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ABSTRACT

Examining the effect of immunity on infection dynamics at the host, population,
and multi-population levels

by

Bryan T. Mayer

Chair: Joseph N. S. Eisenberg

Dynamic modeling is an important tool for informing public health decisions. In this

dissertation, we explored the role of host immunity in infection transmission models

at the host, population, and multi-population level. We applied these models to two

pathogen systems: 1) anthrax infection at the host level and 2) polio transmission at

the population and multi-population level.

At the host level, dose-response models are used to characterize the risk of infection

given a pathogen exposure and are one of the primary tools for risk assessments.

These models are generally static assuming invariant risk over time. However, if the

temporal response of the immune system to pathogen exposures is of the same time

scale as the temporal patterns of exposure then delivering a dose over a short time

span may result in a higher risk than if that same dose was delivered over a longer

time span. To explore the implications of such an immune response, we developed a

dose-response model that incorporates the immune response to pathogen exposures

and thereby allows risk calculations to be dependent on exposure patterns that vary

over time. We then applied our model to an anthrax system using survival analysis.
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Our analysis indicated that the risk of anthrax is invariant to exposure patterns.

Although the anthrax data set did not reveal a dose timing pattern of risk, more

variable exposure data is needed to fully evaluate this process. We recommend that

future dose-response experiments incorporate variable temporal patterns of exposure

to assess if risk of infection is affected by temporally variant exposures.

At the population level, transmission models elucidate dynamic infection processes

and provide a framework to analyze intervention effectiveness. In the context of polio

eradication, childhood vaccination with oral polio vaccine (OPV) has been the key

intervention to achieve elimination. Final eradication, however, has been elusive

and a better understanding of polio transmission dynamics is important to elucidate

underlying difficulties. It is possible that waning immunity may play an important role

in polio persistence. We developed a model of polio transmission that incorporates

vaccine strain transmission and waning immunity to assess the successes and failures

of the polio eradication campaign. We demonstrated that short-term success through

vaccination policy is possible under diverse transmission conditions. However, long-

term success may be difficult due to reinfection transmission dynamics attributable

to waning immunity. Increased vaccine strain transmission mitigates the influence

of reinfection by boosting immunity but cannot necessarily be relied upon due to

risk of disease caused by circulating OPV. Therefore, for highly transmissive regions,

additional interventions may be appropriate such as boosters in older populations or

improved sanitary conditions.

Another reason that may make final eradication difficult is that at the multi-

population level, vaccination policies may have effects across population groups.

Therefore, we extended our polio transmission model to include migration across

populations. Our analysis demonstrated that if vaccination coverage lapses in one

population, it may be detrimental to the vaccination programs in neighboring popu-

lations. This is exemplified when migration comes from populations with high trans-
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mission levels. Thus eradication strategies should account for the induced immunity

of the disease, particularly where coverage of migratory populations may be crucial to

achieving elimination in the remaining endemic regions. This work demonstrated that

the eradication campaign is a global effort and success depends on properly targeting

connected populations.

xv



CHAPTER I

Introduction

1.1 Background and Motivation

Traditional transmission models have incorporated the role of host immunity in in-

fectious disease transmission in a variety of ways. However, many of these approaches

make simplifying assumptions regarding the nature of these processes. For example,

a susceptible-infected-recovered (SIR) model assumes that all infected individuals re-

cover into a recovered state described by complete immunity to future infections.

However, immunity is seldom complete or lifelong. An individual’s immune response

may vary over time, where their immunity is strong initially after infection but wanes

over time. Furthermore, host immunity describes a complex system important at

various stages of the infection process. At the time of exposure, the immune system

aims to prevent a pathogen from replicating and initiating infection. When infec-

tion occurs, the immune system then works to remove the pathogen determining how

contagious individuals are and how long infection lasts. Additionally, the effective-

ness of these defenses may vary depending on past exposures. Population contact

with pathogens is a complicated process where characterizing meaningful exposures

requires understanding the interaction between pathogens and the immune system.

These host immunity properties are important at the population level where infectious

contacts occur between individuals. Those with higher immunity levels will partici-
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pate less in population transmission where they are less likely to get infected and will

have a faster resolution of infection. To take advantage of these properties, interven-

tions are designed induce immunity and reduce population transmission. However,

in the context of connected populations, the intervention policies in one population

may affect another. We aim to understanding how host immunity affects infection

dynamics across these resolutions: the host, population, and multi-population levels.

Initially, we focus on the effect of immunity on risk of infection at the host level.

The ability of the immune system to prevent a pathogen from initiating infection may

depend on the nature of the exposure. For example, a large, immediate exposure

through a sneeze may elicit a different risk of infection than an equivalent exposure

inhaled slowly over time from contaminated air. If the immune response is more

efficient at eliminating small quantities of pathogens, the large, immediate exposure

might elicit a higher risk of infection. Therefore, the dynamic nature of the immune

system may be an important factor determining risk of infection, specifically where

different routes of transmissions result in varying temporal exposure patterns. To

account for this, we developed a dynamic dose-response model incorporating the

immune response in chapter II. We applied our model to a risk assessment framework

in the anthrax disease system.

To incorporate host immunity into population models, we considered immunity as

it affects susceptibility to infection, and how it affects contagiousness and duration if

an infection occurs. Host immunity varies depending on the time since last infection.

In contrast to the SIR model framework, complete immunity is not permanent but the

first level in a series of stages where immunity is waning over time. We applied this

framework to a polio transmission system. Polio eradication is in its final stage; and

at this stage, immunity and cross population dynamics may play an important role

in transmission dynamics. In chapter III, we developed a polio transmission model

incorporating waning immunity and vaccine transmission. In chapter IV, we extended

2



this polio transmission model to include migration across heterogeneous populations.

Here, elimination success may be affected by migration due to the interaction of

waning immunity and varying vaccination policy across populations.

1.2 Dynamic modeling of infectious diseases with immunity

1.2.1 Dose-response modeling at the host level

1.2.1.1 Contemporary dose-response models

In chapter II, we developed a dose-response model in the anthrax disease sys-

tem. The role of dose-response models is to characterize the risk of infection given

a pathogen exposure. Dose-response models are used extensively in risk assessment

where risk of infection can be readily calculated for different exposure scenarios [1–3].

Currently, these models are also implemented in environmental transmission models

where pathogens exposures mediated through the environment are assigned probabil-

ities based on dose-response models [4].

The classic dose-response models used for microbial risk assessment are the ex-

ponential and beta-poisson distributional models [2]. These models were devel-

oped under the independent action hypothesis (IAH) assumption that any individual

pathogen unit has a non-zero independent risk of initiating infection. The develop-

ment of exponential model is the most simplistic realization of the IAH. It is derived

by assuming that pathogens from an exposure arrive as a Poisson process with an

expected value equivalent to the total measured dose size. Further, each pathogen has

an independent survival risk, k. The integration of the joint probability of pathogen

arrival and pathogen survival (assumed to be independent distributions) at given ex-

pected dose size yields an exponential distribution with risk parameter, k [2]. Using

any single input dose and a known k risk parameter, a probability of infection can

then be calculated. Furthermore, the exponential model allows risk extrapolations
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(with mechanistic justification) for very small dose sizes which are difficult to eluci-

date experimentally. Low dose exposures are relevant to a variety of scenarios and

risk due to single pathogens has been directly observed for influenza Type A and

intravenous salmonella [5–7].

In the exponential model, we assume that the risk parameter k is a fixed value.

This assumption is relaxed in the beta-Poisson model, where the risk is assumed to

be a distribution that represents variability in the population. To derive this model,

k is assumed to have the beta distribution. By integrating the joint pathogen arrival

and survival distributions as before, we find a mixture distribution that represents

the beta-Poisson dose-response model. By allowing non-constant risk per pathogen,

this two parameter statistical distribution is more flexible at the extremes and can

elicit dose-risk curves that are less steep than the usual exponential models. These

models, however, were developed in a static framework where the risk of infection is

independent of the timing of doses.

1.2.1.2 Limitations of static, time-independent dose-response models

The beta-Poisson and exponential models are time-independent models, limiting

their ability to account for the dynamic effects of the immune system. Particularly, in

the exponential model, infection risk from each pathogen is independent of the time

course they are given, i.e., the overall risk for a total pathogen level is constant for

every exposure pattern. To illustrate the implications of this assumption, consider an

extreme example of an exposure of 50 pathogens instantaneously versus 50 exposures

of a single pathogen separated by a week each. In the exponential model, the overall

risk calculated would be equivalent for each scenario. This approach assumes the

effect of host clearance mechanisms on the elimination of pathogens is a constant

process. However, this may not be true. For example, the immune system might

be very efficient at eliminating low doses of pathogen but less efficient as the total
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pathogen level increases. This would allow higher doses to persist longer in the host

than a series of smaller doses and thus correspond to higher potential for infection to

initiate.

Few studies have taken into account the importance of exposure patterns and

dose-timing. This trend, however, is slowly changing first by incorporating modeling

time post inoculation [8–10]; however, still lacking are risk data where subjects are

exposed to varying exposure patterns in experimental settings. To justify and analyze

these experiments, dose-response models will need to account for time-dependent risk.

The dynamic dose-response model we developed in chapter II provides framework to

design and analyze experiments utilizing time-dependent exposure patterns.

A more biologically motivated dose-response model was previously proposed by

Pujol et al. in 2009 [10]. In this model, innate immune effector particles and pathogens

are modeled in a stochastic competition framework capturing both the growth of

pathogens and diminishing immune response. The model we presented in chapter II

is computationally less intensive than the model in Pujol et al. and therefore more

suitable for integration into a transmission model.

1.2.2 Transmission modeling at the single and multiple population level

1.2.2.1 Overview of polio transmission model

In chapters III and IV, we develop a transmission model that assesses the pop-

ulation dynamics of polio transmission under varying conditions. Our model was

designed to incorporate specific characteristics of polio transmission and the eradica-

tion campaign. These factors include waning immunity, vaccination programs with

multiple boosters per year, the transmission of OPV, and the interaction of multiple

populations. The background for the transmission model framework is described in

sections 1.2.2.2–1.2.2.5 and the specific construction of the polio transmission model

is described in chapters III and IV.
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1.2.2.2 Transmission model framework assumptions

We utilized a deterministic, compartmental model framework. Compartmental

transmission models are structured systems that allow for the dynamics of disease

transmission to be mathematically explored over time using differential equations.

The important assumptions of deterministic, continuous model are that the popula-

tion size is infinite and that population distributions are continuous. These assump-

tions represent simplistic realizations of transmission systems but allow for clear inter-

pretation and flexibility in structures. The use of transmission models to simulate real

world systems allows epidemiologists to assess the effect of potential interventions.

Classic transmission models can take fairly simplistic forms [11]. For example, a

susceptible-infected-susceptible (SIS) model is a two compartment model where pop-

ulations are either infected or susceptible. In this model, infection does not result in

immunity. This assumption may be appropriate if the disease confers no immunity.

Immunity can be added to the framework by employing a SIR structure where infec-

tion resolves into a recovered state where there is full immunity. This extension may

be appropriate for short-term epidemic analysis or for diseases that induce long-term

immunity (e.g., smallpox).

1.2.2.3 Model selection for waning immunity

In polio transmission, immunity to infection is not permanent [12–14], so we em-

ploy a model structure that accommodates for partial and temporary immunity in the

susceptible population. When immunity is not life-long, reinfection dynamics become

an important component of transmission. This is especially relevant in the context

of interventions. An analysis of reinfection dynamics indicate a distinct reinfection

threshold at certain R0 levels [15]. When transmission conditions are below this

threshold, interventions are particularly effective. However, above this threshold, in-

terventions become less effective and reinfection dynamics induce rebound epidemics.
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Our transmission structure is based on assumptions that are somewhere between

the two most extreme assumptions regarding immunity: 1) that infection results in

no immunity (SIS model) or 2) infection results in full and permanent immunity

(SIR model). One simple way to relax the assumption of full immunity is to use a

susceptible-infected-recovered-susceptible (SIRS) model where recovered individuals

eventually become susceptible again. This implies that a given individual has either

complete immunity or complete susceptibility to infection. Given knowledge about

adaptive immunity, this may be a oversimplification of the underlying biology that

could affect model inferences. In chapters III and IV, we expand the SIRS model to

include partial levels of immunity between recovered and fully susceptible. Specifi-

cally, in chapter III, we developed a framework for employing waning immunity in

transmission modeling.

1.2.2.4 Model selection for vaccination and vaccine transmission

Because vaccination is the most important intervention for reducing polio trans-

mission, we included a vaccination rate into our transmission model. The implemen-

tation of vaccination rates in transmission models has been extensively studied [11].

Generally, vaccination rates (particularly childhood vaccination) are modeled such

that a proportion of new births are immediately vaccinated. Under waning immu-

nity framework, employing birthrate vaccination may reduce prevalence to low levels

but sustained transmission remains possible as population immunity wanes over time

[16]. Therefore, for vaccination to be successful without permanent immunity, boost-

ing may be required. In the polio eradication campaign, children may be vaccinated

many times per year [17]. To allow for boosting, we applied the vaccination rate di-

rectly on an age-structured susceptible population to allow for multiple vaccinations

per child.

Because it is a live virus, OPV is transmissible through the same routes as wild po-
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liovirus [18]. OPV, therefore, can vaccinate populations and boost immunity through

transmission processes. To incorporate vaccine strain transmission, we employ a

model structure including infection due to OPV in chapters III and IV. Because the

infection course of OPV is similar to wild polio virus (WPV) but attenuated in terms

of duration and shedding [18], we utilized a similar transmission structure for both

OPV and WPV.

1.2.2.5 Multiple population models

The effect of vaccination programs is not necessarily isolated to a single popula-

tion. Populations are in constant flux and thus the policies in one region may affect

the policies in another depending on their relationship. In chapter III we introduced

key components of polio transmission: the waning of immunity and the transmission

of OPV. Under conditions of waning immunity and vaccine transmission, the effect of

migration on vaccination success may be affected by populations with partial immu-

nity or OPV infection. We therefore expand the single population polio transmission

model to multiple populations in chapter IV.

There are many formulations of spatially connected, multiple population trans-

mission models [11]. In classical metapopulation models, the interaction between

populations is constructed where the populations influence each other but are sep-

arated. This is generally realized by using a weighted force of infection where the

connected populations are coupled depending on their spatial or social relationship.

The abstract assumption regarding population interaction is relaxed in mechanistic

metapopulation models [19, 20]. In these models, explicit population movement is

modeled where a proportion of each population migrates to the other population

where it remains temporarily contributing to the transmission process before return-

ing. Keeling & Rohani [19] explored parameter conditions under which the classical

and mechanistic metapopulaton models are equivalent. Specifically, they derived the
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equivalence between the coupling parameters of the “phenomenological” model and

the movement parameters of the mechanistic model demonstrating the relationship

is disease dependent.

Multi-population models have been used to study the effect of vaccination across

populations [21–25]. The interaction between connected populations have potentially

important effects on vaccination programs in each subpopulation. Specifically, opti-

mal overall vaccination strategies depend on the relationship between connected pop-

ulations. May & Anderson [21] relaxed the assumption of homogeneous population

mixing by allowing heterogeneous populations to interact in a classical metapopu-

lation framework. They demonstrated that, when heterogeneous mixing is assumed

between connected populations, lower total vaccination rates are required to reach

elimination when the subpopulations with the highest contact rates are the focus of

intervention. However, an extension of this model showed that targeting populations

with the highest levels of interaction may be more important as demonstrated by re-

gional difficulties in smallpox eradication [22]. A recent transmission model utilizing

explicit migration and vaccination intervention indicated that in an SIR model with

fully coupled migration, vaccination rates in one population could be used to benefit

the other [25].

In the polio endemic regions, migration is an important demographic feature.

The types of migration in Afghanistan, Pakistan, and Nigeria vary (e.g., rural/urban,

seasonal, refugees, etc.) but vaccination rates are lower in migratory populations

[26–28]. Recent success in India has been partially attributed to stronger focus on

migratory families [29] where lower vaccination rates were previously observed in rural

migrants in northern India [30]. A general population migration structure relevant to

polio transmission is depicted in figure 1.1.

To assess the effect of under-vaccinated migratory populations on a given popu-

lation, the model presented in chapter IV utilizes unidirectional migration. In figure
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1.1, this would be described by having no return arrow to the source population and

instant integration of migrants into the destination population. Unidirectional popu-

lation movement implies that vaccination or transmission conditions in the destination

population cannot affect the source population. This might describe rural-urban mi-

gration where migrants are unlikely to return to their home regions. This approach

can also be interpreted abstractly, where the source population represents an aggre-

gate of migratory populations that come from different transmission or vaccination

conditions. In either interpretation, we would not expect policies in the destination

population to affect people in the source population.

Source Population Destination Population

Migrants

Figure 1.1:
A general population migration structure. Individuals from a source pop-
ulation explicitly move to a destination population, where they could stay
but remain separated, migrate to another population, integrate with the
destination population, or return home. Transmission depends on the re-
lationship between the migrants and the destination population and how
the pathogen is transmitted. For example, a refugee model might be struc-
tured such that migrants and the destination population are partitioned
and transmission occurs through preferential mixing. A rural/urban mi-
gration model might be structured such that populations from source
rural areas migrate and then integrate quickly into the urban destination
population where return rates are low.
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1.3 Immunity and pathogen background

1.3.1 Background on biology of the immune system

Our analysis focused on the efficiency of the immune system in preventing infection

and attenuating future infections. While certain aspects of the immune system were

not specifically modeled, it is important to understand the underlying biology of

the human immune system and immune response. The human immune system is a

biological system designed to detect and prevent disease [31]. It targets a wide range

of pathogenic organisms, viruses, and tumor cells. The immune system is generally

broken into two categories, the innate and adaptive immune system. The innate

immune system is considered the first line of defense characterized as fast but not

very specific. The adaptive immune system is much slower to respond but is much

more specific to the type of infection. However, components from both work together

in response to potential infection or disease. The immune system is characterized by

its ability to discriminate between host cells and foreign cells, maintain memory of

past infections, and coordinate specific responses to specific pathogens.

In chapter II, we built a dynamic dose-response model incorporating the effects of

the innate immune system. Furthermore, the innate immune response is important to

the anthrax infection process. The innate immune system is characterized by very a

fast but non-specific response [32] drive by three important cell types: macrophages,

dendritic cells, and natural killer (NK) cells. Macrophages circulate in the peripheral

blood system and function by ingesting pathogenic agents and then chemically elimi-

nating them [31]. To identify potential threats, macrophage and dendritic cells carry

receptors called pattern recognition receptors. These cells are crucial for recognition,

memory, and continued protection against encountered antigens [32].

In chapters III and IV, our analysis focused on polio transmission and vaccination

in the context of waning immunity. Immunity against polio infection is mostly de-
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scribed by the adaptive system, which is characterized by a highly specified but slow

response to infection. One important job of the innate immune system is to hold off

infection long enough so the adaptive immune response can be activated. The cells

of the adaptive immune system are lymphocytes; specifically T cells and B cells.

Plasma cells (mature B cells) are lymphocytes primarily associated with the hu-

moral immune response with the primary job of secreting antibodies [31]. Antibodies

combine with other immune effectors to more efficiently eliminate an infection. The

effect of antibodies on pathogenic particles and cells is the defining feature of the hu-

moral immune system. The classic pathway complement system is characterized by

immunoglobulins aiding immune cells in the elimination of pathogenic cells through

phagocytosis or direct lysis. Antibody classes IgG and IgM bind to antigenic struc-

tures and form complexes that are more easily eliminated by immune cells. IgA, an

antibody associated with mucosal immunity, does not strongly induce the complement

system but prevents pathogens from replicating.

The immune system response varies by type of pathogen encountered where some

responses are more efficient than others. In the context of anthrax and polio, there

are differences in how the immune system responds and how it contributes to disease.

Anthrax symptoms stem from damage caused to cells by the use of exo-toxins and

encapsulation [33]. Poliovirus replicates at the naso-pharyngeal exposure site and

eventually travels to the gastrointestinal tract causing sub-clinical infection [34]. Both

pathogens are able to disseminate. Poliovirus causes poliomyelitis when it invades

the nervous system while B. anthracis can cause severe disease at infection site and

through dissemination in the lymph system.
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1.3.2 Biological characteristics of Bacillus anthracis and disease

1.3.2.1 Background on anthrax

Bacillus anthracis and anthrax were the focus of the dose-response model built in

Chapter II. Anthrax is a disease that manifests differently depending on the location

of exposure. Infection can occur on the skin, in the respiratory system, or in the

gastrointestinal tract. The causative agent of anthrax is the spore-forming bacteria

Bacillus anthracis. B. anthracis is a very resilient pathogenic bacteria that can live

in soil and generally infects herbivores. Human exposure of anthrax generally occurs

upon contact with spores in the environment. Spores are not generally transmitted

person to person [33, 35].

Bacillus anthracis is a gram positive, spore-forming, rod-shaped bacterium that

can cause extracellular infection in animal hosts. It is the most lethal and pathogenic

species of the Bacillus family. Spore formation in aerobic bacteria is a unique charac-

teristic of the Bacillus family[36]. The endospores created by the bacteria are highly

resistant to harsh environmental conditions and may persist for very long periods

of time (decades) in soil. Spore formation occurs when harsh environmental cues

and oxygen are detected. B. anthracis is also capable of producing a poly-glutamate

capsule to resist phagocytosis from macrophages [33].

A spore may remain in the lungs for weeks before infection occurs [37]. B. an-

thracis releases two powerful and lethal exo-toxins, lethal toxin and edema toxin,

which contribute to severe damage to the lungs tissue and cells. Symptoms begin

to manifest as the classic flu-like symptoms such as malaise and fever. Disease may

then quickly progress to respiratory distress, cyanosis, massive edema, and poten-

tially death [36]. Dissemination of the bacteria into the lymph system may also lead

to bacteremia and toxemia which is characteristic of severe and potentially fatal dis-

ease. Due to the lethality of the toxins, proper antibiotic may still be ineffective in
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prevention of respiratory failure and ultimately death [33].

1.3.2.2 Process of infection and immune response for anthrax infection

While the sites of infection result in different symptoms, the process of infections

for cutaneous anthrax and inhalation anthrax are similar. Pathogenesis in the lungs

results in lung tissue damage and symptoms of pneumonia while pathogenesis for

skin infection is described by the progression of the lesion [33]. In an exposed host,

the bacterial spores begin germinating in both extracellular locations and within

macrophages. Replicating bacteria excrete toxins and form capsules that primarily

affect macrophages. The use of a polyglutamate capsule prevents macrophages from

using phagocytosis to destroy the pathogen and it is just one of its methods for

evading immune response .

The major source of anthrax symptoms are caused by cell damage due to exo-

toxins. To be pathogenic, the edema factor and lethal factor must combine with the

protective antigen to form the respective toxins. Protective antigen creates channels

on host cell membranes and thus allows the lethal factor and edema factor to enter

the cell and cause damage. Lethal toxin causes protein degradation in macrophages,

which leads to apoptosis and necrosis within 2 hours [35]. Action of the toxin on the

surrounding tissue will also lead to necrosis. It is also believed that the two toxins

work together in inhibiting cytokine release from macrophages [38]. Specifically, both

inhibit the release of TNF-α which greatly hinders the ability of the innate immune

system to mount a defense against the infection. Furthermore, edema toxin is shown

to inhibit the cytokine IL-12 which is crucial to both innate recruitment and activation

of Th1 cells to mediate an adaptive response [38]. Edema toxin works by increasing

intracellular cyclic AMP (cAMP)[39]. In macrophages, this disrupts the release of

a variety of cytokines and results in an inflammatory response described by over

swelling, or edema. The use of these two toxins on macrophages explains why the
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immune system rarely develops an effective adaptive response.

