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ABSTRACT 
 

ENGINEERING COCRYSTAL AND COCRYSTALLINE SALT SOLUBILITY BY 

MODULATION OF SOLUTION PHASE CHEMISTRY 

by 

Lilly Roy 

 

Chair:  Naír Rodríguez-Hornedo  
 

There is increasing interest in cocrystal and cocrystalline salts as alternate 

pharmaceutical solid forms because they provide a range of physicochemical and 

biopharmaceutical properties.  Both cocrystals and cocrystalline salts provide an 

opportunity to alter not only the lattice chemistry but also the solution chemistry of the 

parent drug.  There are numerous reports of cocrystals and cocrystalline salts that 

enhance the aqueous solubility and in some cases bioavailability of hydrophobic drugs. 

The most common method used to characterize the solution behavior of these solid forms 

is currently powder dissolution. This approach may not identify rapidly transforming 

metastable cocrystals and cannot be extrapolated to other solution conditions. Cocrystal 

forms are often evaluated in the presence of additives that affect the solution chemistry of 

the cocrystal components thereby impacting cocrystal solubility and thermodynamic 

stability. This dissertation explores the influence of solution chemistry on cocrystal and 

cocrystalline salt solubility and thermodynamic stability relative to the parent drug and 

salt respectively.  Knowledge of the solution mechanisms that alter the cocrystal 

component solubilities can be used to anticipate cocrystal solubility and Scocrystal/Sdrug.  

The objectives of this work are to (1) to determined the key thermodynamic 

parameters necessary to rationally select surfactants to modulate cocrystal solubility and 

Scocrystal/Sdrug using mathematical models derived from knowledge of the solution-

chemistry affecting the cocrystal components (2) to evaluate the contributions of 
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ionization and micellar solubilization to cocrystal solubility and Scocrystal/Sdrug in 

physiologically relevant media (3) to derive mathematical models that describe 

cocrystalline salt solubility dependence on ionization and the common-ion effect so that 

the solubility of these solid forms can be characterized using minimal experimental 

measurements (4) to develop a method to characterize the equilibrium solubility of 

metastable cocrystalline salts and (5) to examine the relationship between the relative 

magnitude of Scocrystal/Sdrug and the observed supersaturation relative to the parent drug. 

Surfactant selection to control cocrystal solubility and Scocrystal/Sdrug was 

rationalized by the magnitude of drug solubilization (Ks
drug) and the preferential 

solubilization of the drug by the micellar surfactant (Ks
drug>Ks

coformer).  The surfactant 

concentration required to reduce the Scocrystal/Sdrug by half the original magnitude for a 

group of surfactants was in order of the surfactant’s critical micelle concentration.  Both 

micellar solubilization and ionization are capable of altering Scocrystal/Sdrug.  For the case 

of indomethacin-saccharin, micellar solubilization decreased Scocrystal/Sdrug while 

ionization increased Scocrystal/Sdrug.  This behavior is expected to occur for other cocrystals 

composed of a drug that is more hydrophobic than the coformer when the coformer 

ionizes at lower pH values than the drug (pKa
coformer<pKa

drug) 

Media reported to simulate physiologically relevant solution conditions affects 

cocrystal solubility based on the ionization and micellar solubilization of the cocrystal 

components.  Cocrystal solubility can be predicted from the cocrystal component 

solubilities by deriving solubility models that include component ionization and micellar 

solubilization.  Any media containing physiologically relevant surfactants that 

preferentially solubilizes the drug component relative to the coformer reduces the 

Scocrystal/Sdrug compared to media without the surfactant.  Fed state simulated intestinal 

fluid was found to decrease the Scocrystal/Sdrug of the indomethacin-saccharin cocrystal due 

to preferential solubilization of the drug.  The indomethacin-saccharin cocrystal achieved 

higher solution concentrations, which were sustained for a longer period of time (4 hours) 

during dissolution in FeSSIF relative to acetate buffer, which is at the same pH and ionic 

strength as FeSSIF without sodium taurocholate and lecithin.   

Cocrystalline salts were found to exhibit solubility product behavior and exhibit a 

different solubility dependence on solution pH and counterion concentration relative to 
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the parent salt.  Equations were derived considering cocrystalline salt dissociation and 

coformer ionization.  These equations described the solubility-pH dependence and the 

common-ion effect and enable the prediction and anticipation of cocrystalline salt 

solubility under a wide variety of solution conditions. The common-ion effect on 

cocrystalline salts is less than that observed for the parent salt, therefore cocrystalline 

salts may be useful to mitigate the common-ion effect. 
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Chapter 1  

Introduction 

Research regarding the biopharmaceutical and physicochemical properties of 

cocrystals has generated tremendous interest among a range of scientific fields, including 

chemistry, crystal engineering, materials engineering, and the pharmaceutical sciences.  

Even though there are increasing examples of cocrystals that offer superior 

pharmaceutical properties relative to the parent drug, they are currently under-utilized.1-11 

Cocrystals are a class of multicomponent solids containing two or more different 

molecular components in a single homogenous crystalline phase with a well-defined 

stoichiometry; they are distinguished from solvates in that the cocrystal components are 

solids at room temperature. 

 Hydrogen-bonded assemblies between the neutral molecules of the drug and the 

cocrystal coformer often guide cocrystal formation, which is why they are of particular 

interest due to their ability to modify the solubility properties of nonionizable drugs that 

cannot otherwise form pharmaceutical salts. Currently there are no examples of cocrystal 

drug forms on the market, but there is a cocrystalline salt marketed as Depakote.  

Depakote (divalproex sodium) is sodium valproate cocrystallized with valproic acid that 

was serendipitously discovered to exhibit superior characteristics relative to its 

components.12 

Solid-state modifications and formulation design allow for the improvement of 

the physicochemical properties of a drug substance while maintaining the same chemical 

entity and pharmacological interaction. Polymorphs, solvates and salts are the common 

solid forms employed for product development.  However, consideration of cocrystals 

and cocrystalline salts as viable solid forms for development would significantly expand 

the number and diversity of solid drug forms available, and improve the likelihood of 

finding a solid form with the required physicochemical properties. A schematic of the 

different classes of multicomponent solids is shown in Figure 1.1 
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Figure 1.1 Comparison of multicomponent solid form modifications that can be used to 
alter the properties of a drug product.13 
 

It is crucial to know the possible solid-forms of a given drug substance to select 

the form with optimal biopharmaceutical properties and to avoid unwanted 

transformations to another form during processing, storage and dosing. Cocrystal-

solution phase interactions have a major impact on the solution conditions that promote 

cocrystal formation or cocrystal solution-mediated transformation to the parent drug. 

While the role of solution chemistry on the solubility and thermodynamic stability of 

cocrystals has been investigated,4,14-17 these concepts are seldom applied to cocrystal 

synthesis and solubility characterization.  This chapter introduces examples of cocrystals 

that enhance physicochemical properties, the in silico methodologies used to guide 

cocrystal design, rational approaches for screening and synthesizing cocrystals and an 

introduction to the current understanding of salt and cocrystal solution chemistry.  A 

statement of the research objectives of this thesis will be provided at the conclusion of 

this chapter. 

Cocrystal Physicochemical and Biopharmaceutical properties  
It is possible to generate many distinct crystalline forms via cocrystallization of a 

pharmaceutical free drug or salt.  The opportunity to alter the crystalline structures by 

introduction of a new molecular component that interacts with the drug increases the 

potential to modify the crystal lattice compared to polymorphs, which are composed of 

only the drug molecule. Each cocrystalline form exhibits unique physicochemical and 

biopharmaceutical properties compared to its components and compared to other 

cocrystals. Cocrystallization has been used to improve properties such as hygroscopicity, 
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compactability, tensile strength, chemical stability, solubility, dissolution and 

bioavailability.  There are numerous examples that have been published in which 

cocrystals improve the pharmaceutical properties of the parent drug (or salt); however, 

there is no correlation between cocrystal design and the desired physicochemical 

properties.  There are however, a few examples in which the cause of a chemical 

instability or poor tableting was identified within the crystalline lattice, and 

cocrystallization was specifically pursued to modify the site of interest.5,11  

Chemical stability 
Cocrystals may exhibit improved chemical stability relative to the parent drug due 

to the rearrangement of the drug molecules in the crystal lattice.  For example, 

cocrystallization of the drug adefovir dipivoxil with saccharin improves the chemical 

stability. The pivaloyoxymethyl moiety of the drug interacts with the NH group in 

saccharin which is hypothesized to prevent hydrolysis of the pivaloyoxymethyl moiety in 

the solid state.3 A 2:1 miconazole-succinic acid cocrystal exhibited improved chemical 

stability in the crystalline state and in formulation compared to the free base.11  The 

cocrystal had similar chemical stability to the marketed nitrate salt and could be 

considered as an alternate solid form.  

 Mechanical properties 

Tableting properties of pharmaceutical solids relate to their crystal packing and 

structure.  Cocrystals have been used to design solid forms with improved tableting 

properties relative to the parent drug.5 The stable form 1 of paracetamal exhibits poor 

tableting properties relative to its metastable form 2. Form 2 is proposed to have better 

tableting properties due to its parallel hydrogen bonded layers in the crystal lattice. 

Coformers for cocrystallization were selected based on the ability to generate layered 

solid forms of paracetamol, similar to that of form 2.  Cocrystals of paracetamol exhibited 

tableting superior to both forms, and are thermodynamically stable in the solid state.5 The 

tablets formed with paracetamol cocrystals were characterized in terms of breaking force 

and tensile strength.   
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Solubility, dissolution and bioavailability 
Inadequate solubility of drug candidates is an ongoing issue in drug development 

and methodologies to improve solubility are commonly pursued. Cocrystals can generate 

supersaturation with respect to the less soluble parent drug, which is of particular interest 

for BCS class II drugs (low aqueous solubility, and high permeability) that may exhibit 

poor bioavailability do to their low aqueous solubility.  The indomethacin-saccharin 

cocrystal was found to achieve higher solution concentrations than the parent drug during 

dissolution,1,6 and is 13-65 times more soluble than the parent drug in a range of pH 1-3, 

as determined by equilibrium solubility measurements.18  The cocrystal was found to 

improve bioavailability relative to the unformulated parent drug when dosed in canines.6 

Cocrystals of itraconazole increased drug concentration relative to the free drug, and 

performed similarly to the marketed amorphous formulation (Sporanox®).8 

There are several examples of cocrystals that exhibit enhanced bioavailability 

relative to the parent drug, as measured by an increase in the area under the curve (AUC) 

of the time course of the drug in the plasma. Zaworotko et al. showed that four cocrystals 

of quercetin had superior bioavailability relative to the parent drug; the highest increase 

in AUC was achieved by the quercetin:theobromine dihydrate cocrystal and was 10 times 

higher than that of the parent drug.9  Mcnamara et al. showed that a glutaric acid 

cocrystal of a poorly soluble development compound, 2-[4-(4-chloro-2-

fluorophenoxy)phenyl]pyrimidine-4-carboxamide, enhanced the disk dissolution rate by 

18-fold which translated to a 3-fold higher AUC relative to drug when dosed in canines.7 

Other cocrystals reported to increase AUC relative to the parent drug include meloxicam-

aspirin (4.4-fold increase in AUC)2, meloxicam-1-hydroxy-2napthoic acid (1.5-fold 

increase in AUC)19, indomethacin-saccharin (1.9-fold increase in AUC)6 as long as drug 

and cocrystal were compared using the same formulation. 

There are cases in which cocrystals generate higher solution concentrations during 

dissolution relative to the parent drug, but do not show an improved bioavailability. For 

example, lamotrigine: nicotinamide monohydrate exhibited a lower AUC and Cmax when 

dosed in rats despite demonstrating improved dissolution in water and acidic media 

(water 0.1 M HCl, pH =1).20  The cocrystal and drug were dosed in a suspension (5% 

PEG and 95% Methyl cellulose aqueous solution) without an indication of whether the 
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cocrystal was thermodynamically stable under these conditions. The 

carbamazepine:saccharin (CBZ:SAC) cocrystal has a higher solubility than 

carbamazepine dihydrate,4 however, the pharmacokinetic parameters determined from a 

bioavailability study of CBZ:SAC in canines were not statistically different compared to 

those of the marketed formulation of carbamazepine (Tegretol).21 None of the reported 

studies evaluate cocrystal solution chemistry under equilibrium conditions prior to 

evaluating their pharmacokinetic behavior; the influence of formulation additives on 

cocrystal solubility and Scocrystal/Sdrug is not considered prior to adding a cocrystal to a 

routine formulation.  Understanding the effect of formulation additives and biologically 

relevant solution conditions on cocrystal solubility and Scocrystal/Sdrug could give insight as 

to which excipients and which cocrystals will result in the best in vivo performance, and 

may help to guide cocrystal selection. 

Cocrystal Formation & Design 
Prior to carrying out cocrystal screens, which are costly in material and time, 

potential coformers can be identified based on molecular recognition interactions. 

Molecular recognition events are responsible for the self-assembly of two or more 

components through noncovalent interactions with energetically favorable geometries.22 

A large number of diverse solid forms can be generated by taking advantage of self-

assembly, and the resulting molecular arrangement of a drug within a crystal lattice 

affects its physicochemical properties. Through cocrystallization, it is possible to 

construct a new three-dimensional, ordered crystal structure using noncovalent 

interactions between a drug product and a coformer. 

The Cambridge Structural Database (CSD) can be used to perform 

supramolecular retrosynthetic analysis, which involves identifying intermolecular units 

for a target cocrystal structure. Coformers can be selected to cocrystallize with a drug 

based on knowledge of geometries and preferred orientations of existing intermolecular 

interactions. Synthons are the common noncovalent intermolecular interactions of 

specified geometries identified in the literature that make up the structural units within a 

supramolecular structure; a few examples of synthons are shown in Figure 1.2.   
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Figure 1.2.Common supramolecular synthons formed from carboxylic acids and amide 
groups.23-25 

Synthons can form between identical functional moieties (homosynthon) or 

different functional moieties (heterosynthon). Cocrystal structures may contain different 

combinations of homosynthons and heterosynthons. Additionally, these intermolecular 

interactions may be homomeric, between the same molecule, or heteromeric, between 

different molecules. Coformers were selected to form cocrystals with carbamazepine 

based on two design strategies. The first strategy was to maintain the cyclic homomeric 

carboxamide homosynthon and find coformers that could interact with the exterior 

hydrogen-bond donors and acceptors.  An example of this is the 1:1 cocrystal 

carbamazepine-saccharin which is shown in Figure 1.3a.  The second strategy was to 

disrupt the carboxamide homosynthon by forming a heteromeric synthon with the 

carboxamide.  This was accomplished by forming a heterosynthon between the 

carboxamide with a carboxylic acid coformer.  An example of the second strategy is the 

2:1 carbamazepine-succinic acid cocrystal, which is shown in Figure 1.3b. 

 



 

 7 

	
    

(a)      (b)  

Figure 1.3.  Examples of two strategies to form cocrystals of carbamazepine (a) 
carbamazepine-saccharin which maintain cyclic carboxamide homosynthon (b) 
carbamazepine-succinic which disrupts carboxamide homosynthon in favor of a 
heterosynthon between carboxamide and the dicarboxylic acid.26 
  

Coformers are often selected based on functional groups capable of 

complimentary hydrogen bonding with the drug substance.  Due to their directional 

interactions, hydrogen bonds most strongly influences molecular recognition. Etter and 

Donohue developed general guidelines to predict hydrogen bond interactions that result 

in crystal formation.22,25 These guidelines are based on the analysis of the hydrogen bond 

interactions and the packing motifs of numerous molecular structures: (1) the hydrogen 

bonding in the crystal structure will include all acidic hydrogen atoms, (2) all good 

hydrogen bond acceptors will participate in hydrogen bonding if there is an adequate 

supply of hydrogen bond donors, (3) hydrogen bonds will preferentially form between 

the best proton donor and acceptor, and (4) intramolecular hydrogen bonds in a six-

membered ring form in preference to intermolecular hydrogen bonds.22,24,25  

 In addition to these rules, the stereochemistry and competing interactions 

between molecules may need to be considered for cocrystal design. Other considerations 

in designing stable crystal structures include minimizing electrostatic energies and the 

free volume within the crystal.27 Analysis of cocrystal structures from the CSD suggests 

that components that cocrystallize often have similar shapes and polarities.28 While these 

strategies offer a good basis to select coformers for cocrystal screening and synthesis, 

they are not able to ab initio determine the cocrystal structure, molecules that will 

cocrystallize, conditions that promote cocrystallization or the physicochemical properties 

of the cocrystals based on their supramolecular structure.  Several cocrystals been 
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discovered by using a combination of supramolecular retrosynthetic analysis and 

cocrystal screening techniques and are shown in Table 1.1.   

Table 1.1 Examples of pharmaceutical cocrystals reported in the literature 
Drug Coformer Reference 
Indomethacin saccharin, nicotinamide, D/L mandelic, 

lactamide and benzamide 
1,29  

Carbamazepine 4-aminobenzoic, saccharin, salicylic, succinic, 
benzoic, ketoglutaric, maleic, glutaric, malonic, 
oxalic, adipic, (+)-camphoric, 4-
hydroxybenzoic, 1-hydroxy-2-napthoic, DL-
tartaric, L-tartaric, fumaric, DL-malic, L-malic, 
acetic, butyric, 5-nitroisphthalic, formic,  

26,30 

Meloxicam aspirin, 1-hydroxy-1-napthoic acid, salicylic, 4-
hydroxybenzoic, glutaric, maleic, L-malic, 
benzoic, DL-malic, hydrocinnamic, fumaric  

2,31 

Piroxicam L-tartaric, citric, fumaric, adipic acid, succinic, 
benzoic, 4-hydroxybenzoic, oxalic, ketoglutaric, 
salicylic, pyroglutamic acid, DL-tartaric, maleic, 
DL-malic, L-malic 

32 

Ketoconazole succinic, fumaric, adipic, oxalic 33 
Itraconazole succinic, fumaric, L-malic, L-tartaric, DL-

tartaric, 
8 

Lamotrigine acetamide, nicotinamide, methylparaben 20 

Curcumin resorcinol, pyrogallol 34,35 
Paracetamol oxalic, theophylline, phenazine, naphthalene 5 

Screening and Synthesis of Cocrystals  
Cocrystals that are less soluble than the parent drug have been made by slurrying 

the stoichiometric amounts of cocrystal components in a solvent.  However, this method 

will not work for cocrystals that are more soluble than the parent drug. Similar to salts, 

cocrystal solid-solution equilibria are dictated by solution composition,36,37 and cocrystal 

solubility product behavior has been utilized to develop reliable methods for screening 

synthesis and equilibrium solubility characterization of cocrystals.4,38 The reaction 

crystallization method (RCM),38 is useful for synthesis and screening, and is based on 

selecting solution conditions that generate supersaturation with respect to cocrystal.  The 

supersaturation, σ, of a cocrystal has been described by 
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𝜎 =
𝑐!
!!

𝐾!"

!/!

          (1.1) 

where Πci
vi is the product of the cocrystal component concentrations in the supersaturated 

solution when the activity coefficients are unity, νi is the stoichiometric coefficient in the 

chemical equation or stoichiometric number of cocrystal components, i, is the cocrystal 

chemical formula ν=Σνi, and Ksp is the cocrystal solubility product.38 Therefore the 

supersaturation of a 1:1 cocrystal AB is described by 

𝜎 = [!][!]
!!"

!/!
           (1.2) 

The supersaturation with respect to a 1:1 cocrystal AB is generated by adding the poorly 

soluble drug A to a solution that is near saturated or saturated with the water-soluble 

coformer B as shown in Figure 1.4. 

 
Figure 1.4. Schematic triangular phase solubility diagram showing the different methods 
by which supersaturation is generated with respect to cocrystal AB for a system where 
reactants have different solubilities and cocrystal is more soluble than reactants in 
solutions of equivalent reactant composition (a non-congruently saturating system). 
Arrows indicate the of solution composition as a result of evaporation of solution of 
nonequivalent composition of A and B (path P), adding reactant A to solutions at close to 
saturation with B (path Q) or saturated with B (path R).30 

 

The RCM method has been used to successfully discover 27 cocrystals of 

carbamazepine in both water and ethanol.30  By creating supersaturation with respect to 

cocrystal by taking advantage of solubility product behavior, cocrystals can be discovered 

in solvents in which they are incongruently saturating. Other commonly used methods to 
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synthesize cocrystals include grinding, solvent drop grinding, and solvo-thermo methods.  

Cocrystals have also been shown to form spontaneously in the solid-state during 

storage,39 as well as from drug and coformer mixtures in the presence of deliquescent 

additives.40 

Solubility characterization of metastable cocrystals 
Cocrystals that are more soluble than the parent drug may undergo solution-

mediated transformation to the less soluble drug, making solubility characterization a 

challenge.  The true cocrystal solubility is underestimated when transformation occurs 

during dissolution or an apparent solubility measurement in which cocrystal is suspended 

in an aqueous solution.  The drug concentrations observed during these kinetic 

measurements, is highly dependent on the solution conditions, and cannot be extrapolated 

to other solution conditions.  Good et al. developed a method to access the equilibrium 

cocrystal solubility that takes advantage of the solubility product behavior of a cocrystal. 
4 Because cocrystal solubility decreases with coformer concentration, an intersection 

point exists between the cocrystal and drug solubility curves.  According to Gibbs’ phase 

rule, a system with three components (drug, coformer and solution) and three phases 

(solid cocrystal, solid drug and solution) has one degree of freedom. Therefore the 

solution concentrations in equilibrium with solid cocrystal and solid drug are invariant 

holding temperature and pH constant. 

 
Figure 1.5. (a) Flowchart of method used to approach the eutectic point and determine the 
equilibrium solution concentrations of cocrystal components at the eutectic (b) Schematic 
phase solubility diagram illustrating two pathways to the eutectic point (marked X).4 

 

As shown in Figure 1.5, the eutectic point can be approached by cocrystal 

dissolution and precipitation of the parent drug, or by drug dissolution in a coformer rich 
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solution, which results in cocrystal precipitation.  Approaching the eutectic point by 

cocrystal dissolution can result in supersaturated drug concentrations while approaching 

the eutectic point by cocrystal precipitation can result in under saturated drug 

concentrations.  Solid phases and solution compositions should be monitored until the 

solution composition reaches a steady value in the presence of the two solid phases.  

Convergence of the solution composition from these two methods, i.e. different initial 

states, establishes that equilibrium is reached.  Solid phases can be analyzed in-situ by 

Raman spectroscopy or by XRPD and FT-IR after isolation of the solids.  Solution 

composition can be analyzed by HPLC. Approaching the equilibrium eutectic point by 

cocrystal precipitation and dissolution is crucial to obtain the most reliable experimental 

measurements, especially when the parent drug can withstand a supersaturated state.  The 

eutectic point is a key parameter to measure cocrystal solubility and establish solution 

conditions for cocrystal synthesis.  

Salt Solution Chemistry 
Salt formation is one of the most common solid state modifications used to 

improve the solubility of a poorly soluble drug. There are numerous salt forms available 

as marketed drug products such as chloroquine phosphate, miconazole nitrate, 

doxycycline hydrochloride, and diclofenac sodium to name a few.   Chloride is the most 

common counter-ion for a pharmaceutical base.41 Mathematical equations that describe 

the solubility and stability regions between free drug and its salt as a function of pH were 

derived in the 1970s, 42,43 and are widely used to characterize the solubility behavior of 

salts. An example of a pH-solubility diagram between a salt and its free base is shown in 

Figure 1.6.  
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Figure 1.6.  The pH-solubility profile of doxycycline (free base and HCl salt) in aqueous 
hydrochloric acid at 25°C.  At pHmax= 2.16, both salt and base are in equilibrium with the 
solution.  Below pHmax, the salt is the stable solid phase (dashed line).  Above this pH, 
the base is the stable solid phase in equilibrium with solution.  The solid line is 
theoretical according to equation (1.3) using Sun

B=0.625 mg/ml and pKa =3.30. 
Concentration is expressed as free base equivalent.44 
 

The solubility of the free base (doxycycline) increases with decreasing pH 

(increasing [H+]) according to 

𝑆!! = 𝑆!"! 1+
[𝐻!]
𝐾!!

          (1.3) 

where Sun is the solubility of the unionized base, Ka
HA is the ionization constant of the 

acid and [H+] is the concentration of protons in solution.42 In the example shown in 

Figure 1.6, the solution pH is decreased using HCl resulting in the precipitation of the 

HCl salt. The solubility of the salt of the protonated base is 

ST
BH+Cl-= Ksp 1+

KaB

[H+]
         (1.4) 

where the solubility product, Ksp, is defined by the concentrations of the protonated base 

and the counter-ion Cl-: 

Ksp=[BH+][Cl
-]          (1.5) 

Due to solubility product behavior, the solubility of the HCl salt, as measured by the 

concentration of drug, decreases with increasing solution concentrations of chloride,45 

according to equation (1.5), this is referred to as the common-ion effect.  Often this 
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behavior is observed as a consequence of altering solution pH by the addition of HCl.  As 

more HCl is added to the solution to decrease the solution pH, the solution concentration 

of chloride increases causing the drop in solubility with pH. 

The pHmax occurs at the intersection of the salt and free base solubility curves, and 

is a function of the salt Ksp, the drug intrinsic solubility and the drug pKa according to  

pHmax=pKa+ log
Ksp
Sun

         (1.6) 

for a free base and its salt.44 The pHmax increases by 1 pH unit with a one unit increase in 

the free base pKa, or an increase in magnitude of the unionized base solubility, Sun. The 

pHmax decreases by 1 pH unit with an increase in magnitude of the salt Ksp. Similar 

mathematical relationships describing the solubility-pH and pHmax of a free acid and its 

salt have also been derived in the literature.43  

Engineering Cocrystal Solubility via Solution Chemistry  

The diverse molecular properties and multicomponent nature of cocrystals 

provide an extraordinary level of solubility control via solution phase interactions.  The 

molecular processes shown in Figure 1.7 influence the cocrystal solubility and the 

cocrystal solubility advantage relative to drug (Scocrystal/Sdrug) and include cocrystal 

dissociation, complexation, ionization and micellar solubilization.  

 

Figure 1.7. Examples of cocrystal solution phase interactions and associated equilibria for 
a cocrystal RHA of a nonionizable drug (R) and an ionizable coformer (HA) a micellar 
solution. 
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Ionization 
Several pharmaceutical cocrystals containing molecules with a wide range of 

ionization behaviors have been reported: acidic drugs with acidic or nonionizable 

coformers, (indomethacin-saccharin, indomethacin-nicotinamide);1,29 basic drugs with 

acidic coformers, (ketoconazole-fumaric acid, miconazole-succinic acid);11,33 and 

nonionizable drugs with acidic or amphoteric coformers (paracetamol-oxalic acid, 

carbamazepine-4aminobenzoic acid).5,26  The ability to a priori predict the solubility-pH 

dependence of a novel pharmaceutical cocrystal is critical to select coformers to 

customize the solubility-pH dependence relative to the parent drug.  

Mathematical models describing cocrystal pH-solubility dependence have been 

derived considering the equilibria for cocrystal dissociation and component ionization. 

For example, the relevant equilibria and equilibrium constants for a 1:1 cocrystal RHA 

composed of a nonionizable drug (R) and an acidic coformer (HA) are 

RHAsolid
Ksp
R+HA 

Ksp=[R][HA]           (1.7) 

HA H++A- 

KaHA=
[H+][A-]
[HA]

          (1.8) 

where Ksp is the solubility product of the cocrystal, Ka is the ionization constant of HA 

and species without subscripts refer to the solution phase. 

The analytical concentration of coformer is the sum of the ionized and nonionized 

species, which is given by: 

[HA]T= HA +[A
-]          (1.9) 

The cocrystal solubility equals the analytical concentration of drug or coformer in 

solutions of a stoichiometry equal to that of the cocrystal (no coformer in stoichiometric 

excess):  

ST
RHA=[R]T=[HA]T          (1.10) 

Based on the mass balances of HA and R, and the equilibrium constants described in 

equation (1.7) and (1.8), the cocrystal solubility dependence on [H+] is described by 
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ST
RHA= Ksp 1+

Ka
[H+]

         (1.11) 

This solubility represented by equation (1.11) is referred to as the stoichiometric 

solubility based on the presented assumptions.  The analysis presented applies to dilute 

solutions in which activities are relatively constant and can be replaced by solution 

concentrations.  

Cocrystal solubility dependence on [H+] can be predicted from knowledge of the 

cocrystal solubility product (Ksp) and component ionization (Ka). Table 1.2 shows the 

solubility equations describing the solubility-pH dependence for cocrystals with a range 

of stoichiometries and ionization properties. Figure 1.8 demonstrates the ability of 

cocrystals to modify the solubility behavior relative to the parent drug.  Theoretical  

Table 1.2 Equations describing cocrystal solubility-pH dependence  
Cocrystal Solubility Equation 

RHA 
1:1 nonionizable: 
monoprotic acid 

ST
RHA= Ksp 1+

Ka
[H+]

 (1.12) 

HDHA 
1:1  

monoprotic acid: 
monoprotic acid 

ST
HDHA= Ksp 1+

Ka
HD

[H+]
1+
Ka
HA

[H+]
 (1.13) 

R2H2A 
2:1 nonionizable: 

diprotic acid 
ST
R2H2A=

Ksp
4

1+
Ka
H2A

[H+]
+
Ka
H2AKa

HA-

[H+]
2

3
 (1.14) 

R2HAB 2:1 
nonionizable: 
amphoteric 

ST
R2HAB=

Ksp
4

1+
[H+]
Ka1
HAB +

Ka2
HAB

[H+]

3
 (1.15) 

B2H2A 
2:1 

monoprotic base: 
diprotic acid 

ST
B2H2A=

Ksp
4

1+
[H+]
Ka1
B

2

1+
Ka
H2A

[H+]
+
Ka
H2AKa

HA-

[H+]
2

3
 (1.16) 

-ABH+H2A 
zwitterion: 

diprotic acid 
ST

ABH+
-

H2A= Ksp 1+
[H+]
Ka1
-ABH+ +

Ka2
-ABH+

[H+]
1+
Ka
H2A

[H+]
+
Ka
H2AKa

HA-

[H+]
2  (1.17) 

 

solubility-pH profiles were generated from the equations in Table 1.2, using the Ka 

values, and cocrystal Ksp indicated in the figure. Cocrystals of a nonionizable drug may 

exhibit a variety of solubility-pH dependencies based on the coformer ionization 

properties.  
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For example, the solubility of cocrystal of a nonionizable drug with an acidic 

coformer increases with increasing pH (Figure 1.8(a)) while cocrystallization with an 

amphoteric coformer results in a U-shaped cocrystal solubility-pH profile with the 

minimum solubility occurring between the two coformer pKa values (Figure 1.8(b)). 

 
 Figure 1.8. Theoretical solubility-pH profiles were calculated for (a) 2:1 R2H2A 
(carbamazepine-succinic acid) cocrystal, (b) 2:1 R2HAB cocrystal (carbamazepine 4-
aminobenzoic acid), (c) 2:1 B2H2A cocrystal (itraconazole-L-tartaric acid) and (d) 1:1 –
ABH+H2X cocrystal (gabapentin-3-hydroxybenzoic acid) using the equations in Table 
1.2.  Drug and coformer pKa values and cocrystal Ksp are included in each graph. Ksp 
values were either experimentally determined or estimated from published work.14 
 

A U-shaped solubility-pH profile can also be obtained by cocrystallizing a basic 

drug with an acidic coformer (Figure 1.8(c)) with the minimum solubility occurring 

between the drug and coformer pKa values. The pH range in which the minimum 

Ksp = 7 x 10-9 M3 

pKa,coformer = 4.2, 5.4 
Ksp = 1 x 10-9 M3 

pKa,coformer = 2.6, 4.8 

Ksp = 1 x 10-17 M3 

pKa,drug = 3.7 

pKa, coformer = 3.0, 4.3 

Ksp = 0.015 M2 

pKa,drug = 3.7, 10.7 

pKa,coformer = 4.1, 9.9 

(a) (b) 

(c) (d) 
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solubility occurs is dependent on the difference between the 2 pKa values. Often, several 

cocrystals of a given drug are discovered for which the solubility is not known. The 

derived cocrystal solubility models shown in Table 1.2 are useful to predict the cocrystal 

solubility-pH dependence based on the ionization properties of the cocrystal components.  

The complete cocrystal solubility-pH profile can be characterized from a single solubility 

measurement to evaluate Ksp, when the component ionization constants (Ka) are known. 

Micellar solubilization 

Pharmaceutical drug forms encounter aqueous solutions containing surfactants 

during processing, formulation and dissolution.  Surfactants are composed of amphiphilic 

monomers that self-associate above a critical micellar concentration (CMC) to form 

micelles containing a hydrophobic core in which hydrophobic molecules can partition. 

Because pharmaceutical cocrystals are often composed of a hydrophobic drug and a 

hydrophilic coformer, the two components will be solubilized differentially according to 

the relative hydrophobicities of the components. Recently, we have discovered that 

micellar surfactants impart thermodynamic stability to otherwise metastable cocrystals 

when the hydrophobic drug is solubilized preferentially to the hydrophilic coformer.16,17  

Cocrystals of carbamazepine that were 2-4 times more soluble than the drug in 

water were found to be thermodynamically stabilized in solutions containing the 

surfactant sodium lauryl sulfate (SLS) above a critical stabilization concentration 

(CSC).16 As shown in Figure 1.9, the cocrystals exhibited a weaker solubility dependence 

on micellar solubilization compared to the drug resulting in the intersection of the 

cocrystal and drug solubility curves at the CSC. Above the CSC, the cocrystal is the 

stable and less soluble phase. 
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(a)    (b) 

 
(c) 

Figure 1.9.  Experimental and predicted influence of SLS on drug (CBZD) solubility and 
CBZ cocrystal solubilities for (a) CBZ-SAC, (b) CBZ-4-ABA-HYD and (c) CBZ-SUC 
The experimental solubilities were measured in unbuffered surfactant aqueous solutions.  
The pH measured at equilibrium is indicated in figure.  Symbols (○ cocrystal, Δ drug) 
represent experimental values.  Predicted cocrystal solubilities were calculated according 
to equations (1.18), (1.21) and (1.20) with Ksp, pKa and Ks values in Table 1.3.16 

 

The solubility behaviors of the carbamazepine cocrystals were well described by 

mathematical models that consider the equilibria for cocrystal dissociation (Ksp), 

component ionization (Ka) and component micellar solubilization (Ks).15,16 The Ksp, pKa 

and Ks values used to describe the behavior in Figure 1.9 are shown in Table 1.3. 

Table 1.3.  Cocrystal Ksp, component pKa and Ks values used to predict cocrystal 
solubility.16 

Solid phase 
Ksp 

mM2 or mM3 pKa 
Ks

CBZ 
mM-1 

Ks
coformer 
mM-1 

CBZ-SAC (1:1) 2.08 2.0 0.58a 0.013 
CBZ-4ABA (H) (2:1) 2.56 2.6, 4.8 0.49b 0g 

CBZ-SUC (2:1) 6.15 4.1, 5.6 0.49b 0g 

CBZ (H) n/a n/a 0.49 (0 to 140 mM) 
0.58 (0 to 50 mM) n/a 

(a) average Ks in lower concentrations of SLS (0 to 50 mM) 
(b) average Ks in higher concentrations of SLS (0 to 140 mM) 
 

Solubility equations describing the ionization and micellar solubilization of 

cocrystals with a variety of ionization behaviors and stoichiometries have been derived 

and are presented in Table 1.4. As shown in Figure 1.9, the predictive power of the 

solubility models have been evaluated for cocrystals containing nonionizable drugs with 

ionizable coformers, including RHA, R2HAB R2H2A, and are in excellent agreement with 

the observed solubility behaviors.  However, the mathematical models have not been 
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used to quantify the micellar solubilization of cocrystals containing ionizable drugs.  The 

micellar solubilization of cocrystals composed of ionizable drugs should be investigated 

to demonstrate the applicability of these solubility models to describe the solubility 

behavior of a wide variety of cocrystals.  

Table 1.4 Equations that describe the cocrystal solubility dependence on solution [H+] 
and [M] from cocrystal Ksp, component Ka and Ks 

Cocrystal Solubility Equation 

RHA 
1:1 nonionizable: 
monoprotic acid 

ST
RHA= Ksp 1+Ks

R[M] 1+
Ka
[H+]

+Ks
HA[M]  (1.18) 

HDHA 
1:1 monoprotic 

acid: monoprotic 
acid 

ST
HDHA= Ksp 1+

Ka
HD

[H+]
+Ks

HD[M] 1+
Ka
HA

[H+]
+Ks

HA[M]  (1.19) 

R2H2A 
2:1 nonionizable: 

diprotic acid 
ST
R2H2A=

Ksp
4

1+Ks
R[M]

2
1+
Ka
H2A

[H+]
+
Ka
H2AKa

HA-

[H+]
2 +Ks

H2A[M]
3

 (1.20) 

R2HAB  
2:1 nonionizable: 

amphoteric 
ST
R2HAB=

Ksp
4

1+Ks
R[M]

2
1+
[H+]
Ka1
HAB +

Ka2
HAB

[H+]
+Ks

HAB[M]
3

 (1.21) 
 

The key parameters governing cocrystal solubility in the presence of a surfactant 

are the cocrystal solubility product (Ksp), and the preferential solubilization of the drug 

relative to the coformer (Ks
drug >>Ks

coformer). The underlying mechanism responsible for the 

stabilization of cocrystals in solutions containing micellar surfactants is the differential 

solubilization of the cocrystal components as illustrated in Figure 1.10.  The hydrophobic 

drug is preferentially solubilized by micelles relative to the hydrophilic coformer. 

 
Figure 1.10. Schematic of the cocrystal equilibria and the resulting component 
distribution between the aqueous and micellar pseudophases. This scheme represents 
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preferential micellar solubilization of the drug component, leading to excess coformer in 
the aqueous pseudophase. 

 

As cocrystal solubility increases due to micellar solubilization, the micellar phase 

becomes enriched with drug leaving the coformer to accumulate in the aqueous 

pseudophase.  The observed solubility in a surfactant solution is the sum of the solubility 

in the aqueous and micellar phases; the distribution of the cocrystal species between these 

two pseudophases, explains the reversal of thermodynamic stability between drug and 

cocrystal at the CSC. Figure 1.11 shows the distribution of the drug solubility (R) 

compared to the cocrystal solubility (RHA) in micellar and aqueous phases under non-

ionizing conditions.  

