 STF 

 

Figure 56. Measured signal transfer function 

The STF is measured by feeding two tones to the modulator input. One has the same 

frequency as the center frequency, and the other tone varies from DC to higher frequency. The 
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difference between the two output magnitudes implies the input filtering characteristic of this 

modulator. The measured STF is shown in Figure 56. The maximum peaking is less than 1dB 

and the 3dB bandwidth is 300MHz.  

3.6.3 IM3 

Figure 57 shows the measured power spectral density with a two-tone input. The tones are 

1MHz apart from each other, and are located around the edge of the bandwidth since it shows 

how the signals are intermodulated to in-band IM3 product. The measured IM3 is 73dB, and the 

intermodulated signals are close to the noise floor. 

 

Figure 57. Power spectral density with a two-tone input 

3.6.4 Frequency Tuning 

Figure 58 shows the operation of the prototype at other center frequencies. The resonator and 

the clock duty cycle have +-10% tuning range, and the center frequency of the prototype can be 

tuned from 180MHz to 220MHz. Figure 58(a) and Figure 58(b) show the measured power 
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spectrum density at each corner, and indicate an SNDR of 66dB and 67dB for the low and high 

Fc corners, respectively. 

 

Figure 58. Different center frequency (a) 180MHz (b) 220MHz 

3.6.5 Power Consumption 

 

Figure 59. Power consumption details 
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The total power consumption including that of the clocking and bias generator is 35mW, and 

this corresponds to an FoM of 317fJ/conv-step. Table 5 shows the power consumption and the 

supply voltage details for each block. The resonators use dual supplies and the DACs run from a 

2.5V supply in order to get better noise and linearity performance, while digital blocks use 

regular 1.2V supply. These blocks consume more than half of the total power as shown in Figure 

59. 

Table 5. Supply voltage and power consumption by blocks 

Analog 
  

Resonators 1.2V+1.7V 16.5mW 

DAC 2.5V 4.3mW 

Bias 1.2V 1mW 

Digital 1.2V 6.6mW 

Clock Gen 1.2V 4.8mW 

DAC Driver 0.6V+1.4V 1.8mW 

Total 
 

35mW 

3.6.6 Performance Summary and State of the Arts 

Table 6 summarizes the performance of this prototype. The sampling rate, the center 

frequency, and the bandwidth are the same as those of the first prototype, but there is huge 

improvement in performance. The 69dB SNDR corresponds to two more bits of resolution, and 

the dynamic range is 10dB higher. However, the power increases by less than a factor of 3 and 

this makes the FoM even better than that of the first prototype. 
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Table 6. Performance summary 

Sampling Rate 800MHz 

Center Frequency 200MHz 

BW 24MHz 

Power 35mW 

SNDR 69dB 

DR 70dB 

Area 0.25mm2 

FoM 320fJ/conv. 

 

Table 7 compares this work with state-of-the-art CTBPDSMs. Even with the reconfigurability, 

to our knowledge this work demonstrates the best energy efficiency for CTBPDSMs using active 

resonators. 
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Table 7. State of the arts
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Chapter 4. Future Work 

The prototypes show excellent performance and occupy very little die area. This makes the 

CTBPDSM suitable for mobile applications, however the current prototype requires complex 

testing environment. The difficulty in the calibration and test causes additional cost, and cannot 

be ignored in practice in large scale production.  

Many pads are saved by generating most of the bias current on-chip, but still the prototype 

requires several supply domains for different blocks. The second prototype uses three different 

supply voltages, 1.2V, 1.7V, and 2.5V, for the analog circuits. The main reason for this is to 

reduce the noise and enhance the linearity. In the future work, the number of power domains can 

be reduced by using other methods to improve noise and the linearity, or by generating the 

supply voltages on-chip. A bandgap reference is also necessary for the modulator to be robust to 

the temperature variation, and remove the on-board bias circuit. 