A major complication of anthrax infection is the dissemination of the pathogen

into the lymph system and then throughout the body. When macrophages ingest

anthrax spores they generally are able to eliminate the spore using phagocytosis.

In some instances, the macrophage is lysed and the bacteria escape to replicate.

However, in another possibility, the spores survive, germinate, and then replicate in

a vegetative form in the macrophages [40]. Once transported to a lymph node, the

bacteria are capable of releasing toxin and lysing the macrophage. The bacteria may

then infect the lymph node and use the lymph system to spread throughout the body

where the toxins can cause systematic damage resulting in very severe or fatal disease.

1.3.2.3 Public health threat of anthrax attacks

In Chapter II, we constructed a dose-response model and analyzed anthrax infec-

tion data. Because anthrax is not transmitted person-to-person, it is not generally

considered a natural infectious disease threat. Before the 2001 release, no case had

occurred in the United States in 25 years and the last major world outbreak occurred

in 1979 due to a major contamination leak event from a Soviet Union biological

weapons plant [41]. Due to its high virulence as a pneumonic disease, anthrax use

as a weapon represents a public health concern. Disease may manifest quickly and

present as severe respiratory distress potentially leading to death [36]. Furthermore,

proper antibiotic use may still be ineffective in prevention of respiratory failure and

ultimately death [33]. As a public health concern, the factors to consider to prepare

for and to handle anthrax exposure include risk assessment, cost analysis of treatment

prophylaxis, vaccination, and cleanup [42]. In 2001, for example, the decontamination

along the trail of exposure totaled over $20 million.

Risk assessment is an important tool to prepare for potential bioterrorism threats

[3]. Dose-response models are a key component of these risk assessments because
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they quantify differing exposure scenarios into an infection risk calculation. Our

dose-response model presented in chapter II accounts for temporally variable expo-

sure patterns whereas previous dose-response models generally use simple exposure

assumptions to calculate risk. The model is able to account for varying exposure pat-

terns by incorporating immune system dynamics. Our dynamic dose-response model

is thus a versatile tool that can implemented in more complicated risk assessments

where exposure patterns may be important.

1.3.3 Poliovirus infection and poliomyelitis

1.3.3.1 Epidemiology of poliovirus

In chapters III and IV, we focused on the study of poliovirus and its transmis-

sion. Poliomyletis is a viral disease caused by three subtypes of poliovirus, a human

enterovirus [43]. Polio transmission occurs through the fecal-oral and oral-oral route.

Thus polio is able to transmit extensively in regions with poor sanitation.

Poliovirus is a subtype of enteric viruses which are known to survive in the en-

vironment; experiments have shown that poliovirus persists in food, water, soil, and

on fomites for prolonged periods of times, ranging from days to weeks [44]. There-

fore, human interaction with the environment may be an important component of the

transmission process. Because poliovirus is excreted through gastrointestinal routes,

proper sanitation measures may reduce exposure through environmental sources.

Poliovirus causes poliomyelitis, a generally asymptomatic gastrointestinal disease

[43]. Non-specific symptoms occur in less than 10% of infections. However, a rare

and serious complication can occur if poliovirus infection enters the central nervous

system and causes neurological disease. In these cases, less than 1% of infections,

acute flaccid paralysis (AFP) may occur. AFP is a seriously debilitating illness that

can be permanent. Of the poliovirus subtypes, type 1 infection has the highest rate

of AFP occurrence.
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Poliovirus transmission is controlled worldwide using vaccination. Only three

nations, Afghanistan, Nigeria, and Pakistan, still have sustained endemicity while

infrequent outbreaks occur in neighboring regions [45]. The use of vaccination has

substantially reduced cases of poliomyelitis globally where eradication may soon be-

come a reality [46].

1.3.3.2 Poliovirus infection and immunity

Poliovirus, of genus enterovirus, is a positive-sense RNA virus that primarily in-

fects humans [34]. Infection occurs when poliovirus enters the body, generally through

the nasopharyngeal route and binds to a specific poliovirus receptor (PVR) on a host

cell. Poliovirus is able to then rapidly replicate and spread via bloodstream or lymph

system to its primary replication site in the gastrointestinal tract. The virus can

replicate and be excreted from the gastrointestinal tract for several weeks. During

acute viremia, the virus may potentially enter the central nervous systems and cause

aseptic meningitis or AFP through a process called retrograde axonal transport.

Immunity to poliovirus is maintained through antibody secretion. Mucosal immu-

nity is generated through IgA production which may prevent or attenuate infection of

the GI tract [34]. Induced serum IgG may prevent future poliovirus viremia. While

immunity to paralysis may be lifelong, immunity to infection may wane over time

[12–14, 47].

Two vaccine are currently in use: inactivated polio vaccine (inactivated polio vac-

cine (IPV)) and oral polio vaccine (OPV). Both vaccines induce immunity to paralysis

[17] but OPV induces higher protection against future infections [14, 48, 49]. Both

OPV and IPV generate serum IgG conversion, likely associated with preventing paral-

ysis, but only OPV induces GI mucosal immunity through IgA production [34]. That

is, OPV is more useful to prevent future infection but both vaccines are suitable to

prevent against poliomyelitis complications. Therefore, the choice of vaccine depends
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on the goal of the intervention. To reduce transmission in endemic nations and re-

gions that are still at risk for infection, OPV is generally employed. The drawback,

however, is that OPV strains can be transmitted and cause disease. Therefore, under

conditions where polio has been eliminated and infection is unlikely, IPV is employed.

To induce immunity for all three subtypes of WPV, a trivalent oral polio vac-

cine (tOPV) has been in use during the eradication campaign [48]. The tOPV in-

duced the highest immunity against type 2 WPV [34], which has been eradicated, so

recent efforts in India have focused on monovalent oral polio vaccine (mOPV) types

1 and 3 to target the remaining strains [29]. As an attenuated live vaccine, OPV is

transmissible which allows for natural population boosting [18]. However, circulating

vaccine-derived polioviruses (cVDPV) can also cause paralytic disease and thus ces-

sation of OPV is an important final step in eradication.

1.3.3.3 Global polio eradication

In 1988, the Global Polio Eradication Initiative (GPEI) began a campaign to rid

the world of polio. Since the induction of the initiative, there has been global success

with significant reduction in transmission worldwide, eradication of type 2 WPV, and

elimination of all poliovirus subtypes from all but three nations [46]. However, the

final stages of polio eradication have been characterized by prolonged difficulty in

reaching the final goal of eradication. Recently achieved success in India has been

bittersweet as transmission continues in Afghanistan, Pakistan, and Nigeria. In 2011,

an Independent Monitoring Board (IMB) review of the campaign indicted the GPEI

with blunt commentary regarding its ineffectiveness in the final stages [50]. The GPEI

has since responded and hopes to see improvement by the end of 2012.

Polio eradication has proven difficult in poorer areas of the world, specifically,

Afghanistan, Nigeria, Pakistan, and northern areas of India [17]. Although India

has managed recent elimination success, polio persists in the other three countries.
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While the GPEI works to achieve elimination, previously eliminated nations have

experienced periodic outbreaks when coverage slips, specifically in countries bordering

Nigeria and Pakistan [45]. To reduce the risk of future outbreaks due to importation,

it is of great public health significance to reach eradication as soon as possible.

Previous failure in India has been attributed to many causes, including lack of

sanitation, improper vaccination of children, and high transmission conditions [29].

Further, reduced IgG seroconversion rates indicated that competing enteric infections

were preventing OPV from inducing an immune response [17]. Despite these condi-

tions, India managed elimination success through a highly vitalized campaign that

updated vaccine selection, drastically increased vaccination children rates, and tar-

geted previously hard to reach populations [29]. Persistence in Afghanistan, Nigeria,

and Pakistan has been attributed to many causes including population aversion to

vaccination [51, 52], failure of governance to adequately ensure vaccination [53] and

continuous transmission across borders [46, 54].

After over 20 years of effort to eradicate polio, it may become difficult to sustain

these high level public health efforts. Currently, it costs $1 billion per year and intense

public health efforts to maintain the status quo [50]. The transmission model analyses

presented in Chapters III and IV aim to elucidate the current underlying difficulties

in eradication, highlight how success has occurred, inform alternative intervention

strategies, and provide a framework for evaluating future eradication efforts.

1.4 Specific Aims

Aim 1

Rationale: Dose-response models are utilized to translate a pathogen exposure into

a risk of infection or disease. Currently, these models are primarily focused on single

exposure events that are intrinsically time-independent processes. However, in real

world scenarios, exposure events could be described in a variety of patterns depending
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on routes of transmission.

Hypothesis: Depending on the dose received, the host immune system can be over-

whelmed and therefore repeated inoculations over time affect the probability of any

single pathogen initiating the infection process.

Implementation: We developed a dose-response model that is a function of the dose-

pattern received and is dependent on the clearance rate of the immune system. Fur-

thermore, combined with previous data, a statistical method was developed to analyze

time series data where infection events are occurring amid inoculation events.

Aim 2

Rationale: The GPEI has experienced worldwide success through the use of childhood

vaccination programs to eliminate polio transmission. However, several countries and

regions, characterized by poor vaccination coverage and high transmission conditions,

still experience transmission. Because polio immunity wanes over time, reinfection

dynamics may play an important role in sustained transmission.

Hypothesis: Failure of polio eradication programs in transmissive regions occurs due

to waning immunity and low transmission of the live OPV. Reinfection in older popu-

lations with waned immunity helps sustain transmission despite adequate vaccination

coverage in children.

Implementation: A transmission model was built incorporating waning immunity al-

lowing previously infected populations to be reinfected by wild polio. Further, the

model incorporates transmission of OPV. Prevalence outcomes were then explored

in this model for varying levels of transmission (R0), vaccination rates, transmission

levels of OPV, and waning immunity rates.

Aim 3

Rationale: The polio eradication campaign is a global effort to eradicate polio. Po-

20



liomyelitis incidence has been significantly reduced using childhood vaccination as

implemented through the cooperation of the GPEI and national public health pro-

grams. The final endemic regions are characterized by poor vaccination coverage,

mobile populations, and moderate to high transmission conditions. Because trans-

mission occurs across borders, populations are interdependent entities with respect

to vaccination effectiveness.

Hypothesis: Migration can affect vaccination programs due to differing vaccination

policies and transmission conditions across populations.

Implementation: This model was a modification of a previous transmission model

of polio that implements both the effects of waning immunity and age based vac-

cination programs. Specifically, we developed a transmission model incorporating

migration between populations to explore how differing vaccination implementation

affect prevalence levels in neighboring populations.
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CHAPTER II

A dynamic dose-response model to account for

exposure patterns in risk assessment: a case study

in inhalation anthrax

2.1 Abstract

The most commonly used dose-response models implicitly assume that accumu-

lation of dose is a time-independent process where each pathogen has a fixed risk

of initiating infection. Immune particle neutralization of pathogens, however, may

create strong time-dependence; i.e., temporally clustered pathogens have a better

chance of overwhelming the immune particles than pathogen exposures that occur at

lower levels for longer periods of time. In environmental transmission systems, we ex-

pect different routes of transmission to elicit different dose-timing patterns and thus

potentially different realizations of risk. We present a dose-response model that cap-

tures time dependence in a manner that incorporates the dynamics of initial immune

response. We then demonstrate the parameter estimation of our model in a dose-

response survival analysis using empirical time series data of inhalational anthrax in

monkeys in which we find slight dose-timing effects. Future dose-response experi-

ments should include varying the time pattern of exposure in addition to varying the

total doses delivered. Ultimately, the dynamic dose-response paradigm presented here
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will improve modeling of environmental transmission systems where different systems

have different time patterns of exposure.

2.2 Introduction

Dose response functions are central to microbial risk assessments. In transmission

systems, dose-response modeling is important in evaluating risk given an environ-

mental pathogen exposure. Exposure occurs when susceptible individuals contact a

pathogen source, usually an environmental reservoir or an infected individual. These

exposure events can be characterized by the frequency and magnitude of pathogens

that reach a susceptible host. The route of transmission, exposure behaviors, and

physical aspects of the system will cause the dose-timing patterns of pathogen expo-

sure to vary. For example, in influenza transmission, a direct pathogen exposure from

a sneeze may be characterized as a large bolus exposure event while aerosolized ex-

posure may be constant over a long period of time but exposure consists of a smaller

number of pathogens at any given time.

Biologically, the immune system may handle varying exposure patterns with vary-

ing efficiency. Pathogen inoculations that occur very close together may carry a com-

parable risk of infection to an equivalent total dose occurring at a point in time if

the immune response is slow compared to the period of exposure for the repeated

doses. Longer periods between pathogen exposures, however, may allow the immune

system to eliminate the pathogen and recover between each inoculation. The rates at

which the immune system responds and clears the pathogen are clearly important in

determining the accumulation of multiple inoculations. For these extreme instances,

short versus long inoculation intervals, we can conclude that inoculations either ac-

cumulate as a sum or should be considered as separate events. However, it becomes

unclear how accumulation of pathogen levels within the host may vary for patterns

that occur on a time scale where the innate immune system has begun to respond
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but failed to clear all the pathogens.

Immune response is variable depending on many factors such as pathogen type,

location of pathogen, and prior exposure. We specifically focus on the dynamics of

the initial immune response. This includes the innate immune response, natural host

barriers (e.g., mucosal clearance), and potentially standing elements of the acquired

immune response. It is possible, however, that given long enough time frames of

exposures that the adaptive immune response will also act as an initial response to

future inoculations. Our hypothesis is that these initial host protections are not

constant in nature, and that repeated inoculations affect the probability of any single

pathogen initiating the infection process.

The classic dose-response models used for microbial risk assessment are the expo-

nential and beta-poisson distributional models [2]. These models calculate the risk

of infection for a single dose value. Parameters for these models are empirically in-

formed using animal dosing experiments in which varying single bolus pathogen doses

are given to animals and infection or disease is monitored [1, 5]. In environmental

infection transmission systems where the environment is not just a source but is a

medium of pathogen transport between individuals, these models are justified for the

extreme scenarios of very closely spaced or very distantly spaced exposures described

above. In these scenarios, the probability of infection can be calculated indepen-

dently for each dosing event. However, for other exposure patterns, total within host

pathogen level at a given inoculation time is dependent on remaining pathogen levels

from past inoculations. In these cases the state of the system (i.e., the number of liv-

ing pathogens and the number of immune elements available to fight them) after any

defined interval is dependent on the clearance rate of pathogens and the destruction

and recruitment rate of standing immune elements. Here we define standing elements

as those elements existing or that would have appeared on their own in the absence

of new immune element generation due to an acquired immune response.
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The exponential and beta-poisson models make implicit assumptions about how

multiple pathogens interact to cause infection. Under the independent action hy-

pothesis (IAH), any individual pathogen is capable of initiating infection with some

independent probability [2]. The traditional dose-response models operate under this

paradigm. This hypothesis, however, is generally considered only under single in-

oculation scenarios. We contend that, even though a single pathogen is capable of

initiating infection, the infectivity of a pathogen may depend on the state of the im-

mune system, which in turn is affected by prior inoculations. This is in contrast to

the IAH that pathogen risk probability is independent of other pathogens. It also

deviates from a threshold model in that the risk of infection given any inoculation

size is still never zero.

One aim for this model will be future integration into transmission models. Par-

ticularly, in transmission models, when we specifically consider pathogen exposure

from the environment, we must translate an exposure event into a probability of in-

fection. This could be done using the exponential or beta-poisson models but these

models potentially ignore exposure dynamics associated with different routes of ex-

posures, as discussed in the exposure scenarios above. Although a more biologically

motivated dose-response model was previously proposed [10], we present here a model

that is computationally less intensive and therefore more suitable for integration into

a transmission model. In Pujol et al. [10], innate immune effector particles and

pathogens are modeled in a stochastic competition model capturing both the growth

of pathogens and diminishing immune response. In our model, we aim to capture

these dynamics with a simple model that does not explicitly model the immune dy-

namics. This satisfies the goals of dose-response at the transmission or population

level by allowing utilization of an exposure pattern (history of inoculations) into the

calculation of the probability of infection. Our model provides a framework to re-

alistically relax the assumption of dose independence in a biologically plausible yet
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computationally efficient manner that implicitly incorporates the dynamics of the

immune system. Furthermore, we present a statistical method to analyze such time

series data where infection events are occurring amid inoculation events. Experi-

mental data to inform a time-dependent dose-response model are extremely rare, but

there are data from a 1966 study on inhalation anthrax in monkeys that incorpo-

rates varying exposure patterns and time to death data [55]. Even though this study

was not specifically designed to study varying risk by exposure patterns, our analysis

provides direction for more informative future dose-response experiments that will

incorporate time-dependent dosing patterns.

2.3 Methods

2.3.1 Overview

The methods section will describe the construction of our time-dependent dose-

response model followed by its application to time-series anthrax dose-response data.

The first three sections describe the development of the model in a general framework

focusing on the clearance of pathogens within a host and the probability of infection

take-off during the clearance time frame. Section 2.3.2 mathematically describes the

within host-pathogen level at any given time after a point source inoculation and then

section 2.3.3 extrapolates this process to multiple inoculations. Section 2.3.4 describes

the development of a hazard for infection at a given time post-inoculation. At this

point, enough information is provided to use this time-dependent dose-response model

to make risk calculations given a parameterization. Particularly, it could be used in

a transmission model setting to translate multiple exposure events into an infection

risk calculation. The last three sections pertain to analyzing data. Section 2.3.5

uses the hazard to develop a likelihood statistic suitable for analyzing time-series

dose-response data. To further analyze the data we have, we must make further
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assumptions concerning the data which are described in detail in Section 2.3.6. Sec-

tion 2.3.7 describes our exploration of the results from section 2.3.6 in more controlled

experimental settings.

2.3.2 Time Dependent Pathogen Clearance

Our model aims to describe the clearance of pathogen until either the pathogen is

eliminated or the pathogen establishes infection. To capture the dose-timing region

between the extremes discussed above, a model should reflect decreasing ability of

the immune system to inactivate pathogens as pathogens accumulate and immune

elements are consumed. The differential equation in equation (2.1) illustrates such a

model, where t represents time and P (t) is a function representing the total within

host pathogen level at a given time. The parameter γ roughly approximates a net

per-pathogen clearance rate. The pathogen clearance rate is also affected by a shaping

parameter, α, which elicits different inoculation accumulation effects depending on

its value.

dP

dt
= −γP−α (2.1)

To keep this model biologically plausible we consider the domain of γ to be in

the interval (0,∞) and the domain of α to be in the interval [0, 1]. When α = 1, γ

becomes the per capita rate of decay of within host pathogen and the decay curve

takes the exponential shape. In this case, the pathogens die-out is a linear function

of the total number of pathogens P , i.e., the immune system is equally effective

in eliminating one pathogen regardless of the current number of pathogens in the

system. The state of the immune system, therefore, is irrelevant since its efficacy to

eliminate pathogens is constant. When α is less than one, this per capita change, γ,
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is attenuated by the factor, 1/P 1−α. That is, the effectiveness of the immune system

is dependent on the total number of within host pathogens. As α decreases and

approaches zero, the shape of decay becomes more linear and slower for a fixed γ.

Therefore, the parameter α can also be biologically described as the degree to which

the immune system can be overwhelmed by pathogen level. For a single inoculation,

the decay curve is illustrated in Figure 2.1. Given a total dose of 100 pathogens,

the curve represents the total within host pathogen level at any given time over the

course of clearance for varying values of α over two fixed values of γ.

By considering a negative differential equation, we are modeling under the as-

sumption that the total within host pathogen level, or the infection hazard, is strictly

decreasing. Biologically, our assumption is that after an inoculation, on average, the

rate of pathogen reproduction is less than the rate of pathogen clearance. If this

inequality reverses, that is pathogen reproduction becomes greater than pathogen

clearance on average, this would correspond to the pathogen establishing infection.

This assumption may not be suitable for all pathogens depending on biological traits,

particularly the pathogens ability to replicate within our time scale of interest.

2.3.3 Dose Clearance and Multiple Dosing

We propose to use this function to calculate an effective dose for risk assessments

when multiple inoculations occur within a biologically relevant time frame. To do

this, we must first evaluate the solution to equation (2.1) with initial condition given

at time 0, d = P (0), where d is a single inoculation given at time 0.

P (t, d) =





d · e−tγ, α = 1

(tγ(α− 1) + d1−α)
1

1−α , α ∈ [0, 1)

0, te ≤ t

(2.2)
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Figure 2.1:
Shape and rate of within host dose decay by levels of α and γ. While the
shape of decay is dependent only on α , the rate of decay is a dependent
on both α and γ.

To ensure that P (t, d) > 0, we implement the last constraint in equation (2.2),

where P (t, d) is absorbed at 0 after te, the time of extinction for a given inoculation.

The closed form solution for the time of extinction for a single inoculation is given by

equation (2.3). Note that even though te is unbounded when α = 1, the dose function

(an exponential decay function) takes on small values fairly quickly for a fixed γ as t

increases, as illustrated in Figure 2.1.

te =





d1−α

γ(1− α)
, α < 1

∞, α = 1

(2.3)

In multiple exposure scenarios, the input doses for this model are represented by a

sequence of inoculations such as those illustrated in the top two graphs((a) and (b)) in

Figure 2.2. Each inoculation, di, is received instantaneously at a designated time, ti.
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Formally, we map a one to one correspondence between a sequence of n inoculations,

{di}ni=1 , and a sequence of n inoculation times, {ti}ni=1. In a study, we observe

subjects in real time (or close to) and record a corresponding final observation time,

T . This final observation time, T , can occur in any interval between inoculations,

ti ≤ T ≤ ti+1 or after the final inoculation time, tn < T . Further, for a subject j, the

total inoculations experienced before an infection event or censoring may be less than

n, so we can denote the subject specific sequence size to be nj with corresponding

final observation time, Tj.

Now that multiple dosing situations have been introduced, we can consider eval-

uation of equation (2.2) for multiple inoculations. Since past inoculations may still

be present at the time of a new inoculation, the dose function must incorporate the

sequence of all past inoculations up to time, t. We can picture the multiple dose

time function as a series of decay curves with discontinuity jumps occurring at each

inoculation point, illustrated in the bottom two graphs((c) and (d)) of Figure 2.2.

Particularly, the total within host pathogen level at any inoculation time, ti, is the

sum of the current inoculation, di, and the remaining within host pathogens, pi. The

remaining pathogen level is described in equation (2.4) recursively using equation

(2.2). When α = 1, the remaining pathogen level can be defined as an independent

accumulation of previous inoculations, this is derived in the appendix, section A.2.

pi =





0, i = 1

P (ti − ti−1, pi−1 + di−1), i > 1
i−1∑

j=1

dje
−γ(ti−tj), i > 1 ∩ α = 1

(2.4)

Since equation (2.4) describes the points of discontinuity at inoculation times,

we can use it to reconstruct equation (2.2) to utilize multiple dose arguments. The
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following function is the multiple dose function

P (t, {di}ki=1) =





pk + dk, t = tk

P (t− tk, pk + dk), tk ≤ t ≤ tk+1

(2.5)

This function can be interpreted as the total within host pathogen level at a given

time, t, given all past inoculation up to that time. The function is jump discontinuous

in that it decreases and is absorbed at 0 (by construction in equation (2.2)) but

has point increases at inoculation times, ti by an inoculation value, di. Note that,

given a time sufficiently greater than the time of the last inoculation, this equation

approaches zero under the same conditions as equation (2.2). The time to extinction,

te, after inoculation time ti, can still be calculated using equation (2.3) but with input

dose, pi + di, instead of di. When α = 1, the function approaches zero quickly with

decreasing error as t � tk since the true convergence time is in the limit, t → ∞,

discussed in detail in the appendix, section A.2.

