
High-performance Global Routing
for Trillion-gate Systems-on-Chips

by

Jin Hu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2013

Doctoral Committee:

Professor Igor L. Markov, Chair
Professor Pinaki Mazumder
Professor Karem A. Sakallah
Assistant Professor Siqian May Shen

To my family and friends

ii

ACKNOWLEDGMENTS

I am grateful to my advisor, Professor Igor Markov, for all the advice and countless

ideas he gave me throughout my graduate career. He provided me with many opportunities

to improve my research and teaching skills, and taught me the true meaning of academic

dedication and perseverance.

I would like to thank all my colleagues for their helpful contributions. In particular,

I would like to thank Jarrod Roy, who mentored me and gave me valuable advice during

my first few years, and Myung-Chul Kim, who was my primary collaborator during my

last few years. I would also like to thank all past and current students that I met in Pro-

fessor Markov’s group, including Hector Garcia, Dong-Jin Lee, Johann Knechtel, George

Viamontes, Dave Papa, Smita Krishnaswamy, Steve Plaza and Kai-Hui Chang. I am also

thankful to Professor Eli Bozorgzadeh, Love Singhal and Debjit Sinha. Without their en-

couragement, I most likely would not have pursued a doctorate degree.

I would like to thank my parents for their support. I would also like to thank all my

friends that helped keep me sane throughout the years, and gave me the much-needed

breaks and fun. Thanks to all my bridge partners, including Jonathan Fleischmann, Max

Glick and Zach Scherr. Thanks to Jeff Hao, Eric Wucherer, Nate Derbinsky, Pradeep

Muthukrishnan, Timur Alperovich, Ganesh Dasika, Perry Iverson, Drew DeOrio, Joe

Greathouse, Andrea Pellegrini, Debapriya Chatterjee and Jason Clemons for great times

and experiences.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . xi

ABSTRACT . xiv

PART I Introduction and Background

Chapter I. Routing in Trillion-gate ASICs 2

1.1 Challenges in Global Routing . 3
1.2 Our Contributions . 7
1.3 Organization of the Dissertation . 9

Chapter II. State-of-the-Art Global Routing Algorithms 10

2.1 Global Routing Terminology . 10
2.2 Global Routing Formulation and Objectives 13
2.3 Previous Approaches in Global Routing 14

2.3.1 Prior Work in Routing (Point-to-Point) Single Nets 14
2.3.2 Prior Work in Standalone Global Routers 17
2.3.3 Using Global Routing Estimates in Placement 19

PART II Global Routing in the Context of High-performance Design Flow

Chapter III. Sidewinder: A Scalable ILP-based Router 23

3.1 Introduction . 23
3.2 Sidewinder . 24

3.2.1 High-level Framework . 25
3.2.2 Algorithm Design . 26
3.2.3 ILP Formulation . 29

iv

3.2.4 Insights . 31
3.2.5 Sidewinder vs. BoxRouter 1.0 32

3.3 Empirical Validation . 33
3.4 Conclusions . 36

Chapter IV. Completing High-quality Global Routes 37

4.1 Introduction . 38
4.2 Global Routing Framework . 39

4.2.1 Multi-pin Net Decomposition 40
4.2.2 Balancing Wirelength and Violations 40
4.2.3 Net Ordering . 41
4.2.4 Point-to-point Routing . 42
4.2.5 Continuous Net Restructuring 43
4.2.6 End-game Optimizations . 43

4.3 Key Algorithms in BFG-R . 44
4.3.1 Edge Clustering During Rip-up 44
4.3.2 Dynamically Adjusting Lagrange Multipliers (DALM) 45
4.3.3 Trigonometric Penalty Function (TPF) 46
4.3.4 Via Pricing . 48
4.3.5 Cyclic Net Locking (CNL) 48
4.3.6 Aggressive Lower-bound Estimate (ALBE) 49

4.4 Route Representation . 51
4.4.1 Branch-free Representation (BFR) of Individual Routed Nets . 51
4.4.2 Representing a Dynamic Routing Grid 53
4.4.3 Supporting Efficient Rip-up and Reroute 55

4.5 Empirical Evaluation . 55
4.5.1 Experimental Setup . 56
4.5.2 Benchmarks . 57
4.5.3 Comparison of Results . 57

4.6 Scalability Study . 59
4.7 Conclusions and Future Work . 59

Chapter V. A SimPLR Method for Routability-driven Placement 62

5.1 Introduction . 62
5.2 SimPLR . 64
5.3 Simultaneous Place-and-Route . 66

5.3.1 Lookahead Routing (LAR) 67
5.3.2 Congestion-based Cell Bloating 69
5.3.3 Dynamic Adjustment of Target Density 71

5.4 Congestion-aware Detailed Placement 73
5.5 Empirical Validation . 74
5.6 Conclusions . 79

v

PART III Scaling Global Routing to Larger Designs and Applications

Chapter VI. Taming the Complexity of Coordinated Place and Route . . . 81

6.1 Introduction . 81
6.2 LIRE: Routing Estimation . 83

6.2.1 Faster Routing . 84
6.2.2 Fast and Accurate Estimation 90

6.3 Congestion Relief . 91
6.4 Coordinated Place and Route . 96
6.5 Comparisons to Prior Work . 97
6.6 Empirical Validation . 102
6.7 Conclusions . 103

Chapter VII. Addressing the Buffer-explosion Problem
Through Low-cost Heterogeneous 3D Integration 105

7.1 Introduction . 105
7.2 Overview . 109

7.2.1 Heterogeneous 3D Integration 111
7.3 Buffer-die Placement and Sizing . 113

7.3.1 Buffer-die Placement . 114
7.3.2 Buffer-die Sizing . 114

7.4 Buffer Selection . 117
7.5 Buffer Transformation . 119

7.5.1 Inter-Buffer Distance Estimation 119
7.5.2 Buffer Upsizing . 120

7.6 Empirical Validation . 120
7.7 Open Technical Issues Associated with the Hetero-3D Approach . . . 124

7.7.1 3D Congestion Estimation 124
7.7.2 Power and Thermal Estimation 126

7.8 Conclusions . 127

Chapter VIII. Conclusions and Future Research Directions 128

8.1 Summary of Our Contributions . 128
8.2 Directions for Future Work . 129

BIBLIOGRAPHY . 132

vi

LIST OF FIGURES

Figure

1.1 The global routing portion of the VLSI design flow. Fully routable de-
signs are handed off to detailed routing. Otherwise, the design can (1)
be sent directly to detailed routing, (2) go through spot-repair, or (3) go
through re-placement iterations, depending on the severity of violations. 4

2.1 The global routing grid formats. (a) A two-dimensional grid, where hor-
izontal and vertical tracks are on the same layer. (b) A 2.5-d grid, with
one layer of horizontal tracks (red), one layer of vertical tracks (blue),
and a layer of connecting vias (black). (c) A three-dimensional grid,
with alternating horizontal and vertical routing layers connected by vias. 11

2.2 An example of a net that requires a route on a 2.5-d routing grid (left),
where the three circled points need to be connected by a combination of
routing segments and vias. The three on the right depict several possible
routes, each using a different number of edges. 12

2.3 Excerpt from Cadence WarpRoute on a test benchmark. Notice that al-
though global routing produced a total of 295 GCells with violations,
the final result given by detailed routing has none. This is typical for
industry circuits. 14

3.1 High-level flow of Sidewinder. We first create an initial solution using
only L shapes. Next, we build a congestion map based on the current
solution to use as a guide for the new solution. For net route candidates,
we consider Ls, Zs, Cs, and a maze route. Once all nets are processed,
an ILP is formed and solved. This cycle continues until the new solu-
tion has the same cost as the current solution. Once there is no more
improvement, maze routing is applied to yield the final routing solution. 25

3.2 Patterns Sidewinder considers when choosing routes. (a) Two different
L shapes, (b) All possible vertical Zs, (c) All possible horizontal Zs, (d)
C shapes – detouring one unit in the vertical direction, (e) C shapes –
detouring one unit in the horizontal direction, (f) C shapes – detouring
one unit in both the horizontal and vertical direction. 29

vii

3.3 Via count comparison between Sidewinder and BoxRouter 1.0 for (a)
IBM07, (b) IBM09, and (c) IBM10. The x- and y-axes state the number
of vias for Sidewinder and BoxRouter 1.0, respectively. Each net is rep-
resented by a point whose coordinates are the number of vias it has in the
results of these two routers. The blue line shows where Sidewinder and
BoxRouter 1.0 use the same number of vias for a given net. Thus, if a
point is above the blue line, Sidewinder uses fewer vias than BoxRouter
1.0 for the same net. 35

4.1 The flow of global routing in BFG-R and the use of novel techniques
such as a branch-free representation (BFR) for routed nets, cyclic net
locking (CNL), dynamic adjustment of Lagrange multipliers (DALM), a
trigonometric penalty function (TPF), and aggressive lower-bound esti-
mates (ALBE). 39

4.2 Trigonometric cost function used in BFG-R. The overflow penalty grows
trigonometrically with the relative time τ (left). The cost function grows
linearly with overflow (right). 47

4.3 The branch-free representation (BFR) of routed nets. Subnets are treated
separately but can share routing edges. Collectively they represent a
Steiner tree. 51

5.1 Our simultaneous place-and-route (SimPLR) flow. The baseline compo-
nents are shown in transparent boxes. Added routability-driven compo-
nents have light-blue fill. 68

5.2 Accounting for routing blockages, where dim(e) = 50 for each edge,
two of three routing blockages overlap. On the left, the lengths of each
routing blockage and non-blocked region are shown. On the right, the
normalized capacities are calculated for each edge. Here, the original
capacity of each edge is 40, and each net on this layer uses 4 tracks.
With no blockages, an edge has a normalized capacity of 10. 69

5.3 The impact of placement density on routability, with bin capacity 2
and edge capacity 1. The dense, low-wirelength placement (left) is un-
routable. The sparse, high-wirelength placement (center) is routable.
The placement (right) is also routable, with low wirelength and density. 72

viii

5.4 Progress of SimPL and SimPLR algorithms plotted against iteration counts
(SUPERBLUE12). Each invocation of lookahead routing is marked with
a circle. The second invocation of LAR and subsequent cell bloating vis-
ibly disrupt the quality of roughly legalized placements, with a smaller
impact on quadratic placement. 77

5.5 Congestion maps for SUPERBLUE15 for the best-reported placement at
the ISPD 2011 contest (left) and SimPLR (right). Isolated red regions
indicate peak congestion, dark-blue rectangles show unused resources. 78

6.1 Applying one BF pass with duplex-edge relaxation and echo-relaxation
to a point-to-point connection S → T without via-cost modeling. Ar-
rows point to the previous node in the path. (a) The routing grid and
edge costs (congestion). Let S have coordinate (0, 0). (b) The partial
costs of the first row and the center-left node have been populated. (c)
Relaxing the NORTH (1, 1) → (1, 2) and SOUTH (1, 2) → (1, 1) edges
at node with coordinate (1, 1). (d) Relaxing the EAST (1, 1) → (2, 1)
and WEST (2, 1)→ (1, 1) edges at node with coordinate (1, 1). The cost
at (1, 1) has been updated by the WEST edge and is propagated to (1, 2).
(e) The remaining nodes are considered, and partial costs are populated
through T . (f) An optimal path with three monotonic segments is found
in a single BF pass. 88

6.2 Applying BFY to a point-to-point connection S → T without via-cost
modeling. (a) The routing grid and edge costs (congestion). (b) The
first forward pass finds the optimal monotonic path of cost 13. (c) The
backward pass finds a detour. (d) The second forward pass finds the
optimal path of cost 8. 89

6.3 Applying BFY to an initial route for a point-to-point connection S → T .
(a) The routing grid and edge costs (congestion). (b) The initial route
with cost 21. (c) Through relaxation, BFY can preserve part of the route,
and find a better partial segment, resulting in a new route with cost 18. . 90

6.4 Non-monotonic routing using the Bellman-Ford Algorithm with an ex-
panded bounding box. The red arrows represent monotonic passes. . . 91

6.5 Congestion map produced after one BFG-R [43] iteration (left), place-
ment map of cell locations (center), and blockages (right) for SUPERBLUE2
[109]. In the center, blue indicates movable cells, and black indicates
congested GCells over blockages. Congestion is present around block-
ages (layout-based) and blockage-free regions (cell-based). 94

ix

6.6 CoPR placements of the SUPERBLUE7 (left), SUPERBLUE10 (center),
and SUPERBLUE18 (right) testcases [110]. 98

6.7 Comparison of routing estimation techniques on the SUPERBLUE2 bench-
mark [109]. The congestion map in (a) is produced by one iteration of
BFG-R [43], in (b) — by LZ-routing, and in (c) — by LIRE. Images in
(d) and (e) show how well (b) and (c) match (a) — ratios of congestion
values are plotted. Orange indicate large differences and black — no dif-
ference. While all techniques overestimate congestion, LZ-routing and
L-routing produce many false positives, whereas LIRE does not. 100

6.8 The error percentage of total overflow for L-routing, LZ-routing, and
LIRE relative to (a) over the placement iterations of CoPR. 100

6.9 Congestion-driven rectangular macro expansion [48] (left) versus our
technique (right). 101

7.1 Buffer explosion with technology scaling [97]. 106

7.2 Wire detouring due to via blockage. 107

7.3 Work flow of our approach. 110

7.4 3D face-to-face integration of logic and buffer-dies. 112

7.5 Interconnects on high metal layers are buffered (a) on the logic die with
more vias consumed and (b) on the buffer-die through Super-contacts
with less vias consumed. 113

7.6 Illustration of counting buffers in an m×m region. The left side shows
when m = 2k is even – the number of buffers in the region is the sum
of 4 disjoint k × k quadrants. The right side shows when m = 2k + 1 is
odd – the number of buffers in the region is the sum of 4 subregions, two
of which are non-disjoint. The duplication is removed by subtracting the
number of buffers in the overlapping (center) region. 116

7.7 Statistics of the optimally placed buffer-die under different dimensions:
(a) % of buffers in the buffer-die (b) utilization of the buffer-die. 117

7.8 Comparison of (a) floorplan and (b) buffer distribution map of SUPERBLUE1.118

7.9 Technology adjustment of buffer chains. 119

7.10 Cell size and pin count distribution in SUPERBLUE1. 122

x

LIST OF TABLES

Table

2.1 Previous congestion estimation for placement. 20

2.2 Prior congestion-driven placement techniques. 21

3.1 Results of routability for Sidewinder on the ISPD98 benchmark suite
[50] BEFORE FINAL ROUTING. 34

3.2 Solution quality comparison of Sidewinder to BoxRouter 1.0 [20] and
FGR 1.0 [93]. Note that on these benchmarks, unlike the ISPD 2007
benchmarks, the default mode of FGR 1.0 does not penalize bends and
only minimizes wirelength without accounting for vias. 34

4.1 BFG-R compared with leading routers on the ISPD08 benchmarks [84]
where A1 → ADAPTEC1, BB1 → BIGBLUE1, NB1 → NEWBLUE1, and
so on. NTHU 2.0 is NTHU-Route 2.0 and FR 4.0 is FastRoute 4.0. Ex-
perimental setup is described in Section 4.5.1. Invalid Solution
indicates disconnected nets. MAZE RIPUP WRONG is an internal error
produced by FastRoute 4.0. Time Out indicates that the router did not
produce a solution within 24 hours. Runtimes are not averaged because
(i) some routers did not produce valid solutions on all benchmarks, (ii)
some routers did not succeed on routable benchmarks, and (iii) bench-
mark solution quality varies significantly. 53

4.2 BFG-R compared with the best-reported results on the ISPD08 bench-
marks [84], where NTHU 2.0 is NTHU-Route 2.0 and FR 4.0 is Fas-
tRoute 4.0. Experimental setup is described in Section 4.5.1. Runtimes
are not averaged because (i) some routers did not produce valid solu-
tions on all benchmarks, (ii) some routers did not succeed on routable
benchmarks, and (iii) benchmark solution quality varies significantly. . 54

4.3 General statistics on the ISPD08 benchmarks [84]. † indicates that it was
part of the ISPD07 benchmark suite [51]. 56

xi

4.4 BFG-R compared with leading routers on the re-placed ADAPTEC bench-
mark suite. Each benchmark’s netlist was placed using mPL6 [13] with
its corresponding target density. These benchmarks were not used during
the development of the routers we evaluate. 58

4.5 Runtimes of BFG-R [43] on DAC 2012 benchmarks [109] with the origi-
nal netlist (1×), two times the original size (2×), and and three times the
original size (3×). Experiments were performed with an 3.4GHz Intel
Xeon CPU. 60

5.1 The impact of congestion-aware detailed placement on HPWL(×10e6),
routed wirelength (×10e6), and overflow (OF) on ISPD 2011 bench-
marks [108]. Runtimes are given in minutes. Routing was performed by
coalesCgrip [12] with a 15-min time-out. 75

5.2 Routed wirelength (RtWL, ×10e6), routing overflow (OF), and runtime
(in minutes) on ISPD 2011 benchmarks. The placements were evaluated
by coalesCgrip [12] with a 15-min time-out. 76

5.3 Routed wirelength (RtWL, ×10e6) and routing overflow (OF) on ISPD
2011 benchmarks [108]. Routing was done using coalesCgrip [12] with
a longer time-out than in Tables 5.1 and 5.2. Means are calculated ex-
cluding routable benchmarks, which under-represents the impact of pro-
posed techniques. 79

6.1 Total overflow estimation comparisons ofL-routing, LZ-routing, the ini-
tial (maze) routing of BFG-R [43], and LIRE inside CoPR for the SU-
PERBLUE2 benchmark [109] (Figure 6.8). 101

6.2 Quality metrics (based on NCTUgr [77]) without runtime for the top
three contestants as reported at the ICCAD 2012 Routability-driven Place-
ment Contest [110]. Full results for SimPLR, RippleCUHK and NTU-
place4h are available at [110]. 102

6.3 Quality metrics (based on BFG-R [43]) without runtime for the top three
contestants as reported at the ICCAD 2012 Routability-driven Placement
Contest [110] and CoPR. Full results for SimPLR, RippleCUHK and
NTUplace4h are available at [110]. 102

6.4 CoPR runtimes are compared to those of the fastest top-3 contestant Sim-
PLR by running both tools on the same server (3.4GHz Intel Xeon). The
last two columns show the runtime of LIRE as a percent of total CoPR
runtime, and the number of LIRE invocations on each benchmark. . . . 103

xii

7.1 Heterogeneity in 3D Integration. 111

7.2 Empirical results of our buffer insertion and routability experiments.
Here, RtWL is the summation of routed horizontal and vertical segments,
and the number of vias. We ran every benchmark with a hard limit of 60
minutes. 121

xiii

ABSTRACT

High-performance Global Routing for Trillion-gate Systems-on-Chips

by
Jin Hu

Chair: Igor L. Markov

Due to aggressive transistor scaling, modern-day CMOS circuits have continually in-

creased in both complexity and productivity. Modern semiconductor designs have nar-

rower and more resistive wires, thereby shifting the performance bottleneck to intercon-

nect delay. These trends considerably impact timing closure and call for improvements

in high-performance physical design tools to keep pace with the current state of IC inno-

vation. As leading-edge designs may incorporate tens of millions of gates, algorithm and

software scalability are crucial to achieving reasonable turnaround time. Moreover, with

decreasing device sizes, optimizing traditional objectives is no longer sufficient.

Our research focuses on (i) expanding the capabilities of standalone global routing, (ii)

extending global routing for use in different design applications, and (iii) integrating rout-

ing within broader physical design optimizations and flows, e.g., congestion-driven place-

ment. Our first global router relies on integer-linear programming (ILP), and can solve

fairly large problem instances to optimality. Our second iterative global router relies on

Lagrangian relaxation, where we relax the routing violation constraints to allowing routing

xiv

overflow at a penalty. In both approaches, our desire is to give the router the maximum

degree of freedom within a specified context. Empirically, both routers produce compet-

itive results within a reasonable amount of runtime. To improve routability, we explore

the incorporation of routing with placement, where the router estimates congestion and

feeds this information to the placer. In turn, the emphasis on runtime is heightened, as the

router will be invoked multiple times. Empirically, our placement-and-route framework

significantly improves the final solution’s routability than performing the steps sequen-

tially. To further enhance routability-driven placement, we (i) leverage incrementality to

generate fast and accurate congestion maps, and (ii) develop several techniques to relieve

cell-based and layout-based congestion. To broaden the scope of routing, we integrate a

global router in a chip-design flow that addresses the buffer explosion problem.

xv

PART I

Introduction and Background

1

CHAPTER I

Routing in Trillion-gate ASICs

As the complexity of digital designs grows, automated ASIC design flows must also

evolve to keep up such that the produced integrated circuits (ICs) can be optimized for

metrics such as performance and power. Traditionally, device or gate delay dominated

chip performance. However, at current technology nodes, the performance bottleneck has

shifted to interconnect delay, as (i) device delays improve faster than interconnect delay,

and (ii) the amount of interconnect grows superlinearly with respect to the number of

components. A trillion-gate system would typically be partitioned into tens or hundreds

of smaller blocks, where then each individual block would undergo physical design and

physical synthesis optimizations. Some of these blocks include on-chip memories, analog

and mixed-signal blocks, high-speed I/O, general processing cores, digital signal proces-

sors, Fast Fourier Transform cores, and other circuits that are beyond the scope of the

dissertation. The remaining blocks contain up to tens of millions of logic gates, which

are bundled into a smaller set of standard cells (e.g., on the order of five million). The

locations of individual logic gates and CMOS transistors are computed by offsetting the

locations of respective standard cells by fixed offsets from the standard-cell library. Dur-

ing physical design optimization, designers must determine the locations of these standard

cells, as well as their connectivity. This often requires several iterations of placement and

2

routing. While every step affects timing closure, global routing is one of the fundamental

stages. Known to be NP-complete [62], global routing impacts circuit performance, power,

and turnaround time. Routing determines the length and delay of critical paths and there-

fore directly affects design timing. The recent ISPD 2007 and ISPD 2008 Global Routing

Contests [51, 84] facilitated the development of novel routing techniques and algorithms,

and inspired the creation of many scalable academic routers. This routing progress in

part enabled the viable use of global routing in other design-flow steps, such as evaluating

intermediate global placement solutions [108].

1.1 Challenges in Global Routing

Given that any given region on the chip can support a limited number of routes, it

is imperative that: (i) the full assignment of routes has no violations, i.e., no location is

over-subscribed, (ii) the routes are assigned such that every route has sufficient but uses

minimal routing resources, and (iii) the assignment process has reasonable runtime.

Removing routing violations. State-of-the-art physical design tools must limit routed

interconnect lengths, as this greatly affects the chip’s performance, dynamic power, and

yield. Moreover, violation-free routing solutions facilitate smooth transition to design-for-

manufacture (DFM) optimizations.

If a global router produces a violation-free (legal) solution, then the design is passed

to detailed routing and continues through the design process. However, if a routed design

is inevitably unroutable or has violations, then a secondary step must isolate problematic

regions (Figure 1.1). Given a significant number of violations, it is common practice to

fix the routing by repeating global and/or detailed placement and injecting whitespace

into congested regions. This type of congestion-driven placement is supported by both

commercial and academic software [24, 58, 94, 103]. In other words, the global router is

3

no

no
Violations

Isolated?

from global

placement
to detailed routing

(2)yes

yes

(1)

(3)

Violation-

free?
Global Routing

Spot-repair(Re-)Placement

Figure 1.1: The global routing portion of the VLSI design flow. Fully routable designs are
handed off to detailed routing. Otherwise, the design can (1) be sent directly
to detailed routing, (2) go through spot-repair, or (3) go through re-placement
iterations, depending on the severity of violations.

not solely responsible for producing a violation-free solution.

If the number of violations is small or the violations are isolated, then (1) a secondary

tool can attempt to spot-repair the slightly illegal layout, (2) the design can be handed

off to detailed routing, or (3) the design is sent back to placement. Spot-repair is the

most attractive option, as it allows the violations to be fixed without affecting the large

majority of global routes. With a small number of violations, most commercial tools

gamble on detailed routing to resolve them. Therefore, a global router does not always

need to minimize violations but it usually must minimize the total wirelength of the design

because (i) the length of the routed nets directly affects how and if violations can be

repaired, (ii) spot-repair does not significantly alter the total wirelength, and (iii) detailed

routing largely follows global routes. In practice, even a small number of global-routing

violations imply a long runtime in detailed routing, degraded signal integrity caused by

densely packed wires, and dishing effects caused by chemical mechanical polishing (CMP)

during fabrication. Instead, designers allocate greater amounts of whitespace to wire-dense

blocks during floorplanning while EDA tools use congestion-mitigation techniques during

placement. Tools like FastRoute [87] were intended to provide congestion feedback to

global placers [24] rather than as a high-quality router.

4

Minimizing routed wirelength. Traditionally, in addition to producing a (near) violation-

free routing solution, a global router’s must also minimize wirelength, which is a com-

bination of (i) the total number of routing tracks or routing segments used in each metal

layer, and (ii) the total number of vias, i.e., connections in which to connect routing tracks

across layers. However, with current technology scaling trends, designs are susceptible

to coupling capacitance and other parasitic effects. Traversing from one metal layer to

another is becoming costly as vias have non-trivial effects because they impact timing and

may block several routing tracks [106]. In this respect, routing is even more important, as

it directly determines the locations of the routes, as well as the number of vias. Thus, a

router must also limit the number of vias as well as minimize the number of routing tracks.

Integrating routing and placement. In earlier technology generations, placement and

routing algorithms were designed and implemented in separate software tools, even when

the user interface exposed a single optimization to chip designers. Yet, common placement

metrics no longer capture key aspects of solution quality at new technology nodes [4, 94].

Wirelength-optimized placements often lead to routing failures when the placer is not

aware of actual routes [24]. Prior work incorporates routing congestion analysis, i.e., the

ratio between route usage and route capacity, into global placement, but lacks in several

aspects. First, simplified congestion models do not capture phenomena salient to modern

layouts, e.g., the impact of non-uniform interconnect stacks and partial routing obstacles

on congestion. Second, the placement techniques that best control whitespace allocation

in response to congestion (min-cut and annealing-based) can no longer efficiently han-

dle the large number of movable objects present in modern designs. Third, incremental

post-placement optimization alone is often insufficient as it cannot change the structure of

global placement.

5

Challenges in congestion estimation [4]. A successful estimator must account for up to

twelve metal layers with wire widths and spacings that differ by up to 20×. Blockages

and per-layer routing rules must be modeled as well. Other constraints include via spacing

rules and limits on intra-GCell routing congestion. After the 2007 and 2008 ISPD Routing

Contests [51, 84], academic routers NTHU-Route 2.0 [14], NTUgr [47], FastRoute 4.0

[121], BFG-R [43] started to account for these issues. More recent routers — PGRIP

[119], PGR (SGR) [77], GLADE [15, 70] — have improved solution quality and runtime,

and account for different layer directives.

Routability-driven placement. In this context, several different optimization objectives

can be pursued, such as ensuring 100% routability, even at the cost of significant routing

runtime. Alternatively, placement solutions can be evaluated with a layer-aware global

router with a short time-out, which nevertheless correlates with the final router (and is

potentially based on the same software implementation). This intermediate objective is

more amenable to optimizations in global placement because its quick evaluation facili-

tates a tight feedback loop. In other words, intermediate placements can be evaluated many

times, allowing the global placer to make proper adjustments. Due to the correlation be-

tween the fast and the final routers’ solutions, resulting routability-driven placements may

fare better even with respect to the former, more traditional objective. This approach also

facilitates early estimation of circuit delay and power in terms of specific route topologies.

On the other hand, biasing the global placer away from its traditional optimization met-

rics to more sophisticated routability-based metrics (defined in Chapter II) may adversely

affect the global placer’s overall optimization capabilities.

6

1.2 Our Contributions

This dissertation develops the following contributions.

Standalone global routing based on integer-linear programming. As described in

Chapter II, the global routing formulation involves an objective function subject to a set

of constraints. This is reminiscent of linear programs (LP), and, if properly constructed,

the obtained solution will be optimal (relative to its formulation). However, the traditional

formulation is not scalable, even for small designs. To this end, in Chapter III, we present

a scalable integer-linear program to optimally select a low-cost path for each net from

a set of candidate paths. By controlling both (i) the number and (ii) the quality candi-

date paths, we are able to efficiently find high-quality solutions without incurring a high

runtime overhead. In addition, our approach is net-ordering independent, as our linear

program simultaneously routes all nets.

Standalone global routing based on Lagrangian relaxation. As stated in Chapter II,

there are many efficient approaches and routing techniques to determine an optimal path

for a given net. However, to satisfy all given constraints, the router often requires many it-

erations of ripping up nets in violation and finding better paths. The convergence problem

is further exacerbated when the router cannot find better paths due to the non-changing

landscape (e.g., persistent congestion). To this end, in Chapter IV, we present (i) rout-

ing framework that facilitates convergence by accounting for not only the current routes,

but also the history of each net, and (ii) several generic techniques to improve the quality

and performance of the router. By accounting for history, we ensure that the landscape is

changing gradually, and relieve hard-to-route regions instead of moving them to different

locations. Our individual techniques help control the cost-growths of each routing loca-

tion, thereby preserving quality, and address performance bottlenecks, thereby improving

7

runtime. Our implementation empirically validates the scalability of our algorithms. In ad-

dition to large publicly released benchmarks, we stress our system on a set of benchmarks

on the order of those for trillion-gate systems (Section 4.6).

Simultaneous global placement and routing. To improve the quality of the placement

solution, recent industrial practices have integrated global routers directly within the global

placer in order to avoid future troublesome spots. Since the placer and router now iterate

back and forth many times, the router must be fast as well as accurate. This congestion in-

formation directs the placer to regions where routing is difficult. However, the placer must

take care to preserve the quality while improving routability. This is often done through

the two general approaches of whitespace injection and cell bloating. However, the re-

alization of these techniques are placer-specific. To this end, in Chapter V, we present

a fully-integrated place-and-route framework that incorporates routability-driven compo-

nents into a state-of-the-art global placer [66] and detailed placer [89]. In Chapter VI,

we improved on the performance bottlenecks. To generate accurate congestion maps, we

leverage the inherent interaction between the router and placer, and employ the Bellman-

Ford algorithm to significantly improve routing runtime while preserving accuracy. We

also identify the different types of congestion that is present during placement, and present

several new techniques that efficiently addresses these difficult-to-route regions. Empir-

ically, our implementation handles instances with millions of movable objects and nets

without incurring large resource overhead.