 
Figure 1.11 Distribution of drug (R) between the aqueous and micellar environments at 
equilibrium with cocrystal (RHA) and crystal (R) in surfactant solutions.  The cocrystal 
solubility relative to the drug decreases with surfactant concentration.  A 
thermodynamically unstable cocrystal in pure solvent becomes stable at the CSC where 
all curves intersect.  Cocrystal is more soluble than drug below the CSC, cocrystal is 
equally soluble to drug at the CSC, and cocrystal is less soluble than drug above the CSC.  
Subscripts aq, m, and t, refer to aqueous, micellar and total.  Solubilities and drug 
distributions were calculated from Equations (4.13) and (4.14) with Ksp = 1 mM-1, Ks

R = 
0.5 mM-1, Ks

HA = 0 mM-1, SR,aq = 0.5 mM, and CMC = 8 mM.16   
 

The drug concentration in equilibrium with the drug solid phase in the aqueous phase, 

([R]R,aq) remains constant regardless of the surfactant concentration in solution, while the 

drug in the micellar pseudophase ([R]R,m) increases linearly with increasing surfactant.  

The solution distribution of a cocrystal as a function of surfactant concentration is 

very different from that of the single component.   The drug concentration in equilibrium 

with the cocrystal solid phase in the aqueous pseudophase ([R]RHA,aq) decreases with 
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increasing surfactant due to the increase of coformer in the aqueous phase.  The excess 

coformer in the aqueous phase is a result of the asymmetric solubilization of the cocrystal 

components. [R]RHA,aq  decreases until the drug concentration is lowered to that of the 

drug solubility in the aqueous phase, which occurs at the CSC.  The drug concentration in 

equilibrium with the cocrystal solid phase in the micellar pseudophase ([R]RHA,m) 

increases until the CSC where [R]RHA,m=[R]R,m.  Pharmaceutical cocrystals are often 

composed of a hydrophobic drug and a hydrophilic coformer;1,2,7,46 therefore preferential 

solubilization of the drug component may be widely encountered. 

Influence of solution chemistry on cocrystal eutectic points 
Eutectic point measurements are used to characterize the equilibrium solubility of 

cocrystals that are more soluble than the parent drug. The equilibrium at the eutectic 

point consists of a solution phase at its eutectic composition and two separate solid 

phases (cocrystal and pure component solid).  For a binary cocrystal RHA, composed of a 

drug R and a coformer HA, there are two eutectic points, RHA solid and pure drug solid 

(R), and RHA solid and pure coformer solid (HA). The relationships and equations 

presented in this section pertain to the eutectic between cocrystal and drug. The cocrystal 

solubility and cocrystal solubility advantage (Scocrystal/Sdrug) can be determined from the 

solution concentrations in equilibrium at the eutectic.16,47  

Cocrystal solubility can be calculated from the measured solution concentrations 

at the eutectic point. This approach is valuable because it uses a thermodynamically 

accessible equilibrium state to calculate cocrystal solubilities under stoichiometric 

solution conditions. The stoichiometric solubility of a 1:1 cocrystal can be determined 

from the analytical drug and coformer concentrations according to 

drug T,eu[coformer]T,eu         (1.22) 

and the stoichiometric solubility of a 2:1 cocrystal can be determined according to 

drug T,eu
2
[coformer]T,eu
4

3

         (1.23) 

These equations consider ionization and micellar solubilization of the cocrystal 

components,15,16,47 but do not account for solution complexation between the cocrystal 

components.  
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The eutectic constant, Keu is a parameter that is calculated from the measured 

solution concentrations in equilibrium with the eutectic according to: 

Keu=
[coformer]eu
[drug]eu

=zyy/z
Scocrystal
Sdrug

y+z
z

       (1.24) 

and is a function of Scocrystal/Sdrug for a cocrystal with a drug:coformer stoichiometry y:z. 

The relationship for a 1:1 cocrystal is given by 

Keu=
Scocrystal
Sdrug

2

          (1.25) 

For a 1:1 cocrystal, measured [coformer]eu > [drug]eu indicates Scocrystal>Sdrug, [coformer 

]eu = [drug]eu indicates Scocrystal = Sdrug, and [coformer]eu < [drug]eu  indicates Scocrystal < 

Sdrug based on equation (1.25).  

Similar to cocrystal solubility, the cocrystal component eutectic concentrations 

depend on solution chemistry. Solution mechanisms that increase the equilibrium 

coformer eutectic concentration relative to the drug increase cocrystal solubility relative 

to the parent drug based on equation (1.24).  It is important to measure both drug and 

coformer concentrations as an excess of one component will affect the equilibrium 

concentration of the other.  The coformer eutectic-pH dependence has been derived for a 

variety of different cocrystal types as shown in Table 1.5. 

Table 1.5.  Equations describing the coformer eutectic-pH dependence from cocrystal 
Ksp, and component Ka. 

Cocrystal Coformer Eutectic Equation 
RHA 

1:1 nonionizable: 
monoprotic acid 

HA eu=
Ksp
[R]eu

1+
Ka
[H+]

 (1.26) 

HDHA 
1:1 monoprotic acid: 

monoprotic acid 
HA eu=

Ksp
[HD]eu,aq

1+
Ka
HA

[H+]
 (1.27) 

R2H2A 
2:1 nonionizable: 

diprotic acid 
[H2A]eu=

Ksp
[R]eu

2 1+
Ka
H2A

[H+]
+
Ka
H2AKa

HA-

[H+]
2  (1.28) 

R2HAB 
2:1 nonionizable: 

amphoteric 
[H2A]eu=

Ksp
[R]eu

2 1+
[H+]
Ka1
HAB +

Ka2
HAB

[H+]
 (1.29) 

 

The equations in Table 1.5 have been used to evaluate cocrystal solubility products and 

cocrystal solubility-pH dependence from eutectic measurements for cocrystals that are 

more soluble than the parent drug.14-16,18,37  
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For example, equation (1.27) was used to evaluate the solubility product of the  

1:1 indomethacin-saccharin cocrystal (HDHA) from eutectic measurements between drug 

and cocrystal because it converts to the parent drug under non-ionizing conditions. The 

indomethacin-saccharin cocrystal solubility product and coformer ionization constants 

were determined from the measured coformer eutectic-pH dependence according to 

equation(1.27), as shown in Figure 1.12a.  These parameters were also used to generate a 

solubility-pH profile as shown in Figure 1.12b.  The stoichiometric solubilities were 

calculated from the measured component concentrations in equilibrium at the eutectic 

according to equation (1.22) and are also shown in Figure 1.12b.  The theoretical 

cocrystal solubility curve was generated using equation (1.13), Ksp=1.38x10-9 m2 and 

Ka
SAC=1.6 (determined from the nonlinear regression analysis of the eutectic-pH 

dependence) and Ka
IND = 4.2.48 

(a) (b)  

Figure 1.12 (a) Coformer eutectic-pH dependence of indomethacin-saccharin (¢). 
Theoretical [SAC]eu dependence on pH (──) was generated from non-linear regression 
analysis of the data according to equation (1.26), the evaluated parameters were coformer 
pKa= 1.6, and Ksp= 1.38x10-9 m2.18 (b) Stoichiometric cocrystal solubility-pH dependence 
predicted from equation (1.11) (──) was compared to the cocrystal solubility (○) 
determined from eutectic-pH measurements. The measured drug solubility (Δ ) followed 
Henderson-Hasselbach behavior (pKa

IND = 4.2).18 
 

Micellar solubilization increases the cocrystal concentrations in equilibrium at the 

eutectic and both drug and coformer eutectic concentrations exhibit a linear dependence 

on micellar solubilization.15  The intersection of the drug and coformer eutectic points 

occurs at the CSC. The micellar solubilization constant of a nonionizable drug (R) can be 

calculated from the drug eutectic concentration dependence on surfactant concentration 

according to 
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R eu,T= R eu,aq 1+KsR[M]            (1.30) 

where [R]eu,aq is the drug eutectic concentration in the absence of surfactant.15 The 

eutectic dependence on pH and micellar solubilization, for an acidic coformer can be 

calculated according to 

HA eu,T= HA eu,aq 1+
Ka
HA

[H+]
+KsHA[M]         (1.31) 

where [HA]eu,aq is the unionized coformer concentration at the eutectic in the absence of 

surfactant. Figure 1.13 shows the drug and coformer eutectic concentration dependence 

on micellar solubilization, and the CSC determined by the intersection of the linear 

regression lines. 

Figure 1.13 Drug and coformer eutectic concentration dependence on micellar 
solubilization.  Solutions are in equilibrium with the solid drug and cocrystal, in aqueous 
solutions. (a) carbamazepine-salicylic (CBZ-SLC) pH 3.0 and (b) carbamazepine-
saccharin (CBZ-SAC) pH 2.0.  Lines represent linear regression analysis used to evaluate 
Ks

drug and Ks
coformer from equations  (1.30) and (1.31) respectively.15 

 

Eutectic point measurements are valuable to characterize the equilibrium 

solubility behavior of cocrystals that are more soluble than the parent drug.  Other 

methods of characterizing the solution behavior, such as dissolution, may grossly 

underestimate the true solubility when cocrystal converts to the less soluble drug, and are 

not easily extrapolated to other solution conditions.  The solubility product and 

component ionization constants can be estimated from nonlinear regression analysis of 

the eutectic–pH dependence when the measurements are carried out in the pH range in 

which the components are ionized.  Otherwise, component ionization constants are 

usually available in the literature.   These parameters can be used to characterize the 

cocrystal solubility dependence on pH. 
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Pharmaceutically relevant surfactants 

The most commonly used surfactants in pharmaceutical formulations are the 

nonionic surfactants due to their low toxicity, stability and ability to interact favorably 

with other surfactants.49-51 Polysorbates (Tweens ®) are used to wet, solubilize, and 

stabilize drugs in oral, topical, ocular and parenteral formulations.50,51  Polysorbate 20 

and 80 can be used up to 10% in oral and topical formulations.  Other nonionic 

surfactants commonly used in pharmaceutical applications include Myrj®, Brij® and the 

Pluronic® surfactants. Anionic surfactants are used to stabilize, solubilize and wet drugs 

during dissolution testing and in formulations. SLS and dioctyl sodium sulfosuccinate are 

examples of anionic surfactants that are used in oral formulations;50 for example both are 

ingredients in carbamazepine extended release capsules.52  SLS and Tween 80 are also 

commonly used in dissolution media to provide sink conditions.49   

Polymeric surfactants are of interest as they have large solubilization capacities 

compared to the anionic and nonionic surfactants53. Pluronic® is a brand of triblock 

copolymers that have been observed to solubilize drugs such as carbamazepine and 

indomethacin.54-56  They have also been used to encapsulate drugs such as paclitaxel for 

controlled release.49  They are composed of a hydrophilic moiety, polyethylene oxide 

(POE) and a hydrophobic moiety, polypropylene oxide (PPO) in the form POE-PPO-

POE.  Pluronic® surfactants with higher POE content generally have higher 

solubilization capacities as they usually form larger micelles.53 The structures of several 

pharmaceutically relevant synthetic surfactants are shown in Table 1.6. 

Table 1.6. Chemical structures of synthetic surfactants  
 

 
Sodium lauryl sulfate 

 

 
Tween 80 

O

HO(OC2H4)20

CH(OC2H4)20OH

(OC2H4)20OH

CH2 (OC2H4)20 O C

O

(CH2)7 C

H

C

H

(CH2)7CH3
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Brij 99 

 

 
Myrj 52 

Media proposed to simulate physiologically relevant solution conditions 

The solubility of poorly soluble and highly permeable drugs is sensitive to 

solution conditions that affect the degree of ionization and micellar solubilization of the 

drug. It has been shown that selecting biorelevant conditions for in vitro evaluation of 

poorly soluble and highly permeable drugs (BCS class II) is essential to properly forecast 

the in vivo behavior.57,58 Bile salts are natural surfactants present in the GI tract that have 

been shown to affect the bioavailability of poorly soluble drugs in the fed state through 

wetting and solubilizing effects.59-63  The bile salt sodium taurocholate (NaTC) has been 

used alone or in combination with lecithin to simulate in vivo solution conditions of 

different regions of the GI tract as shown in Table 1.7.60,62  

Table 1.7 Biorelevant media used for solubility profiling 
GI segment stomach intestine 

 
colon 

Media FaSSGF5

7 
FaSSIF FaSSIF-

V264 
FeSSIF FeSSIF-

V264e 
FaSSCOF65 FeSSCOF65 

pH 1.6a 6.5b 6.5c 5d 5.8c 7.8f 6f 
NaTC 

Lecithin 
0.08 
0.02 

3 
0.75 

3 
0.2 

15 
3.75 

10 
2 

1.5g 
3 

6g 
5 

(a) deionized water and HCl  
(b) phosphate buffer   
(c) maleate buffer  
(d) acetate buffer  
(e) oleate added to simulate lipolysis products present in the fed state  
(f) tris/maleate buffer  
(g) bile salt extract used in place of NaTC 

NaTC is reported to make up (42%±17) of human bile in the duodenum to 

jejunum of healthy human subjects.66 While there is some discrepancy as to which bile 
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salt is the most prevalent between sodium cholate (NaC) and NaTC in the duodenum, 

NaTC is used as the representative bile salt in the media presented in Table 1.7 due to its 

superior solubility in the entire physiologically relevant pH range;64 it does not precipitate 

as the free acid even at pH 1.6 due to its low pKa (1.85).67   In comparison, NaC 

precipitates as the free acid (cholic acid) at pH 6.5, 68 due to its pKa (4.98-5.5).69  

Solubility studies conducted in FaSSIF and FeSSIF, which both contain only NaTC as the 

representative bile salt (and lecithin as the representative phospholipid) are reported to be 

in agreement with those conducted in human aspirates.70  

The NaTC structure exhibits a hydrophobic side, a hydrophilic side and a 

hydrophilic tail as shown Figure 1.14. NaTC contains a cyclopentanophenanthrene 

structure with the A and B rings in a cis configuration relative to the B ring.  NaTC 

contains three hydroxyl groups that reside on the alpha face resulting in a molecule with 

planar polarity. The flexibility of the side chain conjugated with taurine allows it to lie in 

the same plane as the hydroxyl groups, further contributing to the polarity of the alpha 

face.  

 
Figure 1.14. Structure of taurocholic acid showing the hydrophilic α side and the 
hydrophobic β side. 

Due to their complex mechanism of aggregation, bile salts do not exhibit a 

distinct CMC and are characterized by a gradual increase in solubilization.71,72  The 

solubilization achieved by bile salts can be analyzed based on the concentration range  

that exhibits a linear solubilization of the drug.60,72  The CMC values of NaTC have been 

estimated despite their broad range; the CMC of NaTC is reported to occur at 3.3mM at 

20 °C and 0.3 M NaCl and has an aggregation number of 6.67  The CMC decreases with 

ionic strength and does not change significantly with temperature between 10-40°C, 

however the CMC increases as temperature increases beyond 40 °C.67 

Lecithin, or phosphatidylcholine is a zwitterionic phospholipid that forms mixed 

micelles with NaTC. There are several proposed structures of the NaTC and lecithin 
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mixed micelles; a comparison of the structure proposed by Smalls versus the mixed disc 

model, proposed by Mazer, is shown in Figure 1.15.   

 
Figure 1.15. Proposed structure of the bile salt-lecithin mixed micelle, shown in 
longitudinal (cut through the disk diameter) and cross section (cut through the middle of 
the hydrocarbon steroid parts and fatty acid chains of bile salts and lecithin, respectively.  
The closed circles and ovals represent the nonionic polar groups of the molecules and the 
open circles with negative and positive signs represent the ionic polar parts of the 
molecules.  (A)Small’s mixed micellar. (B) Mazer’s disk model.73 
 

Lecithin has been observed to decrease the critical micelle concentration (CMC) of NaTC 

and enhance its solubilization capacity by mixed micelle formation.59,60  The CMC of 

mixed micelles of NaTC and lecithin in a 6:1 to 3:1 ratio is 0.5 and 1 mM respectively at 

20 °C.67  NaTC and lecithin are in a 4:1 ratio in both FeSSIF and FaSSIF and both media 

contain the mixed micelle components well above the reported CMC.  

The Effect of Temperature, pH and Ionic Strength on Micellar Solubilization 
 Micellar solubilization varies with temperature, pH and ionic strength; thus, Ks 

will vary with these parameters as well. Generally, solubilization by nonionic surfactants 

increases with increasing temperature; the micelle size increases and the CMC decreases 

with increasing temperature, resulting in an overall increase in micellar 

solubilization.49,50,53 In contrast, the solubilization by of the ionic surfactants generally 

decreases with increasing temperature due to the disruption of water interactions with the 

hydrophobic groups which disrupts the micelle formation thereby increasing the 
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CMC.49,50  The CMC of bile salts sodium taurocholate and sodium taurodeoxycholate are 

observed to increase with increasing temperature above 40°C  with little change at lower 

temperatures.50 

 The effect of pH on the micellar solubilization by an ionic surfactant will depend 

on the pKa of the surfactant and the solubilizate as unionized solubilizates are expected to 

partition into the micelle more favorably than ionized species.49,50 As the pH decreases 

towards the pKa of an ionic surfactant, it becomes less soluble resulting in a lowering of 

its CMC,50 however the pKa of SLS is ~0 and the surfactant is ionized in the entire 

physiological pH range.  However, the hydrolysis of SLS to lauryl alcohol and sodium 

bisulfate occurs faster in acidic solutions.  Strong electrolytes have been observed to 

increase the solubilization capacity of both ionic and nonionic surfactants due to large 

decreases in the CMC. 49,50 Electrolytes also affect the micelle size of ionic surfactants by 

decreasing the repulsion between the polar head groups allowing for denser packing of 

the surfactant monomers. 50 

Statement of research 
The purpose of this dissertation is to investigate the influence of solution 

chemistry on the solubility and thermodynamic stability of a cocrystal or cocrystalline 

salt relative to the parent drug or salt respectively. Due to the number of diverse 

crystalline forms that can be generated via cocrystallization, it is essential to establish 

robust methods to characterize cocrystal and cocrystalline salt solubility behavior in 

physiologically relevant environments and within pharmaceutical formulations. 

Knowledge of how the solution chemistry of a multicomponent system alters the 

observed supersaturation is critical to enable supersaturation in vivo. The solution 

chemistry of multicomponent systems is also important to design formulations and to 

protect against solution-mediated transformation during processing and manufacturing by 

careful selection of processing conditions. 

Currently, cocrystal solution behavior is primarily evaluated using dissolution.  

While there is some understanding of how micellar solubilization and ionization affect 

cocrystal solubility and thermodynamic stability relative to the parent drug, this 

knowledge is seldom applied to select meaningful dissolution conditions or formulations 

additives.  For example, there are several cases in which cocrystal solution behavior is 
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characterized by dissolution studies in fasted state intestinal fluid,74-77 to evaluate 

solubility under “biorelevant” conditions, without consideration of how the pH and 

surfactant content of the media may affect cocrystal solubility, supersaturation and 

transformation kinetics.  

There are several pharmacokinetic studies in which a cocrystal is suspended in an 

aqueous formulation prior to dosing with no mention of the cocrystal thermodynamic 

stability in the formulation.2,19,20,74 The objective of this work is to evaluate the solution 

chemistry of a cocrystal (or cocrystalline salt) and derive mathematical models that 

predict the solubility behavior under a range of solution conditions to determine the key 

parameters necessary to characterize a cocrystal in a given aqueous system.  These 

predictive tools will be used to rationally select surfactants to modulate cocrystal 

solubility and Scocrystal/Sdrug based on the mathematical models that describe cocrystal 

solubility as a function of ionization and micellar solubilization.  This information will be 

applied to understand the solution conditions under which cocrystal (or cocrystalline salt) 

is the stable phase relative to the drug (or parent salt).    

Chapter 2 investigates the utility of mathematical solubility models to rationalize 

surfactant selection for the purpose of thermodynamically stabilizing cocrystals in 

suspension and reducing Scocrystal/Sdrug. There are a several examples in the literature of 

cocrystal dissolution being carried out in the presence of surfactants.6,78 Based on 

previous work from our laboratory, this could lead to a dampening of the Scocrystal/Sdrug.  

Knowledge of the cocrystal solubility dependence on ionization and micellar 

solubilization would be useful to design suspensions in which cocrystal is 

thermodynamically stable relative to drug.  This would also be advantageous to modulate 

Scocrystal/Sdrug when the cocrystal is too soluble and transforms rapidly to the parent drug.   

Mathematical models that describe cocrystal solubility dependence on ionization 

and micellar solubilization were used to predict cocrystal solubility in surfactant solutions 

based on the drug solubility dependence on micellar solubilization.  These mathematical 

models were used to predict the surfactant concentration required to lower Scocrystal/Sdrug 

to a target value or thermodynamically stabilize the cocrystal in aqueous media 

(Scocrystal/Sdrug=1).  
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Chapter 3 investigates the influence of biorelevant mixed micelles of NaTC and 

lecithin on the cocrystal equilibrium solubility, Scocrystal/Sdrug and supersaturation 

generated during dissolution relative to buffer at the same pH.  Fed state simulated 

intestinal fluid (FeSSIF) was selected for study as it contains the highest NaTC and 

lecithin concentrations and was therefore hypothesized to exhibit a larger micellar 

solubilization of the cocrystal components compared to media with lower concentrations. 

Mathematical models were derived to predict cocrystal solubility in a given biorelevant 

media based on the cocrystal aqueous solubility (Ksp), the component ionization and the 

component micellar solubilization. The mathematical models for ionization and micellar 

solubilization were used to predict cocrystal solubility and Scocrystal/Sdrug in FeSSIF. 

Chapter 4 considers the influence of solution chemistry on cocrystalline salt 

solubility relative to the parent salt.  The objective of this chapter was to evaluate the 

cocrystalline salt solubility dependence on ionization, solution concentrations of counter-

ion and coformer in addition to the cocrystalline salt stoichiometry. Mathematical 

equations are derived considering the equilibria for cocrystal dissociation and component 

ionization, to develop a theoretical framework to guide the solubility characterization of 

cocrystalline salts.  These equations describe the solubility of a cocrystalline salt in terms 

of measureable thermodynamic parameters such as the cocrystalline salt Ksp and the 

coformer Ka.  Salts that are cocrystallized with an ionizable component are hypothesized 

to exhibit different solubility-pH dependencies than the parent salt.  

 The solubility product behavior of cocrystalline salts is utilized to access the 

equilibrium solubility of supersaturating cocrystalline salts at a eutectic point between 

cocrystalline salt and salt.  This methodology is similar to the analysis used to determine 

the equilibrium solubility of cocrystals, however, calculating the cocrystalline salt 

solubility in the absence of excess coformer is mathematically more complex due to the 

presence of a third component. Mathematical expressions to evaluate the stoichiometric 

and non-stoichiometric solubility (in excess chloride) were developed in this chapter to 

enable the evaluation of supersaturating cocrystalline salts.  This chapter concludes with 

an analysis of the lattice and solvation contributions to the cocrystalline salt aqueous 

solubilities. 
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Chapter 5 describes the utility of eutectic point measurements in water and in a 

solution containing a given surfactant concentration to characterize the solution 

interactions between cocrystal components and a surfactant.  This was demonstrated with 

two cocrystals of carbamazepine and two Pluronic® surfactants.  The cocrystal 

component solubilization constants were evaluated from eutectic measurements and used 

to predict the effect of the Pluronic ® surfactants on the cocrystal solubility and 

Scocrystal/Sdrug.  

Chapter 6 contains the conclusions of this dissertation and the future directions of 

the presented research.  The chapters in this thesis focus primarily on the equilibrium 

solubility behavior of cocrystals and cocrystalline salts so that minimal solubility 

measurements can be used to predict the solubility behavior under a wide range of 

solution conditions using mathematical models derived from the solution chemistry of 

these multicomponent systems.  Future challenges involve applying knowledge obtained 

from the equilibrium solubility studies to rationalize which kinetic solubility studies are 

meaningful to project the in vivo behavior of pharmaceutical cocrystals.   
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Chapter 2  

Rational surfactant selection to control cocrystal solubility and stabilize against 
solution-mediated transformation 

Introduction 

Cocrystal formation has been successfully used to increase drug solubility,4,30 

dissolution,1,8,34,78,79 and bioavailability.2,6,7,9,74 However, evaluation, selection and 

formulation of these high-energy multi-component systems is often empirically based. 

Cocrystal supersaturation is frequently evaluated by kinetic dissolution prior to 

knowledge of its equilibrium solubility.  It has been shown that cocrystal solubility 

behavior is dependent on component solution interactions, and can be different from that 

of the parent drug.14,16,37 There are reported mathematical models that describe cocrystal 

solubility dependence on pH, coformer and surfactant concentration for cocrystals of 

varying ionization behaviors.14,15,17,36 Using these models, cocrystal solubility product, 

component ionization and component micellar solubilization, are all that is required to 

calculate cocrystal solution behavior under a wide range of pH and surfactant conditions. 

Yet, these concepts have not been applied to rationalize cocrystal evaluation or 

formulation.  

High solubility cocrystals that undergo solution-mediated phase transformation 

are vulnerable in aqueous environments. Conversion to the more stable (less soluble) 

form may prevent sustained supersaturation and therefore may not provide a solubility 

advantage relative to the drug. Knowledge of the mechanisms that control cocrystal 

solubility and supersaturation would be useful to guide efforts to evaluate and formulate 

cocrystals. Recently cocrystals of carbamazepine, observed to transform to the parent 

drug in aqueous solutions, were reported to be the thermodynamically stable form in 

aqueous solutions containing sodium lauryl sulfate (SLS) above a critical stabilization 

concentration (CSC) at a defined pH.15-17,47 
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At the CSC, cocrystal solubility and drug solubility were equal,16 and this solution 

behavior was explained by the preferential solubilization of the hydrophobic drug relative 

to the hydrophilic coformer.16 Cocrystals of carbamazepine with a monoprotic acidic 

coformer, a diprotic acidic coformer and an amphoteric coformer, that were 3-4 times 

more soluble than the drug under the pH conditions studied achieved a CSC in SLS. The 

solubility dependence on micellar solubilization of these cocrystals was well described by 

mathematical models that consider the equilibria for cocrystal dissociation, component 

ionization and component micellar solubilization. The effect of micellar solubilization on 

cocrystal solubility has not been studied for cocrystals containing different drugs, and the 

hydrophobicity and ionization properties of the drug may affect the preferential 

solubilization of the drug relative to the coformer.   

Higher octanol/water partition coefficients (log P), a measure of the 

hydrophobicity of a drug, are correlated with higher micellar solubilization constants in a 

variety of synthetic and biologically relevant surfactants.60,62,80 Therefore, drugs that are 

more hydrophobic than carbamazepine may exhibit a greater preferential solubilization;   

indomethacin (IND) an acidic drug that forms cocrystals, is more hydrophobic (log P = 

4.4)81  than carbamazepine (log P = 2.5),82 and therefore was selected to study the ability 

to control cocrystal solubility and Scocrystal/Sdrug using micellar solubilization. 

IND forms a cocrystal with the weakly acidic coformer saccharin (IND-SAC), 

which we have reported to be 13-65 times more soluble than the parent drug in a pH 

range of 1-3.  Therefore either a higher concentration of surfactant is required to achieve 

a CSC, or a surfactant with a greater solubilization power, may be required to stabilize 

the IND-SAC cocrystal against transformation. There are several pharmaceutically 

relevant surfactants, but currently, there are no guidelines to select surfactants to stabilize 

cocrystals against solution mediated phase transformations. In addition, there is little 

information regarding the characterization of surfactant interactions with cocrystal 

components, which is shown to impact cocrystal solubility and thermodynamic stability 

in aqueous solutions. 

Indomethacin solubility in surfactant solutions has been reported for a wide range 

of surfactants such as Tweens®, Myrjs®, SLS, Pluronics®, and Brijs®, which can be 

used to characterize the micellar solubilization of indomethacin in each surfactant. The 



 

 41 

published mathematical models and the reported micellar solubilization of indomethacin 

were used to rationalize surfactant selection to increase cocrystal solubility, decrease 

Scocrystal/Sdrug and achieve CSC. The objective of this work is to predict and measure the 

cocrystal solubility dependence on surfactant concentration for the IND-SAC cocrystal. 

A variety of surfactants are evaluated based on their ability to modulate IND-SAC 

solubility relative to the drug and to achieve a CSC.  Surfactants were selected for study 

based on reported or measured indomethacin solubilization.54,83-85 Cocrystal solubility 

dependence on micellar solubilization and ionization is evaluated in four surfactants: 

SLS, Tween 80, Myrj 52, and Brij 99. We show for the first time that the cocrystal 

solubility increases with a square-root dependence on micellar concentrations of Tween 

80, Myrj 52, Brij 99, and SLS.  All surfactants exhibit a CSC in a defined pH range and 

can be used stabilize cocrystal against solution-mediated transformation. All surfactants 

studied solubilized the coformer to a small extent, and an accurate prediction of the 

cocrystal solubility dependence on micellar solubilization and CSC from the reported 

mathematical models requires knowledge of both the solubilization of the drug and 

coformer.   

Theoretical Section 

Cocrystal solubility dependence on pH and surfactant concentration is well 

described by mathematical models that consider cocrystal dissociation, component 

ionization and component micellar solubilization.14,16 This work expands upon the 

previously derived mathematical models that describe cocrystal solubility dependence on 

micellar solubilization, and develops criteria to rationalize surfactant selection to 

modulate Scocrystal, cocrystal solubility advantage relative to drug (Scocrystal/Sdrug) and CSC.  

Mathematical relationships describing Scocrystal and Scocrystal/Sdrug dependence on micellar 

solubilization are derived for a cocrystal HDHA composed of an acidic drug (HD) and 

acidic coformer (HA).   

The relevant equilibria that describes the HDHA cocrystal solubility dependence 

on ionization and micellar solubilization in an aqueous solution containing [M], 

moles/kg, of surfactant includes cocrystal dissociation: 
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HDHA
Ksp
HDaq+HAaq         (2.1) 

ionization of the cocrystal components: 

HDaq
Ka
HD

Daq- +Haq+           (2.2) 

HAaq
Ka
HA

Aaq
- +Haq+           (2.3) 

and micellar solubilization of the cocrystal components 

HDaq+M
Ks
HD

HDm           (2.4) 

Daq- +M
Ks
D-

Dm-            (2.5) 
 

HAaq+M
Ks
HA

HAm           (2.6) 

Aaq
- +M

Ks
A-

Am
-            (2.7) 

where subscripts aq and m refer to components in the aqueous phase or the micellar 

phase respectively. Above its critical micellar concentration (CMC), a surfactant forms 

micelles, which solubilize hydrophobic components.  Thus, all equations describing 

micellar solubilization are expressed in terms of micellar surfactant concentration M 

where 

M= Surfactant total-CMC         (2.8) 

Cocrystal solubility in micellar solutions has been predicted from the cocrystal 

solubility product and the solubilization and ionization constants of the drug and 

coformer.15-17  The solubility product is defined by the equilibria in equation (2.1) and is 

calculated from the nonionized solutions concentrations of the cocrystal components 

according to 

Ksp= HD aq HA aq             (2.9) 

The solubility product has been evaluated by nonlinear and linear regression analysis of 

the coformer eutectic dependence on pH.14,18 Drug and coformer ionize based on the 

solution concentration of [H+] and the respective equilibrium ionization constants 

described by: 
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KaHD=
D! aq[H+]aq
[HD]aq

          (2.10) 

KaHA=
A! !"[H+]aq
[HA]aq

          (2.11) 

The micellar solubilization for each component is described by the following equilibrium 

constants: 

KsD-=
[HD]m

[HD]aq[M]
          (2.12) 

KsD-=
[D-]m

[D-]aq[M]
            (2.13) 

KsA-=
[HA]m

[HA]aq[M]
          (2.14) 

KsA-=
[A-]m

[A-]aq[M]
            (2.15) 

The mass balance for a weakly acidic drug in an aqueous micellar solution is: 

ST
HD=Saq

HD+Saq
D-+Sm

HD+Sm
D-         (2.16) 

The solubility dependence on ionization and micellar solubilization for a weakly acidic 

drug is then: 

ST
HD=Saq

HD 1+
KaHD

[H+]
+ KsHD+

KaHD

[H+]
KsD- M       (2.17) 

by substituting the equilibrium constants into equation (2.16). The micellar equilibrium
 

solubilization constants for a weakly acidic component (Ks
HD and Ks

D-) have been 

calculated using either nonlinear or linear regression of measured drug solubilities, at 

different values of [H+] and micellar surfactant concentrations, [M], according to 

equation (2.17).86,87   

At a given pH, the total micellar solubilization constant, Ks
HDT, is equal to  

KsHD,T=KsHD+
KaHD

H+
KsD-          (2.18) 
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Based on the method of Grbic et al., two values of Ks
HDT , are required to determine Ks

HD 

and Ks
D- from linear regression analysis according to (2.18);87  Ks

HDT under pH conditions 

where drug is mostly unionized and Ks
HDT evaluated under pH conditions where the drug 

is mostly ionized. Under nonionizing conditions Ks
HDT = Ks

HD. The Ks
HDT is evaluated 

from the drug solubility dependence, ST
HD, on [M], holding pH constant according to  

ST
HD=Saq

HD 1+
KaHD

[H+]
+KsHD,T M          (2.19) 

which is obtained by substituting equation (2.18) into equation (2.17).  Equations (2.16)- 

(2.19) apply to the acidic coformer, by substituting the relevant HD parameters with 

those of HA. 

Prediction and evaluation of Scocrystal, Scocrystal/Sdrug and CSC dependence on micellar 
solubilization 

Cocrystal solubility, ST
HDHA, under stoichiometric conditions is equal to the total 

concentration of each cocrystal component in equilibrium with the solution, ST
HDHA= 

[HD]T=[HA]T. The solubility of a cocrystal of two weakly acidic components, HDHA, in 

a micellar solution is equal to the sum of the following species: 

ST
HDHA= HD aq+[D-]aq+ HD m+[D-]m   

ST
HDHA= HA aq+ A

-
aq+ HA m+ A

-
m       (2.20) 

The cocrystal solubility dependence on micellar solubilization is described at a 

given [H+] using Ks
HAT and Ks

HDT evaluated at a given [H+] according to 

ST
HDHA= Ksp 1+

Ka
HD

[H+]
+Ks

HD,T M 1+
Ka
HA

[H+]
+Ks

HA,T M       (2.21) 

The above expression was obtained by combining equation (2.20) with the equilibrium 

constant equations (2.9)-(2.15).16 The superscript HD refers to the weakly acidic drug and 

HA the weakly acidic coformer.  The equilibrium constants are expressed in terms of 

concentrations with the understanding that they approximate activities under dilute 

solution conditions.   

Figure 2.1 shows the HDHA cocrystal solubility increases with surfactant 

concentration according to equation (2.21).  When Ks
coformer<<Ks

drug, the cocrystal 

exhibits a weaker solubility dependence on micellar solubilization compared to the parent 



 

 45 

drug resulting in an intersection of the cocrystal and drug solubility curves at the CSC. 

Often, high solubility cocrystals of poorly soluble, hydrophobic drugs are formed using 

hydrophilic coformers.7,11,13,29 The hydrophobic drug is hypothesized to have a higher 

micellar solubilization constant relative to that of the hydrophilic coformer as micellar 

solubilization is correlated with the hydrophobicity of a molecule.62,80  

 
Figure 2.1. The influence of micellar solubilization on cocrystal solubility and CSC at pH 
2.0. The solubility of cocrystal (──) and drug (──) were calculated from equation (2.21) 
and  (2.19) respectively using Ksp = 2.0 x10 -6 m2, pKa

HD =4.0, pKa
HA =2.0, Ks

HD,TpH2.1 = 
800 m-1, Ks

HA,T=0 and Saq
HD = 2.5 x 10-4 m.  The influence of coformer solubilization is 

represented by the dotted line red line, where Ks
HA,T pH2 = 10 m-1. 

Cocrystal solubility is predicted to exhibit a square-root dependence on surfactant 

concentration based on equation (2.21), while the drug is predicted to exhibit a linear 

dependence on surfactant concentration according to equation  (2.19). Therefore for 

cocrystals that exhibit Scocrystal>Sdrug in solutions containing no surfactant, there exists an 

intersection of the cocrystal and drug solubility curves that is defined by a CSC of 

surfactant at a specified [H+] when drug is preferentially solubilized.15-17 As shown in 

Figure 2.1, in a given surfactant solution, cocrystal solubility and the CSC are higher 

when Ks
HAT = 0.013Ks

HDT compared to when the coformer is not solubilized (Ks
HAT =0). 

The CSC is increased 1.7 fold when the coformer is solubilized such that, Ks
HAT = 

0.013Ks
HDT relative to when Ks

HAT = 0. If the coformer is solubilized to the same extent 

as the drug (Ks
HAT=Ks

HDT) the cocrystal and drug solubility curves do not intersect and 

CSC cannot be achieved. The cocrystal solubility and the CSC increase due to coformer 
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solubilization, even when the coformer is solubilized to a small extent relative to drug 

(Ks
HAT<<Ks

HDT).  

The drug and cocrystal solubility are equal at the CSC, therefore the cocrystal is 

thermodynamically stable in solutions containing surfactant concentrations ≥ CSC. The 

CSC in a solution at a given [H+] is predicted according to: 

CSC=

Ksp

Saq
HD 2 1+

Ka
HA

H+
- 1+ Ka

HD

H+

KsHDT-
Ksp

Saq
HD 2KsHAT

+CMC       (2.22) 

This equation is obtained by setting equation  (2.19) equal to equation (2.21) and solving 

for the micellar surfactant concentration [M].  According to the denominator in equation 

(2.22), the CSC is achieved by surfactants that solubilize the drug preferentially to the 

coformer such that 

KsHD,T>
𝐾!"
Saq
HD 2Ks

HA,T          (2.23) 

 

Equation (2.22) predicts that the CSC decreases as Ks
HDT increases and as Ks

HAT 

decreases. Therefore, surfactants can be rationally selected to stabilize a cocrystal against 

transformation (achieve CSC) based on their relative Ks
HDT values and Ks

HDT>>Ks HAT.   