2.3.4 Dose-Response Risk from Multiple Dose Function

We consider an effective dose to be any value calculated from equation (2.2) that

could contribute to an infection hazard at any given time. To evaluate the accumu-

lated effective dose in a given host, we integrate equation (2.2), over a time period of

interest. For a single inoculation, the closed form solution for the effective dose from

inoculation to extinction is

∫ te

0

P (t, d) dt =
d2−α

γ(2− α)
(2.6)

When there are multiple inoculations, the accumulated effective dose is a sum of
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Figure 2.2:
Example of two different inoculation patterns (above) and the time-
evolution of pathogen numbers within the host (below). The models
parameters are e α = 0.5 and γ = 0.05. The patterns of inoculation
correspond to two different multiple inoculation scenarios: 20 inoculation
events of 2 pathogens each (left), and 4 inoculation events of 10 pathogens
each (right). Although the total inoculated dose (40 pathogens) and the
time of exposure (200 minutes) is the same, it is visually evident that
pathogens from the four inoculation events persist longer in the immune
system.
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integrals over the continuous sections of the multiple dose function. This is seen in

equation (2.7), for any time, T , before the final within host pathogen extinction. If

T = tk, or the upper bound of the integral is equivalent to an inoculation time, the

last term of equation (2.7) is zero.

∫ T

0

P (t, {di}ki=1)dt =
k−1∑

i=1

[∫ ti+1−ti

0

P (t, pi + di)dt

]
+

∫ T−tk

0

P (t, pk + dk)dt (2.7)

To evaluate the accumulated effective dose through final pathogen extinction, we

simply replace the final term of equation (2.7) with equation (2.6) with pn + dn (the

initial pathogen level at the final inoculation) substituted for d. For α = 1 and

T � tn, we can still substitute in equation (2.6) with small error, this is discussed in

greater detail in the appendix, section A.2.

To consider how α determines the importance of dose timing, consider an en-

tire dose course over an exposure pattern, for example, the top two graphs in figure

2.2, where we have two distinct exposure patterns of 40 pathogens given over 200

minutes. The accumulated effective dose over this time can be calculated using the

integral given in equation (2.7). When α = 1, the accumulation of inoculations is an

independent process, as illustrated in equation (2.4) due to the exponential memo-

ryless property. Because of this property, the total effective dose over the exposure

period is the sum of the inoculations divided by γ. This solution holds for all potential

dosing patterns evaluated through effective extinction T � tn when α = 1, discussed

further in the appendix, section A.2.

When α < 1, however, the pathogen clearance rate depends on the within host

pathogen level. Under these conditions, the total effective dose is dependent on the

timing of given inoculations. For α = 0.5, the accumulated effective dose (the area

under the curve) differs across dosing patterns despite the sums of the inoculations
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both totaling 40 pathogens (see the bottom two graphs of figure 2). Although the

total inoculated dose (40 pathogens) and the time of exposure (200 minutes) is the

same, it is visually evident that pathogens from the four inoculation events persist

longer.

The goal of our model is to analyze decaying hazard post inoculation, until ei-

ther the pathogen is cleared or the pathogen takes hold and initiates infection prior

to clearance. We now introduce the risk of infection due to a single pathogen per

unit time that is present in the immune system, s. This formulation is a one-hit

model of infection; i.e., a single pathogen unit is capable of initiating infection. This

phenomenon has been shown empirically for pathogens such as influenza A [7] and

intravenous salmonella exposure [6]. However, unlike the exponential formulation of

a one hit model, each hit does not have identical and independent risk. Instead, risks

are dependent upon prior hits and thus α and γ also contribute to the calculation of

the risk.

For an instantaneous risk associated to a single pathogen, s, and the current

number of pathogens within the host, P , we can calculate the force of infection,

i.e. the probability of a susceptible individuals becoming infected, sP (t)dt. This is

evaluated at each time step. For multiple inoculations, we insert our multiple dose

function. We can interpret this as a hazard function, λ(T ), given in equation (2.8).

λ(T )dt = sP (T, {di}ki=1)dt (2.8)

By integrating and exponentiating the hazard over an interval time up to time,

T , we can calculate the survival function, or the probability of not being infected by

time, T , given as follows
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S(T ) = e−s
∫ T
0 P (T,{di}ki=1)dt = 1− Pr(Infection by Time,T) (2.9)

We now have a corresponding risk of 1− S(T ), which matches the familiar func-

tional form of the exponential dose-response model. If we consider T � tn, then

this risk corresponds to the risk of an entire exposure pattern. When α = 1 and

there is a single inoculation event and clearance, the single pathogen risk parameter,

k, from the exponential model is equivalent to the ratio s/γ. Furthermore, contin-

uing to assume complete pathogen clearance, this equivalence holds for all exposure

patterns when α = 1. This relationship is lost when α < 1 as pathogen clearance,

and thus risk, becomes dependent on the size and timing of inoculations. That is,

when α < 1, the equivalence of the exponential function and our cumulative dose

risk function is dependent on the inoculation size. Mathematical explorations of the

relationship between the exponential model and our model when α = 1 are discussed

in the appendix, section A.2.

2.3.5 Likelihood statistic and parameter estimation from data

By multiplying the hazard and survival function we can calculate the probability

density for infection at a final observation time, T, standard in a survival analysis.

This is given in equation (2.10).

f(T ) = S(T )λ(T ) (2.10)

To estimate the model parameters using time-dependent exposure data including

time of infection, we propose a likelihood statistic derived from survival analysis

framework. The likelihood is formulated depending on a subject j’s infection status

given by ∆j. This is illustrated in equation (2.11) where we consider each subject to
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be independent. If ∆j = 1 (infection occurs), then the likelihood is calculated from

the probability of infection at time, Tj, given by the density function f(Tj). If ∆j = 0

(no infection or censoring), then the likelihood is calculated from the probability of

survival up to time, Tj. To estimate parameters, we propose a maximum likelihood

approach, that is, we find the best parameter values that maximize the likelihood

values.

∏

j

L(Tj) =
∏

j

S(Tj)
(1−∆j)f(Tj)

∆j (2.11)

By taking the negative log of the likelihood and substituting in equation (2.10),

we simplify the equation (2.11) to equation (2.12).

−
∑

j

logL(Tj) =
∑

j

s

∫ Tj

0

P (T, {di}nji=1)dt−∆jlogλ(Tj) (2.12)

When evaluating time-dependent dose-response data, finding exact times of in-

fection will generally be difficult if not impossible. We may know a time interval in

which the process of infection began but not an exact time. For these scenarios we can

adjust the likelihood formulation such that interval censoring can be incorporated.

This adjustment is discussed in detail in the appendix, section A.3.

2.3.6 Case study: inhalational anthrax data

Inhalation anthrax mortality data in monkeys were published by Brachman et al.

[55] from an observational animal study conducted in a wool sorting mill in South

Carolina in 1966. Cynomogus monkeys were placed in a laboratory trailer and air was

ventilated into the trailer from the wool sorting mill. Air was periodically sampled to

measure the anthrax concentration. A daily inhaled dose was estimated using these

data and an estimated monkey respiration rate. We considered these inhaled spores
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as pathogens capable of initiating infection.

The experiment was conducted during five distinct time intervals and three of

these were reported. During the third and fourth runs, the monkeys were continuously

exposed to contaminated air during working hours. Air was intermittently sampled

daily. These were the only two runs we were able to use to evaluate our model. As

air was ventilated in from the wool sorting mill, exposure was based on the natural

concentrations in the mill and therefore was not controlled by the researchers. For

our purposes, dose levels were estimated from figures provided in the paper in which

a single total daily exposure was recorded. We assumed that on days when exposures

were recorded that single equivalent sized inoculation occurred at the beginning of

each hour for the entire day. Monkeys health was monitored over the exposure period

and for a brief time after the terminal exposure. The experimenters checked in on the

monkeys three times per day. Autopsies were conducted immediately after a death

was discovered. Deaths due to non-anthrax causes also occurred and were recorded.

All monkeys were sacrificed shortly after the exposure period to determine anthrax

infection status.

During the third run, 32 monkeys were exposed for 47 days during which time 10

deaths due to anthrax infection were recorded. On the 50th day, all the remaining live

monkeys were sacrificed. At this time, two more monkeys were found to be infected

bringing the infection total to 12 with observed risk to be 44%. During the fourth

run, 31 monkeys were exposed for 41 days during which time 10 deaths due to anthrax

infection were recorded. The remaining live monkeys were sacrificed on the 51st day.

No additional monkeys were found to be infected and the observed risk was thus 23%.

Figure 2.3 is a graphical depiction of these data.

By the end of the study, monkeys had become infected, died of other causes, or

survived (did not become infected) over the duration of exposure. Survived subjects

were sacrificed several days after the final inoculation which technically elicits a right
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Figure 2.3:
Exposure (left axis and represented by lighter bars with width of 1 day)
and mortality (right axis and represented by black thin bars) results from
the third and fourth runs of the anthrax dataset. Exposure is assumed to
be given uniformly once every hour on days when exposures were recorded.
In the third run, 12/32 monkeys died from anthrax, and in the fourth run,
10/31 monkeys died from anthrax.
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censoring. We assume that autopsies that were negative for anthrax are conclusive in

that subjects would never have become infected. That is, we assume all non-infected

sacrificed monkeys survived the entire dose course. We also assume that anthrax has

a case-fatality rate of 100% in monkeys (i.e., no monkey survived infection). A small

set of subjects in these data died of causes not related to anthrax. We assume these

censored subjects died from reasons that were completely random and unrelated to

anthrax exposure and therefore evaluate their survival up to their final observed time,

Tj. For subjects who were infected, only day of death was observed.

Since we were interested only in time to infection take-off, we considered a fixed

population lag period, τ , which is the time between infection take-off (when the

course of ongoing infection is assured to be progressive) and time of death. Given the

observed time of death, Tj, the predicted time to infection is Tj − τ . We do not aim

to dynamically model any processes during the lag time, τ , and thus treated it as a

constant parameter. A previous study [56] showed that time between symptoms and

death is on the scale of several hours for Cynomologus monkeys so we do not think

symptom onset would aid in finding the total lag period.

This lag period, τ , was treated as a population parameter but it is likely individu-

ally probabilistic in nature. Based on the Vasconcelos study that this lag is variable, a

variety of τ values were initially implemented. However, the Vasconcelos experiments

used significantly higher dosing in bolus (the ID50) and potentially a different strain

of the Bacillus anthracis, and therefore lag times may not be comparable. Further,

an experiment on several other pathogens showed relatively invariant latency periods

for inoculations less than the ID50 [57].

To come up with a lag time estimates, we considered a previous study [58] that

used lag time distributions with median lag times of 1-3 days. However, their lag

period described the period from spore germination to symptoms. Anthrax infection

occurs after germination in macrophages [40, 59]. The biology and persistence of
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spores from time of exposure to infection is not well understood, but elimination of

spores is mediated by epithelial cells and macrophages [60]. While epithelial cells are

capable of eliminating anthrax spores alone[60], spores are also readily phagocytized

by alveolar macrophages where they germinate. While, the macrophage is capable

of eliminating the bacillus, B. anthracis toxins and defense mechanisms inhibit this

ability as it attempts to use the macrophage to reach the regional lymph system where

it can initiate infection as an extracellular pathogen [59]. This process implies that

germination is an important step in the infection process but that it occurs before

infection takes off. We therefore expect the lag period described in our model to be

less than that described in Brookmeyer et al.[58] and used a period from 1 to 4 days.

Treating τ as a nuisance parameter, we fixed it to a discrete uniform distribution;

it was then integrated out of the likelihood using conditional expectation. Further

discussion can be found in the appendix, section A.3.

Model fitting was done by profiling over α while optimizing the parameters s and

γ (in unit per hours) to minimize the negative log likelihood based on the Brachman

experimental data for run 3 and run 4. By profiling over a fixed α, we are also

analyzing these data under different assumptions concerning accumulation of doses

in terms of differing dose timing. Inference was done by fitting a spline curve through

the values of the negative log likelihood for each value creating a smooth depiction of

the log likelihood space. Using the minimum value of the spline (the overall maximum

likelihood estimate (MLE) fit), we defined a critical cut-off using the likelihood ratio

test [61]. That is, at the 95% significance level, the confidence interval of α falls in

the range of the minimum log likelihood ±1
2
× χ2(0.95, d.f.=1).

To evaluate consistency of our model with some past anthrax models, we calcu-

lated risks over a range of single dose values. This can be done for α = 1, reducing

our model to an exponential model, in which the exponential risk parameter k is

equivalent to the ratio of s over γ. For parameterizations involving α < 1 in which
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dose-timing patterns impact risk and the exponential model is no longer valid, our

model is only comparable to past models under single inoculation scenarios. Risks

for range of single dose values were calculated using equations (2.6) and (2.9).

Integrals were estimated using the adaptive Simpson quadrature method in MAT-

LAB. Optimization was done using minimax search algorithm in MATLAB. Spline

fitting was done using the default spline function in MATLAB.

2.3.7 Dosing experiment design

To explore the models ability to discern between different exposure patterns and

to illustrate the results from the Brachman data optimization, exposure patterns were

created representing two extremes; one large bolus and one evenly distributed set of

smaller inoculations given once daily over 15 days. The sum of the inoculations is

equivalent for both patterns at a value of 15,000 as it corresponds to the sum of the

total dose in run 3. Using the parameter MLEs from the model, risks were calculated

for each dosing pattern for a fixed α and corresponding MLE γ and s values. The

varying values of α illustrate potential expected results from an animal experiment

that incorporated dose timing.

2.4 Results

Figure 2.4 shows the results of the optimization profile over α using data from

the Brachman inhalational anthrax study runs 3 and 4. The likelihood space is a

fairly smooth decreasing curve in the optimized log likelihood space over as seen in

figure 2.4a. A smoothed spline was fit through the points and the 95% lower limit

was connected to the upper boundary of by a horizontal line. The optimal parameter

fit occurred when α̂=0.90 with respective MLE values for ŝ and γ̂ at 1.81×10−7/h

and 0.0097/h. For these overall MLE fits, the predicted risk for run 3 and run 4 is

50% and 16% compared to the observed attack rates of 44% and 23%, respectively.
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The 95% CI for α was (0.51, 1) where 1 is a bound due to our imposed constraints

on values of α. It is mathematically and statistically possible to extend α beyond

our imposed upper limit constraint but the biological interpretation of our model

becomes less intuitive. For α > 1, bolus exposures patterns have lower risks than

evenly distributed exposure patterns when total dose is fixed. Results for α > 1 are

discussed in the appendix, section A.4.

Plotting of the MLE ŝ and γ̂ values over the significant region of α can be seen in

figure 2.4b,c. The MLE values of γ are log linearly correlated with α. Recall that the

shape and rate of within host pathogen decay depends on both these parameters and,

therefore, this relationship is not unexpected as the optimization is trying to find a

relatively stable clearance curve and there are likely many sets of α and γ that could

elicit such a curve. When given multiple exposure patterns of the same total dose,

we would expect the α parameter to determine the importance of dose timing effects,

i.e., whether the risk will differ between these exposure patterns. Therefore, without

data containing more exposure patterns, it is difficult to independently estimate both

α and γ. The MLE values of s are relatively insensitive for changing values of α. The

data thus provide us with a consistent estimate of the instantaneous per pathogen

infectivity parameter, s, for a given clearance pattern.

The attack rates for varying single doses were calculated using our MLE param-

eterization and equations (2.6) and (2.9). We compare our MLE results to another

parameterization of our model and two previously analyzed anthrax dose-response

models by creating a risk curve over a large range of bolus dose values, all illustrated

in Figure 2.5. We consider results for α = 1, equating this parameterization of our

model to the exponential model where k = s/γ = 3.95× 10−5. The other two models

were a previous analysis of the Brachman data assuming each day was an indepen-

dent trial using an exponential dose-response model [62] and a separate analysis of

anthrax infection in Rhesus monkeys, specifically developed to model anthrax clear-
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Figure 2.4:
Results from the Brachman inhalational anthrax data analysis. A.) Re-
sults from optimization profile over α. A spline curve was fit to deter-
mine the minimum negative log likelihood (maximum likelihood estimate
(MLE) α̂ = 0.90) and to determine the 95% confidence interval (CI) (0.51,
1) using the log likelihood ratio test. B.) Optimized s values for values
of α within its 95% CI. C) Optimized log(γ) values for values of α within
its 95% CI. The minimum γ value in this range is 0.0046 h−1 and the
maximum is 0.17 h−1. D) Predicted risks for two exposure patterns using
MLE values profiled over α. Two exposure scenarios were used, one bolus
(circles) and one evenly distributed (crosses) exposure pattern, both with
the same total dose of 15,000. Parameter sets used for these calculations
were (α=0.50, s=1.65 ×10−7h−1, γ=0.20 h−1); (α=0.60, s=1.72×10−7

h−1, γ=0.093 h−1); (α=0.70, s=1.76×10−7h−1,γ=0.044 h−1); (α=0.80,
s=1.78×10−7h−1, γ=0.021 h−1); (α=0.90, s=1.81×10−7h−1, γ=0.0097
h−1); and (α=1.00, s=1.84×10−7h−1, γ= 0.0046 h−1).
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Figure 2.5:
Comparison of our best fit results with other anthrax models when mod-
eling risk for a single bolus dose. To calculate this risk when α = 0.9,
equations (2.6) and (2.9) were used in combination with MLE values,
ŝ=1.81×10−7h−1 and γ̂=0.001h−1 (solid line). When α = 1, our model is
equivalent to an exponential model with k = s/γ = 3.95 × 10−5 (dashed
line). Previous exponential modeling of Brachman data assuming each
day as an independent dosing event yielded k=2.4×10−5[62] (dash-dotted
line). A model of anthrax outbreak in Rhesus monkeys which included
clearance rate and hazard rate yielded an attack rate formula equivalent
to an exponential model with k=7.17×10−5[58] (dotted line).

ance rates[58]. This model is similar to our model when α = 1, and produced a

clearance rate and hazard rate of 0.0029/hr and 2.08×10−7/h.

Next, we calculated the corresponding risks for the exposure patterns given in

section 2.3.7. We chose the corresponding MLE parameter sets for several α values

ranging from 0.5 to 1. Figure 2.4d depicts the predicted risks over this α range,

comparing the bolus exposure to the evenly distributed exposure pattern. We can see

that as α approaches 1, the gap between the predicted risks decreases. The largest

gap presented occurs at α = 0.5 where the bolus exposure has a risk of 64% and the

distributed exposure has a risk of 59%. When α = 0.9, the bolus risk is 47% and the

distributed exposure has a risk of 46% indicating dose-timing effects that are small.
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2.5 Discussion

2.5.1 Plausibility of our model as a dose-response model

Using a simple function that expresses cumulative dose dependence on the pathogen

elimination rate, we are able to realistically relax the assumption that the risk of each

pathogen dose is independent of the time of arrival of other pathogen doses. Further,

through a survival analysis, we have presented a method for analyzing dose-response

time series data of exposure and infection events. As a case study, we presented an

analysis of inhalational anthrax infection in Cynomologus monkeys in an industrial

setting [55]. Our optimization found the best fitting parameters for these data as

follows: α=0.9, γ=0.0097/hr, and s = 1.81× 10−7/h. This result indicates that there

are very slight dose-timing effects, as indicated by the risk difference of 1% from the

simulated exposure experiments. This result also appears dependent on our lag time

assumptions. The problem of non-identifiability between our clearance rate (γ) and

lag period (τ) requires us to make some assumptions about the overall distribution of

the lag period, a problem also found in a previous anthrax analysis[58], where they

optimized a convolution of a time to germination likelihood and an exponential lag

period. Our lag period describes a period beginning with infection takeoff, which oc-

curs sometime after germination within macrophages [59], and ending in death. The

point at which infection has taken off is not provided in the Brachman experiment

and thus we must rely on an assumed lag period. To test sensitivity to lag period

assumptions, we tried other distributions, such a larger range of lag period and a

truncated exponential. If all times were weighted equally or if there were heavier

weighting on longer lag periods (greater than 6 days), the MLE α̂ was estimated at 1.

However, a distribution that weights faster lag periods more (such as the exponential

with mean of about 2 days) resulted in MLE α̂ values between 0.9 and 1. While

lag periods may be less variable and slower for doses under the ID50[57], such as in
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this dataset, future anthrax modeling for larger doses may require careful distribution

selection consistent with experiments done with higher dose levels[56]. The fitted val-

ues of s and γ decrease slightly as the lag period decreases. This result implies that

our estimate of within host pathogen persistence and risk depends on our lag period

selection and therefore we may be incorrectly classifying periods where dose-timing

is important as the lag period.

Although our model is unique in its implementation of multiple doses, we can

compare it to other dose-response models when considering the risk from a single dose.

As illustrated in figure 2.5, our model produced consistent results with other anthrax

models. Particularly, the ID50 of all these models are all within an order of magnitude.

A review of several anthrax dose-response models[63] found that risk models that were

similar to exponential distributions were the most successful at modeling anthrax risk.

Our analysis is consistent with this result. To truly check consistency among other

analyses, however, requires more data and models implementing multiple dosing.

Our 95% CI of (0.51, 1) reflects imprecision in estimation of values. Our confi-

dence interval calculation is limited in this example as we implemented an artificial

upper bound on α that is biological instead of statistical. If we allow α values greater

than 1, we find this interval to extend as far as 1.48, as discussed in the appendix,

section A.4. If α > 1, we would have a paradigm where bolus exposures have lower

risks than smaller, distributed exposures of the same total dose.

The strong functional relationship of α and γ implies that they should not be

estimated independently. Particularly, they share a decreasing log linear relationship

(figure 2.4c), showing that γ values decrease when α values increase. That is, when

clearance decreases in speed, the shape of the clearance curve becomes more curvilin-

ear. This illustrates a range of potential clearance curves that describe the pathogen

decay. The s parameter then provides us with an instantaneous per pathogen infec-

tion risk over the clearance time. When estimating the parameters for our model,
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we suggest a profile optimization over α. Using this approach, inference can then be

done to determine if α differs from 1 which would imply that risk estimation depends

on dose-timing. When using the model to estimate exposure risks or infection timing,

we assign the appropriately fitted γ value to a specified α value.

One limitation of our model due to its simplicity is the use of abstract parameters.

The α and s parameters are not readily biologically interpretable from the results and

the parameter γ is only interpretable in the special case of exponential clearance. We

can still present expected clearance curves and describe expected behavior of the

system with known parameters. For example, if we know we do not have exponential

clearance (α < 1), then bolus exposures correspond to the highest risk of infection.

However, given two different pathogens with this property (α < 1) but different

α values, it is not clear what the differing values of α tell us specifically about each

pathogen, especially if the other parameters vary also. Furthermore, extrapolating our

results to human populations requires additional assumptions. For traditional dose-

response experiments, we would need susceptibility of the host animal to be similar

to humans. Additionally, for our model, we would also need the surrogates immune

response to occur at a similar rate with similar effectiveness to the human population.

Cynomolgus monkeys and humans have similar anthrax infection pathology[56] which

implies that we may expect the dynamics and risk assessments to be similar given

these exposure patterns, however, it is not clear how the parameter sets might differ.

Another limitation of our model is that it does not take into account the re-

production of pathogens within host tissue, i.e., we only model pathogen clearance

as a decreasing curve between inoculations. Ideally, a model of the infection pro-

cess includes pathogen elimination by the immune system and the growth of the

pathogen within the host. The persistence of pathogen would then be more realis-

tically described as a stochastic process, with spikes both increasing and decreasing

over clearance until either the pathogen level reaches zero or begins to reproduce to an
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unbounded level, as presented in a previous model[10]. This model, however, requires

additional parameters and is computationally intensive which makes its implementa-

tion into complex models of environmental infection transmission systems difficult.

By ignoring pathogen growth during innate clearance but before the infection takes

off, the overall shape of pathogen decrease described by our model will be different

than the more realistic model that takes into account both processes. However, by

relaxing the assumption that infection risk must be time-independent, our model is

a step forward in dose-response risk assessment.