Heterogeneous 3D technology. In addition to integration with other physical design tools,

a global router can be used to evaluate routability for different technologies. In Chapter

VII, we address the buffer-explosion problem, where the number of inserted buffers sig-

nificantly increase with each technology node [97]. Here, we use two different technology

nodes such that a significant number of buffers are housed on a separate, older technology

8

die. We describe how we use a global router to (i) estimate routability on both dies (in-

dependently) and (ii) estimate the overall benefit of using two dies in the context of this

heterogeneous 3D technology.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. Part I provides the setting for our

work. Chapter I presents the challenges of global routing. Chapter II formalizes the global

routing problem, and outlines the relevant prior work in global routing. Part II covers our

preliminary work in global routing. Chapter III describes a global router that routes all nets

simultaneously using ILP, while Chapter IV describes a global router that routes all nets

iteratively using history, e.g., negotiated-congestion. Chapter V describes our preliminary

work for integrating a simplified global router into global placement to produce solutions

such that the routing quality is improved. Part III extends the role of global placement

to help facilitate resource management, both during the functional and physical design

phases. Chapter VI improves upon our preliminary work on routability-driven placement

by improving the scalability of congestion estimation and developing new techniques to

relieve different types of congestion. Chapter VII addresses the buffer-explosion problem,

discusses the benefits of moving buffers to a separate buffer die, and describes the usage of

a global router within this design flow. Chapter VIII summarizes the thesis, and discusses

topics for future research.

9

CHAPTER II

State-of-the-Art Global Routing Algorithms

In this chapter, we review the terminology and objectives of global routing, how it

connects to detailed routing and global placement, and several known routing approaches.

2.1 Global Routing Terminology

A global routing instance is divided into two parts: the design’s layout, and the design’s

netlist. The design’s layout is represented as a three-dimensional X ×Y ×Z routing grid

G, where each 0 ≤ z < Z represents a metal layer with dimensions X × Y . Each layer

consists of global routing cells or GCells, each with coordinate g(x, y, z); the bottom left

GCell of G to have coordinate (0, 0, 0). To represent preferred routing directions, we limit

the connectivity of GCells within each X × Y plane to be only horizontal or vertical.

Therefore, each GCell with coordinate g(x, y, z) is connected to four other GCells: two

on the same plane, one leading to the layer above, and one leading to the layer below. To

model routing resources, each edge e between two GCells gi and gj is assigned a rout-

ing capacity cap(e), defined as the number of times e can be prescribed. Similarly, each

edge e also has a routing usage usage(e), which is defined as the number of times e has

been prescribed. In this model, we distinguish the edges that connect GCells in the same

layer as routing segments, and edges that connect GCells across different layers as vias; as

10

(a) (b) (c)

Figure 2.1: The global routing grid formats. (a) A two-dimensional grid, where horizontal
and vertical tracks are on the same layer. (b) A 2.5-d grid, with one layer of
horizontal tracks (red), one layer of vertical tracks (blue), and a layer of con-
necting vias (black). (c) A three-dimensional grid, with alternating horizontal
and vertical routing layers connected by vias.

routing layers and vias are made up of different materials, e.g., copper and tungsten, vias

are sometimes considered less desirable than routing segments. The full routing grid ab-

straction is illustrated in Figure 2.1. Typically, the routing grid is two-dimensional, where

horizontal and vertical tracks are on the same plane. At older technology nodes, the grid

was limited to two metal layers. At newer technology nodes, the number of metal layers

have been increased to upwards of ten or more, where horizontal and vertical layers alter-

nate. To improve scalability, global routers have collapsed the three-dimensional routing

grid to a 2.5-d routing grid, where all horizontal tracks are in one layer, all vertical tracks

are in the other layer, and the two layers are connected by vias.

The design’s netlist is comprised of nets, where each net consists of a set of gates or

cells that must be connected. To represent nets on the routing grid, each cell’s location is

snapped to the closest GCell location. A net is routed if the set of GCells is connected by

a set of edges in the routing grid (Figure 2.2).

11

Net to be routed

Route with

4 segments

and 3 vias

Route with

5 segments

and 5 vias

Route with

3 segments

and 2 vias

Figure 2.2: An example of a net that requires a route on a 2.5-d routing grid (left), where
the three circled points need to be connected by a combination of routing seg-
ments and vias. The three on the right depict several possible routes, each
using a different number of edges.

The design’s quality is commonly measured by some combination of its (i) (weighted)

wirelength, (ii) overflow, and (iii) congestion. We define the weighted wirelength of a net

n in the netlist N as the weighted sum of its routing segments and vias

wirelength(n) = α× segments(n) + β × vias(n) (2.1)

where segments(n) is the number of horizontal and vertical segments of n, vias(n) is the

number of vias of n, and α and β represent the relative importance of routing segments

and vias. As traversing from one metal layer to another is becoming costly, vias have

non-trivial timing effects and they may block several routing tracks [106]. Therefore, vias

can have higher priority than routing segments [51]. For each edge e in the routing grid,

we define the overflow of e as the difference between the edge’s usage and capacity if the

usage exceeds the capacity, and zero otherwise.

OF (e) = max(0, usage(e)− cap(e)) (2.2)

Similarly, we define the congestion of e as the ratio between the edge’s usage and capacity

C(e) =
usage(e)

cap(e)
(2.3)

12

The quality of the netlist N is measured by its weighted total wirelength,∑
n∈N

wirelength(n) (2.4)

its total overflow, defined as the sum of all edge overflows in each net,

TOF (N) =
∑
e∈E

OF (e) (2.5)

and its maximum overflow, defined as the maximum of all edge overflows.

MOF (N) = max
e∈E

OF (e) (2.6)

Here, E is defined as the set of edges of the routing grid G.

2.2 Global Routing Formulation and Objectives

Traditionally, the only objective for global routing is to minimize total wirelength given

that the solution is legal, i.e., where the usage of each edge does not exceed its capacity.

min
∑
n∈N

length(n) s.t. usage(e) ≤ cap(e) ∀e ∈ E (2.7)

Here, N is the set of all nets, usage(e) and cap(e) are the respective usage and capacity of

edge e, and E is the set of all edges in the routing grid. However, modern global routers

must be able to handle millions of objects, account for different technology constraints,

and optimize for multiple objectives, all while maintaining a reasonable runtime.

Routing violations and wirelength. Typically, the number of violations should be zero,

i.e., MOF (N) = TOF (N) = 0, but a purely legal global routing solution is not required.

As illustrated in Figure 2.3, an excerpt from a Cadence WarpRoute report on a test bench-

mark shows that although global routing reported 295 GCells with violations, the detailed

routing solution is legal.1 As long as the percentage of violations is small, detailed routing

is usually able to compensate.
1In this chapter, we limit our discussion to edge-centric violations, and include GCell-centric discussion

in Chapters V and VI. In general, there is no commonly-agreed GCell-centric violation definition.

13

Total wire length = 6270421

Total number of vias = 740208

Total number of violations = 0

Total number of over capacity gcells = 295 (0.07%)

Total CPU time used = 0:30:36

Total real time used = 0:30:36

Maximum memory used = 162.00 megs

Cadence WarpRoute Report

Figure 2.3: Excerpt from Cadence WarpRoute on a test benchmark. Notice that although
global routing produced a total of 295 GCells with violations, the final result
given by detailed routing has none. This is typical for industry circuits.

Modeling technology constraints. With older technology nodes, there were only two

routing layers, where a net’s routing segment cost a unit length (e.g., one routing edge).

However, at lower technology nodes and increased metal layers, new constraints include:

(i) different wire widths and spacings, (ii) routing blockages, and (iii) net pins on different

metal layers. These will be discussed in further detail in Chapter V.

2.3 Previous Approaches in Global Routing

In this section, we outline the previous approaches of (i) single-net routing, (ii) stan-

dalone global routing frameworks, and (ii) incorporating global routing in placement.

2.3.1 Prior Work in Routing (Point-to-Point) Single Nets

Techniques to construct an optimal path from a single source to a single target2 are

well-known, and represented by Dijkstra’s Algorithm and A*-search [30]. While these

methods enable maximum flexibility, they often incur a runtime penalty. This section

summarizes the different common approaches used to generate a (possibly suboptimal)

route; the following section discusses how global routing frameworks leverage these point-

to-point methods.

2This can be generalized to multiple sources and targets.

14

Pattern routing. Using simple and predetermined routes, pattern routing significantly re-

duces the problem’s solution space. Instead of having restrictions placed on each routing

segment, each net is limited to a small number of shapes. A two-pin net is commonly

mapped to an L shape, where only one bend is used and the wirelength is optimal, or a

Z shape, where two horizontal segments are connected with a middle vertical segment or

vice versa. Kastner et al. [63] have shown that in standard application specific integrated

circuits (ASICs), pattern routing is efficient, as it minimizes via count and increases scal-

ability. Further work done by Westra et al. [117] shows that the majority of two-pin nets

can be routed using L shapes. Typically, pattern routing chooses from a collection of finite

routing topologies, and is more flexible than using only Ls and Zs.

Monotonic routing. In monotonic routing, the search direction is only allowed up and to

the right. That is, edges that lead down or to the left (e.g., detoured) are forbidden. Mono-

tonic routing is often implemented using dynamic programming (Algorithm 1). Lines 4-11

initialize the costs located on the borders. Lines 12-26 then propagate the costs at the bor-

der in a topological manner (towards the target) such that the optimal cost at (i, j) is only

dependent on costs at locations (i− 1, j) and (i− 1, j). Line 27 (Algorithm 2) records the

route by backtracking from the target.

Maze routing. The most versatile routing technique, maze routing uses shortest-path algo-

rithms such as Dijkstra’s Algorithm and A*-search [30, Section 24.3] to connect terminals

along the routing grid. While optimal paths can be found for pairs of terminals, the order

in which nets are routed has a profound effect on solution quality and routed length. As a

result, maze routing must be applied many times with heuristic net orderings to find legal

solutions. Moreover, vias are modeled explicitly to prevent unnecessary detouring.

15

Algorithm 1 Monotonic Routing.
Input: Net n
Output: route n.route

1: ll = n.lowerLeftCoordinate;
2: ur = n.upperRightCoordinate;
3: cost[ll.x][ll.y] = 0;
4: for i from ll.x+ 1→ ur.x do
5: cost[i][ll.y] = COST((i− 1, ll.y) ∼ (i, ll.y)) +cost[i− 1][ll.y];
6: parent[i][ll.y] = (i− 1, ll.y);
7: end for
8: for j from ll.y + 1→ ur.y do
9: cost[ll.x][j] = COST((ll.x, j − 1) ∼ (i, ll.y)) +cost[ll.x][j − 1];

10: parent[ll.x][j] = (ll.x, j − 1);
11: end for
12: for i from ll.x+ 1→ ur.x do
13: for j from ll.y + 1→ ur.y do
14: leftEdge = (i− 1, j) ∼ (i, j);
15: leftCost = COST(leftEdge) +cost[i− 1][j];
16: downEdge = (i, j − 1) ∼ (i, j);
17: downCost = COST(downEdge) +cost[i][j − 1];
18: if downCost < leftCost then
19: cost[i][j] = downCost;
20: parent[i][j] = (i, j − 1);
21: else
22: cost[i][j] = leftCost;
23: parent[i][j] = (i− 1, j);
24: end if
25: end for
26: end for
27: TRACE PATH(n);

Algorithm 2 Path-tracing Algorithm. TRACE PATH

Input: Net n
Output: n.route

1: cur = n.target;
2: while cur != n.source do
3: par = parent[cur];
4: ADD EDGE(n.route, (par, cur));
5: cur = par;
6: end while

16

2.3.2 Prior Work in Standalone Global Routers

Using point-to-point techniques described in the previous section, global routers (iter-

atively) construct paths for every net such that all constraints are satisfied. This section

outlines several global-routing frameworks, including those based in satisfiability (SAT)

and linear programming (LP), and those based on Lagrangian relaxation.

SAT- and ILP-based routing. By modeling routing constraints by Boolean formulas in

CNF, Nam et al. [83] developed a SAT-based detail router which routes all nets simultane-

ously. Using ILP, this formulation can be extended to route as many nets as possible [120].

ILP-based routing has traditionally been avoided due to its lack of scalability. An early

attempt by Burstein and Pelavin [10] could not be efficiently implemented because ILP

solvers were not sufficiently powerful. However, after major improvements in ILP solvers,

the idea of routing optimally using ILP became viable. M. Cho and D. Pan developed

BoxRouter 1.0 [20]. After decomposing multi-pin nets into two-pins subnets, BoxRouter

1.0 uses pattern routing and begins at the most congested region. Starting within a small

bounding box, it optimally routes as many nets in the region as possible using only L

patterns; the remaining unrouted nets are given to a maze router. The bounding box is

iteratively expanded using a progressive ILP formulation that extends partially-routed nets

with additional L-shaped segments. Then maze routing is invoked to complete nets that

did not route. Such steps are repeated until the entire global routing grid is subsumed.

Given that ILPs are solved optimally, using powerful ILP solvers can only improve run-

time. However, a faster ILP solver may facilitate a more comprehensive ILP formulation.

One common method used to improve the scalability of ILP-based routing techniques

is to relax the ILP problem into an easier linear programming (LP) problem. Multi-

commodity flow (MCF) based routers take this approach [2, 41]. An approximation tech-

nique incrementally adjusts routing edge weights and builds new Steiner tree topologies

17

for each net at every iteration to solve the LP. BoxRouter 1.0 has been compared to a recent

MCF-based router and was found to be superior in speed and solution quality [20]. More

recently, the culmination of these techniques were implemented in CGRIP [100], where

the design is first divided into many small regions, and then each region is routed (solved)

simultaneously using their ILP formulation. The regions are then reintegrated to account

for nets that cross multiple regions. The original CGRIP used a large number of proces-

sors, e.g., one for each window; a more scalable version, coalesCgrip, was introduced later

during the ISPD 2011 Routability-driven Contest [108].

History-based routing. Instead of being limited to locally temporal metrics such as cur-

rent congestion, routers that employ history maintain routing-violation information from

previous iterations, and incorporate that data into the cost function. This technique is

founded on Lagrangian relaxation, which was popularized by PathFinder [80]. Because

the original formulation (Equation 2.7) is too difficult to solve without violating any con-

straints, we relax the constraints into penalty functions, and incorporate them into the

objective function, we define the cost of a routing solution as

∑
n∈N

cost(n) (2.8)

where the cost of a net n is defined as

cost(n) =
∑
e∈n

cost(e) (2.9)

Here, the cost of an edge e encapsulates the specific problem instances. Typically, the cost

is based on (but not limited to) e’s usage, layer, congestion, or other technology-dependent

parameters. For simplicity, we limit our discussion to PathFinder’s edge cost formulation,

but other parameters can be easily incorporated.

cost(e) = base(e) + λ(e)× penalty(e) (2.10)

18

Here, base(e) is the edge’s base (e.g., unit) cost, λ(e) is the edge’s Lagrangian multiplier,

and penalty(e) represents the current penalty (e.g., congestion) on e. In this formulation,

λ(e) represents the edge’s history, and encapsulates the frequency at which the edge has

violations. To ensure convergence, this value monotonically increases. If the solution has

overflow (or congestion), then the Lagrangian multiplier will increase, thereby increasing

the cost of the total solution. Therefore, the goal is to minimize the total cost of all nets.

Notice, however, if the solution contains no violations, the cost will be no different than

the original formulation, and we have found a solution to the non-relaxed problem.

From the ISPD 2007 and 2008 Global Routing Contests [51, 84], the vast majority of

successful academic routers have employed the use of history, such as FGR [93], Archer

[86], NTHU-Route 2.0 [14] and NTUgr [47].

2.3.3 Using Global Routing Estimates in Placement

With increasing design complexity, optimizing traditional placement metrics is insuf-

ficient for successful routing [4, 94]. To mitigate routing failures, routability-driven plac-

ers incorporate route estimation as part of their flow. In this context, the placer is given

information about difficult-to-route areas, often in the form of congestion maps, where

edge-centric routing congestion is represented by GCell-centric congestion. This is typ-

ically done in two methods: (i) using congestion-estimation techniques, and (ii) using

global routing techniques to estimate congestion. Previously-developed routers include

work from Hadsell and Madden (Fengshui with Chi dispersion) [36], M. Cho and D. Pan

(BoxRouter 1.0) [20], Roy and Markov (FGR 1.0) [93], as well as M. Pan and C. C. N.

Chu (FastRoute) [87, 88]. Fengshui, BoxRouter 1.0, and FGR 1.0 minimize total routed

wirelength, while FastRoute minimizes its runtime at the cost of higher wirelength.

19

APPROACH TECHNIQUE

Rent’s Rule [34, 35, 79, 124]
net bounding box [11, 58]

STATIC Steiner trees [94]
pin density [9, 128]
counting nets in regions [114]
uniform wire density [38, 48, 102]

PROBABILISTIC
pseudo-constructive wirelength [61]
smoothened wire density [105]
pattern routing [117]

CONSTRUCTIVE

using A*-search [118]
using a global router:
• FastRoute [121] in IPR [24]
• BFG-R [43] in SimPLR [65]

Table 2.1: Previous congestion estimation for placement.

Congestion maps indicate regions where routing will be difficult, and are used to guide

optimization during placement. They are generated using: (i) static approaches, where

the congestion map is fixed for a placement instance, (ii) probabilistic approaches, where

net topologies are not fixed, and probabilistically determined, and (iii) constructive ap-

proaches, where a simplified global router generates approximate net routes. Traditionally,

the first two options have been the most popular, but the last option has recently been gain-

ing acceptance thanks to advanced global routers designed to handle greater layout com-

plexity. Empirical evidence from the ISPD 2011 Routability-driven Contest [108] suggests

that both probabilistic and constructive methods are viable and scalable. Table 2.1 sum-

marizes these approaches. During the ISPD 2011 Routability-driven Contest [108], Sim-

PLR integrated the global router BFG-R [43], whereas Ripple [38] and NTUPlace4 [48]

adopted probabilistic congestion estimation [102].

Placement optimizations are applied throughout the entire placement flow: (i) during

global placement, (ii) modifying intermediate solutions, (iii) during legalization and de-

tailed placement, and (iv) as a post-placement processing step (Table 2.2). In global plac-

20

ers, the most popular techniques are cell bloating and whitespace injection. Depending

on the placer type, e.g., quadratic and min-cut, the implementation of these techniques

will require placer modification, including changing the optimization function. In detailed

placers, the most popular techniques are cell swapping and cell shifting. Additional op-

timizations can be applied to intermediate (or near-final) placement solutions, and then

passed on to the next step of the design flow. During the ISPD 2011 Routability-driven

Contest [108], both SimPLR [65] and Ripple [38] used congestion maps to bloat cells and

modify the anchor positions during quadratic placement. NTUPlace4 [48] used congestion

maps when modeling pin density.

PLACEMENT PHASE TECHNIQUE

relocating movable objects:
• moving nets [38, 58]
• modifying forces [26, 102]
• incorporating congestion in objective function [48, 105]

GLOBAL • adjusting target density [65]
PLACEMENT cell bloating [9, 38, 39, 65]

macro porosity [48, 58]
pin density control [48]
expanding/shrinking placement regions [91]

INTERMEDIATE local placement refinement [24]
LEGALIZATION linear placement in small windows [54, 94]

AND congestion embedded in objective function [126]
DETAILED cell swapping [24, 38, 65]

PLACEMENT cell shifting [33, 48]
whitespace injection or reallocation [75, 94, 123]
simulated annealing [18, 40, 112]

POST linear programming [76]
PLACEMENT network flows [113, 115]

shifting modules by expanding GCells [126]
cell bloating [95]

Table 2.2: Prior congestion-driven placement techniques.

21

PART II

Global Routing in the Context of
High-performance Design Flow

22

CHAPTER III

Sidewinder: A Scalable ILP-based Router

In this chapter, we develop a global router that incorporates an ILP formulation that (i)

allows the router to have flexibility when routing nets, and (ii) is scalable (and adaptable)

for larger designs. First, we determine a number of different routes for each net. Second,

we select the top two candidates for each net based on the current congestion. Third, we

create a scalable ILP formulation that lets the ILP solver choose the better route candidate.

As shown in Section 3.3, empirically, on the ISPD98 benchmarks [50], this formulation

alone routes 98% of nets with optimal wirelength and minimal via count, but remaining

nets require small detours.

3.1 Introduction

The first ILP-based router was proposed by Burstein and Pelavin [10] but was imprac-

tical because ILP solvers of the day were unacceptably slow. ILP solvers have improved

dramatically in terms of speed and efficiency in the past twenty years and, M. Cho and

D. Pan [20] have successfully implemented an ILP-based router BoxRouter 1.0 with pre-

and post-processing to simplify the problem. Like BoxRouter 1.0, we consider routing

optimally all two-pin nets with L shapes first. However, instead of iteratively expanding a

small bounding box, we consider the entire routing grid during each pass. In addition to L

23

shapes, we also consider all Z shapes and selected C shapes (Figure 3.2).

Sidewinder is much simpler than existing routers because the majority of work is done

by the ILP solver. Unlike the ILP formulations used in BoxRouter 1.0 [20], Sidewinder’s

pattern routes allow at most three bends per two-pin subnet and detours of at most four

GCells in length. With these restrictions relaxed, any remaining nets can be routed with a

simple post-routing step in all the designs we considered. On the other hand, Figure 2.3

suggests that Sidewinder is already a viable global router because post-processing can be

performed by existing detail routers. Sidewinder’s ILP formulation can also be used in the

BoxRouter flow to improve via count and detours.

The following key ideas are proposed in this work:

• selection of two least congested patterns per net.

• search over all two-bend Z-shaped routes.

• use of detoured two-bend and three-bend C-shape routes.

• congestion-based ILP formulation.

• congestion map updates between ILP calls.

• an incremental ILP for all nets that is guaranteed to never make solutions worse.

The rest of this chapter is structured as follows: Section 3.2 describes the problem

formulation in detail. Section 3.3 has the experimental setup and results. Section 3.4

concludes this chapter and mentions future work.

3.2 Sidewinder

We present Sidewinder’s high-level flow, related algorithms, and the ILP formulation.

24

no

yes

no

yes

Global Routing

Instance

Multi-pin Net

Decomposition

ILP Routing

using L Shapes

Global

Time-out?
Final (non-ILP)

Maze Routing

Routed Solution
ILP Routing using

Selected Routes

Generate L, Z, C,

and Maze Routes

Improve?

Algorithm 1

Generate

Congestion Map

Route Selection
Algorithm 2

Figure 3.1: High-level flow of Sidewinder. We first create an initial solution using only
L shapes. Next, we build a congestion map based on the current solution to
use as a guide for the new solution. For net route candidates, we consider Ls,
Zs, Cs, and a maze route. Once all nets are processed, an ILP is formed and
solved. This cycle continues until the new solution has the same cost as the
current solution. Once there is no more improvement, maze routing is applied
to yield the final routing solution.

3.2.1 High-level Framework

We only consider the routing of two-pin nets; multi-pin nets are decomposed into mul-

tiple two-pin nets. The terminals of each net are located within their respective GCells. As

shown in Figure 3.1, we first generate an initial routing solution using only L shapes (ini-

tial routing). Using this current solution, we build a congestion map to guide the routing of

the new solution. For each net, we consider Ls, Zs, Cs, and a maze route as possible route

candidates. This specific portion is discussed in greater detail in Algorithm 3, Algorithm

4, and Section 3.2.2. After all the route candidates have been selected, we formulate this

problem into an ILP and generate the new routing solution. If this new solution is better

(higher objective function) than the previous solution, this process is repeated. Once there

is no more improvement, we apply a pass of maze routing to route all outstanding nets.

25

3.2.2 Algorithm Design

The iterative portion of Sidewinder is given in Algorithm 3. The first iteration routes as

many subnets as possible using Ls. In subsequent iterations, alternative route types of Ls,

Zs, Cs, and maze are evaluated using a congestion map. Line 5 constructs a congestion

map based on the current routing solution S. Lines 13-29 generates all route candidates for

each net. To improve routability, we evaluate all unrouted nets before routed nets. Lines

13-20 selects the top num routes candidates for all currently-routed nets, with one choice

being the current route. Similarly, lines 21-29 selects the top num routes candidates for

each currently-unrouted net. Line 30 solves the ILP formulation, and lines 31-36 evaluates

the solution progression.

For each net, we only consider legal route candidates, e.g., detoured routes that are not

within the routing grid are not allowed. Each of the shapes are also considered “sufficiently

different” – this gives the router more flexibility and freedom. We emphasize that the two

chosen routes are always different. In the case where the maze route is a duplicate pattern

route, the maze route is removed and the next best route comes off the priority queue.

Once the two routes are selected, the congestion map is updated. If the net was routed,

the current route is given a weight of 0.9 and the new candidate 0.1. If the net was not

routed, each candidate is given a weight of 0.5. Notice that the congestion map is updated

after each net has been processed. This guides the router such that the new route choices

will not create new congestion areas.

After each net has two possible route candidates, we create the ILP formulation and

solve. This yields a new routing solution S ′. If the solution quality of S ′ is better than the

solution quality of S, then we set S = S ′, and the process is repeated. From our formu-

lation, we define the quality of a routing solution to be the objective function returned by

the ILP solver. A higher objective value implies more nets have been routed. Once the

26

Algorithm 3 High-level Iterative Algorithm of Sidewinder.
Input: Routing Grid G, Netlist N , Route Types RT ,

Number of considered routes num routes, (Partially) Routed Solution S
Output: New Routed Solution S’

1: improve = true
2: nets unrouted = ∅;
3: nets routed = ∅;
4: while improve do
5: CM = GENERATE CONGESTION MAP(G, S);
6: for all nets n ∈ N do
7: if IS NET ROUTED(n, S) then
8: ADD TO LIST(nets routed, n);
9: else

10: ADD TO LIST(nets unrouted, n);
11: end if
12: end for
13: for all nets n ∈ nets unrouted do
14: for all route types rt ∈ RT do
15: pq.INSERT(GENERATE ROUTE(n, pt, CM));
16: end for
17: for i = 0→ num routes-1 do
18: routes[n][i] = pq.POP();
19: end for
20: end for
21: for all nets n ∈ nets routed do
22: for all route types rt ∈ RT do
23: pq.INSERT(GENERATE ROUTE(n, pt, CM));
24: end for
25: routes[n][0] = CURRENT ROUTE(n, S);
26: for i = 1→ num routes-1 do
27: routes[n][i] = pq.POP();
28: end for
29: end for
30: S ′ = SOLVE ILP(GENERATE ILP FORMULATION(G, N , routes));
31: improve = OBJECTIVE VALUE(S ′) > OBJECTIVE VALUE(S);
32: if improve then
33: S = S ′;
34: else
35: S ′ = S;
36: end if
37: end while

27

objective value stabilizes, i.e., OBJECTIVE VALUE(S) = OBJECTIVE VALUE(S ′), this

iterative portion terminates.

Algorithm 4 Route Selection.
Input: Routing Grid G, Route r
Output: Minimum Number of Free Segments Along the Path segs free min,

Total Number of Free Segments Along the Path segs free total

1: segs free min = 0;
2: segs free total = 0;
3: if IS ROUTE ILLEGAL(G, r) then
4: segs free min = route illegal;
5: segs free total = route illegal;
6: end if
7: for all edges e ∈ r do
8: if G[e].capacity < 0 then
9: if segs free min ≥ 0 then

10: segs free min = -1;
11: else
12: - -segs free min;
13: end if
14: else
15: segs free min = MIN(segs free min, G[e].capacity);
16: segs free total += G[e].capacity;
17: end if
18: end for

The algorithm for route calculation and selection is given in Algorithm 4. Each candi-

date route is given two metrics: minimum number of free segments (segs free min) and

total number of free segments (segs free total). segs free min is found by taking the

minimum available space/segment for each segment in the route. If a segment has no room

(capacity = 0) or is overfilled (capacity < 0), the priority is the -(total number of routing

violations). In other words, routes with overflow have a negative priority (less desirable)

while routes without any violations have a positive priority (more desirable). Likewise,

segs free total is found by summing up the total number of free space across the route.

Once all the route priorities are calculated, they are ranked by segs free min. That

28

(a) (b) (c) (d) (e) (f)

Figure 3.2: Patterns Sidewinder considers when choosing routes. (a) Two different L
shapes, (b) All possible vertical Zs, (c) All possible horizontal Zs, (d) C
shapes – detouring one unit in the vertical direction, (e) C shapes – detour-
ing one unit in the horizontal direction, (f) C shapes – detouring one unit in
both the horizontal and vertical direction.

is, the least congested routes are the top choices. segs free total is only used in case

of a tie between routes that have the same segs free min. Thus, the most desirable

route is the one with the most total available capacity. Note that with this formulation,

there are ALWAYS at least two legal and “sufficiently different” routes available. With this

formulation, we guarantee that the ILP solution will be no worse than the previous. Each

subsequent ILP instance routes at least as many nets as the current ILP instance. In the

worse case, the same nets will be routed, causing the objective function to stay constant.

3.2.3 ILP Formulation

In this section, we present the general ILP formulation (Algorithm 5) that considers k

types of routes. In our implementation, we let k = 2, and in the first ILP iteration, we only

consider L-shaped routes.

Recall that we choose two possible route candidates for each net n in the netlist N . In

the ILP, this is represented with two 0-1 variables, xn1 and xn2 . A value of 0 represents

the route was not chosen; the value of 1 represents the route chosen for the net. The first

three constraints guarantees that at most one route out of the two will be selected (either

one route will be chosen or no routes will be chosen). The fourth constraint states that

29

for all North routing edges g(x, y) ∼ g(x, y + 1) ∈ G, the summation of all selected

routes must be less than or equal to cap(g(x, y) ∼ g(x, y + 1)), the total capacity of

g(x, y) ∼ g(x, y+1). That is, the sum of routing segments assigned through a GCell must

be less than or equal to the total capacity of the edge. Similarly, the next three constraints

ensure that South, East, and West edge capacities are respected. Note that only the

North and East (or some similar variation) constraints are needed, as the North and

South constraints are the same and the East and West are the same.

Algorithm 5 Sidewinder’s ILP Formulation.

Inputs
G : routing grid
X × Y : width X and height Y of G
cap(g(x, y) ∼ g(x+ 1, y)) : capacity of horizontal edge g(x, y) ∼ g(x+ 1, y),

where 0 ≤ x < X − 1 and 0 ≤ y < Y
cap(g(x, y) ∼ g(x, y + 1)) : capacity of vertical edge g(x, y) ∼ g(x, y + 1),

where 0 ≤ x < X and 0 ≤ y < Y − 1
N : netlist

Variables
xn1 , . . . , xnk

: k Boolean route variables for each net n ∈ N
wn1 , . . . , wnk

: k net (real) weights, one for each net n ∈ N

Maximize:
∑
n∈N

wn1 · xn1 + · · ·+ wnk
· xnk

Subject to
xn1 + · · ·+ xnk

≤ 1 ∀n ∈ N
xn1 , . . . , xnk

∈ [0, 1] ∀n ∈ N∑
n∈N

xn1 + · · ·+ xnk
∀nk that use edge g(x, y) ∼ g(x+ 1, y)

≤ cap(g(x, y) ∼ g(x+ 1, y)) 0 ≤ x < X − 1, 0 ≤ y < Y∑
n∈N

xn1 + · · ·+ xnk
∀nk that use edge g(x, y) ∼ g(x, y + 1)

≤ cap(g(x, y) ∼ g(x, y + 1)) 0 ≤ x < X , 0 ≤ y < Y − 1

30

The next variables wn1 and wn2 are the corresponding weights given to each route.