Next, the output signal needs a lot of I/O pads due to the interleaving. To avoid the waste of 

the I/O pads, a decimation circuit [103] could be integrated on-chip. Alternatively an SRAM 

could be used to store digital output of the modulator and then a serializer could be used to flush 

the data from the SRAM to off-chip. This would reduce the number of I/O pads and also slow 

down the output signal speed and simplify the data reading process. 

Also, most calibration is done manually through the scan chain, and takes a long time. 

Automated calibration is necessary for practical designs, and therefore it is important to design 

the automated calibration method especially for the resonators. It is possible to measure the 

center frequency and quality factor by examining the resonator output swing variation. Therefore, 

a digital controller and comparators can support an automated calibration process. 
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By adding the listed characteristics to the current prototype, it can work as an independent 

system which requires only a single power supply, and can be easily used with other front-end 

blocks in the receiver. 

Finally, a major change in the architecture can give a big advantage to CTBPDSMs. The 

second modulator provides only the wide bandpass filtering of the input, but a narrowband 

bandpass filtering is necessary considering the unexpected interferes and the reduction of the 

number of filters in the receiver. A different combination of the feedback and feedforward paths 

and the use of the filters in the modulator can achieve a narrowband bandpass filtering. 

Also, another type of a resonator has to be exploited for the digitization of higher frequency 

signals. The current active resonator cannot cover the GHz frequency due to the finite gain-

bandwidth product of the amplifier. It is related with the scale of CMOS technology, and a new 

method to maximize the operating range of the resonator is necessary for the modulator 

flexibility in the receiver. 

By enhancing the input signal filtering capability and increasing the center frequency of the 

modulator, the software-defined radio can be more robust to the interferers with only a few 

analog blocks and be more easily reconfigurable for multiple standards. 
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Chapter 5. Conclusions 

CTBPDSMs are very useful in the implementation of a software-defined radio due to their 

bandpass characteristic and the reconfigurability. And to solve the power efficiency problems, 

several methods to reduce the power consumption of CTBPDSMs are introduced in this research.  

Here are the key contributions. 

 

 A power-efficient single op-amp resonator can replace the LC tank resonator to 

achieve both low power and low area. The use of the positive feedback enables the 

implementation of the single op-amp resonator with only a few passive components.  

 A simple 4
th

-order architecture with low power consumption is also introduced. This 

architecture minimizes the number of DACs and there are one feedback DAC per 

resonator similarly to CTLPDSMs. And this reduces the power consumption and 

thermal noise of the DACS, and requires a small silicon area.  

 The use of a new resonator and a new architecture reduces the number of the critical 

components in the CTBPDSM by half compared to the conventional ones.  

 

The first prototype based on these techniques achieves 58dB SNDR and 60dB DR, and 

consumes 12mW including the power of the clock generator. And it has the better power 

efficiency compared to the state-of-the-art. The power efficiency approaches the efficiency of 

CTLPDSMs, and makes CTBPDSMs practical in the receiver. 

The second prototype introduces other methods to reduce the power consumption.  
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 The use of duty-cycle-controlled DACs enables the use of a single DAC per resonator 

without affecting the STF. This replacement helps low power consumption, low area, 

and low thermal noise. 

 The new architecture provides input signal filtering capability, and increases the 

dynamic range by reducing the peaking in the STF. This feature makes CTBPDSMs 

more robust in the software defined radio when interferers exist by reducing the 

chance for the modulator to be saturated.  

 The center frequency becomes tunable with the help of duty-cycle-controlled DACs. 

This makes the mixer unnecessary in the receiver, and provides more flexibility 

making this CTBPDSM very useful in the receiver.  

 

The measurement results of the second prototype show 11dB more SNDR, which is 2 more 

bit resolution, than the first prototype. And the DR is 70dB which gives 10dB more than the first 

one. The total power consumption is 35mW, and there is a 15% improvement in the figure-of-

merit achieving even better power efficiency of the CTBPDSM.  

The excellent power efficiency achieved with the techniques introduced here makes it easier 

to build an SDR without a power penalty compared to super-heterodyne receivers. Also, the 

flexibility and the filtering capability make CTBPDSMs more attractive for the front end of the 

receiver.
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