2.5.2 Experiments to inform time-dependent dose-response models

Our proposed exposure patterns illustrate simple experimental structures that

would elicit varying risk due to dose-timing effects. It is important to note that our

model is only one potential realization of time-dependence in dose-response models.

Conducting the proposed experiments and observing a significant risk difference be-

tween exposure patterns might be enough to imply that risk depends on dose-timing.

This discovery alone would illustrate how characterizing the risk of different routes

of transmission is critical, and further, would have important ramifications on inter-

vention policies.

To conduct such a time-dependent dose-response experiment, preliminary exper-

iments would need to be conducted to find a viable dose; that is, doses that do not

have risks near 0% or 100%. Further, these preliminary experiments need to give

insight into the time scale of interest. We used doses spaced by days since our results

pointed to clearance rates on the scale of days. For a pathogen like the influenza virus,

we may expect dose timing effects to be on a shorter time scale. After preliminary

experiments, dosing schemes similar to our proposed patterns should be implemented

with fixed total doses. By using exposure patterns that differ so widely, we are better

able to evaluate the impact of dose timing on the effectiveness of the immune sys-
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tem. Simply observing varying risk by exposure pattern can provide enough insight

to imply that risk depends on dose-timing. Simple analysis on differing risks would

be sufficient to show dose-timing effects. One shortfall of these experiments is that

they would likely require large subject sizes unless there are substantial dose timing

effects. If we look at the predicted risks of our exposure patterns from our analysis

when α=0.5, we would need 1550 subjects per pattern to find a statistically signif-

icant difference at the 0.05 level with 80% power using Fishers 2-sided exact test.

Naturally, if there are stronger dose timing effects (risks differences are much higher),

the necessary sample size drops. Other options would include designing experiments

that are mechanistically specific to the pathogens of interest and monitoring the cor-

responding immune response. For anthrax, we may design an experiment monitoring

macrophage loads over different dosing patterns and then analyzing the data with

an anthrax-specific mechanistic model. This scenario would reduce the emphasis on

elucidating risk differences and therefore may not require such large sample sizes.

By using a sufficient number of subjects, the time to infection distribution and

overall risk would be stabilized for each dosing course and thus provide stable data to

estimate our parameters. Further, using varying total doses is an additional method

to introduce precision to parameter estimation in our model. There were many lim-

itations in using the Brachman data to estimate our model parameters. The data

had small sample size and only two exposure patterns. Furthermore, the exposure

patterns are roughly similar for each run and the total doses differ. The estimation

of α depends on the effect of dose-timing and thus would be best estimated by widely

varying exposure patterns of fixed total dose.

2.5.3 Time-dependence in the dose-response model paradigm

Through the use of our model, we have shown that exposure timing can be used in

the calculation of risk and estimation of infection times. This is a distinct advantage
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over the risk calculation of classical dose-response models. In transmission systems,

different routes of transmission lead to varying types of exposure patterns. We can

now relax the assumption that the risk is invariant to different dose timing and thus

varying exposure patterns. Even if our model predicts invariant risks to exposure

patterns (exponential clearance), it allows us to estimate when infections would occur

over an exposure course. Fundamentally, we are interested in whether dose-timing is

an important factor in the calculation of risk. Our analysis shows that for anthrax,

there may not be these effects on the time scale we examined, i.e., the accumulation

of inoculations is an independent process with respect to immune clearance when

time intervals are one day at the minimum. There might be such time dependence

across shorter times. Despite these findings, we still provide a reasonable estimate

for the persistence of the pathogen in the host on the scale of days. We expect

that the importance of dose-timing would be dependent on the infection process of

a given pathogen. For other pathogens, such as non-respiratory bacteria or viruses,

we may not expect these properties to remain constant, especially if the immune

mechanisms of clearance differ biologically. For example, the B. anthracis bacillus

uses macrophages as a transport to the lymph system in the course of the infection

process [40]. This is a unique mode of infection that affects both immune effectiveness

and clearance time scale that differs from infection processes of many other pathogens,

e.g., the influenza virus.

Infectious disease transmission systems are time-dependent processes generally

involving many different types of environmental exposure routes. In influenza trans-

mission, the virus can be transmitted in the air, through direct contact, and through

fomite surfaces [64]. In anthrax bioterrorism scenarios, we may wish to consider the

risks of large release versus a small steady release of spores. For an enteric disease, like

cholera, norovirus, or pathogenic E. coli, competing routes such as contaminated food

or water contribute to varying exposure patterns. Each of these transmission routes
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could be characterized by distinct exposure patterns such as evenly distributed, small

exposures (e.g., breathing dispersed pathogen in air) or a large bolus exposure (e.g.,

consuming a contaminated glass of water). Modeling these routes requires many

assumptions, particularly when time-independent dose-response models are imple-

mented to give a risk calculation for a given exposure pattern. If exposures occur in

a time frame in which the immune system has begun to respond but has not cleared

the pathogen, we may no longer have independent pathogen risk calculations. In this

scenario, distinct exposure routes may elicit differing risk properties. To see these

properties, dose-timing effects must be considered in dose-response experiments, such

as we suggest, elucidating the time scale of clearance and the potential importance to

risk calculations. We aim to develop a dose-response paradigm that readily includes

time-dependence in both risk and infection time calculations.
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CHAPTER III

Successes and shortcomings of polio eradication: A

transmission modeling analysis

3.1 Abstract

Polio eradication is on the cusp of success with only a few regions still main-

taining transmission. Improving our understanding of why some regions have been

successful and others have not will help both with global eradication of polio and with

development of more effective vaccination strategies for other pathogens. To examine

past eradication efforts we constructed a transmission model for wild poliovirus in-

corporating waning immunity affecting both infection risk and transmissibility of any

resulting infection, age-mediated vaccination rates, and transmission of OPV. The

model produces results consistent with the four country categories defined by the

Global Polio Eradication Program: elimination with no subsequent outbreaks; elim-

ination with subsequent transient outbreaks; elimination with detected transmission

for more than 12 months; and endemic polio transmission. Analysis of waning immu-

nity rates and OPV transmissibility reveals that higher waning immunity rates make

eradication harder due to increasing numbers of infectious adults and higher OPV

transmission rates make eradication easier as adults become re-immunized. Given

these dynamic properties, attention should be given to intervention strategies that
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complement childhood vaccination. For example, improvement in sanitation can re-

duce the reproduction number in problematic regions, while adult vaccination can

lower adult transmission.

3.2 Introduction

The use of vaccines is a major success story in the field of public health. On the

verge of global eradication of polio, eliminating polio from the remaining few countries

has proven difficult. Local elimination efforts have focused on both fine-tuning vaccine

design and developing strategies to attain intensive coverage of children. Here we

review the history of polio eradication through the lens of transmission system theory.

The Global Polio Eradication Initiative has classified countries into four categories

based on their elimination success [45]. Countries in Category A have had successful

elimination with no subsequent outbreaks. This is the largest group including, by con-

tinent, the Americas, Australia, Western Europe, and large portions of both Africa

and Asia. India, after continual eradication difficulty, has been recently classified into

Category A. Countries classified as Category B have documented successful elimina-

tion with subsequent transient outbreaks. These countries are African countries near

Nigeria, and Euro-Asian nations near India, Pakistan, and Afghanistan. Countries

classified as Category C, Angola, Chad, Democratic Republic of the Congo, and Su-

dan, have had documented successful elimination followed by subsequent outbreaks

and transmission detected for more than 12 months after the first subsequent out-

break [45]. The last group of countries, comprising Category D, has endemic polio

transmission. These countries are Afghanistan, Nigeria, and Pakistan. We undertake

here a dynamic systems analysis that helps explain how countries got into these differ-

ent categories and what determines how they move between these different categories.

Poliomyelitis is a disease caused by the poliovirus that is characterized by acute

flaccid paralysis. Poliovirus is transmitted fecal-orally and primarily causes gastroin-
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testinal infection with minor or no symptoms. These infected individuals excrete

virus into the environment where poor sanitation and high population density allows

the virus to persist and transmit.

While polio immunity against paralysis does not wane substantially, immunity

affecting susceptibility to infection and contagiousness does. Evidence of increasing

susceptibility with waning immunity comes from antibody patterns [12, 13, 47, 66–76]

and the relationships between antibody levels and protection against infection [77, 78].

Evidence of increasing contagiousness with waning immunity comes from: 1) an oral

polio vaccine OPV challenge study demonstrating that individuals with prior wild po-

lio virus WPV infection 40-50 years earlier excrete as much virus as completely suscep-

tible individuals [12]; 2) an OPV challenge study in elderly populations demonstrating

the association of excretion among previously vaccinated adults with antibody lev-

els [79]; and 3) recently immunized children that excreted significant quantities of

WPV [49, 80].

The two types of vaccines in use are the live virus OPV and the IPV. Both vaccine

types provide immunity to paralysis [18] but OPV provides higher protection against

infection and greater reductions in excretion during infection [14, 48, 49]. As a live

virus, OPV is transmissible through the same routes as wild poliovirus and thus has

added effects of reaching unvaccinated populations and boosting immunity in those

previously infected or vaccinated. Unfortunately, mutated derivatives of circulating

OPV can also cause paralytic disease [18]. Consequently, cessation of OPV is an

important final step in eradication.

Though elimination in some countries with good sanitation has been achieved

using an early childhood routine vaccination schedule, the national level elimination

programs in other countries involve supplementary immunization activities (SIAs)

reaching all children 5 and under on national immunization days.

The regions where polio elimination has been most difficult are heterogeneous in
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terms of population size, density, sanitation, and vaccination coverage. For example,

in northern India, which has very dense and extensive populations with poor sanita-

tion, successful elimination required more than 15 SIAs per year in some areas. In

contrast, a 2010 outbreak in the Congo occurred under conditions of low population

density and low exposure to poor sanitation, but low vaccination coverage in a subset

of the population [45].

To better understand what determines success or failure under these diverse con-

ditions, we examine a dynamic model across a diversity of transmission conditions,

vaccination levels, vaccine effects and vaccine transmissibility. Our model does not

aim to capture any specific country scenario but rather describe the general phenom-

ena of polio elimination.

3.3 Methods

The structure for our transmission model is shown in figure 3.1. Appendix B

contains a detailed background of the development and structure of our model. We

constructed a deterministic, compartmental model that included different levels of

immune status between the recovered state and the fully susceptible state. These

are seen model equations (B.2)–(B.5) in section B.2. We included separate infection

compartments for WPV and OPV, assuming no concurrent infection, as shown in

equations (B.7). OPV transmission was modeled relative to wild polio transmission

using parameters that reduced contagiousness and duration of infection while main-

taining the same susceptibility as WPV, as shown in equations (B.1) and (B.7)).

Model parameters are described in table 3.1 (and in more detail in table B.1). Age

compartments allowed for age-specific vital dynamics and vaccination programs that

target children. Aging was modeled as a pure delay process consistent with past ag-

ing models in pertussis and measles [81, 82], for additional detail see supplementary

material B.3.
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Figure 3.1:
Graphical depiction of the transmission model without aging or vital dy-
namics (for details on vital dynamic implementation, see appendix B.3).
The I compartments correspond to the wild poliovirus (WPV) infected
population and the V compartments correspond to the oral polio vaccine
(OPV) infected population. Each set of S, I, and V compartments are
further broken down based on immunity stage, i, with n total immune
stages. Individuals enter the population at rate, b, and have no immu-
nity. The Sn−1 state corresponds to full immunity and is achieved after
infection caused by either OPV or WPV. Waning of immunity occurs as
population transitions between Si compartments, at rate ωi, moving from
higher immunity to lower immunity. We assume that complete loss of
immunity is not possible. Levels of immunity are determined by immune
stage, i, and affect susceptibility, βi; contagiousness, θi; and recovery rate,
γi. Force of infection is the product of the effective contact rate (a fully
infectious contact given no immunity), c, and the linear combination of
the relative contagiousness, θi, of each infected subpopulation times its
density. Transmission of OPV is reduced compared to WPV by decreas-
ing the contagiousness by factor ε and increasing the recovery rate from
infection by factor κ. Infection due to OPV can also occur due to effective
vaccination rate, φ. The parameters are also explained in table 3.1 and
in greater detail in the appendix, section B.2.
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Table 3.1: Polio transmission model parameters

Model

Parameters Descriptions Values

i Immune stage 1...n

j Age group 1...m

n Total immune stages 10

m Total age groups 34

b Birth rate into population (yr−1) 0.025a

c Effective contact rate (yr−1) 40–200b

βi Relative susceptibility for immune stage, i 0–1c,d

θi Relative contagiousness for immune stage, i 0–1c,e

γi Relative recovery rate (yr−1) for immune stage, i 10–40c,f

ωi Rate of immune stage change (yr−1) 0, 0.2, or 2g

φj Effective vaccination rate (yr−1) 0–3

ε Relative contagiousness OPVh:WPVh 0.15–0.45

κj Relative recovery rate OPVh:WPVh 2.25–6.25

µj Age-dependent death rates (yr−1) i

aThe birth rate, b, was set in relation to the death rate, µj , so that the population size is constant.
bThe effective contact rate, c, was assigned using previously established R0 values [18],along with

our derived transmission model calculation of R0 (table 3.2).
cImmunity response to susceptibility, contagiousness, and duration of contagiousness were as-

signed across their ranges of values using an exponential function (see section B.4 for more details).
dThe immunity parameter for susceptibility, βi, attenuates the infectivity of an effective contact on

the susceptible population, where 1 defines no reduction (no immunity) and 0 defines no susceptibility
(full immunity).

eThe measure of contagiousness, θi, attenuates the force of infection due to the infected pop-
ulation, where 1 defines full contagiousness (no immunity) and 0 defines no contagiousness (full
immunity).

fThe recovery rate, γi, is defined according to observed ranges of shedding duration [14, 49].
gSee section B.4 and table B.1
hOral Polio Vaccine (OPV); Wild Polio Virus (WPV)
iSee section B.3
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Immunity reduces susceptibility to infection and also reduces contagiousness and

duration of infection if there is reinfection. As immunity wanes (modeled as an un-

derlying exponential process), susceptibility, contagiousness and duration of infection

increase. As depicted by the S0 compartment in figure 3.1, we assumed that individ-

uals never fully lose immunity; i.e., only new members of the population, introduced

at a fixed birthrate, were completely susceptible, shown in equations (B.2)–(B.3). In-

fection with WPV or OPV through either vaccination or OPV transmission resolves

into full immunity, a short lived period where there is no susceptibility to reinfec-

tion, shown in figure 3.1 using flows from the infected populations (compartments

I and V ) into the susceptible compartment with highest immunity, Sn−1. As time

since recovery increases (population flows across the S compartments in figure 3.1),

susceptibility to reinfection increases and subsequent reinfection has increasing con-

tagiousness and duration. After a reinfection, full immunity is regained. For more

detail on the modeling of waning immunity see supplementary material, section B.4.

Unless otherwise stated, we assumed that susceptibility wanes to 50% compared

to no immunity after 10 years. The immunity waning rates for contagiousness and

duration were set to be equal to one-fourth the waning rate of susceptibility. An

exploration of waning settings is shown in the appendix, section B.5.1. Initially, we

fixed OPV transmissibility to 5% of WPV transmissibility. This value for OPV rel-

ative transmission was selected using criteria from Fine and Carneiro [18] such that

circulating OPV, specifically for serotypes 1 and 3, would not sustain transmission.

We then investigated a broader range of OPV transmission, including higher trans-

missibility consistent with serotype 2. Further, we investigated the effect of waning

immunity by choosing values to examine the impact of waning on the dynamics for

wide-ranging outcomes. The model parameters we varied for our analysis are shown

in table 3.2.

To model vaccination we considered effective vaccination rates in contrast to actual
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Table 3.2: Model factors varied in the analysis

Analysis Variable Description Calculation Rangea

Maximum R0 Reproduction number in c/γ0 4–20[18]

an immunologically naive

population

OPVb transmissibility Transmissibility relative to

WPVb (%)

ε/κ 0–20[18]

Susceptiblity waning rate Exponential waning rates

(yr−1)c
0.04, 0.07, 0.1d,e

φj Effective vaccination rates

(yr−1) in children (0-5 year

olds)

0–3 [45, 48]

aUpper and lower bounds were selected as biologically plausible limits.
bOral Polio Vaccine (OPV); Wild Polio Virus (WPV)
cSee section B.4
dWaning rate values are not well defined and are, therefore, chosen to examine the impact of

waning on the dynamics for wide-ranging outcomes. Additional values are explored in sections B.5.1
and B.5.3

eThe susceptibility waning rates, 0.04, 0.07, and 0.1 per year correspond to losing 50% suscepti-
bility after 17, 10, and 7 years, respectively.

vaccination rates. An effective vaccination rate corresponds to vaccination resulting in

complete immunity. In reality, a dose of OPV may not induce an immune response and

multiple OPV vaccinations are required to achieve full immunity [48]. The effective

vaccination rate is thus less than the actual vaccination rate. Our major inferences

did not change when we changed the model such that vaccines result in partial but

increasing immunity from each vaccination. The pertinent analysis is presented in

supplementary material section B.5.2.

We simulated polio transmission initially without vaccination until the model

reached steady state dynamics. After achieving steady state, we introduced vacci-

nation into the population. The target effective vaccination rate was achieved over

an implementation time period where vaccine rates increased linearly from zero to

the target level. The main analysis used a 2-year implementation time. Results for
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10-year implementation are presented in supplementary material section B.5.3.

We numerically solved differential equations across a range of waning rates, rel-

ative oral polio vaccine transmissibility levels, effective vaccine rates, and the repro-

duction number, as shown in table 3.2. The reproduction number was calculated for

a fully susceptible population with no vaccination and is approximately equivalent to

the effective contact rate times the duration of infection. By monitoring prevalence

levels over the course of a vaccination program we identified parameter ranges that

correspond to difficulties in eradication across the countries described in table 3.3.

Modeling was conducted in Python using the SciPy module and figures were made

in R using the lattice package.

3.4 Results

3.4.1 Explaining success in polio eradication efforts across country clas-

sifications

Figure 3.2 displays both short-term (3.2A) and long-term (3.2B) vaccination suc-

cess across differing levels of R0 and effective vaccination rates. We measured short-

term success as the minimum prevalence in the first 50 years, such that the lower

this minimum prevalence, the greater the short-term success. The ability to achieve

low prevalence at any given time does not imply long-term success. We therefore

measured long-term success as the final equilibrium prevalence. A low long-term

prevalence is an indicator of stable elimination. Countries classified as Category A,

based on the GPEI [45], generally have both short and long-term success. Countries

classified as Category B and C are those countries with fragile short-term success, i.e.,

they achieved short-term success but have conditions for non-zero final prevalence.

Category D countries have not achieved success in the short or long term.

The placement of countries onto figure 3.2 was based on country specific estimates
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Table 3.3:
Classification of countries in context of polio eradication initiative in 2012.

Country type Hygiene Examples Eradication R0

Statusa categoryb rangesa

Industrialized Good United States, Western

Europe, Australia, etc.

A 4

Industrialized Poor South America, Russia A 10

Developing Poor Egypt, Eastern Europe,

Northern Africa, Middle

Eastern Countries, etc.

A 12

Developing Dense India A 14–18

& poor

Developing Poor Horn of Africa (e.g.,

Congo, Uganda)

B 8–12

Developing Poor Central Asia (e.g., Tajik-

istan, Turkmenistan)

B 10–14

Developing Poor Angola, Chad, Demo-

cratic Republic of the

Congo, and Sudan

C 8–12

Developing Poor Afghanistan, B 14–18

Nigeria, and Pakistan

aCountry type, hygiene status, and R0 values chosen from Fine & Carneiros polio transmission
review [18].

bCountry classification based on the Global Polio Eradication Initiative [45]. Category A corre-
sponds to countries that have achieved eradication; category B describes countries that have achieved
eradication but have transient epidemics; category C describes countries that have achieved eradica-
tion but have re-established transmission; and category D describes countries that have not achieved
elimination.
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Figure 3.2:
A) The minimum prevalence reached in the first 50 years due to the ini-
tial vaccine implementation (a measure of short-term success) and B) the
final prevalence resulting from the vaccination program (a measure of
long-term success), across R0 and effective vaccination rates per year for
all children under 5. OPV transmissibility is set to 5% of WPV trans-
missibility. Waning rates are set such that it takes 10 years to reduce
susceptibility by 50%. The circle represents the United States, the aster-
isk represents regions of India (Uttar Pradesh and Bihar), and the dia-
mond represents Xinjiang, China. The dashed rectangular box represents
China and the solid rectangular box represents the endemic countries:
Afghanistan, Pakistan, and Nigeria. Values for R0 and effective vacci-
nation rates were selected qualitatively and are discussed in the section
3.4.1. Divergence in prevalence levels between A) and B) does not neces-
sarily predict future outbreaks or endemicity but indicate potential fragile
short-term eliminations.
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for R0 and vaccination rates. R0 values were selected using data from Fine & Carneiro

[18]. We crudely selected effective vaccination rates for categories and countries using

the Global Polio Eradication Initiative criteria [45] by considering enhancing factors

such as SIAs deployment and mitigating factors such as poor coverage or take-rates.

Category A countries comprise diverse conditions but generally have lower transmis-

sion conditions with adequate vaccination coverage. The United States is shown on

figure 3.2 with a small, stable R0 due to its low transmission conditions and a 100%

vaccination rate to illustrate a consistent, effective vaccination program. In contrast,

Bihar and Uttar Pradesh of India are presented in figure 3.2 as having very high

transmission conditions and very high vaccination levels. The yearly vaccination rate

of 2.5 was selected to represent full coverage plus at least one fully effective booster.

With a recent outbreak in Xinjiang, China is an example of how Category B

and C conditions emerge from Category A countries. China is large nation with

varying transmission conditions so we selected a range of R0 values for figure 3.2

consistent with those presented for both types of industrialized nations in table 3.3.

The outbreak in Xinjiang has been attributed to importation and falling vaccination

rates [46] so we illustrate potential effective vaccination rates ranging from enhanced

(greater than 1) to reduced (less than 1). While the 2011 outbreak was an isolated

incident in China, its placement in figure 3.2 demonstrates that other Category A

nations with a higher R0 or lower vaccination coverage may be at increased risk to

emerge as Category B or C countries due to importation.

The category D countries (Afghanistan, Nigeria, and Pakistan) are depicted with

moderate transmission levels but poor coverage, consistent with the difficulty pro-

grams have had in adequately vaccinating their remaining endemic regions. Afghanistan

and Pakistan are grouped together due to their linked transmission conditions through

importation [45].

In figure 3.2A, the short-term success of the vaccination program show decreasing
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prevalence as vaccination increases for a given R0. For low values of R0, low minimum

prevalence levels (figure 3.2A) correspond to low final prevalence levels (figure 3.2B)

suggesting stable elimination under these conditions. However, at higher levels of R0

where we still see low minimum prevalence levels, we no longer see low long-term

prevalence suggesting that the initial drop in prevalence due to vaccination is not

maintained and the probability of resurgence is increased. A further exploration of

model dynamics associated with the rebound epidemics is presented in the appendix

B.5.4.

To better understand what causes the increasing divergence between figure 3.2A

and 3.2B at increasing levels of R0, we need to consider waning immunity and reinfec-

tion dynamics, where reinfection is defined as WPV infection that occurs after a first

infection caused by WPV transmission, OPV transmission, or OPV vaccination [15].