Surfactants that achieve a CSC reduce the cocrystal solubility advantage relative to drug 

(Scocrystal/Sdrug).  The Scocrystal/Sdrug dependence on micellar solubilization is described 

according to 

 

ST
HDHA

ST
HD =

Ksp 1+
KaHD

[H+]
+Ks

HDT M 1+ Ka
HA

[H+]
+Ks

HAT M

Saq
HD 1+ Ka

HD

[H+]
+Ks

HDT M
      (2.24) 

This equation is obtained by dividing equation (2.21) by equation  (2.19). Figure 2.2. 

shows the cocrystal solubility advantage (Scocrystal/Sdrug) dependence on micellar 

solubilization according to equation (2.24).  Scocrystal/Sdrug =1 at the CSC which is shown 

by the intersection of Scocrystal/Sdrug with the dashed line. Below the CSC, and above the 

surfactant CMC, Scocrystal/Sdrug is reduced by micellar solubilization when the drug is 

preferentially solubilized.  
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Figure 2.2. Influence of Ks
HDT and CMC on the Scocrystal/Sdrug and CSC dependence.  

Scocrystal/Sdrug was calculated from equation (2.24) in surfactant solutions described by 
Ks

HDT= 400 m-1, CMC = 2 x 10-3 m (──), Ks
HDT= 3000 m-1, CMC = 4 x 10-4 m (──), and 

Ks
HDT =18000 m-1 CMC= 2 x10-4 m (──), for a cocrystal described by Saq

drug = 2.5x10-4 
m Ksp = 2.0 x10-6 m2, pKa

HD = 4.0, pKa
HA = 1.5. 

 

The power of a given surfactant to reduce Scocrystal/Sdrug to half its value in aqueous 

media correlates to the magnitude of Ks
HDT and the CMC of the surfactant. As shown by 

a plot of Scocrystal/Sdrug as a function of [M], the higher the Ks
HDT, and the lower the CMC, 

the less surfactant is required to decrease the Scocrystal/Sdrug by half. The hypothetical case 

considered in Figure 2.2 shows the effect of micellar solubilization on a cocrystal that 

exhibits Scocrystal/Sdrug = 11.5 in the absence of surfactant. The Scocrystal/Sdrug ranges from 

11.5-1in the surfactant concentration range of CMC-CSC; micellar solubilization can be 

used to control, or engineer the cocrystal solubility relative to a drug.  A target 

Scocrystal/Sdrug can be achieved using equation (2.24) to calculate the surfactant 

concentration required to lower the solubility advantage of the cocrystal to a desired 

value.  

Prediction and evaluation of CSC dependence on pH 

Figure 2.3 shows the cocrystal and drug solubility dependence on micellar 

solubilization and ionization for a cocrystal HDHA in which pKa
HD > pKa

HA.  This plot 

shows that both cocrystal and drug solubility increase with increasing pH and surfactant 

concentration according to equations (2.21) and (2.17). The intersection of the two 

surfaces is the CSC, which increases with pH as shown in Figure 2.3. The CSC increases 
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with Scocrystal/Sdrug; for a cocrystal composed of an acidic drug and an acidic coformer, 

Scocrystal/Sdrug increases with pH due to the ionization of the components, therefore the 

cocrystal CSC will also increase with increasing pH.   

 

Figure 2.3.  Cocrystal and drug solubility dependence on surfactant concentration and 
pH. HDHA (red surface) drug HD (blue surface). Drug and cocrystal solubility were 
calculated from equations (2.19) and (2.21), respectively, substituting equation (2.18) to 
describe the pH dependence of the micellar solubilization using Ksp = 1.4 x10-6 m2, Saq

HD 
= 4 x10-4 m, pKa

HA= 2.0,  pKa
HD= 4.0, Ks

HD= 400 m-1, Ks
D- =10 m-1, and Ks

HA =Ks
A- = 0 

m-1. 
 

Figure 2.3 shows that for a pH range of 1-3.25 the CSC increases from 0.021 m to 

0.41 m.  The effect of the component ionization on the CSC determines the pH range in 

which the CSC is achievable. The [H+] dependence of the CSC equation is given by 

CSC=

Ksp

Saq
HD 2 1+

Ka
HA

H+
- 1+ Ka

HD

H+

KsHD+KsD-
Ka
HD

H+
- Ksp

Saq
HD 2 Ks

HA+KsA-
Ka
HA

H+

+CMC    (2.25) 

which is obtained by substituting equation (2.18) into equation (2.22). The CSC is 

predicted to increase as coformer ionization increases relative to the drug ionization 

(Ka
HA > Ka

HD
, pKa

HA <pKa
HD), and decrease as drug ionization increases relative to 

coformer ionization (Ka
HA<Ka

HD, pKa
HA > pKa

HD) based on the numerator of equation 

(2.25).  The CSC of the hypothetical cocrystal shown in Figure 2.3 is 0.02 m at 1 pH unit 

below pKa
HA, and doubles to 0.04 m at pH = pKa

HA.  The CSC increases to 0.23 m at 1 

pH unit above pKa
HA.  At 2 pH units above the pKa

HA, the CSC is 2.15 m, which is not a 
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reasonable surfactant concentration for pharmaceutical applications.50 The pH range in 

which the CSC is achievable is dependent on the coformer ionization when pKa
HA 

<pKa
HD and, can be modulated by selection of the cocrystal coformers based on pKa

HA.   

The concepts outlined in this section provide a theoretical framework that can be 

applied to control the solubility and Scocrystal/Sdrug of pharmaceutical cocrystals utilizing 

micellar solubilization as well as ionization. The cocrystal solubility advantage will be 

reduced in micellar solutions that preferentially solubilize the drug.  This may be useful 

to mitigate unnecessarily high cocrystal solubility, thus if there exists only one cocrystal 

of a drug and its solubility is too high, micellar solubilization can be used to lower 

Scocrystal/Sdrug to the required value. Often cocrystals are dosed in aqueous suspensions 

without consideration of their possible transformation. Solution-mediated transformation 

of a cocrystal that exhibits Scocrystal>Sdrug, can avoided in an aqueous suspension that 

contains [M] ≥ CSC because the cocrystal is thermodynamically stable under these 

solution conditions. The cocrystal solubility advantage relative to the drug can be 

restored by either dilution of the suspension so that [M] < CSC or by modulation of the 

solution pH to increase Scocrystal/Sdrug.  

Determination of equilibrium solubilization constants from eutectic point measurements 
The equilibria at the eutectic point between solid cocrystal, solid drug, and the 

solution is described by 

HDHAsolid+HDsolid HDaq+HAaq       (2.26) 

The analytical concentration of acidic drug concentration at the eutectic point, HD eu,T, is  

HD eu,T= HD eu,un 1+
KaHD

[H+]
+KsHD,T[M]         (2.27) 

where [HD]eu,un is the unionized drug in equilibrium at the eutectic.  Equation (2.27) also 

applies to the acidic coformer.  The analytical concentration of acidic coformer [HA]eu,T 

is obtained by replacing the terms of HD in equation (2.27) with those pertaining to HA, 

therefore both the drug and coformer concentrations in equilibrium at the eutectic point  

have a linear dependence on the micellar surfactant concentration at a given [H+].15  

The drug concentration at the eutectic point is equal to the drug solubility under 

the same conditions assuming that the coformer is not affecting the drug solubility or the 
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micellar solubilization of the drug.  The analytical drug concentration at the eutectic is 

the drug solubility determined in the presence of coformer in solution,4  and a comparison 

of the drug eutectic concentration, [HD]T,eu and the drug solubility, ST
HD, in a micellar 

solution allows for evaluation of the influence of coformer on the drug solubilization.  

The coformer is not affecting the drug solubilization by the micelle if [HD]T,eu = ST
HD 

under the same conditions of [H+] and [M].  

Materials and Methods 

Materials 
Indomethacin γ-form (IND γ), saccharin and sodium lauryl sulfate were purchased from 

Sigma Chemical Company (St. Louis, MO).  Brij 99, Myrj 52 and Tween 80 were 

received as gifts from Sigma Chemical Company (St. Louis, MO). All materials were 

used as received.  X-ray powder diffraction (XRPD) and differential scanning calorimetry 

(DSC) were used to characterize the materials prior to use. HPLC grade acetonitrile was 

purchased from Fisher.  Water used in this study was filtered through a double deionized 

purification system (MilliQ Plus Water System from Millipore Co., Bedford, MA). 

Media preparation 

Phosphate buffer was prepared at pH 2.1 by mixing 1.3 g NaH2PO4 and 0.68 mL of 85% 

phosphoric acid (H3PO4) with deionized water to prepare a 100 mL of 0.2 M buffer. Brij 

99, Tween 80,SLS or Myrj 52 was dissolved in the buffer. 

Cocrystal synthesis 

The indomethacin-saccharin cocrystal was prepared by slurry suspension. 1.1985 g of 

IND γ and 0.6181 g SAC were added to 10 ml of 0.05 m SAC solution in ethyl acetate.  

Solid phases were characterized by XRPD and full conversion to cocrystal was achieved 

in 24 hrs. 

Drug solubility measurement 
Drug solubility was measured by adding excess IND γ (50 mg) to a screw-capped vial 

containing 2 ml of pH 2.1 phosphate buffer with a known amount of surfactant. This was 

repeated in solutions varying surfactant concentration. Micellar solubilization constants 

(Ks) of the drug in each surfactant were determined by linear regression analysis of the 
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measured drug solubilities at 25±0.1°C as a function of micellar surfactant concentration 

according to equation  (2.19) using S0
IND=2.85x10-6 m.48   

Scocrystal dependence on micellar solubilization and CSC  

Calculated from the intersection of Scocrystal and Sdrug (Method 1)  
Scocrystal dependence on [M] and CSC were calculated from equations  (2.19) and 

(2.21) using Ksp =1.38 x10-9m2,18 pKaSAC=1.6,18 pKaIND=4.2,88 and the Ks
IND,T values in 

Table 2.4.  Ks
SAC,T=0 was assumed for initial calculations; Ks

SACT was evaluated and 

included in the model to determine its influence on the calculated Scocrystal and CSC. 

Cocrystal aqueous solubility was determined by measuring eutectic concentrations of the 

drug and the coformer in pH 2.1 phosphate buffer at 25±0.1°C.  Cocrystal (50-100 mg) 

and drug (25–50 mg) were suspended in 3 mL of media up to 4 days.  The pH at 

equilibrium was measured.  Cocrystal aqueous solubility was calculated according to 

S!!"!# = HD !,!"[HA]!,!" where HD is the drug (IND) and HA is the coformer 

(SAC).  At the eutectic or transition point, the solution is saturated with respect to two 

solid phases, in this case, cocrystal (IND-SAC) and drug (IND).  This method allows for 

cocrystal solubility measurement under thermodynamic equilibrium that may not 

otherwise be accessible due to transformation to the less soluble phase. Drug and 

coformer concentrations were analyzed by high-performance liquid chromatography 

(HPLC).  Solid phases at equilibrium were confirmed by XRPD. 

Evaluated from measured eutectic points (Method 2) 
Cocrystal solubilities were obtained by measuring eutectic concentrations of drug 

and coformer in buffered surfactant solutions (pH 2.1). Scocrystal was evaluated as a 

function of surfactant concentration in water at 25±0.1°C.  Cocrystal (50–100 mg) and 

drug (25–50 mg) were suspended in 3 mL of solution up to 3 days and the pH at 

equilibrium was measured.  The cocrystal eutectic concentrations were used to evaluate 

cocrystal solubility, and CSC. Cocrystal solubilities were determined according to 

S!!"!# = HD !,!"[HA]!,!".  This equation considers ionization and micellar 

solubilization of cocrystal components and assumes that no solution complexation is 

taking place. The range of the observed CSC was established based on the observed 

component concentrations at the eutectic point measured in a solution containing [M] 
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surfactant: when [HD]T,eu<[HA]T,eu , [M]<CSC because drug is the stable phase, when 

HD]T,eu=[HA]T,eu , [M]=CSC because Scocrystal=Sdrug and when  [HD]T,eu >[HA]T,eu , [M]> 

CSC because cocrystal is the stable phase.  

Calculated from the intersection of [drug]eu and [coformer]eu dependence on 
[M](Method 3) 

Drug and coformer eutectic concentrations increase linearly with surfactant concentration 

and intersect at the CSC.15  Linear regression analysis was used to obtain the respective 

Ks values from the measured drug and coformer eutectic concentration dependence on 

[M] according to equation (2.27). The CSC was calculated from the intersection of the 

drug and coformer lines generated from the linear regression analysis.  The cocrystal 

solubility dependence on [M] was calculated from equation (2.21) using Ksp=1.38x10-9 

m2,18 pKa
SAC =1.6, pKa

IND =4.2,88 and the drug and coformer Ks values that were 

determined from the linear regression analysis. 

Cocrystal dissolution studies 
50 mg of sieved IND-SAC (45-106 µm) was suspended in 9 mL 0.2m phosphate buffer 

with and without 7.65x10-4m Tween 80 at 25 ± 0.1°C.  The resulting slurry was stirred at 

600 rpm by magnetic stirring. Aliquots were withdrawn at predetermined time points and 

filtered through a 0.45 µm PVDF syringe filter. Solution concentrations were analyzed by 

HPLC.  Final solid phases were characterized by XRPD and DSC. 

High-Performance Liquid Chromatography 

The solution concentrations of IND and SAC were analyzed by a Waters HPLC (Milford, 

MA), equipped with an ultraviolet-visible spectrometer detector. A C18 Thermo Electron 

Corporation (Quebec, Canada) column (5µm, 250 x 4.6 mm) at ambient temperature was 

used.  The mobile phase composed of 70% acetonitrile and 30% water with 0.1% 

trifluoroacetic acid.  The injection sample volume was 20 or 40 µl and the retention times 

were 3.5 and 6.1 minutes for SAC and IND respectively.  Absorbance was monitored at 

265 nm. Waters’ operation software, Empower 2, was used to collect and process the 

data.  All concentrations are reported in molality (moles solute/kilogram solvent) unless 

otherwise indicated.  
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X-ray Powder Diffraction 
X-ray powder diffraction diffractograms of solid phases were collected with a benchtop 

Rigaku Miniflex X-ray diffractometer (Rigaku, Danverse, MA) using Cu Kα radiation 

(λ= 1.54Å), a tube voltage if 30 kV, and a tube current of 15 mA.  Data were collected 

from 5 to 40° at a continuous scan rate of 2.5°/min. 

Thermal Analysis 

Solid phases collected from the slurry studies were dried and analyzed by differential 

scanning calorimetry (DSC) using a TA instrument (Newark, DE) 2910MDSC system 

equipped with a refrigerated cooling unit.  DSC experiments were performed by heating 

the samples at a rate of 10 K/min under a dry nitrogen atmosphere.  Temperature and 

enthalpy calibration of the instruments was achieved using a high purity indium standard. 

Standard aluminum sample pans were used for all measurements.  

Results  

We have previously reported that the indomethacin-saccharin cocrystal (IND-

SAC) is more soluble than IND γ in the entire pH range.18 The solubility of IND-SAC is 

13, 26, and 65 times higher than the parent drug at pH 1.4, 2.1, and 3, respectively. In pH 

2.1 phosphate buffer, IND-SAC was observed to achieve a maximum supersaturation of 

7.5 after 2 minutes and subsequently transforms to parent drug as shown by a drop in 

solution concentration after 2 minutes (supplemental information). At pH 2.1, IND-SAC 

does not achieve its true solubility advantage of 26 and cannot maintain a supersaturation 

of 7.5 due to solution-mediated transformation. Surfactants may be useful to reduce 

Scocrystal/Sdrug to modulate supersaturation during dissolution or, to achieve a CSC in an 

aqueous solution to protect IND-SAC against solution-mediated transformation in a 

suspension. 

Rational Surfactant Selection to Modulate Scocrystal based on drug solubilization, Ks
IND,T 

The thermodynamic equilibrium constants required to predict the cocrystal 

solubility, Scocrystal/Sdrug and CSC using the equations described in the theoretical section, 

have been reported previously and are shown in Table 2.1.  The minimum Ks
IND,T 

required to achieve a CSC of 0.1 to 0.4 m for the IND-SAC cocrystal at pH 2.1 and 25 °C 

was calculated from equation (2.22) assuming, Ks
SAC,T=0.   A surfactant with a Ks

IND,T = 
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6450 m-1 is required to achieve a CSC = 0.1 m, and a surfactant with a Ks
IND,T =  1620 m-1 

is required to achieve a CSC = 0.4 m. Surfactants were rationally selected to reduce the 

Scocrystal/Sdrug of IND-SAC based on their observed drug solubilization (Ks
IND,T). 

Table 2.1 Ksp and component Ka values 25 °C 
Equilibrium 

constant 
Reported Value Reference 

Ksp (1.38±0.09)x10-9 m 2 18 
pKa

SAC 1.6 89 
pKa

IND 4.17 88 
 

Equilibrium micellar solubilization constants for IND were calculated from 

reported solubilities in solutions of varying surfactant concentration using equation  

(2.19).54,83-85 Ks
IND and Ks

IND- were not separately determined, instead the Ks
IND,T was 

determined and the pH of the experiment is indicated in Table 2.2 when reported. The 

Ks
IND,T values range from 22600-36200 m-1 in several types of nonionic surfactants at pH 

3. Myrj 52 and Tween 80 have the highest solubilization constants relative to the other 

surfactants at pH 3.  In several cases the IND solubility was measured in water without 

indication of equilibrium solution pH. Ks
IND,T ranges from 6900-240,000 (nonionic 

surfactants and SLS) in water (pH not reported). The Ks
IND,T of Myrj 52 and Tween 80 

were observed to increase with pH indicating that the micellar solubilization by these 

surfactants is pH dependent (Ks
IND- is not zero).  

Table 2.2 Calculated Ks
IND,T from reported IND solubility in surfactant solutions 

Surfactant Type pH Ks
IND,T a Reference 

Myrj 49 nonionic 3 (0.001N H2SO4) 26900 ± 900 Krasowska 
Myrj 51 nonionic 3 (0.001N H2SO4) 33000 ± 400 Krasowska 
Myrj 52 nonionic 1.2 (buffer) 26500±2000 Valizadeh 
Myrj 52 nonionic 3 (0.001N H2SO4) 36200 ± 300 Krasowska 
Myrj 52 nonionic 7.2 (buffer) 150000 ±10000 Valizadeh 
Tween 20 nonionic 3 (0.001N H2SO4) 22600 ± 300 Krasowska 
Tween 40 nonionic 3 (0.001N H2SO4) 26800 ± 100 Krasowska 
Tween 60 nonionic 3 (0.001N H2SO4) 26800 ± 700 Krasowska 
Tween 80 nonionic 3 (0.001N H2SO4)  28600 ± 200 Krasowska 
Tween 80 nonionic pH 5.7 (water)b 240000±4000 Najib 
F108 nonionic (water)c 145000 ± 6000 Lin & Kawashima 
SLS ionic (water) c 75016± 600 Najib 
F-88 nonionic (water) c 11400 ± 300 Lin & Kawashima 
F-68 nonionic (water) c 6900 ± 300 Lin & Kawashima 
(a) Calculated from reported IND solubilities at 25 °C, according to equation (2.17) using 

Saq
IND=2.85x10-6  m and pKaIND=4.2. 
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(b) pH not reported, the pH of solutions of IND, deionized water and Tween 0-10%w/w were measured 
in this work (pH=5.7). 

(c) pH not reported. 
 

Based on the Ks
IND,T values obtained from measurements in water (pH not 

reported) IND solubilization by Tween 80  was highest followed by F-108, SLS, F-88, 

and F-68 respectively. Brij 99 is reported to solubilize IND to a similar extent as Tween 

80, but the Ks
IND,T could not be calculated based on the reported solubility data.85 Thus, 

Tween 80, SLS, Myrj 52, and Brij 99 were selected for study based on their solubilization 

power (Ks
IND,T) and utility as pharmaceutical excipients.49,50   Three  methods were used 

to evaluate the cocrystal solubility dependence on [M] and CSC in the different 

surfactants: 

(1) By calculation of the intersection of Scocrystal and Sdrug as a function of 

surfactant concentration according to equation (2.22) using cocrystal Ksp,  

cocrystal component ionization (Ka), micellar solubilization (Ks), surfactant 

CMC, and solution [H+]. 

(2) By measurement of cocrystal eutectic point as a function of [M]. 

(3) By calculation of the intersection of [drug]eu and [coformer]eu as function of 

surfactant concentration according to equation (2.27). 

Scocrystal and CSC calculated from intersection of Scocrystal and Sdrug (Method 1, assuming 
Ks

SACT=0) 
The Scocrystal and CSC dependence on micellar solubilization were calculated from 

equation (2.21) from the cocrystal Ksp, the intrinsic drug solubility and the drug micellar 

solubilization constant Ks
IND. The IND γ and the IND-SAC solubilities were measured in 

pH 2.1 phosphate buffer without surfactant and confirm that the cocrystal is 26 times 

more soluble as shown in Table 2.3 

Table 2.3.Cocrystal and drug solubility in water at pH 2.1 and 25 °C 
Solid Phase Aqueous Solubility 

IND-SAC (7.2±0.2) x10-5 m 
IND γ (2.8±0.1) x10-6 m 

 

The measured IND solubilities in pH 2.1 phosphate buffer solutions of varying surfactant 

concentration, shown in Figure 2.4, were used to calculated Ks
IND,T from equation 
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(2.19).54,83-85 This pH was chosen to study IND-SAC at the lowest Scocrystal/Sdrug, while 

operating under pH conditions in which the surfactants were chemically stable.90  

The resulting Ks
IND,T values for SLS, Tween 80, Myrj 52 and Brij 99 are shown in 

Table 2.4. Based on the Ks
IND,T, Myrj 52 is the surfactant with the highest solubilization 

power. The nonionic surfactants had higher Ks
IND,T relative to  the anionic surfactant SLS 

and are expected to be more effective in reducing Scocrystal/Sdrug and achieve lower CSC 

values. The CSC for each surfactant was predicted using equation (2.22) from Ks
IND,T 

values in Table 2.4, Ka values in Table 2.1, and assuming the Ks
SAC,T=0.  All of the 

surfactants studied exhibited a CSC and are capable of protecting cocrystal against 

solution-mediated transformation.   

Table 2.4. Ks
IND,T and CSC at pH 2.1, 25°C. 

Surfactant Ks
IND,T (m-1)a CSC (m)b 

SLS 6300 ± 300 0.11 ± 0.01 
Tween 80 23540 ± 20 0.029 ± 0.003 

Brij 99 26700 ± 900 0.026 ± 0.003 
Myrj 52 32700 ± 400 0.022 ± 0.003 

(a) Calculated from the analytical drug solubility dependence on [M] according to 
equation  (2.19) using S0 

IND= 2.85x10-6 m  
(b) Calculated from equation (2.22) using Ksp= 1.38x10-9 m, Ks

IND,T in this table and 
assuming Ks

SACT=0. 
 

Figure 2.2 shows the cocrystal solubility and drug solubility dependence on 

micellar solubilization in SLS, Tween 80, Brij 99, and Myrj 52, calculated from cocrystal 

Ksp and Ks
IND,T. The cocrystal solubility increase due to micellar solubilization is weaker 

than that of the drug which leads to an intersection of the Scocrystal and Sdrug curves at the 

CSC.  This intersection occurs because Scocrystal  has a square-root dependence on 

surfactant concentration ( 𝑀 ), wheras Sdrug has a linear dependence.  Below the CSC 

Scocrystal>Sdrug, at the CSC Scocrystal=Sdrug, and above the CSC Scocrystal<Sdrug, for a 1:1 

cocrystal.  According to this behavior, a thermodynamically stable aqueous suspension of 

a cocrystal with Scocrystal>Sdrug can be prepared in solutions containing [M]≥CSC. 
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Figure 2.4. Cocrystal solubility (·····) dependence on [M] was calculated from equation 
(2.21) using Ksp=1.38x10-9 m2, pKa

SAC=1.6, pKa
IND=4.2, and the Ks

IND,T values in Table 
2.4, according to Method 1, assuming Ks

SACT=0. Ks
IND,T was evaluated for each surfactant 

by linear regression analysis of the measured drug solubility (Δ) in surfactant solutions. 
The measured cocrystal solubility in the absence of surfactant at pH 2.1 and 25 °C was 
(7.2±0.2)x10-5 m, shown by (○).  The surfactants studied include Myrj 52, Brij 99, Tween 
80, and SLS. The drug solubility is described by equation (2.17) at pH 2.1 using 
Saq

IND=2.85x10-6 m, pKa
IND=4.2 and Ks

IND,T values in Table 2.4.  The CSC was calculated 
from equation (2.25), which is the intersection of the drug and cocrystal solubility curves. 
CSC measured from Scocrystal in surfactant solutions determined at the eutectic point 
(Method 2) 

Cocrystal solubilities were measured in equilibrium at the eutectic point between 

drug and cocrystal solid phases. Figure 2.5 shows the solution concentrations of drug and 

coformer in equilibrium at the eutectic point; at lower surfactant concentrations, 

[coformer]eu>[drug]eu and  at higher surfactant concentrations there is a reversal of the 

relative drug and coformer eutectic concentrations such that [coformer]eu<[drug]eu. The 

component eutectic concentrations of a 1:1 cocrystal are a function of Scocrystal/Sdrug 

according to 
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[coformer]eu
drug eu

=
Scocrystal
Sdrug

2

        (2.28) 

This relationship has been derived and shown in our previous publications.4,18  According 

to equation (2.28), when [coformer]eu=[drug]eu the cocrystal and drug solubilities are 

equal, thus the surfactant concentration range in which the CSC occurs can be determined 

from the measured eutectic concentrations.  

Saccharin-rich solutions in equilibrium at the eutectic point indicate the surfactant 

concentration range in which drug is the stable phase ([drug]eu<[coformer]eu).  While the 

surfactant concentration range in which cocrystal is the stable phase is indicated by the 

drug-rich solution concentrations at the eutectic point ([drug]eu > [coformer]eu).15 The 

hydrophobic drug, IND, is preferentially solubilized compared to the hydrophilic 

coformer, SAC, as shown by the reversal in the measured drug concentrations in 

equilibrium at the eutectic point compared to coformer (bar charts in Figure 2.5). 

 

 
Figure 2.5. Range of CSC based on eutectic concentration dependence on surfactant 
concentration. Eutectic concentrations of drug (black bar) and coformer (grey bar) in 
buffer solutions containing different concentrations of surfactant at pH 2.1, 25 °C.   
 

The measured eutectic concentrations reveal that the equilibrium saccharin solution 

concentrations in equilibrium at the eutectic point (cocrystal solubility measurement) 
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increase with increasing surfactant concentration and suggest that the coformer is being 

solubilized. 

Ks
IND,T, Ks

SAC,T and CSC from the linear relationship of the measured component eutectic 
concentration dependence on surfactant concentration (Method 3) 

 The eutectic concentration dependence on micellar solubilization was used to 

evaluate the CSC and component Ks values.15 The measured drug and coformer 

concentrations in equilibrium at the eutectic point increased linearly with increasing 

surfactant concentration for all the surfactants studied as shown in Figure 2.6.  The 

[drug]eu exhibits a steeper slope than the [coformer]eu indicting that the drug is 

preferentially solubilized relative to the coformer. Due to the severe asymmetric 

solubilization of the cocrystal components, the regression lines of the [drug]eu and 

[coformer]eu intersect at the CSC.  Similar behavior has been reported for cocrystals of 

carbamazepine in sodium lauryl sulfate.15 

 

 
Figure 2.6. Evaluation of micellar solubilization constants (Ks) and CSC from eutectic 
point measurement dependence on surfactant concentration. Measured equilibrium 
concentrations of drug () and coformer () at the eutectic point in solutions of varying 
surfactant concentrations at pH 2.1.  The surfactant concentration plotted is micellar 
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concentration (total-CMC). Lines represent linear regressions of eutectic concentrations 
used to calculate Ks for each component according to equation (2.27).  
 

The Ks
IND,T and Ks

SAC,T were determined from linear regression analysis 

according to equation (2.27) and are shown in Table 2.5 for each surfactant. As 

hypothesized, the drug was solubilized to a greater extent than the coformer, as evidenced 

by its higher Ks value.  The Ks
IND,T determined from the [drug]eu dependence on [M] was 

not significantly different than the Ks
IND,T values in Table 2.4, which were determined 

from drug solubility dependence on [M] in the same concentration range (p<0.05).  

Therefore, the presence of coformer at the eutectic point does not effect the solubilization 

of IND.  

Table 2.5. Ks values determined from linear regression of eutectic concentration 
dependence on [M] at pH 2.1. 

Surfactant Ks
IND,T (m-1) Ks

SAC,T (m-1) CSCa(m) CMC (m) 
Myrj 52 30900±500 83 ± 7 37 ± 8 1.5 x 10-4 m b 
Brij 99 26500 ± 200 58 ± 4 39 ± 5 2.65 x 10-4 c 

Tween 80 23700 ± 600 59 ± 3 45 ± 5 1 x10-5 c 
SLS 6100 ± 100 8 ± 2 140 ± 20 0.005-0.008 d 

(a) Calculated intersection of linear regressions of measured component dependence on 
surfactant at the eutectic point. 

(b) From reference 91 
(c) From reference 92 
(d) From reference 93,94 

Scocrystal and CSC calculated from cocrystal Ksp, Ks
IND,T and Ks

SAC,T (Method 1) compared 
to Scocrystal evaluated by eutectic measurements (Method 2) 

The drug and coformer solution concentrations in equilibrium at the eutectic point 

were used to evaluate the stoichiometric cocrystal solubility according to  

ST
HDHA= HD T,eu HA T,eu        ( 2.29) 

This equation applies to a 1:1 cocrystal, and includes contributions of ionization and 

micellar solubilization. Figure 2.7  shows the experimentally determined cocrystal 

solubility increased with surfactant concentration, and was higher than that predicted 

from equation (2.21) assuming Ks
SAC,T=0.  The experimental cocrystal solubility 

increases in the presence of SLS as well as the nonionic surfactants, and the cocrystal is 

observed to be less soluble than the drug above the CSC. The measured cocrystal 

solubilities are in excellent agreement with the solubility calculated from equation (2.21) 

when saccharin solubilization (Ks
SAC,T ) was included in the mathematical model.  
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Even though Ks
IND,T was 600-1000 times greater than Ks

SAC,T for the surfactants 

studied, the cocrystal solubility predicted using the measured Ks
SAC,T was 4-70% higher 

than that predicted assuming Ks
SAC,T=0.  The difference between the predicted and 

measured Scocrystal increased with surfactant concentration above the CMC. Micellar 

solubilization of the coformer increases Scocrystal and can be easily monitored using 

eutectic point measurements. The cocrystal solubility was lower than that of the drug 

above 0.05 m (50 mM) for the nonionic surfactants and above 0.15 m (150 mM) for SLS.  

The cocrystal solubility and CSC were under predicted when the assumption that 

Ks
SAC=0 was made for all the surfactants studied.   

 

 
Figure 2.7.  Influence of Ks

SAC on cocrystal solubility and CSC. Measured cocrystal 
solubility dependence on total surfactant concentration for Myrj 52, Brij 99, Tween 80, 
and SLS (○). Cocrystal solubility was predicted using equation (2.21) using a Ksp = 1.38 
x10-9 m2, SAC pKa = 1.6 and assuming Ks

SAC,T=0 (──) or using measured Ks
SAC,T (·····) 

from Table 2.5. The measured drug solubility is represented by (Δ). Theoretical drug 
solubility (──) dependence on surfactant concentration was calculated from equation  
(2.19) using a S0 of 2.85x10-6 m, IND pKa = 4.2 and Ks

IND,T values in Table 2.4.  
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Higher surfactant concentrations are required to stabilize cocrystal when the 

coformer is solubilized. The CSC calculated assuming Ks
SAC,T=0 is compared to the CSC 

calculated using the evaluated Ks
SAC in Table 2.5. The CSC calculated using the 

measured Ks
SAC,T is ~1.5 times larger than the CSC calculated assuming Ks

SAC,T=0 for all 

surfactants studied. However, the CSC evaluated assuming Ks
SAC,T =0 served as lower 

limit approximation that may be useful when the Ks
SAC,T is unknown.  The component 

concentrations at the eutectic point were useful for determining whether SAC 

solubilization was occurring. 

Scocrystal/Sdrug dependence on micellar solubilization 
It is essential to identify the lowest surfactant concentration that increases the 

drug solubility to accurately predict Scocrystal/Sdrug below the CSC at the low surfactant 

concentrations where Scocrystal/Sdrug exhibits the highest rate of change.  The observed 

[drug]eu in solutions containing surfactant concentrations close to, or at the CMC of 

Tween 80 and SLS, indicate deviations from their reported CMC values. The reported 

CMC of Tween 80 is 1x10-5 m,92 yet [drug]eu was not enhanced in a solution containing 

4.95x10-5 m Tween 80, while [drug]eu was increased 2- fold in the presence of 9.96x10-5 

m Tween 80; the CMC of Tween 80 appears to be higher than the reported value based 

on this data.  [drug]eu was increased 43-fold in the presence of 0.008 m SLS, and while 

this is within the published range of the CMC (0.005-0.008 m)93 the large solubility 

increase at this value indicates that the CMC is lower than 0.008 m.   

The CMC was estimated by performing linear regression analysis of the measured 

[IND]T,eu dependence on surfactant concentrations at surfactant concentrations 

approaching the reported CMC.  The intersection of the linear regression with the IND 

solubility in buffer with surfactant is approximated as the CMC (supplemental 

information). The estimated CMC values of SLS and Tween 80 were used to accurately 

predict the Scocrystal and Scocrystal/Sdrug dependence on [M] at lower surfactant 

concentrations.  The prediction is less sensitive to deviations of the CMC at higher 

surfactant concentrations.ee, 1967 #40;Mukerjee, 1967 #40}  

The Scocrystal/Sdrug dependence on micellar solubilization is shown in Figure 2.8. Ks 

values evaluated from the eutectic measurements were used to predict Scocrystal/Sdrug 

according to equation (2.24).  The experimental Scocrystal/Sdrug was determined from each 



 

 63 

eutectic measurement according to the following equation, which applies to a 1:1 

cocrystal (and includes contributions of ionization and micellar solubilization):95 

Scocrystal
Sdrug

=
coformer eu
drug eu

        (2.30) 

The measured and calculated Scocrystal/Sdrug dependence on surfactant concentration is 

shown in Figure 2.8.  Scocrystal/Sdrug =1 is shown by the dotted line and indicates the 

concentration required to reach the CSC.  

Interestingly, very small concentrations of surfactant  can decrease the 

Scocrystal/Sdrug; Scocrystal/Sdrug is reduced by half in the presence of 0.14 mM Tween 80, 0.25 

mM Myrj 52, 0.39 mM Brij 99, and 2.12 mM SLS. The surfactant concentration required 

to reduce Scocrystal/Sdrug in half is directly related to the surfactant CMC; the lower the 

CMC, the lower the surfactant concentration that is required to reduce Scocrystal/Sdrug.  

 
Figure 2.8. Measured (¢) and predicted cocrystal solubility advantage (Scocrystal/Sdrug) 
dependence on total surfactant concentration at pH 2.1 for (──) Myrj 52, (──) Brij 99, 
(──) Tween 80, and (──) SLS at 25°C.  Scocrystal/Sdrug was predicted from equation (2.24) 
and was determined from the eutectic measurement according to equation (2.30). 
 

The measured cocrystal solubility advantage is in excellent agreement with the predicted 

values.  Based on these findings, adding surfactant to a dissolution medium may decrease 

the Scocrytal/Sdrug of the cocrystal if the drug is preferentially solubilized by the surfactant.  

Therefore if IND-SAC solubility is compared that that of the drug in solutions containing 

surfactant concentrations above the CSC, no solubility advantage will be seen because 
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Scocrystal/Sdrug < 1. Cocrystals that are more soluble than the drug under aqueous conditions 

may appear to be as soluble, or less soluble than the drug in solutions containing 

surfactant above the CSC. If a cocrystal is to achieve a solubility advantage over the 

drug, it is essential to know the CSC of a surfactant to avoid reducing Scocrystal/Sdrug.  

Table 2.6 summarizes the results of different methods used to evaluate CSC. The 

methods used to calculate the CSC (Method 1 and 3) provide a range of CSC values 

based on the error associated with linear regression analysis. Linear regression analysis of 

the cocrystal component concentrations is used to obtain the Ks values used in Method 1. 

Method 3 relies on linear regression analysis of the drug and coformer eutectic 

dependence on surfactant concentration to determined the CSC at the intersection of the 

regression lines.  Both of these methods are in good agreement with the measured CSC, 

despite the error associated with the linear regression analysis. The average measured 

CSC range for the surfactants studied is 22 mM, which is higher than the error associated 

with the calculated CSC (Method 1 and 3).  The magnitude of the CSC range determined 

by the cocrystal solubility from eutectic measurements is dependent on the number of 

measurements carried out. For example, the widest range was observed for SLS.  This 

range can be decrease by performing experiments below 153 mM and above 124 mM.  

Regardless, Method 1 requires the least amount of experiments to obtain a CSC range, 

the eutectic measurements can then be used to confirm the range. 

Table 2.6 CSC values at pH 2.1 obtained by three different methods 
  CSC (mM) 

 Intersection of Scocrystal and Sdrug  
(Method 1) Measured from 

eutectic 
concentrations 
(Method 2) c 

Intersection of 
[drug]eu and 
[coformer]eu  
(Method 3) d 

Surfactant 
(CMC) 

 Calculated 
using Ksp, 

Ks
INDa,

 Ks
SAC=0 

Calculated 
using Ksp,  

Ks
IND

, Ks
SAC b 

Myrj 52        
(1.5 x10-4m)a 22 ±3 42 ± 7 16 < CSC < 39 37 ± 8 

Brij 99 
(2.65 x10-4) a 26±3 42± 5 20 < CSC < 36 39 ± 5 

Tween 80 
(6 x10-5) b 29±3 52± 7 30 < CSC < 50 45 ± 5 

SLS                
(2 x10-3) b 110 ± 10 150 ± 20 124 < CSC < 153 140 ± 20 

(a) Calculated from equation (2.22) using Ks
IND,T from Table 2.4, assuming Ks

SAC =0  
(b) Calculated from equation (2.22) using Ks

IND,T, Ks
SAC,T values shown in Table 2.5 

(c) CSC range from measured component concentrations at eutectic: [drug]eu < [coformer]eu is below 
CSC and [drug]eu>[coformer]eu is above CSC  

(d) Calculated intersection of linear regressions of measured [component]eu dependence on [M] at the. 
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The nonionic surfactants achieved CSC < 50 mM, while CSC of SLS was at least 3 

times higher (140-150 mM ).  A CSC of 20 and 40 mM was achieved for 1:1 

carbamazepine cocrystals that were 2 and 4 times more soluble than the drug 

respectively. While the Ks
CBZ (600 m-1) is an order of magnitude lower than that of 

Ks
IND,T, the Scocrystal/Sdrug of IND-SAC is a magnitude higher than the CBZ cocrystals.  