These weights are determined by the type of route xn1 and xn2 are. Strictly speaking,

a route with a higher coefficient is more preferred than a route with a lower coefficient.

Since we consider a number of routes with different wirelength and bends (an L has less

wirelength and fewer bends than a detour), we assign different weights to the objective

function based on the type of route selected. Since the objective function is maximized,

we value Ls the most, followed by Zs, then Cs, and then maze routes. Note that although

we consider many different routes, the number of variables needed is still only two per

subnet, ensuring the scalability of our ILP formulation.

3.2.4 Insights

During our preliminary work, we have evaluated a number of different ILP formula-

tions to global routing. We quickly observed that all formulations that scale to a large

number of nets fell into the category of pattern routing. That is, they would only allow

a small number of configurations per net. Furthermore, ILP formulations with only two

patterns per net were solved an order of magnitude faster than those with four or more

patterns per net.

While our observations about efficient ILP formulations are consistent with the success

of L-shape routing in BoxRouter 1.0, the choice of L-shapes is not as critical. Thus our

first insight is as follows: Select routing patterns other than L-shapes for nets and allow

for dynamic selection of pattern shapes.

For further studies, we extracted several small but difficult routing instances from com-

mon benchmarks. In some of the instances, only about half the nets could be routed with

Ls due to capacity constraints. We have evaluated several simple patterns, including Z-

shapes where the middle segment would cross the midpoint of the net’s bounding box.

31

We found that allowing this pattern provides only marginal (if any) improvement to L-

only ILPs. However, including shapes with slight detours (which we term as C-shapes)

allowed us to route significantly more nets.

Our third insight is routes should be evaluated based on congestion, rather than on

length or via count, to determine the best candidates. For the initial ILP formulation, we

select the two best routes based on congestion if the net was not routed previously and the

current and best routes if the net was routed. We noticed that the runtime of the ILP solver

decreased dramatically the more accurate we were at predicting the possible routes.

Our final insight is that all Z-shaped routes should be considered rather than only

ones that cross the midpoint of a nets’ bounding box. For a given net, we can scan the

congestion map and find quickly the least congested Z-shaped routes. We noticed that this

new flexibility noticeably improved our solution quality.

3.2.5 Sidewinder vs. BoxRouter 1.0

Comparing our ILP formulation with BoxRouter 1.0 — the only scalable ILP router in

the literature — we note several important differences:

• BoxRouter’s ILP is applied to a small region and includes only L-shaped routes; our

formulation is applied to the entire global routing grid and after the first iteration

also includes all possible C-shapes and Z-shapes.

• For long nets, BoxRouter’s ILP routes one portion of the net at a time, whereas

Sidewinder’s ILP routes entire nets in all cases.

• At each iteration, BoxRouter’s progressive ILP extends its current region to a slightly

larger region and extends nets present in both regions by new L-shaped segments.

Therefore, long nets may be routed with two bends per region,1 whereas Sidewinder’s
1Except in cases where the L is degenerate — a flat wire

32

formulation is global and does not allow more than three bends per subnet.

• BoxRouter’s ILP formulation is not sensitive to congestion, but is formulated for the

most congested region in its first iteration. In contrast, Sidewinder’s ILP formulation

is global. The second iteration (and beyond) explicitly accounts for congestion when

selecting two patterns for each net. Moreover, the status of the internal congestion

map is dynamically updated during the ILP construction.

3.3 Empirical Validation

We implemented Sidewinder as follows. The high-level algorithms are written in C++;

we used CPLEX v.10.1 [31] as our ILP solver. Using FLUTE [25], we decompose all

multi-pin nets into two-pin subnets. For our ILP cost function, we use the following pricing

scheme for the different patterns: 1.00 for Ls, 0.99 for Zs, 0.98 for Cs, and 0.97 for

the maze route. Note that this formulation directly accounts for both bends (vias) and

wirelength. L-shapes are the most preferred route, as they have the fewest number of

bends – zero or one. After Ls, Z-shapes are the most preferred, as they have the same

(minimal) wirelength and only one extra bend. Next, C-shapes have an additional two

units of wirelength and one additional bend. When no pattern route is legal, a maze route

used as the last choice. In practice, the maze routes have more bends and wirelength than

any of the other patterns. The chosen coefficients both encourage the use of short (L-

shapes) routes as well as enable a degree of flexibility for detours. All experiments were

performed on an AMD Opteron 2.4 GHz machine with 4 GB of memory.

Routability results for Sidewinder on the ISPD98 benchmarks [50] are shown in Ta-

ble 3.1. We list the percentage of nets routed by Sidewinder, the number of iterations

necessary and the total runtime for each benchmark. The ILP portion of Sidewinder is

successful in routing 99.86% of all nets. Note that 100% routability is not required - the

33

Benchmark Size (X × Y) Total Nets Total Routed # ILP Iters. Runtime (min)
IBM01 64×64 11507 99.36% 12 231
IBM02 80×64 18429 99.95% 8 92
IBM03 80×64 21621 99.99% 6 93
IBM04 96×64 26163 99.50% 6 217
IBM05 128×64 27777 100% 1 < 1
IBM06 128×64 33354 99.98% 6 130
IBM07 192×64 44394 99.94% 6 100
IBM08 192×64 47944 99.98% 6 120
IBM09 256×64 50393 99.99% 6 277
IBM10 256×64 64227 99.98% 5 103

Average 99.86%

Table 3.1: Results of routability for Sidewinder on the ISPD98 benchmark suite [50] BE-
FORE FINAL ROUTING.

BoxRouter 1.0 FGR 1.0 Sidewinder
ISPD98 Over- Via Routed Over- Via Routed Over- Via Routed

Benchmarks fllow Count Length fllow Count Length fllow Count Length
IBM01 102 15434 65588 0 17124 63332 255 15084 66058
IBM02 33 32529 178759 0 37937 168918 8 30668 174062
IBM03 0 25724 151299 0 31993 146412 0 22809 147524
IBM04 309 30836 173289 0 38464 167101 618 28611 172652
IBM05 0 51228 409747 0 77104 409739 0 50321 409778
IBM06 0 45692 282325 0 57036 277608 0 42847 280007
IBM07 53 60832 378876 0 78563 366180 0 56895 381694
IBM08 0 75291 415025 0 93905 404714 0 69321 413300
IBM09 0 68707 418615 0 86645 413053 0 64419 416554
IBM10 0 100546 593186 0 128141 578795 0 95316 591036

Average +6.4% +0.5% +35.8% -1.9%

Table 3.2: Solution quality comparison of Sidewinder to BoxRouter 1.0 [20] and FGR
1.0 [93]. Note that on these benchmarks, unlike the ISPD 2007 benchmarks,
the default mode of FGR 1.0 does not penalize bends and only minimizes wire-
length without accounting for vias.

percentage of unrouted nets after ILP are trivial and a detail router is able to compensate

(Fig. 2.3). In order to compare directly with BoxRouter 1.0 and FGR 1.0, we take the so-

lutions generated by Sidewinder and route all remaining unrouted nets with a single pass

of a maze router (no nets originally routed were ripped-up).

Table 3.2 compares these fully routed solutions to those of FGR 1.0 and BoxRouter 1.0

in terms of total overflow, via count and total routed wirelength. We first compare against

FGR 1.0 [93], which won the ISPD 2007 Contest [51] in the 2D Category. While FGR

1.0 completes all the ISPD98 benchmarks without violation, its via counts are higher than

34

ibm10ibm07 ibm09

Figure 3.3: Via count comparison between Sidewinder and BoxRouter 1.0 for (a) IBM07,
(b) IBM09, and (c) IBM10. The x- and y-axes state the number of vias for
Sidewinder and BoxRouter 1.0, respectively. Each net is represented by a
point whose coordinates are the number of vias it has in the results of these
two routers. The blue line shows where Sidewinder and BoxRouter 1.0 use the
same number of vias for a given net. Thus, if a point is above the blue line,
Sidewinder uses fewer vias than BoxRouter 1.0 for the same net.

Sidewinder’s by 35.8%. Note that since this set of benchmarks don’t formally have vias,

we refer to vias as when a net “bends”. That is, a via is counted when a horizontal routing

segment is followed by a vertical segment (or vice versa). FGR 1.0, in this case, did not

penalize bends.

Compared against BoxRouter 1.0, we achieve 6.4% less vias and 0.5% shorter routed

wirelength with moderate amounts of overflow. The via comparison is further depicted in

Figure 3.3. The blue line represents where both routers use the same number of vias for

that net. That is, a data point above the blue line means Sidewinder uses fewer vias and

a data point below the blue line indicates Sidewinder uses more vias. Against BoxRouter

1.0, Sidewinder uses fewer vias on the vast majority of the nets. Using more sophisti-

cated techniques such as iterations of rip-up and reroute, we could improve these violation

counts. However, Sidewinder’s solutions are sufficient to be used by a detail router.

35

3.4 Conclusions

In this chapter, we propose the first ILP router that can handle the entire global routing

grid and produces routing solutions with very few vias. Our route selection algorithm is

congestion-driven - during each iteration, the algorithm intelligently selects the two best

(least congested) routes as candidates based on a dynamically updated congestion map.

Our ILP formulation is scalable: for a net n ∈ N , we only consider two possibilities.

Thus, given |N | nets, we only need 2|N | variables. In addition to the traditional L and Z

routing patterns, we introduce shapes with detouring, C shapes, to significantly improve

routability. Our formulation guarantees that each new solution will be no worse than the

current solution. Note that our incremental ILP approach is not limited to global ASIC

routing – it is adaptable to detailed routing and FPGA routing.

Our ILP formulation can be easily extended to various aspects of detail routing. In par-

ticular, mutual exclusion constraints and logical implications can be expressed compactly.

This type of framework allows designers to easily handle complex design rules. One

important application is forbidden pitches - routes must comply with multiple distance

bounds with respect to each other. For example, two routes can be [2λ, 4λ] or [8λ, 10λ]

apart;2 (4λ, 8λ) is strictly forbidden. Typically, complying with these restrictions is incred-

ibly difficult, as there is no efficient way of modeling these limitations. However, using

ILP, these design constraints be easily expressed and easily integrated with other design

rules and models (and solved optimally). Assignment of routing tracks in detailed routing

can also be expressed efficiently using ILP formulations similar to ours. As demonstrated

in Section 3.3, Sidewinder is adept at handling arbitrary pricing for vias.

2λ is a technology-dependent distance metric.

36

CHAPTER IV

Completing High-quality Global Routes

In this chapter, we expand on the capabilities of iterative global routers. Several it-

erative global routers have emerged after the ISPD 2007 and 2008 Global Routing Con-

tests [51, 84], significantly improving the state of the art. Through empirical validation,

the top-performing global routers are based on negotiated-congestion, where, instead of

accounting for only the present state, global routers account for both the present and the

past. Our research expands upon this foundation, and introduce several improvements

that are applicable to any generic global routing framework, where (i) nets are first de-

composed into two-pin subnets, (ii) all subnets are routed on a two-dimensional grid, and

(iii) the subnets are reconstituted and projected on the three-dimensional grid. Our goal

is to develop a high-quality router that, given a set of constraints, finds the optimal (or

near-optimal) locations for each net. Using Lagrangian relaxation, we focus on routing

segments, and assign edge-centric history costs, instead of net-centric history costs. This

gives the router additional freedom when finding low-cost paths. Empirically, we produce

high-quality routing solutions without tailoring them to specific benchmarks.

37

4.1 Introduction

High-quality routing solutions on recent large-scale benchmarks [51] from IBM were

produced by FGR 1.1 [93]. At the ISPD 2008 Global Routing Contest [84], NTHU-Route

2.0 [14] and NTUgr [16] also posted high-quality results, along with improved runtimes.

In addition, FastRoute 4.0 [121] claimed exceptionally low runtimes.

We make the following key contributions through BFG-R:

• Several improvements to existing routing algorithms that reduce wirelength, e.g.,

dynamic adjustment of Lagrange multipliers (DALM) and accurate 2-d via pricing.

• Reducing runtime by cyclic net locking (CNL).

• Techniques to reliably complete (without violations) designs such as an effective

trigonometric penalty function (TPF).

• A branch-free representation (BFR) for single routed nets.

• An aggressive lower-bound estimate (ALBE) for A*-search.

• Empirical comparisons against the winners of the ISPD 2008 Global Routing Con-

test [84]. BFG-R completes the twelve routable ISPD 2008 Contest benchmarks

without violations, more than any other router. On those benchmarks, BFG-R im-

proves upon the solutions produced by NTHU-Route 2.0 [14] with more violation-

free solutions and comparable wirelength. BFG-R also produces better solutions

than NTUgr [16] and FastRoute 4.0 [121] on the majority of designs. On a new set

of benchmarks using re-placed ADAPTEC netlists, we successfully route all designs

without violation whereas all other routers fail on at least one design.

The remainder of this chapter is structured as follows. Section 4.2 outlines BFG-R’s

global routing flow. Section 4.3 describes the new algorithms that are key to BFG-R’s

38

no

yes

yes

Initial Routing

+ BFR

Layer

Assignment

Final Clean-up

+ ALBE

Routed Solution

Violation-

free?

Global

Time-out?
Update Lagrange

Multipliers + DALM

Rip-up and Reroute Nets

+ TPF, CNL, BFR

no

2.5-d Routes 3-d Routes
Global Routing Instance

Multi-pin Net

Decomposition

Figure 4.1: The flow of global routing in BFG-R and the use of novel techniques such as
a branch-free representation (BFR) for routed nets, cyclic net locking (CNL),
dynamic adjustment of Lagrange multipliers (DALM), a trigonometric penalty
function (TPF), and aggressive lower-bound estimates (ALBE).

high performance. Section 4.4 discusses the data structure that allows BFG-R to maintain

scalability for large problem instances and handle large netlists. Section 4.5 presents BFG-

R’s results on the ISPD08 Contest benchmarks [84] and ADAPTEC netlists re-placed with

mPL6 [13]. Section 4.7 concludes our current work and discusses future work.

4.2 Global Routing Framework

In this section, we explain the general global routing framework of BFG-R, as shown

in Figure 4.1. We also describe several key algorithms in BFG-R that significantly improve

solution quality.

Given a global routing instance, BFG-R first splits multi-pin nets, e.g., nets with three

or more pins, into two-pin subnets. BFG-R then produces an initial routing solution on a

2-d grid. If the design has no violations, BFG-R performs layer assignment – projecting

2-d routes onto a 3-d grid – and a final clean-up pass to minimize wirelength. If the

design has violations and a global time-out has not been exceeded, then the Lagrange

multipliers, factors that affect the edge cost, are updated. BFG-R then rips up any violating

39

nets and reroutes them based on the costs of individual edges in a predetermined order.

This iterative process continues until either all violations have been resolved or the global

time-out has expired. BFG-R then performs layer assignment and a final clean-up pass.

4.2.1 Multi-pin Net Decomposition

Competitive routers explicitly decompose (split) large nets into sets of two-pin subnets.

There are two mainstream methods: (i) minimal spanning tree (MSTs), used by NTUgr

[16] and FGR 1.1 [93], and (ii) Steiner minimal trees (SMTs), used by NTHU-Route

2.0 [14] and FastRoute 4.0 [121]. Steiner trees offer minimal wirelength for nets and

can therefore ease initial routing iterations. However, routers must support effective net

restructuring, which requires advanced algorithms and flexible data structures. MST-based

decompositions, on the other hand, can lead to a worse initial routing solution, as MSTs

can have up to 150% of Steiner tree wirelength. Thus, the maze router must work harder

to reduce wirelength and congestion. However, as we show in Section 4.4.1, subnets

generated using MSTs can share resources and can be restructured into SMTs without

explicitly storing branching points. Thus, BFG-R decomposes multi-pin nets using MSTs

instead of SMTs. Second, it facilitates a stand-alone implementation and does not rely on

external Steiner-tree packages.

4.2.2 Balancing Wirelength and Violations

A major challenge in large-scale routing is balancing wirelength against violations

as competing objective functions. Published routers include separate factors to balance

wirelength and congestion [82, Section 3.4] by tuning weights in linear combinations.

However, as stated in [21], ad hoc tradeoffs may lead to violent divergence of routing

iterations. Therefore, several routers use dampening factors to ensure convergence [21].

Instead of explicitly trading off wirelength for violations, BFG-R uses Lagrange mul-

40

tipliers with a complementary cost function. This approach effectively guides the routes to

areas with lower cost and smaller congestion. This key technique, edge-centric Lagrange

multipliers, was introduced first in [93]. While Lagrangian relaxation has been suggested

for global routing, previous work has either been specific to timing-driven routing and

maintain net-centric Lagrange multipliers [71] or focused on a single net at a time. These

algorithms use conventional history-based rip-up and reroute for the router’s main loop.

In contrast, our formulation directly handles modern instances of global routing, such as

those from the ISPD ’07 and ’08 contests. Unlike previous routers, the history cost is only

based on the congestion and does not affect the base cost of a routing edge.

The cost of an edge e depends on its base cost be, Lagrange multiplier he, and conges-

tion penalty pe [93]:

ce = be + he · pe (4.1)

Lagrange multipliers are updated at the beginning of rip-up and reroute iteration k [93]:

hke =

 hk−1
e + hstep if e is over-capacity

hk−1
e otherwise

(4.2)

Compared to previous work, we use a different penalty function pe for local congestion

(Section 4.3.3), and we do not use a constant hstep (Section 4.3.2). The stopping criterion

for rip-up and reroute iterations gauges the amount of effort applied on hard-to-route in-

stances. In our current implementation, BFG-R stops when a legal solution is found or

running for 24 hours (according to the ISPD08 Global Routing Contest [84]).

4.2.3 Net Ordering

Nets that use over-capacity edges are ripped up and must be rerouted. We have ob-

served the best results when subnets were routed (i) in ascending order of their bounding

41

box area in areas of low congestion and (ii) in ascending order of how much their bound-

ing box area deviates from the median bounding box area in areas of high congestion.

4.2.4 Point-to-point Routing

During initial routing and rip-up and reroute (R&R), a router must connect pin pairs in

the routing grid. Common methods include pattern routing, used by NTHU-Route 2.0 [14]

and Sidewinder [42], and monotonic maze routing, used by FastRoute 2.0 [88].

In pattern routing, a small number of route shapes are examined to connect the points.

Typically, these shapes have short wirelength and few bends such as L, Z, and C patterns.

This method is the fastest method to connect pin pairs, especially when there are no routing

obstacles or over-capacity routing edges present. In practice, we notice that about 90% of

subnets from the final routing solution are L-shaped (includes flat subnets). However, in

the presence of congestion, the vast majority of runtime is spent routing connections that

are not pattern-shaped.

If there are relatively few obstacles, monotonic maze routing is a viable option to route

two-pin subnets. Instead of following a set path, the monotonic router searches those edges

that move closer to the target in terms of Manhattan distance. Monotonic routing can be

performed in linear time, using dynamic programming [88]. This method finds any route

that pattern-routing can, but, due to decision making overhead, will take longer.

If there are more than a few blockages, monotonic routing can fail to find a violation-

free route, even if one exists. Instead, a better alternative is to use boxed A*-search (BAS)

with an accurate lower-bound function. BAS (i) combines Dijkstra’s shortest path algo-

rithm with a non-trivial lower-bound function,1 (ii) restricts the search space to within

the pins’ bounding box (or a wider box), and (3) allows all edges to be traversed anytime

during the search. BAS finds the solution with minimal detouring, given that a path exists.
1Vias are not represented explicitly, but priced implicitly.

42

Routes that are found by pattern and monotonic routing are a proper subset of those found

by BAS, but using BAS for those routes usually takes longer.

4.2.5 Continuous Net Restructuring

Published competitive routers, e.g., NTHU-Route 2.0 [14], NTUgr [16], FastRoute

4.0 [121] and FGR 1.1 [93], all employ net restructuring during maze routing. To pre-

serve topological flexibility, we restructure nets continually similar to FGR 1.1. To limit

runtimes, we develop Cyclic Net Locking (CNL), described in Section 4.3.5 below.

4.2.6 End-game Optimizations

After rip-up and reroute, BFG-R performs layer assignment followed by a final clean-

up on the 3-d grid. There are two basic approaches to layer assignment. The simplest,

but impractical, approach is to use maze routing on the entire 3-d routing grid. The more

common approach, used by nearly all competitive routers, starts by compacting the 3-d

routing grid onto a simpler 2-d grid with aggregated routing resources. The search is

then performed on the 2-d grid. After maze routing finishes, 3-d routes for each net are

constructed from the 2-d solutions.

The authors of [93] show that if edge capacities are aggregated properly, there exists a

3-d solution that has the same number of violations as the 2-d solution. Several methods to

assign the routes to layers have been proposed, including an ILP-based algorithm [21], dy-

namic programming [73], and a greedy approach [93]. BFG-R’s layer assignment adapts

a fast, greedy strategy followed by one round of full 3-d wirelength reduction.

After layer assignment and before traditional 3-d clean-up, we iterate over all routing

edges and temporarily increase the capacities of edges with violations so that they become

100% utilized. This makes the solution temporarily legal. Next, we apply the clean-up

pass and find alternative shorter routes. Note that the total and maximum overflow of the

43

original 2-d solution cannot increase, as (i) edges that have violations are already illegal

and (ii) edges that have no violations cannot become illegal.

After clean-up, we reinstate the correct capacities for all routing edges and recalculate

the total and maximum overflow for the final solution. We observe that our clean-up

method is as effective in reducing total wirelength usage in illegal solutions as it is in legal

solutions, and usually decreases total overflow by a small amount.

4.3 Key Algorithms in BFG-R

In this section, we outline key enhancements to our global routing flow that improve

the router’s overall performance and its ability to quickly find high-quality solutions.

4.3.1 Edge Clustering During Rip-up

To improve memory locality and cache utilization, BFG-R first finds all edges that have

at least one violation and clusters them based on location. To this end, BFG-R starts with

an arbitrary edge and performs a breadth-first expansion through neighboring edges. Over-

capacity neighboring edges are added to the current cluster, and the expansion continues.

After collecting all over-capacity edges in the area, BFG-R finds the next over-capacity

edge and initiates a new cluster. This process continues until all over-capacity edges are

clustered. Each edge will only belong to exactly one cluster, and performing R&R by

clusters will not require extra work. Moreover, we ensure that if a subnet crosses multiple

clusters, it will only be ripped up and rerouted once.

BFG-R then considers each cluster in order of increasing violation count. That is, it

first rips up and reroutes the nets in relatively uncongested areas in hopes of freeing up

valuable resources for the more congested clusters. After the first few R&R iterations,

when congested edges break down into separate regions, edge clustering roughly halves

the runtime of subsequent iterations.

44

4.3.2 Dynamically Adjusting Lagrange Multipliers (DALM)

Updating history costs is critical to the success of the negotiated-congestion [80] and

discrete Lagrange multiplier [93] routing frameworks. They must be precisely determined,

as they are the dominant factors in determining both solution quality and runtime.

Previous work [80,93] increases Lagrange multipliers of congested edges by a constant

hstep according to Equation 4.2. Empirically, we find that large steps lead to increased

speed but also increased detouring. Conversely, small steps lead to lower final wirelength

but much increased runtime. Further complicating the issue is that different benchmarks

have drastically different optimal ranges of steps. Therefore, we use the following two,

more aggressive, history cost functions to balance runtime and quality:

hke =

hk−1
e + hstep × 1.25 if eOF ≥ TEdgeOF

hk−1
e + hstep else if eOF > 0

hk−1
e otherwise

(4.3)

where TEdgeOF = max(eOF)× 95%. That is, all edges that have overflow within 5% of

the maximum edge overflow will have an additional increase to its history cost. Otherwise,

an overflown edge will receive the standard increment. For the largest cluster, we give the

most congested edges an additional cost:

hke = hke + (1− cluRatio+ α)−1 if eOF ≥ TCluOF (4.4)

where cluRatio is the cluster size divided by the total number of over-capacity edges,

TEdgeOF = max(cluOF) × 90%, and 0 ≤ α < 1. That is, within the largest (and most

congested) cluster of over-capacity edges, for the edges within the top 10% of the maxi-

mum edge overflow within the cluster will receive an additional increase. The parameter

α controls how fast the penalty should grow. In practice, we use α = 0.75 to balance

solution quality and runtime.

45

To find better Lagrange steps, we adjust them dynamically between iterations of rip-

up and reroute. We allow for a generous range of Lagrange steps, which includes the

optimal range of all available benchmarks, and adapt the step within [hminstep, h
max
step] over

time. Our initial step is chosen to be hmax
step +hmin

step

2
, and we choose a delta for Lagrange

steps ∆step =
hmax

step−hmin
step

200
. We route in the framework of Section 4.2 and Figure 4.1, while

Lagrange steps are modified between iterations as follows

hk+1
step =

hkstep + ∆step if violk ≥ violk−1

if violk < violk−1 and

hkstep −∆step WLk > WLk−1

if violk < violk−1 and

hkstep WLk ≤ WLk−1

(4.5)

Empirically, Lagrange steps change significantly during the early iterations of rip-up

and reroute, settle to within a small range of steps during the middle iterations, and then

increase when nearing a legal solution. As reported in Table 4.2, this technique helps

BFG-R find high-quality routes while reducing violation counts.

4.3.3 Trigonometric Penalty Function (TPF)

A competitive router must ensure that its iterations make consistent progress. If the

benchmark is routable, a global router should eventually find a solution with no overflow.

However, routers can take a long time to clear the last few violations on difficult-to-route

(but routable) designs; lack of progress can force a router into a local minimum. This

situation is magnified in the benchmark NEWBLUE1, where several routers struggle to find

a legal solution.

To find better routes, other routers increase the penalty for overflow over time. For

instance, Hadsell et al. [36] amplified the congestion cost at a linear rate, capping the

46

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Relative Overflow

R
o
u
ti
n
g
 E
d
g
e
 C
o
s
t

Routing Edge Cost vs. Relative Overflow

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Overflow Penalty vs. Relative Time

Relative Time

O
v
e
rf
lo
w
 P
e
n
a
lt
y

τtan=Penalty

τ=Penalty

1=τ

5.0=τ

0=τ

Figure 4.2: Trigonometric cost function used in BFG-R. The overflow penalty grows
trigonometrically with the relative time τ (left). The cost function grows lin-
early with overflow (right).

growth at 1.2× after the routing edge was over- capacity by 20%; FGR 1.1 [93] and NTHU

2.0 [14] increased the penalty for overflow at an exponential rate over time. However, an

overly sharp or discontinuous increase in penalty may mislead the maze router early on

and cause it to find poor-quality routes. Therefore, the penalty function must continuously

increase, starting at low values.

We propose a new penalty function p of a routing edge e based on its relative overflow

ωe and the relative time τ = CurrentT ime
MaxTimeAllowed

p(e) =

 ωe × (1 + tan(τ)) if ωe > 1

ωe otherwise
(4.6)

BFG-R’s cost function grows linearly with overflow but trigonometrically with time,

as shown in Figure 4.2. Note that toward the beginning, the growth factor is close to

0. Thus, it does not interfere with the original performance of the maze router. As run-

time increases, the penalty grows faster in order to properly direct the maze router to find

violation-free routes. In practice, BFG-R is able to legally route NEWBLUE1 (without

47

violations) while solutions found by other routers have violations and higher wirelength.

4.3.4 Via Pricing

To perform 3-d routing, BFG-R first generates the routes on the 2-d grid and then

projects the routes onto the 3-d grid. Thus, during 2-d routing, a global router should be

aware of the cost to cross layers. The most common approach to price vias is to use a

constant cost function. Some other routers have via cost decrease over time [14] or use

benchmark-specific fixed costs [121].

During 2-d routing, BFG-R estimates the ratio between the number of 3-d vias to

2-d vias. That is, the expected number of 3-d vias needed to represent one 2-d via is

proportional to the number of layers. Thus, to accurately model the number of 3-d vias

needed per route, we price 2-d vias as follows

p(V IA) = dl/2e × viaFactor (4.7)

where l is the number of available routing layers and viaFactor is the original price of a

3-d via specified by the designer.

4.3.5 Cyclic Net Locking (CNL)

We observed through profiling that the vast majority of runtime in the unmodified

BFG-R flow is spent routing nets with large bounding boxes. Since all violating nets will

eventually be ripped up, we control how often long nets are ripped up.

BFG-R classifies subnets by the area of their bounding box measured in GCells so that

long flat subnets do not have zero area.

BB Area(n) = (ur.x− ll.x+ 1)× (ur.y − ll.y + 1) (4.8)

Here, ll and ur represent the lower left and upper right coordinates of n’s bounding box.

48

From this, we found that (i) almost all of the nets’ routes are within 2× of their HPWL

and (ii) few nets route with a significant number of detours.

Therefore, we propose to lock larger subnets after the first few iterations of rip-up and

reroute, but unlock them periodically after. How often a subnet is unlocked is determined

based on the size of its bounding box relative to the average bounding box size:

AvgArea =
1

N

N∑
n=1

BB Area(n) (4.9)

A subnet n is allowed to be rerouted every Period(n) iterations:

Period(n) = min

(⌈
BB Area(n)

AvgArea

⌉
, 20

)
(4.10)

Thus large subnets are unlocked less frequently than small subnets (but at least every 20

iterations) and subnets with average or smaller area are never locked. We chose not to

unlock many nets at once, but instead use a dispersive strategy that aims to unlock similar

numbers of nets at each iteration. To do so, subnet n is allowed to be unlocked during

iteration i if the following condition is satisfied

(i < 2) or ((i+ n) mod Period(n) = 0) (4.11)

This condition effectively staggers unlocking of large nets and also allows them to be

unlocked with the proper period. We find that this method improves the framework of

Section 4.2 dramatically with little impact on solution quality.2 The success of CNL in-

dicates significant flexibility in choosing which nets to reroute, and justifies the focus on

rerouting shorter nets for efficiency.

4.3.6 Aggressive Lower-bound Estimate (ALBE)

Of commonly-used point-to-point routing techniques, A*-search is the most flexible

and guarantees to find the shortest path if a path exists. However, A*-search degenerates
2It is not difficult to ensure that approximately equal numbers of nets are routed per iteration using

randomization, but our method is straightforward and works well in practice.

49

into Dijkstra’s algorithm if its admissible function underestimates the true path-suffix cost.

This effect is pronounced when (i) temporarily setting shared edge costs to zero when

routing multi-pin subnets and (ii) using traditional distance-based lower-bound functions,

e.g., distance × cost of the cheapest edge, after history has accumulated. The growth

of history costs hampers the maintenance of minimum edge costs in a given region, and

routers typically do not increase the initial minimum edge cost as history costs accumulate.

In the presence of even a single zero-cost edge, the minimum edge cost becomes zero,

and traditional distance-based admissible functions used for A*-search become trivial. To

combat this, FGR 1.1 [93] and BFG-R employ ε-sharing, where shared edges are given a

small ε > 0 cost, rather than zero.