At high R0, when vaccination is implemented, the combination of vaccine effective-

ness and immunity boosting through reinfection causes an immediate sharp decrease

in prevalence. However, if the vaccine levels are not high enough to push prevalence

to zero, the waning of immunity eventually increases the number of susceptible indi-

viduals providing a means for virus circulation through reinfection epidemics. On the

other hand, when R0 is low, the prevalence reduction after vaccination implementa-

tion is not highly dependent on immune boosting through reinfection. Therefore, for

low levels of R0, vaccination levels of children do not have to reach very high levels

in order to get below the population threshold for transmission illustrated in figure

3.2B.

3.4.2 Role of OPV transmission

Increasing OPV transmission from 2.5 to 20% of WPV results in a large reduction

in the vaccination rates required to reach low or zero prevalence at equilibrium (figure

3.3). The reduction in required vaccination levels is particularly evident for high R0
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levels. These increased levels of OPV transmission correspond to serotype 2 vaccina-

tion which is known to be much more transmissible than the serotypes 1 and 3 [18].

At high levels of vaccine transmission, immunity is boosted in those previously in-

fected reducing the overall transmission potential. Results for reducing relative OPV

transmission to 0% are shown in the appendix B.5.5.

3.4.3 Role of waning immunity

Figure 3.4 illustrates final prevalence for faster and slower waning immunity rates.

If waning immunity is slow, for example, it takes 17 years to reach 50% susceptibil-

ity (left half of figure 3.4), reaching elimination prevalence levels requires much less

vaccination coverage than if waning is faster, for example, it takes 10 (figure 3.3) or

7 years to reach 50% susceptibility (right half of figure 3.4) for given levels of R0.

Further, by exploring across OPV transmissibility levels for each of these waning lev-

els, we observe the importance of the boosting that occurs from OPV transmission.

Even when immunity waning is fast, if relative OPV transmission is 20% that of

WPV transmission, eradication is still achievable at an R0 of 20 for effective vacci-

nation rates around 3 per year or higher. Since waning immunity can significantly

reduce the long-term efficacy of vaccination, this analysis highlights a range where it

is important to understand these underlying dynamics.

3.4.4 Reinfection contributions to transmission at endemic equilibrium

Figure 3.5 illustrates the proportion of the force of infection attributable to re-

infection across varying levels of reproduction numbers and vaccination rates. Rein-

fections are infections of WPV that occur after previous infection due to an earlier

WPV infection, OPV infection, or vaccination. For lower levels of OPV transmissibil-

ity when vaccination levels are greater than 1 per year and elimination is not reached,

the proportion of the force of infection that are due to reinfections rises above 50%.
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Figure 3.3:
Final prevalence across vaccination rate and R0 where oral polio vaccine
(OPV) transmissibility relative to wild poliovirus (WPV) transmissibility
is set to A) 2.5%, B) 10%, and C) 20% of OPV transmissibility. Waning
rates are set such that it takes 10 years to reduce susceptibility by 50%,
contagiousness of any resulting infection by 16% and duration of any
resulting infection by 16%.
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Figure 3.4:
Final prevalence across vaccination and R0 where by column, waning rates
increase from slow (A, B, C: it takes 17 years to reach 50% susceptibility)
to fast (D, E, F: it takes 7 years to reach 50% susceptibility); and by
row, oral polio vaccine (OPV) transmissibility relative to wild poliovirus
(WPV) transmissibility increases from 2.5% (A, D) to 10% (B, E) to 20%
(C, F).
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When relative OPV transmissibility reaches 20%, elimination occurs under conditions

where at lower OPV transmissibility levels transmission was dominated by reinfec-

tion. OPV transmission prevents immunity from waning to the level where reinfection

transmission is important. Specifically, in conjunction with figures 3.2 and 3.3, we

can conclude that the final prevalence under high transmission conditions and high

vaccination rates was maintained by reinfection transmission from aging populations

experiencing waning immunity. This illustrates the importance of boosting immunity

in populations with waned immunity.

3.5 Discussion

Global polio eradication is in its final stages. To ensure success, intensive efforts

are needed in the few remaining countries. The analyses we have presented help

demonstrate how reproduction numbers, transmissibility of OPV, immunity waning

rates, and vaccination rates contribute to successes and failures. While our analytic

approach cannot describe or predict the specific course of any nations elimination

effort, it does help illustrate dynamics that should affect control decisions. Most

importantly it reveals the fragility of elimination in high R0 areas, how reinfection

contributes to that fragility, and how high levels of OPV transmission counteract the

fragility related to reinfection potential.

Worldwide eradication success has been achieved by targeting children. In coun-

tries with high levels of sanitation, the success was swift. In nations with poor

sanitation, such as Egypt, India, and Bangladesh, success has been less swift, but

has been possible. Supplementary immunization activities SIAs on national immu-

nization days have been important for success under these more difficult conditions.

SIAs revaccinate children many more times than routine immunization would. Since

revaccinated children can excrete vaccine poliovirus [80], the resulting OPV trans-

mission boosts immunity in unvaccinated children and in individuals whose waning

68



Effective Vaccination Rate (yr−1)

M
ax

im
um

R
ep

ro
du

ct
io

n 
N

o.

5

10

15

20

0 1 2 3

0%

25%

50%

75%

100%

Effective Vaccination Rate (yr−1)

M
ax

im
um

R
ep

ro
du

ct
io

n 
N

o.

5

10

15

20

0 1 2 3

0%

25%

50%

75%

100%

Effective Vaccination Rate (yr−1)

M
ax

im
um

R
ep

ro
du

ct
io

n 
N

o.

5

10

15

20

0 1 2 3

0%

25%

50%

75%

100%

Effective Vaccination Rate (yr−1)

M
ax

im
um

R
ep

ro
du

ct
io

n 
N

o.

5

10

15

20

0 1 2 3

0%

25%

50%

75%

100%
D)

C)

B)

A)

Figure 3.5:
Depiction of proportion of the force of infection that are due to rein-
fections across vaccination rate and R0 where oral polio vaccine (OPV)
transmissibility relative to wild poliovirus (WPV) transmissibility is set
to A) 2.5%, B) 5%, C) 10% and D) 20%. Reinfection is defined as WPV
infection that occurs after an initial infection caused by an earlier WPV
infection, vaccination, or infection due to OPV transmission. Waning
rates are set such that it takes 10 years to reduce susceptibility by 50%,
contagiousness of any resulting infection by 16% and duration of any re-
sulting infection by 16%. In the white areas of the graph, there is not
sustained transmission to calculate the force of infection (i.e., prevalence
equals zero).
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immunity might otherwise bring them to a state where they could be infected by and

transmit WPV.

When OPV is highly transmissible, low levels of prevalence can be achieved in

high transmission conditions with less than extreme vaccination coverage; this is true

even for faster waning immunity and higher R0. At high transmission (R0) levels in

figure 3.2B, the low levels of prevalence induced by the initial vaccine implementation

have rebounded into considerably higher endemic equilibrium levels that are not ob-

served when OPV transmissibility is high (figure 3.3C). When OPV transmissibility

is low, under endemic conditions of high vaccination and high transmission, the force

of infection is largely attributable to reinfection (figure 3.5). By increasing the trans-

missibility of the OPV strain, we eliminate transmission attributable to reinfection

by effectively boosting populations with waned immunity. That is, asymptomatic

adult populations with waned immunity may be important factors in transmission

and their impact can be reduced by re-contracting vaccine strain poliovirus.

The final stages of eradication for WPV serotype 1 and 3 can be characterized

by difficulties that did not affect the eradication of serotype 2. The increased effi-

cacy of tOPV for WPV serotype 2 is clearly one important factor [45] accounting

for the success in type 2 eradication, but our analysis illustrates that lower levels

of vaccine strain transmission contribute to the difficulties in achieving eradication.

When transmissibility of the vaccine strain is lower, as it is in poliovirus serotype

1 and 3 [18], vaccination strategies affecting the potential for reinfections to trans-

mit should be considered. Besides focused SIAs, another strategy might be to add

a single booster for adults in high transmission regions. Such a campaign would be

costly and potentially difficult to implement but could contribute to success in regions

where elimination remains in a fragile state. Furthermore, the importance of OPV

transmission highlights the care that must be taken when ceasing OPV vaccination

such as maintaining high quality surveillance. The potential for cVDPV needs to be
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minimized in the final stages of eradication. Since IPV has been shown to induce mu-

cosal immunity through boosting in previously OPV immunized populations [83, 84],

IPV might be a candidate vaccine for boosters in older populations that could reduce

cVDPV risks.

Our model of waning immunity uses a simple exponential process where OPV or

WPV vaccination always results in complete immunity. It is possible that altering

this assumption could affect our inferences about what is leading to success or failure

in eradication efforts. If immunization can result in incomplete immunity then SIAs

may experience success due to ensuring comprehensive coverage of under-immunized

children. Furthermore, the evidence of waning of immunity through decrease in an-

tibody levels, particularly in high transmission regions, could stem from nuances not

addressed in our analysis. These include factors known to affect polio immunization

such as malnutrition, concurrent enteric infections, and vaccine tolerance [83]. The

extent to which these factors play a role deserves to be analyzed in future dynamic

transmission system frameworks.

Because our model used a continuous, deterministic framework the continuous

population assumption allows our transmission system to reach trivially low preva-

lence levels temporarily. In reality, when prevalence reaches very low levels, de-

mographic stochasticity would lead to transmission cessation. Additionally, the de-

terministic nature of our model prevents us from modeling outbreaks in eliminated

regions due to sporadic importation, a topic previously analyzed [85]. Nonetheless,

our deterministic analysis shows how category A countries with high transmission

conditions are still at risk for epidemics due to re-introduction of virus; i.e, we can

discern problematic parameter regions where prevalence can reach very low levels due

to initial vaccine implementation but maintain long-term prevalence (figure 3.2).

The polio vaccine has been a public health triumph since its first implementation

over 50 years ago. Hoping to follow the success of the smallpox eradication program,
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the polio eradication program has eliminated polio in most of the world, removing a

terrible and debilitating disease from the memories of most living populations. With

a handful of remaining endemic countries on the cusp of eradication, we are on the

verge of a major public health victory. Our model highlights some of the potential

challenges that have prevented success in the final phase of polio elimination. We hope

that by better understanding the dynamics driving transmission we can improve the

design of future public health initiatives to eradicate infectious diseases.
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CHAPTER IV

Migration and polio eradication

4.1 Abstract

Reaching polio eradication has been difficult in the remaining endemic nations:

Afghanistan, Nigeria, and Pakistan. Failure in these regions has been attributed to

both “vaccine failure” and “failure to vaccinate.” “Vaccine failure” corresponds to the

difficulty of oral polio vaccine to properly induce immunity in certain populations.

“Failure to vaccinate” describes conditions where vaccination implementation is poor.

Vaccine implementation has been an issue in these endemic nations where governance

has been poor, populations are mobile, and there is cultural aversion to vaccination.

We developed a polio transmission model incorporating waning immunity and trans-

mission of oral polio vaccine allowing for migration between populations. Through

migration, we allow transmission conditions and vaccination policies of one region

to affect vaccination effectiveness in another region. Our analysis demonstrated that

migration from populations with poor vaccination implementation can mitigate the

effectiveness of implementing vaccination campaigns and make reaching elimination

more difficult. Where India achieved success by targeting hard to reach mobile popula-

tions, the remaining endemic regions could achieve success invoking similar strategies.

Furthermore, success in these regions may be aided by complementary interventions

such as improvement in sanitary conditions or vaccinating older populations.
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4.2 Introduction

Persistent polio transmission in Afghanistan, Pakistan and Nigeria is the final

challenge of global eradication. The recent epidemics in Niger, Tajikistan, the Re-

public of Congo, and China, however, underscore the tenuous nature of elimination.

Polio importation and lapses in vaccination coverage can create susceptibility pockets

where outbreaks can flourish highlighting the need to establish successful vaccination

programs [46]. Two factors are critical for eradication: the biological efficacy of the

intervention and effective implementation. These factors have been characterized as

“vaccine failure” and “failure to vaccinate”, respectively [52, 87]. In this paper, we

explore how “failure to vaccinate” impedes polio elimination across regions through

migration.

“Vaccine failure” can occur in several contexts: 1) the vaccine attenuates disease

but not viral shedding, 2) the vaccine fails to induce immunity (i.e., low take-rates),

or 3) induced immunity wanes over time. Both IPV and OPV provide immunity to

paralysis but OPV induces higher protection against infection and greater reductions

in excretion during infection [14, 17, 48, 49]. Therefore, to reduce polio transmis-

sion, OPV is used in transmissive regions. Failure to induce and maintain immunity

is an important factor in polio eradication difficulty. Reduced take-rates have been

observed in highly transmissive regions due to a variety of factors (e.g., malnour-

ishment, competing enteric infection, poor immune response) [48, 83, 87]. Duration

of immunity is also limited where immunity to excretion induced by OPV has been

shown to wane over time [14, 79, 80].

In India, elimination difficulty was largely attributed to “vaccine failure” [52,

53, 87] because OPV take-rates were lower than expected in high transmission re-

gions [48, 83]. However, recent elimination in India shows success is possible under

these conditions. To overcome vaccine efficacy limitations, vaccination implemen-

tation efforts were ramped up substantially to focus on under-vaccinated children,
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undercovered villages, and hard to reach migratory populations [29]. The success of

this strategy demonstrates the importance of “failure to vaccinate.”

The concept of “failure to vaccinate” extends beyond the biological properties

of the vaccine. The inability to properly vaccinate populations depends on demo-

graphics, politics, culture, and governance [52]. Further, vaccination implementation

failure can occur at any population level ranging from villages to nations. Prior to

the change in campaign strategy in India, lower vaccination rates were observed in

rural migrants in northern India [30]. These mobile population were a major focus of

the successful campaign [29]. Through their success, India potentially demonstrates

the importance of vaccination implementation in undercovered subpopulations.

The remaining endemic nations of Afghanistan, Pakistan, and Nigeria face a com-

bination of problems. Failure to achieve elimination in Pakistan and Nigeria has been

attributed to both “vaccine failure” in high transmission conditions [87] and “failure

to vaccinate” due to population aversion to vaccination [51, 52] and failure of gov-

ernance to adequately ensure vaccination [53]. While the Global Polio Eradication

Initiative made progress in Pakistan during 2012 [50], violence against health workers

has created volatile security situations potentially impeding progress [45]. Failure to

eliminate polio in Afghanistan has defied straightforward characterization. Recent

reviews of the current status of polio eradication attribute failure in the southern

region of Afghanistan to internal conflict and border migration with Pakistan [87].

However, Afghanistan has implemented a suitable vaccination program evidenced by

success in northern regions [46, 52, 53]. Thus, it remains unclear whether persistent

transmission in the southern regions can be attributed to higher transmission condi-

tions, poor vaccination coverage, low vaccine efficacy, immigration from Pakistan, or

some combination of these factors.

Migration is an important population feature of all of the remaining endemic re-

gions. Genetic evidence has shown consistent transmission between Afghanistan and
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Pakistan [54], where there is a long history of migration across a porous border [88].

Furthermore, Afghanistan and Pakistan have asynchronous vaccination campaigns

where Afghanistan has had mild success in northern regions [46, 52, 53] but Pakistan

has been inconsistent [46, 53] and recently plagued by violence against public health

officials [45]. Nigeria has high levels of combined immigration and emigration [89]

and is known to seed outbreaks in surrounding regions [45, 46]. Furthermore, these

mobile populations tend to have poor vaccination coverage [26].

We have previously developed a polio transmission model incorporating compo-

nents of “vaccine failure” through waning immunity in a single population framework

where “failure to vaccinate” described reduced vaccination rates [86]. We demon-

strated that achieving short-term success is possible even under high transmission

conditions through initial vaccination. However, reaching elimination in the short-

term may be the result of fragile stochastic die-out where long-term transmission

is possible. When vaccination lapses, outbreaks must be handled or prevented by

deploying mass vaccination campaigns requiring quality surveillance [85]. Migration

connects regional populations and thus may enhance the detrimental effects of both

“vaccine failure” and “failure to vaccinate.”

The nature of global polio transmission has now fundamentally changed. Where

at one time immunity from natural exposure and vaccination allowed us to reach

elimination thresholds in most regions of the world, countries with eliminated trans-

mission now rely on vaccination alone for continued population immunity [46]. While

non-endemic countries remain at risk, maintaining elimination will be a continued

and increasing cost on public health programs. Thus it is urgent to achieve elimina-

tion goals which is accomplished by understanding the difficulties in the remaining

endemic nations. In this work, we expand our previous model of polio transmission

to explore how “failure to vaccinate” in certain regions may impede elimination in

other regions through migration.
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4.3 Materials and methods

4.3.1 Migration model construction

Our polio migration model was constructed as a deterministic, compartmental

transmission system accounting for 1) vaccine transmission, 2) waning immunity, 3)

age, 4) varying vaccination rates, and 5) migration. The model presented here is an

extension of the transmission model constructed in chapter III and thus topics 1) –

4) are covered in extensive detail in section 3.3 and appendix B.

To model migration, we considered two connected populations: a source popu-

lation and a destination population. Each subpopulation was constructed with the

same structure as the polio transmission model presented in chapter III. Here we

focus on unidirectional migration as depicted in figure 4.1. Unidirectional migration

is an atypical assumption in migration models (see section 1.2.2.5) but is a subset of

multi-population models where the populations are not fully coupled. Our model is

applicable to scenarios where the destination population cannot influence the source

population. This could describe rural-urban migration where poor, rural migrants

settle in developing urban areas, a scenario common in northern India [30], Pakistan

[90], and Nigeria [26]. Furthermore, the model can be also be interpreted where

the source population represents an abstract pool of migratory individuals coming

from different transmission conditions with variable vaccination levels. In either case,

vaccination rates and transmission conditions in the destination population do not

influence source populations.

The rate of migration, α, was modeled as a log rate in contrast to an exponential

rate because yearly population percent changes were more conventional and inter-

pretable. For example, if α is 0.01, then that is interpreted as a migration rate of 1%

per year. We assumed that migration is not differential by infection because polio

tends to be asymptomatic. We assumed that the total overall population size was
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Figure 4.1:
Two population migration model with one population migrating into an-
other. Each subpopulation has susceptible, infected, and vaccinated pop-
ulations. Subpopulations and rates with superscript zero denote hetero-
geneities between the two populations. For the forces of infection, Λ0, the
only parameter that was varied between the populations was the contact
rate, c. Parameters and rates for polio transmission in each subpopula-
tion are described in table 3.1. Parameters and rates specific to migration
population are described in table 4.1.

fixed. Details on the model equations associated with migration are in appendix C.1.

4.3.2 Migration model analysis

The source and destination population differ by transmission conditions and vac-

cination rates. Parameters specific to the migration model are presented in table

4.1.

We assumed that birth rates, death rates, immunity waning rates, and OPV trans-

missibility were equivalent across the source and destination population. If birth and

death rates were different between the populations, we expect that the populations

would have different R0 values. However, because the vital dynamic parameters are

small relative to the contact rate and infection duration, the R0 calculation (table
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Table 4.1: Migration model parameters

Migration

Parameters Descriptions Values Interpretation

α Migration rate (% yr−1) 0.001–10a

c0 Contact rate in source c sameb

population (yr−1) 40 low

100 medium

200 high

φ0
j Vaccination rate in 0 no program

source population (yr−1) 0.75 suboptimal

1 complete

2 intensive

aWide ranged used as a sensitivity analysis. See Appendix for more details on migration rates.
bThe destination population contact rate, c. See table 3.1

3.2) is not sensitive to small changes in birth or death rates.

Waning rates and OPV transmissibility are functions of the vaccine. Vaccine

efficacy varies across nations, specifically with respect to inducing immunity (take-

rates) [83], and is partially captured by varying the effective vaccination rates between

populations. However, we assumed that if a vaccination was successful (i.e., resulted

in induced immunity) then waning was the same across populations. We fixed the

waning rate such that it takes 10 years to reach 50% susceptibility, consistent with

the main results presented in our previous single population analysis [86]. Results for

a wider range of waning rates is presented in appendix C.2.1. We modeled vaccine

transmissibility relative to WPV and do not expect the relative relationship to vary

across populations. We fixed OPV transmissibility to be 5% of WPV. This is similar

to type 1 and 3 WPV [18], the remaining wild strains in endemic nations. Circulating

vaccine-derived polio virus (cVDPV) in Nigeria closely represents type 2 strain (which

has higher transmissibility), and therefore we presented a short analysis of higher OPV

transmissibility in the appendix C.2.2.
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To explore the effect of migration between interconnected populations, we varied

the migration rate across five orders of magnitude ranging from 0.001% to 10% yr−1.

Current net migration rates for Afghanistan, Nigeria, and Pakistan range between -3

and 8 per 1000 persons per year [91]. Because we aim to infer the effect of migration

on transmission dynamics in a given population, we use a wide rate range to capture

outcomes ranging from very low to very high levels of migration.

The goal of our analysis was to assess how poor vaccination programs of one

population could affect another population. Therefore, in the destination population,

we evaluated the influence of effective vaccination rates on prevalence levels under

varying conditions of R0 allowing migration from a source population with unique

vaccination rates and R0 levels (figure 4.1 and table 4.1). The effective vaccination

rates in the source population were selected to be 0, 0.75, 1, and 2 yr−1 corresponding

to no program, suboptimal coverage, complete coverage (100% coverage with no yearly

boosting) and intense coverage, respectively. R0 levels in the source population were

chosen to be either the same as the destination population or fixed at 4, 10, and 20

corresponding to low, medium, and high, respectively.

To assess vaccination program success, we constructed a measure incorporating the

prevalence levels under a given vaccination rate for varying R0 conditions. Specifically,

we evaluated vaccination effectiveness by measuring the maximum R0 where a given

vaccination rate reduces the population prevalence level below a target value. For the

target prevalence level, we selected a conservative cutoff of 1 in a one million where

the magnitude of infected individuals would be quite low given a real population size.

To evaluate how migration affects vaccination programs, we focused on the dynam-

ics of the destination population and assumed the source population was at steady

state. We conducted the model simulation as follows: 1) we simulated the source

population under vaccination until steady state; then 2) we simulated the destination

population under migration with no vaccination until steady state; and then 3) we
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introduced vaccination into the destination population over a linear implementation

period of 2 years until the target vaccination level was reached. Prevalence in the

destination population was assessed at two times: 1) at the minimum value induced

by initial vaccination; and 2) at the final steady state level.

All modeling was conducted using Python with the lsoda algorithm in the Numpy

module. Figures were made in R using the ggplot2 and lattice packages.

4.4 Results

4.4.1 Vaccination effectiveness with no migration

Vaccination effectiveness was measured by determining the highest R0 where a

given vaccination rate can achieve a target prevalence of 1 in one million. Specifi-

cally, this illustrates the highest transmission conditions where a vaccination policy

can achieve the set goal. Vaccination effectiveness, however, may vary over time

where initial vaccination can reduce prevalence to very low levels but higher long-

term prevalence levels are possible. Figure 4.2 displays both the initial (4.2A) and

long-term (4.2B) effectiveness of a vaccination program when there is no migration.

Initial effectiveness was determined using the minimum prevalence within 50 years

of vaccination implementation and long-term effectiveness was determined using the

steady state final prevalence. Divergence between the minimum and final preva-

lence occurs under high transmission conditions when vaccination does not achieve

elimination. Under these conditions, long-term transmission is sustained by reinfec-

tion dynamics [86]. However, by achieving low levels of prevalence through initial

vaccination, elimination may result from stochastic or probabilistic die-off. In this

scenario, divergence in effectiveness highlights conditions where elimination my be

fragile. Thus, transmission and vaccination levels that demonstrate effectiveness in

the short and long-term demonstrate potential for stable elimination.
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Figure 4.2:
Vaccination effectiveness. Vaccination program effectiveness for a
given effective vaccination rate determined by A.) the minimum preva-
lence reached within the first 50 years of vaccine implementation and B.)
the final prevalence resulting from the vaccination program. Oral polio
vaccine (OPV) transmission was set to be 5% as transmissible as wild po-
liovius (WPV) and waning rates were set such it takes 10 years to reach
50% susceptibility. Vaccination effectiveness was measured, for a given
effective vaccination rate, as the maximum R0 (up to 20) where a target
final prevalence of less than 1 in a million was reached. R0 conditions
where the target prevalence is reached initially but not in the long-run
illustrate potential fragile elimination conditions.