Ultimately, the higher Scocrystal/Sdrug requires more surfactant to achieve CSC. As 

expected, cocrystal solution concentrations were maintained for 96 hours in suspensions 

containing [M] ≥  CSC for all surfactants studied. Thus, it is possible to create a stable 

suspension of cocrystal that would otherwise transform using surfactant concentrations 

above the CSC. Based on these results, ignoring the solubilization of saccharin results in 

an under predicted CSC. 

Critical stabilization concentration dependence on pH  
The cocrystal solubility dependence on pH relative to the drug must be considered 

in order to evaluate the effect of pH on the CSC. The solubilities of the IND-SAC 

cocrystal and the parent drug IND are both reported to increase with pH.18 However, in 

the pH range of 1 to 3 the cocrystal solubility increases from 4.71x10-5 m at pH 1 to 2.34 

x10-4 m at pH 3 (5.2 fold increase in solubility) while the parent drug does not 

appreciably increase (2.85x10-6 to 3.03x10-6 m) in the same pH range.  In this pH range, 

the percent of IND ionized increases from 0.17% to 6%, while the percent of SAC 

ionized increases from 40% to 96%, the IND-SAC cocrystal solubility increases from 13 

to 64 times higher than the parent drug in the pH range of 1 to 3 due to coformer 

ionization.18 The Scocrystal/Sdrug increases with pH because the ionized fraction of SAC 

(pKa= 1.6) is increasing with pH relative to the drug due to the lower pKa of SAC as 

shown in Figure 2.9.   
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Figure 2.9.  Comparison of cocrystal (IND-SAC) and drug (INDγ) solubility-pH 
dependence in buffered solutions without surfactant at 25°C.18  
 

An increase in pH of 0.5 units above the coformer pKa lead to an increase of 

Scocrystal/Sdrug from 18 to 25 and an increase in pH of 1.5 units above the coformer pKa 

lead to an increase of Scocrystal/Sdrug from 18 to 64. The magnitude of Scocrystal/Sdrug has 

been associated with higher CSC values,15-17 therefore the CSC-pH dependence of IND-

SAC was evaluated.16  IND exhibits pH-dependent micellar solubilization as the reported 

Ks values increase with pH as shown in Table 2.2; therefore Ks
IND and Ks

IND- are required 

to evaluate the CSC dependence on [H+] according to equation (2.22). Due to the 

availability of reported IND solubilities under ionized conditions in Tween 80, which is 

necessary to evaluate Ks
IND-, the CSC dependence of Tween 80 on [H+] was investigated.  

Tween 80 was also selected to further investigate because it exhibits a lower CSC than 

SLS at pH 2.1, and is commonly used as an excipient and as a dissolution additive during 

drug evaluation.49,50 

The Ks values used to predict the CSC dependence on [H+] for Tween 80 are 

shown in Table 2.7. The Ks
IND and Ks

IND- were determined from the Ks
IND,T at pH 2.1 and 

the Ks
IND,T at pH 5.7 according to the method by Grbic et al.  Based on this method, 

Ks
IND,T values were determined from the linear IND solubility dependence on surfactant 

concentration according to equation  (2.19) at pH 2.1 (drug mostly unionized) and pH 5.7 

(drug mostly ionized).  The values of Ks
IND,T at pH 2.1 and pH 5.7 were used to solve for 

the two unknowns, Ks
IND and Ks

IND-, according to equation (2.18).  The Ks
IND,T at pH 5.7 

was determined from the reported solubility dependence of IND in aqueous Tween 80 

solutions, 54 which in this work was found to equilibrate to pH 5.7  
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Table 2.7. Influence of pH on Ks values of IND  
pH Ks

IND,T (m-1) Ks
IND (m-1) b Ks

IND- (m-1) b fraction IND- 

2.1 23540 ± 20 23540 ± 20  0.008 

5.7a 240000 ± 4000  6900 ± 500 0.969 
(a) Calculated from reported solubility of IND in aqueous solutions containing Tween 80 (0-10% 

w/w), pH was not modified and was not measured.54  The pH of Tween 80 aqueous solutions was 
measured in the present work (0.1-10%w/w). 

(b) Calculated according to the method reported by Grbric et al..87 
 
The CSC of Tween 80 was predicted from equation (2.22) using the Ks

IND and 

Ks
IND- from Table 2.7 and Ks

SACT in Tween 80 from Table 2.5 (Method 1). Figure 2.10 

shows that the CSC increases exponentially with pH; the CSC is 15.6 mM at pH 1 and 

increases by1.6 fold to 25 mM at pH 1.6(the coformer pKa).  Increasing the solution pH 

to one unit above the pKa increases the CSC by 5.5 fold to 136 mM.  At values above the 

coformer pKa the CSC increases exponentially. The coformer ionization increases from 

40% to 96% in the pH range of 1 to 3 while the drug is primarily unionized (<6% 

ionized). To achieve the CSC, the surfactant must increase the drug solubility relative to 

the cocrystal solubility to reduce the Scocrystal/Sdrug to 1. As Scocrystal/Sdrug increases, the 

weaker the effectiveness of the surfactant in reducing Scocrystal/Sdrug and the greater the 

surfactant concentration required to reach the CSC.  Beyond pH 3, the cocrystal solubility 

increases relative to drug due to the ionization of coformer.   

 
Figure 2.10. CSC dependence on pH for the IND-SAC cocrystal at 25°C in Tween 80. 
Curve was generated from equation (2.22) using the Ks

IND = 23540 m-1, Ks
IND-= 6800 m-1, 

Ks
SACT=59 m-1, and the CMC values in Table 2.6 according to Method 1.  

 

Above pH 3, micellar solubilization of the drug, which increases Sdrug relative to 

Scocrystal, can no longer compete with the ionization of saccharin, which increases Scocrystal 
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relative to Sdrug. At pH 3, saccharin is ~96% ionized, thus the ionization of saccharin 

overwhelms the contribution of preferential micellar solubilization of the drug to the 

Scocrystal/Sdrug. A surfactant with a Ks
IND that is 104 times higher than Ks

IND of Tween 80 

would achieve a CSC between pH 1-7. However, no surfactants are reported to solubilize 

IND to such an extent.  An IND cocrystal with a coformer pKa that is higher than the pKa 

of SAC would increase the pH range of the CSC according to equation (2.25). Any 

solution mechanism that increases the cocrystal solubility relative to drug is expected to 

increase the CSC. 

Table 2.8 shows the measured eutectic concentrations in surfactant solutions close 

to the calculated CSC.  The surfactant concentrations were selected based on the CSC 

calculated from equation (2.25) at each pH value. The final solution pH at the eutectic 

point was less than the initial pH during the measurements without surfactant as shown in 

Figure 2.10.  Therefore the eutectic point was measured in solutions containing surfactant 

slightly above and slightly below the predicted CSC in anticipation of possible changes 

between initial and final pH. Scocrystal/Sdrug <1 was observed by eutectic measurements at 

pH 1.4 and 2.1 and Scocrystal/Sdrug=1 was observed at pH 3. The CSC dependence on [H+] 

predicted from equation (2.25) was therefore useful to identify the surfactant 

concentration necessary to stabilize the cocrystal against transformation by achieving 

Scocrystal/Sdrug≤1.  It should be noted that if cocrystal transformation is to be avoided, it is 

advisable to use [M]>CSC. 

Table 2.8.  Measured eutectic concentrations and Scocrystal/Sdrug in solutions 
containing [M] Tween 80. 

pH initial pH final [M] 
(mM) 

[IND]eu 
(mM) 

[SAC]eu 
(mM) 

Scocrystal/Sdrug 

1.41±0.01 1.33±0.06 19 
24 

1.01±0.01 
1.30±0.01 

0.79±0.01 
0.849±0.003 

0.89±0.01 
0.81±0.01 

2.09±0.04 2.09±0.03 30 
50 

1.94±0.01 
3.6±0.2 

2.6±0.1 
3.1±0.2 

1.16±0.02 
0.92±0.05 

3.13±0.02 2.74±0.01 240 
320 

14.1±0.4 
19.7±0.1 

16.8±0.3 
19.7±0.3 

1.09±0.01 
1.00±0.01 

 
The component eutectic concentrations from Table 2.8 is shown in Figure 2.11 

and shows that the surfactant concentration required to achieve [drug]eu > [coformer]eu 

increases with pH.  IND-SAC exhibited [drug]eu > [coformer]eu in 19 mM of Tween 80 at 

pH 1 indicating that Scocrystal<Sdrug and CSC<19 mM.  At pH 2, 50 mM of Tween 80 was 
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required to achieve [drug]eu>[coformer]eu, and at pH 3, 320 mM of Tween 80 was 

required to achieve [drug]eu=[coformer]eu.  

 
(a)     (b) 

 
(c) 

Figure 2.11.  CSC range based on measured eutectic concentration dependence on 
surfactant concentration in solution. Eutectic concentrations of drug (black bar) and 
coformer (grey bar) in buffer solutions containing different concentrations of surfactant at 
25 °C and (a) pH 1.3 (b) pH 2.1 and (c), pH 2.74.   

 

The eutectic point measurements were carried out in solutions with an initial pH 

of 1.4, 2.1, and 3.13, however the solutions equilibrated to a pH of 1.34, 2.09, and 2.74, 

respectively. As solution pH increases, cocrystal solubility increases, as does the SAC 

concentration in equilibrium in the suspension which lowers the pH back down thereby 

having a self-buffering effect.  The equilibrium pH values of the pH 1.40 and pH 2.10 

suspensions were within 0.05 pH units of the initial value, while the equilibrium pH value 

of the pH 3.11 suspension was 0.30 units lower than the initial value at equilibrium due to 

the buffering effects of SAC.  This behavior was also observed during the solubility-pH 

measurements of IND-SAC.18  
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The CSC determined by the measured cocrystal eutectic point dependence on 

micellar solubilization (method 2), is in excellent agreement with the predicted CSC 

values (method 1), thus equation (2.25) is useful to predict the amount of surfactant 

required to achieve CSC.  Equation (2.25) is also useful to determine the pH limitations 

of the CSC based on the ionization properties of the coformer and drug.  Table 2.9 

compares the CSC determined by the two methods; prediction by equation (2.25) and 

measurement of the eutectic point concentrations (i.e. Scocrystal<Sdrug when [drug]eu > 

[coformer]eu) in surfactant solutions.  The prediction by equation (2.25) assumes that only 

ionization and micellar solubilization are taking place (no complexation, aggregation or 

hydrotropy are  occurring). 

Table 2.9. Summary of predicted and measured CSC dependence on pH 
  CSC (m) 

Initial pH Final pH Calculated intersection of 
Scocrystal and Sdrug (Method 1) a 

Measured from eutectic 
point in surfactant 

solutions (Method 2)b 
  at initial pH   at final pH  

1.41±0.01 1.34±0.01 21 ± 3 19 ± 3 0 < CSC < 19 
2.09±0.03 2.09±0.03 51± 7 51± 7 30 < CSC < 50 
3.13 ± 0.02 2.74 ± 0.03 420 ± 50 180 ± 20 CSC = 320 

(a) Calculated from equation (2.22) using Ksp = (1.38±0.09)x10-9 m2, Ks
IND=23540±20 m-1, Ks

IND-

=6900±500 m-1, Ks
SACT= 59±3 m-1 

(b) CSC range from measured component concentrations at the eutectic point in surfactant solutions: 
[drug]eu = [coformer]eu at the CSC, [drug]eu < [coformer]eu is below CSC and [drug]eu>[coformer]eu 
is above CSC  

 

Enabling cocrystal dissolution via Thermodynamic Control of Supersaturation 
Micellar solubilization decreases Scocrystal/Sdrug, therefore it should also decrease 

the supersaturation generated by a cocrystal, resulting in a decrease in the driving force 

for transformation.  The cocrystal dissolution was performed in the presence of Tween 80 

to decrease the cocrystal supersaturation in an attempt to prevent the solution-mediated 

transformation. Solution-mediated transformation has been mitigated by inhibiting 

nucleation of the stable form, or by reducing the supersaturation of the metastable phase 

relative to the drug.56,78 The IND-SACcocrystal was observed to reach a maximum 

concentration of 2.14 x10-5 m with a supersaturation of 7.5 after 2 minutes prior to 

solution-mediated transformation. Equation (2.24) was used to  calculate the surfactant 

concentration required to reduce Scocrystal/Sdrug < 7.5.  
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As a first attempt, Scocrystal/Sdrug was reduced to 6 by adding 7.65x10-4 m (0.1 

w/w%) of Tween 80 to a pH 2.1 aqueous solution, according to equation (2.24). Figure 

2.12(a) shows that IND-SAC transforms at  pH 2.1 (no surfactant),with IND solution 

concentrations decreasing after 2 minutes, generating a maximum supersaturation 

([IND]T/ST
drug) of 7.5 relative to drug which is lower than the Scocrystal/Sdrug=26 

determined from the eutectic point measurement at pH 2.1. IND-SAC dissolution in 0.1% 

Tween 80 (7.7x10-4 m) in pH 2.1 phosphate buffer resulted in higher drug solution 

concentrations up to 2.18 x10-4 m, that were maintained for 15 minutes prior to a drop in 

solution concentrations, signifying transformation, as shown in Figure 2.12(a).  

(a) (b)  

Figure 2.12.  IND-SAC dissolution and supersaturation relative to the parent drug 
([IND]T/ST

INDγ) in Tween 80 (7.7x10-4 m, 0.1% w/w) (¢) pH 2.1 buffer (¯). 
Supersaturation was calculated by dividing each IND concentration time point by ST

IND. 
ST

INDγ (pH 2.1 buffer)=(2.85 ±0.03) x10-6 m. ST
INDγ (0.1% tween 80 in buffer) = 

(5.05±0.05) x10 -5 m. 
 

The reduction in Scocrystal/Sdrug due to the presence of 0.1% Tween 80 

corresponded to a reduction in supersaturation from 7 to 4 as shown by Figure 2.12b. The 

supersaturation generated by the cocrystal in 0.1% Tween 80 was 1.8 times lower than 

that observed in buffer alone;  however the cocrystal maintained a supersaturation of 2 

after 2 hours in 0.1% Tween 80.  In comparison, the cocrystal exhibited no 

supersaturation in buffer after 90 minutes and the solution conceentrations approached 

the solubility of IND γ at pH 2.1 (2.85x10-6 m).18,88 The increased solution concentrations 

and  maintainance of supersaturation during the dissolution of the IND-SAC cocrystal 

were improved in the presence of  0.1% Tween 80, which is under the CSC.  
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While amorphous IND achieves a higher peak solution concentration and 

supersaturation than the INDS-SAC cocrystal at pH 2, it does not dissolve as quickly. 

Amorphous IND is reported to achieve a peak drug concentration of 4.2 x10-5 m with a 

supersaturation of 14 at pH 2 after 25 minutes.96 It takes 4.4 minutes to achieve a solution 

concentration of 1.65x10-5 m while the cocrystal achieves a concentration of 2.15x10-5 

after 2 minutes. According to previous studies with IND-SAC, a supersaturation of 3 in 

pH 7.4 phosphate buffer without surfactant can be sustained for 15 minutes which then 

drops to 2 which is maintained for 2 hours. 1  This is comparable to the supersaturation 

we achieved with the use of surfactants.  The work presented here suggests that 

surfactants may be very useful to target a desired supersaturation and cocrystal solubility. 

It is possible to increase Scocrystal and decrease Scocrystal/Sdrug using the mechanism of 

preferential micellar solubilization of the drug component.  

Conditions under which cocrystal has a solubility advantage or is 

thermodynamically stable (less soluble than drug) can be anticipated from the presented 

mathematical models. Small amounts (40-50 mM) of nonionic surfactant can stabilize the 

IND-SAC cocrystal against transformation.  This has important implications for the 

evaluation of cocrystals, as their solution behavior is often evaluated by dissolution in the 

presence of a surfactant.6,11,74 SLS and Tween 80 are examples of surfactants that are 

used during dissolution to aid in the wetting process and allow for sink conditions. If 

IND-SAC were evaluated in a solution containing 5% w/w Tween 80 (0.40 m) the 

cocrystal would be only 1.1 times more soluble than the drug. This information could 

also be used to strategically design a suspension containing surfactant in which cocrystal 

is thermodynamically stable. Upon dosing the suspension, surfactant is diluted to allow 

for a predetermined solubility advantage relative to the drug. The eutectic measurement is 

useful to evaluate the cocrystal solubility, and Scocrystal/Sdrug at any surfactant 

concentration as well to estimate the cocrystal component equilibrium solubilization 

constants and the CSC.   

Conclusions  

The work presented here shows that cocrystal solubility and Scocrystal/Sdrug can be 

fine-tuned to achieve a target value using micellar solubilization and ionization. IND-

SAC solubility has a weaker dependence on micellar solubilization than the parent drug 
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due to the preferential solubilization of the drug relative to the coformer. For the first 

time, mathematical models that describe cocrystal solubility dependence on pH and 

surfactant concentration are used to rationalize surfactant selection to modulate cocrystal 

solubility and Scocrystal/Sdrug. Measured IND-SAC cocrystal solubilities were in excellent 

agreement with the predicted values in all surfactants studied when micellar 

solubilization of both drug and coformer were used in the solubility calculation. The 

surfactants studied were useful to increase Scocrystal and lower Scocrystal/Sdrug. Therefore the 

use of surfactants during the evaluation of cocrystals during dissolution should be 

carefully considered, and perhaps avoided until the cocrystal is confirmed to undergo 

solution-mediated transformation within a time frame that would be detrimental to the 

exposure of the drug. The presented mathematical models offer insight as to how any 

surfactant could potentially affect a given cocrystal using knowledge of the component 

solubilization constants, which can be approximated by a eutectic measurement in water 

and a eutectic measurement in a surfactant solution.  

Supplemental Information 

Solution-mediated transformation of IND-SAC during powder dissolution. 

(a) (b)  

Figure 2.13. Powder dissolution of 50 mg of sieved IND-SAC (45-106 µm) in 9 mL of 
pH 2.1 phosphate buffer at 25 ± 0.1°C.  (a) [IND]T measured as a function of time  (b) 
supersaturation  as a function of time determined as [IND]T divided by the solubility of 
IND γ in pH 2.1 phosphate buffer (ST

INDγ=2.85x10-6 m).18  
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Calculation of the CMC of Tween 80 and SLS in the presence of IND and SAC 
The CMC in the presence of the eutectic (IND-SAC/IND) was calculated from the 

intersection between the drug solubility [IND]T,eu=2.85x10-6 and the linear regression of 

the measured [IND]T,eu as a function of total surfactant concentration. Indomethacin was 

not solubilized at concentrations of Tween 80 that were above reported the CMC (1x10-6 

m);92 IND solubility was not enhanced in a solution containing 4.95x10-5 m Tween 80 

and was increased 2- fold in the presence of 9.96x10-5 m Tween 80.  The CMC was 

calculated to obtain the most accurate predictions of Scocrystal and Scocrystal /Sdrug as a 

function of surfactant concentration. 

 
Figure 2.14. Calculated CMC of Tween 80 occurs at 5.26x10-6 m. CMC calculated from 
intersection between [IND]T,eu=2.85x10-6 and the linear regression of the measured 
[IND]Teu as a function of total concentration of Tween 80.   The resulting equation from 
the linear regression is: y=6.7x 10-2X-6.7x10-7 
 

IND solubility was increased 43 fold in the presence of 0.008 m SLS even though the 

published range of the CMC is 0.005-0.008 m,93 indicating that the CMC is lower than 

0.008m. 
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Figure 2.15 The estimated CMC of SLS occurs at 0.0016 m. The measured [IND]T,eu 
increases linearly with increasing SLS in solution. Linear regression analysis was 
performed resulting in the solid line described by y=0.019X-2.67x10-5 m.  The 
intersection of this line with [IND]T,eu=2.85x10-6 is the estimated CMC.  The region in 
which the CMC occurs is magnified to show the intersection of the two lines. 
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Chapter 3  

Mechanisms of Cocrystal Solubilization in Biorelevant Media 

Introduction  
Cocrystals are of increasing interest lately because of their ability to enhance and 

fine-tune the aqueous solubility of inherently insoluble drugs that are otherwise difficult 

to develop. Pharmaceutical cocrystals enhance solubility by several orders of 

magnitude,4,7,74,95 and in some cases achieve dissolution levels as high or higher than the 

amorphous solid.1,8,97 Demonstration of improved bioavailability of cocrystals in vivo is 

scarce,6,7,19,21,74 in part due to poor formulations and lack of understanding of cocrystal 

behavior under biorelevant conditions.   

Cocrystal solubility and Scocrystal/Sdrug is highly dependent on the solution 

interactions of the cocrystal components such as ionization and micellar solubilization.14-

17,47 We have recently shown that cocrystal solubility increases with the concentration of 

sodium lauryl sulfate (SLS) in solution, while Scocrystal/Sdrug decreases with increasing 

SLS.15-17,47 When Scocrystal/Sdrug = 1 the critical stabilization concentration (CSC) of SLS is 

achieved.  Above the CSC, the cocrystal is thermodynamically stable relative to the 

parent drug.15-17  Four different cocrystals of carbamazepine were found to be 

thermodynamically stable in solutions containing SLS above the CSC.16  

The bile salt sodium taurocholate (NaTC) and the phospholipid lecithin, found in 

simulated intestinal fluid, are reported to form mixed micelles.67 The aim of this work 

was to evaluate how these physiologically relevant mixed micelles influence Scocrystal/Sdrug 

and whether they are capable of stabilizing cocrystals. Among the commonly used 

biorelevant media, the highest concentration of NaTC and lecithin is found in Fed State 

Simulated Intestinal Fluid version 1 (FeSSIF).98 While there is an updated version 

(FESSIF-V2),64 it contains a lower concentration of NaTC and lecithin and was therefore 

not used for this study. 
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Drugs that are hydrophobic and highly permeable (BCS class II) often exhibit 

higher solubilities in FeSSIF compared to aqueous buffers at the same pH.62,99-101 The 

BCS class II drugs IND and CBZ are reported to be 7 and 1.8 times more soluble in 

FeSSIF compared to acetate buffer (FeSSIF without surfactant) due to micellar 

solubilization.101,102 These drugs were selected because they form cocrystals and exhibit 

different hydrophobicities. IND (log P=4.4)81 is more hydrophobic than CBZ (log P = 

2.7).82 As a result, the solubility increase due to micellar solubilization is higher for IND 

relative to CBZ. Cocrystals of both drugs are reported in the literature and their 

solubility-pH dependence has been evaluated.14,18  

Knowledge of the cocrystal equilibrium solubility in FeSSIF and acetate buffer 

provides the opportunity to anticipate the influence of mixed micelles on Scocrystal/Sdrug 

and is useful to predict the initial supersaturation with respect to drug that a cocrystal 

may attain.  Is it possible that under fed state conditions a cocrystal may be less soluble 

than the drug?  Will a cocrystal that transforms quickly in aqueous media have a slower 

conversion time in FeSSIF due to a decrease in Scocrystal/Sdrug? Cocrystal powder 

dissolution is routinely assessed in biorelevant media without knowledge of the effects of 

the ingredients on the cocrystal solution chemistry.10,74,76 Knowledge of cocrystal 

equilibrium solubility in biorelevant media is necessary to examine the mechanisms by 

which cocrystal solubility is influenced. The ability to predict the influence of solution 

conditions on cocrystal solubility would provide a useful tool to guide the evaluation and 

development of cocrystals.  

The work presented here shows for the first time the mechanisms that influence 

the equilibrium solubility of cocrystals in FeSSIF compared to acetate buffer. 

Mathematical models describing cocrystal solubility dependence on ionization and 

micellar solubilization have been reported in the literature for cocrystals of a wide variety 

of ionization properties and stoichiometries in buffered and nonbuffered aqueous 

systems.15-17 These reported mathematical models were used to predict the contributions 

of micellar solubilization and ionization to overall cocrystal solubility in FeSSIF based on 

the solubility of the cocrystal components in FeSSIF and acetate buffer. The predicted 

solubilities were compared to the stoichiometric cocrystal solubility determined from 

eutectic measurement. The solution-mediated transformation of cocrystal to parent drug 
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was evaluated in FeSSIF and acetate buffer when Scocrystal/Sdrug was found to be 

significantly lower in FeSSIF relative to acetate buffer. 

The cocrystals selected for this study make up both 1:1 and 2:1 cocrystal 

stoichiometries, and contain components of various hydrophobicities and ionization 

behavior.   The cocrystals studied include: 1:1 carbamazepine-saccharin (CBZ-SAC), 1:1 

carbamazepine-salicylic acid (CBZ-SLC), 2:1 carbamazepine 4-aminobenzoic acid 

hydrate, (CBZ-4ABA (H)) and 1:1 indomethacin-saccharin (IND-SAC). SAC (pKa 1.6-

2.2),89  SLC (pKa 3.0)103,104 and IND (pKa 4.2)48 are monoprotic acids. 4ABA (pKa 2.6 

and 4.8)105 is amphoteric and CBZ is nonionizable. All cocrystals studied have reported 

solubility products in aqueous media.  Under nonionizing conditions, the CBZ cocrystals 

are 2.4-2.5 times more soluble than the parent drug and undergo solution-mediated 

transformation to CBZ (H) in water.14,18 IND-SAC is reported to be 13 times more 

soluble than IND under nonionizing conditions and also undergoes solution–mediated 

transformation in water.18  The IND-SAC and CBZ cocrystals become increasingly more 

soluble than the parent drug as pH increases.   

Materials and Methods 
Materials 

Anhydrous monoclinic form III carbamazepine (CBZ (III)) and anhydrous form γ 

indomethacin (IND) were purchased from Sigma Chemical Company (St. Louis, MO) 

and used as received.  Carbamazepine dihydrate (CBZ (H)) was prepared by slurrying 

CBZ (III) in water for at least 24 h.  The cocrystal coformers saccharin (SAC), 4-

aminobenzoic acid (4ABA), and salicylic acid (SLC), were purchased from Sigma 

Chemical Company (St. Louis, MO) and used as received.  All crystalline drugs and 

coformers were characterized by X-ray power diffraction (XRPD) and differential 

scanning calorimetry (DSC) before carrying out experiments.  

FeSSIF was prepared using sodium taurocholate (NaTC) purchased from Sigma 

Chemical Company (St. Louis, MO), lecithin purchased from Fisher Scientific 

(Pittsburgh, PA), sodium hydroxide (NaOH) purchased from J.T. Baker (Philipsburg, 

NJ), and acetic acid and potassium chloride (KCl) purchased from Acros (Pittsburgh, 

PA). Ethyl acetate, ethanol and potassium chloride were purchased from Acros 

(Pittsburgh, PA) and used as received, and HPLC grade methanol and acetonitrile were 
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purchased from Fisher Scientific (Pittsburgh, PA).  Water used in this study was filtered 

through a double deionized purification system (Milli Q Plus Water System) from 

Millipore Co. (Bedford, MA). 

Cocrystal Synthesis 
Cocrystals were prepared by slurry suspension. The indomethacin-saccharin (IND-SAC) 

cocrystal was synthesized by adding 1.1985 g of IND γ and 0.6181 g SAC (cocrystal 

components in a 1:1 molar ratio) to 10 ml of 0.05 m SAC solution in ethyl acetate.  The 

carbamazepine saccharin cocrystal (CBZ-SAC) was prepared by adding 1.12 g of CBZA 

and 0.87 g SAC to 10 ml of 0.05 m SAC solution in ethanol. The carbamazepine-salicylic 

acid cocrystal (CBZ-SLC) was prepared by adding 1.26 g CBZA and 0.40 g of SLC to a 

10 ml solution of 0.01 m SLC solution in acetonitrile. The carbamazepine-4-

aminobenzoic acid monohydrate cocrystal (CBZ-4ABA (H)) was prepared by suspending 

1.50 g CBZA and 0.44 g 4ABA in a 0.01 m 4ABA aqueous solution at pH 3.9. Solid 

phases were characterized by XRPD and full conversion to cocrystal was achieved in 24 

hrs. 

Solubility Studies 
Solubility studies were performed at 25 ± 0.1°C with the pure drug and the selected 

cocrystals.  Solubilities were measured in Fed State Intestinal Fluid (FeSSIF) and acetate 

buffer (FeSSIF without NaTC and lecithin) which both exhibit a pH of 5.  FeSSIF and 

acetate buffer were prepared in accordance to the protocol of Galia and coworkers.58,98 

Fresh FeSSIF was prepared by dissolving 0.41 g sodium taurocholate in 12.5 mL of pH 5 

acetate buffer.  0.148 g lecithin was added with magnetic stirring at 37 °C until dissolved.  

The volume was adjusted to exactly 50 mL with acetate buffer. Acetate buffer was 

prepared as a stock solution at room temperature by dissolving 8.08 g NaOH (pellets), 

17.3 g glacial acetic acid and 23.748 g NaCl in 2 L of purified water.  The pH was 

adjusted to 5.00 with 1 N NaOH and 1N HCl.   

Cocrystal equilibrium solubility was evaluated at the eutectic point, where drug 

and cocrystal solid phases are in equilibrium with solution.  The eutectic point between 

cocrystal and drug was approached by cocrystal dissolution (suspending solid cocrystal 

(100 mg) and drug (50 mg) in 3 mL of media) and by cocrystal precipitation (suspending 

solid cocrystal (50 mg) and drug (100 mg) in 3 mL of media saturated with coformer).  
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Vials were maintained with magnetic stirring at 25 ± 0.1°C for up to 96 h. A detailed 

discussion of eutectic point measurements has been presented elsewhere.4,95 All studies 

were conducted at 25 ± 0.1°C by keeping vials in a temperature controlled water bath. At 

24 hour time intervals solution pH was measured and 0.25 mL of samples were collected 

and filtered through 0.45 mm membrane, and diluted with mobile phase. Drug and 

coformer concentrations were analyzed by HPLC.  The final solid phases were 

characterized by XRPD and DSC. 

The solubilities of the cocrystal components were determined by adding excess 

solid to 3 mL of media.  Solutions were magnetically stirred and maintained at 25 ± 

0.1°C using a water bath for up to 96 h.  At 24 hour time intervals solution pH was 

measured and 0.25 mL of samples were collected and filtered through 0.45 mm 

membrane, and diluted with mobile phase. Solution concentrations were analyzed by 

HPLC. The final solid phase was characterized by XRPD and DSC. 

Cocrystal dissolution studies 

250 mg of sieved cocrystal fraction (45-106 µm) was suspended in 30 mL of FeSSIF or 

acetate buffer at 25 ± 0.1°C.  The resulting slurry was stirred at 150 rpm using an 

overhead stirrer. Aliquots were withdrawn and filtered through a 0.45 µm PVDF syringe 

filter. Solution concentrations were analyzed by HPLC.  Final solid phases were 

characterized by XRPD and DSC. 

High-Performance Liquid Chromatography 
The solution concentrations were analyzed by Waters HPLC (Milford, MA) equipped 

with an ultraviolet-visible spectrometer detector. A C18 Thermo Electron Corporation 

(Quebec, Canada) column (5µm, 250 x 4.6 mm) at ambient temperature was used. The 

injection sample volume was 20 µl and the IND-SAC cocrystal was analyzed using an 

isocratic method with a mobile phase composed of 70% acetonitrile and 30% water with 

0.1% trifluoroacetic acid and a flow rate of 1 ml/min. Absorbance of IND and SAC were 

monitored at 265 nm. The carbamazepine cocrystals were analyzed using an isocratic 

method with a mobile phase composed of 55% methanol and 45% water with 0.1% 

trifluoroacetic acid and a flow rate of 1 mL/min. Absorbance was monitored as follows: 

CBZ and 4ABA at 284, IND and SAC at 265 and SLC at 303. Waters’ operation 
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software, Empower 2, was used to collect and process the data.  All concentrations are 

reported in molality (moles solute/kilogram solvent) unless otherwise indicated.    

X-ray Powder Diffraction 

X-ray powder diffraction diffractograms of solid phases were collected with a benchtop 

Rigaku Miniflex X-ray diffractometer (Rigaku, Danverse, MA) using Cu Kα radiation 

(λ= 1.54Å), a tube voltage if 30 kV, and a tube current of 15 mA.  Data were collected 

from 5 to 40° at a continuous scan rate of 2.5°/min. 

Thermal Analysis 
Solid phases collected from the slurry studies were dried and analyzed by differential 

scanning calorimetry (DSC) using a TA instrument (Newark, DE) 2910MDSC system 

equipped with a refrigerated cooling unit.  DSC experiments were performed by heating 

the samples at a rate of 10 °C/min under a dry nitrogen atmosphere.  Temperature and 

enthalpy calibration of the instruments was achieved using a high purity indium standard. 

Standard aluminum sample pans were used for all measurements.  

Results  

Prediction of cocrystal solubilization from drug solubilization in FeSSIF 

The solubility of a cocrystal of general stoichiometry, AxBy, composed of drug A 

and coformer B in surfactant solution has been derived previously by considering the 

following equilibria and equilibrium constants for cocrystal dissociation  

AxBysolid xA+yB 

Ksp= A x[B]y 

and cocrystal component micellar solubilization 

Asolid+M Am   

KsA=
[A]m

[A]aq[M]
 

Bsolid+M Bm   

KsA=
[B]m

[B]aq[M]
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The cocrystal solubility enhancement due to micellar solubilization is reported to relate to 

the drug solubility enhancement according to 

SAxBy,T
SAxBy,aq

=
SA,T
SA,aq

x
x+y

          (3.1) 

Equation (3.1) assumes that the coformer is not solubilized, that there is no solution 

complexation or self association affecting the solubility of the cocrystal components and 

that the increase in drug solubility is due to micellar solubilization only.16 According to 

equation (3.1), the cocrystal solubility enhancement is less than that of the drug. This 

relationship was observed for cocrystals of carbamazepine in solutions of SLS, and is 

now being evaluated for the cocrystal solubility enhancement by physiologically relevant 

mixed micelles of NaTC and lecithin. The solubility enhancement of the cocrystal is 

predicted to be higher than that calculated by equation (3.1) when the coformer is 

solubilized. 

The equilibrium solubilities of IND-γ and CBZ (H) in FeSSIF and buffer at 25°C 

are shown in Table 3.1. Results show that the drug solubilities are higher in FeSSIF 

relative to acetate buffer. The increase in solubility in FeSSIF relative to buffer has been 

shown to correlate with the hydrophobicity of a drug as measured by log P.62,100,101  The 

solubility of CBZ (H) (log P =2.7) is 1.8 times higher in FeSSIF relative to buffer while 

IND γ (log P=4.4) is 16 times higher.  Thus the more hydrophobic drug, IND γ, has a 

higher solubility increase in FeSSIF. These results are in agreement with the solubilities 

reported in the literature at 25°C.99,100 

Table 3.1. Measured drug solubility in pH 5 FeSSIF and acetate buffer used to 
predict SFeSSIF/Sbuffer of 1:1 and 2:1 cocrystal. 

 IND γ (m) 
(pH) CBZ (H) (m) 

Intrinsic (Sun)a (2.85±0.03) x10-6 (4.6±0.07) x10-4 

Sbuffer
b (2.3±0.1) x10-5 

(4.95±0.01) (4.2±0.2) x10-4 

SFeSSIF
b (3.7±0.2)x10-4 

(4.97±0.06) (7.5±0.2) x10-4 
SFeSSIF
Sbuffer drug,  expt

 16±1 1.8±0.1 

SFeSSIF
Sbuffer  cocrystal  (1:1),  pred

 4.0±0.1 1.34±0.04 
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SFeSSIF
Sbuffer  cocrystal  (2:1),pred

 6.4±0.3 1.5±0.1 

(a) Reported in literature for IND18,48,106 and CBZ94 
(b) Values are in agreement with reported solubilities in FeSSIF and buffer. 

While IND solubility is 16 times higher in FeSSIF than buffer, a 1:1 cocrystal of 

IND is predicted to be only 4 times higher and a 2:1 cocrystal is predicted to be only 6.4 

times higher. Carbamazepine exhibits a solubility increase of 1.8-fold in FeSSIF relative 

to buffer, whereas a 1:1 cocrystal of CBZ is predicted to increase by 1.3 fold and a 2:1 

cocrystal is expected to increase by 1.5 fold. The solubilities of cocrystals of CBZ and 

IND were measured in FeSSIF and buffer to compare with the predicted behavior. The 

solubility dependence of CBZ-SAC, CBZ-SLC, CBZ-4ABA (H) and IND-SAC on [H+] 

have been evaluated and successfully predicted by mathematical models derived from the 

equilibria for cocrystal dissociation and ionization of the components.14,18 The solubility 

dependence of a 1:1 cocrystal RHA (nonionizable drug R, and acidic coformer HA) such 

as CBZ-SAC and CBZ-SLC on [H+] can be calculated from 

ST
RHA= KspRHA 1+

KaHA

[H+]
         (3.2) 

where Ksp is the solubility product of the cocrystal, Ka
HA is the ionization constant of the 

acidic coformer and [H+] is a measure of the solution acidity with is related to the 

solution pH according -log[H+].  

The reported solubility dependence of a 1:1 cocrystal HDHA (acidic drug HD, 

and coformer HA) on [H+], such as IND-SAC is described by 

ST
HDHA= KspHDHA 1+

KaHD

[H+]
1+
KaHA

[H+]
       (3.3) 
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where Ka
HD is the ionization constant of the drug and Ka

HA is the ionization constant of 

the coformer. The reported solubility dependence of the 2:1 cocrystal R2HAB on [H+], 

such as CBZ-4ABA (H) is  

ST
R2HAB= KspR2HAB 1+

Ka-AB

[H+]
+
[H+]

KaHABH
+

3
       (3.4) 

where the Ka
-AB and Ka

HABH+ are the ionization constants of the amphoteric coformer.  