To maintain the speed of A*-search as history costs grow, we use an aggressive lower-

bound estimate. For each subnet, instead of using the minimum edge cost of all possible

edges to compute a distance-based lower bound, we traverse its path from the last iteration

of R&R and use the minimum cost along that route. As per ε-sharing, each shared routing

edge contributes less than a non-shared edge. Not only is this a more realistic method to

estimate a lower bound of the new path, the search is sped up as it uses a greater lower-

bound function.

One caveat with using this estimate is that it can be too high to serve as an admissible

function. That is, this estimate can slightly over-estimate the actual cost. When this hap-

pens, BAS maintains its speed but can (sometimes) overlook optimal routes. We therefore

do not rely on aggressive lower bounds during R&R but use them to reduce the runtime of

our greedy clean-up. In this context, its impact on solution quality is negligible.

50

Branching

Point

Traditional Net Representation Branch-free Representation
(a) (b)

Subnet 2

Subnet 3

Subnet 1
Subnet 1

Subnet 2

(c)

Net Route

Figure 4.3: The branch-free representation (BFR) of routed nets. Subnets are treated sep-
arately but can share routing edges. Collectively they represent a Steiner tree.

4.4 Route Representation

High-performance routing demands transparent data structures. What and how to store

is equally important compared to what not to store, as excessive sophistication of data

structures often leads to poor performance in practice. Compared to the top routers from

the ISPD 2008 Contest, we use about the same amount of memory as FastRoute 4.0, 20%

less than NTUgr, and 2.5× less than NTHU (4× less on the largest benchmarks).

4.4.1 Branch-free Representation (BFR) of Individual Routed Nets

Several possible data structures can represent nets with three or more pins. The most

straightforward approach is to divide each net into a group of disjoint line segments (with

bends). In the case of the three-pin net n shown in Figure 4.3, this would add a branching

or Steiner point to the middle of the net, creating three segments, a set of connected routing

edges in one direction. This representation supports proper calculation of routing resources

and is used in global routers such as FR 4.0 [88] and NTHU-R 2.0 [14]. Other routers like

MaizeRouter [81] store only the full horizontal and vertical segments but no intermediate

points. However, this representation severely limits net restructuring, which modern global

routers frequently perform – either explicitly by decomposing nets or implicitly through

51

maze routing as in FR 4.0 and FGR 1.1 [93]. The process of restructuring nets causes

branching points to move, appear, and disappear, which is difficult to support. Once a net

is restructured, segments or branching points must be internally modified, e.g., branching

points added, larger segments split into smaller segments, to support the new topology.

We propose a different data structure where branching points are represented implic-

itly. Let a subnet be a pair of terminal pins of a net. For each subnet, we store (i) each

occupied routing edge, and not segments, and (ii) the coordinates of its endpoints. These

pairs of points must collectively form a spanning tree, e.g., a minimum spanning tree

(MST). Each net also stores the indices of the routing edges it uses and can easily find

its subnets that use a particular routing edge. Such a mapping can be implemented with

an STL hash-map or balanced binary tree, but in practice both data structures require too

much memory. Instead, our memory-efficient data structure is an array of pairs of (i) rout-

ing edge indices and (ii) the number of subnets of the net that pass through the edge. This

container supports O(log |E|)-time search, and O(|E|)-time insertion and deletion, where

|E| is the number of edges. However, in practice, the number of traversed edges is small.

Since each net stores the indices of used edges, routing resource usage can be calcu-

lated exactly and efficiently. These data structures allow BFG-R to maintain Steiner trees

for nets without an explicit representation of branching points. We also find that BFR can

ease the implementation of a router, as branching points are processed implicitly during

maze routing rather than being created and destroyed explicitly. We found that (i) the over-

lap in BFR between subnets is small, as long as the net is initially decomposed using an

MST and (ii) coalescing subnets takes little time. Other routers, on the other hand, choose

to use more memory to reduce runtime. For example, NTHU-R [14] uses large hash maps

and pre-computes edge costs for constant-time lookup.

52

NTHU-Route 2.0 [14] NTUgr [16] FastRoute 4.0 [121] BFG-R
Bench- OF Cost Time OF Cost Time OF Cost Time OF Cost Time
mark Total (e6) (min) Total (e6) (min) Total (e6) (min) Total (e6) (min)

Solution Quality and Runtime for ROUTABLE Benchmarks
A1 0 5.37 6.4 0 5.67 42.4 0 5.50 3.6 0 5.43 8.4
A2 0 5.24 2.8 0 5.47 7.4 0 5.28 1.2 0 5.23 3.7
A3 0 13.15 4.2 0 13.77 35.0 0 13.26 2.7 0 13.14 16.0
A4 0 12.18 15.1 0 12.41 14.7 0 12.15 1.1 0 12.16 5.2
A5 0 15.54 5.2 0 16.52 100.9 0 15.91 10.3 0 15.67 15.5

BB1 0 5.57 10.0 0 5.95 118.3 0 5.89 8.0 0 5.72 10.2
BB2 86 9.00 12.2 118 9.47 212.0 Invalid Solution 0 9.11 40.8
BB3 32 13.07 9.7 0 13.49 25.6 MAZE RIPUP WRONG 0 13.18 20.6
NB1 164 4.60 14.2 212 4.82 136.0 542 4.73 13.6 0 4.68 256.9
NB2 0 7.59 1.1 0 7.85 5.1 0 7.53 0.7 0 7.57 1.5
NB5 18 23.14 29.0 0 24.25 117.9 0 23.51 13.8 0 23.30 47.6
NB6 0 17.70 49.4 0 18.74 76.6 MAZE RIPUP WRONG 0 18.01 15.7

Fail. 4 2 4 0
Impr. 0.99 1.04 1.01 1.00

Solution Quality and Runtime for UNROUTABLE Benchmarks
BB4 256 22.80 72.9 410 24.35 302.9 Invalid Solution 434 23.20 1416.6
NB3 Time Out 33636 11.00 163.6 38020 10.88 1344.1 33900 10.64 1420.9
NB4 222 12.89 31.2 284 13.89 223.3 212 13.16 27.7 218 13.08 1413.3
NB7 68 35.52 1284.6 906 36.91 1403.9 Invalid Solution 606 35.21 1421.1

Table 4.1: BFG-R compared with leading routers on the ISPD08 benchmarks [84] where
A1→ ADAPTEC1, BB1→ BIGBLUE1, NB1→ NEWBLUE1, and so on. NTHU
2.0 is NTHU-Route 2.0 and FR 4.0 is FastRoute 4.0. Experimental setup is de-
scribed in Section 4.5.1. Invalid Solution indicates disconnected nets.
MAZE RIPUP WRONG is an internal error produced by FastRoute 4.0. Time
Out indicates that the router did not produce a solution within 24 hours. Run-
times are not averaged because (i) some routers did not produce valid solutions
on all benchmarks, (ii) some routers did not succeed on routable benchmarks,
and (iii) benchmark solution quality varies significantly.

4.4.2 Representing a Dynamic Routing Grid

The main challenges when designing a data structure for a routing grid are (i) to keep

the structure slim to improve cache locality (thereby reducing runtime) while fitting large

instances into the 32 (64)-bit address space, and (ii) to provide constant-time access to

the grid cells and routing edges. Our routing grid consists of an array of routing tiles

connected by routing edges. Each routing tile contains six indices which represent the six

routing edges (two each in x, y, and z directions) to which it can be connected. Tiles are

stored such that the index of the tile in the array is calculated in constant time from the x, y,

and z coordinates of the tile and vice versa. Thus, memory is saved by not requiring tiles to

53

store their coordinates. In each routing edge, we store: (i) its type (VIA, HORIZONTAL,

or VERTICAL), (ii) its metal layer, (iii) its Lagrange multiplier (described in Section

4.2.2), (iv) the routing resource capacity, (v) the current resource usage, and (vi) a list of

the subnets that pass through it.

Note that routing edges do not store additional information such as edge costs. There

are three reasons for this. First, the functions we employ for determining edge costs can

be computed quickly and dynamically with the information currently stored on the edge.

Thus, we save memory with minimal impact on runtime. Second, since we allow for the

use of different cost functions, on-the-fly computation is more flexible. Third, in order

Best Tuned [14, 16, 121] BFG-R (No Tuning)
Benchmark OF Cost Router OF Cost Time

Total (e6) Name Total (e6) (m)

Solution Quality and Runtime for ROUTABLE Benchmarks
ADAPTEC1 0 5.36 NTHU 2.0 0 5.43 8.4
ADAPTEC2 0 5.23 NTHU 2.0 0 5.23 3.7
ADAPTEC3 0 13.11 NTHU 2.0 0 13.14 16.0
ADAPTEC4 0 12.17 NTHU 2.0 0 12.16 5.2
ADAPTEC5 0 15.54 NTHU 2.0 0 15.67 15.5
BIGBLUE1 0 5.57 NTHU 2.0 0 5.72 10.2
BIGBLUE2 0 9.06 NTHU 2.0 0 9.11 40.8
BIGBLUE3 0 13.08 NTHU 2.0 0 13.18 20.6

NEWBLUE1 0 4.65 NTHU 2.0 0 4.68 256.9
NEWBLUE2 0 7.53 FR 4.0 0 7.57 1.5
NEWBLUE5 0 23.17 NTHU 2.0 0 23.30 47.6
NEWBLUE6 0 17.70 NTHU 2.0 0 18.01 15.7

Rout. Failures 0 0
Improv. 0 OF 0.99 1.00

Solution Quality and Runtime for UNROUTABLE Benchmarks
BIGBLUE4 162 23.10 NTHU 2.0 434 23.20 1416.6

NEWBLUE3 31106 17.15 NTUgr 33900 10.64 1420.9
NEWBLUE4 138 13.04 NTHU 2.0 218 13.08 1413.3
NEWBLUE7 54 35.58 FR 4.0 606 35.21 1421.1

Table 4.2: BFG-R compared with the best-reported results on the ISPD08 benchmarks
[84], where NTHU 2.0 is NTHU-Route 2.0 and FR 4.0 is FastRoute 4.0. Exper-
imental setup is described in Section 4.5.1. Runtimes are not averaged because
(i) some routers did not produce valid solutions on all benchmarks, (ii) some
routers did not succeed on routable benchmarks, and (iii) benchmark solution
quality varies significantly.

54

to support nets with different wire widths and layers with different routing pitches, costs

cannot be computed per edge and stored statically.

4.4.3 Supporting Efficient Rip-up and Reroute

To facilitate efficient rip-up and reroute (R&R), fast identification of which subnets

should be ripped-up at each iteration is crucial. Furthermore, the process of finding the

appropriate subnets must take negligible time. To this end, BFG-R stores a list of pass-

ing subnets every routing edge. To quickly determine which connections need to be ad-

justed during an iteration, BFG-R goes over all routing edges, finds which edges are over-

capacity, and adds the subnets that use the edge to the list of subnets to be ripped up.

When ripping up subnet s, every routing edge e used by s removes s from its list of

subnets. The map maintained by net is then updated to reflect that one of its subnets no

longer uses e. If no other subnets of the same net use e, it is removed from the map and

the resources are returned to the edge. Then, every routing edge e is removed from the list

of used edges maintained by s.

When adding a new route to a subnet s, a similar sequence of steps is performed in

reverse. That is, for every edge e the new route uses, it is first added to the list of used edges

maintained by s. Next, if no other subnets (of the same net) use e, the map maintained by

the net is updated to reflect one of its subnets now uses e. Then, every routing edge e adds

s to its list of subnets.

4.5 Empirical Evaluation

First, we describe our experimental setup and highlight relevant information about the

benchmarks used; the full set of information is found in Table 4.3. Next, we compare our

solution quality on those benchmarks against the top three performers from the ISPD 2008

Global Routing Contest [84].

55

Benchmark Grid (X × Y) # Nets # Layers H. Cap V. Cap Routable?
A1 † 324 × 324 219794 6 70 70 yes
A2 † 424 × 424 260159 6 80 80 yes
A3 † 774 × 779 466295 6 62 62 yes
A4 † 774 × 779 515304 6 62 62 yes
A5 † 465 × 468 401060 6 110 110 yes
BB1 227 × 227 282974 6 110 110 yes
BB2 468 × 576 576816 6 52 52 yes
BB3 555 × 558 1122340 8 148 148 yes
BB4 403 × 405 2228903 8 204 240 no

NB1 † 399 × 399 331663 6 62 62 yes
NB2 † 557 × 463 463213 6 110 110 yes
NB3 † 973 × 1256 551667 6 80 80 no
NB4 455 × 458 636195 6 80 80 no
NB5 637 × 640 1257555 6 88 88 yes
NB6 463 × 464 1286452 6 132 132 yes
NB7 488 × 490 2635625 8 210 210 no

Table 4.3: General statistics on the ISPD08 benchmarks [84]. † indicates that it was part
of the ISPD07 benchmark suite [51].

4.5.1 Experimental Setup

Our single-threaded implementation of BFG-R is written in C++, self-contained and

does not require any external libraries, source code, or data files. We compiled our code

with g++ 4.3.2 to produce a 64-bit binary. All BFG-R runs were performed on a quad-core

2.83 GHz processor with 8 GB of RAM. To draw objective conclusions, we also ran all

other routers on the same machine with the exception of two benchmarks, newblue3 and

newblue7, for NTHU-Route [14] due to exceptional memory requirements. Instead, we

ran those two designs on a 2.93 GHz processor with 20 GB of memory. Source codes

of NTHU-Route 2.0, NTUgr, and FastRoute 4.0 were made available by the respective

authors under the CEDA-sponsored open-source release. We compiled NTHU-Route’s

C++ code using g++ 4.1.23, NTUgr’s [16] C++ code with g++ 4.3.2, and FastRoute 4.0’s

[121] C code with gcc 4.3.2.

For an objective comparison, we ran each router, including BFG-R, in its default mode,

3NTHU-Route 2.0 is currently incompatible with g++ 4.3.2.

56

where the router used the same configuration for all benchmarks. To negate tuning to

specific contest benchmarks, we made superficial changes to the benchmark files, such as

rename ADAPTEC1 → XXAXXX1. We imposed a time-out limit of 24 hours. This limit

was respected in all cases, except for NTHU-Route 2.0 running newblue3.

To ensure the proper execution of existing routers, we reproduced all published so-

lutions and runtimes for NTHU, NTUgr, and FastRoute. We found that all three routers

tuned to benchmarks. For example, NTHU-Route is invoked by a Perl script that uses

a different set of parameters for each benchmark. To untune NTHU-Route 2.0, we use

its default settings. NTUgr used the number of non-trivial nets to differentiate between

benchmarks and ran tailored flows with pre-set thresholds. To untune NTUgr, we used a

level that did not match any benchmark in the ISPD08 contest benchmark suite. FastRoute

4.0 used a set of specific parameters based on the benchmark name. To untune FastRoute

4.0, we renamed the input files.

4.5.2 Benchmarks

We used two sets of benchmarks for comparison. The first set is the well-known ISPD

2008 Global Routing Contest benchmarks. For the second set, we reused the netlists from

the ADAPTEC suite and placed them using mPL6 [13], a global placer that achieved the

best overall wirelength while observing density constraints in the ISPD 2006 Placement

Contest. We tested every target density in increments of 10%, starting at 100%. The target

densities selected (and reported in Table 4.4) are transitional values for which the bench-

marks become routable – increasing the target density would lead to routability problems.

4.5.3 Comparison of Results

In our experiments, each router was configured with identical parameters for all bench-

marks. Table 4.2 compares BFG-R’s performance on ISPD 2008 Contest benchmarks.

57

NTHU-Route 2.0 [14] NTUgr [16] FastRoute 4.0 [121] BFG-R
Bench- OF Cost Time OF Cost Time OF Cost Time OF Cost Time
mark Total (e6) (min) Total (e6) (min) Total (e6) (min) Total (e6) (min)

A1, 70% 0 4.62 7.2 0 4.83 73.2 184 5.01 26.4 0 4.68 9.8
A2, 60% 0 5.29 0.9 0 5.48 3.7 0 5.31 0.6 0 5.28 2.2
A3, 80% 38 12.16 19.4 28 12.88 470.0 616 12.74 183.1 0 12.15 27.2
A4, 80% 0 10.50 2.3 0 10.75 9.1 10 10.61 4.8 0 10.49 3.2
A5, 70% 4 13.91 25.2 0 14.44 347.8 628 14.49 50.6 0 13.98 32.6

Fail. 2 1 4 0

Impr. 1.00 1.03 1.01 1.00

Table 4.4: BFG-R compared with leading routers on the re-placed ADAPTEC benchmark
suite. Each benchmark’s netlist was placed using mPL6 [13] with its corre-
sponding target density. These benchmarks were not used during the develop-
ment of the routers we evaluate.

Similarly, Table 4.4 compares BFG-R’s performance on the re-placed ADAPTEC suite.

The row Improv.0 OF showing other routers’ performance normalized to BFG-R’s when

both routers produced a fully legal solution. We compare our solution quality to those

of NTHU-Route 2.0 [14], NTUgr [16], and Fast-Route 4.0 [121]. From the first set of

benchmarks, only 12 of the 16 total designs are demonstrably routable. That is, no router

has produced a legal solution for the designs BIGBLUE4, NEWBLUE3, NEWBLUE4, and

NEWBLUE7.4 Every design in the second set was shown to be routable.

Routability. On the contest benchmarks, BFG-R finds legal solutions for all twelve

routable benchmarks, whereas NTHU-Route 2.0, NTUgr, and FastRoute 4.0 produce four,

two, and four illegal or invalid solutions, respectively. In particular, for the design new-

blue1, BFG-R is able to find a low-cost, violation-free solution whereas NTHU, NTUgr,

and FastRoute all produce solutions with violations. Solution costs produced by NTUgr

and FastRoute 4.0 are also higher than those of BFG-R’s violation-free solutions. On the

five re-placed benchmarks, BFG-R is able to route all designs without violation, whereas

NTHU, NTUgr, and FR 4.0 had two, one, and four violating designs, respectively. In

particular, BFG-R finds a legal solution on ADAPTEC3 with 80% target density with com-

petitive wirelength when no other router could not.

4NEWBLUE3, is trivially unroutable, as it contains a pin connected to over 2200 nets, which is greater
than the total wire capacity of the GCell containing that pin.

58

Wirelength. As illustrated in Table 4.2, on average, BFG-R produces routes that are

comparable to those of NTHU-R 2.0 and 4% better than NTUgr on the designs where

routers produced violation-free solutions. BFG-R is 1% better than FastRoute 4.0, but the

sample space is reduced by four designs, as FR 4.0 produced an invalid solution (having

disconnected nets) for BIGBLUE2, came up with an internal error MAZE RIPUP WRONG

for BIGBLUE3 and NEWBLUE6, and generated a solution with violations for NEWBLUE1.

On the five re-placed benchmarks, BFG-R produces routes that are comparable to the

three valid solutions from NTHU and the one valid solution produced by FastRoute. Out

of the four valid solutions found by NTUgr, BFG-R runs much faster and finds solutions

that are 2% better. In the majority of cases, BFG-R’s violation-free solutions cost less than

other routers’ solutions with violations.

4.6 Scalability Study

To test the scalability of BFG-R and predict its effectiveness for trillion-gate systems,

we modify the DAC 2012 Routability-driven Contest benchmarks [109] to include two

and three times the number of nets. Table 4.6 reports the runtime of BFG-R under the

official DAC and ICCAD 2012 Routability-driven Placement Contest [109,110] evaluation

settings. Experiments were performed on an 3.4GHz Intel Xeon workstation. The average

relative required runtime scales linearly with the number of nets, where we achieve a

competitive routing speed of 5K nets per second per thread [77].5

4.7 Conclusions and Future Work

We have presented BFG-R, a robust and scalable global router that produces highest-

quality solutions in comparison to NTHU-Route 2.0 [14], NTUgr [16], and FastRoute

5Based on median performance across all benchmarks.

59

BFG-R Runtime (s)
Benchmark # Nets 1× # Nets 2× # Nets 3× 1× 2× 3×
SUPERBLUE2 990K 1.98M 2.97M 765 1262 1916
SUPERBLUE3 898K 1.80M 2.69M 373 702 1062
SUPERBLUE6 1.00M 2.01M 3.02M 237 464 778
SUPERBLUE7 1.34M 2.68M 4.02M 162 303 443
SUPERBLUE9 834K 1.67M 2.50M 126 212 300
SUPERBLUE11 936K 1.87M 2.81M 130 239 353
SUPERBLUE12 1.29M 2.59M 3.88M 253 510 715
SUPERBLUE14 620K 1.24M 1.86M 106 218 311
SUPERBLUE16 698K 1.40M 2.09M 190 331 487
SUPERBLUE19 512K 1.02M 1.54M 38 70 97
Average (×) 1.00× 1.85× 2.72×

Table 4.5: Runtimes of BFG-R [43] on DAC 2012 benchmarks [109] with the original
netlist (1×), two times the original size (2×), and and three times the original
size (3×). Experiments were performed with an 3.4GHz Intel Xeon CPU.

4.0 [121]. We introduced a set of key techniques that significantly improve BFG-R’s

performance on routable benchmarks: a trigonometric penalty function (TPF), dynamic

adjustment of Lagrange multipliers (DALM), cyclic net locking (CNL), and aggressive

lower-bound estimates (ALBE). We introduced a branch-free representation (BFR) for

rout-ed nets to improve net flexibility. If a legal solution exists, the techniques proposed

in this work ensure that a legal solution with competitive wirelength will be found.

We have shown that BFG-R can consistently produce a low-cost, legal routing solution,

as long as the design is routable. In contrast, NTHU can route designs somewhat faster, but

does not guarantee a legal solution unless given a predetermined set of parameters. NTUgr

produces the most legal solutions, but at the cost of wirelength and runtime. FastRoute 4.0

is several times faster on the contest benchmarks but produces relatively poor solutions.

On the second set of benchmarks, FastRoute is unreliable, as it cannot find solutions to

four out of five designs and often uses more runtime.

We have also explored the tradeoffs made during implementation by different routers.

First, a key difference between our implementation and other routers is the dynamic edge-

60

cost computation and update. This feature is critical to support multiple routing pitches and

wire widths. Second, we have noticed that finding high-quality routes requires carefully

adjusting Lagrange multipliers, which necessitates more iterations. Third, finding legal

solutions requires a slowly increasing penalty for violations. Fourth, we have tried to

incorporate pattern routing in our flow, but it has not improved our results.

Our current implementation does not explicitly target unroutable benchmarks, unlike

competing routers. This is a major avenue for further improvement that we plan to pursue.

We are also considering monotonic routing as a means to accelerate R&R iterations.

61

CHAPTER V

A SimPLR Method for Routability-driven Placement

Building upon our experience with standalone global routing, we now directly ad-

dress the challenges of routability-driven placement within a simultaneous place-and-route

framework. Since global routing is now used to guide global placement, the emphasis on

solution quality is lessened; in turn, the priority on runtime is increased, as the global

router is invoked multiple times, but fidelity must be maintained. To do this, we use exist-

ing state-of-the-art tools, and determine the right balance between quality and runtime to

create a full place-and-route framework. We develop lookahead routing to give the placer

advance, firsthand knowledge of trouble spots, not distorted by crude congestion models.

We extend placement to (i) spread cells in congested areas, and (ii) move cells together in

less-congested areas to ensure short, routable interconnects in moderate runtime.

5.1 Introduction

Highly-optimized placements may lead to irreparable routing congestion due to inad-

equate models of modern interconnect stacks and the impact of partial routing obstacles.

Additional challenges in routability-driven placement include scalability to large netlists

and limiting the complexity of software integration.

62

First, we develop lookahead routing, which invokes the global router to quickly esti-

mate routability. Since the produced routes can be used as a routing solution, our method

can accurately and quickly report both congestion and routed wirelength. Second, to pro-

duce competitive placements in terms of both routed wirelength and HPWL, we integrate

our lookahead routing into a flat, quadratic global placer, and enhance placement itera-

tions by gently coercing cell locations and relieve congestion while preserving intercon-

nect length. In detailed placement, we do not change the objective functions as in [126],

but prohibit moves that aggravate routability. In global placement, we temporarily inflate

cells in highly-congested regions to reserve whitespace during global placement. Tradi-

tionally, this has been accomplished either by cell bloating [9, 39, 95] during/after global

placement, or by whitespace allocation [75, 94, 123] after placement. We observe that

wirelength-driven global placers typically limit area utilization by a given amount through

the entire layout based on target density. Therefore, in addition to cell bloating, we dynam-

ically adjust the target density based on total routed wirelength.1 This technique preserves

overall solution quality and allows the placer to move cells in uncongested regions closer.

Third, we develop a simultaneous place-and-route framework for global placement as

well as a routability-driven detailed placement algorithm.

Our proposed methodology offers several advantages. Since we use a global router to

estimate congestion, the routes for all nets are known. Moreover, by enabling the global

placer to directly redistribute whitespace in response to routing congestion, we establish a

more precise feedback loop (compared to add-on techniques proposed previously).

1Partitioning-based placers can adjust target density on a per region basis [9, 94]. In force-directed
placers, this feature is more difficult to implement and seems unnecessary.

63

Our key contributions include:

• A method to control routability within the global placer while preserving solution

quality by dynamically adjusting the global target density

• An effective cell-bloating technique by dynamically adjusting cell width based on

design’s perceived difficulty

• A simultaneous place-and-route framework

• A congestion-aware detailed placement algorithm that moves cells only when this

does not hurt routability

• Empirical results on the ISPD 2011 contest benchmarks [108] that outperform every

competitor on every benchmark with an average 2.04× improvement (Table 5.2) and

a greater improvement 8.43× (Table 5.3) with a stronger global router.

The remainder of this chapter is structured as follows. In Section 5.2, we review the

baseline algorithms that we use. In Sections 5.3 and 5.4, we introduce several new tech-

niques to improve the routability of placements. In Section 5.5, we empirically validate

proposed algorithms. Section 5.6 concludes our work and discusses its impact.

5.2 SimPLR

Our implementation uses the SimPL [66] global placer to quickly produce a tentative

solution. We then apply lookahead routing by calling a modified version of the BFG-R [43]

global router to estimate routing congestion and wirelength. We use this information in

global placement by means of cell bloating and dynamically adjust the target density.

After several iterations of global placement, performed using a modified SimPL placer,

lookahead routing is invoked again. Such combined place-and-route iterations continue

64

until convergence. Then, our modified version of the FastPlace-DP [89] detailed placer

applies congestion-aware detailed placement to recover whitespace and improve routed

wirelength while maintaining routability.

We now briefly review the baseline place-and-route algorithms. For further back-

ground on placement see [59, Chapter 4] and for global routing see [59, Chapter 5].

SimPL [66] is a flat, force-directed global placer. It maintains a lower-bound and an upper-

bound placement; the final solution is generated when the two placements converge.2 The

upper-bound placement is generated by applying lookahead legalization (LAL), which is

based on top-down geometric partitioning and non-linear scaling. Using this information,

the lower-bound placement is generated by minimizing the quadratic objective

Φq(~x, ~y) =
∑
i,j

wi,j
(
(xi − xj)2 + (yi − yj)2

)
(5.1)

using the Conjugate Gradient method [96]. Here, ~x and ~y are coordinate vectors of the

cells’ (x,y) locations, and wi,j represents the connectivity between cells i and j. Two of

top three teams in the ISPD 2011 contest, including ours, relied on the SimPL algorithm.

FastPlace-DP [89] is a wirelength-driven detailed placer based on greedy algorithms. It

uses (i) cell clustering, (ii) global cell swapping, (iii) vertical cell swapping, and (iv)

local reordering to improve wirelength. To determine which cells should be swapped,

FastPlace-DP estimates the reduction in wirelength from swapping cells i and j by

gain(i, j) =
∑
n∈Ni

(Wn −W ′
n)−

∑
n∈Nj

(Wn −W ′
n) (5.2)

where Ni and Nj are the nets connected to cells i and j, and W and W ′ are the wirelength

measurements before and after the swap.

2The wirelength gap between the upper-bound and lower-bound solutions is useful to formulate conver-
gence criteria.

65

BFG-R [43] is a global router based on Lagrangian relaxation. It decomposes multi-

pin nets into two-pin subnets using MSTs and then iteratively routes all subnets until no

violations are present. BFG-R prices each (sub)net by summing up the cost of used edges

cost(e) = basee + λ(e)× C(e)× ρ(e) (5.3)

where basee is the base edge cost, λ(e) is the history cost, C(e) is current congestion, and

ρ(e) is the runtime penalty factor.

5.3 Simultaneous Place-and-Route

In this section, we introduce a methodology for simultaneous place-and-route and dis-

cuss its components (Figure 5.1). Given a placement instance, the baseline global placer

quickly produces a tentative solution. Then, we apply lookahead routing (LAR) by calling

our global router to estimate routing congestion and wirelength. We use this information

during global placement by means of cell bloating and dynamically adjusting the target

density. After several iterations of global placement, where the placer “heals” the place-

ment for wirelength, lookahead routing is invoked again, and such iterations continue until

overflow stops improving. Congestion-aware detailed placement is performed to recover

whitespace and improve routed wirelength while maintaining routability.

We achieve an initial placement solution once the wirelength gap between the upper-

bound and lower-bound solutions is within 25% of the 10th iteration’s total wirelength

(Section 5.2). After cell bloating, we run four iterations of lookahead legalization. Our

disjunctive convergence criterion checks for three conditions: (i) the overflow has im-

proved less than 3% after two consecutive rounds of LAR, (ii) the total overflow is less

than 1% of the total edge capacity, or (iii) the global placement time-out of 60 iterations.

66

5.3.1 Lookahead Routing (LAR)

To improve routability while preserving wirelength, global placement invokes looka-

head routing. Unlike previous approaches, where only congestion information is reported,

LAR estimates both interconnect length and routing congestion. Our router implementa-

tion accounts for (i) different wire widths and spacings, (ii) routing blockages, (iii) pins

on different metal layers, and (iv) vias.

Wire widths and spacings at each metal layer are modeled separately. The resources

consumed by a net n are then estimated by

Usage(n) =
∑
e∈n

minSpacing(le) +minWidth(le) (5.4)

where e is each edge in n, le is the metal layer that e is on, and minSpacing(le) and

minWidth(le) are the respective minimum spacing and width required for le.

However, congestion estimates produced by this model can be misleading. For exam-

ple, suppose two edges e1 and e2 on different metal layers are overflown, where e1 is on

Metal1, having minSpacing(Metal1) + minWidth(Metal1) = 2, and e2 is on Metal4,

having minSpacing(Metal4) +minWidth(Metal4) = 8. Suppose e1 has two violating

nets, yielding an overflow of 4, and e2 has one violating net, yielding an overflow of 8.

These actual overflows are now misleading, as e1 is considered more congested, but its

overflow is lower than that of e2. Therefore, to accurately report congestion, we normalize

the capacity for every edge e on metal layer l by

nCap(el) =
Cap(el)

minSpacing(le) +minWidth(le)
(5.5)

where Cap(el) is the original capacity of edge e on layer l. Note that when normalizing

capacity, we also normalized, where each segment is defined as one routing segment,

regardless of the layer.