4.4.2 Vaccination effectiveness depends on vaccination in migrating pop-

ulations

When migration is introduced, achieving the target prevalence levels depends on

the vaccination rate and transmission conditions in the source population (figure 4.3).

When there is no vaccination program in the source population, achieving the tar-

get prevalence is not possible unless there are low transmission condition and low

migration levels. Thus, in regions where migratory populations are an important

component of the population, leaving large portions of mobile populations complete

unvaccinated is absolutely detrimental to the overall vaccination program.

Both short and long-term vaccination effectiveness in the destination population

is reduced due to migration unless there is intense vaccination coverage in the source

population. Short-term effectiveness (initial success) describes the immediate impact
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Figure 4.3:
Vaccination effectiveness under migration across similar popula-
tions. Vaccination program effectiveness for a given effective vaccination
rate in the destination population across varying vaccination levels in the
source population (table 4.1) and migration rates. The source and des-
tination population share the same transmission conditions. Vaccination
program effectiveness was determined by column A.) the minimum preva-
lence reached within the first 50 years of vaccine implementation; and
column B.) the final prevalence resulting from the vaccination program.
Oral polio vaccine (OPV) transmission was set to be 5% as transmissible
as wild poliovius (WPV) and waning rates were set such it takes 10 years
to reach 50% susceptibility. The absence of lines indicates that reaching
the target prevalence was not possible under the given conditions.
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of introducing a vaccination program in the destination populations (column A in

figure 4.3) and long-term effectiveness is a measure of whether stable elimination can

be expected under the given vaccination program (column B in figure 4.3). In gen-

eral, compared to the initial success of vaccination implementation, achieving stable

elimination is more difficult, particularly in moderate to high transmission conditions

(figure 4.2) where source population vaccination is important under migration (fig-

ure 4.3). When coverage is complete in the source population, achieving short-term

success is possible under moderate transmission conditions but requires much higher

vaccinations rate than if there was no migration. Long-term success in moderate

transmission conditions requires higher levels of source population vaccination.

When migration reduces vaccination program effectiveness, there is less divergence

between short and long-term success. This occurs because achieving the target preva-

lence, either initially or at equilibrium, is difficult for high transmission conditions

when migration occurs from a poorly vaccinated source population. Therefore, under

conditions where migration is impeding success, the most useful interventions should

focus on overall transmission conditions and vaccinating migratory populations.

In highly mobile regions with similar transmission conditions, the effect of vac-

cination is sensitive to the coverage in migratory populations. Intense campaigns

hoping to quickly reduce prevalence in one region may have less than desirable effects

if connected regions are under-vaccinated. Furthermore, while long-term program

success is already difficult in moderate and high transmission conditions, it is more

difficult under conditions of migration from poorly vaccinated populations. Over-

all, populations under high transmission conditions with poorly vaccinated incoming

migratory populations will experience elimination difficultly without accounting for

both problems.
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4.4.3 Migration from high transmission conditions may greatly impede

vaccination effectiveness

When evaluating vaccination effectiveness in the destination population, increas-

ing the transmission conditions in the source population mitigates the effect of in-

creasing vaccination in the both populations (figure 4.4). When the source population

comes from medium transmission conditions (column B. in figure 4.4), less source pop-

ulation coverage is required to achieve an effective program in moderate transmission

conditions than when compared to migration from the same or high transmission

conditions. When migration occurs from high transmission conditions (column C. in

figure 4.4), intense coverage in the source population is critical to vaccination effec-

tiveness in the destination population where high vaccination levels are also required.

These results demonstrate that when migratory populations come from high trans-

mission conditions, greater levels of vaccination are necessary in both the source and

destination population while effectiveness is reduced. Under these conditions, gener-

ally implementing successful vaccination programs becomes much more difficult. It

is therefore crucial to not only ensure that migratory populations are well vaccinated

but that other strategies to reduce transmission are considered.

4.4.4 Migration from low transmission conditions

When there is migration in the model, the effect of migrating populations from

a source population with low R0 conditions is minimal on vaccination effectiveness

in the destination population (figure C.5 in the appendix). Migration has no effect

at complete coverage levels in the source population. This indicates that low trans-

mission populations under vaccination programs are not a major hindrance on other

populations’ elimination efforts.
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Figure 4.4:
Long-term vaccination effectiveness under migration across pop-
ulations with different transmission conditions. Vaccination pro-
gram effectiveness for a given effective vaccination rate in the destination
population across varying vaccination levels and transmission conditions
in the source population and migration rates (table 4.1). Transmission
conditions in the source population were set to be column A.) the same
as the destination population; column B.) medium (R0=10); or column
C.) high (R0=20). Long-term vaccination effectiveness was measured, for
a given effective vaccination rate, as the maximum R0 (up to 20) where
the final (steady state) prevalence in the destination population was less
than 1 in a million. Oral polio vaccine (OPV) transmission was set to be
5% as transmissible as wild poliovius (WPV) and waning rates were set
such it takes 10 years to reach 50% susceptibility. The absence of lines
indicates that reaching the target prevalence was not possible under the
given conditions.
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4.5 Discussion

4.5.1 Model application to the remaining endemic countries

Achieving polio eradication is a global effort dependent on reaching elimination in

the three remaining endemic nations: Afghanistan, Nigeria, and Pakistan. By explor-

ing migration, we contextualized polio transmission dynamics across interdependent

populations specifically focusing on how heterogeneous vaccination policies and trans-

mission conditions affect vaccination success. When regions “failure to vaccinate,”

they may impede campaigns in other regions. Our model illustrates the extent to

which this failure impacts regional campaigns due to migration.

Elimination in India has been attributed to implementing high vaccination cov-

erage and switching to monovalent OPV, which induces better immunity against the

remaining wild strains [29]. There was specific focus on finding internal migratory

populations and ensuring that they were routinely vaccinated. Our model reaffirms

the success of this strategy where an increase in effective vaccination rates in both the

destination and source populations are crucial to ensuring that prevalence levels are

decreased even in high transmission conditions. However, under these transmission

conditions, the elimination may be fragile and the region may be capable of sustaining

transmission again in the future. Thus it becomes increasingly important to sustain

the effort in India while reaching elimination in the remaining endemic nations.

When migratory flows come from high transmission conditions, it becomes more

difficult to achieve elimination even with high levels of vaccination. Evidence shows

that Pakistan and Afghanistan continually transmit across borders [54] and that Pak-

istan sustains high transmissions conditions similar to those that India experienced

[87]. Furthermore, there are high levels of internal migration in Pakistan [90]. Our

analysis indicates that under high transmission conditions, elimination in Pakistan

requires that they implement a good vaccination program. Interruption of vaccination
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programs due to poor governance or violence may be a serious hindrance in achieving

elimination in Pakistan and potentially in border regions of Afghanistan. Lapses in

coverage not only make elimination difficult or impossible but also creates conditions

where importation to other regions becomes more likely.

Nigeria, the only African nation with endemic polio, periodically seeds outbreaks

in neighboring nations [45, 46]. The difficulties in achieving elimination within Nige-

ria can be attributed to many issues including population aversion to vaccination

in northern regions [92], high transmission conditions, poor coverage and immunity

levels [87], high levels of combined immigration and emigration [89], and poor vaccina-

tion coverage in mobile populations [26]. Recently, Nigeria has worked to increase its

vaccination coverage but still remains endemic [46]. In the context of our migration

model, Nigeria may comprise a worst-case scenario. Reduced population immunity

may indicate poor take-rates (low effective vaccination) or fast waning rates. High

population mobility may indicate high migration levels between regions or urban cen-

ters potentially comprising source and destination populations with low vaccination

rates. Particularly, reaching stable elimination may be difficult, and intense cam-

paigns without blanket coverage may not even achieve initial success. A campaign

similar to that of India may find success in Nigeria, but a sustained effort has histor-

ically proven difficult. Additional interventions may be desirable to find short-term

success including efforts to improve public health in general (e.g., reducing poor san-

itation conditions) or adult boosting with IPV. IPV boosting (following previous

immunization OPV) may be effective in inducing mucosal immunity [83, 84] and is

not a risk for cVDPV, another major concern in Nigeria [45, 46].

4.5.2 Model limitations

The limitations and assumptions of our single population polio transmission model

have been previously described [86]. Additional simplifying assumptions were re-
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quired to characterize migration in this framework. While migration rates could be

independent of polio infection, migration may be age-based or seasonal. In regions

with large rates of migration like Afghanistan, families tend to migrate together [93],

so age may play a smaller role in determining migration rates. However, because

vaccination campaigns target children, age-dependent migration rates may elucidate

scenarios for susceptible or infected adults to play an important role in transmission

through importation. Because importation outbreaks are rarer, probabilistic events,

they are better modeled using a stochastic model.

Our model utilizes unidirectional migration which assumes that connected popu-

lations are not fully coupled. In this case, policy and conditions in the destination

population cannot affect the source population. This may apply to circumstances

where migrants are unlikely to return to their home population (e.g., rural to urban

migration). Abstractly, this model can be interpreted such that the source popula-

tion is a pool of potentially hard to reach migrants thus demonstrating that these

poorly vaccinated populations can have detrimental effects on their destination pop-

ulation. A contrasting scenario would be work-based or refugee migration between

interconnected regions where people or families may spend a significant time in mul-

tiple populations but are likely to return to their home population within a short

period of time. Synchrony between fully coupled populations may demonstrate sce-

narios where migration is beneficial, as demonstrated in an SIR model analysis with

vaccination [25]. However, from our analysis, looking at scenarios where the source

population has a higher vaccination rates than the destination population (figures 4.3

and 4.4), there are not general conditions where migration is beneficial, particularly

for moderate to high transmission conditions in the destination population.

Compared to assessing initial dynamics in the single population model [86], more

assumptions were required to define the initial success of vaccination implementation

in the migration model. In our approach, we assumed the source population was
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already at steady state. This implies that the source population has stable transmis-

sion dynamics and that its vaccination implementation does not affect the destination

population. An interpretation of this scenario would be that the migratory popula-

tions in the destination population are missed by campaigns or routine coverage of

the region. Thus, in this context, there are no ramp-ups in coverage in the source

population that would affect the destination population. Abstractly, we are assessing

how the average population of migrants affects their destination population. We do

not make inferences regarding increasing campaigns in both populations but rather

focus on the impedance of poorly vaccinated migrating populations on their destina-

tion population. The alternatives to this approach are potentially complicated (e.g.,

partial synchronous coverage increases in both populations) and may be better ap-

plied to models that apply to scenarios where there is coupling between the source

and destination populations.

We assumed migration was a deterministic, continuous process. Thus our model

may not be appropriate for mass migration events or rare migration events. We

explored our model over five orders of magnitude of migration rates to assess our

results over a wide range of phenomena associated with increasing migration. Based

on this sensitivity analysis, migration becomes an important factor between migration

rates of 0.1% and 1% per year and so our main results focused on these values. When

migration rates were set to 1 in 100,000 yr−1, the effect of migration was entirely

lost demonstrating that the continuous nature of the model does not necessarily

overstate the effect of slightly connected populations. This model was not designed

to predict outbreaks based on sporadic viral importation which should be modeled

using a stochastic approach [85].
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4.6 Conclusions

The current era of the polio eradication initiative is concurrently triumphant and

frustrating. Achieving elimination in India demonstrated that success can be achieved

in high transmission conditions among difficult to target populations. The strategy

in India illustrates the importance of efforts that address both “vaccine failure” and

“failure to vaccinate.” The remaining endemic regions, under more varying transmis-

sion conditions, have been described by similar difficulty to achieve coverage, partic-

ularly with variable governance and cooperation. By highlighting the importance of

interconnectedness in polio transmission dynamics, we demonstrated that connected

populations require synchronous efforts to ensure broad and complete coverage. Fur-

thermore, achieving elimination is aided substantially by targeting migratory popu-

lations that tend to have lower coverage. In high migration and high transmission

regions, additional sanitation interventions may substantially increase the likelihood

of success. As public health officials act with urgency, ramping up coverage and

specifically targeting hard to reach populations in Pakistan and Nigeria potentially

holds the final key to eradication success.
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CHAPTER V

Conclusions and future work

5.1 Summary

In this work, we developed and analyzed dynamic models of infectious diseases at

the host, population, and multiple population level. We assessed host immunity at

these levels to demonstrate the importance of host biology in disease modeling. At

the host level, differing exposure patterns may elicit different risks of infection due to

the innate immune response (chapter II). At the population level, immunity levels af-

fect success of vaccination programs in polio transmission due to reinfection dynamics

(chapter III). At the multiple population level of polio transmission, vaccination pro-

grams may be impeded by migration from populations with poor vaccination coverage

(chapter IV).

5.1.1 Conclusions from Chapter II

In chapter II, we developed a dynamic dose-response model that accounted for

differing exposure patterns to assess how the immune response affects the risk of

infection. Because infection systems vary with respect to pathogen, host, and contact

site, pathogen clearance rates may depend on exposure patterns. We 1) illustrated

the versatility of the dynamic dose-response model for risk calculations across varying

exposure scenarios; 2) developed a method to fit the model parameters to time-series
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data using a survival likelihood; 3) applied the model to the anthrax infection system;

4) showed that infection risk of anthrax is invariant to exposure patterns given the

available data; and 5) recommended dose-response experiments that can demonstrate

when risks vary by exposure patterns.

The dynamic dose-response model was developed to allow the risk of infection

to be sensitive to dose-timing effects. This was accomplished by including dynamic

pathogen clearance due to the initial immune response. This framework is an ex-

tension of the IAH, the classic assumption for dose-response models that any single

pathogen has an independent, non-zero risk of initiating infection. Specifically, while

any single pathogen can initiate infection, we allowed the joint pathogen probability

of infection to vary depending exposure patterns. The model was also designed to be

versatile for contexts when risk is invariant to exposure patterns.

To use the model as a risk assessment tool, we developed a survival analysis

approach for fitting the model parameters to time-series data. We applied this ap-

proach to anthrax using previously collected time-series data. In this analysis, we

demonstrated how to apply the model to imperfect data through the use of censoring

intervals, incorporation of biological properties of the pathogen, and profile likeli-

hood techniques. We then identified recommendations for future experiments that

can demonstrate when risk depends on exposure patterns. Our dose-response model

is ideal to analyze these experiments because it also identifies when risk is invariant

to exposure patterns.

Based on our results, risk of anthrax infection is only slightly dependent on ex-

posure patterns. We therefore conclude that risk assessment with respect to anthrax

depends more on the total amount of spores released rather than on how it was re-

leased. The risk calculations from our model were consistent with past dose-response

models of anthrax demonstrating that our model is a viable tool for risk assessment.
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5.1.2 Conclusions from Chapter III

In chapter III, we developed a transmission model to assess both successes and

failures in polio eradication. To model polio transmission, we developed a model

focusing on waning immunity and transmission of OPV. We concluded that 1) short-

term success is possible through vaccination implementation; 2) long-term transmis-

sion is driven by reinfection dynamics at high vaccination rates when elimination is

not achieved; and 3) OPV transmissibility acts as a population booster mitigating

the effects of reinfection. Our conclusions imply that additional interventions, such

as adult boosting or improvement in sanitary conditions, may enhance eradication

efforts.

In this analysis, we explored short-term and long-term outcomes of vaccination

implementation. Initial vaccination implementation is capable of reducing prevalence

levels to very low levels. This is possible even under high transmission conditions

and fast waning immunity through the use of high vaccination rates. However, these

regions can still sustain long-term prevalence levels through reinfection transmission.

By varying OPV transmissibility, we demonstrated that population boosting through

vaccine transmission attenuates reinfection transmission thus reducing the elimina-

tion threshold. This is consistent with the notion that elimination of WPV type 2

was aided heavily by a highly transmissibility vaccine strain. Furthermore, the effec-

tiveness of boosting indicates that expanding vaccination to older population could

substantially reduce population transmission capacity.

5.1.3 Conclusions from Chapter IV

In chapter IV, we extended the transmission model in chapter III to include mi-

gration. We demonstrated that vaccination effectiveness can be reduced due to migra-

tion from populations with variable vaccination policies and transmission conditions.

Specifically, we showed that under migration, 1) short and long-term vaccination ef-
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fectiveness require adequate vaccination in the migratory populations; 2) migration

from high transmission conditions makes vaccination success difficult; and 3) reduc-

tion in transmission conditions could substantially aid vaccination success.

We then applied our analysis to explain success in India and failure in the remain-

ing endemic regions; Nigeria, Afghanistan, and Pakistan. In India, recent elimination

was achieved by increasing vaccine efficacy and targeting internal migration [29]. Our

model analysis demonstrated that these are the key components in achieving elim-

ination under high transmission conditions with high migration rates. Nigeria has

demonstrated how poor vaccination coverage can continually prevent achieving elim-

ination. Afghanistan and Pakistan describe connected populations with dissimilar

transmission conditions where migration may be impeding vaccination programs [87].

Our model suggests that success in the remaining endemic regions may rely on focus-

ing on hard to reach, migratory populations. In combination with chapter III, intense

vaccination campaign or additional intervention efforts may be crucial to reduce polio

transmission and achieve eradication.

5.2 Future Work

5.2.1 Applications and extensions of the dynamic dose-response model

The dynamic dose-response model has potential for many future applications. It

has been used to design an experiment assessing time-dependent risk of tularemia

and analyze the outcome data (data unpublished). In this context, our model is a

simple tool for more complicated risk assessments. Specifically, it can be used to both

evaluate time-series dose-response data and make risk inferences for scenarios that

involve variable exposure patterns.

Further extension of the dynamic dose-response model involves implementation

into transmission models. Transmission models generally make simplifying assump-
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tions about the risk of transmission. For environmentally mediated transmission

systems, exposure and risk are a function of different routes of exposure such as air,

fomites, or food contamination. The dynamic dose-response model provides a frame-

work to differentially characterize risk based on varying exposures. Further, trans-

mission model sensitivity to time-dependent risk could be assessed by implementing

different parameterizations of the dose-response model.

Lastly, the framework of the model could be extended to include activation of

the adaptive immune system. This would have importance in transmission systems

were exposures occur continuously over long periods of time (e.g., regions with poor

sanitation). Furthermore, transmission risk could be additionally characterized by

partial immunity. For vaccination, the extended model with adaptive immunity could

be used to assess optimal schedules for vaccination requiring periodic boosting.

5.2.2 Extensions for the polio transmission model

The waning immunity framework implemented in chapters III and IV is a simplis-

tic realization of the actual waning process. One important extension of the modeling

framework is to inform experiments to better quantify the waning immunity process.

Then the next step would be implementing more complicated immunity structures

into the transmission model to assess robustness to immunity assumptions. If im-

mune response varies between WPV and OPV, model inferences may be affected. A

better described waning immunity framework may be extended to other pathogens

with vaccination and partial immunity, such as measles and pertussis.

The next extension to the polio transmission model includes the relaxation of the

continuous, deterministic model framework. To properly assess stochastic die-off, the

model needs to be implemented as a discrete, stochastic model where elimination

is an outcome from initial prevalence reduction due to vaccination implementation.

Furthermore, vaccination was modeled as a continuous, effective rate. Our analysis
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demonstrated robustness to a vaccine that induced partial immunity where boosting

was required to reach full immune status. However, mass immunization campaigns

do not occur continuously and may be best modeled by using vaccination rates and

coverage that occurs discretely or as a periodic pulse. At the population level, vac-

cination does not occur continuously throughout the year and coverage lapses may

occur in random pockets of the population. Lastly, the migration model had similar

simplifying assumptions where modeling migration as a stochastic process may be a

better characterization of movement between populations particularly if migratory

populations are small relative to the destination population size.

Combining the work from all of the chapters, the polio transmission model could

be extended to include environmental transmission, a reservoir from stable and mi-

gratory populations, where risk of infection is calculated using the dynamic dose-

response model. Ultimately, using the extended dose-response model with adaptive

immunity, risk in environmentally transmitted polio could be characterized by both

time-dependent exposure patterns and variable partial immunity levels.

5.3 Public health implications

5.3.1 Dynamic dose-response modeling

Dynamic dose-response models in general have important applications as a public

health tools. We have demonstrated the use of the model as a risk assessment through

the analysis of anthrax. For epidemiological models, exposure through the environ-

ment can elicit differing exposure patterns. Using the dynamic dose-response model

can therefore adjust for varying risk from heterogeneous exposures patterns in both

transmission models and risk assessments. There is also potential use for the model

to study vaccine protocols. For multiple-dose live vaccines, the use of this dynamic

dose-response modeling framework could elucidate proper dosing schemes that will
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ensure optimized vaccine boosting.

5.3.2 Global polio eradication

Eradicating polio would constitute an major public health triumph. The use of

transmission models allows public health officials to characterize the causal processes

of transmission and assess intervention efforts. Using our polio transmission model,

we assessed the successes and failure of the polio eradication campaign. Particularly,

through exploration of waning immunity and transmission of the vaccine, we demon-

strated that reinfection dynamics may be the driving component of transmission when

vaccination levels do not achieve elimination under high transmission conditions. We

further demonstrated, through the migration model, that eradication campaigns are

joint efforts and lagging nations may impede efforts in other nations. Using our

model analysis, we made public health recommendations focusing on expanded adult

vaccination, additional interventions, and targeting mobile populations. While these

recommendations were made for polio eradication, they are also applicable to future

eradication campaigns.
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APPENDIX A

Additional material for a dynamic dose-response

model to account for exposure patterns in risk

assessment: a case study in inhalation anthrax

A.1 Functional families for time-dependent dose function

This section aims to mathematically formalize the idea of time-dependence when

analyzing dose-response. We examine implications of the time-independence assump-

tion given that the immune system is a dynamic process that affects the risk of

infection; i.e., the infection outcome due to one pathogen particle depends on the

state of the hosts immune system, which in turn is determined by prior exposure to

pathogens. Let F be the candidate function for dose-response that represents the

risk of infection for a sequence of n doses, d, inoculated at time intervals ∆t. For

simplicity, we assume that doses are evenly spaced. Under the condition that the

time between inoculations tends to zero, the candidate function F can be represented

as
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F ({dt0+i∆t}n−1
i=0 ) = F (

n−1∑
i=0

dt0+i∆t) when ∆t→ 0 (A.1)

In this case, the probability of infection is equivalent to the probability of the

accumulated dose. Because the time between inoculations is so small, the immune

system does not have time to react to the initial doses, and therefore, the infectivity

can be characterized as a single accumulated exposure. For large time intervals, the

inoculations are so sparse that before a new inoculation arrives the immune system has

time to clear out the previous inoculated dose, and therefore, go back to equilibrium.

In this case, the probability of infection for the sequence corresponds to the evaluation

of n independent events; i.e. the probability of infection of a given dose is independent

of the previous doses. This condition is represented as

F ({dt0+i∆t}n−1
i=0 ) = 1−

n−1∏
i=0

(1− F (dt0+i∆t)) when ∆t→∞ (A.2)

Finally, we have the non-extreme case, where the time intervals are neither short

nor long. This condition is represented as

F ({dt0+i∆t}n−1
i=0 ) < F ({dt0+j∆t}n−1

j=0 ) when ∆ti > ∆tj (A.3)

The risk of infection decreases as the time between inoculation events increases.