Table 3.2 shows the reported Ksp values that were used to calculate Scocrystal from 

equations (3.2)-(3.4).  Scocrystal/Sdrug was also calculated at pH 5 by dividing the calculated 

Scocrystal by the measured Sdrug at pH 5.  The CBZ cocrystals are 4.4 to 120 times more 

soluble than the parent drug and the IND-SAC cocrystal is 220 times more soluble than 

the parent drug at pH 5. All of the cocrystals in this study are more soluble than the 

parent drug, and therefore the cocrystal equilibrium solubility was evaluated from the 

component solution concentrations in equilibrium at the eutectic point between cocrystal 

and drug.4,14,95 

Table 3.2. Cocrystal solubility and Scocrystal/Sdrug at pH 5 calculated from Ksp 
Cocrystal Ksp

a Scocrystal (m) b Scocrystal/Sdrug
c  Reference 

IND-SAC (1.38±0.09) x10-9 m2 (5.0±0.8) x10-3 220 ± 40 18 
CBZ-SAC (1.00±0.05) x10-6 m2 (5.0±0.6) x10-2 120 ± 30 18 
CBZ-SLC (1.13±0.05) x10-6 m2 (1.0±0.3) x10-2 25 ± 6 14 

CBZ-4ABA (H) (1.2±0.2) x10-9 m3 (1.8±0.1) x10-3 4.4 ± 0.3 14 
(a) Reported Ksp of CBZ-SAC and IND-SAC evaluated from nonlinear regression of coformer 
eutectic dependence on pH (pH 1-3, 25 °C).18  Reported Ksp of CBZ-SLC and CBZ-4ABA (H) 
evaluated from linear regression of coformer eutectic dependence on pH (water pH 1-4, and water 
pH 1-5 respectively, 25°C).14 
(b) Calculated from equation (3.2) for CBZ-SAC and CBZ-SLC, equation (3.3) for IND-SAC and 
equation (3.4) for CBZ-4ABA-HYD using Ksp and the following pKa values: SAC 1.6,89 IND 
4.2,48 SLC 3.0,103,104 and 4-ABA 2.6 and 4.8.105 
(c) Ratio of calculated Scocrystal over the measured drug solubility in Table 3.1.  

Evaluation of cocrystal solubility in FeSSIF and buffer 

Equilibrium cocrystal solubilities were measured at the eutectic points where solid 

drug and cocrystal are in equilibrium with the solution phase. The measured component 

concentrations at the eutectic and the stoichiometric cocrystal solubility in FeSSIF and 

buffer are shown in Table 3.3. For all the cocrystals studied, the [coformer]eu>[drug]eu, 

Table 3.3. Cocrystal stoichiometric solubility in FeSSIF and buffer determined from 
solution concentrations in equilibrium at the eutectic point with cocrystal and drug. 

Media Cocrystal [drug]eu 
(mM) 

[coforme
r]eu (mM) 

Scocrystal  
(mM)a 

Scocrystal
Sdrug

b pH 

 IND-SAC 0.15±0.02	
   87±4 3.6±0.2 24 ± 1 3.65±0.05 
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 CBZ-SAC 1.07±0.03 95.9±0.3 10.1±0.1 9.5±0.1 3.11±0.02 

FeSSIF CBZ-SLC 0.91±0.02 49.9±0.6 6.71±0.0
9 7.4±0.1 4.29±0.02 

 CBZ-4ABA (H) 0.74±0.03 15.6±0.4 2.57±0.0
5	
   3.5±0.1 4.94±0.02 

 IND-SAC 0.006±0.0003 104±10 0.79±0.0
3 132 ± 4 3.66±0.02 

 CBZ-SAC 0.78±0.05 124±20 9.8±0.3 12.6 ± 
0.4 3.08±0.03 

buffer CBZ-SLC 0.51±0.02 50±1 5.1±0.1 9.9±0.2 4.29±0.02 

 CBZ-4ABA (H) 0.44±0.02 13.1±0.4 1.73±0.0
6 3.9±0.1 4.84±0.03 

(a) Calculated from equation (2.10) for a 1:1 cocrystal and equation (3.6) for a 2:1 cocrystal.  
(b) Calculated from Scocrystal/[drug]eu 

which means that Scocrystal>Sdrug.4,95 Cocrystals that exhibit Scocrystal=Sdrug exhibit 

[coformer]eu/[drug]eu equal to 1 for a 1:1 and equal to 0.5  for  a 2:1 cocrystal which 

requires that [coformer]eu ≤ [drug]eu. The CBZ cocrystals exhibited [coformer]eu that was 

21-90 times higher than the [drug]eu in FeSSIF and 30-158 times higher than the [drug]eu 

in buffer. The IND-SAC cocrystal exhibits the largest [coformer]eu/[drug]eu compared to 

the other cocrystals; the [coformer]eu is 1.7x104 times higher than the [drug]eu in buffer 

and is only 5.9 x102  times higher in FeSSIF.  This indicates that Scocrystal/Sdrug is higher in 

buffer relative to FeSSIF. 

Stoichiometric cocrystal solubilities were determined from the drug and coformer 

solution concentrations in equilibrium at the eutectic point,16 according to 

ST
1:1 cocrystal= [drug]T,eu  [coformer]T,eu          (3.5) 

for a 1:1 cocrystal, and  

ST
2:1 cocrystal=2

[drug]T,eu
2

 
[coformer]T,eu  
4

3

       (3.6) 

for a 2:1 cocrystal. 

The stoichiometric cocrystal solubilities in buffer at pH 5 determined by eutectic point 

measurement were lower than that predicted in Table 3.2 for all cocrystals except CBZ-

4ABA (H).  The eutectic point measurements of cocrystals containing acidic coformers 

equilibrated at a solution pH lower than 5, which explains why the experimental 

solubilities are lower than the predicted solubilities at pH 5. CBZ-4ABA (H) was the only 

cocrystal that equilibrated to pH 5 during the eutectic point measurement.  The 
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experimental solubility of CBZ-4ABA shown in Table 3.3 is in excellent agreement with 

that predicted in Table 3.2. 

Figure 3.1 shows that all of the CBZ cocrystals have a higher solubility compared 

to CBZ (H) in both media. The CBZ-SAC cocrystal had the highest solubility relative to 

CBZ (H) in both media. The CBZ (H) and CBZ cocrystals studied have a higher 

solubility in FeSSIF compared to buffer, except for CBZ-SAC. The SFeSSIF/Sbuffer is 

shown next to the solubility bars to quantify the solubility enhancement due to micellar 

solubilization for each drug and cocrystal.  CBZ (H) solubility was found to be 1.8 times 

higher in FeSSIF compared to buffer. The experimental cocrystal solubility was found to 

be 1.3 and 1.5 times higher in FeSSIF compared to buffer for CBZ-SLC (1:1) and CBZ-

4-ABA (H) (2:1) respectively which is in agreement with the findings from equation (3.1) 

shown in Table 3.1.16 

 
Figure 3.1.Drug and cocrystal solubilities evaluated in FeSSIF and buffer at 25 °C. The 
stoichiometric cocrystal solubilities were calculated from measured pH and component 
concentrations at the eutectic point (Table 3.3) using equation (3.5) for 1:1 cocrystals and 
equation (3.6) for the 2:1 cocrystal as described in the methods section. The final pH of 
the cocrystal solubility measurement was lower than the initial pH 5 of FeSSIF: CBZ-
4ABA (H) (4.89±0.06), CBZ-SLC (4.32±0.04), CBZ-SAC (3.09±0.01) and IND-SAC 
(3.65±0.04).  The final pH of the drug solubility measurements was 5. 
 

The IND-SAC cocrystal was more soluble than its parent drug in both FeSSIF and 

buffer. The solubility increase of both IND and IND-SAC in FeSSIF compared to buffer 

was more than that observed for CBZ (H). IND solubility is 16 times higher in FeSSIF 

relative to buffer. The experimental IND-SAC cocrystal solubility was 4.6 times higher in 
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FeSSIF relative to buffer.  This is in agreement with the predicted cocrystal solubility 

enhancement based on equation (3.1), which is shown in Table 3.1.  Therefore cocrystal 

solubility enhancement due to micellar solubilization compared to buffer of both 

ionizable and nonionizable cocrystals can be estimated by equation (3.1) based on the 

observed solubility enhancement of the parent drug assuming the two media equilibrate 

to the same pH. 

Prediction of cocrystal solubility in FeSSIF from cocrystal Ksp and Ks
drugT 

We have derived mathematical models that describe the contributions of micellar 

solubilization and ionization of the cocrystal components to the cocrystal solubility in 

previous publications.16,17 Table 3.4 summarizes the equations that describe cocrystal 

solubility for the 1:1 RHA, 1:1 HDHA and 2:1 R2HAB cocrystals.  These equations 

assume the drug solubility increases linearly with increasing  

Table 3.4. Equations that describe cocrystal solubility in FeSSIF  
Cocrystal Solubility Equation  

CBZ-SAC 
CBZ-SLC ST

RHA= Ksp
RHA 1+Ks

R[M] 1+
Ka
HA

[H+]
+ KsHA,T[M]    (3.7) 

IND-SAC ST
HDHA= Ksp

HDHA 1+
Ka
HD

[H+]
+Ks

HD,T[M] 1+
Ka
HA

[H+]
+ KsHA,T[M]  (3.8) 

CBZ-4ABA (H) ST
R2HAB=2x

Ksp
R2HAB

4
1+Ks

R[M]
2
1+
Ka
-­‐AB

[H+]
+
[H+]

Ka
HABH+

+ KsHAB,T[M]
3

 (3.9) 

 

NaTC and lecithin maintaining a 4:1 ratio of NaTC to lecithin, which is the ratio utilized 

to make FeSSIF.58 This assumption was made based on the observed drug solubilization 

by NaTC and lecithin in a 4:1 ratio reported in the literature.  For example, the solubility 

of halofantrine increases linearly in a range of 3.75-30 mM NaTC maintaining a 4:1 ratio 

of NaTC:lecithin.107 and the solubility of hydrocortisone also increases linearly in a range 

of 3.72-15 mM of NaTC containing lecithin in a 4:1 ratio.60 FeSSIF contains 15 mM of 

NaTC, thus this concentration is in the linear range of 4:1 NaTC:lecithin mixed micelles. 

Table 3.5 shows the predicted cocrystal solubilities compared to the experimental 

cocrystal solubilities in FeSSIF and buffer. Equations (3.7), (3.8), and (3.9) were used to 

predict the cocrystal solubility in FeSSIF from the Ksp and component Ka values (Table 
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3.2) and the drug Ks values (Table 3.6). The cocrystal solubility was predicted at the 

equilibrium eutectic pH (Table 3.3) for the sake of comparison to the solubility evaluated 

from the eutectic point measurements. The equilibrium pH at the eutectic point was lower 

than the initial media (pH 5) for cocrystals containing acidic coformers.  These coformers 

have pKa values that are 2 or more pH units lower than pH 5 (SAC pKa=1.6,18 SLC pKa= 

3.0). The predicted cocrystal solubilities are in good agreement with the observed values 

in both FeSSIF and buffer.   

Table 3.5. Comparison of predicted and experimental cocrystal solubilities in FeSSIF 

 Scocrystal,FeSSIF (mM) Eutectic 
pH Scocrystal,buffer(mM) Eutectic 

pH 
Cocrystal predicted experimental  predicted experimental  
IND-SAC 2.88 	
   3.6±0.2 3.65±0.05 0.48 0.79±0.02 3.66±0.02 
CBZ-SAC 7.53 10.1±0.1 3.11±0.02 5.59 9.8±0.3 3.08 ±0.03 
CBZ-SLC 6.28 6.71±0.09 4.29±0.02 5.26 5.0±0.1 4.37±0.02 

CBZ-4ABA(H) 2.63 2.57±0.05 4.94±0.02 1.84 1.73±0.06 4.84±0.03 
The predicted cocrystal solubilities in FeSSIF and buffer are plotted against the 

observed solubility in Figure 3.2 and compared to the dotted line representing the 

function y=x.  Data points that fall above the dotted line indicate that the solubility is 

over predicted while those that fall below are under predicted. The solubilities of CBZ-

SLC and CBZ-4ABA (H) are very close to the line while the solubilities of the SAC 

cocrystals were under predicted.  The predicted SAC cocrystal solubilities in buffer were 

less accurate than those in FeSSIF and the higher the [coformer]eu the less accurate the 

prediction.  The SAC cocrystals exhibited [coformer]eu ranging from 86-124 mM, shown 

in Table 3.3. CBZ-SLC and CBZ-4ABA (H) had lower [coformer]eu values ranging from 

50-51 mM and 13-15mM respectively(Table 3.3).  
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Figure 3.2.  Comparison of predicted and observed cocrystal solubility in FeSSIF (closed 
symbols) and buffer (open symbols) at the equilibrium eutectic pH for IND-SAC (u) 
CBZ-SAC (n) CBZ-SLC (p) and CBZ-4-ABA(H) (�).  Errors associated with 
measured solubilities range from 1-6% of the measured value. 

Coformer concentrations much higher than the stoichiometric coformer 

concentration can lead to errors due to non-ideal behavior during the Scocrystal evaluation.  

Consideration of solution complexation, component activities, hydrotropy or other 

solution interactions may need to be considered to obtain a more accurate prediction.4,95 

Other cocrystals reported to have a [coformer]eu in this range are CBZ-NCT and CBZ-

GTA, both of which are under predicted by solubility models due to non-ideal behaviors.  

Drug solubility may be affected at high coformer concentrations, which can be identified 

by the eutectic measurement when [drug]eu>Sdrug. This may also occur due to 

supersaturation generated when approaching the eutectic point from cocrystal dissolution 

and drug precipitation. Approaching the eutectic from cocrystal precipitation and drug 

dissolution should avoid generating supersaturation with respect to drug. According to 

Table 3.3, the [drug]eu >Sdrug at the eutectic point measurements for both of the SAC 

cocrystals which may contribute to the difference between the predicted and the 

experimental Scocrystal.   

 The micellar solubilization constants, Ks values, were needed in order to predict 

the cocrystal solubilities in FeSSIF.  The Ks values, were calculated from the measured 

component solubilities in FeSSIF and buffer, which are plotted in Figure 3.3. The 

coformer solubilities were not statistically different in FeSSIF compared to buffer 
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(p<0.05) and therefore Ks=0 for SAC, SLC and 4-ABA in FeSSIF. The hydrophobic 

drugs were solubilized by the mixed micelles in FeSSIF while the hydrophilic coformers 

were not.  Similar behavior has been reported for CBZ cocrystal components in solutions 

of SLS.15-17,47   

 
Figure 3.3. Component solubilities in FeSSIF, buffer at 25 °C. The final pH of the 
coformer solubility measurement was lower than the initial pH 5 of FeSSIF: 4-ABA 
(4.6±0.1), SLC (3.7±0.1), and SAC (2.60±0.01). The final pH of the drug solubility 
measurements were 5. 

 

The solubility enhancement of CBZ (H) and IND γ in FeSSIF relative to buffer 

due to micellar solubilization was quantified based on reported mathematical models.16 

The micellar solubilization of a nonionizable drug like CBZ (H) is described by the 

following equilibria and equilibrium constant:  

Rsolid
SR,aq

Raq           (3.10) 

Raq+M
!! Rm           (3.11) 

KsR=
R m

[R]aq [M]
           (3.12) 

The drug solubility in FeSSIF is described by  
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SR =SR,aq(1+KsR[M])           (3.13) 

The Ks of CBZ (H) is assumed to be pH independent as CBZ (H) is nonionizable. The 

solubility of a monoprotic acidic drug in an aqueous surfactant solution is affected by the 

following equilibria and equilibrium constants.86,87 

HD Haq+ +Daq-           (3.14) 

KaHD=
[H+][D-]
[HD]           (3.15) 

HDaq+M HDm          (3.16) 

KsHA=
[HD]m

[HD]aq[M]
          (3.17) 

Daq- +M Am
-            (3.18) 

KsD-=
[D-]m

[D-]aq[M]
          (3.19) 

The ionization and micellar contributions to the monoprotic acidic drug solubility 

in a surfactant solution is thus described by87  

ST
HD=Saq

HD 1+
KaHD

[H+]
+ KsHD+

KaHD

[H+]
KsD- M       (3.20) 

KsHDT=  Ks
HD
+
KaHD

[H+]
KsD-         (3.21) 

The total micellar solubilization constant of IND, Ks
HDT, exhibits a pH dependence when 

Ks
D- is not zero according to equation (3.20). In this study, the Ks

HDT of IND was 

quantified from the drug solubility in FeSSIF and buffer, at pH 5, and at the equilibrium 

pH observed at the eutectic, as shown in Table 3.6. Ks
HDT can be determined at a given 

[H+], without solving for the individual Ks
HD and Ks

D-. When the total solubility (ST
HD) 

unionized solubility (Saq
HD), Ka, [M] and [H+] are known, the Ks

HDT can be solved 

according to 
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KsHD,T=

ST
HD

Saq
HA -1-

Ka
HD

[H+]

[M]
          (3.22) 

Equation (3.22) was obtained by substituting equation (3.21) into equation (3.20) and 

solving for Ks
HDT. 

The cocrystal component solubilities shown in Table 3.6 were used to calculate 

the Ks for each component.  Ks values of CBZ (H) and IND γ were calculated using 

equation (3.13) and (3.22) respectively. While the coformers in this study were not 

solubilized by the components of FeSSIF and Ks=0, this may not always be the case.  The 

appendix outlines the equations necessary to calculate the Ks of acidic, and amphoteric  

Table 3.6. Cocrystal component solubilities and pKa values used to calculated Ks. 
Component SFeSSIF (mM) 

Final pH 
Sbuffer (m) 
 Final pH 

pKa Ks (m-1) a 

 

CBZ(H) 0.75±0.02)  
4.86±0.05 

(4.20±0.2) x10-4 

4.95±0.01 --- 53 ± 5b 

IND γ 0.37±0.02 

4.97±0.06 
(2.3±0.1) x10-5 

4.96±0.03 4.2b 6700 ± 600c 

IND γ 0.15± 0.02 

3.65±0.05 
(6.0± 0.3) x10-6 

3.66±0.02  3300 ±300c 
 

SAC 105.3±0.5 

2.60±0.02 
110±1 

2.58±0.02 1.6b 0d 

SLC 108.2±0.9 

3.78±0.03 
97±1 

3.58±0.06 3.0b 0 d 

4-ABA 80.0±0.9 

4.72±0.02 
64.4±0.8 

4.57±0.04 2.6,4.8b 0 d 
(a) Ks

R was evaluated according to equation (3.13) for CBZ, where SR,aq is the solubility in buffer 
and Ks

HD,T according to equation (3.19) for IND where Saq
HD is the reported unionized solubility 

(2.85x10-6 m).18,48 
(b) References for pKa values: 
(c) Statistically significant difference in solubilities in FeSSIF compared to buffer, p < 0.05 
(d) Statistically insignificant difference in solubilities in FeSSIF compared to buffer, p > 0.05 

 

coformers for the interested reader. The measured Ks
 of CBZ (H) in FeSSIF is 9.8 times 

lower than in SLS.15,16 The Ks
HDT for IND was evaluated at pH 5 as well as pH 3.65 (pH 

of eutectic measurement) to examine whether the solubilization was pH-dependent.  

Under both pH conditions IND has a much higher Ks than CBZ(H) because it is 

solubilized to a greater extent by NaTC and lecithin micelles. As shown in Table 3.6, The 

Ks
HDT (pH 5) >Ks

HDT (pH 3.65), therefore the micellar solubilization of IND by NaTC 

and lecithin is pH-dependent. 
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Relationship between the eutectic constant, Keu, and Scocrystal/Sdrug 
 

The eutectic constant, Keu, is a parameter that can be evaluated directly from the 

measured cocrystal component concentrations at the eutectic point for a 1:1 cocrystal and 

a 2:1 cocrystal according to 

Keu=
[coformer]eu
[drug]eu

           (3.23) 

We have shown in previous publications that the eutectic constant is a function of 

Scocrystal/Sdrug.95 For a cocrystal AyBz, composed of drug A and coformer B, with y and z 

indicating the stoichiometry, the general equation relating Keu to Scocrystal/Sdrug is 

Keu=zyy/z
Scocrystal
Sdrug

y+z
z

         (3.24) 

Thus for a 1:1 cocrystal AB 

Keu=
Scocrystal
Sdrug

2

          (3.25) 

The Keu values of the 1:1 cocrystals are plotted against the predicted Scocrystal/Sdrug. 

Scocrystal/Sdrug can be calculated from 

Scocrystal
Sdrug

RHA

=
KspRHA 1+KsR[M] 1+ Ka

HA

[H+]
+ KsHAT[M]

SR,aq 1+KsR[M]
     (3.26) 

for a 1:1 cocrystal RHA, such as CBZ-SAC and CBZ-SLC.  The Scocrystal/Sdrug of a 1:1 

cocrystal HDHA is 

Scocrystal
Sdrug

HDHA

=
KspHDHA 1+ Ka

HD

[H+]
+KsHDT[M] 1+ Ka

HA

[H+]
+ KsHAT[M]

SHA,aq 1+
Ka
HD

[H+]
+KsHDT[M]

   (3.27) 

which applies to the IND-SAC cocrystal and the Scocrystal/Sdrug for the 2:1 cocrystal 

R2HAB is  

Scocrystal
Sdrug

R2HAB

=

2x
Ksp
R2HAB

4
1+KsR[M]

2
1+ Ka

-AB

[H+]
+ [H+]

Ka
HABH+

3

SR,aq 1+KsR[M]
    (3.28) 

which applies to CBZ-4ABA (H).  
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Figure 3.4 shows the observed Keu for the 1:1 cocrystals studied, plotted against 

Scocrystal/Sdrug. Keu is calculated from the eutectic concentrations according to equation  

(3.23), and Scocrystal/Sdrug is calculated from equation (3.26) for a 1:1 RHA cocrystal and 

(3.27) for a 1:1 HDHA cocrystal.  The slope of the linear regression of Scocrystal/Sdrug 

versus Keu on a log-log plot is 2, which confirms equation (3.25) and that the 

experimental component concentrations at the eutectic can be used to characterize the 

cocrystal solubility advantage (Scocrystal/Sdrug) in a given media.   

 
Figure 3.4. Keu dependence on Scocrystal/Sdrug for IND-SAC (u), CBZ-SAC (n), and CBZ-
SLC (p)in buffer (open symbols) and FeSSIF (closed symbols).  Scocrystal/Sdrug is 
calculated at the eutectic pH shown in Table 3.3. The line corresponds to 
Keu=(Scocrystal/Sdrug)2. Errors associated with measured solubilities range from 1-6% of the 
measured value.   
 

The relationship between the eutectic constant and Scocrystal/Sdrug for a 2:1 cocrystal 

is  

Keu=4
Scocrystal
Sdrug

3

          (3.29) 

The Scocrystal/Sdrug is calculated from solubility in molarity where moles are expressed in 

terms of drug moles. As shown in Table 3.7, the eutectic constant, Keu, is useful to 

determine Scocrystal/Sdrug directly from the cocrystal component concentrations in 

equilibrium with the eutectic point using equation (3.25) for a 1:1 cocrystal and equation 

(3.29) for a 2:1 cocrystal. 

Table 3.7. Keu and Scocrystal/Sdrug from measured eutectic point compared to predicted 
Scocrystal/Sdrug at the eutectic pH 
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Media Cocrystal 
(stoichiometry) Keu

a 
Scocrystal
Sdrug

= 𝑓 𝐾!"  
Scocrystal
Sdrug

  c pH 

buffer IND-SAC  
(1:1) 

(1.7±0.1)x104 132 ± 4 123.2 3.66±0.02 

FeSSIF 710±80 24 ± 1 24.9 3.65±0.05 

buffer CBZ-SAC  
(1:1) 

160±10 12.6 ± 0.4 13.8 3.08±0.03 

FeSSIF 90 ±2 9.5±0.1 10.3 3.11±0.02 

buffer CBZ-SLC  
(1:1) 

97±5 9.9±0.2 11.7 4.29±0.02 

FeSSIF 55 ± 1 7.4±0.1 8.1 4.37±0.02 

buffer CBZ-4ABA (H) 
(2:1) 

21 3.5 3.5 4.94±0.02 

FeSSIF 29 3.9 4.1 4.84±0.03 
(a) Calculated from eutectic concentrations in Table 3.3 according to equation  (3.23). 

(b) Calculated from Keu according to 
Scocrystal
Sdrug

= 𝐾!"
!  for a 1:1 cocrystal and to 

Scocrystal
Sdrug

=2 Keu
4

(13) for a 

2:1 cocrystal. 
(c) Calculated using Ksp  values from Table 3.2, pKa 4ABA: 2.6, 4.8,105 and Ks

R in Table 3.6 according 
to equation (3.28). 
 
The drug and cocrystal solubility are equal at the critical stabilization 

concentration, CSC, of a given surfactant; an equation for CSC can be obtained by setting 

the equations for drug and cocrystal solubility equal and solving for the concentration 

[M]. The CSC equations in Table 3.8 were used to determine the concentration of NaTC 

and lecithin required to thermodynamically stabilize the cocrystals studied. According to 

Table 3.8, none of the cocrystals studied achieve a CSC in a 4:1 NaTC and lecithin mixed 

micelle solution. The Ks values observed for CBZ and IND are not high enough to allow 

for the thermodynamic stabilization of the cocrystal relative to the drug. However, the 

preferential solubilization of IND γ was found to lower the Scocrystal/Sdrug of the IND-SAC 

cocrystal (Table 3.3). 
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Table 3.8. CSC values estimated from cocrystal Ksp, component Ka and drug Ks 

Cocrystal CSC Equation 
NaTC 
(mM) 

a 

Lecithin 
(mM) b 

CBZ-SAC 
CSC=

Ksp

SR,aq
2 1+

KaHA

H+

Ks
R +CMC 

(3.30) 35.7 8.9 

CBZ-SLC (3.31) 24.7 6.2 

IND-SAC CSC=

Ksp

HDaq
2 1+

KaHA

H+
- 1+ Ka

HD

H+

Ks
HD,T +CMC (3.32) 28.9 7.2 

CBZ-4ABA (H) CSC=

!Ksp

SR,aq
3 1+

Ka
AB-

[H+]
+ [H+]

KaHABH
+ − 1

Ks
R +CMC 

(3.33) 
14.6 3.7 

(a) Calculated from the Ksp and Ka values in Table 3.2,the drug Ks values in Table 3.6 at the eutectic 
pH shown in Table 3.3. 

(b) The lecithin required to achieve CSC is equal ¼ of the NaTC CSC to maintain a 4 to 1 ratio of 
NaTC to lecithin. 

Scocrystal and Scocrystal/Sdrug  as indicators of relative drug concentration and 
supersaturation  

Figure 3.5 shows the solubilities of cocrystal and drug at pH 5 in FeSSIF and 

buffer.  The drug solubilities are the measured values in FeSSIF and buffer while the 

cocrystal solubilities had to be calculated from equations (3.7), (3.8), and (3.9). 

According to these results, cocrystals are more soluble than the parent drug in both 

FeSSIF and buffer at pH 5.   The cocrystals are also predicted to have a higher solubility 

in FeSSIF than in buffer at pH 5.   The SFeSSIF/Sbuffer ratio of IND (16) is the highest 

followed by IND-SAC (3.8). 
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Figure 3.5. Comparison of drug and cocrystal solubility in FeSSIF and buffer at pH 5.  
Cocrystal solubility was predicted using the Ksp and pKa values in Table 3.2 and Ks 
values in Table 3.6 and the equations presented in Table 3.4. Drug solubilities plotted are 
from Table 3.1. 
 

Table 3.9 shows the calculated values of Scocrystal in FeSSIF and in buffer at pH 5; this 

could not be experimentally determined because all of the cocrystals studied equilibrated 

to a lower pH during the eutectic point measurement, except CBZ-4ABA (H). The 

cocrystal solubility at pH 5 is useful to anticipate the upper limit of the drug 

concentrations the cocrystal could achieve during dissolution when there is no excess 

coformer and no solution-mediated transformation.  For example, IND-SAC could 

achieve a solution concentration of 19 mM in FeSSIF, and a solution concentration of 5 

mM in buffer if the cocrystal does not transform to the lower solubility drug.  

Table 3.9.  Cocrystal solubility in FeSSIF and buffer at pH 5 

Cocrystal 
Scocrystal 
(mM) 

FeSSIFa 

Sdrug 
(mM) 

FeSSIFb 

Scocrystal
Sdrug FeSSIF

 
Scocrystal 
(mM)        
buffera 

Sdrug(mM)        
bufferb 

Scocrystal
Sdrug buffer

 

IND-SAC 19±3 0.37±0.02 53 ± 7 5.0±0.8 0.023±0.001 220 ± 40 

CBZ-SAC 70±20 

0.75±0.02  

90 ± 20 50±10 

0.42±0.02 

120 ± 30 
CBZ-SLC 14±4 19 ± 5 11±3 25 ± 6 

CBZ-4ABA 
(H) 2.7±0.2 3.6 ± 0.25 1.8±0.1 4.4 ± 0.3 

(a) Calculated using the Ksp values in Table 3.2, Ks values in Table 3.6 and the following pKa values: 
SAC 1.6,89 IND 4.2,48 SLC 3.0,103,104 and 4-ABA 2.6 and 4.8.105 using equations (3.7) to (3.9). 

(b) Taken from Table 3.1. 
 

 Even though cocrystals have higher solubilities in FeSSIF, the difference between 

the cocrystal and drug solubility (Scocrystal/Sdrug) is higher in buffer. The driving force for 
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transformation depends on the drug supersaturation generated during cocrystal 

dissolution.  The higher the cocrystal solubility is relative to the drug in a given media, 

the greater the driving force for transformation. Scocrystal/Sdrug was used to quantify the 

potential supersaturation that could be generated for each cocrystal in FeSSIF and buffer 

at pH 5 if the cocrystal did not undergo solution-mediated transformation and is shown in 

Table 3.9.  Equations (3.26) to (3.28) were used to calculate Scocrystal/Sdrug at pH 5 in 

FeSSIF and buffer. The IND-SAC cocrystal is predicted to be 220 times more soluble 

than IND in buffer and only 53 times more soluble than IND in FeSSIF at pH 5. Thus 

IND-SAC exhibits a considerably lower Scocrystal/Sdrug in FeSSIF relative to buffer.  The 

Scocrystal/Sdrug of the CBZ cocrystals were not significantly different in FeSSIF relative to 

buffer (p<0.05). 

The greater the solubilization of the drug by a given surfactant (higher Ks) relative 

to the coformer, the larger the decrease in Scocrystal/Sdrug in a surfactant solution compared 

to blank media.108  The Scocrystal/Sdrug is lower in FeSSIF relative to buffer because the 

cocrystal solubility has a weaker dependency on the concentration of NaTC and lecithin 

than the parent drug.  We have shown in previous work that preferential micellar 

solubilization of the drug by the synthetic surfactant SLS decreases the Scocrystal/Sdrug. 

Similar to SLS, preferential micellar solubilization of IND by NaTC and lecithin reduces 

Scocrystal/Sdrug. We show for the first time that preferential micellar solubilization of IND 

by mixed micelles of NaTC and lecithin results in an increase in cocrystal solubility and a 

decrease in Scocrystal/Sdrug compared to buffer. 

The Scocrystal and Scocrystal/Sdrug have important implications on the concentration 

and supersaturation achieved and the kinetics of transformation during dissolution. 

Scocrystal indicates the maximum concentration that can be achieved in a given media while 

Scocrystal/Sdrug indicates the maximum supersaturation that can be achieved in a given 

media and may be useful to assess the relative driving forces for transformation between 

a variety of media.  The powder dissolution of IND-SAC was performed in FeSSIF and 

buffer to evaluate the transformation kinetics and supersaturation generated relative to 

drug.  This behavior was compared to the measured Scocrystal and Scocrystal/Sdrug. Dissolution 

studies were not pursued for the CBZ cocrystals because there was not a significant 

difference in Scocrystal/Sdrug in FeSSIF compared to buffer (P<0.05).  The driving force for 
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transformation and the supersaturation achieved is predicted to be lower in FeSSIF 

relative to buffer because Scocrystal/Sdrug is lower in FeSSIF relative to buffer.  The solution 

concentrations achieved during dissolution are predicted to be the highest in FeSSIF as 

Scocrystal is the highest in FeSSIF.  Overall, IND-SAC is expected to achieve higher 

solution concentrations for a longer period of time in FeSSIF relative to buffer based on 

Scocrystal and Scocrystal/Sdrug. 

As predicted, IND-SAC achieves and maintains higher drug solution 

concentrations in FeSSIF relative to the buffer as shown in Figure 3.6a. IND-SAC 

reaches a peak concentration of 0.36 mM at 10 minutes in buffer.  This concentration is 

15 times higher than the equilibrium IND solubility in buffer (Figure 3.1). The drug 

solution concentrations decrease thereafter, indicating that a solution-mediated 

transformation is occurring. The final solid phase at 4 hours was a mixed phase 

containing both IND-SAC and IND γ form as determined by XRPD analysis. SAC 

concentrations during cocrystal dissolution in buffer increased with time and lowered the 

bulk pH from pH 5 to 4.7.  

(a)  (b)  

Figure 3.6.  IND-SAC dissolution in FeSSIF (¢) and buffer (�) 25 °C.  (a) 
Concentration-time profile of [IND]T (b) Supersaturation generated by IND-SAC  
([IND]T/ST

IND).  Courtesy of Maya Lipert, University of Michigan. 
 

IND-SAC dissolution in FeSSIF reached IND concentrations of 2.00 mM at 10 

minutes and continued to increase to 4.14 mM at 3 hours (Figure 3.6). This concentration 

is lower than the predicted cocrystal solubility in FeSSIF (19±3 mM, pH 5). No excess 

SAC was observed to dissolve from the cocrystal, thus the bulk pH during dissolution in 

FeSSIF remained unchanged. IND-SAC generates concentrations that are 5.8 to 11 times 
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higher than the IND solubility in FeSSIF (Figure 3.6b). The final solid phase at 4 hours 

was IND-SAC cocrystal. The IND-SAC cocrystal achieved higher solution 

concentrations in FeSSIF than in buffer, which is in agreement with the equilibrium 

solubility measurements and the predicted solubility shown in Table 3.9.  The 

supersaturation increased slowly over 3 hours. The lower supersaturation achieved in 

FeSSIF relative to buffer indicates that the driving force for transformation was indeed 

lower in FeSSIF as predicted by Scocrystal/Sdrug.  As hypothesized, the lower Scocrystal/Sdrug 

of IND-SAC in FeSSIF correlates with a lower supersaturation and a decrease in the 

driving force for solution-mediated transformation.   

Previous reports of IND-SAC dissolution at pH 7.4 achieved a supersaturation of 

3-4, with the higher supersaturation occurring in media containing a higher buffer 

concentration (60 vs. 200 mM phosphate buffer).1 A supersaturation of 14 (pH 2)96 and 

12 (pH 7 )97 have been observed during the dissolution of the amorphous form of IND.  

The supersaturation generated by the amorphous form was hindered due to solution-

mediated transformation, which was reported to occur between 10-20 minutes at pH 7.97  

The IND-SAC cocrystal generates supersaturation similar to that of the amorphous form. 

Due to the solution chemistry of the multicomponent solid, it is possible to optimize the 

transformation kinetics of IND-SAC using the mechanism of preferential micellar 

solubilization of the drug component.   

Because cocrystal solubility and Scocrystal/Sdrug governs cocrystal dissolution 

behavior, using mathematical models that predict these parameters under a wide variety 

of solution conditions is essential to design meaningful dissolution studies.  These 

mathematical models are useful to confirm mechanisms that may modulate cocrystal 

solution chemistry in vivo. For example, if a cocrystal has improved dissolution and 

solubility in FeSSIF, will dosing a cocrystal in the fed state lead to superior performance 

relative to the fasted state?  

 In vivo performance of high solubility cocrystals can potentially be hindered if the 

cocrystal under goes solution-mediated transformation to a less soluble form before it can 

be absorbed. The propensity of a cocrystal to transform among different media can be 

indicated by the magnitude of Scocrystal/Sdrug.  Additives that differentially modify the 

cocrystal component solubilities can be used to optimize Scocrystal/Sdrug, which will affect 
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the transformation kinetics as well. Identifying other cocrystals that exhibit a lower 

Scocrystal/Sdrug in FeSSIF compared to buffer may be useful to guide in vivo studies.  

Conclusions 
Cocrystals exhibit a weaker solubility dependence on micellar concentrations of 

solutions of NaTC and lecithin.  This behavior is in agreement with the reported cocrystal 

solubility dependence on the synthetic surfactant SLS. Similar to SLS, mixed micelles of 

lecithin and NaTC preferentially solubilize the parent drug resulting in an increase in 

cocrystal solubility and a decrease in Scocrystal/Sdrug relative to buffer. Knowledge of the 

component ionization and drug micellar solubilization in FeSSIF was useful to predict 

cocrystal solubility and determine the ionization and micellar solubilization contributions 

to solubility.   

The reported mathematical models describing cocrystal solubility dependence on 

ionization and micellar solubilization were useful to identify IND-SAC as a cocrystal that 

exhibits a lower Scocrystal/Sdrug in FeSSIF relative to buffer due to preferential micellar 

solubilization of the drug. The cocrystal solubility measurements confirmed IND-SAC 

has a lower Scocrystal/Sdrug in FeSSIF relative to buffer.  IND-SAC undergoes solution-

mediated transformation to the parent drug in buffer after 10 minutes. As predicted by the 

lower Scocrystal/Sdrug and the higher Scocrystal in FeSSIF relative to buffer, IND-SAC 

achieved higher solution concentrations of drug and was protected against solution-

mediated transformation for 4 hours in FeSSIF. Solubility studies often require less 

material than dissolution studies and are useful to indicate which cocrystals may have 

improved transformation kinetics in FeSSIF versus buffer. The presented equations can 

be applied to a variety of biorelevant media, with Ks specific to each media and pH 

condition. 

Appendix  

The derivations of the equations from Table 3.4 in the manuscript are presented in this 

appendix. These derivations consider the component ionization and drug micellar 

solubilization contributions to cocrystal solubility in biorelevant media.  Activity 

contributions, solution complexation and aggregation are not considered.  All equilibria 

and concentrations without subscripts refer to the solution phase. 

1:1 cocrystal with nonionizable drug and acidic coformer. 
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Cocrystal dissociation 

RHAsolid Raq+HAaq 

Ksp= R [HA]          (A1) 

Coformer ionization 

HA Haq+ +Aaq
-  

KaHA=
[H+][A-]
[HA]

         (A2) 

Drug micellar solubilization 

Raq+M Rm 

KsR=
[R]m

[R]aq[M]
          (A3) 

the total drug in the micellar solution is then: 

SR =[R]T=[R]aq+[R]m         (A4) 

substituting equation (A3) into (A4) the solubility dependence on micellar solubilization 

for a nonionizable drug becomes 

SR  =[R]aq 1+Ks
R M          (A5) 

Coformer micellar solubilization 

HAaq+M HAm 

KsHA=
[HA]m

[HA]aq[M]
         (A6) 

Aaq- +M Am
-   

KsA-=
[A-]m
[A]aq[M]

          (A7) 

the total coformer in the micellar solution is then: 

SHA=[HA]T= HA aq+ A- aq+ HA m+ A- m      (A8) 

Substituting equation (A2), (A6), (A7), into equation (A8) the solubility dependence on 

micellar solubilization for an acidic coformer becomes 
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SHA=[HA]aq 1+
KaHA

[H+]
+KsHA M +

KaHA

[H+]
KsA- M      (A9) 

The total solubilization of the acidic coformer (Ks
HA,T) is described as 

KsHA,T=Ks
HA
+
KaHA

[H+]
KsA-         (A10) 

Substituting equation (A10) into equation (A9) resulting in the final expression for 

coformer solubility in biorelevant media 

S!!"= HA aq 1+
KaHA

[H+]
+KsHA,T[M]        (A11) 

The Ks
HA,T can be calculated from a solubility measurement in a micellar solution (ST

HA) 

and a solubility measurement in an aqueous solution in the absence of micellar 

components when Ka
HA is known using equation (A11). 