67

Congestion-aware

Detailed PlacementInitial Placement

4 Global Placement

Iterations (CG + LAL)

Converge?
no yes

Legalization

Placed Solution

Lookahead Routing

Placement Instance

Dynamically-adjusting

Target Density

Routability-driven

Cell Bloating

Figure 5.1: Our simultaneous place-and-route (SimPLR) flow. The baseline components
are shown in transparent boxes. Added routability-driven components have
light-blue fill.

Routing blockages are specified as physical locations in the layout area. Therefore, the

routing resources blocked at each edge are proportional to the length of the blockage.

However, if two obstacles overlap, the overlap is only counted once. To properly calculate

capacity, we first take the union of all routing-obstacle shapes on each edge, and then

consider each non-blocked region separately. For each non-blocked region r, the amount

of usable capacity is

υ(re) =
dim(re)

dim(e)
(5.6)

where dim(r) is the length of the non-blocked region on edge e, and dim(e) is the length

of e (i.e., height if e is a vertical edge, and width if e is a horizontal edge). Then, each

edge’s normalized capacity is

nCap(el) =
∑
re∈Re

υ(re)× Cap(el)
minSpacing(le) +minWidth(le)

(5.7)

The calculation of normalized capacity in the presence of routing obstacles is demon-

strated in Fig. 5.2. In the example, let the length of every edge be 50, let the lower left

coordinate be (0,0). Let the original edge capacity be 40, and let the minimum spacing

plus the minimum width of this layer be 4. Since the vertical edge (50,0)-(50,50) has coor-

dinates (50,40)-(50,50) blocked off, it only has 50−10
50

= 80% usable capacity. Since there

is only one non-blocked region, the normalized capacity is (80%×40)
4

= 8. Similarly, the

68

50

50

20
3

12
15

25
2525

10

dim(ev) = dim(eh) = 50
origCap(ev) = origCap(eh) = 40
minWidth(e) + minSpacing(e) = 4

108
05

5
2 6

5

5

0
0 0

Figure 5.2: Accounting for routing blockages, where dim(e) = 50 for each edge, two
of three routing blockages overlap. On the left, the lengths of each routing
blockage and non-blocked region are shown. On the right, the normalized
capacities are calculated for each edge. Here, the original capacity of each
edge is 40, and each net on this layer uses 4 tracks. With no blockages, an
edge has a normalized capacity of 10.

horizontal edge (50,50)-(100,50) has no usable capacity, as it is entirely blocked off, so its

normalized capacity is 0.

Elevated pins. The ISPD 2011 contest benchmarks, derived from industrial ASICs and

SoCs designs, include contact pins on multiple metal layers. This poses a challenge for

traditional global routing techniques, where routing is first performed on a 2-d grid and

then projected onto a 3-d grid. Therefore, we pursue a different strategy. We decompose

all multi-pin nets into two-pin subnets, and perform 3-d maze routing.

5.3.2 Congestion-based Cell Bloating

After lookahead routing, we inflate all cells located in congested regions. The conges-

tion at GCell g, located at (x,y), is

C(g(x, y)) =
Usage(g(x, y))

Cap(g(x, y))
(5.8)

where nUsage and nCap are respectively the normalized usage and capacity at g(x, y).

69

The usage at each GCell is defined as

Usage(g(x, y)) = max(nUsage(e(x± 1, y)), nCap(e(x± 1, y)))+

max(nUsage(e(x, y ± 1)), nCap(e(x, y ± 1)))

(5.9)

and the capacity at each GCell is defined as

Cap(g(x, y)) = nCap (e(x± 1, y)) + nCap (e(x, y ± 1)) (5.10)

where nUsage is the normalized usage for edge e, and nCap is the normalized capacity

for e. Therefore, if C(g(x, y)) > 1, then g(x, y) is considered congested. If at least one

of the neighboring edges is congested, then the GCell is considered congested. For every

cell in each congested GCell, we apply cell bloating by setting the cell’s new width to

max(width(cell) + 1, 1 + θ · Λ(cell) · C(g(x, y)) · deg(cell)) (5.11)

where width is the current width of cell, θ is an adaptive function (described below), Λ

is the number of times the cell has been in a congested GCell, and deg denotes the cell

degree (the number of cell pins connected to wires).

Our cell bloating approach is inspired by CRISP [95], but differs in three major ways.

First, we apply cell bloating during global placement, while CRISP bloats cells after

placement. We can therefore perform large-scale changes and, in our experience, our

placer better adjusts to bloated cells, resulting in a smaller wirelength penalty. Second, we

use GCell-centric congestion estimation, while CRISP uses edge-centric congestion esti-

mation with a pin-density map. Our style of congestion estimation improves integration

with a global router. Pin density has been a popular estimation technique for designs with

relatively few metal layers. However, with modern 9+ layer interconnect stacks, it primar-

ily affects the success of detailed routing, which is orthogonal to our work.3 Third, while
3CRISP could be applied after our techniques, but the improvements will not be detectable by our exper-

imental configuration that uses only a global router.

70

CRISP relies on a constant θ, our θ is a routing-solution-dependent function (described

below), and based on the design’s estimated difficulty and its routability. The intuition

is that if a design is difficult to place or route, cells in congested regions need additional

whitespace. Therefore, cells in those regions should be more inflated. We define θ(G) as

θ(G) = max (0, α · η(G) · ξ(G) + β) (5.12)

where G is the set of all GCells, α and β are constants determined from linear regressions,

η(G) indicates how hard a design is (e.g., how much available routing capacity there is),

which is relatively insensitive to the routed solution, and ξ(G) indicates the routability of

the design, and is based on lookahead routing. We define η(G) as

η(G) =
∑
g∈G

Usage(g)

Cap(g)
(5.13)

and ξ(G) as

ξ(G) =
TOF (G)

TCap(G)
(5.14)

where OF (G) and Cap(G) are the respective total overflow and total capacity of all

GCells in G. In our implementation, we empirically determined the values α = 0.017

and β = −0.01 based on numerical regression (but not benchmark-specific tuning).

5.3.3 Dynamic Adjustment of Target Density

Target density (utilization) is one of the most critical parameters to trade off routabil-

ity for wirelength in the final placement. However, finding the best target density for

routability-driven placements remains an open problem. Unnecessarily high target density

leads to better HPWL, but may also cause routing failures [1]. Lower target density, on

the other hand, may increase the overall routed wirelength, which would lead to longer

detours and consume more routing resources. By using a variable target density, we are

trading off wirelength for routing demand in congested regions. As demonstrated in Figure

71

a

b

b
a

c

c
d

d

a

b

b

a

c

c

d

d

a

b

b

a

c c

d

d

TOF = 2

TWL = 4

Density = 100%

TOF = 0

TWL = 7

Density = 50%

TOF = 0

TWL = 5

Density = 75%

Figure 5.3: The impact of placement density on routability, with bin capacity 2 and edge
capacity 1. The dense, low-wirelength placement (left) is unroutable. The
sparse, high-wirelength placement (center) is routable. The placement (right)
is also routable, with low wirelength and density.

5.3, a placer using a lower target density typically produces a placement that is more likely

to be routable, but has higher total wirelength. Conversely, a placer using a higher target

density typically produces a placement that is less likely to be routable, but has lower total

wirelength. We set the initial target density as

γinit = Dut + min(max(γ0 −Dut, 0%), ωD) (5.15)

where Dut is the design utility (given), γ0 is a prediction of a good target density, and ωD

is the target density lower bound. If Dut is too low (e.g., less than 35%), then the target

density should be higher to encourage cell clustering. Conversely, cells should be spread

apart if Dut is too high. Empirically, we observed that setting γ0 = 50% when ωD = 15%

provides a reasonable tradeoff between routability and routed length.

After lookahead routing and cell bloating, the target density is updated as

γ = min(
area(Cm)

area(D)− area(Cf)
+ φ, 95%) (5.16)

where Cm is the set of movable cells, Cf is the set of fixed cells, D is the design, area

returns the total area of input (bloated cells included), and φ is a constant that increases

72

every time LAR reports an increase in routed wirelength. In our implementation, φ is

initially γinit −Dut, and increases by 1% when wirelength increases.

5.4 Congestion-aware Detailed Placement

Traditional wirelength-driven detailed placement may pack cells in regions that are

difficult to route. In the context of the FastPlace-DP Algorithm [89], we modify both

global cell swapping and vertical cell swapping to be congestion-aware (Algorithm 6) in

two ways: (i) we only allow cell move that do not harm routability, (ii) we encourage cells

to move out of congested regions.

Algorithm 6 Congestion-aware Detailed Placement.
Input: Set of all movable cells Cm, set of all congested cells Gc,

and the congestion of every i cell position C(i)
Output: n.a.

1: for all cells ci ∈ Cm do
2: Ri = optimal region of ci;
3: bswap = benefit of swapping ci with cj ∈ Ri;
4: bmove = benefit of moving to an empty space s ∈ Ri;
5: if ci 6∈ Gc AND cj 6∈ Gc then
6: if bswap ≥ bmove then
7: PERFORM SWAP(ci, cj , (bswap > 0));
8: else
9: PERFORM SWAP(ci, s, (bmove > 0));

10: end if
11: else if ci ∈ Gc AND cj 6∈ Gc then
12: PERFORM SWAP(ci, s, TRUE);
13: else if ci 6∈ Gc AND cj ∈ Gc then
14: PERFORM SWAP(ci, cj , (DEGREE(ci) < DEGREE(cj)));
15: else
16: if C(ci) > C(cj) then
17: PERFORM SWAP(ci, cj , (DEGREE(ci) > DEGREE(cj)));
18: else
19: PERFORM SWAP(ci, cj , (DEGREE(ci) < DEGREE(cj)));
20: end if
21: end if
22: end for

73

The subroutine PERFORM SWAP(ci, cj , pred) swaps two cells ci and cj if pred is true.4

For each movable cell ci, we consider its best swap with cj or move with empty space s

(lines 2-4). If both actions result in positive gain, and both are in non-congested regions,

then we revert to wirelength-driven decisions (lines 5-10). If ci is in a congested region

and cj is not, then we can improve routability by moving it to s (lines 11-12). If ci is not

in a congested region and cj is, and ci has fewer pins than cj , we can potentially improve

routability in subsequent moves if we decrease the number of routes that go through the

congested region (lines 13-14). Similarly, if both cells are in congested regions, then we

only swap them if deg(cj) < deg(ci). This ensures that the detailed placer does not harm

routability (lines 15-20).

5.5 Empirical Validation

Our C++ implementation was compiled with g++ 4.4.3, and validated on a 3.00 GHz

Intel Core 2 CPU X9650 Linux workstation. We modified and integrated the (i) SimPL

global placer [66], (ii) BFG-R global router [43], and (iii) FastPlace-DP detailed placer

[89]. Significant changes were made to all three tools, and new algorithms were added, as

described in Sections 5.3 and 5.4.

The evaluation of placement solutions was performed by coalesCgrip [12], which was

mandated by the ISPD 2011 Routability-driven Placement Contest [108]. coalesCgrip was

compiled with gcc 4.4.1, as specified by the contest organizers. Its runtime limit was set

to 300 seconds for initial routing and 900 seconds for rip-up and reroute (RRR), which

makes results machine-dependent. Therefore, we downloaded all placements produced by

the top contestants, and reevaluated them on our workstation.

Our implementation of SimPLR uses BFG-R for LAR instead of coalesCgrip, which

4A single cell can “swap” with an empty location.

74

BENCHMARK #cells FastPlace-DP (after SimPLR) Ca-DP (after SimPLR)
(source: IBM Research) HPWL RtWL OF Runtime HPWL ∆RtWL ∆OF Runtime

SUPERBLUE1 847K 277.03 14.45 0 5.37 279.01 0.376 0 9.83
SUPERBLUE2 1.01M 657.03 29.09 782348 19.22 660.09 -0.195 -42298 32.06
SUPERBLUE4 600K 231.78 10.71 22192 2.96 231.44 -0.336 -3748 4.62
SUPERBLUE5 772K 354.23 17.02 139012 5.58 355.05 -0.386 -17118 9.68
SUPERBLUE10 1.13M 586.62 26.48 556678 7.99 592.18 0.113 11102 18.26
SUPERBLUE12 1.29M 376.59 22.7 293516 7.71 377.27 -0.119 -112166 13.33
SUPERBLUE15 1.12M 337.04 17.04 56866 6.60 337.96 0.128 -7580 8.43
SUPERBLUE18 483K 165.09 10.64 23708 2.92 165.75 -0.125 -2688 4.44

Average 1.00× 1.01× 1.18× 0.60× 1.00× 1.00× 1.00× 1.00×
Geometric mean 1.00× 1.01× 1.17× 0.60× 1.00× 1.00× 1.00× 1.00×

Table 5.1: The impact of congestion-aware detailed placement on HPWL(×10e6), routed
wirelength (×10e6), and overflow (OF) on ISPD 2011 benchmarks [108]. Run-
times are given in minutes. Routing was performed by coalesCgrip [12] with a
15-min time-out.

was not available in source code. Empirically, our router accurately predicts the regions of

congestion reported by coalesCgrip while allowing us to implement our proposed interface

that minimizes runtime overhead. Since our strong results are achieved without running

coalesCgrip during global placement, SimPLR does not seem to require the knowledge of

a specific downstream router. Though using different routers in one flow may not be ideal,

this is not uncommon in multi-vendor industry flows, and our results indicate that such

configurations can be successful.

Progress of global placement is illustrated in Figure 5.4 for the SimPL (with target den-

sity 50%) and SimPLR algorithms. Before the first invocation of lookahead routing (LAR)

in SimPLR, the two progress identically since the initial target density (γinit) of SimPLR

is computed by Equation 5.15 to be 50%. The first invocation of LAR with subsequent

cell bloating does not significantly impact wirelength, due to Λ = 0 in Equation 5.11.

Lookahead legalization produces higher HPWL after the second LAR, but the impact on

quadratic placement is small, and the disruption in roughly legalized placement is quickly

healed. SimPLR invokes LAR three to six times per benchmark, taking roughly 27% –

58% of the total runtime, averaging at 47.88%, and currently runs 2× slower than SimPL.

Yet, SimPLR was among the two fastest placers at the ISPD 2011 contest.

75

Congestion-aware detailed placement (Ca-DP) is evaluated in Table 5.1. We report the

(i) recovered HPWL, (ii) recovered routed length, and (iii) total overflow improvement

using Ca-DP, versus FastPlace-DP [89]. Ca-DP barely changes HPWL and routed wire-

length, but improves overflow by 1.18×.

Routability is reported in Table 5.2 and Figure 5.5: SimPLR consistently reduces total

overflow across all benchmarks and makes SUPERBLUE1 fully routable. On the remain-

ing benchmarks, compared to baseline wirelength-driven placer SimPL, we improve total

overflow by 3.81× on average. Compared to the top results from the ISPD 2011 Con-

test, we produce the smallest overflow on all benchmarks, for an average 2.04× reduction.

These results are further improved in Table 5.3, and discussed below.

Extended runtime. The ISPD 2011 experimental protocol evaluated placements with

only very short routing runs of coalesCgrip. To illustrate the full potential of SimPLR,

we performed additional experiments, where coalesCgrip was given 12 and 24 hours. The

results reported in Table 5.3 were obtained on a 2.53 GHz Intel Xeon CPU E5540 Linux

workstation. While none of the IBM-released benchmarks could be completed without

overflows at the ISPD 2011 contest, we have now completed half of them. Our results

show that the advantage of SimPLR solutions grows significantly when the evaluating

BENCHMARK #cells SimPL with FastPlace-DP Best in Contest SimPLR with Ca-DP
(source: IBM Research) RtWL OF Runtime RtWL OF RtWL OF Runtime

SUPERBLUE1 847K 14.32 1354 23.89 14.70 108 14.48 0 51.69
SUPERBLUE2 1.01M 27.10 1191806 37.87 30.77 797898 29.20 740050 108.30
SUPERBLUE4 500K 10.52 45430 7.54 10.86 85538 10.68 18444 24.79
SUPERBLUE5 772K 16.90 272934 23.53 17.29 126186 16.98 121894 51.84
SUPERBLUE10 1.13M 26.18 463858 33.68 25.16 616742 26.69 567780 73.34
SUPERBLUE12 1.29M 19.35 1992246 35.18 22.89 415428 22.58 181350 43.32
SUPERBLUE15 1.12M 17.09 62274 24.21 17.91 125936 17.07 49286 43.33
SUPERBLUE18 483K 10.64 153556 14.36 9.84 31440 10.63 21020 21.38

Average 0.96× 3.81× 0.52× 1.01× 2.04× 1.0× 1.0× 1.0×
Geometric mean 0.96× 2.63× 0.49× 1.01× 1.76× 1.0× 1.0× 1.0×

Table 5.2: Routed wirelength (RtWL, ×10e6), routing overflow (OF), and runtime (in
minutes) on ISPD 2011 benchmarks. The placements were evaluated by co-
alesCgrip [12] with a 15-min time-out.

76

 0e+0

 2e+8

 4e+8

 6e+8

 8e+8

 1e+9

 0 10 20 30 40 50
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

H
P

W
L

S
ca

le
d

ov
er

flo
w

 p
er

 b
in

Iteration number

SimPL

Quadratic placements Scaled overflow per bin

Roughly legalized placements

Legal solution

 0e+0

 2e+8

 4e+8

 6e+8

 8e+8

 1e+9

 0 10 20 30 40 50
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

H
P

W
L

S
ca

le
d

ov
er

flo
w

 p
er

 b
in

Iteration number

SimPLR

Quadratic placements

Scaled overflow per bin

Roughly legalized placements

Legal solution

Figure 5.4: Progress of SimPL and SimPLR algorithms plotted against iteration counts
(SUPERBLUE12). Each invocation of lookahead routing is marked with a cir-
cle. The second invocation of LAR and subsequent cell bloating visibly disrupt
the quality of roughly legalized placements, with a smaller impact on quadratic
placement.

77

Figure 5.5: Congestion maps for SUPERBLUE15 for the best-reported placement at the
ISPD 2011 contest (left) and SimPLR (right). Isolated red regions indicate
peak congestion, dark-blue rectangles show unused resources.

router is used at its full strength.5 Thus, modern place-and-route leaves room for improve-

ment in both gate locations and wire routes, but such improvements are best achieved in

cooperation. Such optimizations use physical resources more efficiently, enable smaller

dies, and decrease IC manufacturing cost [95].

Given that SimPLR internally invokes a full-fledged router with a limited number of

iterations (BFG-R) that produces a valid routing solution, better optimized results can

be requested at the cost of greater runtime. The SimPLR framework can target specific

nets and facilitates several further extensions, especially in timing optimization, where

the placer’s early and direct access to actual routes can improve the accuracy of delay

estimation.
5The placement solutions produced by SimPLR on ISPD 2011 benchmarks, as well as resulting routes,

are available on demand.

78

Best in Contest SimPLR with Ca-DP
BENCHMARK coalesCgrip 12hr coalesCgrip 24hr coalesCgrip 12hr coalesCgrip 24hr

RtWL OF RtWL OF RtWL OF RtWL OF
SUPERBLUE1 15.02 0 15.02 0 15.02 0 15.02 0
SUPERBLUE2 31.11 41408 31.20 16768 29.39 39132 29.52 9646
SUPERBLUE4 10.87 2466 10.88 1262 10.67 44 10.67 36
SUPERBLUE5 17.38 19112 17.49 10582 17.11 9510 17.18 4392

SUPERBLUE10 25.09 31320 25.16 10652 26.68 22268 26.73 11104
SUPERBLUE12 22.99 5130 23.02 594 23.00 3302 23.04 0
SUPERBLUE15 17.97 4448 17.98 2264 17.09 0 17.98 0
SUPERBLUE18 9.86 0 9.86 0 10.63 0 10.63 0

Average 1.00× 19.41× 1.00× 8.43× 1.00× 4.12× 1.00× 1.00×
Geometric mean 1.00× 9.00× 1.00× 3.09× 1.00× 2.99× 1.00× 1.00×

Table 5.3: Routed wirelength (RtWL, ×10e6) and routing overflow (OF) on ISPD 2011
benchmarks [108]. Routing was done using coalesCgrip [12] with a longer
time-out than in Tables 5.1 and 5.2. Means are calculated excluding routable
benchmarks, which under-represents the impact of proposed techniques.

5.6 Conclusions

Tight integration of major CAD tools is sometimes frowned upon in the industry be-

cause it may sharply increase software complexity, introduce subtle discrepancies and

complicate software maintenance. However, such integration is highly sought in place-

and-route, where high-performance global placers often generate hard-to-route solutions,

creating unnecessary complications for downstream tools. The strategy pursued in our

work is to give the placer advance, firsthand access to tentative net routes and resulting ac-

tual congestion maps (rather than crude estimates), as well as the ability to respond early

and often. We believe that our proposed integration of global routing into global place-

ment, based on lookahead routing of upper-bound placements in the SimPL algorithm,

offers a particularly promising path to effective simultaneous place-and-route. Through a

lightweight interface, the placer and the router quickly exchange multiple updates to cell

locations and net routes, while maintaining the separate software infrastructure. Despite

this software separation, the evolution of routes and cell placements are coupled and oc-

cur simultaneously. Empirical data show that our techniques improve routability, reducing

total overflow compared to top results from the ISPD 2011 contest by 2.03×.

79

PART III

Scaling Global Routing to Larger
Designs and Applications

80

CHAPTER VI

Taming the Complexity of Coordinated Place and Route

IC performance, power dissipation, volume, and signal integrity are currently domi-

nated by interconnect effects. However, with ever-shrinking standard cells, blind mini-

mization of interconnect length during placement causes routing failures. In this chap-

ter, we develop Coordinated Place-and-Route (CoPR), consisting of (i) a Lightweight

Incremental Routing Estimation (LIRE) frequently invoked during placement, and (ii)

placement techniques that efficiently address multiple types of routing congestion. LIRE

comprehends routing obstacles and non-uniform routing capacities, and relies on a new

cache-friendly routing algorithm. On the ICCAD 2012 Benchmark suite, we outperform

the winners of the ICCAD 2012 Contest.

6.1 Introduction

Throughout the history of EDA, Moore’s law has been the primary driver for devel-

oping new, more scalable physical design techniques. In the 1990s, interconnect started

lagging behind devices in power, delay and volume, making not only algorithmic scala-

bility, but also the quality of optimization at large scale a key concern. In the next ten

years, a variety of circuit phenomena, such as coupling capacitance and signal integrity,

stipulated that global routing cannot be viewed as a standalone optimization. Interconnect

81

stacks grew from three metal layers in the 1980s to 9-12 metal layers with non-uniform

pitches today [109, 110], changing the nature of global routing algorithms (compared to

channel routing) and increasing their impact on design quality. Placement is also no longer

standalone, as it interacts with numerous other optimization steps to control interconnect

lengths and delays. In particular, the idea of guiding global placement by routability es-

timation has been widely accepted for at least 15 years, used in commercial EDA tools,

and promoted by academic (ISPD, DAC, ICCAD) Contests [108–110]. In such integrative

research, understanding the strengths and weaknesses of existing optimizations becomes

essential, as well as invoking the right primitive at the right time. Indeed, complexity —

both the number of steps executed at runtime and the number of lines of code — is the

main gating factor for what can be achieved by EDA tools in the foreseeable future.

In this chapter, we develop a streamlined system for Coordinated Place-and-Route

(CoPR) that (i) uses cache-friendly routing primitives to quickly and accurately esti-

mate routing congestion (LIRE), and (ii) offers a new categorization of congestion and

new congestion-relief techniques during placement. These contributions are validated by

strong empirical results on ICCAD 2012 contest benchmarks from IBM Research [110].

The remainder of this chapter is structured as follows. Section 6.2 presents our fast and

accurate routing estimation technique. Section 6.3 introduces our placement techniques to

proactively alleviate routing congestion. Section 6.4 describes the interactions between the

placer and the routing estimator. Section 6.5 compares our techniques to currently-known

approaches. Section 6.6 empirically validates the scalability of our techniques. Section

6.7 concludes our discussion.

82

6.2 LIRE: Routing Estimation

We develop a Lightweight Incremental Routing Estimator (LIRE) that quickly pro-

duces congestion maps as accurate as those by a global router (Figure 6.7). Empirically,

we target 75K nets per second,1 but also facilitate a tradeoff between quality and runtime.

In contrast, modern routers [43, 77] complete 6K nets per second.1

Notation. We consider an X × Y routing grid G(V,E) with (i) a set V of GCells (nodes)

where each GCell v ∈ V has integer coordinates (xv, yv), and (ii) and a set E of directed

edges e = (v1, v2), where the weight we of edge e encapsulates routing congestion and

history costs (Lagrangian multipliers). Each node v ∈ V is adjacent to its four cardinal

neighbors: NORTH (xv, yv + 1), SOUTH (xv, yv − 1), EAST (xv + 1, yv) and WEST (xv −

1, yv). Consider a point-to-point connection π between two distinct GCells S, T ∈ G.

When xS ≤ xT and yS ≤ yT , a forward edge for π is an edge (v1, v2) such that xv1 < xv1

or yv1 < yv2 , i.e., EAST or NORTH, and a backward edge for π is an edge (v1, v2) such that

xv1 > xv2 or yv1 > yv2 , i.e., WEST or SOUTH. Definitions for the three other orientations

of π are symmetrical.

Key definitions. A route segment is a directed path in the routing grid. A flat route

segment is a set of directed edges that are all NORTH, SOUTH, EAST or WEST. A mono-

tonic segment is a connected set of flat segments such that each flat segment is either: (i)

NORTH or EAST, (ii) NORTH or WEST, (iii) SOUTH or EAST, or (iv) SOUTH or WEST.

Each monotonic segment is classified as NORTH-EAST, NORTH-WEST, SOUTH-EAST,

or SOUTH-WEST. A route rπ is a collection of routing segments linking S and T .

1Median single-thread router performance on placements by the top three ICCAD 2012 contestants (Intel
Xeon 3.4GHz CPU).

83

Algorithm 7 Bellman-Ford Algorithm with Non-negative Weights
Input: Point-to-point connection π, Search Space (V ′,E ′)
Output: route rπ

1: for i from 1→ |V ′| do
2: cost[vi] =∞;
3: end for
4: cost[S] = 0;
5: for i from 1→ |V ′| do
6: for j = 1 from 1→ |E ′| do
7: ej = (v1, v2);
8: if cost[v2] > cost[v1]+ COST(ej) then . relaxation
9: cost[v2] = cost[v1]+ COST(ej);

10: parent[v2] = v1;
11: end if
12: end for
13: end for
14: rπ = TRACE PATH(π);

6.2.1 Faster Routing

Global routing spends the majority of runtime finding shortest (weighted) paths in

highly-congested regions. Such maze routing is necessary in congested regions for both

global routing and accurate congestion estimation because, unlike pattern routing, it ade-

quately captures detours. Detours are shaped by edge weights, which include congestion

and history costs [43]. These weights must be maintained with sufficient accuracy and

can be neither binned nor rounded without adverse impact on resulting routes. Therefore,

shortest-path routing in congested regions is performed by A*-search. However, (i) the pri-

ority queue in A*-search is responsible for an extra O(log V) term in the overall complex-

ity of the algorithm, (ii) priority queues, even when implemented using Fibonacci heaps,

are too slow [69], whose pointer-based algorithms can experience costly cache misses, (iii)

typical A* admissible functions based on straight-line distance become ineffective when

history-based costs become large, and (iv) A*-search cannot leverage incrementality, i.e.,

given a candidate path, it cannot check optimality or perform an incremental improvement.

84

Linear-time cache-friendly routing. Given that A*-search is derived from Dijkstra’s

algorithm [30, Section 24.3], we hope to avoid these priority-queue-based approaches.

Of the classic weighted shortest-path algorithms, the Bellman-Ford (BF) algorithm [30,

Section 24.1] is array-based and moreover preserves memory locality. However, it may

require V linear-time passes, taking O(V 2) time. Notably, the worst-case complexity of

Bellman-Ford (BF) can be avoided in global routing. Recall that each BF pass performs

E×O(1) relaxation steps. When no relaxations in a pass result in improvement, no further

improvement is achieved in later passes. Thus, BF can be terminated early without the loss

of optimality.

During global routing, we consider one point-to-point connection (S → T) at a time.

Routing is limited to a subgrid G′(V ′, E ′) ⊆ G enclosed in an isothetic (coaxial) bound-

ing box that contains S and T . To generate a route, we visit the nodes of G′ in a specified

ordering v0, v1, . . . , v|V ′|−1.2 While the Bellman-Ford algorithm supports any node visita-

tion ordering, we specify an ordering that not only affords us the highest memory locality,

but also caters to the common case of monotonic paths. Starting from S, the nodes are

traversed in the row containing S, toward T , and at each node v, relaxation is performed

(lines 8-9 in Algorithm 7) along the four v-incident edges pointing toward T . The nodes

in the next row closer to T are traversed, and so on until the row that contains T . As long

as the node traversal follows the in-memory array layout (by rows or by columns), this

method maintains the locality of memory access and is cache-friendly.

We propose to optimize BF passes with duplex-edge relaxation. At each edge con-

sidered by this technique, relaxations are attempted in both directions, but only forward-

looking edges are considered at each vertex. While the same number of edges is con-

sidered per pass, cache utilization and memory locality are improved because for each

2Edges are traversed in the increasing order of adjacent vertices.

85

adjacent vertex (and edge cost) loaded from memory, two relaxations can be attempted

rather than just one. Furthermore, if the first relaxation succeeds, the second one cannot

occur — this saves an extra comparison. For example, at node v with coordinate (x, y),

we relax either the incoming NORTH edge (x, y) → (x, y + 1) or the outgoing SOUTH

edge (x, y+1)→ (x, y). A similar duplex relaxation is performed in the EAST and WEST

directions. By explicitly modeling via costs within these traversals [43, Section 3.4], BF

will prefer fewer-bend routes.

Monotonic routing with one linear-time BF pass. As a special case, an optimal mono-

tonic route can be found by (i) considering only forward edges (e.g., NORTH and EAST),

and (ii) fixing the considered space to the bounding box b with dimensions w × h, w =

xT−xS+1 and h = yT−yS+1, that minimally contains S and T . Let t be thew×hmatrix

where t[x][y] stores the partial cost from S with coordinates (0, 0) to a node v = (x, y).

By construction, the cost at (x, y) depends solely on the costs at (x− 1, y) and (x, y − 1).

Therefore, by visiting the nodes in row order (or column order) from S toward T , we visit

every node in b exactly once. Since b has w × h nodes, the runtime complexity is O(wh).