Longer intervals between inoculation events imply more time for the immune system

to clear out the pathogens from previous doses. When a new dose arrives the immune

system is still actively engaging pathogens from the first dose, and the number of

remaining pathogens depends on the time interval between inoculations. The longer
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the time between inoculations, the fewer pathogens that remain, and consequently, the

more likely the immune system is to successfully eliminate the pathogens and prevent

infection. The canonical dose-response model used in microbial risk assessment and

in environmentally-mediated transmission models is the exponential. In this model,

the probability of infection depends solely on the dose, and consequently, the state of

the individuals immune system prior to the doses exposure is not considered. Given

a dose, D, and risk parameter, k, the risk of infection from a single pathogen is

PrInf(D) = 1− e−kD (A.4)

The probability of infection is one minus the probability of no infection, which

is the probability that none of the D independent trials with a probability, k, are

positive. In the exponential model, the probability of infection of a single pathogen,

k, is estimated from data of empirical dose-response trials, and by definition, it is

independent of previous inoculation events.

To assess whether or not the exponential model is a good candidate for F we

demonstrate that the risk of infection predicted by the exponential is the same re-

gardless of the time interval between inoculations. The following example illustrates

the implications of this time-independence. Two individuals are inoculated with a

pathogen following the standard procedure of empirical dosing trials. Subject a is

exposed to one pathogen every week for twenty years, which add up to 1040 total

pathogens. Subject b receives the same dose, 1040 pathogens, in the course of 5 min-

utes. If the probability of infection is time-independent, both subjects should have

the same probability of becoming infected. This extreme example illustrates the po-

tential problems of not taking time between inoculation and the immune system into

account in calculating the risk associated to a dose. One might expect the immune

102



system to be able to efficiently deal with a single pathogen every week, as opposed

to dealing with 1040 pathogens at once. In more realistic examples the timing of

inoculation may also have a significant impact on risk estimates. It is unlikely that

an inoculation in a real scenario is a singular, isolated event, but rather a sequence

of events at different time intervals and different dosage.

One way to capture these dynamics is by using a stochastic process model that

accounts for interactions of pathogens and immune particles[10]. However, such a

detailed individual-level model is computationally too complex to integrate into pop-

ulation level transmission models. Events in the immune system such as the growth

of pathogens and deactivation of pathogens by immune particles occur at faster time

scales than the events of the transmission models such as individuals making contact

and recovery from infection. Furthermore, a detailed model of the pathogen-immune

particle interactions requires a model of the immune system for each individual in the

population.

A.2 Closed-form risk and dose calculations when α = 1

When α = 1, the solution to the integral of P (t) can be described as a closed form

solution. Recall from § 2.3.3 that for α = 1, the solution to the differential equation

(2.1) can be given as an exponential function

P (t) = 1− de−tγ (A.5)

Now consider a sequence of n inoculations given over n time points as discussed in

§ 2.3.3. To evaluate the total effective dose, we need to integrate our dosing function

over the entire exposure course up to a final time point, T . Note that we assume the

first dose, d0, occurs at time, t0 = 0.

103



∫ T

0

P (t, {di}n−1
i=0 )dt =

∫ t1

0

d0e−γtdt+

∫ t2−t1

0

d′1e−γtdt+ · · ·+
∫ T−tn−1

0

d′n−1e−γtdt

(A.6)

where we define d′i as the remaining dose plus the current dose at time, ti, calcu-

lated by

d′0 = d0

d′1 = d0e−γt1 + d1

d′2 = d0e−γt2 + d1e−γ(t2−t1) + d2

· · ·

d′n−1 = d0e−γtn−1 + d1e−γ(tn−1−t1) + · · ·+ dn−2e−γ(tn−1−tn−2) + dn−1

We can simplify these calculations further such that for any given inoculation point,

i, when α = 1, we can calculate the remaining pathogen level as

pi =





0, i = 1
i−1∑

j=1

dje
−γ(ti−tj), i > 1 ∩ α = 1

(A.7)

These values have to be described using a recursive formula (equation 2.4) when α 6= 1.

This closed form solution was calculated by using the relationship that d′i = di + pi.

We see that when the clearance function is exponential, the remaining dose at any

time is a linear combination of the inoculations. I.e., the dose at any time can be

simply calculated by applying exponential decay to each inoculation independently

and summing the results. The decay is only dependent upon γ, a fixed parameter,

and the chosen time. When α < 1, this property is lost because the decay depends on
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both and the previous inoculation sizes, the factor 1/dα−1
i . By using this derivation

we can solve the total effective dose at any given time analytically. It also can be used

to find the error associated with assuming that the final time point, T , is equivalent

to the extinction time of infinity when α = 1. First let us look at the solution to the

first, general middle (i < n− 1), and last integral in equation A.6

∫ t1

0

d0e−γtdt =
d0

γ
(1− e−γt1) (A.8a)

∫ ti+1−ti

0

die
−γtdt =

d′i
γ

(1− e−γ(ti+1−ti)) =
1

γ

i∑

j=0

dj(e
−γ(ti−tj) − e−γ(ti+1−tj)) (A.8b)

∫ T−tn−1

0

dn−1e−γtdt =
d′n−1

γ
(1− e−γ(T−tn−1)) =

1

γ

n−1∑

j=0

dj(e
−γ(tn−1−tj) − e−γ(T−tj))

(A.8c)

By summing across each piece, we find the following solution to equation (A.6)

∫ T

0

P (t, {di}n−1
i=0 )dt =

1

γ

n−1∑

i=0

di(1− e−γ(T−ti)). (A.9)

Furthermore, if we let T →∞, we find the total effective dose to be

∫ ∞

0

P (t, {di}n−1
i=0 )dt =

1

γ

n−1∑

i=0

di (A.10)

an independent sum of each inoculation. Thus, if we assume that all doses have

cleared (i.e, that T → ∞) when T < ∞ we introduce the following error in our

effective dose calculation

Error =
1

γ

n−1∑

i=0

die
−γ(T−ti). (A.11)

For small inoculations and large γ, this error diminishes very quickly. For other
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conditions, a calculation may be necessary to ensure a sizeable pathogen level is not

ignored. In our analysis of the Brachman data, the monkeys were observed in a dose-

free environment for periods in which the total within host pathogen level was far

below 1 (by our parameter estimations) before they were sacrificed.

Now to calculate risk over an entire dosing period until time, T , we make the

appropriate substitutions into our survival function and get the following formula

PrInf(T, {di}n−1
i=0 ) = 1− e

− s
γ

n−1∑
i=0

di(1−e−γ(T−ti))
(A.12)

and if we assume that T →∞ (i.e.,T � tn−1) we calculate the following risk formula

PrInf({di}n−1
i=0 ) = 1− e

− s
γ

n−1∑
i=0

di
. (A.13)

Note that this resembles the exponential function where k = s/γ. Further, if we

consider each inoculation to extinction independently for a risk calculation, the risk

calculation is equivalent. That is, when α = 1 under the conditions of dose extinc-

tion, our model is equivalent to the exponential model in that risk is independent of

exposure patterns and timing. Where the models differ is for evaluating risks at times

before assumed within host pathogen extinction by a function of the error term.

A.3 Censoring intervals and lag period

Consider a subject who becomes infected in interval, (Tj,l, Tj,r), bounded by the

last observed time before infection and first observed time after infection. The l and

r notation denote the left time point and right time point in this censored interval.

We can then redefine f(Tj) as follows
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f(Tj) = S(Tj,l)− S(Tj,r) (A.14)

The problem of potential jump discontinuities would occur in a situation where

the interval limits correspond directly to an inoculation time. Recall that the dose

function is formulated to be left continuous and thus the inoculations are not counted

when approaching from the right. For example, consider a scenario where an infection

occurred between days 12 and 13 and inoculations occurred at the start of day 12

and 13. S(12) would not be calculated using the inoculation given at day 12, but

S(13) would. However, the inoculation on day 13 would be used by neither (it is

assumed not to contribute to the infection likelihood for the given subject). Likelihood

equation (2.12) can then be adjusted accordingly by splitting integrands at the interval

times, which results in equation (A.15). T+
j,l and T−j,l denote the direction of limit

approach which acts as the formal notation when inoculation discontinuities might

occur as discussed.

−
∑

j

logL(Tj) =
∑

j

(
(1−∆j)

(
s

∫ Tj

0

P (t, {di}nji=1)dt
)
+

∆j

(
s

∫ T+
j,l

0

P (t, {di}nji=1)dt− log(1− e
−s

∫ Tj,r
T−
j,l

P (t,{di}
nj
i=1)dt

)
))

(A.15)

To implement the τ parameter, we adjusted the final observation time by Tj =

Tj − τ∆j. Equation (A.16) illustrates the assignment of Tj based on a jth subjects

infection status, given by ∆j, where ∆j = 1 when infection occurs and ∆j = 0 when
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no infection is observed.

Tj =





Tj, ∆j = 0

Tj − τ, ∆j = 1
(A.16)

Since we have limited information on the lag between infection and death, we do

not assess lagged infection times as exact times of infection. Instead we use interval

censoring such that we assume that the infection occurred sometime over a given

day. For example, if a monkey death occurs on day 15 with lag τ=10 days, then the

infection occurred sometime during day 5. This would be evaluated as f(5)=S(5)-

S(6) as described in equation (A.14). Previous studies have shown that time between

symptoms and death is on the scale of several hours for Cynomogus monkeys[56] so

we do not think symptom onset would aid in finding the total lag period.

This lag period, τ , was treated as a population parameter but it is likely prob-

abilistic in nature. Based on prior studies[56] that this lag is variable, a variety of

τ values were initially implemented, ranging between 1-13 days. Further review of

other anthrax models, specifically Brookmeyer et al.[58], suggested that these lag pe-

riods from infection to symptoms are relatively short, less than 4 days on average.

This is explained in more detail in the § 2.3.6. We aimed to treat τ as a nuisance

and eliminate it from the optimization. This was done statistically by assuming that

τ was took potential values of 1, 2, 3, or 4 days with equal probability. Thus we

evaluated the likelihood for each of these fixed τ values and then weighted it by their

probability (Pr(τ = i) = 25% for i =1, 2, 3, or 4). This was done formally using

conditional expectations. Note that the likelihood is represented by the conditional

probability of infection given τ .
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A.4 Results extension to α > 1

As briefly described, it is mathematically possible to allow values in the range

α > 1. The biological interpretation of this range relies on a priming interpretation.

That is, larger inoculation makes the immune system more effective and therefore re-

sults in faster clearance, which does not seem biologically plausible. However, another

scenario is that immune response is detrimental to clearance, as recruitment occurs

over time from prior inoculations, clearance becomes more inefficient. This scenario

would seem plausible for pathogens that target the immune response to initiate infec-

tion. A problem arises when we consider confidence intervals extending past α = 1,

and thus conflicting biological assumptions must be statistically considered.

The dynamics of the model when α > 1 describe a complete reversal in risk calcu-

lations in that large bolus exposures have smaller risks (due to smaller accumulated

effective doses) than their evenly distributed counterparts. When α = 1, we do not

expect any difference in risk between exposure patterns (of same total dose). De-

lineating between dose timing effects and variability is dependent on the power of

our statistics. We thus expect that when α values are close to 1 that the confidence

intervals will cover significant ranges of α < 1 and α > 1 which encompass conflicting

biological assumptions about the effectiveness of the immune system. For example,

if we unbound α in the Brachman analysis, we extend the upper bound of our CI to

1.48 despite having an MLE α̂=0.90. These results are seen in figure A.1.

The MLE values of s and become unstable as α → 2. This is a mathematical

phenomenon associated with a singularity of the dose function family at α = 2. For

these function families, the dose function no longer converges to 0, even as t → ∞.

I.e., the total effective dose integrates to infinity. That is, for values that are not

arbitrarily large, the risk approaches infinity as t approaches infinity as α approaches

2. These results are not included.
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Figure A4.1:  Results from optimization profile over  with relaxed constraints on .  A spline 
curve was fit to determine the minimum negative log likelihood (at =0.90) and to determine the 
95% CI (0.51, 1.48) using the log likelihood ratio test. 
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Figure A.1:
Results from optimization profile over α with relaxed constraints on α.
A spline curve was fit to determine the minimum negative log likelihood
(to determine α̂ =0.90) and to determine the 95% CI (0.51, 1.48) using
the log likelihood ratio test.
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APPENDIX B

Additional material for successes and

shortcomings of polio eradication: a transmission

modeling analysis

B.1 Overview of appendix

This appendix provides details of model equations, assumptions, inputs, and addi-

tional results. For background on model development, B.2 describes the formulation

of the model and its differential equations with B.3 describing the aging structure

and B.4 describing the immunity and waning structure. B.5 includes additional re-

sults focusing on waning rates, alternative model structures, expanding vaccination

implementation time, model dynamics, and OPV transmission.

B.2 Transmission model structure and equations

The structure of our model is a hybrid of standard SIS and SIRS models. Our

model is a deterministic compartmental model with 3 basic states: S (susceptible,

i.e. not currently infected with either WPV or OPV), I (infected with WPV), and V
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(infected with OPV). We further indexed each of these states by immunity stages, i,

and age group, j, so the notation Si,j indicates the uninfected population in immunity

stage i and age group j. There are m total age groups (see section B.3) and n total

immune stages (see section B.4). Immunity generated from previous infections reduces

susceptibility (βi) to reinfection, and then reduces contagiousness (θi) and increases

recovery rate (γi) for subsequent reinfections. We collapsed the contact rate and

infection per contact probability into a single parameter, c, defined as an effective

contact rate. In a fully susceptible population, the incidence rate is the product of

the susceptible population, the infected population, and the effective contact rate.

Reducing contagiousness affects the force of infection, ΛI and ΛV , from I and V,

respectively, described by the equations

ΛI = c
m−1∑

j=0

n−1∑

i=0

θiIi,j (B.1a)

ΛV = εc
m−1∑

j=0

n−1∑

i=0

θiVi,j. (B.1b)

The force of infection generated by those infected with OPV was attenuated by ε < 1,

a constant reduction in contagiousness independent of immunity and age.

The following set of ordinary differential equations describes the continuous time

evolution of the population in each Si,j compartment. Movement across age groups

was modeled as a pure-delay process, i.e., it is instantaneous at fixed time steps

described in further detail in section B.3. Death rates, µj, and vaccination rates, φj

depended only on age. For concreteness, φj was taken to be the effective vaccination

rate for an individual’s age group, which we regarded as being equal to the product

of the actual vaccination rate and the average vaccine efficacy in individuals with no

previous exposure to either OPV or WPV. Further, the population size, N0, was

normalized to 1 by finding the equilibrium value of birth flow, b, into compartment
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S0,0, corresponding to the lowest immune level (i = 0) and the youngest age group

(j = 0). The flows into and out of S0,0 are described by the following equation

dS0,0

dt
= b−

(
µ0 + (ΛI + ΛV + φ0)β0

)
S0,0. (B.2)

While for other ages (0 < j < m) with no immunity (i = 0),

dS0,j

dt
= −

(
µj + (ΛI + ΛV + φj)β0

)
S0,j. (B.3)

Since the S0,j compartments are characterized by no immunity, they have full sus-

ceptibility (i.e., β0 = 1). By assumption we did not allow waning back into S0,j.

However, for S0<i<n−1,j, we fixed a duration rate, ωi, to describe movement across

Si,j compartments corresponding to waning immunity (see B.4.2). The general form

of these differential equations are

dSi,j
dt

= ωi+1Si+1,j −
(
µj + ωi + (ΛI + ΛV + φj)βi

)
Si,j. (B.4)

We then defined an overall recovery rate by age,

Γj =
n−1∑

i=0

γi(Ii,j + κVi,j). (B.5)

We assumed that the entire infected population (I and V) recovers at rate, Γj, into

the highest state of immunity (Sn−1,j), where re-infection could not occur. Thus the

differential equation for Sn−1,j is

dSn−1,j

dt
= Γj − (µj + ωn−1)Sn−1,j, (B.6)

Recovery from OPV infection was assumed to occur faster than that of WPV infection
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by constant κ > 1. The relative transmissibility of OPV to WPV is described by ε/κ

where 0 < ε/κ < 1.

The differential equations for I and V, respectively, are

dIi,j
dt

= ΛIβiSi,j − (µj + γi)Ii,j (B.7a)

dVi,j
dt

= (ΛV + φj)βiSi,j − (µj + κγi)Vi,j (B.7b)

The R0 values used in our analysis were calculated as c/γ0. Table B.1 summarizes

the model inputs. The differential equations were solved numerically using Python

software set with lsoda method and variable tolerance (absolute and/or relative)

ranging from 1×e−8 to 1×e−12.

B.3 Age structure in the model

Three processes depended only on age group, j: the pure delay aging (described

below); death, which occurs at a rate µj; and vaccination, φj, which targets a set

of age groups. We grouped the population by age into a total of m groups, using

10 half-year compartments for <5-year olds, 10 single-year compartments for 5 to

15-year olds, and 14 five-year compartments for 15-85 year olds (m = 10 + 10 + 14

= 34). By this parameterization, an age of 85 is an absorbing state and corresponds

to anyone 85 or older. Death rates from these age groups were set consistent with

observations from India [94]. We looked at reducing death rates as much as three-

fold from India and saw only a small increase in R0 suggesting that the phenomena

described in our results (importance of effects of OPV transmission, waning rates,

R0, and vaccination rates) remain unchanged.

Age-specific vaccination schedules cannot be consistently implemented using a

continuous aging process. We modeled aging as a pure-delay process which is consis-

tent with past models of measles and pertussis [81, 82]. Specifically, at a set time,
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Description Symbol Input Values

Total Immune Stages n 10

Total Age Groups m 34. B.3 for further details.

Population Size N0 1 (Constant)

Birth Rate b 0.0249968

Contact Rate c 40-220

Death rate of population in age com-

partment j

µj Age-specific Death Rates from

India[94]

Vaccination rate for the population in

age compartment j

φj Varies. Discussed in Text.

Relative contagiousness of OPV com-

pared to WPV

ε Varies. Discussed in Text.

Relative recovery rate from OPV com-

pared to WPV

κ 1/ε

Waning rates affecting susceptibility rβ Varies, see caption.

Waning rates affecting susceptibility rθ, rγ rβ/4.

Minimum Recovery Rate (No Immu-

nity)

γmin 10

Maximum Recovery Rate (Full Immu-

nity)

γmax 40

Rate of Immune State Change ωi

ω1 = 0

ω2−6 = 0.2

ω7−9 = 2

Table B.1:
All rates are per year. rβ is initially set to 0.07/yr (i.e., it takes 10 years

to reach 50% susceptibility) in figures 3.2, 3.3 and 3.5 and for results in

manuscript unless another waning rate is explicitly stated. In Figure 3.4,

rβ = 0.04/yr and rβ = 0.10/yr for slow and fast waning, respectively.
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populations move across age categories instantaneously. Formally, every 6 months,

for Qi,j ∈ {Si,j, Ii,j, Vi,j}, aging occurs as follows

Qi,j =





Qi,j−1, j ∈ [1, 9]

Qi,9 +Qi,10/2, j = 10

Qi,j−1/2 +Qi,j/2, j ∈ [11, 19]

Qi,19/2 + 9Qi,20/10, j = 20

Qi,j−1/10 + 9Qi,j/10, j ∈ [21,m− 2]

Qi,m−2/10 +Qi,m−1, j = m− 1.

(B.8)

For clearer analysis and presentation, we normalized the population size, N0, to 1

by finding the equilibrium value of birth flow, b, into compartment S0,0.

B.4 Modeling waning immunity

B.4.1 Waning immunity theoretical formulation

We conceptualized infection immunity regarding three aspects of the infection

process: 1.) β, susceptibility to infection; 2.) θ, contagiousness when infected; and

3.) γ, recovery rate of illness. To implement the effect of immunity, we allowed these

parameters to vary depending on immune status. When an individual has never ex-

perienced infection, they are fully susceptible to infection and then, if infected, they

are fully contagious with a maximum duration of infection. After an infection, in-

dividuals recover into a complete immunity state, where they have no susceptibility.

If infection were possible in this stage (that is, ignoring zero susceptiblity), there

would be no contagiousness and a maximum recovery rate of illness. We therefore

defined β and θ to represent relative levels of susceptibility and contagiousness be-

tween these extreme immunity levels, specifically allowing them to range between 0
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(no susceptibility or contagiousness) and 1 (full susceptibility and contagiousness).

Infection recovery rate, γ, is not defined relatively but it is based on observed ranges

of excretion duration [14, 49].

The waning of immunity is a dynamic process that starts at some maximal level

of immunity that generally decreases over time until it reaches some minimal level.

To allow our infection parameters to vary over time as immunity wanes, we defined

them as processes, β(t), θ(t), and γ(t), that vary over time, t, the time since infection

recovery. Assuming the maximal level of immunity occurs at the time of infection

recovery (t = 0), waning immunity is depicted as having the minimum susceptibility,

contagiousness, and duration assigned when t = 0 and then allowing each to increase

as time since infection increases. Since we defined β and θ such that they represent

relative levels of susceptibility and contagiousness that vary between 0 and 1, we

defined β(t) and θ(t) such that at t = 0 these parameters are equal to 0 (no sus-

ceptibility or contagiousness) and then allow them to approach 1 (full susceptibility

and contagiousness) as time since infection increases. We defined γ(t) to start at

a maximum recovery rate (minimum duration), γmax, when t = 0 and approaches

a minimum recovery rate (maximum duration), γmin, when time since infection in-

creases. We modeled the change over time in these infection parameters assuming

that immunity wanes exponentially with corresponding rate parameters, rβ, rθ, and

rγ. The following equations describe the exponential function for each parameter

β(t) = 1− e−rβt (B.9a)

θ(t) = 1− e−rθt (B.9b)

γ(t) = γmin + e−rγt(γmax − γmin) (B.9c)

Figure B.1 shows curves for varying rates of susceptibility immunity waning and

transmissibility, a product of contagiousness and duration. Transmission potential is
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an aggregate measure of susceptibility and transmissibility discussed in further detail

in section B.5.1.

Figure B.1:
Immunity levels over time depicted by a) an average immunity profile
after infection for a newly infected individual with susceptibility immu-
nity waning rate of 0.07 yr−1 and b) transmission potential across vary-
ing susceptibility immunity waning rates. Transmissibility is a product
of contagiousness and duration. Transmission potential is a product of
transmissibility and susceptibility.

B.4.2 Waning immunity model implementation

We conceptualized immunity levels as continuous but for practical computational

purposes we grouped the population into n immunity stages where each stage, i,

corresponds to a specific time since infection recovery. The immune stages are indexed

using integers 0 through n− 1, where 0 represents no immunity (due to no previous

exposure), n− 1 represents maximum immunity achieved immediately after recovery,

and 1 represents the lowest stage to which immunity wanes over a specified time

frame. The level of immunity at each waning stage (except for 0) was estimated by a

series of times since infection. We did not allow further waning once level 1 is reached
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so that we can distinguish the never infected from those with little immunity who

were previously infected or vaccinated. Immunity waning only occurred across the

susceptible population, Si. To determine the average duration in each immune state,

we selected flow rates, ωi, between each susceptible compartment. The expected

arrival time (i.e., time since infection), ti, to compartment, Si, since recovery was

calculated as follows

ti =
n−1∑
k=1+1

1/ωk where 0 < i < n− 1. (B.10)

Note that for i = n − 1, flows into the susceptible compartment do not depend

on waning but on the recovery rate from infection so we let tn−1 = 0. Further, since

we assumed there is no waning into or out of S0, we do not need to consider ω0 or t0.

The expected arrival times into each Si compartment that we assigned are illustrated

in figure B.2 and table B.1. The model structure is illustrated in figure 3.1 in the

main text.