Mass balance of cocrystal components 

ST
RHA= R aq+[R]m 

ST
RHA= HA aq+ A

-
aq + HA m+ A

-
m      (A12) 

Inserting equations (A1)-(A3), (A6) and (A7)into equation (A12), the cocrystal solubility 

dependence on micellar solubilization described for a 1:1 cocrystal RHA is 

ST
RHA= KspRHA 1+KsR[M] 1+

KaHA

[H+]
+KsHA,T[M]      (A13) 

2:1 cocrystal with nonionizable drug and amphoteric coformer: 

Cocrystal dissociation: 

R2HAB
Ksp
Raq+HABaq 

Ksp=[R]
2[HAB]         (A14) 

Coformer Ionization: 

HAB ABaq+H+
-  

Ka1
AB-
=
[H+][ A- B]
[HAB]

         (A15) 

HABH+ HABaq+H+ 
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Ka2HAB=
[H+][HAB]
[HABH+]

         (A16) 

Micellar solubilization of the drug: 

Raq+M Rm 

KsR=
[R]m

[R]aq[M]
          (A17) 

Micellar solubilization of the coformer  

HABH!"! +M HABH!!  

KsHAB!
!
=

[HABH!]m
[HABH!]aq[M]

        (A18) 

HABaq+M HAm 

KsHAB=
[HAB]m

[HAB]aq[M]
         (A19) 

A! B!"+M A! B!  

Ks
!! !=

[ A! B]m
[ A! B]

aq
[M]

         (A20) 

the total coformer in the micellar solution is then: 

S!!"# = HAB aq+ A! B aq+[HABH!]!" + HAB m+ A! B m+[HABH!]!  (A21) 

Substituting equations(A15), (A16), and (A18)-(A20) into equation (A21) results in the 

final expression for coformer solubility in biorelevant media 

S!!"!= HAB aq 1+
Ka

AB-

[H+]
+
[H+]

KaHABH
+ + [M] K!!!" +

K!
!"!

[H!]
K!

!! ! +
[H+]

KaHABH
+ Ks

HAB!!  (A22) 

The total solubilization of the amphoteric coformer (Ks
HAB,T) is described as 

KsHAB,T = KsHAB +
Ka

AB−

[H+]
Ks

A− B +
[H+]

KaHABH
+ KsHABH

+
     (A23) 

Substituting equation (A23) into equation (A22) results in the final expression for 

coformer solubility in biorelevant media 
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S!!"#= HAB aq 1+
Ka

AB-

[H+]
+
[H+]

KaHABH
+ +Ks

HAB,T[M]      (A24) 

The Ks
HAB,T can be calculated from a solubility measurement in a micellar solution 

(ST
HAB) and a solubility measurement in an aqueous solution in the absence of micellar 

components when Ka
-AB and Ka

HABH+ is known using equation (A24). 

Mass balance of cocrystal components 

ST
R2HAB= R aq+ R m   

ST
R2HAB= HAB aq+ A! B aq+[HABH!]!" + HAB m+ A! B m+[HABH!]!  (A25) 

For a 2:1 ST
cocrystal=[A]T=1/2[R]T and inserting equations (A14)-(A20)into equation 

(A25), the cocrystal solubility dependence on micellar solubilization and ionization for a 

2:1 cocrystal R2HAB is 

ST
R2HAB=

𝐾!"
!!!"#

4 1+KsR[M]
2
1+
Ka

AB-

[H+]
+
[H+]

KaHABH
+ + KsHAB,T[M]

3
  (A26) 

1:1 cocrystal with acidic drug (HD) and acidic coformer (HA). 

Cocrystal dissociation: 

HDHA
Ksp
HDaq+HAaq  

K!"=[HD][HA]         (A27) 

The micellar solubilization and ionization of an acidic drug is described by the following 

equilibria:  

HD Haq+ +Daq-  

KaHD=
[H+][D-]
[HD]          (A28) 

HDaq+M HDm 
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KsHD=
[HD]m

[HD]aq[M]
         (A29) 

Daq- +M Dm-   

KsD-=
[D-]m

[D-]aq[M]
         (A30) 

the total drug in the micellar solution is then: 

SHD=[HD]T= HD aq+ D- aq+ HD m+ D- m      (A31) 

Substituting equation (A28),(A29), and (A30) into equation (A31) the solubility 

dependence on micellar solubilization for an acidic drug becomes 

SHD=[HD]aq 1+
KaHD

[H+]
+KsHD M +

KaHD

[H+]
KsD- M      (A32) 

The total solubilization of the acidic drug (Ks
HD,T) is described as 

KsHD,T=Ks
HD
+
KaHD

[H+]
KsD-         (A33) 

Substituting equation (A33) results in the final expression for drug solubility in 

biorelevant media 

SHD=[HD] 1+
KaHD

[H+]
+KsHD,T[M]        (A34) 

where Ks
HD,T must be defined at a given pH unless Ks

D- is not zero.  

Mass balance: 

ST
HDHA= HD aq+[D-]aq+ HD m+[D-]m   

ST
HDHA= HA aq+ A

-
aq+ HD m+[D-]m      (A35) 

inserting equations (A2), (A28), (A29),  into equation(A35) results in the equation 

describing cocrystal solubility for a 1:1 cocrystal HDHA  

ST
HDHA= Ksp 1+

KaHD

[H+]
+KsHD,T 1+

KaHA

[H+]
+ KsHA,T      (A36) 
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Chapter 4  

Modifying solubility-pH dependence and common-ion effect of a pharmaceutical 
salt via cocrystallization. 

Introduction 
Many pharmaceutical compounds in development fail to exhibit adequate 

solubility, which can negatively impact drug dissolution and bioavailability. Polymorphs, 

salts, cocrystals or amorphous forms of a drug may improve solubility by altering lattice 

energy. The solubility of a hydrophobic drug is highly influenced by the solvation energy 

required to dissolve the drug. Both salts and cocrystals can alter the solvation properties 

of the drug in addition to altering the crystal lattice. For example, cocrystals and salts 

have different solubility-pH dependencies than the parent drug due to their ionizable 

constituents.14,18,42,43 Cocrystals of pharmaceutical salts (cocrystalline salts) provide yet 

another solid form modification to alter the physicochemical properties of a drug. 

 Mathematical models describing the solubility-pH dependence of both salts and 

cocrystals are well documented and reported in the literature.14,41-44,109,110 Cocrystal and 

salt solubility is highly dependent on solution composition,36,44  and both solid forms 

exhibit lower solubilities in solutions containing components in stoichiometric 

excess.4,41,45,109 Cocrystalline salts of fluoxetine HCl are reported to alter the melting 

point, concentration-time profiles and dissolution rate relative to the parent salt.79 Similar 

to cocrystals and salts, it is hypothesized that cocrystalline salts will alter solubility by 

both lattice energy and solution chemistry.18,109,111 Through careful selection of 

coformers, cocrystalline salts may be useful to increase solubility relative to the free drug 

and parent salt.   

Currently, there is no knowledge of the cocrystalline salt solubility dependence on 

pH, or the common-ion effect. Mathematical models that predict the cocrystalline salt 

solubility behavior would be useful to assess their solubility-pH dependence and 

common-ion effect relative to the parent salt.  The majority of the reported cocrystalline 

salts contain only two components (drug and an acid) with the acid existing in multiple 
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ionization states in the crystal lattice.12,112-115 The fluoxetine HCl cocrystalline salts are 

some of the few examples of cocrystalline salts that are composed of more than two 

components.79 While cocrystalline salts of mefloquine HCl are reported,76 their crystal 

structures have not been determined, and therefore the reported stoichiometries cannot be 

confirmed.   The fluoxetine HCl cocrystals were chosen to evaluate the solubility 

behavior of cocrystalline salts because they represent a range of stoichiometries and 

ionization behaviors and their stoichiometries have been determined by single-crystal x-

ray analysis. 

In this study, mathematical models are derived that describe cocrystalline salt 

solubility dependence on solution pH, counter-ion and coformer.  These models predict 

the cocrystalline salt solubility and thermodynamic stability regions from a minimal set 

of equilibrium solubility measurements. The presented mathematical models predict 

cocrystal solubility behavior in terms of experimentally accessible thermodynamic 

parameters such as coformer ionization constants, Ka, and cocrystalline salt solubility 

product, Ksp. The predictive power of the mathematical models was evaluated by 

measuring the influence of ionization and excess chloride on the solubility of 

cocrystalline salts for cocrystals of a chloride salt containing a hydrophobic basic salt 

(fluoxetine HCl) with acidic coformers.  The cocrystalline salts studied include: 1:1 

fluoxetine HCl benzoic acid (FH+Cl-BA), 2:1 fluoxetine HCl fumaric acid ((FH+Cl-)2FA) 

and 2:1 fluoxetine HCl succinic acid ((FH+Cl-)2SA). These cocrystals represent high and 

low solubility cocrystalline salts (relative to the parent salt) as demonstrated by powder 

dissolution in water.79 

For the first time, the equilibrium solubility of metastable cocrystalline salts were 

measured at the eutectic point between cocrystalline salt and salt. Measured aqueous 

solubilities were compared to the reported apparent solubilities in water. Phase diagrams 

are developed from derived mathematical models and measured solubilities.  These 

diagrams were useful to determine stability regions between the cocrystalline salt and the 

parent salt.  The main findings from our work are that the cocrystallization of salts can be 

used to alter the intrinsic solubility, the solubility-pH dependence and the common-ion 

effect relative to the parent salt. A single solubility or eutectic point measurement in 

conjunction with the proposed models was shown to successfully predict the solubility-
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pH dependence, the counter-ion dependence and the coformer dependence of a 

cocrystalline salt; this can save both time and material during solubility characterization.  

The outlined relationships apply to cocrystalline salts with a range of stoichiometries and 

coformer ionization properties. 

Theoretical Considerations 
Cocrystalline salt solubility dependence on pH  

The aim of this work is to provide a theoretical framework to guide the solubility 

characterization of a cocrystalline salt by careful analysis of the solution equilibria that 

govern the molecular associations between the cocrystalline salt components in solution.   

Cocrystal and salt-solution equilibria follow solubility product behavior whereby 

increasing the solution concentration of one component, results in the decrease of the 

other.  Mathematical models derived from cocrystal dissociation and component 

ionization describe the cocrystal solubility-pH dependence from knowledge of the 

solubility product and component ionization constants.  Similarly, the relevant solution 

equilibria describing the solubility of a cocrystalline salt are the dissociation of the 

cocrystalline salt and ionization of the components.  

The cocrystalline salt solubility of a 1:1 cocrystalline salt (salt/coformer) BH+Cl-

HA where the chloride salt is BH+Cl- and the coformer is HA, a monoprotic acid, is 

described by the following equilibrium reactions:  

BH+Cl-­‐ HAsolid
Ksp
BHaq+ +Claq-­‐ +HAaq  

Ksp1:1cc=[BH+][Cl-­‐][HA]         (4.1) 

HAaq Aaq
- +  Haq+  

K!!" =
A! [H!]
[HA]

          (4.2) 

where Ksp
1:1cc is the solubility product of the cocrystalline salt, and Ka

HA is the ionization 

constant of the coformer.  The presented derivation applies to a chloride salt, but could be 

applied to a salt with other counter-ions as well. Species without subscripts refer to the 

solution phase and the terms in brackets refer to the component solution concentrations, 

which approximate component activities under dilute solution conditions. In order to 
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establish the key parameters affecting cocrystalline salt solubility, non-idealities due to 

solution complexation are ignored and will need to be considered as appropriate.   

The cocrystalline salt is composed of the ionized drug and ionized chloride ion, 

therefore the total analytical concentrations of drug, [B]T, and chloride, [Cl]T under 

solution conditions where the salt is the stable form relative to the free drug (i.e. below 

pHmax) are described by 

B ! = BH!            (4.3) 

Cl ! = Cl!             (4.4) 

while the analytical concentration of the acid is the sum of the ionized and nonionized 

species, given by 

HA ! = HA + [A!]          (4.5) 

The analytical drug concentrations in equilibrium with the 1:1 cocrystalline salt can be 

expressed in terms of [HA]T, [Cl]T, Ksp
1:1cc, Ka and [H+] by substituting equations (4.1) 

and (4.2) into equation (4.5) and rearranging to give 

B ! =
K!"!:!""

[HA]! Cl !
1+

K!!"

[H!]          (4.6) 

The cocrystalline salt solubility is highly dependent on the solution composition, similar 

to cocrystals and salts based on equation (4.6). According to this equation, increasing the 

solution concentrations of one component will result in the decrease of the other 

components assuming solubility product behavior.  

Cocrystalline salt solubility products can be evaluated from the measured 

component solution concentrations in equilibrium with the cocrystalline salt according to 

equation  (4.6) when the cocrystalline salt is the thermodynamically stable phase.  The 

cocrystalline salt solubility, ST
1:1cc, under stoichiometric conditions, is equal to the total 

concentration of each component of the cocrystalline salt according to  

ST
1:1cc= [B]T=[Cl]T=[HA]T          (4.7) 

An expression for the cocrystalline salt solubility dependence on [H+] in terms of 

experimentally accessible thermodynamic equilibrium constants is obtained below by 

substituting equation (4.7) into equation  (4.6). 

S!!:!"" = K!"!:!"" 1+
K!!"

[H!]
!

         (4.8) 
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Under these conditions, the solubility is the stoichiometric solubility, or cocrystalline salt 

solubility in the absence of excess components. 

The cocrystalline salt solubility is dependent on the cocrystalline salt solubility 

product Ksp
1:1cc, the ionization constant, Ka of the coformer and the solution [H+].  

Equation  (4.8) predicts that the solubility of cocrystalline salt BH+Cl-HA will increase 

with pH (decreasing [H+]).   At pH<<coformer pKa, or [H+]>>Ka, cocrystalline salt 

solubility approaches its intrinsic solubility, S01:1cc= Ksp
1:1cc3  .  At pH = coformer pKa, or 

[H+]=Ka, the cocrystal solubility is 2!  or 1.25 times higher than the intrinsic cocrystal 

solubility.  As pH increases beyond the coformer pKa ([H+]<<Ka) cocrystalline salt 

solubility increases exponentially. The parent salt exhibits a solubility plateau region 

which is its intrinsic solubility, S0
salt = Ksp

salt , below the pHmax  (salt / free drug) in the 

absence of excess chloride where the salt solubility product, Ksp
salt, is defined by 

Kspsalt= BH+ [Cl
-]          (4.9) 

Figure 4.1 shows the stoichiometric solubility-pH dependence of the cocrystalline 

salt relative to the parent salt when S0
1:1cc<S0

salt. The cocrystalline salt exhibits a plateau 

region under solution conditions in which the coformer is unionized which is the intrinsic 

solubility, S0
1:1cc. The cocrystalline salt solubility increases with increasing pH due to the 

ionization of the acidic coformer. This phase solubility diagram dictates the solution  

 
Figure 4.1. Cocrystalline salt solubility dependence on pH according to equation (4.8) for 
a hypothetical cocrystalline salt.  There exists a pHmax where the cocrystalline salt and 
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parent salt solubilities are equal. S0
salt=3.8x10-2 m, Ksp

1:1cc = 5.0x10-6 m3, coformer pKa = 
4.0 
conditions under which the cocrystalline salt is the stable phase.  The cocrystalline salt is 

the stable phase when pH < pHmax (cocrystalline salt/salt) assuming that there is enough 

coformer in solution to be saturated with respect to cocrystalline salt, [HA]T ≥ ST
1:1cc. The 

salt will be the stable phase if there is not enough coformer present to saturate the system 

with the respect to the cocrystalline salt. If the parent salt was added to a solution under 

these conditions, cocrystalline salt may precipitate from solution, as it is the 

thermodynamically stable phase under these conditions.  

As shown in Figure 4.1, a cocrystalline salt that exhibits a S0
1:1cc < S0

salt
 is 

predicted to have a pHmax at which the cocrystalline salt and parent salt have equal 

solubilities.  The pHmax between the 1:1 cocrystalline salt and the parent salt is described 

by 

pH!"# =
3
2 log!" K!"

!"#$ − log!" K!"!:!"" + pK!!"      (4.10)  

assuming the pHmax between the cocrystalline salt and the parent salt occurs below the 

pHmax between the salt and free base. Based on this equation, the pHmax for a 1:1 

cocrystalline salt depends on the cocrystalline salt solubility product, Ksp
1:1cc, the salt 

solubility product, Ksp
salt, and the ionization constant of the coformer, pKa

HA.  As shown 

in Figure 4.2, the following relationships exist between the cocrystalline salt pHmax and 

these 3 parameters: 

(1) the pHmax will increase by 1 unit for every unit increase in coformer pKa 

(2) the pHmax will decrease by 1 unit with an increase in magnitude of the Ksp
l:1cc 

(3) the pHmax will increase by 1.5 units with an increase in magnitude of the Ksp
salt 
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(a)      (b) 

 
(c) 

Figure 4.2. Salt/cocrystalline salt pHmax dependence on (a) coformer pKa (b) Ksp
1:1cc and 

(c) Ksp
salt. 

It is possible to design the cocrystalline salt pHmax with salt based on the relationship 

between pHmax and Ksp
salt, Ksp

1:1cc and pKa coformer. pHmax between cocrystalline salt and 

salt characterizes the solution conditions required to achieve the desired solid phase 

(cocrystalline salt or salt) in solution.   

The cocrystalline salt solubility advantage relative to the parent salt increases with 

decreasing [H+] (increasing pH) according to 
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S!!:!""

S!!"#$
=

K!"!:!"" 1+ !!!"

[!!]

K!"!"#$
           (4.11) 

which is obtained by dividing equation (4.8) by the intrinsic salt solubility. A 

cocrystalline salt that exhibits a lower S0 compared to the parent salt is hypothesized to 

be more soluble relative to the parent salt above pHmax.  Depending on the kinetics of 

transformation, cocrystalline salts may be useful as supersaturating drug delivery 

systems.  

The common-ion effect on cocrystalline salt solubility relative to parent salt solubility 
The salt solubility dependence on chloride concentration is described by 

S!,!"!"#$ = B ! =
K!"!"#$

Cl !
          (4.12) 

in solutions in which pH< pHmax (salt / free drug).41,45 Equation (4.12) describes the 

solubility product behavior or common-ion effect of the salt whereby salt solubility 

decreases as solution concentrations of chloride increase. Similarly the 1:1 and 2:1 

cocrystalline salt solubility dependence on chloride concentration in solution can be 

described considering equations (4.6) and (4.29). An expression describing the 1:1 

cocrystalline salt solubility dependence on the chloride concentration in solution is 

derived from equation (4.6), assuming the coformer is unionized. As solution 

concentrations of chloride increase, the drug and coformer concentrations will decrease, 

maintaining solution concentrations such that  [B]T=[HA]T which describes the 

stoichiometry between drug and coformer within the cocrystalline salt. This results in the 

following expression  

S!,!"!:!"" = B ! =
K!"!:!""

Cl !
         (4.13) 

which applies under solution conditions where pH < pHmax (salt/free drug) and the 

coformer is unionized (pH<<pKa coformer).  

The 1:1 cocrystalline salt solubility will decrease with increasing solution 

concentrations of chloride according to an inverse square-root dependence.  Equation 
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(4.13) indicates that the solubility of a 1:1 cocrystalline salt has a weaker dependence on 

chloride compared to the parent salt.  Figure 4.3 shows the calculated cocrystalline salt 

solubility dependence on chloride for a cocrystalline salt system which exhibits S0
1:1cc < 

S0
salt

 . Figure 4.3 shows that there is a chloride concentration at which the theoretical 

solubility curves of the cocrystalline salt and the parent salt intersect and therefore both 

solid phases are thermodynamically stable at a chloride concentration, [Cl-]max.   

 
 Figure 4.3 Common-ion effect on the solubility of a 1:1 cocrystalline salt (──) 
compared to its parent salt according to equations (4.12) and (4.13).  There exists a 
chloride concentration at which both cocrystalline salt and salt are simultaneously 
saturated, [Cl-]max, assuming [HA]T=ST

1:1cc . Theoretical solubility lines were generated 
using Ksp

salt=1.44x10-3 m2, Ksp
1:1cc=2x10-5 m3. According to this graph [Cl-]max=0.23 m 

and solid salt and cocrystalline salt are in equilibrium when [HA]T=ST,Cl
1:1cc. 

 

A cocrystalline salt that is less soluble than the parent salt becomes more soluble due to 

the different solubility dependencies on chloride. The cocrystalline salt will be the stable 

solid form in solutions with [Cl]T  ≤ [Cl-]max containing [HA]T = ST
1:1CC. The solubility of 

the 1:1 cocrystalline salt decreases as the solution concentration of chloride increases as 

predicted by equation (4.13).  

The solubility advantage of the cocrystalline salt (ST,Cl
1:1cc/ST,Cl

salt) relative to the 

parent salt as a function of chloride is 
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S!,!"!:!""

S!,!"!"#$ =
K!"!:!""

K!"!"#$
   [Cl]!         (4.14) 

which is obtained by dividing equation (4.13) by equation (4.12). Because the 

cocrystalline salt solubility dependence on chloride is weaker than the parent salt, the 

ST,Cl
1:1cc/ST,Cl

salt increases with chloride.  When S0
1:1cc<S0

salt there exists a [Cl-]max or 

chloride concentration at which ST
1:1cc=ST

salt. [Cl-]max is determined according to  

[Cl!]!"# =
K!"!"#$

!

K!"!:!""
          (4.15) 

obtained from setting equation(4.12) equal to equation(4.13).  Above [Cl-]max, ST
1:1cc  > 

ST
salt and salt is the thermodynamically stable phase.  

1:1 cocrystalline salt solubility dependence on ionization and the common-ion effect 

The cocrystalline salt solubility dependence on counter-ion concentration and 

ionization is derived from equation  (4.6). As solution concentrations of chloride is 

increased, the drug and coformer will decrease maintaining solution concentrations such 

that  [B]T = [HA]T, according to the cocrystalline salt stoichiometry of the drug and 

coformer. This analysis results in the following expression  

S!,!"!:!"" =
K!"!:!""

Cl !
1+

K!!"

[H!]         (4.16) 

which applies under solution conditions where pH <pHmax (salt/free drug).  Figure 4.4 

shows the 1:1 cocrystalline salt solubility, and ST,Cl
1:1cc/ST,Cl

salt are predicted to increase 

with pH and increasing counter-ion. 
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Figure 4.4. Theoretical 1:1 cocrystalline salt solubility (green surface) dependence on [Cl-

]T and [H+] compared to its parent salt (grey surface) according to equations (4.16) and 
(4.12) respectively. Theoretical curves were generated using Ksp

1:1cc = 9 x 10-6 m3, Ksp
salt 

= 1.44x10-3 m2 and coformer pKa= 4.0. 
 

The ST,Cl
1:1cc/ST,Cl

salt increases with [Cl]T and [H+] in solution according to 

ST,Cl
1:1cc

ST,Cl
salt =

Ksp1:1cc 1+
KaHA

[H+]

Kspsalt
 [Cl-]T       (4.17) 

which is obtained by dividing equation (4.16) by equation (4.12).  According to this 

relationship, the ST,Cl
1:1cc/ST,Cl

salt increases as excess chloride is introduced into solution. 

There may be an advantage to using a cocrystalline salt when S0
1:1cc  ≥ S0

salt under gastric 

conditions to mitigate the common-ion effect.  The cocrystalline salt could generate 

supersaturation under gastric conditions to improve the bioavailability of a chloride salt.  

Measuring the equilibrium solubility of a metastable cocrystalline salt. 
The cocrystalline salt may transform to the parent salt during equilibrium 

solubility determinations when ST
1:1cc  ≥ ST

salt resulting in an underestimation of the 

cocrystalline salt solubility. The equilibrium solubility of cocrystals that are more soluble 

than the parent drug have been determined from eutectic point measurements.4,95 This 

measurement takes advantage of the solubility product behavior whereby the addition of 

coformer in excess of the cocrystal stoichiometry lowers the cocrystal solubility.  
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Eutectic measurements can be used to evaluate the equilibrium solubility of metastable 

cocrystalline salts. 

The 1:1 cocrystalline salt solubility dependence on [HA]T is derived by 

rearranging equation  (4.6) in terms of [B]T assuming the solution concentrations of drug 

and chloride will both decrease with increasing coformer maintaining [B]T=[Cl]T 

according to the cocrystal stoichiometry. The resulting expression  

S!,!"!:!"" =
K!"!:!""

[HA]!
1+

K!!"

[H!]         (4.18) 

shows that cocrystal solubility will decrease with increasing coformer in solution.  This 

expression applies to solutions in which the pH<pHmax (salt/drug). According to equation 

(4.18) the solubility curve of a cocrystalline salt that is more soluble than the parent salt 

will intersect the salt solubility curve as shown in Figure 4.5. 

 
Figure 4.5. The theoretical solubility dependence of a 1:1 cocrystalline salt on coformer 
solution concentration, according to equation (4.18). Theoretical curves were generated 
using Ksp

1:1cc = 2 x 10-4 m3, S0
salt = 3.74 x10-2 m2 and coformer pKa= 4.4.The cocrystalline 

salt and drug saturation curves intersect at the eutectic point, which is invariant when 
solid salt (BH+Cl-) and cocrystalline salt (BH+Cl-HA) are in equilibrium with the liquid 
phase at a given temperature and pH. 
 

This intersection is the eutectic point between cocrystalline salt and salt, and the 

solution concentrations in equilibrium with the solid phases are invariant.  The solubility 

of the salt and 1:1 cocrystalline salt can be determined at the eutectic point under 

equilibrium conditions. At the eutectic point of the 1:1 cocrystalline salt and parent salt, 
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[F]T =S0
salt when chloride is not added to the solution in excess of the cocrystalline salt 

stoichiometry. Ksp
1:1cc can be calculated from the analytical solution concentrations in 

equilibrium with the eutectic point between cocrystalline salt and salt according to 

equation (4.6) or (4.29) for a 1:1 cocrystalline salt and a 2:1 cocrystalline salt 

respectively.   

1:1 cocrystalline salt stoichiometric solubility-pH dependence at the eutectic point 

The thermodynamic equilibrium solubility of the 1:1 cocrystalline salt can be 

determined at the eutectic point. Combining and rearranging equation  (4.6) and  (4.8), 

the stoichiometric solubility of the 1:1 cocrystalline salt is related to the solution 

components according to: 

ST
1:1cc 3= B T[Cl]T[HA]T=Ksp

1:1cc 1+
KaHA

[H+]
       (4.19) 

Therefore the stoichiometric solubility of the cocrystalline salt can be obtained from the 

equilibrium analytical component concentrations according to 

ST
1:1cc= [B]T[Cl]T[HA]T

3          (4.20) 

Equation (4.20) is useful to determine the stoichiometric solubility from a solution in 

equilibrium with cocrystalline salt, such as the eutectic point, and is analogous to the 

eutectic point analysis in the cocrystal literature.4,15,16,95  

1:1 cocrystalline salt solubility dependence on chloride at the eutectic point 
The cocrystalline salt solubility dependence on chloride is related to the drug and 

coformer analytical solution concentration according to  

ST,Cl
1:1cc= B T = HA T=

Ksp1:1cc

Cl T
1+
KaHA

[H+]
       (4.21) 

by rearranging equation (4.13).  The cocrystalline salt solubility dependence on chloride 

can be evaluated according to 

ST,Cl
1:1cc= [B]T[HA]T           (4.22) 
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As excess coformer is added to solution, the equilibrium drug concentration will decrease 

due to solubility product behavior such that equation (4.22) equals the cocrystalline salt 

solubility in the absence of excess coformer.  

Analytical considerations for a 2:1 cocrystalline salt  
Equations that describe the 2:1 cocrystalline salt solubility dependence on [H+], 

Ksp
2:1cc ,Ka

coformer, and [Cl]T can be derived by considering cocrystal dissociation and 

component ionization. The cocrystalline salt solubility of a 2:1 cocrystalline salt, (BH+Cl-

)2H2A where the chloride salt is BH+Cl- and the coformer is a diprotic acid, H2A, is 

described by the following equilibrium reactions:  

BH+Cl-­‐ 2H2Asolid
Ksp
BHaq+ +Claq-­‐ +H2Aaq 

Ksp
BH+Cl-

2
H2A
=[BH+]2[Cl-­‐]2[H2A]        (4.23) 

H!A!" HA!"! +   H!"!  

K!,!
!!! =

HA! [H!]
[H!A]

          (4.24) 

HA!"! A!"!! +   H!"!  

K!,!!"! =
A! [H!]
[HA!]           (4.25) 

The total analytical concentrations of drug and counter-ion under solution 

conditions where the salt is the stable form relative to the free drug (i.e. below pHmax) are 

described by 

B ! = BH!            (4.26) 

Cl ! = Cl!             (4.27) 

while the analytical concentration of the acid, the sum of the ionized and nonionized 

species, is given by 

H!A ! = [H!A]+ HA! + [A!!]         (4.28) 

The analytical drug concentration in equilibrium with the 2:1 cocrystalline salt can be 

expressed in terms of [H2A]T, [Cl]T, Ksp
2:1cc, Ka and [H+] by substituting [H2A], [HA-] and 

[A2-] from equations (4.23)-(4.25) into equation (4.28) and rearranging to give 
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[H!A]! =
K!"!:!""

[B]!![Cl]!!
1+

K!,!
!!!

[H!] +
K!,!
!!!K!,!!"!

[H!]!      (4.29) 

which applies to solutions in which the pH <<pHmax (salt/free base). Equation (4.29) is in 

terms of component concentrations, understanding that they approximate component 

activities under dilute conditions.The solubility product can be determined from the 

analytical [H2A]T, [Cl]T and [B]T concentrations and [H+] in equilibrium with a solution 

that is saturated with the cocrystalline salt. This is achieved in solutions containing 

stoichiometric solution concentrations when S0
2:1cc < S0

salt or at the eutectic point between 

2:1 cocrystalline salt and salt.   

2:1 Cocrystalline salt solubility-pH dependence 

The cocrystalline salt solubility, ST
2:1cc is equal to the total concentration of each 

component of the cocrystalline salt under stoichiometric solution conditions according to  

S!!:!"" =
!
!
B ! =

!
!
Cl ! = H!A !         (4.30) 

An equation for the cocrystalline salt solubility-pH dependence in terms of 

experimentally accessible thermodynamic equilibrium constants is obtained by 

substituting equation (4.30) into equation (4.29) and multiplying the final equation by 

two; the equation is in terms of moles drug/kg solvent. 

S!!:!"" = 2x
K!"!:!""

16 1+
K!,!
!!!

[H!] +
K!,!
!!!K!,!!"!

[H!]!
!

      (4.31) 

Under these conditions, the solubility is the stoichiometric solubility, or cocrystalline salt 

solubility in the absence of excess components.  

The cocrystalline salt solubility is dependent on its solubility product Ksp
2:1cc, the 

ionization constants Ka
H2A and Ka

HA- of the coformer, and the solution [H+]. According to 

equation (4.31), the solubility of cocrystalline salt (BH+Cl-)2H2A will decrease with [H+] 

(increase with pH).   At pH << coformer pKa
H2A, or [H+]>>Ka

H2A, cocrystalline salt 
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solubility approaches its intrinsic solubility, 𝑆!!:!!! = 2𝑥
!!"!:!!!

!"

!
 .  At pH = coformer 

pKa
H2A, or [H+]=Ka

H2A, the cocrystal solubility is 2!  or 1.15 times S0
2:1cc.  As pH 

increases beyond the first coformer pKaH2A ([H+]<<Ka
H2A) the cocrystalline salt solubility 

increases exponentially. 

2:1 Cocrystalline salt solubility dependence on [H+] and [Cl-] 

As chloride solution concentrations increase, the drug and coformer in 

equilibrium with the 2:1 cocrystalline salt decrease due to solubility product behavior, 

maintaining solution concentrations such that 

  S!,!"!:!"" = !
!
[B]! = [H!A]!          (4.32) 

according to the 2:1 cocrystalline salt stoichiometry. The 2:1 cocrystalline salt solubility 

dependence on [Cl]T and [H+] is derived by combining equation (4.29) and (4.32) and 

solving in terms of ST,Cl
2:1cc resulting in the following equation 

𝑆!,!"!:!!! = 2𝑥
𝐾!"!:!!!

4[𝐶𝑙]!!
1+

𝐾!,!
!!!

[𝐻!] +
𝐾!,!
!!!𝐾!,!!"!

[𝐻!]!
!

      (4.33) 

Equation (4.33) applies under solution conditions where pH < pHmax (salt/free drug). 

The 2:1 cocrystalline salt solubility will decrease with increasing [Cl]T of chloride 

according to equation (4.33). The 1:1 cocrystalline salt exhibits the weakest chloride 

dependence, followed by the 2:1 cocrystalline salt followed by the parent salt based on 

equations (4.12), (4.16) and (4.33). 

2:1 cocrystalline salt stoichiometric solubility-pH dependence at the eutectic point  

The 2:1 cocrystalline salt solubility dependence on [H2A]T is derived by assuming 

the solution concentrations of drug and chloride will both decrease with increasing 

coformer concentration in solution maintaining that 

S!!:!"" =
1
2 [B]! =

1
2 [Cl]!         (4.34) 

according to the stoichiometry of the 2:1 cocrystalline salt.  The cocrystalline salt 

solubility dependence on [H2A]T is obtained by combining and rearranging equations 

(4.29) and (4.34) resulting in the following equation  
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𝑆!,!!!!:!!! = 2𝑥
𝐾!"!:!!!

16[𝐻!𝐴]!
1+

𝐾!,!
!!!

[𝐻!] +
𝐾!,!
!!!𝐾!,!!"!

[𝐻!]!
!

     (4.35)  

According to equation (4.35), the cocrystalline salt solubility will decrease with 

increasing coformer in solution.  This expression applies to solutions in which the 

pH<pHmax (salt/drug). According to equation (4.35), the solubility curve of a 

cocrystalline salt that is more soluble than the parent salt will intersect the salt solubility 

curve. 

The thermodynamic equilibrium solubility of the 2:1 cocrystalline salt can be 

determined at the eutectic point between cocrystalline salt and salt. Combining and 

rearranging equation (4.29) and (4.33) the stoichiometric solubility of the 2:1 

cocrystalline salt is related to the solution components according to: 

16x
S!!:!""

2

!

= B !
![Cl]!![H!A]! = K!"!:! 1 +

K!,!
!!!

[H!]
+
K!,!
!!!K!,!!"!

[H!]!
    (4.36) 

therefore the stoichiometric solubility of the cocrystalline salt can be obtained from the 

equilibrium analytical component concentrations according to 

S!!:!"" = 2x
B !

![Cl]!![H!A]!
16

!

        (4.37) 

regardless of the presence of excess coformer or chloride due to solubility product 

behavior.  Equation (4.37) is useful to determine the cocrystalline salt stoichiometric 

solubility from the eutectic point measurement and is analogous to the eutectic point 

analysis in the cocrystal literature.15,16,18,47 The cocrystalline salt solubility dependence on 

chloride cannot be determined from equation (4.37). 

2:1 cocrystalline salt solubility dependence on chloride at the eutectic point 

The thermodynamic equilibrium solubility of the 2:1 cocrystalline salt in solutions 

containing excess chloride can be determined at the eutectic point. The 2:1 cocrystalline 

salt solubility dependence on chloride is related to the drug and coformer analytical 

solution concentration according to  
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4 2S!!:! ! = B !
![H!A]! =

K!"!:!

[Cl]!!
1+

K!,!
!!!

[H!] +
K!,!
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This equation is obtained by combining and rearranging equations (4.29) and(4.33).  The 

cocrystalline salt solubility dependence on chloride can be evaluated according to 

S!,!"!:!"" = 2x
B !

![H!A]!
4

!

         (4.39) 

This equation can be used to determine the cocrystalline salt solubility in chloride 

solutions from eutectic point measurements. As excess coformer is added to solution, the 

equilibrium drug concentrations decrease due to solubility product behavior such that 

equation (4.39) equals the cocrystalline salt solubility in the absence of excess coformer.  

For the first time mathematical models that describe cocrystalline salt solubility 

are derived for the solubility dependence on [H+], coformer, and counter-ion for a 1:1 

cocrystal with a monoprotic acidic coformer and a 2:1 cocrystal with a diprotic acidic 

coformer. HCl salts that exhibit unfavorable solubility under gastric conditions due to the 

common-ion effect may benefit from cocrystal formation which mitigates the common-

ion effect.116,117 Cocrystallization of pharmaceutical HCl salts can reduce the common-

ion effect, and may increase the intrinsic solubility. Cocrystallization of a salt may also 

be useful to customize the solubility-pH dependence of the parent salt in addition to S0. 

The cocrystalline salt solubility at the plateau (S0) is characterized by the Ksp
1:1cc while 

the pH-solubility profile depends on the ionization properties of the coformer.  

Materials and Methods 

Materials 
Fluoxetine hydrochloride (FH+Cl-) was purchased from Jai Radhe Sales (Ahmedabad, 

India) and was used as received. Benzoic acid (BA) was purchased from Acros 

(Pittsburgh, PA) and fumaric acid (FA) and succinic acid (SA) were purchased from 

Sigma Chemical Company (St. Louis, MO). All crystalline solids were characterized by 

X-ray power diffraction (XRPD) and differential scanning calorimetry (DSC) before 

carrying out experiments. HPLC grade acetonitrile was purchased from Fisher Scientific 

(Pittsburgh, PA).  Water used in this study was filtered through a double deionized 

purification system (Milli Q Plus Water System) from Millipore Co. (Bedford, MA). 
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Cocrystal Synthesis 
Cocrystalline salts were prepared at ambient temperature. Salt and coformer were added 

in their stoichiometric ratio (1:1 for BA, and 2:1 for FA and SA) to an aqueous solution 

saturated with coformer.  The solution pH during synthesis was 3.2 for BA and 2.2 for 

SA and FA. The solid phase was characterized by XRPD and DSC. 