Non-monotonic routing with one linear-time BF pass. Recall that BF supports any

node (and edge) ordering. Some optimal non-monotonic routes can be found in linear

time within the bounding box b that minimally contains π by (i) employing duplex-edge

relaxation and (ii) echo-relaxation if the relaxation succeeded in the direction opposite to

node ordering (from a greater-numbered node to a smaller-numbered node). That is, in the

forward-going node ordering, if a backward edge at node v(x, y) results in a cheaper-cost

route, we forward-propagate the cheaper cost through all recently-relaxed edges incident

to v. Figure 6.1 illustrates finding an optimal route with three distinct monotonic segments

in one BF pass. This improvement is effective in detouring short nets, and a majority of

nets are short in practice. A more powerful variant of echo-relaxation would propagate

86

costs through all incident edges, and allows BF to find longer detours (not used in this

work).

Non-monotonic routing with BF and Yen’s improvement. J. Y. Yen [125] suggested

that reversing the node ordering between BF passes reduces the number of passes required

to find an optimal path. We refer to the Bellman-Ford algorithm with early termination

and Yen’s improvement as BFY. Two and three BFY passes can quickly find long detours,

as illustrated in Figure 6.2. This is especially applicable for large nets.

Theorem VI.1. Let π be a point-to-point connection. Finding a minimal-cost route rminπ

with m (distinct) monotonic segments requires at most m BFY passes.

Proof: Let t be thew×hmatrix, where t[x][y] stores the cost of the optimal path from

its cardinal neighbors. Consider the first pass where partial costs are not yet propagated.

By construction, t[x][y] only depends on t[x−1][y] and t[x][y−1], and requires one BF(Y)

pass. Therefore, an optimal route rπ with m = 1 monotonic segments is found after

m = 1 passes. Consider the general case where rπ has k distinct monotonic segments. By

assumption, rπ is formed using k BFY passes. By the early termination criterion, if BFY

changes no costs in t, then rπ = rminπ . If relaxation is successful during the backward

pass, then rπ is allowed to detour through some intermediate node v′ such that the route

cost from S to v is reduced by going through v′. If such v′ exists, then there exists a new

path from S to v through v′ such that the new path has an additional monotonic segment.

During the forward pass, the full path of S to T through v. If going through v reduces the

cost, then there is an additional monotonic segment v → T . Therefore, for two additional

BFY passes for an rπ with k distinct monotonic segments, we will generate a new path

with k+ 2 monotonic segments. Because we consider all intermediate nodes v as detours,

the best-cost path will be stored. Therefore, if rminπ has m = k + 2 monotonic segments,

it will require k + 2 BFY passes.

87

(f)(d) (e)

100

100

100

10

1

1

1

1

1

1

1

1

(c)(a) (b)

S

T

S

T

10

0 1

3

2

4

S

T

5

10

0 1

6

3

2

6

101

1 111

S

T

10

0 1

3

2

101

10211

S

T

10

0 1

3

2

4

5 111

S

T

10

0 1

3

2

4

5 66

Figure 6.1: Applying one BF pass with duplex-edge relaxation and echo-relaxation to a
point-to-point connection S → T without via-cost modeling. Arrows point
to the previous node in the path. (a) The routing grid and edge costs (conges-
tion). Let S have coordinate (0, 0). (b) The partial costs of the first row and the
center-left node have been populated. (c) Relaxing the NORTH (1, 1)→ (1, 2)
and SOUTH (1, 2)→ (1, 1) edges at node with coordinate (1, 1). (d) Relaxing
the EAST (1, 1) → (2, 1) and WEST (2, 1) → (1, 1) edges at node with co-
ordinate (1, 1). The cost at (1, 1) has been updated by the WEST edge and is
propagated to (1, 2). (e) The remaining nodes are considered, and partial costs
are populated through T . (f) An optimal path with three monotonic segments
is found in a single BF pass.

88

1

100

100

10

1

1

1

1

1

1

100

1

(d)(a) (b)

S

T

S

T

(c)

0 1

3

2

7 8

5

6

4

0 1

3

2

12 13

10

11

11

S

T

S

T

0 1

3

2

12 13

5

11

4

Figure 6.2: Applying BFY to a point-to-point connection S → T without via-cost mod-
eling. (a) The routing grid and edge costs (congestion). (b) The first forward
pass finds the optimal monotonic path of cost 13. (c) The backward pass finds
a detour. (d) The second forward pass finds the optimal path of cost 8.

Theorem VI.1 is significant because in practice, many connections are routed with

very few monotonic segments. In particular, most connections have very few bends [90],

and the number of monotonic segments is upper-bounded by the number of bends. Fur-

thermore, a route with many bends can still be monotonic (Figure 6.3b). In this context,

Theorem VI.1 suggests that BFY typically finds shortest-path routes in O(1) passes, and

is therefore faster than A*-search (in addition to being cache-friendly). BFY runtime can

be further reduced by limiting the number of passes with a small loss of optimality. For m

relaxation passes in a bounding box of size w × h, we need O(mwh) runtime.

Incremental routing with BFY can use any existing route, including those previously

found by A*-search. Instead of propagating the costs in a∞-initialized table, we record

the partial costs along an existing route (this is significantly faster than populating the en-

tire table). Subsequent BFY passes find an optimal route, but require less runtime when

a near-optimal initial route is available (Figure 6.3). Multiple such initial routes can be

recorded in the BFY table before the first pass.3 This type of incrementality speeds up

not only rip-up-and-reroute and negotiated-congestion methods, but also repeated invoca-

3A speed-up common for A*-search limits search to GCells to narrow corridors around known routes.
This significantly improves runtime for large nets, but may overlook shorter paths.

89

tions of LIRE during placement (Section 6.4 also outlines other types of incrementality

supported by LIRE).

10

1

10

3

(c)(a) (b)

10

5

5

5

1

1

5

1

S

T

S

T

0

12 18

1

S
S
S

T

0

16 11

1 6

21

11 12

136

Figure 6.3: Applying BFY to an initial route for a point-to-point connection S → T . (a)
The routing grid and edge costs (congestion). (b) The initial route with cost
21. (c) Through relaxation, BFY can preserve part of the route, and find a
better partial segment, resulting in a new route with cost 18.

Coarse-grid routing is based on the observation that large nets often admit near-optimal

routes with long flat segments. Therefore, we reduce the search space by only considering

every ith row and jth column. This allows us to find a reasonable-cost route quickly, and

then incrementally relax it on a finer subgrid.

6.2.2 Fast and Accurate Estimation

Unlike true global routing, constructive congestion estimation needs not to optimize

routes in congestion-free regions. Finding routes that avoid congested GCells is sufficient.

Therefore, existing methods first evaluate several pattern routes (L, C, Z) and invoke

more sophisticated algorithms only when needed. For similar reasons, eligible GCells are

initially limited to the bounding box of the connection, which is gradually expanded until

an acceptable route is found. LIRE too estimates congestion by catering to the common

case first. For each point-to-point connection π = S → T , LIRE limits the search space

to the bounding box b with size w × h that minimally contains π. It considers the two L

90

monotonic pass (v)monotonic passes (i) and (ii) monotonic passes (iii) and (iv)

Figure 6.4: Non-monotonic routing using the Bellman-Ford Algorithm with an expanded
bounding box. The red arrows represent monotonic passes.

routes, with preference for congestion-free routes. If both routes are congested, BFY finds

a route with O(1) monotonic segments. If this route is congested, LIRE expands b to to

W ×H , w < W ≤ X, h < H ≤ Y , which may be based on congestion [78].

Within this expanded rectangular bounding box, we only consider a partial rectilinear

bounding box for two reasons. First, we can reduce the overall runtime by limiting the

bounding box. Second, we observe that the space omitted only contributes to routes that

require multiple detours. Since we do not (and need to) generate routes that heavily detour,

we omit this search space to minimize detours. Within the rectilinear bounding box B, let

UL and BR be B’s respective upper left and bottom right corners. We then perform five

monotonic-routing passes: (i) S → UL, (ii) S → BR, (iii) UL→ T , (iv) BR→ T , and

(v) S → T . While we can relax each monotonic pass, we have found that just expanding

the original bounding box is sufficient. Our implementation expands bounding boxes up

to twice the original size, but only for routes with extreme aspect ratios.

6.3 Congestion Relief

The main precept of routability-driven placement is to increase the porosity of place-

ment regions with high routing congestion. Regardless of how congestion is estimated,

91

porosity has traditionally been increased in two ways: (i) after global placement, by shift-

ing cell locations [95, 126] and using congestion-driven detailed placement [38, 48, 65],

and (ii) during global placement, by inflating cells based on early congestion estimates

and pin density [38, 48, 65].

While studying the impact of these techniques on challenging IC layouts, we observed

their insufficiency. Modifications performed after the global-placement phase must pre-

serve the structure of resulting placement or risk unbearable deterioration of interconnect

length. Cell inflation performed during global placement is more flexible and powerful.

However, when inflated cells move outside the congested region, new cells must be in-

flated, and this process may consume all available whitespace without addressing the root

cause of congestion in a given region (this phenomenon was confirmed to us by several

industrial colleagues and academic colleagues). Further analysis revealed two previously

unknown types of routing congestion, which we include below as types 2 and 3.

1) cell-based congestion is caused by cell-to-cell proximity,

2) local layout-based congestion is caused by static design properties, such as block-

ages and reduced routing capacities,

3) remote-induced layout-based congestion is attributed to non-local factors, such as

long nets.

These congestion types are illustrated in Figure 6.5. The distinctions among them be

blurred by inaccurate congestion maps and also during congestion reduction after global

placement [95, 126] which does not drastically change cell locations. However, they be-

come essential when guiding global-placement iterations by accurate congestion maps.

Conceptually, type-2 congestion requires whitespace injection into relevant regions in such

a way that whitespace remains in these regions even when cells relocate.

92

Cell-based congestion. As the placer spreads cells, it often implicitly keeps cells close

together to decrease HPWL. However, this “clumping” creates difficult-to-route regions,

as there may be too few tracks to accommodate all incident nets. This type of congestion is

easily mitigated through cell inflation. However, inflating too many cells or inflating some

cells by too much can exhaust whitespace too soon, inhibit convergence and undermine

quality. To ensure steady improvement, we inflate each cell in the top 5% most congested

GCells by computing its new width as follows.

max{width(cell) + 1, 1 + θ(G) · Λ(cell) · deg(cell)} (6.1)

Here, cell is a movable cell in a congested GCell, width(cell) and deg(cell) are the width

and connectivity of cell, respectively. θ(G) is an adaptive function (described below) of

the routing grid G, and Λ(cell) is the number of times cell has been in a congested GCell.

We define θ similarly to [65, Equation 12], except that we upper-bound θ to limit how

much a cell can be inflated.

θ = min{0.5,max{0, α · η(G) · ξ(G) + β}} (6.2)

Here, η(G) and ξ(G) represent the respective difficulty and routability of the design, where

η(G) is the sum of every GCell congestion in G, and ξ(G) is the ratio of the total GCell

congestion in G. α and β are constants based on linear regression. Unlike previous cell-

inflation approaches [65], our formula does not include the GCell’s congestion. By ex-

cluding the numeric congestion value, we only rely on the routing estimator’s accuracy for

congestion locations, and less on the reported congestion value. This prevents excessive

inflation, and facilitates a smooth placement transition.

Layout-based congestion. During HPWL-driven placement, the target density is often

high, as this facilitates low-HPWL placement solutions. However, if the placer is not

congestion-aware, it may pack cells in regions of high congestion. To this end, we seek

93

Figure 6.5: Congestion map produced after one BFG-R [43] iteration (left), placement
map of cell locations (center), and blockages (right) for SUPERBLUE2 [109].
In the center, blue indicates movable cells, and black indicates congested
GCells over blockages. Congestion is present around blockages (layout-based)
and blockage-free regions (cell-based).

to locally increase whitespace to encourage cells to spread elsewhere. However, ana-

lytic placement frameworks are not always amenable to techniques that change (local)

target density. Instead, we enforce non-uniform target densities in localized regions. We

distinguish layout-based congestion as either local, which is caused primarily by static

constraints such as custom routing-edge capacity reductions, or remotely-induce, where

congested GCells contain no standard cells but have few routing tracks traversed by long

nets. While the former can be addressed through locally injecting whitespace, the latter

cannot, as there are no cells to move out of the congested region. In the remainder of this

section, we discuss our method of enforcing non-uniform target density by (i) creating a

packing peanut (fixed cell) at the center of every GCell, and (ii) modifying its size based

on congestion.

Implementation. To address local layout-based congestion, we modify the size of pack-

ing peanuts during the initial HPWL optimization stage based on pin density, and during

the global placement stage based on routing congestion. During initial placement, we

94

coarsely estimate routing congestion of the design based on available routing capacity and

cell pin density. We first divide the layout into 8×8 GCell regions and compute the number

of pins in each region. We then (pessimistically) estimate that each pin in the region will

occupy two routing tracks, and increase the packing peanuts’ size based on the ratio of es-

timated usage and routing capacity. This approach of coarsely dividing the layout gives the

placer a high-level outlook and encourages cells spreading to regions of lower pin density.

We define two parameters: (i) the maximum expandable area PA(g)max, which is based

on the surrounding non-overlapping GCell areas, and (ii) the minimum area PA(g)min,

which is based on GCell pin density. Let C(g)k be the congestion of GCell g at routing

iteration k. Then the packing peanut area PA(g) at g is

PA(g) + 0.15 ·
(
PA(g)max − PA(g)

)
(6.3)

if C(g)k > C(g)k−1 and C(g)k > 1. If the congestion is reduced but not removed, i.e.,

C(g)k−1 > C(g)k > 1, then the packing peanut size remains the same. Otherwise, if

congestion is removed, the size is reduced by 40%.

To address remotely-induce layout-based congestion, we increase the packing peanuts in

GCells closest to the congested region and their neighboring GCells. Such modifications

often occur around placement blockages. Across placement iterations, the packing peanuts

increase placement porosity by reducing the demand in regions without blockages as well

as customizing the resource distribution around blockages. Unlike rectangular macro ex-

pansion [48], our approach affords the placer a higher degree of flexibility as to where long

nets can be shifted (Figure 6.9). To complement cell-inflation techniques, our approach

can prevent allocated whitespace from moving away.

95

6.4 Coordinated Place and Route

The integration of routing estimation within placement allows us to leverage the ex-

isting infrastructure and avoids task redundancy. Giving LIRE up-to-date access to cell

locations simplifies the construction of new congestion maps when placement changes.

Incremental placement updates. After its first invocation, LIRE maintains the overall

congestion map and keeps track of the GCells traversed by each point-to-point connection

π. At subsequent LIRE invocations, if the endpoints of π remain in the same GCells

(despite changes in their continuous-valued locations), π’s route and its contribution to

the congestion map are left unchanged. While this type of incrementality has limited use

in early placement iterations, its effect is more pronounced in later iterations and during

detailed placement, when the placement has stabilized.

Incremental route updates. When invoked for the first time, LIRE generates routes from

scratch. Subsequently, it tries to reuse existing routes where possible. Nets whose termi-

nals relocated to different GCells are rerouted using the original net ordering, as outlined

in Section 6.2. For remaining nets, we check if their routes are congested. Congestion

is mitigated by BFY passes, and the bounding box is expanded if necessary. Incremen-

tal routing with BFY allows us to replicate the accuracy of a maze router while reducing

runtime by (i) avoiding routing nets that have not changed and (ii) reusing (partial) routes.

Placement-routing interface for coordinated place-and-route:

• LIRE::Initialize() reads in the benchmark information, sets up the routing

environment, and computes the static routing-edge capacities (e.g., due to blockages

or custom capacity reductions). Dynamic capacity adjustments such as pin block-

ages in Section 6.6, are accounted for by LIRE::updatePlacement().

• LIRE::updatePlacement() restructures the nets based on any placement changes,

96

and maintains lists of nets that require full modification, as well as those that can be

reused. Dynamic routing capacities are adjusted due to cell-location updates.

• LIRE::route() generates routes on an as-needed (lazy) basis. It decomposes

each multi-pin net into two-pin subnets based on its MST, and follows the protocol

outlined in Section 6.2.

• LIRE::genCongMap() translates edge capacities and usages to a GCell-centric

congestion map as in [65], where a GCell is congested if any surrounding edge is

congested.

The handling of design hierarchy is entrusted to the placer and does not add complexity

to the place-and-route interface (Figure 6.6). In summary, we advocate a coordinated

integration style of physical optimizations, where each component uses algorithms that

are independently-meaningful and independently-efficient, but also are capable of taking

external suggestions. Unlike simultaneous place-and-route advocated in [65], this type of

integration limits software complexity, allows for component replacement and unit testing.

It eases the integration of timing analysis and other components necessary for effective

timing closure of modern SoC designs [69].

6.5 Comparisons to Prior Work

Comparing our techniques to prior art, we consider (i) point-to-point routing algo-

rithms, (ii) using global routes versus probabilistic congestion maps, (iii) incremental

routing techniques, and (iv) handling congestion around blockages.

Fast routing. The closest recent publication to our material in Section 6.2 is [78]. It

also advocates replacing A*-search with fast linear-time routing algorithms that exploit

monotony (although our work was completed before [78] was published or available to us).

97

Figure 6.6: CoPR placements of the SUPERBLUE7 (left), SUPERBLUE10 (center), and SU-
PERBLUE18 (right) testcases [110].

However, their notion of monotonic routes is different, no optimality results are claimed,

and CPU-cache effects are not considered. In terms of theoretical contributions, the con-

nection we establish to the Bellman-Ford algorithm with Yen’s improvement also appears

new. Empirically, the RCE estimator [78] is not used to drive a competitive global placer,

whereas we report successful results for coordinated place-and-route using LIRE. We be-

lieve that congestion-driven bounding-box expansion pioneered in RCE can be valuable,

but have not had the time to implement and evaluate it.

The only modern description of an industry router that we could find is in [69]. It

concedes that Dijkstra’s algorithm [30, Section 24.3] (from which A*-search is derived)

is “much too slow” for large modern netlists, even with Fibonacci heaps. However, rather

than replace Dijkstra with linear-time algorithms as we do, the authors speed it up with

sophisticated data structures (interval-based route-cost representations) and algorithms

(sharper admissible functions for A*-search based on landmarks). Direct comparisons

98

would be difficult to make, even if we had access to their source code, because advanced

data structures use more memory and require significant up-front set-up, along with main-

tenance. However, a single-threaded version of LIRE takes only <15% of runtime in our

entire place-and-route flow, despite frequent (>10) invocations by the placer (Table 6.4).

Speeding it up further would have limited impact. Most importantly, we have advanced the

goal of our research — to tame the complexity of place-and-route — by entirely avoiding

sophisticated routing algorithms and data structures.

Congestion estimation must accurately identify hotspots and guide the placer to relieve

congestion. While probabilistic congestion maps are easy to implement, they can be

slower per net than constructive routing, as shown in [118]. They are also highly inaccu-

rate, as recently articulated by IBM researchers [74]. Nevertheless, most routability-driven

placers [38, 48] still use probabilistic methods. As depicted in Figure 6.7, a congestion

map constructed using LZ-routing [90] differs from a router-based map. Figure 6.8 and

Table 6.1 compares total overflow (TOF) between L-routing, LZ-routing, LIRE, and maze

routing [43]. On average, LIRE overestimates TOF by 4% with no significant outliers.

Incremental routing techniques. All modern routability-driven placers [38, 48, 65] use

built-in congestion estimation to construct new estimates from scratch on every invoca-

tion. This process is unnecessarily time-consuming, especially when the placement has

not changed significantly. While some prior techniques rip-up and reroute some congested

nets [127], they assume a static routing (and placement) instance. In contrast, our incre-

mental techniques account for dynamic placement (and routing) instances, take advantage

of previous (partial) routes, and update routes on an as-needed basis. These techniques are

especially applicable to congestion estimators based on constructive global routing, but

also should be helpful in full-fledged routers. Empirically, we matched the accuracy of a

full global router with limited runtime overhead.

99

(a) (b) (c) (e)(d)

Figure 6.7: Comparison of routing estimation techniques on the SUPERBLUE2 bench-
mark [109]. The congestion map in (a) is produced by one iteration of BFG-
R [43], in (b) — by LZ-routing, and in (c) — by LIRE. Images in (d) and (e)
show how well (b) and (c) match (a) — ratios of congestion values are plot-
ted. Orange indicate large differences and black — no difference. While all
techniques overestimate congestion, LZ-routing and L-routing produce many
false positives, whereas LIRE does not.

Placement and routing blockages, e.g., macro blocks, often lead to congestion around

their borders. Previous work [48] proactively reserves resources by expanding macros.

However, (rectangular) macro inflation is rather crude in controlling whitespace — it either

allows all cells or prevents all cells in a given rectangular region. Our non-uniform target

density, as implemented with packing peanuts, provides much more flexible control of

whitespace, as shown in Figure 6.9. By increasing the packing peanut sizes in areas of

180

160

140

120

100

80

60

40

20

0
7010 20 806030 40 50

LIRE

LZ

L

Figure 6.8: The error percentage of total overflow for L-routing, LZ-routing, and LIRE
relative to (a) over the placement iterations of CoPR.

100

Iter. Total overflow (e5) Comparison vs. maze
maze L LZ LIRE L LZ LIRE

12 31.04 42.59 36.78 31.80 1.372 1.185 1.024
16 20.41 31.00 26.30 20.91 1.519 1.289 1.024
20 16.00 25.49 21.22 16.45 1.594 1.327 1.039
24 15.13 24.13 19.31 15.13 1.595 1.276 1.020
28 11.68 20.44 16.58 11.96 1.749 1.420 1.024
32 7.880 15.17 12.16 8.149 1.925 1.544 1.034
36 6.424 13.29 10.59 6.684 2.069 1.649 1.041
40 5.452 11.99 9.745 5.755 2.199 1.787 1.056
44 5.051 11.44 9.108 5.359 2.266 1.803 1.061
48 4.636 10.98 8.895 4.898 2.369 1.919 1.057
52 4.375 10.75 8.382 4.575 2.458 1.916 1.046
60 3.825 9.876 7.721 4.043 2.582 2.019 1.057
64 3.718 9.736 7.572 3.931 2.618 2.036 1.057
68 3.697 9.796 7.410 3.964 2.650 2.004 1.072
76 3.503 9.337 7.254 3.684 2.665 2.071 1.052

Avg 2.06× 1.65× 1.04×

Table 6.1: Total overflow estimation comparisons of L-routing, LZ-routing, the initial
(maze) routing of BFG-R [43], and LIRE inside CoPR for the SUPERBLUE2
benchmark [109] (Figure 6.8).

congestion and in selected neighboring GCells, we allow cells to move into congestion-

free regions around macro borders, whatever shape those regions may assume.

Figure 6.9: Congestion-driven rectangular macro expansion [48] (left) versus our tech-
nique (right).

101

Quality metrics using NCTUgr [77] (e8)
Benchmark Nodes Nets SimPLR (1) Ripple (2) NTUplace4 (3) CoPR
SUPERBLUE1 847K 822K 2.789 2.889 2.850 2.849
SUPERBLUE3 920K 898K 3.439 3.604 4.477 3.401
SUPERBLUE4 600K 567K 2.434 2.269 2.360 2.343
SUPERBLUE5 772K 787K 3.603 3.486 4.217 3.556
SUPERBLUE7 1.36M 1.34M 4.313 4.291 4.137 4.379
SUPERBLUE10 1.20M 1.15M 6.909 6.111 7.190 6.706
SUPERBLUE16 699K 697K 2.857 2.840 2.833 2.804
SUPERBLUE18 1.27M 469K 1.823 1.791 1.709 1.699
Ratios of averages (×) 1.02× 1.00× 1.06× 1.00×

Table 6.2: Quality metrics (based on NCTUgr [77]) without runtime for the top three
contestants as reported at the ICCAD 2012 Routability-driven Placement Con-
test [110]. Full results for SimPLR, RippleCUHK and NTUplace4h are avail-
able at [110].

Quality metrics using BFG-R [43] (e8)
Benchmark Nodes Nets SimPLR (1) Ripple (2) NTUplace4 (3) CoPR
SUPERBLUE1 847K 822K 3.023 3.341 2.962 3.004
SUPERBLUE3 920K 898K 3.803 3.906 4.609 3.801
SUPERBLUE4 600K 567K 2.865 2.659 2.773 2.501
SUPERBLUE5 772K 787K 3.980 3.654 3.919 3.835
SUPERBLUE7 1.36M 1.34M 4.479 4.502 4.283 4.503
SUPERBLUE10 1.20M 1.15M 8.114 7.080 7.810 7.561
SUPERBLUE16 699K 697K 3.117 2.929 3.032 3.097
SUPERBLUE18 1.27M 469K 2.461 2.207 1.838 2.228

Ratios of averages (×) 1.05× 1.00× 1.01× 1.00×

Table 6.3: Quality metrics (based on BFG-R [43]) without runtime for the top three con-
testants as reported at the ICCAD 2012 Routability-driven Placement Con-
test [110] and CoPR. Full results for SimPLR, RippleCUHK and NTUplace4h
are available at [110].

6.6 Empirical Validation

Our algorithms are implemented in C++ in a tool called CoPR (pronounced “copper”)

using the OpenMP library [32] and compiled with g++ 4.7.0. Our global placer was de-

rived from SimPL [67], which was the case for three out of the top four teams at the

ICCAD 2012 Contest [110]. Thus, the choice of the global placement algorithm was not

a significant factor in relative performance.

Empirical results are reported on the ICCAD 2012 benchmark suite [110] derived by

102

Benchmark Total (s) Ratio vs. SimPLR LIRE calls LIRE %
SUPERBLUE1 1047 1.042 14 13.1%
SUPERBLUE3 1248 0.926 14 15.2%
SUPERBLUE4 902 1.431 21 14.4%
SUPERBLUE5 1084 0.966 12 12.4%
SUPERBLUE7 1796 1.072 12 11.2%
SUPERBLUE10 2585 1.048 21 17.3%
SUPERBLUE16 625 0.711 12 15.4%
SUPERBLUE18 692 0.925 18 19.6%
Average 1.00× 14.6%

Table 6.4: CoPR runtimes are compared to those of the fastest top-3 contestant SimPLR
by running both tools on the same server (3.4GHz Intel Xeon). The last two
columns show the runtime of LIRE as a percent of total CoPR runtime, and the
number of LIRE invocations on each benchmark.

IBM researchers from industry designs. Some of these benchmarks were released only

after the results of the ICCAD 2012 Contest were announced. The overall figure of merit

combines quality metrics (interconnect length, routing congestion evaluated by a router,

and pin blockage) and runtime. Tables 6.2 and 6.3 compares CoPR to official contest re-

sults [110] for the top three contestants. In terms of quality metrics based on the NCTUgr

router (without runtime) in Table 6.2, CoPR outperforms NTUplace4h by 6% and Sim-

PLR by 2%, and matches the overall quality of Ripple, which is 5.7× slower. In terms of

quality metrics based on the BFG-R router (without runtime) in Table 6.3, CoPR outper-

forms NTUplace4h by 1% and SimPLR by 5%, and matches the quality of Ripple. Table

6.4 compares CoPR’s runtime. Its runtime regime intentionally matches that of SimPLR

(the fastest top-3 contestant), which trails CoPR in quality. The last two columns show

that LIRE is called 12-21 times by CoPR per benchmark, and yet uses <15% of CoPR’s

runtime in total.

6.7 Conclusions

Our work deals with an alarming trend in the design or digital random-logic blocks,

where interconnect’s dominance in area, volume, delay, power and signal-integrity is in-

103

creasing with every new technology node [52]. If unchecked, this trend is threatening

to render Moore’s law irrelevant — packing more devices on a chip is useless if they

cannot be effectively connected. The most direct and effective remedy known today is

to reduce interconnect demand, which can be done by optimizing standard-cell locations

and wire routes. As articulated recently by IBM researchers, design flows with separate

placement and routing steps have become ineffective for modern ICs [109], but combin-

ing the two brings tangible and significant benefits in IC cost [95]. However most of

physical-design research continues focusing on standalone optimizations, partly due to

the complexities involved in place-and-route integration. These complexities include so-

phisticated data structures and elaborate multistep optimizations used by state-of-the-art

algorithms [69], unmaintainable source-code bases that are unnecessarily entangled, large

sets of tuning parameters that may need to be adjusted to individual benchmarks, and of

course significant runtime. In this work, we develop an algorithmic framework for co-

ordinated place-and-route (CoPR) that combines independently-meaningful components

and systematically reduces the complexities of place-and-route. Our contributions fall

into three categories: (i) dramatic acceleration of constructive routing estimation through

linear-time cache-friendly algorithms that do not require sophisticated data structures, (ii)

significant reductions in the amount of work through pervasive incrementality at the in-

terface between placement and routing, (iii) identification of two new types of routing

congestion, as well as mechanisms by which a placer can diagnose them and respond

effectively, and (iv) strong empirical results on recent benchmarks from IBM Research.

Our results will lead to more compact (less costly) IC layouts, along the lines of ex-

periments in [95], as well as much faster back-end turn-around-time that would allow IC

designers to evaluate a greater number of micro-architectural configurations.

104

CHAPTER VII

Addressing the Buffer-explosion Problem
Through Low-cost Heterogeneous 3D Integration

We now employ the use of a global router within a chip-design flow to address the

buffer explosion problem, i.e., where long interconnects in modern ICs require an increas-

ing large number of large buffers due to CMOS scaling. Seeking to improve layout effi-

ciency, we observe that large buffers do not need state-of-the-art technology, and can be

segregated onto an older-generation, low-cost buffer-die that is stacked below the main

logic-die. Such heterogeneous 3D integration not only saves area on the more expensive

die, but also alleviates routing congestion by removing via-stacks to high-metal layers.

With moderate buffer-die overhead, our technique decreases routing congestion and cost.

7.1 Introduction

Interconnect-related physical design challenges are caused by technology scaling and

the continued growth of netlists. Since the 180nm technology node, interconnect delay

(e.g., RC delay) has dominated chip-level performance. As this RC delay grows quadrati-

cally with respect to wirelength scaling, buffers are inserted to maintain linear delay [85],

where the rate of growth is based on wirelength increase and technology scaling1. How-

1Under ideal geometric scaling, the total wirelength for a given die size increases by 1.4× per node, and
the critical repeater distance decreases by 1.67× per node [6].

105

% buffers

80%

60%

40%

20%

90nm 65nm 45nm 32nm

6.21%

14.6%

35.04%

70%

D Q D Q

D Q D Q

Figure 7.1: Buffer explosion with technology scaling [97].

ever, inserting buffers (i) increases silicon area, which forces cells to spread farther apart,

and (ii) scales up interconnects, which in turn requires more buffers to compensate for the

additional delay. This vicious cycle creates the buffer explosion problem, as predicted by

Saxena et al. [97] and illustrated in Figure 7.1.2

In VLSI physical design, the routing stage is the most sensitive to design changes.

For example, if there are insufficient resources, routing will be time-consuming and prone

to failure, often requiring a loop back to placement, synthesis or earlier design stages.

Increased design complexity (2× per technology node) also increases the difficulty of

achieving a legal routing solution. Long interconnects routed on high metal layers will

consume many vias when buffered; the via stacks cause routing blockage that can force

neighboring wires to detour [60], as illustrated in Figure 7.2. Detours cause blockage,

which in turn cause further detouring; this is another vicious cycle which degrades routabil-

ity and challenges the router’s ability to complete the layout without violations.