We used the expected arrival times to assign values at each immune stage for

each of our infection parameter, βi, θi, and γi (susceptibility, contagiousness, and

recovery rate, respectively). For populations with no immunity (i = 0) we assigned

the following values

β0 = 1 (B.11a)

θ0 = 1 (B.11b)

γ0 = γmin (B.11c)

For other levels of immunity, these parameters were a discrete series of values

calculated from our continuous immunity waning functions, equations (B.9a)-(B.9c),

using the set of arrival times we calculated in equation (B.10). They are calculated
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Figure B.2:
The expected arrival times into each susceptible compartment. S0 is not
included in this figure because it is not part of the waning process. The
duration in each compartment, i.e., distance between each point, was
determined by the parameterizations of ωi (see B.1).
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as follows (where 0 < i ≤ n− 1)

βi = β(ti) (B.12a)

θi = θ(ti) (B.12b)

γi = γ(ti) (B.12c)

B.4.3 Waning immunity robustness

Our model of waning immunity was fairly robust to more complicated formula-

tions. We considered using a two rate exponential process (fast waning then slow

waning) for each infection parameter, a better match for the actual biological pro-

cesses. However, the dynamics are robust (results not shown) to either formulation

so we used a one parameter exponential function to increase computation speed and

clarity of results. We selected ωi such that the underlying continuous curve would be

well represented in our discretized model, as can be seen in figure B.2. The results

(not shown) were also robust to increasing the total amount of waning stages.

We also examined a range of maternal immunity formulation options. The shorter

the duration or the less effective that maternal immunity is, the greater the poten-

tial for intensified childhood vaccinations to eliminate transmission and the higher

the level of vaccination of older individuals that is needed to eliminate transmission.

To clearly explore the interplay of dynamics of childhood vaccinations levels, repro-

duction number, OPV transmissibility and waning rates we decided to present the

simpler model that does not have maternal immunity.

121



B.5 Supplemental results

B.5.1 Waning immunity exploration

As a starting point, we fixed waning immunity rates across susceptibility, conta-

giousness, and duration as follows: susceptibility increases to 50% compared to no

immunity after 10 years and reaches 84% after 25 years on average (corresponding

to S1). To simplify this process and characterize it using one parameter, we make

the following assumptions about the waning rates of these processes: 1) susceptibility

immunity wanes faster than contagiousness and duration immunity because infection

and excretion processes are only relevant after infection occurs; and 2) contagiousness

and duration have equal waning rates because shedding magnitude and duration are

intrinsically tied. We therefore set the exponential rates in which contagiousness and

duration increase (rθ and rγ, respectively) to be one fourth the rate in which suscep-

tibility increases (rβ). We use one fourth for convenience. Although changing these

relative rates may quantitatively affect the role of waning immunity in transmission,

it does not qualitatively affect our results. All three factors result in an overall re-

duction of transmissibility for a re-infected individual. This can be seen in figure B.1.

Parameters values for waning are also shown in table B.1.

Figure B.1 illustrates the potential immunity profiles for poliovirus infection we

used in our models to assess different levels of waning immunity. Figure B.1a shows

loss of immunity over time for one setting of susceptibility immunity waning. Trans-

missibility is a product of both potential recovery rate and contagiousness. We defined

transmission potential as the product of susceptibility and transmissibility. Maximum

transmission potential occurs in a susceptible individual who has never experienced

infection, and all concurrent transmission potential is relative to this state. In the

example of 0.07/year waning rate (figure B.1a), we had a fairly fast increase of suscep-

tibility but these subsequent infections will have a reduced effect on overall transmis-
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sion (transmission potential) due to a reduced contagiousness and duration of illness

(transmissibility). Figure B.1b illustrates transmission potentials for the range of dif-

ferent susceptibility waning rates we explored (bolded) in our analysis. This shows a

wide range of immunity waning from fairly conservative estimates to high estimates

without assuming that complete loss of immunity occurs.

B.5.2 Alternative implementation of vaccination

Our model utilized effective vaccination rates instead of real vaccination rates in

the model implementation. In reality, OPV vaccination may not always induce an

immune response and, if it does take, it may not induce a complete immune response

[48, 49]. We assumed an effective vaccination results in full immunity, thus we can still

evaluate reduced vaccine take-rates by reducing the effective vaccination rate. For

example, one effective vaccination per year compared to 0.75 per year might imply a

reduced take-rate. However, our model does not account for induced immunity that

is incomplete. It has been shown that it takes 3 or 4 doses of OPV to achieve full

immunity in an immunologically naive individual [48]. To explore the sensitivity of

our model assumptions to this multiple dosing property, we constructed an alternative

model where OPV vaccination (or transmission) does not result in full immunity upon

recovery unless there has been a previous infection by WPV or prior multiple OPV

doses. Specifically, in the absence of WPV, we assumed that three doses of OPV are

required to reach full immunity as depicted in figure B.3.

We ran a similar set of analyses as those presented in the main text utilizing the

new model construction. Comparing the results depicted in figure 3.2 in the main

text to the results from this model (figure B.4) we see remarkable consistency over a

similar scale of vaccination rates. The threshold for elimination is still observed across

vaccination rates given an R0 value but there is a subtle shift in this model requiring

slightly higher vaccination rates to reach threshold. Further, while it is difficult to
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identify visually, the alternative model formulation shows more robustness of preva-

lence levels to increases in vaccination for a given R0. That is, in the main model, we

sometimes observe drastic reductions in prevalence (many orders of magnitude) for a

tenth increase in the yearly effective vaccination rate, specifically near the threshold

for elimination. In the alternative model, reductions in prevalence are constrained to

one or two orders of magnitude for a tenth increase in vaccination.

In our model construction, we see that the interruption of WPV transmission

due to OPV vaccination and transmission plays a very important role in reaching

elimination threshold. In other words, the competition of the two infections without

co-infection allows vaccination with poor immunogenesis to still effectively reduce

WPV transmission. In reality, the actual vaccination rates are also affected by vari-

able take-rates in certain regions. The alternative vaccination implementation, while

giving us a real vaccination rate per year, is still an overestimate of efficacy of vac-

cination because we have not explicitly included fail rates, i.e., instances where the

vaccination fails to take at all. To better implement actual vaccination rates, there

would also need to be a fail rate (a proportion reduction in the implemented vac-

cination rate that actually results in OPV infection). This would translate into a

rescaling of the vaccination rate scale for a broader and great range. For example,

if we use a take-rate of about 33%, then 9 vaccinations per year would be required,

on average, to achieve the results we see in 3/yr in our alternative formulation. It

should be noted that this transformation could also be applied to the effective vac-

cination rates used in the main analysis. While exploring these facets of vaccination

may give us a better interpretation of the vaccination rate, they introduce additional

complication without changing the inferences we draw from our model concerning the

waning of immunity and the transmission of OPV. Specifically, the alternative for-

mulation of the model requiring multiple doses to achieve full immunity does not add

any additional information that is not captured by the use of the effective vaccination
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rates.

We use effective vaccination rates to reduce complexity regarding vaccine take-

rates and incomplete immunity. We can interpret our effective vaccination rate heuris-

tically in several ways. For a 0.5/year effective vaccination rate, the targeted country

is achieving 50% immunity (relative to full immunity) in the children population per

year. For 2/yr, there is full coverage of the childhood population with an additional

booster to full immunity per year. While this is not a direct mapping to the actual

vaccination rates, we can loosely categorize countries given their efforts in terms of

vaccination coverage (i.e., if they are achieving 100% coverage) and the extent to

which they are boosting these populations (e.g., implementation of SIAs).

B.5.3 Effect of vaccination implementation time

Figure B.5 depicts the effect of increasing the vaccination implementation time

(to 10 years) on minimum prevalence compared to the vaccination implementation

time of 2 years used in the manuscript. Specifically, the left panel of figure B.5 is the

same as figure 3.2A in the main text. For increased implementation times, minimum

prevalence levels increase for higher R0 levels with higher vaccination rates. Specifi-

cally, this reduces the initial efficacy of vaccination programs in highly transmissive

regions even when the eventual target vaccination rates are high. Furthermore, fig-

ure B.6 displays how minimum prevalence is affected by differing waning and OPV

transmission settings using a 2-year vaccine implementation time. Figure B.7 shows

the minimum prevalence for differing waning and OPV transmission settings using

a 10-year vaccine implementation time. Comparing figures B.6 and B.7 we see the

ability to reduce prevalence to low levels from initial vaccine implementation is highly

sensitive to the speed of implementation when immunity wanes more quickly. This

effect is magnified when OPV transmissibility is low.
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B.5.4 Model dynamics after vaccination

From figure 3.2 in the main manuscript, we observe that the introduction of vac-

cination can reduce prevalence to low levels (figure 3.2A) that are not necessarily

permanent at steady state (figure 3.2B), particularly as we increase levels of R0. The

dynamics that distinguish the high R0 from the low R0 situations have complex de-

pendencies upon the level of vaccination, the R0, the pace at which vaccination is

initially ramped up, and the waning dynamics modeled. As discussed in the main

manuscript, at high R0, previously infected individuals are constantly having their

immunity boosted by reinfections and the sharp drop in infection levels after vac-

cination implementation depends upon these high levels of immunity. As immunity

wanes, if we have not achieved the threshold of elimination, reinfection dynamics take

over the transmission system and we experience rebound epidemics.

At low levels of infection, stochastic events will dominate whether or not infection

dies out. If it does die out, then a whole set of issues not included in our deterministic

models will determine whether or not infection is reintroduced. But the solutions of

the differential equations can provide insights nonetheless. In general, the longer it

takes to get a rebound in the deterministic model, the longer the average time to a

stochastically determined rebound. That is because the immunity levels of those not

getting directly vaccinated are determinants of rebounds in both the deterministic

model, whose results we present here, and the more realistic stochastic model, which

we do not examine.

Figure B.8 presents the WPV prevalence at the peak of the first rebound epidemic

as a function of R0 and effective vaccination rates. Figure B.9 presents the time after

a vaccination program was initiated that the first rebound epidemic occurs. At low R0

levels the size of the rebound epidemic decreases as the vaccination level is increased,

but at higher R0 levels, the size of the first rebound epidemic may at first go up

and then go down as vaccination levels are further increased. Specifically, for higher
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R0 levels, when we compare the minimum prevalence achieved from figure 3.2A with

the 5% OPV transmission panel of figure B.8, we observe that the threshold where

minimum prevalence begins to reach very low levels (but we do not have elimination

at steady state) correspond to the conditions where we also have the highest rebound

epidemic prevalence. Furthermore, in conjunction with figure 3.5, we see that the

highest rebound peak levels correspond with the transition of transmission burden

from first infection to reinfection. In figure B.9, the time until the rebound epidemic

peak is fairly invariant for low levels of vaccination (less than 50 years) but slowly

takes longer as we increase vaccination and the magnitude of the rebound epidemic

diminishes.

If there is a strong rebound, the failure to eradicate will be evident. However, if

there is a smaller rebound epidemic, as we see for higher vaccination levels at high R0

values, then the failure to eradicate may not be so evident. This would indicate that

in areas like India, a declaration of elimination should only follow a very extensive

search for asymptomatically infected individuals.

B.5.5 Switching to IPV

Lastly, figure B.10 displays the minimum and final prevalence levels when relative

OPV transmissibility is 0% (a proxy for an IPV program) for three levels of waning.

Compared to figure 3.2a from the manuscript, we see with IPV there is a larger range

of R0 values where it becomes impossible to achieve elimination even for high levels of

vaccination coverage. This further emphasizes the importance of OPV transmissibility

and reducing transmission conditions in the context of switching to IPV. When R0

is low, elimination is still possible in our model using IPV assuming a similar efficacy

level to OPV.
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Figure B.3:
Alternative formulation of vaccination model for susceptible populations
(Si) and vaccinated populations (Vi). This figure excludes vital dynamics
and infection from wild polio virus (WPV), which are included in the sim-
ulated transmission model. In the presence of only vaccination rate (φ)
or force of infection due to oral polio vaccine (OPV) transmission (ΛV ),
three vaccinations or infections would be required to reach the highest
level of immunity (S9). Reduced OPV infectious period (γ) relative to
WPV infection is denoted by κ. Infection from WPV (not shown) is
assumed to result in full immunity prior to waning and thus subsequent
OPV exposures act as boosters. Flows between state variables Si denote
waning immunity described in section B.4 and also shown in the main
manuscript in figure 3.1 (with WPV infection).
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Figure B.4:
a) Minimum prevalence and b) final prevalence. Two panels depict preva-
lence levels across R0 and vaccination rates under the conditions of 5%
relative transmissibility of OPV and waning such that it takes 10 years
to reach 50% susceptibility. Panel a) depicts the minimum prevalence
reached in the first 50 years due to the initial implementation of a vac-
cination program, a measure of short-term success. Panel b) shows the
final prevalence resulting from a vaccination program, a measure of long-
term success. In constrast to the model presented in the main text, this
model requires multiple OPV doses to reach full immunity.
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Figure B.5:
Two panels depict minimum prevalence levels across R0 and vaccination
rates under the conditions of 5% relative transmissibility of OPV and
waning such that it takes 10 years to reach 50% susceptibility specifically
comparing 2-year vaccination implementation time (the left panel) to 10-
year vaccination implementation time (the right panel). The right panel
is presented in the main text in Figure 3.2A. This figure illustrates how
vaccination program implementation speed can induce reaching threshold
through initial prevalence reduction.
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Figure B.6:
Sensitivity analysis for minimum prevalence across reproduction numbers
and vaccination rates for varying waning rates and OPV transmissibility
when vaccination implementation time is equal to 2 years. The top panel
label is the susceptibility waning rate (0.07 was used in the manuscript de-
scribed as 10 years to reach 50% susceptibility). The bottom panel label
is relative OPV transmissibility (%) compared to WPV transmissibility.
That is, comparing figures horizontally changes OPV transmissibility for
a given waning rate and comparing figures vertically changes waning rate
for a given relative OPV transmissibility.
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Figure B.7:
Sensitivity analysis for minimum prevalence across reproduction numbers
and vaccination rates for varying waning rates and OPV transmissibil-
ity when vaccination implementation time is equal to 10 years. The
top panel label is the susceptibility waning rate (0.07 was used in the
manuscript described as 10 years to reach 50% susceptibility). The bot-
tom panel label is relative OPV transmissibility (%) compared to WPV
transmissibility. That is, comparing figures horizontally changes OPV
transmissibility for a given waning rate and comparing figures vertically
changes waning rate for a given relative OPV transmissibility.
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Figure B.8:
The size of rebound peak prevalence is presented in heatmap colors as
a function of vaccination rate, R0, and transmissibility of OPV. Waning
was set to take an average of 10 years to reach 50% susceptibility. In the
white areas of the graph, rebound peaks do not occur.
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Figure B.9:
The time (years) to rebound peak prevalence is presented as heatmap
colors as a function of vaccination rate, R0, and transmissibility of OPV.
Waning was set to take an average of 10 years to reach 50% susceptibility.
In the white areas of the graph, rebound peaks do not occur.
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Figure B.10:
Panels depict prevalence levels across R0 and vaccination rates under
the conditions of 0% relative transmissibility of OPV and three levels
of waning. The top three graphs correspond to minimum prevalence
after 2-year implementation of vaccination program. The bottom three
graphs display the final prevalence.
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APPENDIX C

Additional material for migration and polio

eradication

C.1 Model structure and equations

The construction of the this model, including waning immunity and aging, without

migration has been previously described in [86]. We extended this model by adding

migratory inflows for a separate population. This population is assumed to be in

steady state. In the manuscript, model parameters specific to migration are described

in table 4.1 and a visual depiction of the model can be seen in Figure 4.1.

The migration rate is denoted by α, the percent change in the population per year.

This is implemented in the model equations using the logarithm transformation so the

interpretation is a linear change over time rather than exponential (untransformed).

We assumed that migration occurs independently of infection and vaccination status

so we can group the state variables as follows,

Qi,j ∈ {Si,j, Ii,j, Vi,j} (C.1)
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where Qi,j is a general state variable in the model for a given immune stage, i,

and age group, j. The differential equations for Qi,j have been previously described

in chapter III. To describe migration in the model we consider two populations, the

source and the destination. The source and destination population vary with respect

to vaccination rates, φj, and contact rates, c. Furthermore, the source population is

in steady state. We let Q∗i,j denote the source population. The differential equation

for migration in the destination population is therefore

dQi,j

dt
= . . .+ log(1 + α)Q∗i,j − log(1 + α)Qi,j (C.2)

where the unlisted portion of the equation is identical in structure to the model in

chapter III. The differential equations were solved numerically using Python software

set with lsoda method and variable tolerance (absolute and/or relative) ranging from

1×e−8 to 1×e−12.

C.2 Supplementary results

In sections C.2.1 and C.2.2, we categorize success using prevalence directly. Min-

imum prevalence reached within 50 yeras of vaccine implementation is an indicator

of short-term success. Long-term success can be measured as the final prevalence at

steady state. Discrepancies in short and long-term success identify conditions where

initial vaccination may be effective but long-term stability may be fragile. For use in

sensitivity analyses, actual prevalence levels allow us to make more general inferences

about migration under varying parameter conditions.
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C.2.1 Migration and varying waning rates

The effect of migration on prevalence levels is generally not differential for different

levels of waning immunity rates (figures C.1 and C.2. The general inferences described

in the main results sections are robust, specifically that increasing vaccination rates

in the source population are important to achieving short and long-term success in

moderate to high transmission conditions.

Success, as it depends on waning immunity, is fairly robust to migration rates.

Under slow waning conditions (infection and vaccination induce long-lasting immu-

nity), achieving elimination in the short and long-term is achievable under much lower

vaccination requirements than when waning is faster. Under conditions of fast waning

immunity, reaching low prevalence in high transmission conditions is a result of effec-

tively implementing a vaccination program. Compared to the no migration model,

achieving low prevalence requires intense vaccination of the source population as well.

While the effects of waning rates do not necessarily depend on migration, waning im-

munity is still an important component of polio transmission as demonstrated here

and in our previous model [86].

C.2.2 Migration and higher OPV transmissibility

In Nigeria, there is circulation of cVDPV of strain similar to WPV type 2 [46]. The

type 2 vaccination strain is known to be more transmissible than the other vaccination

strains [18] and we previously demonstrated that achieving elimination in short and

long-term is much less difficult at higher OPV transmissibility [86]. Thus, cVDPV

type 2 in Nigeria may imply that vaccination rates and coverage are very low. To

assess how migration affects the transmission system when OPV is more transmissible

we allowed OPV to be 20% as transmissible as WPV (figures C.3 and C.4).

For higher OPV transmission, poor vaccination rates in the migratory popula-

tion can make achieving low prevalence levels in the short and long-term difficult
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Figure C.1:
Minimum prevalence under migration across similar popula-
tions. Minimum prevalence for two similar populations (same R0) across
vaccination and R0 in the destination population while varying migration
rates and vaccination rates in the migratory population. Waning rates
were varied between slow, medium, and fast corresponding to 17, 10, and
7 years to reach 50% susceptibility, respectively.
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Figure C.2:
Final prevalence under migration across similar populations Fi-
nal prevalence for two similar populations (same R0) across vaccination
and R0 in the destination population while varying migration rates and
vaccination rates in the migratory population. Waning rates were varied
between slow, medium, and fast corresponding to 17, 10, and 7 years to
reach 50% susceptibility, respectively.
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when migration rates are high. However, compared to the main analysis when OPV

transmissibility was only 5% compared to WPV, this detriment is almost entirely

attenuated when vaccination rates in the source population are increased. Even for

high migration, short and long-term success is possible at almost all R0 levels.

In the context of Nigeria, the persistence of cVDPV type 2 implies that there is

poor vaccination coverage. Our analysis demonstrated that this is exacerbated when

there is high migration. However, because OPV transmissibility is higher for type 2, a

general increase in vaccination coverage (rates and targeting) may be who initial suc-

cess that remains stable. Therefore, achieving eradication of type 2 (vaccine-derived)

could be an immediately attainable goal with better implementation in Nigeria and

proper cessation of vaccines that includes type 2 (e.g., tOPV).

C.3 Discussion on modeling migration

Afghanistan has a highly mobile population with up 15% of the population dis-

placed (internally or externally)[88]. This could translate into a variety of migra-

tion rates into surrounding regions. For example, Pakistan received about half of

Afghanistan’s migration over the past two decades [93]. However, using the differ-

ences in total population size (30m in Afghan to 190m in Pakistan), if 10% of the

Afghan population ends up in Pakistan due to displacement, that comprises only

about 1.5% of the total Pakistan population. On the other hand, the reverse in-

terpretation shows a small amount of migration from Pakistan could constitute a

significant proportion of the Afghanistan population. Current net migration projec-

tions are available for Nigeria, Pakistan, and Afghanistan, respectively, at rates of

-0.3, -1.4, and 4 per 1000 people per year with Afghanistan’s net migration rates are

expected to drop to 1.5 over the next few years [91]. For these data, -1.4/1000 person

years out of Pakistan corresponds to about 266,000 net people leaving per year, which

comprises about 1% of the total Afghanistan population size versus 0.1% of the total
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Figure C.3:
Minimum prevalence under migration across similar popula-
tions and high OPV transmissibility. Minimum prevalence for two
similar populations (same R0) across vaccination and R0 in the destina-
tion population while varying migration rates and vaccination rates in
the migratory population. Oral polio vaccine (OPV) is 20% as transmis-
sible as wild poliovirus (WPV). Waning rates were varied between slow,
medium, and fast corresponding to 17, 10, and 7 years to reach 50%
susceptibility, respectively.
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Figure C.4:
Final prevalence under migration across similar populations and
high OPV transmissibility. Final prevalence for two similar popula-
tions (same R0) across vaccination and R0 in the destination popula-
tion while varying migration rates and vaccination rates in the migratory
population. Oral polio vaccine (OPV) is 20% as transmissible as wild
poliovirus (WPV). Waning rates were varied between slow, medium, and
fast corresponding to 17, 10, and 7 years to reach 50% susceptibility,
respectively.
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Figure C.5:
Vaccination effectiveness under migration from low transmis-
sion conditions. Short-term (left column) and long-term (right col-
umn) vaccination program effectiveness for a given effective vaccination
rate in the destination population across varying vaccination levels in
the migratory population (table 4.1) and migration rates. The migratory
population has a fixed and low R0 value of 4, oral polio vaccine (OPV)
is 5% as transmissible as wild poliovius (WPV), and waning rates were
set such it takes 10 years to reach 50% susceptibility. Vaccination ef-
fectiveness was measured, for a given effective vaccination rate, as the
maximum R0 (up to 20) where a target prevalence of less than 1 in a mil-
lion was reached. Initial effectiveness was measured using the minimum
prevalence within 50 year of program implementation and long-term ef-
fectiveness was measured using the final prevalence. The absence of lines
indicates that reaching the target prevalence was not possible under the
given conditions.
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Figure C.6:
Initial vaccination effectiveness under migration across vary-
ing transmission conditions. Vaccination program effectiveness for
a given effective vaccination rate in the destination population across
varying vaccination levels and transmission conditions in the source pop-
ulation (table 4.1) and migration rates. Initial vaccination effectiveness
was measured, for a given effective vaccination rate, as the maximum
R0 (up to 20) where the minimum prevalence (within 50 years) induced
by implementation of vaccination in the destination population was less
than 1 in a million. Oral polio vaccine (OPV) transmission was set to be
5% as transmissible as wild poliovius (WPV) and waning rates were set
such it takes 10 years to reach 50% susceptibility. The absence of lines
indicates that reaching the target prevalence was not possible under the
given conditions.
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Pakistan population size.

There many limitations to quantifying net migration rates and displacement pro-

portions into a transmission model. Net migration rates do not tell a complete story,

two nations with net migration rates of zero could have substantially different de-

mographic dynamics where one state may be relatively immobile and another could

experience large levels of both immigration and emigration. The total population dis-

placed provides a summary of the proportion of the population that lives outside the

nation or are mobile but do not provide appropriate time series data for implementa-

tion. For example, Afghanistan immigration occurred steadily over two decades but

has experienced major reversal with high levels of repatriation in the last few years

[88, 91].
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