Solubility Measurements 

Fluoxetine HCl (FH+Cl-), fluoxetine HCl benzoic acid (FH+Cl-BA) and fluoxetine HCl 

fumaric acid ((FH+Cl-)2FA) were measured as a function of solution pH and [Cl]T.  

Fluoxetine HCl succinic acid ((FH+Cl-)2SA) was measured as a function of SA. FH+Cl-, 

FH+Cl-BA were measured by traditional phase solubility techniques.118 50-100 mg of 

solid (salt or cocrystal) was added to 3 mL of water or aqueous solutions (varying pH or 

[Cl]T) at 25±0.1°C. (FH+Cl-)2SA solubility was measured in aqueous SA solutions in 

which cocrystalline salt was the stable phase.  (FH+Cl-)2FA was characterized from 

eutectic point measurements as outlined in the theoretical section. Solubilities were 

determined from measured solution concentrations in equilibrium at the eutectic point 

between cocrystalline salt and salt.  

The eutectic point was evaluated by suspending cocrystalline salt (100 mg) and 

salt (50 mg) in 3 mL of water or aqueous solutions (varying pH or [Cl-]T). pH was 

modified by dropwise addition of either 1M HCl or 1M NaOH. NaCl was dissolved in 

water to vary [Cl]T prior to suspending solid phase(s).  Solubility experiments were 

maintained with magnetic stirring at 25 ± 0.1°C using a water bath. The solution phase 

was analyzed at 24 hour time intervals, for 72-96 hours. Solution pH was measured and 

0.3 mL of sample was collected and filtered through 0.45 mm membrane, and diluted 

with water or mobile phase. Drug and coformer concentrations were analyzed by HPLC. 

Chloride concentrations were analyzed by ICP-HRMS. The recovered solid phase(s) 

were characterized by XRPD and DSC. 

As outlined in the theoretical section, the (FH+Cl-)2FA solubilities were 

determined from the analytical solution concentrations from eutectic point measurements 

according to equation (4.37): 
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in water or when pH was modified. The cocrystalline salt solubilities were determined 

from the eutectic point measurement according to equation (4.38): 

ST
2:1cocrystal=2x

F T
2 H2A T

4  
3

 

in solutions containing excess chloride. 

Cocrystal transformation study in water and pH 7 buffer 
200 mg of cocrystalline salt was suspended in 3 mL of deionized water of pH 7 buffer 

and stirred at 250 rpm at 25 ± 0.1°C.  An aliquot were withdrawn after 24 hours and 

filtered through a 0.45 µm PVDF syringe filter. Solution concentrations of [F]T and 

[H2A]T were analyzed by HPLC.  Recovered solid phases were characterized by XRPD 

and DSC. 

High-Performance Liquid Chromatography 

The drug and coformer concentrations were analyzed by a Waters HPLC (Milford, MA) 

equipped with an ultraviolet-visible spectrometer detector. A C18 Thermo Electron 

Corporation (Quebec, Canada) column (5µm, 250 x 4.6 mm) at ambient temperature was 

used. The injection sample volume was 20 µl and an isocratic method with a mobile 

phase composed of 50% acetonitrile and 50% water with 0.1% trifluoroacetic acid and a 

flow rate of 1 ml/min was used. Absorbance of all components were monitored at 228 

nm. Waters’ operation software, Empower 2, was used to collect and process the data.  

All concentrations are reported in molality (moles solute/kilogram solvent) unless 

otherwise indicated.    

X-ray Powder Diffraction 
X-ray powder diffraction diffractograms of solid phases were collected with a benchtop 

Rigaku Miniflex X-ray diffractometer (Rigaku, Danverse, MA) using Cu Kα radiation 

(λ= 1.54Å), a tube voltage if 30 kV, and a tube current of 15 mA.  Data were collected 

from 5 to 40° at a continuous scan rate of 2.5°/min. 
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Thermal Analysis 
Solid phases collected from the slurry studies were dried and analyzed by differential 

scanning calorimetry (DSC) using a TA instrument (Newark, DE) 2910MDSC system 

equipped with a refrigerated cooling unit.  DSC experiments were performed by heating 

the samples at a rate of 10 K/min under a dry nitrogen atmosphere.  Temperature and 

enthalpy calibration of the instruments was achieved using a high purity indium standard. 

Standard aluminum sample pans were used for all measurements.  

Inductively coupled plasma-high resolution mass spectrometer.  
We thank Ted Huston in the W. M. Keck Elemental Geochemistry Laboratory, within the 

Department of Earth and Environmental Sciences, at the University of Michigan for the 

ICP analyses. The chloride concentrations were analyzed using a Thermo Scientific 

Element Inductively Coupled Plasma-High Resolution Mass Spectrometer (ICP-

HRMS).  The aqueous samples were diluted nominally 10-fold with HNO3, containing 

1ng/g (ppb) Indium (In), to normalize the matrix and better match calibration 

standards.  The In signal was not used as an internal standard, but to monitor instrumental 

matrix effects and drift.  Other instrumental parameters:  1400W forward power; sample 

uptake ~0.3mL/min by peristaltic pump to a MicroMist nebulizer and Scott double-pass 

spray chamber; scanning in medium resolution (m/∆m > 4000); system optimized daily 

for stability and sensitivity (~1.2Mcps/ppb In); isotopes used, 35Cl, 115In.  The calibration 

was from 0 to 25µg/g, with blank and linearity checks; independent calibration check was 

included with each batch using NIST1640 (not certified for Cl, but found to contain 19.0 

+/- 0.6µg/g Cl); samples were at least an order of magnitude above batch method 

detection limits, which was typically better than 0.07µg/g Cl; spike recovery was tested 

for the initial batch with results within 90-110%.  

Results  
The derived equations presented in the theoretical section describe the solubility 

behavior of a cocrystalline salt based on the cocrystal solubility product (Ksp
cc) and 

coformer ionization (Ka). The salt plateau (pH-independent) region is modified by 

cocrystallization with a coformer that has a pKa that falls within the salt plateau region, 

which occurs below pHmax between the salt and free base.  According to the equations 

derived in the theoretical section, the cocrystalline salt solubility dependence on [H+] and 
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counter-ion concentration, [Cl]T can be a priori predicted from knowledge of the Ksp
cc, 

and coformer Ka.  Assuming that cocrystalline salts follow solubility product behavior, the 

equilibrium solubility of metastable cocrystalline salts can be determined from 

equilibrium component solution concentrations at the eutectic between the cocrystalline 

salt and salt solid phases.  

To evaluate the predictive power of the proposed models, the solubility of 

fluoxetine hydrochloride (FH+Cl-) cocrystalline salts with 1:1 and 2:1 stoichiometries, 

containing coformers of different ionization properties were investigated as a function of 

[H+] and [Cl]T.  These include a 1:1 cocrystalline salt with benzoic acid (monoprotic 

acid) (FH+Cl-BA), and the 2:1 cocrystalline salts with diprotic acidic coformers, fumaric 

acid, (FH+Cl-)2FA, and succinic acid, (FH+Cl-)2SA. Fluoxetine HCl solubility is pH 

independent below pHmax, which is pH 7.6 according to the equation for the pHmax of a 

monoprotic base:44  

𝑝𝐻!"# = 𝑝𝐾!!"! + 𝑙𝑜𝑔
!!"!

!!"!"
!!!!

         (4.40) 

The pHmax of fluoxetine HCl was calculated from the thermodynamic parameters 

(intrinsic solubility of the free base, the salt Ksp, and the pKa of fluoxetine) that are listed 

in Table 4.1.  The coformers BA, FA, and SA all have pKa values that are lower than the 

pHmax of fluoxetine HCl, and they are all expected to modify the plateau region of the 

salt. The cocrystalline salt solubilities are studied under solution conditions such that pH 

<< pHmax (salt/free drug) following the assumption used to derive the solubility equations 

in the theoretical section 

Table 4.1 Solubilities in the plateau region (S0) and ionization 
constants of the cocrystal components 25°C 

Solid S0 (m) pKa 
fluoxetine 1.24 x10-4 a 10.05b 

fluoxetine-HCl 3.31x10-2c  
benzoic acidd 2.60x10-2 4.2 
fumaric acide 4.48x10-2 3.0,4.4 
succinic acid 0.64 4.1, 5.6 
(a) fluoxetine free base precipitated as an oil  

(b) Calculated using AMD labs 
(c) Ref48 

(d) Ref 88 
(e) Ref119 
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 (FH+Cl-)2FA exhibits a higher solubility than the parent salt,79 therefore the 

solubility of (FH+Cl-)2FA was evaluated by eutectic point measurement to avoid solution 

transformation to salt during equilibration as discussed in the theoretical section. FH+Cl- 

and FH+Cl-BA solubilities were determined by traditional equilibrium solubility methods. 

The phase solubility behavior of (FH+Cl-)2SA is presented in the last section, as 

considerations of solution complexation were required to determine the cocrystalline salt 

and salt solubility dependence on [SA]T.  

The salt and cocrystalline salt solubilities and the corresponding solution pH were 

measured in deionized water and the equilibrium solution concentrations are shown in 

Table 4.2. The stoichiometric solubilities of 1:1 FH+Cl-BA and 2:1 (FH+Cl-)2FA were 

determined according to equations (4.20) and (4.37) respectively.  Preliminary solubility 

experiments of (FH+Cl-)2FA in water indicate solution transformation of the cocrystalline 

salt by solution phase analysis (1/2[F]T < [H2A]T) even though there was no solid phase 

transformation detected by XRPD or DSC.  The (FH+Cl-)2FA solubility was determined 

by eutectic point measurement because the cocrystalline salt exhibited higher solution 

concentrations during dissolution in water relative to the parent salt.79  The measured 

[F]T,eu=[Cl]T,eu (the values are not significantly different (p<0.05)) which confirms the 

assumption required to obtain equation (4.37). 
Cocrystalline salt equilibrium solubilities in deionized water are in agreement 

with the apparent solubilities reported by Childs et al.79 The salt solubility equilibrated to 

a pH of 7.14±0.03, which is lower than the predicted pHmax (salt/free base). The solution 

pH values of the cocrystalline salt solubility studies were much lower than the salt 

studies; FH+Cl-BA equilibrated to a pH of 3.14, and (FH+Cl-)2FA equilibrated to pH 

2.39±0.04. Thus, cocrystalline salts may be useful to control the solution-pH of the 

dissolving solid in the boundary layer, especially for salts that exhibit narrow pH ranges 

of stability. 

Table 4.2. Cocrystalline salt and salt solubility in water and Ksp 25°C  
Solid pH [F]T  

(mM)  
[Cl]T 
(mM) 

[coformer]T 
(mM) 

Swater  
(mM) Ksp 

FH+Cl- 7.14±0.03 32.7±0.3 42.1±0.1   37.7±0.6  (1.42±0.05) x10-3m2 

FH+Cl-BAa 3.14±0.02 18.9±0.2  19.3±0.3  16.3±0.7  17.2±0.1  (4.7±0.1) x10-6 m3 

 (FH+Cl-)2FAab  2.39±0.04 37±2  42±2 23.0±0.3  40.6±0.6  (4.4±0.4) x10-8 m5 
(a) [FH]T=[Cl]T  (p<0.05)  
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(b) Determined by eutectic point measurement  
 

As shown in Table 4.2,  [F]T,eu=[Cl-]T,eu at the eutectic point between FH+Cl- and 

(FH+Cl-)2FA(the values are not significantly different (p<0.05)) which confirms the 

assumption that both drug and chloride concentrations are equal and decrease as coformer 

increases in solution, while maintaining their stoichiometric ratio; this assumption was 

required to obtain equation (4.34). The measured equilibrium component concentrations 

(Table 4.2) were used to calculate the solubility product of the salt FH+Cl-, 1:1 FH+Cl-BA 

and (FH+Cl-)2FA using equations (4.12), (4.6) , and (4.29) respectively. The Ksp values in 

Table 4.2 and the component ionization constants in Table 4.1 were used to predict salt 

and cocrystalline salt solubility dependence on [H+] and  [Cl]T as outlined in the 

theoretical section.  

The common-ion effect on cocrystalline salts and Ksp evaluation 

The salt solubility dependence on chloride solution concentrations is predicted to 

be pH-independent below the salt pHmax with the free base (pHmax=7.6). The salt 

solubility was measured as a function of the chloride concentration in solution at pH 2 

and in water (pH 6-7) to confirm this behavior prior to carrying out solubility-pH studies 

with cocrystalline salts. The solubility of FH+Cl- decreases as the analytical chloride 

increases in solution as shown in Figure 4.6, and the solubility dependence on chloride at 

pH 2 is in agreement with that determined in water (pH 6-7).   

 
Figure 4.6. The solubility of Fluoxetine HCl decreases due to common ion effect at pH 2 
(n) and in water, pH 6-7, (□) at 25 °C. The predicted salt solubility (──) and Ksp, 
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(1.40±0.03a) x10-3 m2, were determined by nonlinear regression analysis of the data 
according to equation (4.12). 
 

The measured salt solubility [F]T, decreased with increasing [Cl]T.  The salt 

solubility dependence on [ClT at pH 2 and pH 6-7 was described well by equation (4.12) 

according to non-linear regression analysis (Rsq=0.98 ,P <0.0001). The salt Ksp evaluated 

from nonlinear regression analysis (Ksp =(1.40±0.03) x10-3 m2) is in agreement with that 

determined from the single solubility measurement in water (Ksp =(1.42±0.05) x10-3 m2). 

The analytical concentrations of the salt components are shown in Table 4.3. The salt 

solubility is equal to the analytical drug concentration, Ssalt =[F]T.  

Table 4.3. Equilibrium FH+Cl- component concentrations in aqueous 
chloride solution, pH 2-2.4 at 25°C. 

pH [Cl-]T(mM) [FH+]T (mM) 

2.06±0.02 43±2 34.9±0.7 
2.35±0.03 44±2 39±1 
2.39±0.01 41±2 37±7 
2.43±0.01 43±2 36±1 
2.37±0.01 120±10 13.1±0.1 
2.36±0.03 120 ± 10 12.6±0.1 
2.33±0.01 170± 10 7.41±0.01 
2.37±0.02 210 ± 10 7.16±0.01 
2.35±0.01 470± 20 2.65±0.01 
2.35±0.01 500± 30 2.77±0.02 
7.07±0.03 42±2 32.7±0.3 
7.36±0.05 45±2 32±2 
7.25±0.05 50±3 28.6±0.4 
7.49±0.03 54±3 26.2±0.7 

6.98±0.06 400 ± 20 33.5±0.01 

6.4±0.01 410 ± 20 3.28±0.02 

6.72±0.08 570 ± 30 2.10±0.02 
6.04±0.03 620 ± 30 2.14±0.01 

 

The 1:1 and 2:1 cocrystalline salts are predicted to exhibit a weaker dependence 

on chloride relative to the parent salt.  The FH+Cl-BA and (FH+Cl-)2FA solubility 

dependence on solution concentrations of chloride was measured to evaluate the 

predictive power of equations (4.16) and (4.37) respectively. These experiments were 
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carried out in deionized water and pH was not independently modified.  The measured 

solution pH and equilibrium concentrations of the components of FH+Cl-BA in solutions 

containing various chloride concentrations are shown in Table 4.4.  The equilibrium 

solution pH ranged between 3.14-3.40 for the FH+Cl-BA solubility experiments. As the 

chloride concentration is increased from 19 to 155 mM, the analytical concentrations of 

drug and coformer decrease such that [BA]T =[F]T (p<0.05) which is in agreement with 

the assumption required to obtain equation (4.13).  

Table 4.4. Equilibrium FH+Cl-BA component concentrations in aqueous chloride 
solutions at pH 2-2.4 at 25°C. 

pH [Cl]T (mM) [BA]T (mM) a [F]T (mM) a ST,Cl
1:1

 
b(mM) 

3.14±0.02 19.3±0.3 16.3±0.7 18.9±0.2 17.2±0.1 
3.16±0.02 44±1 11.2±0.1 11.9±0.2 11.6±0.1 
3.17±0.01 85±1 8.6±0.2 8.3±0.1 8.45±0.01 
3.25±0.03 155±3 6.2±0.1 6.55±0.01 6.37±0.05 
3.40±0.01 400±9 4.16±0.01 3.82±0.05c 3.99±0.03 
3.35±0.03 586±6 4.00±0.03 2.31±0.01c 3.04±0.01 

(a) The value of the solution concentrations of BA and F are not significantly different 
(p<0.05) as determined by a paired sample t-Test 

(b) ST
1:lcc was calculated from equation (4.22) using the measured solution concentrations of 

cocrystalline salt components in this table. 
(c) [F]T< [BA]T indicating solution phase transformation, no conversion was detected by 

solid phase analysis  
 

The FH+Cl-BA solubility dependence on chloride is compared to that of the parent 

salt in Figure 4.7.  The measured FH+Cl-BA solubility decreases with increasing chloride 

in solution. Non-linear regression analysis shows that the measured solubilities are well 

described by equation (4.13) (Rsq =0.99, P<0.004). ). The coformer pKa from nonlinear 

regression analysis (4.4±0.9) is in agreement with value (4.03) reported by Mooney et. 

al.. 88   The FH+Cl-BA Ksp
1:1cc was determined to be (Ksp =(5.61±0.07)x10-6 m3) from 

nonlinear regression analysis. Based on the solubility products of the cocrystalline salt 

and the salt, the [Cl-]max =0.35 m according to equation (4.15).  Above [Cl-]max, the 

cocrystalline salt is predicted to be more soluble than the parent salt. While FH+Cl-BA 

was 2.2 times less soluble than the parent salt under solution conditions without 

stoichiometric excess of chloride, in solutions containing 0.4m and 0.586 m chloride, the 

solubility of FH+Cl-BA appears to be equal to the parent salt.   



 

 139 

 
Figure 4.7. The measured solubility of FH+Cl-BA (Δ) decreases with increasing chloride 
in solution. The predicted FH+Cl-BA solubility (──), Ksp, (5.61±0.7) x10-6 m3, and 
coformer pKa = 4.4±0.9, were evaluated by nonlinear regression of the data according to 
equation (4.16). The predicted salt solubility (──), according to equation (4.12) and 
Ksp

salt
 =(1.40±0.03) x10-3 m2, intersects the FH+Cl-BA solubility curve at [Cl-]max= 0.35, 

according to equation (4.15). 
 

Interestingly in the solutions containing 400 and 586 mM chloride,  [F]T <[BA]T, 

indicating phase transformation of the cocrystalline salt to the parent salt. Cocrystals that 

transform to the parent drug generally exhibit a decrease in drug solution concentrations 

paired with an increase in coformer concentrations.47,120  Even though solid phase 

analysis of the recovered solids is FH+Cl-BA, the solution concentrations indicate 

transformation of the cocrystalline salt to the parent salt.  

The solubility of (FH+Cl-)2FA solubility is predicted to decrease with increasing 

solution concentrations of chloride according to (4.33). Due to the weaker dependence of 

(FH+Cl-)2FA on chloride relative to the parent salt, the ST,Cl 
2:1cc/ST,Cl

salt  is predicted to 

increase with increasing solution concentrations of chloride according to equations (4.12) 

and (4.33). The (FH+Cl-)2FA solubility was determined from the eutectic point between 

cocrystalline salt and salt to avoid transformation to the parent salt.  The component 

solution concentrations of [F]T, [Cl]T and [H2A]T in equilibrium at the eutectic point 

between salt and  (FH+Cl-)2FA are shown in Table 4.5 

 (FH+Cl-)2FA is increasingly more soluble relative to the parent salt in solutions 

containing excess chloride confirming that it does have a weaker dependence on chloride, 
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as shown in Table 4.5. The equilibrium drug concentration at the eutectic is equal to the 

salt solubility, ST
salt=[F]T,eu. The 2:1 cocrystalline salt, (FH+Cl-)2FA, which has the same 

intrinsic solubility as the parent salt becomes increasingly more soluble relative to the 

parent salt as excess chloride in solution increases (Table 4.5).  For example, (FH+Cl-

)2FA is 2.9 times more soluble than the salt in 0.6 m chloride.  

Table 4.5. (FH+Cl-)2FA component concentrations in equilibrium at the eutectic point in 
aqueous chloride solutions, pH 2-2.4 at 25°C. 

pH [Cl]T,eu 
(mM) 

[FA]T,eu 
(mM) 

[F]T,eu 
(mM) 

ST
2:1cc (mM) 

a 
Scocrystal /SSalt 

2.35±0.03 44±2 22.9±0.6 39±1 41.1±0.8 1.05±0.03 
2.39±0.01 41±20 22.8±0.6 37.0±0.7 39.7±0.6 1.07±0.03 
2.43±0.01 43±2 23.4±0.9 36±1 39.3±0.9 1.09±0.04 
2.37±0.01 120±10 21.1±0.1 13.1±0.1 19.4±0.3 1.48±0.03 
2.36±0.03 120±10 20.9±0.1 12.6±0.1 18.7±0.1 1.48±0.01 

2.33±0.01 170±10 21.1±0.1 7.41±0.01 13.2±0.1 1.78±0.01 
2.37±0.02 210±10 20.5±0.1 7.16±0.01 12.9±0.1 1.80±0.01 

2.35±0.01 470±20 18.5±0.1 2.65±0.01 6.38±0.02  2.41±0.01 
2.35±0.01 500±30 19.8±0.1 2.77±0.02 6.72±0.03  2.43±0.02 

(a) ST
2:1 was calculated from equation (4.39) using the measured solution concentrations 

of cocrystal components 
 

Equation (4.39) was used to determine the solubility dependence of (FH+Cl-)2FA 

on [Cl]T in the absence of excess coformer, ST,Cl
2:1cc, which is plotted in Figure 4.8. As 

shown in Figure 4.8, the solubility of (FH+Cl-)2FA decreases with increasing chloride in 

solution, with a weaker dependence than that of the parent salt, which is agreement with 

the solubility curve predicted by equations (4.12), and (4.33). Non-linear regression 

analysis shows that the measured solubilities of (FH+Cl-)2FA  are well described by 

equation (4.33) (Rsq =0.98, P<0.0001). ). The coformer pKa from nonlinear regression 

analysis (2.6±0.3) is in excellent agreement with reported value (3.0)88   The (FH+Cl-)2FA 

Ksp
1:1cc was determined to be (Ksp, (3.4±0.3)x10-8 m5) from nonlinear regression analysis. 
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Figure 4.8. Measured solubility of (FH+Cl-)2FA (¡) decreases with increasing chloride in 
solution. The predicted (FH+Cl-)2FA solubility (──), Ksp, (3.4±0.3)x10-8 m5, and 
coformer pKa1=2.6±0.3 were determined by nonlinear regression analysis of the data 
according to equation (4.33). pKa2 could not be determined from the data due to the low 
pH range (pH 1.4 - 2.88) of the solubility measurements. The salt solubility (──) was 
predicted according to equation (4.12) using Ksp

salt
 (1.40±0.03) x10-3 m2. The second pKa 

of FA is reported: pKa2=4.4.119 
 

A summary of the solubility products evaluated from the nonlinear regression 

analysis of the measured chloride dependence of FH+Cl-, FH+Cl-BA and (FH+Cl-)2FA is 

shown in Table 4.6. The Ksp values are in agreement with those determined from the 

single water measurement shown in Table 4.2 and the pKa values determined using the 

nonlinear regression analysis are in agreement with the reported values as shown in Table 

4.1.  Only the first ionization constant of FA could be determined from the measured 

solubility data due to the pH range of the solubility measurements. 

Table 4.6. Ksp determined from nonlinear regression of chloride dependence. 
Solid Ksp S0 (mM) pKa1

coformer pKa2
coformer Rsq 

FH+Cl- (1.40±0.03)x10-3 m2 d a 37.4±0.4   0.99 
FH+Cl-BA (5.6±0.7)x10-6 m 3 a 17.8±0.7 4.4±0.9 b  0.99 

(FH+Cl-)2FA (3.4±0.3) x10-8 m 5 c 36.9±0.7 2.6±0.3b 4.4d 0.98 
(a) Statistically significant, p< 0.004. 
(b) Statistically significant p<0.01 and in agreement with reported values 
(c) Statistically significant p<0.0001  
(d) Reported pKa values119 

 

Cocrystallization of a pharmaceutical salt could potentially mitigate the common-

ion effect.  For example, there may be an advantage to using a cocrystal of a HCl salt in 
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cases in which the salt exhibits too low of a solubility under gastric conditions where 

excess chloride is present.116 The solubility order of the salt and its cocrystals in solutions 

containing physiologically relevant concentrations of chloride (100mM)121 is : (FH+Cl-

)2FA> FH+Cl-> FH+Cl-BA. Based on our experimental measurements, (FH+Cl-)2FA is 

almost 1.5 times more soluble than the parent salt at 100 mM chloride, and pH 2.3 

according to equations (4.33) and (4.12).   

Cocrystalline salt-pH dependence 

The solubility products and ionization constants evaluated in Table 4.6 were used 

to generate solubility-pH profiles of FH+Cl-, FH+Cl-BA and (FH+Cl-)2FA. Figure 4.9 

shows the predicted cocrystalline salt solubility curves exhibit a plateau under pH 

conditions in which the coformer is unionized.  The salt exhibits a plateau below pHmax 

(pHmax=7.6).  The FH+Cl-BA exhibits a plateau below pH 3.44, and (FH+Cl-)2FA exhibits 

a plateau below pH 1.4.  The aqueous equilibrium solubilities of FH+Cl- and FH+Cl-BA 

(Table 4.2) equilibrated to solution pH values in the solubility plateau region, which is 

the intrinsic solubility (S0). The S0
1:1cc of FH+Cl-BA is 2.2 times lower than the S0

salt.  

However the FH+Cl-BA solubility is predicted to increases with pH due to the ionization 

of BA resulting in a pHmax=5.2 between FH+Cl-BA and FH+Cl- based on equation (4.10).  

Above the pHmax, FH+Cl-BA is predicted to have a higher solubility than the salt. The S0 

of (FH+Cl-)2 FA is not significantly higher than that of the parent salt (p<0.05).  However, 

the cocrystalline salt solubility is predicted to increase relative to the parent salt as FA 

ionizes. The cocrystalline salt solubilities were measured at higher pH values to evaluate 

their solubility-pH dependence. 
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Figure 4.9. Predicted (──) solubility-pH dependence compared to measured solubilities 
of FH+Cl- (□), FH+Cl-BA (∆) and (FH+Cl-)2FA cocrystal (○) at 25°C.  All solubilities are 
expressed in terms of FH+Cl- molal concentrations.  Cocrystalline salt solubilities were 
predicted from equations (4.8) and (4.31) using the Ksp values in Table 4.6, BA pKa=4.4, 
and FA pKa=2.6, 4.4. 
 

The predicted and measured cocrystalline salt and salt solubilities were in 

excellent agreement in the pH range examined as shown by Figure 4.9. The salt solubility 

was measured at pH 2 and pH 6-7.3.  FH+Cl-BA solubility was only accessible in the 

plateau region of the curve (pH 2.1 to 3.5). Solubility measurements for FH+Cl-BA were 

approached from above and below the predicted pHmax and both attempts resulted in a 

final solution pH of 3.5. The solubility of (FH+Cl-)2FA was measured between 1.4-2.8.  

Above pH 2.8 the solution pH could not be independently modified. FH+Cl-BA and 

(FH+Cl-)2FA exhibited degradation in 0.1 m solutions of H2SO4, at pH 1. FH+Cl-BA also 

exhibited degradation in a pH 1.4 solution.  Degradation was visually observed as 

suspended solid transformed to oil-like droplets. 

The narrow pH region of the FH+Cl-BA solubility measurements may be 

attributed to the self-buffering effects of BA. Serajuddin et al. reported difficulty in 

altering the bulk solution pH of acids such as salicylic acid and BA due to self-buffering 

effects in the boundary layer.122 The boundary layer pH of FH+Cl-BA salt can be 

approximated as the equilibrium pH during the solubility measurements (pH 2.1-3.5).122  

(FH+Cl-)2FA solubility measurements also exhibited a narrow pH range.  FA is used as a 

pH modifier to lower the micro-environmental pH of weak bases in pharmaceutical 

formulations.123 Due to the excess FA required for the eutectic point measurement, the 
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pH of the (FH+Cl-)2FA at the eutectic is not representative of the boundary layer pH 

during dissolution. 

The solubility of (FH+Cl-)2FA was determined from the measured component 

solution concentration in equilibrium at the eutectic between cocrystalline salt and salt to 

avoid solution-mediated transformation to the parent salt.   The solution concentrations 

used to determine the cocrystalline salt solubility-pH dependence are shown in Table 4.7. 

The stoichiometric solubility of  (FH+Cl-)2FA  was determined from the equilibrium 

component concentrations according to equation (4.36).  The stoichiometric solubility is 

plotted versus solution pH in Figure 4.9. 

Table 4.7. (FH+Cl-)2H2A equilibrium eutectic concentrations of the drug, coformer and 
chloride in water at various pH values.   

pH [H2A]T,eu 
(mM) 

[Cl]T,eu 
(mM) 

[F]T,eu (mM) ST
2:1cc b   

(mM) 
1.45±0.01 16.5±0.1 51.4±0.1 27.9±0.2 37±0.2 
2.02±0.05 19.6±0.8 44.5±0.6 36±3 40±2 
2.39±0.04a 23.0±0.3 42±1 37.0±0.2 40.6±0.6 
2.88±0.02 36±3 53.3±0.6 35±1 45.5±0.8 
(a) Eutectic measured in water  
(b) Determined from eutectic component concentrations according to equation (4.37). 

 

The coformer concentration in equilibrium at the eutectic for (FH+Cl-)2FA is 

predicted to increase with pH according to equation (4.30). As the cocrystalline salt 

solubility increases with pH, more coformer is required to lower the cocrystalline salt 

solubility to that of the parent salt via solubility product behavior. The measured 

coformer eutectic concentrations were found to increase with pH as shown in Figure 

4.10, which is in excellent agreement with equation (4.30).  The coformer eutectic 

concentrations of reported cocrystals containing acidic components have also been found 

to increase with pH as this increases the cocrystal solubility.  
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Figure 4.10. Measured (FH+Cl-)2FA  (○) coformer eutectic concentration pH dependence 
at 25°C compared to the (──) predicted eutectic concentration pH according to equation 
(4.29) 

pH dependent supersaturation of the (FH+Cl-)2FA cocrystalline salt 

The apparent solution concentration of drug during suspension of (FH+Cl-)2FA in 

a pH 7 phosphate buffer was evaluated to determine whether cocrystalline salt would 

generate supersaturation at higher pH conditions. This was done because the pH of a 

solution in equilibrium with the eutectic point of (FH+Cl-)2FA and FH+Cl- could not be 

independently modified in the region in which the cocrystalline salt exhibits an increased 

solubility advantage relative to the parent salt (above pH 3). As shown in Figure 4.11(a), 

(FH+Cl-)2FA does not offer a solubility advantage relative to the parent salt in water, 

however this may be due to the resulting pH at equilibrium (2.4); the solubility of 

(FH+Cl-)2FA is not significantly different than that of the salt under these conditions 

(p<0.05 value). When (FH+Cl-)2FA is suspended in pH 7 buffer, the resulting solution 

concentration of fluoxetine after 24 hours was 2 times higher than the equilibrium 

solubility of the parent salt, even though (FH+Cl-)2FA transformed to the parent salt, as 

shown by the XRPD in Figure 4.11(b). The (FH+Cl-)2FA cocrystal did not convert to salt 

in deionized water as determined by XRPD analysis of the solid phase.  
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(a) (b)  

Figure 4.11. Supersaturation generated by (FH+Cl-)2FA relative to parent salt in water and 
pH 7 buffer. (a) Solution concentrations of [F]T measured after suspending (FH+Cl-)2FA 
or salt in water compared to pH 7 buffer.  Concentrations were analyzed after suspending 
solids for 24 hours. (b) XRPD of recovered solid phases after suspending (FH+Cl-)2FA in 
water (i), and in pH 7 buffer (ii) for 24 hours, compared to the reference diffraction 
patterns of (iii) salt and (iv) (FH+Cl-)2FA. 
 

According to the cocrystalline salt solubility-pH dependence predicted by 

equation (4.31), (FH+Cl-)2FA is 20 times more soluble than the parent salt at pH 7.  The 

solution concentration of [F]T=77.2 mM generated by (FH+Cl-)2FA is 2 times S0
salt and 

the final solution pH is 3.2.  FA decreases the pH of the solution significantly.  At pH 3.2, 

(FH+Cl-)2FA is predicted to be 1.2 times more soluble than the parent salt.  The (FH+Cl-

)2FA generated a higher [F]T in phosphate buffer than that reported for the (FH+Cl-)2SA 

(58.4 mM) in water.  The (FH+Cl-)2FA can sustain a supersaturation of 2 after 24 hours, 

while the (FH+Cl-)2SA reaches the maximum [F]T at 1 min followed by a decrease in 

solution concentration such that [F]T=S0
salt after only 2 hrs.  

Cocrystalline salt and salt solubility when coformer complexes with drug  
The solubility of FH+Cl- was observed to increase linearly with [SA]T as shown in 

Figure 4.12. The linear increase of FH+Cl- solubility indicates that the complex formed is 

first order with respect to SA (FH+ SA, FH+
2SA,FH+

3SA,…,FH+
MSA).118,124 The slope of 

the line was less than unity, thus an apparent complexation constant was determined 

assuming 1:1 complex formation (FH+SA). The complexation constant was evaluated 

from linear regression analysis of the data in Figure 4.12 using equation (4.41) which is 
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based on reported mathematical models describing 1:1 solution complexation as a first 

approximation.118,124  

 
Figure 4.12.  FH+Cl- solubility as a function of SA concentration in deionized water at 25 
°C. Symbols represent experimental data and the line (──) is a result of linear regression 
of the data (y= 0.0341(±0.0005) + (0.061±0.002)x) used to obtain the apparent 
complexation constant from equation (4.42), K11=1.9±0.07 m-1

. 
 

Both [F]T and [Cl]T were observed to increase with [SA]T from 0.03-0.1m as shown in  

Table 4.8.  The rest of complexation studies were carried out without chloride analysis 

assuming that [F]T = [Cl]T. 

Table 4.8 Component concentrations in equilibrium with FH+Cl- in SA solutions, 25°C 
pH [SA]T (mM) [FH+]T (mM) [Cl-]T (mM) ST

salt (mM) 
2.90±0.02 29 ± 1 36.9±0.4 39 ± 2 37.9 ± 0.2 
2.73±0.02 57 ± 1 38 ± 1 40 ± 2 39 ± 1 
2.59±0.02 111 ± 2 39 ± 1 42 ± 2 40.9±0.7 

 

As a first approximation, it was assumed that the ionized base was the species 

complexing with SA.  The unbound, ionized base, [FH+] was assumed to be the salt 

solubility in the absence of SA (S0
salt). The following equation has been used to model 

1:1 solution complexation:118 

F T= FH+ +
K11 FH+ SA T

1+K11 FH+
        (4.41) 

A linear regression was performed on the experimental salt solubility as a function of 

[SA]T. Based on equation (4.41), the unbound ionized base can be determined from the y-
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intercept of the linear regression and used to obtain the apparent complexation constant 

(K11) from the slope according to 

𝑠lope=
K11 FH+

1+K11 FH+
         (4.42) 

Salt solubility experiments were conducted in deionized water that equilibrated 

between pH 2 to pH 3.  Under these conditions, SA is completely unionized and [FH+] is 

completely ionized.   

Table 4.9. S0
salt and K11 determined from linear regression analysis 

Equation of the line y= 0.0341(±0.0005) + (0.061±0.002)x 
K11 (m-1) 1.91 ±0.07 

S0
salt=[FH+] (m) 0.0341(±0.0005) 

 

The (FH+Cl-)2SA cocrystalline salt has the highest apparent solubility (58.5mM)79 

compared to the other cocrystalline salts of FH+Cl-. However, (FH+Cl-)2SA underwent 

solution-mediated transformation after 1 min in water. In the present study the (FH+Cl-

)2SA underwent solution-mediated transformation in solutions containing [SA] ≤0.35 m 

but did not transform to parent drug in 0.56 m SA after 48 hours (Figure 4.13). The solid 

phase stability studies indicate that the coformer eutectic is between 0.35 m and 0.56 m 

(0.56 m> [coformer]eu  >0.35 m).  

 
Figure 4.13.  XRPD patterns indicating phase stability of 2:1 cocrystal  (FH+Cl-)2SA 
transformation in aqueous solutions of succinic acid; 2:1 cocrystal (FH+Cl-)2SA (a) 
before slurrying, and (b) after slurrying in 0.22 M SA, and (c) after slurrying in 0.35 m 
SA and (d) after slurrying in 0.56 m SA; (e) reference pattern of FH+Cl- salt. 
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The solubility of a 2:1 cocrystalline salt in which the coformer solubilizes the 

parent salt was derived considering cocrystal dissociation and solution complexation 

under conditions in which the coformer ionization is negligible. The equilibrium 

reactions and the associated equilibrium constants for cocrystalline salt dissociation in 

solution and solution complexation are 

FH+Cl-­‐ 2H2Asolid
Ksp
FHaq+ +Claq-­‐ +H2Aaq 

K!"!:! = FH! ! Cl! ![H!A]         (4.43) 

FHaq+ +H2Aaq
K11

FH+H2Aaq 

K11HA=
[FH+H2A]
[H2A]

          (4.44) 

Mass balance for the concentration of the drug, coformer and chloride in solution are 

F ! = FH! + [FH!H!A!"]         (4.45) 

A ! = H!A + [FH!H!A!"]         (4.46) 

Cl ! = Cl!             (4.47) 

Substituting Ksp
2:1cc and K11 (equations (4.43) and (4.44)) for [FH+] and  [FH+H2A] in 

equations (4.45) and (4.46) gives 

F ! =
1

[Cl]!

K!"!:!

[H!A]
+
  K!!
[Cl]!

K!"!:![H!A]       (4.48) 

A ! = H!A 1+ K!![FH!]         (4.49) 

Re-arranging equation (4.48) 

F T Cl T=
Ksp2:1

[H2A]
+K11 Ksp2:1[H2A]        (4.50) 

Because SA is observed to have high solution concentration above the eutectic, the free 

[H2A]=[H2A]T as a first approximation.  Assuming  [FH+H2A]T<<[H2A] because of the 

high concentration of SA required to reach the eutectic between cocrystalline salt and 

salt: 

H!A ! = H!A            (4.51) 

Therefore 

F T= FH+ 1+K11[H2A]T          (4.52) 
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Squaring both sides of equation(4.50) and inserting (4.51) results in 

F ! Cl ! ! =
Ksp2:1

[H2A]
+ 2K!!K!"!:! + K!!!K!"!:![H!A]!     (4.53) 

The cocrystalline salt solubility in solutions containing excess coformer is determined 

from equation (4.53) assuming [F]T=[Cl]T=2ST
2:1cc. The following expression is in terms 

of moles of drug: 

S!!:!"" = 2x
1
16

K!"!:!""