Previous research addresses the challenges of buffer explosion and routability chiefly

through physical design optimizations that seek to reduce total wirelength and hence im-

prove routability. Recent routability- and wirelength-driven academic placement and rout-

2Saxena et al. [97] predicted that at the 32nm technology node, over 70% of instances would become
buffers or inverters (i.e., repeaters). However, serial vs. parallel tradeoffs in logic structure can modulate the
number of long global interconnects and buffers, possibly at the cost of chip performance.

106

Figure 7.2: Wire detouring due to via blockage.

ing research include SimPLR [65], BFG-R [43], etc. However, the design space for a 2D,

single-die layout is restricted by the die area, which is limited by constraints on yield,

cost, power, and other parameters. As has been widely noted in recent years, 3D inte-

grated circuits offer significant performance benefits over 2D integrated circuits, mainly

by reducing the length of interconnects. TSV-based [99] and monolithic [8] 3D IC integra-

tion can vertically connect stacked transistors, enabling reduction of average interconnect

length in the physical implementation. Previous research efforts mainly focus on 3D IC

partitioning [44], floorplanning [19], placement [27] and routing [29]. Heat dissipation is a

major challenge on 3D IC due to the rapid increase of power density with die stacking and

the low thermal conductivity of dielectric layers sandwiched between adjacent dies. This

has motivated research on 3D IC thermal planning, e.g., [28]. To maintain convergence

and a manageable number of iterations in the physical implementation flow, further inno-

vations are required to mitigate the buffer explosion and routing congestion challenges in

leading-edge chip implementation.

In this work, we propose a heterogeneous 3D (hetero-3D) solution to address the buffer

explosion and routability problems. Recall that buffers are typically inserted into long

wires, which tend to be routed on top metal layers. However, buffers are located below

Metal1 and can only be connected to top metal layers by a series of vias. These vias can

107

obstruct intersected routing tracks, aggravating routing congestion on all metal layers.

Our first insight is that by positioning buffers above the top metal layers, we can sig-

nificantly reduce demand for vias and increase the number of available routing tracks. Our

second insight is that we can accomplish this with heterogeneous 3D integration. Our

third insight is that the cost of such a solution does not need to be high. In our approach,

we introduce a separate low-cost die that is dedicated to buffer placement, helping logic on

the main die drive long interconnects without incurring buffer area and via blockage over-

heads. Our strategy places all logic cells on the main (logic) die, while buffers (particularly

large buffers) are selectively placed on the assisting (buffer) die. As we demonstrate, this

reduces both utilization of the main die and improves routability.

In support, the authors in [95] concluded that significant improvements in routability

can help reduce chip area and thus manufacturing cost. Reduced routing congestion can

also decrease crosstalk noise, reduce the critical area for shorts (thus improving yield)

and decrease router runtime (thus improving overall design turnaround time). Figure 7.4

illustrates the structure of our proposed heterogeneous 3D integration. The two dies are

manufactured at different technology nodes and integrated face-to-face. The logic-die is

manufactured at advanced technology node, with high utilization and power density. It

is placed close to the heat sink for better thermal conduction. The buffer-die has low

utilization, with large buffers sparsely placed on it. The buffer die is then placed between

the logic-die and the package, with extra silicon area consumed by TSVs.

Our key contributions include:

• Using a low-cost second die to house large buffers.

• Buffer-die planning and estimation for hetero-3D integration.

• Optimal buffer-die positioning and sizing.

108

• Dynamic selection of buffers to be placed on the buffer-die.

• Modifications to global routing to handle elevated buffers.

• Empirical evaluation based on ISPD 2011 benchmarks [108].

• Cost-benefits analysis of proposed techniques.

The remainder of this chapter is organized as follows. In Section 7.2, we briefly re-

view relevant background information, formally present our problem, and introduce the

overview of our 3D buffer-die approach. In Section 7.3, we present our optimization tech-

niques for buffer-die sizing and buffer-die positioning. In Section 7.4, we outline our

algorithm to selectively place buffers onto the buffer-die. In Section 7.5, we analyze the

impact of multiple technology nodes on buffer insertion. In Section 7.6, we validate our

proposed techniques by experiments on the ISPD 2011 gate-level netlists (benchmarks)

and their variants. To simulate the buffer explosion problem, we describe our netlist re-

buffering approach to account for practical timing correction. In Section 7.7, we discuss

several observations regarding the potential technical obstacles when deploying the hetero-

3D approach. In Section 7.8, we make our concluding remarks.

7.2 Overview

Given a gate-level design and a buffer-die area budget, we aim to reduce the routing of

the original design. In this section, we outline the overview of our proposed solution, and

then analyze issues regarding heterogeneous 3D integration.

Formally: Given (i) a logic-die L of fixed dimensions (XL, YL), (ii) an area budget

AmaxB for the buffer-die B, and (iii) a gate-level netlist with inserted buffers N placed onto

L, we determine the location (xB, yB) and dimensions (XB, YB) of B, and the subset of

buffers from N to be placed onto B while minimizing the number of routing violations

109

no
Gate-level Netlist Buffered

Netlist?
Buffer Identification

Netlist (Re)Buffering
Buffer-die

Sizing and Placement

Evaluation Routing

Re-placement

Two-die Design

yes

Quality Analysis

Figure 7.3: Work flow of our approach.

and routed wirelength on both L and B, such that xB ≤ XB, yB ≤ YB, and (XB − xB)×

(YB − yB) ≤ AmaxB .

To do this, we rely on the heterogeneous face-to-face 3D integration of two dies with

the buffer-die optimally sized and positioned relative to the logic-die. We use a lower-cost

buffer-die to house buffers, which is smaller than and placed under the logic-die.

The optimization problem solved in our work is As illustrated in Figure 7.3, We start

with the post-synthesized design, take the very limited number of buffer placeholders, and

identify the set of relevant buffers. We then rebuffer those critical nets to be close to that of

a modern IC design. Based on the netlist and buffer placement information, we optimize

the location and shape of the buffer-die so as to maximize the number of buffers that can

be moved to the buffer-die.

Netlist rebuffering. In Section 7.6, we explain how we identify buffer placeholders of the

design and then for each buffer placeholder, insert additional buffers to account for timing.

Based on our estimated inter-buffer distance lbuf , we clone buffers to rebuffer critical nets

to match that of those in practical IC designs. Empirically, the percentage of buffers goes

from 10% to over 30%.

110

Comparison Logic-die L Buffer-die B
technology node new (32nm) old (65nm)
unit cost high low
die size large small (60% of logic-die)
cells logic & small buffers mainly large buffers
metal layers more (≥ 8) fewer (≤ 4)
heat dissipation large small
position top (near heat sink) bottom (near package)

Table 7.1: Heterogeneity in 3D Integration.

Buffer-die sizing and placement. In Section 7.3, we describe optimal buffer-die position-

ing. For every considered buffer-die size, we find (i) the maximum number of contained

buffers, and (ii) the location of B using a dynamic programming-based approach.

Buffer selection. In Section 7.4, we describe how we selectively move buffers from the

logic-die to the buffer to the buffer-die to improve routability. Our buffer selection ap-

proach is based on the topology of each buffered net. Concurrently, we maintain the

overall solution quality both on the logic-die and the buffer-die.

7.2.1 Heterogeneous 3D Integration

To integrate two dies of different technology nodes, we must first understand the req-

uisite differences (summarized in Table 7.1). Compared to the cheaper buffer-die B, the

more-expensive logic-die L (i) is of larger size, (ii) has more metal (routing) layers, (iii)

achieves better performance, and (iv) dissipates more power. To mitigate the unnecessary

(over)usage of L, we move buffers to B, since B dissipates less power. Here, L contains

all the logic and most of the buffers, while B contains large and sparsely-placed buffers.

The two dies are face-to-face vertically integrated, as depicted in Figure 7.4. The two

dies are connected by Super-contacts [104]; the package communicates with the chip by

using TSVs on B. The substrate of L is adhered to the heat sink for thermal conduction,

while B is placed below L and close to the package.

111

Heat Sink

Logic Die

Buffer Die

Super-contact

Microbump

Package

Si Layer

Metal

Substrate

TSV

Figure 7.4: 3D face-to-face integration of logic and buffer-dies.

By moving buffers to the buffer-die, congestion on the logic die can be mitigated. For

example, as illustrated in Figure 7.5(a), via stacks are necessary to connect high metal

wires to a buffer on the silicon layer. However, if the buffer is moved to the buffer-die, we

can remove one such via stack (Figure 7.5(b)). This reduces the total routed wirelength,

improves routability, and reduces the routing turnaround time.

By introducing the buffer-die at an older technology node, buffers on the buffer-die

will have larger gate and diffusion capacitance. However, the number of buffers on the

buffer-die is small (10% according to our experiments), so the power overhead is limited.

Therefore, we can use larger buffers on the buffer-die to provide enough driving strength,

while the output slew rate can be estimated either by look-up table or some analytical

modeling method [17]. Since the cost estimation is relatively difficult, we need to estimate

the total cost of 3D integration based on technology node, dimensions and the number of

metal layers of the buffer-die. In our work, we utilize the modeling method from [57] to

calculate the manufacturing cost. In our buffer placement, we try to maximize the number

of buffers being placed on the buffer-die. However, this maximization is constrained by

112

Metal Layer

Si Layer

Interconnect

Via

Terminal Pin Super-contact

Without Buffer Die With Buffer Die

Figure 7.5: Interconnects on high metal layers are buffered (a) on the logic die with more
vias consumed and (b) on the buffer-die through Super-contacts with less vias
consumed.

buffer-die area and chip-level buffer demand, while the former comprises both buffer in-

sertion area and TSV occupation area. Buffers need to be assigned to the logic-die, if the

above constraints are violated.

7.3 Buffer-die Placement and Sizing

In this section, we discuss how to determine the position of the buffer-die – located

directly below the logic-die – such that the buffer-die envelopes the largest number of

buffers. For simplicity, we assume the buffer-die has equal width and height. This, how-

ever, can be easily extended to buffer dies with different aspect ratios.

113

7.3.1 Buffer-die Placement

To find the optimal position, we traverse all possible buffer-die locations and select the

one containing most buffers. To count the number of buffers in anm×m region efficiently,

we develop the dynamic programming-based method based on counting switching activity

in [56]; the bottom-up procedure itself is given in Algorithm 8. We define (XL, YL) to be

the size of the logic-die L, and dimmax
B to be the maximum dimension of buffer-die B.

In the algorithm, the 3D matrix buffer count with size (XL, YL, dim
max
B) stores the total

number of buffers, where each element buffer count[x][y][m] stores the number of buffers

in anm×m region with lower-left corner (x, y). In the bottom-up approach, lines 1-5 finds

the number of buffers located in each GCell (i.e., all 1× 1 regions). Then, in lines 6-8, for

each m×m region, we define the number of buffers in the region to be the summation of

buffers in smaller regions. If m is even (lines 9-15), we write m = 2k, for some positive

integer k, and the m ×m region can be divided into four (k × k) regions, denoted as the

lower-left (ll), lower-right (lr), top-left (tl), and top-right (tr); the total number of buffers

in the region is the summation of the number of buffers in each quadrant. If m is odd

(lines 16-23), we write m = 2k + 1, and the m×m region can be divided into non-equal,

overlapping regions; lines 22-23 removes the overlapping portion and sums together the

subregions. The summation and inclusion/exclusion is demonstrated in Figure 7.6.

7.3.2 Buffer-die Sizing

We study the impact of sizing the buffer-die using the placement solutions of four ISPD

2011 testcases, SUPERBLUE{ 1,2,4,5}, all of which are rebuffered by our approach in

Section 7.6 to increase the buffer number. Under different sizes, the buffer-die is optimally

placed inside the logic-die. We illustrate our statistics of impacts of buffer-die sizing in

Figure 7.7, where the ratio of buffer-die dimension over logic-die dimension is linearly

114

Algorithm 8 Counts the number of buffers in an m×m region.
Input: Maximum dimensions (XL, YL) of logic-die L,

maximum dimension dimmax
B of buffer-die B

Output: Matrix buffer count of size (XL, YL, dim
max
B),

where element (x, y,m) stores the number of buffers
in the m×m region with lower-left corner (x, y).

1: for x from 1→ XL do
2: for y from 1→ YL do
3: buffer count[x][y][1] = NUM BUFFERS IN GCELL(x,y);
4: end for
5: end for
6: for m from 2→ dimmax

B do
7: for x from 1→ XL −m+ 1 do
8: for y from 1→ YL −m+ 1 do
9: if m mod 2 == 0 then

10: m = 2k;
11: ll = buffer count[x][y][k];
12: lr = buffer count[x+ k][y][k];
13: tl = buffer count[x][y + k][k];
14: tr = buffer count[x+ k][y + k][k];
15: buffer count[x][y][m] = ll + lr + tl + tr;
16: else
17: m = 2k + 1;
18: ll = buffer count[x][y][k];
19: lr = buffer count[x+ k][y][k + 1];
20: tl = buffer count[x][y + k][k + 1];
21: tr = buffer count[x+ k + 1][y + k + 1][k];
22: cn = buffer count[x+ k][y + k][1];
23: buffer count[x][y][m] = ll + lr + tl + tr − cn;
24: end if
25: end for
26: end for
27: end for

increased. By adding a maximally sized buffer-die, we can on average remove 90% of

buffers from the logic-die, as shown in Figure 7.7(a). The buffers are sparsely placed on

the buffer-die and the buffer-die utilization is very small (on average, 7% when the buffer-

die dimension is 70% of the logic-die dimension, as illustrated in Figure 7.7(b)). However,

the actual buffer-die utilization should be larger, because buffers on the old die would be

115

k

k

lr

tl

ll

tr

m = 2k

k + 1

k + 1

k

k

lr

tl

ll

tr
cn

m = 2k + 1

buffers = tl + tr + ll + lr # buffers = tl + tr + ll + lr – cn

Figure 7.6: Illustration of counting buffers in an m×m region. The left side shows when
m = 2k is even – the number of buffers in the region is the sum of 4 disjoint
k × k quadrants. The right side shows when m = 2k + 1 is odd – the number
of buffers in the region is the sum of 4 subregions, two of which are non-
disjoint. The duplication is removed by subtracting the number of buffers in
the overlapping (center) region.

manufactured at an older technology node. If we assume one technology node difference

between the logic- and buffer-dies, the unit buffer area on the buffer-die will be 2× and the

buffer-die utilization will increase from 7% to 14%. Addressing the gap of output signal

slew between technology nodes will further enlarge the buffers on the buffer-die.

Figure 7.8 shows the location of buffer-die on the GCell-wise buffer distribution map of

the logic-die. In the figure, a white dot denotes that there is no buffer in the corresponding

GCell, a red dot denotes that there is one buffer in the GCell while a black dot denotes

that more than one buffer are located in the GCell. Each cyan contour denotes the optimal

placement of the buffer-die under different die sizes. We can also observe from the figure

that buffers are sparsely placed on the buffer-die. As the size of the buffer-die increases,

the number of buffers enclosed will increase, and the utilization will decrease.

116

7.4 Buffer Selection

Buffers inside the buffer-die contour will be selectively placed from the logic-die to

the buffer-die, in order to minimize routing violations and total wirelength. Our buffer

selection algorithm ranks all the buffers in the design, and then chooses the best candidates

based on only the routing capacity of the buffer-die; we observe that the available area on

the buffer-die is not a constraint, despite larger buffer sizes in the older technology node.

Buffers are sparsely placed on the buffer-die with very low die utilization. As a result,

the amount of whitespace in between is large, which can satisfy area requirements when

upsizing buffers and reduce the likelihood of any overlap between buffers.

To determine which buffers should move to the buffer-die, we first determine their

GCell locations on the global routing grid. Second, we partition the set of buffered nets

into three sets: (i) Single-GCell net (SG) of which pins are contained within a single

GCell on a single metal layer, (ii) Single-buffer net (SB) of which only one buffer is

contained, and (iii) Multi-buffer net (MB) of which more than one buffers are used to

buffer the interconnect. Among the three groups, we give the highest priority to buffers

which belongs to multi-buffer net (group (iii)) and the lowest priority to those in group

0%

20%

40%

60%

80%

100%

120%

B
uf

fe
r C

ou
nt

Buffer-Die Dimension
(a)

SUPERBLUE1
SUPERBLUE2
SUPERBLUE4
SUPERBLUE5

0%

5%

10%

15%

20%

25%

B
uf

fe
r-D

ie
 U

til
iz

at
io

n

Buffer-Die Dimension
(b)

SUPERBLUE1
SUPERBLUE2
SUPERBLUE4
SUPERBLUE5

Figure 7.7: Statistics of the optimally placed buffer-die under different dimensions: (a) %
of buffers in the buffer-die (b) utilization of the buffer-die.

117

(a) (b)

Figure 7.8: Comparison of (a) floorplan and (b) buffer distribution map of SUPERBLUE1.

(i). That is, we consider buffers in (iii) before considering those in (ii). Third, within each

group, we assign each buffer a local priority based on the amount of potential improvement

it has. If the benefit is positive, the buffer is moved.

For buffers in (iii), the local priority is based on the number of buffers within each net

and the bounding box of the net. Ideally, every involved buffer is elevated, as the cost of

traversing to the buffer-die is amortized. However, if constrained, we choose the buffers

that are contained in nets that use the largest number of buffers. To break ties, we select

the net with the largest bounding box. For buffers in (ii), the local priority is based on

local congestion and potential via reduction. Specifically, we compute the ratio between

the total number of segments routed in the top half and the bottom half of the design; the

priority is the net difference between the two. Here, we observe that the cost of traversing

to the buffer-die is more pronounced, as only one buffer is involved. However, if the net

was already routed in the top metal layers, then the cost is mitigated. Moreover, to improve

routability, the net can be coerced to a higher metal layer if there is congestion on the lower

metal layer. To quantify this potential, we use a previous routed solution and analyze the

congestion at each routed segment. We give the buffer higher priority if its connecting nets

are either routed in the top metal layers or if the top metal layers have less congestion. For

118

buffers in (i), we do not assign a local priority, as we do not move them. Intuitively, if

these buffers were elevated, they would consume routing resources not previously needed.

7.5 Buffer Transformation

In our hetero-3D approach, we assume that there is difference of one technology node

between the two dies. Buffers on the buffer-die will be synthesized and manufactured

at an old technology node, which requires larger device size due to constraint on feature

and signal output slew. Meanwhile, the driving length of buffers is increased, because of

reduced interconnect resistivity and increased gate capacitance. Therefore the actual num-

ber of buffers placed on the buffer-die is likely to be smaller than that of those originally

assigned to the buffer-die. Figure 7.9 illustrates how the buffer chain changes by placing

onto the buffer-die.

Buffer Die

Logic Die

lbuf

1.67 × lbuf

Figure 7.9: Technology adjustment of buffer chains.

7.5.1 Inter-Buffer Distance Estimation

We now discuss the scaling of inter-buffer distance between two successive technology

nodes. Let T be the Elmore delay of a long buffered interconnect which consists of a

couple of identical stages. Each stage includes a buffer driving a wire segment, which

is of length lbuf . Assume that the effective resistance and gate capacitance of the buffer

are Rg and Cg, while the resistance and capacitance per unit wirelength are Rw and Cw,

119

respectively. Setting dT
dl

= 0 yields the optimal inter-buffer distance of lbuf =
√

Rg×Cg

Rw×Cw

[6]. In ideal technology scaling, we have Rg and Cg scaled by 1.0× and 0.7× per node,

while Rw and Cw respectively scale by 2.0× and 1.0× per node. As a result, we have lbuf

ideally scaled down by 1.67× per technology node.3

7.5.2 Buffer Upsizing

Here we analyze how much a buffer will be upsized while moving it from the logic-

die to the buffer-die. The size of a buffer is dependent on the technology node and the

required signal slew that it should provide. Logic cells designed at a new technology node

will require an input signal with smaller transition time, which is essentially linear with

MOSFET intrinsic delay (CV/I). From ITRS 2010 PIDS tables [53], we see that CV/I

is reduced by 13% per year, or 1.44× per technology node. As a result, we assume that

the output slew rate of buffers on the buffer-die is reduced by 1.44×. From output-slew

tables in TSMC 65nm liberty files, we obtain that a basic buffer BUFFDx must be

upsized by 1.28× to supply signal with slew rate reduced by 1.44×. Furthermore, 1.4×

scaling of feature dimension implies 2× scaling of buffer area; we therefore end up with

buffers on the buffer-die upsized by 1.4× 1.4× 1.28 = 2.51×. In our testbed, we increase

the placement row height on the buffer-die by 1.4×, while the width of buffers on the

buffer-die is scaled up by 1.79×.

7.6 Empirical Validation

To evaluate the effectiveness of the buffer-die, we modified the ISPD 2011 Benchmarks

[108] in accordance with our proposed methodology, and routed the modified benchmarks.

Table 7.2 summarizes our empirical observations.

3We have verified our estimation of the scaling of inter-buffer distance between 22nm and 16nm based
on ITRS 2010 PIDS2 and INTC6 tables. The resultant scaling factor is 1.47×, with the discrepancy mainly
caused by our assumption of ideal scaling in the estimation.

120

Original Modified w/o Buffer Die w/ Buffer Die
BENCHMARK # Non- Total # %age %age Total # %age %age Total RtWL Total RtWL

Buffers Buffers Buffers Area Buffers Buffers Area OF (e7) OF (e7)
SUPERBLUE1 767798 79643 9.40 0.99 490668 38.99 5.51 0 1.54 0 1.54
SUPERBLUE2 918443 95586 9.43 0.50 388932 29.75 1.99 6022678 2.72 5943724 2.72
SUPERBLUE4 561189 39031 6.50 0.70 166490 22.88 2.71 6652 1.09 2182 1.11
SUPERBLUE5 684609 87848 11.37 0.82 344299 33.47 3.37 961342 1.66 806112 1.74
SUPERBLUE10 1050027 79117 7.01 0.53 479864 31.37 3.17 1142604 2.71 1056706 2.72
SUPERBLUE12 1196518 96915 7.49 1.62 1190255 49.87 16.47 1498992 2.44 1401058 2.45
SUPERBLUE15 1075642 48321 4.30 1.17 175290 14.01 5.14 0 1.73 0 1.73
SUPERBLUE18 455586 27866 5.76 0.62 187133 29.12 4.13 316 1.23 0 1.23
Average 31.18 5.31 1.20× 0.99× 1.00× 1.00×

Table 7.2: Empirical results of our buffer insertion and routability experiments. Here,
RtWL is the summation of routed horizontal and vertical segments, and the
number of vias. We ran every benchmark with a hard limit of 60 minutes.

Netlist rebuffering. Our work seeks to compensate the negative impact caused by buffer

explosion. However, the ISPD 2011 gate-level netlists are at post-synthesis design stage,

and have limited placeholder buffers in the netlist. Therefore, we must first identify place-

holder buffers, and then use a buffer cloning technique to rebuffer all the nets. We define

the length of each inter-buffer wire segment to be lbuf . The estimation of lbuf , however,

is difficult, as we do not have information at which technology node these netlists have

been synthesized at. As a result, we empirically define lbuf and uniformly insert buffers

for every distance of lbuf .

Placeholder buffer identification. We require buffer information from the netlist as input

to the buffer-die sizing optimization. However, there is only area and pin count for each

instance, while library information is hidden. Moreover, instance pin count is not accurate

due to excluded networks in the benchmark (e.g., clock network, scan chain).

Given that the row height is nine units, the size of a NAND gate is estimated as roughly

40 units of area. The size of a flip-flop is typically 5× that of a NAND gate (four unit gates

and one scan-chain MUX), which is about 200 units of area. Meanwhile, we assume that

typically between 15% and 20% of design instances are flip-flops.

The statistics of instance counts for different cell areas and pin counts are shown in

Figure 7.10, for the SUPERBLUE1 benchmark.4 We can see a peak at 220 units of area

4The number of instances with pin count = 1 is very small and we do not show it in the figure.

121

0.0E+0

4.0E+4

8.0E+4

1.2E+5

1.6E+5

2.0E+5

0 20 40 60 80 100 120 140 160 180 200 220 240

In
st
an
ce
 C
ou

nt

Instance Area

2

3

4

5+

Pin
Count

Identified Flip‐Flops
(17.05%)

Identified Buffers
(10.39%)

Figure 7.10: Cell size and pin count distribution in SUPERBLUE1.

(5.5× the NAND gate size), for 17.05% of the instances in the testcase. Both instance

number and area ratio support our assumption, and we identify these large-size, two-pin

instances as flip-flops. The remaining two-pin instances are of smaller sizes and are identi-

fied as buffers. Other instances (three-pin or more) are assumed to be combinational cells.

The ISPD 2011 testcases are generated at an early stage of the design flow (post-synthesis)

without any timing correction [3], and only a few buffers (about 10%) are found. We also

run tests on other benchmarks and obtained very similar statistics, which further verifies

our assumptions. Finally, we have obtained flip-flop information from IBM [108] to verify

our identification; our false positive rate is 0.3%, and our false negative rate is less than

1.5%. This supports a conclusion of high accuracy in our identification of flip-flops and

buffers in the benchmark netlists.

Timing correction. Given a set of buffer placeholders, we remove each buffer placeholder-

chain, and insert a buffer-chain based on the critical length. Here, we define a existing

buffer placeholder-chain as the longest segment of buffer placeholders. We define lbuf as

the average length of non-buffered nets. To better model the buffer explosion and consider

more practical cases, we perform rebuffering critical interconnects to increase the area

122

used by buffers. In practice, the placeholder buffers usually account for 10% of the netlist;

after our buffer insertion procedure, the percentage increases to over 30%. We estimate

accuracy of our methodology based on the buffer information we obtained from [3]. It

shows that the percentage of buffers inserted by our rebuffering approach matches that of

modern IC design cases.

Experimental setup. Our single-threaded buffer insertion and buffer placement tools are

implemented in C and C++ and compiled with g++ 4.3.2. After buffer insertion, we use

SimPLR [65] to generate a legal and routability-aware placement. To evaluate the modified

benchmarks, we adapt BFG-R [43] handle (i) the 2011 benchmark constraints, including

virtual (elevated) pins and layer-specific widths and spacings, and (ii) create a routing

model of the buffer-die. To represent the buffer-die, we create an additional tier of metal

layers, located directly below the topmost metal layer (of the logic-die). Here, we define

a tier as a pair of horizontal and vertical layers, with each layer having a preferred routing

direction. Since this is an older technology node, we use a comparable wire width and

wire spacing to those of lower metal layers.

Our buffer insertion results are in the Original and Modified columns of Table 7.2.

Before buffer insertion, buffers compromised of less than 10% of the original benchmarks.

To rebuffer the nets, we followed the approach outlined in Section 7.6, and set the inter-

buffer distance to be the average length of all non-critical nets. After buffer insertion,

buffers make up about 30% of the design’s cells. Our routability results are in the w/o

Buffer Die and w/ Buffer Die columns. Here, Total OF is the total number of additional

required routing tracks, and RtWL is sum of routing tracks and vias. Since the buffer

die uses an older technology generation, we set to two times the capacity of the topmost

routing layer, and the routing pitch that of the middle routing layers. On benchmarks that

originally have overflow, our approach can reduce the total overflow of the designs by

123

20%. Our approach is also able to route SUPERBLUE18 without any violations. In all

cases, we maintain similar same solution quality as before.

When choosing buffer-die sizes, we base our decision on whether the design is origi-

nally routable. If not routable, we choose a larger-sized die (comparable to the logic die,

> 2/3 the dimension) to better alleviate routing congestion and mitigate overflow. How-

ever, if the original design is routable, then only a small (< 1/2 the dimension) buffer-die

is needed to either maintain or improve routability.

7.7 Open Technical Issues Associated with the Hetero-3D Approach

While our approach improves 2D congestion, total wirelength and routing turnaround

time, it also opens up several technical issues which any production methodology would

need to work through. For instance, the dimensions of TSVs and Super-contacts are 10×

to 100× larger than those of on-chip metal wires or devices; given the congestion on

the topmost (thick) tier of the logic-die due to power/ground distribution, our stacked-die

configuration may be prone to vertical congestion. Power signal delivery, die-to-die data

signal transmission as well as signal IO all consume both TSVs and Super-contacts. When

instantiated at the older technology node, each instance on the buffer-die will consume

more power than it would have on the logic-die, which causes a power overhead to our

approach. As has been well-studied in recent years, increased power density can cause

higher peak temperatures and lower system reliability. In this supplementary section, we

acknowledge some of the open technical issues that remain to be addressed.

7.7.1 3D Congestion Estimation

As shown in Figure 7.4, power is delivered from package to the buffer-die by TSVs

and from the buffer-die to the logic-die by Super-contacts, and are used for the following.

Power delivery. TSVs deliver power from the package to the buffer-die, Super-contacts

124

deliver power from the buffer-die to the logic-die. From [45] we assume that TSV con-

nections are uniformly distributed with a density of 80 per square millimeter. The length,

diameter, and dielectric liner thickness of a typical TSV connection are assumed to be

50µm, 5µm, and 0.12µm, respectively. A TSV is modeled as an RLC element. The re-

sistance and inductance are in series while capacitance is connected to the substrate (global

ground). From the analytical TSV model in [64], the values of RLC are calculated to be

47mΩ, 34pH , and 88fF , respectively. Here, we assume that the worst case voltage drop

on the two dies are within 5% of the voltage supply. From the sum of current demands of

the two dies and the resistance of one TSV, we can estimate how many TSVs are needed

for power delivery to the buffer-die and logic-die. For the Tezzaron Super-Contact inter-

connect technology [104], pitch is 3µm, capacitance is 2 − 3fF and resistance is 0.3Ω.

We may estimate the IR-drop caused by Super-contacts in the same way as with TSVs.

When mapped to 65LP technology, we estimate that the SUPERBLUE2 benchmark (ap-

proximately 3.8 × 5.4 mm2 in 45nm technology) has a current demand of roughly 1.5A.

As a result, only a fair number of power TSVs (< 20) and power Super-contacts (< 200)

are needed, even with very stringent IR-drop constraints.

Buffer connection. Super-contacts transmit data signal between logic cells on the logic-

die and buffers on the buffer-die. As also shown in Figure 7.9, placing each buffer chain on

the buffer-die will consume two Super-contacts. We try to minimize the number of vertical

connections by putting long buffer chains onto the buffer-die while keeping short buffer

chains on the logic-die. Currently, we do not verify the legality of buffer placement with

respect to overlaps on the buffer-die (i.e., we only elevate the buffer locations and/or apply

the critical repeater length-based buffer insertion on the buffer-die). However, we analyze

the vertical routing resources (number of available Super-contacts) and require that they

satisfy the demand from die-to-die connections.

125

7.7.2 Power and Thermal Estimation

The hetero-3D approach can potentially incurs power overheads, since buffers at a

coarser technology node are more power consuming. However, the number of buffers

on the buffer-die is quite small, which limits the power overhead. Based on our two-die

placement and routing solution, we obtain the number of instances and total wirelength of

interconnects on the two dies. We use the power model from [55] to estimate the static and

dynamic power consumed by devices and interconnects on the two dies. The experimental

results in Section 7.6 show that power overhead of our approach is small.

We adapt the power model of [55] to estimate power consumption of the two dies, with

the following assumptions obtained from it. We estimate power from the total number

of transistors and total wirelength in each design after global routing. A typical 2-input

NAND gate is of dimension 4 × 9 and comprises four transistors. We add up the total

area of all movable instances after rebuffering the netlist, and estimate the total number of

logic transistors. The total memory area is calculated as the sum of areas of all the fixed

blocks. Area overhead (for peripheral logic, etc.) in a memory block is assumed to be

1.6×, while each bitcell comprises six transistors with a total area of 1
3

of that of a NAND

gate. As a result, we obtain the total number of transistors (logic plus memory) by adding

the above two numbers. As in [55], a typical NAND gate occupies a rectangular region

of 9F × 20F , where F is the Metal-1 half-pitch (m1hp). In 45nm technology, m1hp

is 70nm, and thus the height of a NAND gate is 1.4µm. In the ISPD 2011 benchmark

suite the height of a placement row is fixed to be 9 units, therefore one unit length in

the benchmark equals 1.4µm/9 = 155.56nm under 45nm technology. Similarly, we can

calculate one unit length under 65nm technology as 160nm. Since the dimension of a

GCell is 32 units, i.e., 4977nm, we can calculate the total global routing wirelength in

terms of GCell dimensions. We use SUPERBLUE2 as our testcase using 45nm technology

126

on the logic die. Its power dissipation is estimated at 1.75 watts. The power dissipation of

the buffer die stacked on top of SUPERBLUE2 is estimated at 0.016 watts.

Finally, we may analyze the thermal conditions of our hetero-3D integration by using

HotSpot 5.0 [46] at the block-level. We assume that there is only a single core for each

die, with the power dissipation uniformly distributed over each die. Based on the power

numbers above for the two dies, we are able to simulate the thermal conditions of our

hetero-3D integration and calculate the peak temperature (42C). The results show that our

3D IC approach will not cause any additional thermal problems.

7.8 Conclusions

Our research studies the interaction of 3D integration with key interconnect trends

in modern and future ICs. Where previous research on interconnect stacking employs

rather coarse interconnect model, we develop a detailed testbench that replicates the buffer

explosion problem and ensuing routing congestion. In particular, we use a leading-edge

global router and the ISPD 2011 benchmark suite from IBM to quantify the impact on

routing congestion of via stacks required to buffer high-metal interconnect. We propose a

novel technique by which 3D die stacking can alleviate these routing obstructions. This

technique provisions for a small second die fabricated at a coarser technology node and

consisting entirely of buffers, which will be connected to high-metal interconnect through

Super-contacts. These techniques are supported by a powerful optimization backplane,

which decreases their overhead.

Moreover, we contribute models of buffer identification, netlist rebuffering, buffer-die

placement and buffer selection. These models are used to provide a detailed cost-benefit

analysis of our proposal for heterogeneous 3D integration.

127

CHAPTER VIII

Conclusions and Future Research Directions

Within the VLSI design flow, global routing is a critical step that heavily impacts the

final quality of the chip. Given a placed solution, the global routing stage determines the

routability of the design, and optimizes the design for metrics like power and minimal

resource usage. Within the context of chip design, global routing is applicable to many

other physical design-steps, such as estimating routability within global placement. This

dissertation (i) introduced the fundamentals of global routing and its relevant literature, (ii)

discussed enhancements to global routing, and (iii) explored global routing extensions to

different design and optimization flows.

8.1 Summary of Our Contributions

Standalone global routing. We presented a number of different optimizations, tech-

niques, and algorithms to significantly improve solution quality and scalability within dif-

ferent routing approaches. In Chapter III, we used integer linear programming to optimally

select the best route from a set of candidates for each net. Our scalable implementation

Sidewinder explicitly improved the number of vias with moderate runtime and resource

overhead. In Chapter IV, we developed an edge-centric Lagrangian-relaxation routing

formulation that was able to handle millions of nets, encapsulate modern technology con-

128

straints, and efficiently control quality. Our implementation BFG-R effectively reduced

routing congestion while maintaining a low wirelength and runtime profile. BFG-R was

also one of two evaluation routers in the DAC 2012 Routability-driven Contest [109].

Placement-and-routing integration. Routability can be further improved at design-flow

stages, such as placement. However, the router must be not only accurate, but also fast,

as it will be invoked several times. In Chapter V, we presented our complete routability-

driven placement flow, where we integrated a lighter version of BFG-R (Chapter IV) with a

state-of-the-art global placer [66] and detailed placer [89] to significantly improve conges-

tion. Our lightweight implementation SimPLR uses the router to proactively avoid caus-

ing difficult-to-route regions by bloating cells and controlling cell movement. In Chapter

VI, we improved the speed of constructive routing estimation by an order of magnitude

through linear-time cache-friendly algorithms and developed several techniques to relieve

different types of congestion. Our coordinated place-and-route framework combines stan-

dalone components to systematically reduce the complexity of placement and routing.

Extensions to 3D technology. We addressed the buffer explosion problem by integrating

multiple technology nodes. In Chapter VII, we presented out hetero-3D approach to selec-

tively moving buffers to an older-technology die to reduce routing congestion and costs.

By adapting the global router to account for new technology constraints, we were able to

accurately estimate the routing feasibility of our idea, and can reduce the total chip area.

8.2 Directions for Future Work

We envision several different directions for future research.

In parallelizing global routing, one option is to divide the solution space, and to evaluate

each partition in parallel. Using multiple threads, there are two general approaches. The

first is using a coarse-grained partition, where each thread considers a portion of the layout

129

space; the second is using a fine-grained partition, where each thread considers a net.

In previous literature, PGRIP [119] followed the former approach, whereas PGR [77]

followed the latter approach. Based on empirical results and ease of implementation, the

former approach is easier to implement, whereas the latter can require more resources

and threads. However, the latter approach can lead to better runtime improvements. To

take advantage of both approaches, we consider a hybrid technique. First, to maintain

the spirit of practicality, we tailor the number of threads to the experimental setting (e.g.,

workstation). Second, each thread can be assigned to a layout region or cluster, depending

on the situation or progress of the router. This allows us to customize our efforts to the

areas that require the greatest optimization effort.

Using graphics processing units (GPUs) can significantly decrease router runtime [37].

Here, the authors assign a net to a single thread in the GPU, and route sets of nets such that

the bounding box of each net has no overlap with the bounding box of any other nets within

the set. Therefore, the authors bypass the need to handle collisions. To expand on this

framework, we propose to have the GPU perform more tasks, and on a finer granularity.

First, we notice that we can quickly update history costs and other relevant costs (e.g., net

costs) in parallel. Second, we can adopt this method by assigning each two- and three-pin

net and subnet to a thread. That is, if a net is a two- or three-pin net, then it is assigned

to one thread. Otherwise, it is decomposed into two- or three-pin subnets, and each of its

subnets are assigned to a thread.

Handling timing constraints or limiting nets that have a large number of detours is an

important consideration. In general, global routers are blind to this aspect, as their primary

objective is routability, followed by the minimization of total wirelength. Therefore, nets

are purposely detoured without discrimination. However, this can hurt performance, since

some are considered timing-critical, and cannot exceed some given length.

130

To account for timing-related constraints, one approach within global routing is to

impose a bounding box or length constraint for specific nets. However, this can harm

overall routability, as these nets can use resources that are requisite for other nets. To

address this, we propose to rip-up and reroute these nets more often, and impose the strict

length constraint. With the increasing history costs within a local region, other nets should

eventually be pushed away, encouraging them to detour. Another type of timing constraint

is to impose nets to specific layers. A previous work GLADE [15] has accounted for net-

layer restrictions. To extend this idea, we propose to modify layer assignment such that

it handles being restricted to different layers. For example, if a net is restricted to being

specific layers, then the edges on those layers have finite cost.

Routability-driven placement methods still have areas of improvement. One direction

would be to embed congestion information into the placement objective function. How-

ever, this would require one (or multiple) router invocation at every iteration, thereby re-

quiring congestion estimation be fast. Our techniques can be extended to further improve

runtime by testing incremental routing without preserving the net order, and incorporating

history-cost updates.

131

BIBLIOGRAPHY

132

BIBLIOGRAPHY

[1] S. N. Adya, I. L. Markov and P. G. Villarrubia, “On Whitespace and Stability in
Physical Synthesis”, Integration 39(4) (2006), pp. 340-362.

[2] C. Albrecht, “Global Routing by New Approximations for Multicommodity Flow”,
TCAD 20(5) (2001), pp. 622-632.

[3] C. J. Alpert, IBM, personal communication, November 2011.

[4] C. J. Alpert, Z. Li, M. D. Moffitt, G.-J. Nam, J. A. Roy and G. Tellez, “What Makes
a Design Difficult to Route”, ISPD 2010, pp. 7-12.

[5] C. J. Alpert, D. P. Mehta and S. S. Sapatnekar (eds.), Handbook of Algorithms for
VLSI Physical Design Automation, CRC Press, 2008.

[6] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI, Addison-Wesley,
1990.

[7] J. Bentley, “Programming Pearls: Algorithm Design Techniques”, ACM 27(9)
(1984), pp. 865-873.

[8] S. Bobba, A. Chakraborty, O. Thomas, P. Batude, T. Ernst, O. Faynot, D. Z. Pan
and G. D. Micheli, “CELONCEL: Effective Design Technique for 3D Monolithic
Integration Targeting High Performance Integrated Circuits”, ASP-DAC 2011, pp.
336-343.

[9] U. Brenner and A. Rohe, “An Effective Congestion Driven Placement Framework”,
ISPD 2002, pp. 6-11.

[10] M. Burstein and R. Pelavin, “Hierarchical Wire Routing”, TCAD 2(4) (1983), pp.
223-234.

[11] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov and A. Zelikovsky, “On Wire-
length Estimations for Row-based Placement”, TCAD 18(9) (1999), pp. 1265-1278.

[12] coalesCgrip: A Tool for Routing Congestion Analysis.
homepages.cae.wisc.edu/˜adavoodi/gr/cgrip.htm

[13] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze and M. Xie, “mPL6: Enhanced Multi-
level Mixed-size Placement with Congestion Control”, Modern Circuit Placement 4
(2007), pp. 247-288.

133

[14] Y.-J. Chang, Y.-T. Lee and T.-C. Wang, “NTHU-Route 2.0: A Fast and Stable Global
Router”, ICCAD 2008, pp. 338-343.

[15] Y.-J. Chang, T.-H. Lee and T.-C. Wang, “GLADE: A Modern Global Router Consid-
ering Layer Objectives”, ICCAD 2010, pp. 319-323.

[16] H.-Y. Chen, C.-H. Hsu and Y.-W. Chang, “High-performance Global Routing with
Fast Overflow Reduction”, ASPDAC 2009, pp. 582-587.

[17] M. Chen, Y. Yi, W. Zhao and D. Ma, “Variation-Aware Deep Nanometer Gate Per-
formq ance Modeling: An Analytical Approach”, VLSI-DAT 2011, pp. 1-4.

[18] C. E. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling”, IC-
CAD 1994, pp. 650-695.

[19] L. Cheng, L. Deng and M. D. F. Wong, “Floorplanning for 3-D VLSI Design”, ASP-
DAC 2005, pp. 405-411.

[20] M. Cho and D. Z. Pan, “BoxRouter: A New Global Router Based on Box Expansion
and Progressive ILP”, DAC 2006, pp. 373-378.

[21] M. Cho, K. Lu, K. Yuan and D. Z. Pan, “BoxRouter 2.0: Architecture and Imple-
mentation of a Hybrid and Robust Global Router”, ICCAD 2007, pp. 503-508.

[22] M. Cho, H. Xiang, R. Puri and D. Z. Pan, “Wire Density Driven Global Routing for
CMP Variation and Timing”, ICCAD 2006, pp. 487-492.

[23] P. Christie and D. Stroobandt, “The Interpretation and Application of Rent’s Rule”,
TVLSI 8(6) (2000), pp. 639-648.

[24] C. C. N. Chu and M. Pan, “IPR: An Integrated Placement and Routing Algorithm”,
DAC 2007, pp. 59-62.

[25] C. C. N. Chu and Y.-C. Wong, “Fast and Accurate Rectilinear Steiner Minimal Tree
Algorithm for VLSI Design”, ISPD 2005, pp. 28-35.

[26] Y.-L. Chuang, G.-J. Nam, C. J. Alpert, Y.-W. Chang, J. A. Roy and N. Viswanathan,
“Design-hierarchy Aware Mixed-size Placement for Routability Optimization”, IC-
CAD 2010, pp. 663-668.

[27] J. Cong and G. Luo, “A Multilevel Analytical Placement for 3D ICs”, ASP-DAC
2009, pp. 361-366.

[28] J. Cong, J. Wei and Y. Zhang, “A Thermal-driven Floorplanning Algorithm for 3D
ICs”, ICCAD 2004, pp. 306-313.

[29] J. Cong and Y. Zhang, “Thermal-driven Multilevel Routing for 3-D ICs”, ASP-DAC
2005, pp. 121-126.

134

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms,
Second Edition, MIT Press and McGraw-Hill, 2001.

[31] ILOG CPLEX: High-performance Software for Mathematical Programming and Op-
timization. http://www.ilog.com/products/cplex

[32] L. Dagum and R. Menon, “OpenMP: An Industry Standard API for Shared-memory
Programming,” Computational Science and Engineering 1998, pp. 46-55.

[33] K.-R. Dai, C.-H. Lu and Y.-L. Li, “GRPlacer: Improving Routability and Wirelength
of Global Routing with Circuit Replacement”, ICCAD 2009, pp. 351-356.

[34] J. A. Davis, V. K. De and J. D. Meindl, “A Stochastic Wire-length Distribution for
Gigascale Integration (GSI). I. Derivation and Validation”, Electronic Devices 45(3)
(1998), pp. 580-589.

[35] D. E. Donath, “Placement and Average Interconnection Lengths of Computer Logic”,
Circuits and Systems 26 (1979), pp. 271-277.

[36] R. Hadsell and P. Madden, “Improved Global Routing Through Congestion Estima-
tion”, DAC 2003, pp. 28-31.

[37] Y. D. Han, D. M. Ancajas, K. Chakraborty and S. Roy, “Exploring High Throughput
Computing Paradigm for Global Routing”, ICCAD 2011, pp. 298-305.

[38] X. He, T. Huang, L. Xiao, H. Tian, G. Cui and E. F. Young, “Ripple: An Effective
Routability-driven Placer by Iterative Cell Movement”, ICCAD 2011, pp. 74-79.

[39] W. Hou, H. Yu, X. Hong, Y. Cai, W. Wu, J. Gu and W. H. Kao, “A New Congestion-
driven Placement Algorithm Based on Cell Inflation”, ASP-DAC 2001, pp. 723-728.

[40] B. Hu and M. Marck-Sadowska, “Congestion Minimization During Placement With-
out Estimation”, ICCAD 2002, pp. 739-745.

[41] J. Hu and S. S. Sapatnekar, “A Survey on Multi-net Global Routing for Integrated
Circuits”, Integration, the VLSI Journal 31(1) (2001), pp. 1-49.

[42] J. Hu, J. A. Roy and I. L. Markov, “Sidewinder: A Scalable ILP-based Router”, SLIP
2008, pp. 73-80.

[43] J. Hu, J. A. Roy and I. L. Markov, “Completing High-quality Global Routes”, ISPD
2010, pp. 35-41.

[44] Y. C. Hu, Y. L. Chung and M. C. Chi, “A Multilevel Multiplayer Partitioning Algo-
rithm for Three Dimensional Integrated Circuits”, ISQED 2010, pp. 483-487.

[45] X. Hu, P. Du and C.-K. Cheng, “Exploring the Rogue Wave Phenomenon in 3D
Power Distribution Networks”, EPEPS 2010, pp. 57-60.

135

[46] W. Huang, K. Skadron, S. Gurumurthi, R. J. Ribando and M. R. Stan, “Differentiat-
ing the Roles of IR Measurement and Simulation for Power and Temperature-aware
Design”, ISPASS 2009, pp. 1-10.

[47] C.-H. Hsu, H.-Y. Chen and Y.-W. Chang, “Multi-layer Global Routing Considering
Via and Wire Capacities”, ICCAD 2008, pp. 350-355.

[48] M.-K. Hsu, S. Chou, T.-H. Lin and Y.-W. Chang, “Routability-driven Analytical
Placement for Mixed-size Circuit Designs”, ICCAD 2011, pp. 80-84.

[49] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt and D. Newell, “Exploring the Cache
Design Space for Large Scale CMPs,” Computer Architecture News 2005, pp. 24-33.

[50] ISPD 1998 Global Routing benchmark suite.
http://www.ece.ucsb.edu/˜kastner/labyrinth

[51] ISPD 2007 Global Routing Contest and benchmark suite.
http://www.sigda.org/ispd2007/rcontest/

[52] International Technology Roadmap for Semiconductors (ITRS). http://www.
itrs.net.

[53] International Technology Roadmap for Semiconductors.
http://www.itrs.net/Links/2010ITRS/Home2010.htm

[54] D. Jariwala and J. Lillis, “RBI: Simultaneous Placement and Routing Optimization
Technique”, TCAD 26(1) (2007), pp. 127-141.

[55] K. Jeong and A. B. Kahng, “A Power-constrained MPU Roadmap for the Interna-
tional Technology Roadmap for Semiconductors (ITRS)”, ISOCC 2009, pp. 49-52.

[56] K. Jeong and A. B. Kahng, “Toward PDN Resource Estimation: A Law of General
Power Density”, SLIP 2011, pp. 1-6.

[57] K. Jeong, A. B. Kahng and C. J. Progler, “New Yield-aware Mask Strategies”, PMJ
2011, pp. 80810P-1–80810P-12.

[58] Z.-W. Jiang, B.-Y. Su and Y.-W. Chang, “Routability-driven Analytic Placement by
Net Overlapping Removal for Large-scale Mixed-size Designs”, DAC 2008, pp. 167-
172.

[59] A. B. Kahng, J. Lienig, I. L. Markov and J. Hu, VLSI Physical Design: From Graph
Partitioning to Timing Closure, Springer, 2011.

[60] A. B. Kahng, S. Mantik and D. Stroobandt, “Toward Accurate Models of Achievable
Routing”, TCAD 8(6) (2001), pp. 648-659.

[61] A. B. Kahng and X. Xu, “Accurate Pseudo-constructive Wirelength and Congestion
Estimation” SLIP 2003, pp. 61-68.

136

[62] R. Karp, “Complexity of Computer Computations”, Reducibility Among Combina-
torial Problems, New York: Plenum, 1972.

[63] R. Kastner, E. Bozorgzadeh and M. Sarrafzadeh, “Pattern Routing: Use and Theory
for Increasing Predictability and Avoiding Coupling”, TCAD 21(7) (2002), pp. 777-
790.

[64] G. Katti, M. Stucchi, K. D. Meyer and W. Dehaene, “Electrical Modeling and Char-
acterization of Through Silicon Via for Three-dimensional ICs”, Electron Devices
57(1) (2010), pp. 256-262.

[65] J. Hu*, M.-C. Kim*, D.-J. Lee and I. L. Markov, “A SimPLR Method for Routability-
driven Placement”, ICCAD 2011, pp. 67-73. *Equal Contribution

[66] M.-C. Kim, D.-J. Lee and I. L. Markov, “SimPL: An Effective Placement Algo-
rithm”, ICCAD 2010, pp. 649-656.

[67] M.-C. Kim, D.-J. Lee and I. L. Markov, “SimPL: An Effective Placement Algo-
rithm”, TCAD 31(1) (2012), pp. 50-60.

[68] M.-C. Kim and I. L. Markov, “ComPLx: A Competitive Primal-dual Lagrange Opti-
mization for Global Placement”, DAC 2012, pp. 747-752.

[69] B. Korte, D. Rautenbach and J. Vygen, “BonnTools: Mathematical Innovation for
Layout and Timing Closure of Systems on a Chip”, Proc. IEEE 95(3) (2007), pp.
555-572.

[70] T.-H. Lee, Y.-J. Chang and T.-C. Wang, “An Enhanced Global Router with Consid-
eration of General Layer Directives”, ISPD 2011, pp. 53-60.

[71] S. Lee and M. D. F. Wong, “Timing-driven Routing for FPGAs Based on Lagrangian
Relaxation”, TCAD, 22(4) (2003), pp. 506-510.

[72] T.-H. Lee and T.-C. Wang, “Congestion-constrained Layer Assignment for Via Min-
imization in Global Routing”, TCAD 27(9) (2008), pp. 1643-1656.

[73] T.-H. Lee and T.-C. Wang, “Robust Layer Assignment for Via Optimization in Multi-
layer Global Routing”, ISPD 2009, pp. 159-166.

[74] Z. Li, C. J. Alpert, G.-J. Nam, C. C. N. Sze, N. Viswanathan and N. Y. Zhou, “Guid-
ing a Physical Design Closure System to Produce Easier-to-route Designs with More
Predictable Timing”, DAC 2012, pp. 465-470.

[75] C. Li, M. Xie, C.-K. Koh, J. Cong and P. H. Madden, “Routability-driven Placement
and White Space Allocation”, ICCAD 2004, pp. 394-401.

[76] Z. Li, W. Wu and X. Hong, “Congestion Driven Incremental Placement Algorithm
for Standard Cell Layout”, ASP-DAC 2003, pp. 723-728.

137

[77] W.-H. Liu, W.-C. Kao, Y.-L. Li and K.-Y. Chao, “Multi-threaded Collision-aware
Global Routing with Bounded-length Maze Routing”, DAC 2010, pp. 200-205.

[78] W.-H. Liu, Y.-L. Li and C.-K. Kok, “A Fast Maze-free Routing Congestion Estimator
With Hybrid Unilateral Monotonic Routing”, ICCAD 2012, pp. 713-719.

[79] H. Van Marck, D. Stroobandt and J. Van Campenhout, “Towards an Extension of
Rent’s Rule for Describing Local Variations in Interconnect Complexity”, Interna-
tional Conf. for Young Computer Scientists (1994), pp. 136-141.

[80] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-based Performance-
driven Router for FPGAs”, FPGA 1995, pp. 111-117.

[81] M. D. Moffitt, “MAIZEROUTER: Engineering an Effective Global Router”, TCAD
27(11) (2008), pp. 2017-2026.

[82] D. Müller, “Optimizing Yield in Global Routing”, ICCAD 2006, pp. 480-486.

[83] G.-J. Nam, F. Aloul, K. A. Sakallah and R. Rutenbar, “A Comparative Study of Two
Boolean Formulations of FPGA Detailed Routing Constraints”, ISPD 2001, pp. 222-
227.

[84] G.-J. Nam, C. C. N. Sze and M. C. Yildiz, “The ISPD Global Routing Bench-
mark Suite”, ISPD 2008, pp. 156-159. http://www.sigda.org/ispd2008/
contests/ispd08rc.html

[85] R. H. J. M. Otten and R. K. Brayton, “Planning for Performance”, DAC 1998, pp.
122-127.

[86] M. M. Ozdal and M. D. F. Wong, “Archer: A History-driven Global Routing Algo-
rithm”, ICCAD, pp. 488-495, 2007.

[87] M. Pan and C. C. N. Chu, “FastRoute: A Step to Integrate Global Routing into
Placement”, ICCAD 2006, pp. 464-471.

[88] M. Pan and C. C. N. Chu, “FastRoute 2.0: A High-quality and Efficient Global
Router”, ASPDAC 2007, pp. 250-255.

[89] M. Pan, N. Viswanathan and C. C. N. Chu, “An Efficient and Effective Detailed
Placement Algorithm”, ICCAD 2005, pp. 48-55.

[90] M. Pan, Y. Xu, Y. Zhang and C. Chu, “FastRoute: An Efficient and High-quality
Global Router”, VLSI Design 2012, 18 pages.

[91] P. N. Parakh, R. B. Brown and K. A. Sakallah, “Congestion Driven Quadratic Place-
ment”, DAC 1998, pp. 275-278.

[92] S. K. Raman, V. Pentkovski and J. Keshava, “Implementing Streaming SIMD Exten-
sions on the Pentium III Processor”, Proc. Micro 20(4) (2000), pp. 47-57.

138

[93] J. A. Roy and I. L. Markov, “High-performance Routing at the Nanometer Scale”,
TCAD 27(6) (2008), pp. 1066-1077.

[94] J. A. Roy and I. L. Markov, “Seeing the Forest and the Trees: Steiner Wirelength
Optimization and Placement”, TCAD, 26(4) (2007), pp. 632-644.

[95] J. A. Roy, N. Viswanathan, G.-J. Nam, C. J. Alpert and I. L. Markov, “CRISP: Con-
gestion Reduction by Iterated Spreading during Placement”, ICCAD 2009, pp. 357-
362.

[96] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.

[97] P. Saxena, N. Menezes, P. Cocchini and D. A. Kirkpatrick, “The Scaling Challenge:
Can Correct-by-Construction Design Help?”, ISPD 2003, pp. 51-58.

[98] N. Selvakkumaran, P. N. Parakh and G. Karypis, “Perimeter-degree: A Priori Metric
for Directly Measuring and Homogenizing Interconnection Complexity in Multilevel
Placement”, SLIP 2003, pp. 53-59.

[99] W. Y. Seung, W. Y. Dae, H. K. Jae, M. Padmanathan and F. Carson, “3D TSV Pro-
cesses and its Assembly/Packaging Technology”, 3DIC 2009, pp. 1-5.

[100] H. Shojaei, A. Davoodi and J. Linderoth, “Congestion Analysis for Global Routing
via Integer Programming”, ICCAD 2011, pp. 256-262.

[101] G. Sigl, K.Doll and F.Johannes,“Analytical Placement: A Linear or a Quadratic
Objective Function?” DAC1991, pp. 427-432.

[102] P. Spindler and F. M. Johannes, “Fast and Accurate Routing Demand Estimation for
Efficient Routability-driven Placement”, DATE 2007, pp. 1226-1231.

[103] P. Spindler, U. Schlichtmann and F. M. Johannes, “Kraftwerk2 – A Fast Force-
directed Quadratic Placement Approach Using an Accurate Net Model”, TCAD 27(8)
(2008), pp. 1398-1411.

[104] Wafer Stacking with Super-contacts. http://www.tezzaron.com

[105] K. Tsota, C. Koh and V. Balakrishnan, “Guiding Global Placement with Wire Den-
sity”, ICCAD 2008, pp. 212-217.

[106] TSMC: Silicon Success.
http://www.tsmc.com/download/enliterature/
html-newsletter/September03/InDepth/index.html

[107] N. Viswanathan, IBM, personal communication, November 2011.

[108] N. Viswanathan, C. J. Alpert, C. C. N. Sze, Z. Li, G.-J. Nam and J. A. Roy,
“The ISPD-2011 Routability-driven Placement Contest and Benchmark Suite”, ISPD
2011, pp. 141-146.

139

[109] N. Viswanathan, C. J. Alpert, C. C. N. Sze, Z. Li and Y. Wei, “The DAC 2012
Routability-driven Placement Contest and Benchmark Suite”, DAC 2012, pp. 774-
782.

[110] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li and Y. Wei, “ICCAD-2012 CAD
Contest in Design Hierarchy Aware Routability-driven Placement and Benchmark
Suite”, ICCAD 2012, pp. 345-348. http://cad_contest.cs.nctu.edu.
tw/CAD-contest-at-ICCAD2012/problems/p2/p2.html

[111] N. Viswanathan, M. Pan and C. C. N. Chu, “FastPlace 3.0: A Fast Multilevel
Quadratic Placement Algorithm with Placement Congestion Control”, ASP-DAC
2007, pp. 135-140.

[112] M. Wang and M. Sarrafzadeh, “On the Behaviour of Congestion Minimization Dur-
ing Placement”, ISPD 1999, pp. 145-150.

[113] M. Wang and M. Sarrafzadeh, “Model and Minimization of Routing Congestion”,
ASP-DAC 2000, pp. 185-190.

[114] M. Wang, X. Yang, K. Eguro and M. Sarrafzadeh, “Multicenter Congestion Esti-
mation and Minimization During Placement”, ISPD 2000, pp. 147-152.

[115] M. Wang, X. Yang and M. Sarrafzadeh, “Congestion Minimization During Place-
ment”, TCAD 19(10) (2000), pp. 1140-1148.

[116] Y. Wei, C. Sze, N. Viswanathan, Z. Li, C. J. Alpert, L. N. Reddy, A. D. Huber, G.
E. Terez, D. Keller and S. S. Sapatnekar, “GLARE: Global and Local Wiring Aware
Routability Evaluation”, DAC 2012, pp. 768-773.

[117] J. Westra, C. Bartels and P. Groeneveld, “Probabilistic Congestion Prediction”,
ISPD 2004, pp. 204-209.

[118] J. Westra and P. Groeneveld, “Is Probabilistic Congestion Estimation Worthwhile?”
SLIP 2005, pp. 99-106.

[119] T.-H. Wu, A. Davoodi and J. T. Linderoth, “A Parallel Integer Programming Ap-
proach to Global Routing”, DAC 2010, pp. 194-199.

[120] H. Xu, R. Rutenbar and K. A. Sakallah, “sub-SAT: A Formulation for Relaxed
Boolean Satisfiability with Applications in Routing”, ISPD 2002, pp. 182-187.

[121] Y. Xu, Y. Zhang and C. C. N. Chu, “FastRoute 4.0: Global Router with Efficient
Via Minimization”, ASPDAC 2009, pp. 576-581.

[122] Y. Xu and C. C. N. Chu, “MGR: Multi-level Global Router”, ICCAD 2011, pp.
250-255.

[123] X. Yang, B.-K. Choi and M. Sarrafzadeh, “Routability-driven White Space Alloca-
tion for Fixed-die Standard-cell Placement”, TCAD 22(4) (2003), pp. 410-419.

140

[124] X. Yang, R. Kastner and M. Sarrafzadeh, “Congestion Estimation During Top-down
Placement”, TCAD 21(1) (2002), pp. 72-80.

[125] J. Y. Yen, “An Algorithm for Finding Shortest Routes From All Source Nodes to
a Given Destination in General Networks”, Proc. Quarterly of Applied Mathematics
27 (1970), pp.526-530.

[126] Y. Zhang and C. C. N. Chu, “CROP: Fast and Effective Congestion Refinement of
Placement”, ICCAD 2009, pp. 344-350.

[127] Y. Zhang and C. Chu, “GDRouter: Interleaved Global Routing and Detailed Rout-
ing for Ultimate Routability”, DAC 2012, pp. 597-602.

[128] K. Zhong and S. Dutt, “Algorithms for Simultaneous Satisfaction of Multiple Con-
straints and Objective Optimization in a Placement Flow with Application to Con-
gestion Control”, DAC 2002, pp. 854-859.

141