[H!A]!
+ 2K!!K!"!:!"" + K!!!K!"!:!""[H!A]!

!
    (4.54) 

 Table 4.10 shows the measured component solution concentrations in equilibrium 

with (FH+Cl-)2SA. According to the phase stability studies the cocrystalline salt is the 

thermodynamically stable phase when suspended in [SA]T ≥0.56 m.  The (FH+Cl-)2SA 

Ksp was evaluated from measured component solution concentrations under solution 

conditions in which the cocrystalline salt is the thermodynamically stable phase (in 

aqueous solutions above [coformer]eu)).  

Table 4.10. Component solution concentrations in equilibrium with (FH+Cl-)2SA 
pHwater 

[F]T 
(mM) 

[SA]T 
(mM) 

[FH+]a 

(mM) 
[Cl-]b 
(mM) 

S0
2:1cc 

(mM) Ksp
c 

2.22±0.04 61.7±0.1 540±2 30.3±0.1 61.7±0.1 82.4 ± 0.8 (1.89±0.08)x10-7 m5 
1.99±0.01 60.3±0.3 650±20 26.9±0.7 60.3±0.3 80.7 ± 0.1 (1.7±0.2) x10-7 m5 

(a) Calculated according to equation (4.57)  
(b) Calculated according to equation (4.55) 
(c) Calculated from [FH+], [Cl-] and [H2A] according to equation (4.43). 
 

 

The measured component solution concentrations were used to determine the Ksp from 

the unbound solution concentrations of the cocrystalline salt component.  The unbound 

concentrations were determined according to 

Cl! = [Cl ]! = [F]!         (4.55) 

H!A = H!A !          (4.56) 

FH! =
[F]!

1+ K!! H!A !
         (4.57) 

which were obtained from equation (4.51) and(4.52). The average Ksp determined at 

0.54m and 0.65 m SA is Ksp
2:1cc=(1.8±0.1) x10-7 m5.  This was used to generate a phase 
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solubility diagram of (FH+Cl-)2SA and FH+Cl- using equations (4.54)  and (4.52) 

respectively. 

 
Figure 4.14. Predicted effect of 1:1 complexation on the solubility of a 2:1 cocrystalline 
salt (──) and its (──) parent salt as a function of [SA]T compared to the measured 
cocrystalline salt (�) and salt (¤). The predicted cocrystalline salt solubility and salt 
solubility curves were generated from equations (4.54) and (4.41) using, Ksp

2:1cc=(1.8±0.1) 
x10-7 m5, K11=1.91±0.07 m-1, and Ksp

salt=(1.40±0.03) x10-3 m2. 
 

(FH+Cl-)2SA is predicted to decrease with increasing [SA]T.  However, the solubility 

curve exhibits the highest rate of change under solution conditions in which the 

cocrystalline salt is not the thermodynamically stable phase. Above [coformer]eu, the 

cocrystalline salt solubility is not predicted to change significantly, which was confirmed 

by the solubility studies in Table 4.10. The stoichiometric solubility in the absence of 

excess coformer was calculated to be 82 mM, which is 1.4 times higher than the apparent 

solubility.79
  

Lattice and Solvation Contributions to Cocrystalline Salt aqueous solubility.  

Salt and cocrystalline salt melting temperature, Tm, and melting enthalpy, ΔHm, 

were obtained from analysis of the DSC thermographs shown in (4.15).  Tm and ΔHm 

measured in this study are in agreement with the values reported by Childs et al.79 The 

cocrystalline salts exhibit unique melting properties relative to the parent salt. The ideal 

solubilities of the cocrystalline salts and the parent salt were calculated from Tm and ΔHm 

to determine the lattice energy contributions to solubility. The ideal solubility quantifies 

the lattice energy contribution to the solubility and is solvent independent. The measured 
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solubility of a solid depends on the release of solute molecules from the crystal lattice 

(lattice energy) and the solvation of the released solute molecules (solvation energy).  

The free energy of solution considering lattice and solvation energy contributions is 

described by the following equation: 

∆𝐺!"#$%&"' = ∆𝐺!!""#$% + ∆𝐺!"#$%&'"(        (4.58) 

The free energy of solution can be reduced by lowering the ΔGlattice and/or by lowering 

the ΔGsolvation.  Cocrystallization and salt formation of a drug affects both lattice and 

solvation energies. 

 
Figure 4.15 DSC for (FH+Cl-)2FA (──), FH+Cl- (──), (FH+Cl-)2SA (──) and FH+Cl-BA 
(──). 

The ideal mole fraction solubility (Xideal) was calculated from the following 

equation assuming that the heat capacity change upon melting is zero and the enthalpy of 

the solution (ΔHSideal) is equal to the enthalpy of melting (ΔHm): 

log!" 𝑋!"#$% =
−∆𝐻!
2.303𝑅

𝑇! − 𝑇
𝑇!𝑇

        (4.59) 

where T is the solution temperature (298K), Tm is the melting temperature (in Kelvin) 

and R is the gas constant.  The enthalpy of melting, ΔHm listed in Table 4.11, was 

normalized by the cocrystalline salt or salt stoichiometry.4,111 This method is analogous to 
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what has been done to obtain ideal solubility values of cocrystal and salt forms, wherein 

the melting enthalpy is normalized per mole of constituent ions.111  

Table 4.11 Ideal and Measured Aqueous Solubilities of Salt and Cocrystalline Salts 
 Solubility (m)   

crystalline 
phase 

Ideal a Experimental 
(S0)b 

Tm (°C) ΔHm c 
(kj/mol) 

FH+Cl- 5.8 3.7x10-2 157.7 18.9 
FH+Cl-BA 9.4 1.8x10-2 131.6 18.2 

(FH+Cl-)2FA 11.8 3.7x10-2 160.2 19.2 
(FH+Cl-)2SA 16.3 8.2x10-2 132.6 18.6 

(a) Ideal solubilities were calculated using equation (4.59). Mole fraction cocrystal was converted to 
moles drug/ kg solvent.  
(b) Experimental intrinsic solubility (when coformer is unionized) from Table 4.6 (FH+Cl-, FH+Cl-BA 
and (FH+Cl-)2FA) and Table 4.9 ((FH+Cl-)2SA) in moles drug/kg  
(c) Measured heats of fusion were normalized by moles of component constituents (i.e. 2 for the 1:1 
salt, 3 for the cocrystal of a 1:1 salt and 5 for the 2:1 cocrystal of a 1:1 salt). 
 

 Based on the results in Table 4.11, the aqueous solubilities are 102 times lower 

than the ideal solubilities indicating that solvation of the hydrophobic drug is the main 

barrier for both salt and cocrystalline salt solubilization in water. The ideal solubilities 

were compared to the measured solubilities to determine the contributions of lattice 

versus solvation energy.  The solvation contribution (γ) was evaluated from the measured 

aqueous solubility under nonionizing conditions and the calculated ideal solubility (Xideal) 

according to the following equation: 

log10X= log10Xideal- log10 γ         (4.60) 

Figure 4.16 plots the log10 Xideal and the –log10 γ based on the methods described by Pinal 

et al.125 The lattice contribution to the solubility is not sufficient for predicting the 

cocrystalline salt solubility relative to the parent salt.   

While the ideal solubility of FH+Cl-BA is 1.6 times higher than that of the parent 

salt, the measured solubility is 2 times lower. (FH+Cl-)2FA and (FH+Cl-)2SA lower the 

solvation energy compared to the parent salt. The magnitude of the lattice contribution is 

much smaller than the solvation contributions for both cocrystalline salts and the parent 

salt.  These results indicate that parameters associated with crystal lattice energy, such as 

Tm and ΔHm are not sufficient for predicting cocrystalline salt solubility relative to the 

parent salt. The solution chemistry of the salt and its cocrystalline salts appear to be 

critical for describing their solubility behavior. 
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Figure 4.16.  Lattice energy (log10Xideal) and solvation energy (plotted as –log10 γ) 
contributions to the measured aqueous solubilities of FH+Cl-, FH+Cl-BA, (FH+Cl-)2FA, 
(FH+Cl-)2SA.  The black area of the bars represents log10 Xideal calculated from equation 
(4.59).  The grey area represents –log10 γ calculated from equation (4.60). 
Conclusions 

In this work, novel mathematical models are presented that explain the solubility 

behavior of 1:1 and 2:1 cocrystalline salts as a function of component concentrations in 

solution and the ionization of the cocrystalline salt components.  For the first time we are 

able to predict cocrystalline salt solubility under a variety of conditions from a single 

water solubility measurement and the derived mathematical models presented in this 

chapter.  These models are useful to define the parameters and minimum experiments 

required to properly assess and characterize the solubility behavior of cocrystalline salts.  

These models can also guide coformer selection to achieve a desired solubility-pH 

profile.  The solubility-pH profile is dependent on the ionization behavior of the coformer 

when the coformer ionizes at a lower pH than the pHmax of the salt. The eutectic point 

between the cocrystalline salt and salt was useful to access the equliibrium solubility of a 

metastable cocrystalline salt.  As predicted, the measured equilibrium coformer eutectic 

concentrations were dependent on the solution pH.  Cocrystalline salt solubility-[H+] 

dependence can be calculated from knowledge of the cocrystalline salt solubility product 

(Ksp) and its component ionization constants (Ka) based on the equations presented in the 

theoretical section.  The solubility product can be obtained from a single solubility 

measurement of cocrystalline salt, therefore the cocrystalline salt solubility can be 

predicted in the entire pH range from a single solubility measurement.  
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Chapter 5  
Importance of characterizing surfactant interactions with cocrystal components to 

modulate the cocrystal solubility advantage 

Introduction 

There are increased reports of cocrystals that offer superior pharmaceutical 

properties relative to the parent drug including but not limited to chemical stability, 

hygroscopicity, compactability, tensile strength, compaction, solubility, dissolution and 

bioavailability.5,10,34,78  Any cocrystal that exhibits Scocrystal> Sdrug is at risk for solution-

mediated transformation to the less soluble drug form, which could complicate the 

formulation, processing, and evaluation of a cocrystal solid form. The higher the 

cocrystal solubility is relative to the drug, the greater the driving force for transformation.   

Cocrystal solubility is highly dependent on solution composition and additives 

that interact differentially with the cocrystal components have a profound effect on the 

cocrystal solubility and Scocrystal/Sdrug. The surfactant SLS, and the polymer PVP are both 

reported to lower the Scocrystal/Sdrug of carbamazepine cocrystals.15-17,126 The surfactant 

sodium lauryl sulfate (SLS) was recently found to impart thermodynamic stability to the 

carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) 

cocrystals, which are otherwise unstable in solution.15-17 PVP was found to lower the 

Scocrystal/Sdrug of carbamazepine nicotinamide,126 however the cocrystal was not 

thermodynamically stabilized (i.e. Scocrystal/Sdrug=1) by PVP. The mechanism responsible 

for these behaviors was the severe asymmetric solubilization of the cocrystal 

components.  

In order to utilize cocrystals as a solid form it is essential to streamline the 

characterization of the cocrystal solution interactions with potential excipients, additives 

or solvents that may come into contact with a cocrystal during processing. The eutectic 

point measurement is a useful tool for determining the stability of a cocrystal relative to 

the parent drug, the cocrystal solubility, and Scocrystal/Sdrug under different solution 
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conditions.4,15,95 From one eutectic measurement in water and one eutectic measurement 

in the presence of surfactant (above the CMC), it is possible to measure Scocrystal, 

Scocrystal/Sdrug and estimate the micellar solubilization constants of the cocrystal 

components, Ks
drug and Ks

coformer. 

The interactions of two Pluronic® surfactants with cocrystals of carbamazepine 

were characterized using eutectic measurements.  F127 and P103 were selected as they 

have been shown to increase the solubility of monoclinic carbamazepine 4-fold with 5% 

(w/v) surfactant in solution.53 F127 has also been used as a hydrophilic stabilizer to coat 

CBZIII resulting in enhanced dissolution.127  The physicochemical properties of the 

surfactants studied are shown in Table 5.1. 

Table 5.1 Physicochemical properties of Pluronic block copolymers. 
Pluronic MW (g/mol) CMC (M)128 at 30°C Structure 

P103 4950 6.1x10-6 EO17PO60EO17 
F127 12600 2.8 x10-6 EO100PO65EO100 

 

Both surfactants form micelles at relative low concentrations according the their critical 

micelle concentrations (CMC), thus very small concentrations of surfactant are expected 

to affect the cocrystal solubility and Scocrystal/Sdrug. 

Materials and methods 

Materials 
Anhydrous monoclinic carbamazepine (CBZ III), saccharin (SAC) and salicylic acid 

(SLC) were purchased from Sigma Chemical Company (St. Louis, MO) and used as 

received.  CBZ III was stored at 5° C over anhydrous calcium sulfate. P103 and F127 

were received as gifts from BASF Corp. Parsippany, NJ, USA and used without further 

purification. Water used in this study was filtered through a double deionized purification 

system (Milli Q Plus Water System from Millipore Co., Bedford, MA). 

Cocrystal synthesis 

Cocrystals were prepared by reaction crystallization.  The carbamazepine-saccharin 

cocrystal (CBZ-SAC) was prepared by adding 1.12 g of CBZA and 0.87 g SAC to 10 ml 

of 0.05 m SAC solution in ethanol. The carbamazepine-salicylic acid cocrystal (CBZ-

SLC) was prepared by adding 1.26 g CBZ III and 0.40 g of SLC to a 10 ml solution of 
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0.01 m SLC solution in acetonitrile. CBZ dihydrate (CBZ (H)) was prepared in water.  

Solid phases were characterized by XRPD 

Measurement of cocrystal eutectic points 

Cocrystal eutectic points were measured in water without surfactant and aqueous 

solutions containing 0.0269 m (13.3% w/w) P103 and 0.0098 m (12.3 % w/w) F127 at 25 

±0.1°C. 50-100 mg of cocrystal and 50-80 mg of CBZ (H) were suspended in 3 mL of 

aqueous media for up to 4 days. The pH at equilibrium was measured but not 

independently modified.  Cocrystal stoichiometric solubilities were determined from the 

measured eutectic concentrations according to Scocrystal= drug T,eu[coformer]T,eu and the 

cocrystal solubility advantage was determined according to 
Scocrystal
Sdrug

= [coformer]eu
[drug]eu

. 16,18 A 

detailed discussion of eutectic point measurements has been discussed elsewhere.4,95 

Drug and coformer concentrations were analyzed by HPLC.  Solid phases at equilibrium 

were confirmed by XRPD. 

High performance Liquid Chromatography (HPLC) 
The solution concentrations of CBZ and coformer were analyzed by Waters HPLC 

(Milford, MA) equipped with a UV-vis spectrometer detector. Empower 2, Waters’ 

operation software, was used to collect and process the data. A C18 Atlantis column (5 

µm, 4.6 x 250 mm; Waters, Milford, MA) at ambient temperature was used to separate 

drug and coformer.  The mobile phase was composed of 55% methanol and 45% water 

with 0.1% trifluoroacetic acid and the flow rate was 1 mL/min using an isocratic method. 

Injection sample volume was 20 µL.  Absorbance of CBZ, SLC, and SAC, was 

monitored at 284, 303, and 230, respectively. All concentrations are reported in molality 

(moles solute/kilogram solvent). 

X-ray Powder Diffraction 

XRPD diffractograms of solid phases were collected with a benchtop Rigaku Miniflex X-

ray diffractometer (Danvers, MA) using CuKα radiation (λ = 1.54 Å), a tube voltage of 

30 kV, and a tube current of 15 mA. Data were collected from 5 to 40 ° at a continuous 

scan rate of 2.5°/min. 
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Results 

CBZ III has been shown to maintain a supersaturation of 3 with respect to the 

CBZ dihydrate (CBZ (H)) for up to 20 hours.  There are over 50 cocrystals of CBZ; two 

cocrystals reported to exhibit a solubility advantage relative to drug include 

carbamazepine-saccharin (CBZ-SAC), and carbamazepine salicylic acid (CBZ-SLC). 

CBZ-SAC is reported to be 4.5 times more soluble than CBZ (H) in water (pH 2.2) and 

CBZ-SLC is 2.5 times more soluble in water.  The cocrystal solubility and Scocrystal/Sdrug 

in water have been studied by eutectic point measurements.4,14 The ratio of cocrystal 

component concentration in equilibrium at the eutectic between drug and cocrystal, 

[coformer]eu to [drug]eu, is a function of the cocrystal solubility advantage (Scocrystal/Sdrug).  

This ratio has been referred to as the eutectic constant, Keu, which is adopted from the 

racemic solid-state literature.  The Keu is related to the solution concentrations and 

Scocrystal/Sdrug according to 

Keu=
[coformer]eu
[drug]eu

=
Scocrystal
Sdrug

2

        (5.1) 

for a 1:1 cocrystal.95  

This relationship is useful to characterize the cocrystal solubility relative to the 

parent drug from the solution composition in equilibrium at the eutectic point. For 

example,  [coformer]eu>[drug]eu, indicates Scocrystal>Sdrug, [coformer]eu=[drug]eu, indicates 

Scocrystal=Sdrug ,and   [coformer]eu < [drug]eu indicates Scocrystal<Sdrug.  Figure 5.1 shows the 

CBZ-SAC component concentrations in equilibrium at the eutectic point in water, 0.0269 

m P103 and 0.0098 m F127. Drug and coformer are solubilized by F127 and P103, which 

is evident from the increase in [drug]eu and [coformer]eu in surfactant solutions relative to 

water. The CBZ-SAC Scocrystal/Sdrug in the surfactant solutions was ½ as much as the 

Scocrystal/Sdrug in water at the same pH. The decrease in Scocrystal/Sdrug indicates that drug is 

preferentially solubilized relative to the coformer.  Therefore both P103 and F127 may be 

useful to lower Scocrystal/Sdrug of the CBZ-SAC cocrystal to mitigate solution-mediated 

transformation. 
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Figure 5.1. CBZ-SAC eutectic point composition in aqueous solutions containing the 
Pluronic® surfactants compared to water at pH 2.2, 25°C. 

CBZ-SLC is only 2 times mores soluble than the drug in water (pH 3). The effect 

of P103 and F127 on the CBZ-SLC eutectic point compositions, was much different than 

that observed for CBZ-SAC.  Figure 5.2 shows that the CBZ-SLC eutectic component 

concentrations are higher in the surfactant solutions than in water, indicating that both 

components are being solubilized in P103 and F127.  However, Scocrystal/Sdrug was higher 

in solutions containing P103, and F127 relative to water at the same pH, which has not 

been observed before in surfactant solutions and suggests that the coformer is 

preferentially solubilized relative to the drug.  

 
Figure 5.2. Solubilization of CBZ-SLC components by Pluronic surfactants in 
equilibrium at the eutectic point at pH 3, 25°C. 

The Ks values of both cocrystal components were estimated from eutectic point 

measurements. The Ks of the nonionizable drug was determined according to 
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CBZ eu,T= CBZ eu,aq 1+KsR[M]         (5.2) 

where [CBZ]eu,aq is the drug eutectic concentration in an aqueous solution without 

surfactant, and [M] is the micellar concentration of surfactant.15  The Ks of an acidic 

component such as saccharin or salicylic acid, HA, is determined according to 

HA eu,T= HA eu,un 1+
KaHA

[H+]
+KsHA,T[M]        (5.3) 

where [HA]eu,un is unionized coformer concentration in an aqueous solution without 

surfactant, and Ka
HA is the ionization constant of the acid.15  

 Table 5.2 shows the micellar solubilization constants estimated from the CBZ-

SAC eutectic point measurements in surfactant relative to water according to equations 

(5.2) and (5.3).  Carbamazepine was preferentially solubilized by both P103 and F127 

(Ks
CBZ>Ks

SAC).  However, the solubilization of saccharin by both P103 and F127 is quite 

large compared to the solubilization observed in other surfactants such as SLS, Tween 

80, Myrj 52 and Brij 99, which range from 8-83 m-1 (Chapter 2).  To achieve a critical 

stabilization concentration (CSC) such that the Scocrystal=Sdrug, the following relationship 

between drug and coformer solubilization must apply 

K!!"#>
Ksp

CBZaq
2 K!

!",!         (5.4) 

according to the findings in chapter 2.   At pH 2.2,
!!"!"#!!"#

CBZaq
2 = 2,18 therefore the Ks

CBZ 

must be 2 times greater than the Ks
SAC,T to achieve a CSC. Unfortunately, the 

solubilization constant, Ks
CBZ, is only 1.2 times higher than Ks

SAC,T, in both Pluronic 

F127 and Pluronic P103,  and therefore neither surfactant achieves a CSC for CBZ-SAC. 
 
Table 5.2 CBZ-SAC eutectic concentrations in equilibrium with solutions containing 
surfactant compared to water, 25 °C. 
Surfactant [M] 

(m) 
pH [CBZ]eu (mM) [SAC]eu (mM) Ks

CBZ 
(m-1) 

Ks
SAC,T 

(m-1) 
Nonea 0 2.20±0.03 0.59±0.05 8.9±0.2 ---- ---- 
P103 0.0269 2.19±0.03 5.0±0.1 19.1±00.5 280±10 230±20 
F127 0.0098 2.16±0.08 3.45±0.09 15.3±0.03 510±20 430±80 
a) Ref47,120 

The micellar solubilization constants of CBZ and SLC were determined from the 

eutectic concentrations in surfactant solutions relative to water according to equations 

(5.2) and (5.3). The solubilization of SLC was 3.7 times higher than that observed for 
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CBZ (H) in P103 and 2.5 times higher in F127. This is the first report of a surfactant 

preferentially solubilizing the coformer( Ks
SLC,T >>Ks

CBZ), resulting in an increase in the 

measured Scocrystal/Sdrug in a surfactant solution. 

Table 5.3 CBZ-SLC eutectic concentrations in equilibrium with solutions containing 
surfactant compared to water, 25 °C.  
Surfactant [M] 

(m) 
pH [CBZ]eu 

(mM) 
SLCeu 
(mM) 

Ks
CBZ 

(m-1) 
Ks

SLC,T 

(m-1) 
Nonea 0 2.91±0.05 0.59±0.01 2.6±0.3 ---- ---- 
P103 0.0269 3.13 ± 0.04 5.9±0.4 50 ±10 350±30 1300±200 
F127 0.0098 3.13 ± 0.07 3.8 ±0.2 22.7±0.7 570±40 1400±200 
(a) Ref47,120 

Predicted Scocrystal/Sdrug dependence on [M] CBZ-SAC and CBZ-SLC 
The solubilization constants calculated in the previous section were used to 

predict the cocrystal solubility and Scocrystal/Sdrug dependence on micellar solubilization for 

CBZ-SAC and CBZ-SLC.  The cocrystal solubility and Scocrystal/Sdrug dependence on 

ionization and micellar solubilization were predicted using the reported the cocrystal 

solubility product, Ksp, the coformer ionization constant, pKa, and the component 

micellar solubilization constants, Ks. The cocrystal solubility dependence on ionization 

and micellar solubilization for a cocrystal of the nonionizable drug R and an acidic 

coformer HA has been described as: 

S!!"# = K!" 1+
K!
[H!]+ K!

!",![M] + 1+ K!![M]     (5.5) 

The Scocrystal/Sdrug dependence on ionization and micellar solubilization has been derived 

previously,18 and is determined according to 

S!!"#

S!!
=

K!" 1+ !!
[!!]

+ K!
!",![M] + 1+ K!![M]

S!"! 1+ K!![M]
     (5.6) 

for a 1:1 cocrystal of nonionizable drug R and acidic coformer HA where Ksp is 

the cocrystal solubility product, Ka is the ionization constant of the acidic coformer and 

Ks
HA,T and Ks

R are the solubilization constants of the coformer and the drug respectively.  

Table 5.4 shows the thermodynamic parameters that are required, in addition to 

the determined Ks values, to model the solubility dependence on micellar solubilization 

and ionization for both the CBZ-SAC and CBZ-SLC. The solubility-pH dependence of 
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both CBZ-SAC and CBZ-SLC has been evaluated previously by our group,14,18 and was 

used to obtain the solubility product for both cocrystals.  

Table 5.4 Cocrystal Ksp, solubility and Scocrystal/Sdrug in water at 25±0.5 °C. 
Parameter CBZ-SAC CBZ-SLC 

Coformer pKa 1.6 a 3.0 b 
Ksp

c (1.00±0.0.05) x 10-6 m2 (1.13± 0.05) x10-6 m2 
Scocrystal, H2O

d (2.36±0.05) x10-3 m 

pH 2.2 
(1.32±0.06) x10-3 m 

pH 3.0 
Scocrystal/Sdrug

d 4.5 2.5 
(a) Reference 89  
(b) Reference 104 
(c) Reported Ksp of CBZ-SAC evaluated from nonlinear regression of coformer eutectic 
dependence on pH (pH 1-3, 25 °C).18 Reported Ksp of CBZ-SLC evaluated from linear 
regression of coformer eutectic dependence on pH (water pH 1-4, 25°C).14 
(d) Reference 47,120 
 

The solubility of CBZ-SAC is predicted to increase with surfactant concentration, while 

the solubility advantage relative to the drug should decrease with increasing surfactant 

concentration due to preferential solubilization of the drug. 

Figure 5.3 shows that the solubility of CBZ-SAC is predicted to increase with 

increasing concentrations of both P103 and F127. The cocrystal solubility is predicted to 

be higher in solutions of F127 relative to P103, as shown in Figure 5.3(a), due to the 

higher Ks values of both CBZ and SAC in F127 than in P103. The Scocrystal/Sdrug of CBZ-

SAC decreases with increasing surfactant as shown in Figure 5.3(b) due to the 

preferential solubilization of the drug over the coformer,.  The Ks
CBZ/Ks

SAC = 1.2 for both 

P103 and F127, however due to the higher overall solubilization in the surfactant F127, 

Scocrystal/Sdrug decreases at lower concentrations of F127 than P103. The Scocrystal/Sdrug 

theoretically reaches a plateau of 1.7 at 0.16 m concentrations of both P103 and F127, 

however these surfactants often form viscoelastic gels at higher concentrations.  
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(a) (b)  

Figure 5.3. (a) Scocrystal and (b) Scocrystal/Sdrug dependence on micellar surfactant 
concentration of P103 (──) and F127 (──) of 1:1 CBZ-SAC in deionized water (pH 2.2) 
Predicted curves were generated from equation (5.5) and (5.6) respectively using the Ks 
values in Table 5.2, Ksp =(1.00±0.05) 10-6 m2,18 and SAC pKa = 1.6.89 
 

The CBZ-SLC solubility in both F127 and P103 presents an interesting case in 

which preferential solubilization of the coformer results in the increase of Scocrystal/Sdrug. 

Figure 5.4(a) shows the solubility of CBZ-SLC is predicted to increase with surfactant 

concentration in solution, and the dependence of CBZ-SLC solubility as a function of 

F127 and P103 is much greater than that observed for CBZ-SAC.  Again, F127 is 

observed to solubilize the cocrystal components to a greater extent than P103 as 

determined by comparing the relative Ks values in Table 5.3.   

(a) (b)  

Figure 5.4(a) Scocrystal and (b) Scocrystal/Sdrug dependence on micellar solubilization by P103 
(──) and F127 (──) of 1:1 CBZ-SLC in deionized water (pH 3.0) Predicted curves were 
generated from equation (5.5) and (5.6) respectively using the Ks values in Table 5.3, 
Ksp=(1.13±0.05) 10-6 m2,14 and SLC pKa = 3.0.104 
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The Scocrystal/Sdrug of CBZ-SLC is predicted to increase with increasing surfactant 

concentration due to the preferential solubilization of the coformer, however the 

Scocrystal/Sdrug reaches a plateau of 3.0 and 2.5 for P103 and F127 respectively.  The higher 

maximum Scocrystal/Sdrug achieved by P103 is due to the greater difference in the 

solubilization constants; Ks
SLC/Ks

CBZ= 3.7 in P103 compared to Ks
SLC/Ks

CBZ=2.45 in 

F127.  The experimental Scocrystal/Sdrug shown in Figure 5.2 achieved the maximum 

Scocrystal/Sdrug. While P103 and F127 exhibit differential solubilization of the cocrystal 

components, these surfactants solubilized SAC and SLC to a higher extent than shown 

for other surfactants such as SLS,15,16 Tween 80, Brij 99 and Myrj 52.  Based on the 

presented eutectic measurements, P103 and F127 are not well suited for achieving a CSC 

for either CBZ-SAC or CBZ-SLC. Both P103 and F127 may be useful to increase the 

Scocrystal/Sdrug of SLC cocrystals depending on the relative Ks
drug.  The results presented 

here illustrate the importance of characterizing surfactant solution interactions with 

cocrystals.  

Conclusions 

Key parameters that affect Scocrystal/Sdrug are the magnitude of Ks of the 

components in addition to the difference of Ks
drug and Ks

coformer. Simply adding a 

surfactant, or any formulation component which interacts differentially with the cocrystal 

components, has a significant impact on Scocrystal/Sdrug The presented results illustrate a 

new level of control of Scocrystal/Sdrug as surfactants that preferentially solubilize the 

coformer relative to drug, Ks
drug <Ks

coformer, can be used increase the cocrystal solubility 

advantage. A target Scocrystal/Sdrug can be achieved through careful surfactant selection and 

an understanding of how a given surfactant modulates cocrystal solubility as evidenced 

by eutectic point measurement. Cocrystal solubility increases with the micellar 

solubilization of the cocrystal components.  The solubility advantage of a cocrystal 

(Scocrystal/Sdrug) depends on the relative solubilization of the drug compared to the 

coformer.  Excipients such as polymers and surfactants may differentially interact with 

the cocrystal components; therefore it is crucial to characterize the solution interactions 

prior to including an additive in a cocrystal formulation, or a processing method. The 

eutectic measurement is very useful to characterize surfactant interactions with a 
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cocrystal and may help to guide excipient selection for the formulation development of a 

cocrystal.  
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Chapter 6  

Conclusions and future work 

This dissertation has investigated the influence of solution chemistry on the 

solubility and thermodynamic stability of cocrystals and cocrystalline salts relative to 

their constituents.   Solution mechanisms that differentially affect the component 

solubilities can be used to engineer cocrystal (and cocrystalline salt) solubility and their 

solubility advantage relative to the parent drug (or salt). Through identification of the 

solution mechanisms that modulate the component solubilities (i.e. ionization, micellar 

solubilization and complexation), it is possible to derive mathematical models to 

anticipate the cocrystal (or cocrystalline salt) solubility behavior under a range of 

different solution conditions.  These mathematical models can be applied to engineering 

the solubility to meet the required specifications for a given drug product. 

The objectives of this dissertation were to  (1) determine the key parameters and 

experiments required to guide surfactant selection to modulate cocrystal solubility, 

Scocrystal/Sdrug, and CSC, (2) develop mathematical models to predict the cocrystal 

solubility in a given physiologically relevant media from the knowledge of the aqueous 

cocrystal solubility and the component solubilities in the given media, (3) evaluate the 

relative component solubilization by physiologically relevant mixed micelles and the 

resulting effect on the Scocrystal/Sdrug and observed supersaturation, (4) investigate 

Scocrystal/Sdrug as a predictor of the relative supersaturation achieved among different 

media, (5) develop mathematical models to describe the cocrystalline salt solubility 

dependence on pH, counter-ion, coformer, stoichiometry and solution complexation, and 

(6) design  methodologies and mathematical expressions to assess the equilibrium 

solubility of cocrystalline salts that generate supersaturation relative to the parent salt.  

The indomethacin-saccharin cocrystal, which is 26 times more soluble than the 

drug at pH 2.1, converts within 2 minutes to the parent drug during powder dissolution. 

Micellar solubilization was found to thermodynamically stabilize indomethacin-saccharin
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against transformation in solutions containing surfactant concentrations above the CSC. 

Surfactants were rationally selected to modulate the solubility and Scocrystal/Sdrug of this 

cocrystal composed of the hydrophobic drug indomethacin, log P=4.4, and the 

hydrophilic coformer saccharin, log P = 0.9, based on the asymmetric solubilization of 

the cocrystal components. Therefore surfactants were selected based on the observed 

solubilization of the hydrophobic drug (Ks
drug) and the preferential solubilization of the 

drug relative to the coformer (Ks
drug >Ks

coformer).  

Tween 80, Myrj 52, Brij 99, and SLS were all observed to achieve CSC; the 

nonionic surfactants solubilized indomethacin to a greater extent than SLS, and as 

anticipated, the nonionic surfactants achieved a lower CSC than SLS. The Scocrystal 

dependence on micellar solubilization and CSC were successfully evaluated by three 

methods: (1) by calculation from the intersection of Scocrystal and Sdrug using the cocrystal 

Ksp in conjunction with values of cocrystal component ionization (Ka), micellar 

solubilization (Ks), surfactant CMC and solution pH, (2) by measurement of cocrystal 

eutectic points as a function of [M] from which the experimental cocrystal and drug 

solubility at a given pH can be obtained and (3) by calculation of the intersection of the 

drug and coformer eutectic concentration dependence on micellar solubilization.  All 

three methods were in agreement when both drug and coformer solubilization were used 

to evaluate Scocrystal dependence on [M] and CSC by calculation, which show that Scocrystal 

and CSC can be a priori predicted from knowledge of cocrystal Ksp, component Ka 

values and component Ks values. 

 The cocrystal solubility dependence on micellar solubilization, and the CSC were 

under predicted when coformer solubilization was assumed to be negligible.  All the 

surfactants studied solubilized saccharin to a small extent, and the CSC values predicted 

without consideration of coformer solubilization were half that of the CSC values 

observed. The nonionic surfactants were observed to solubilize the coformer to a greater 

extent than SLS, and still achieved lower CSC values; the drug solubilization (Ks
drug) was 

found to be the most influential parameter in rank-ordering surfactants to achieve a lower 

CSC.   Cocrystal and drug phase solubility diagrams in surfactant solutions constructed 

from the measured drug and cocrystal solubilities in surfactant solutions, were useful to 
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identify the regions, or solution conditions in which the cocrystal is thermodynamically 

stable relative to the drug.  

Below the CSC the cocrystal was more soluble than the drug, and micellar 

solubilization was observed to modulate the cocrystal solubility relative to the parent 

drug (Scocrystal/Sdrug). While cocrystal solubility increases due to micellar solubilization, 

the Scocrystal/Sdrug decreases due to the preferential solubilization of the drug relative to the 

coformer. The surfactant concentration required to reduce the Scocrystal/Sdrug of 

indomethacin-saccharin to half its value in aqueous media, at pH 2.1, was highly 

dependent on the Ks
IND and the surfactant CMC.  The nonionic surfactants exhibited 

CMC values that were 1 to 2 magnitudes lower than that of SLS. Tween 80 exhibited the 

lowest CMC of the surfactants studied and required the least amount of surfactant to 

reduce the Scocrystal/Sdrug to half its value.  This has important implications for the 

evaluation of cocrystal solubility by dissolution in media containing surfactants; the 

Scocrystal/Sdrug of indomethacin-saccharin is reduced by a third of its value at surfactant 

concentrations that are just slightly above the CSC.  Assuming a cocrystal could maintain 

supersaturation without transforming, evaluating its solution behavior relative to the drug 

in the presence of a surfactant could conceal its true solubility advantage. 

The Scocrystal/Sdrug of indomethacin-saccharin increases with pH in the range of 1-3 

due to the increased ionization of the coformer saccharin relative to the drug (which is 

primarily unionized in this pH range).  In contrast, micellar solubilization decreases 

Scocrystal/Sdrug due to the preferential solubilization of the drug relative to coformer. More 

surfactant is required to achieve CSC as pH increases because micellar solubilization 

must overcome the increase in Scocrystal/Sdrug due to ionization.  Therefore the pH range in 

which the CSC can be achieved depends on the coformer ionization relative to that of the 

drug and the magnitude of the micellar solubilization of the drug relative to the coformer.  

The CSC for the indomethacin-saccharin cocrystal was achieved in a pH range of 1-3 

based on the mathematical models for the CSC dependence on ionization and micellar 

solubilization.   Selecting an alternative coformer that has a higher pKa than saccharin 

could increase the pH range in which the CSC is achieved for a cocrystal of 

indomethacin.  
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A supersaturation of 7.5 cannot be maintained by indomethacin-saccharin, and 

lowering the Scocrystal/Sdrug results in a lower supersaturation that is maintained for a 

longer time period. The mathematical model derived for the Scocrystal/Sdrug dependence on 

micellar solubilization was useful to calculate the required surfactant concentration to 

achieve a target solubility and Scocrystal/Sdrug.  Based on the mathematical models, 0.1% 

(w/w) Tween 80 was predicted to reduce the Scocrystal/Sdrug from 26 (pH 2 buffer) to 6, this 

value was targeted as it is less than the maximum supersaturation that was generated by 

the cocrystal.  The observed supersaturation in 0.1% Tween 80 was 4.4, which was 

sustained for 15 minutes before the solution concentrations began to drop.  However, the 

cocrystal maintained a supersaturation of 2 for 2 hours. 

Cocrystals provide an opportunity to create a supersaturating drug delivery system 

(similar to the amorphous form) with the advantage of maintaining a crystalline phase. 

However, when Scocrystal>Sdrug, the conversion to the less soluble parent drug may occur 

upon contact with aqueous media, either during processing, formulation, or when dosed 

in media; therefore utilizing surfactants, or any other additives that differentially interact 

with the cocrystal components may be useful to protect against conversion. Moving 

forward, these solubility models could be used to design appropriate solution conditions 

for cocrystal suspension formulations. For cocrystals to be a viable drug product, 

knowledge of their solution chemistry must be merged with current formulation and 

manufacturing practices. 

There are several examples in which cocrystal solubility behavior, relative to the 

parent drug, is characterized by dissolution in media containing physiologically relevant 

mixed micelles of sodium taurocholate and lecithin. Regardless of the actual biorelevance 

of the media, if it contains micellar components that differentially solubilize the cocrystal 

components, it will affect Scocrystal/Sdrug, which was shown to affect cocrystal 

supersaturation and the driving force for transformation during dissolution in the second 

chapter of this thesis.   Cocrystal solubility was evaluated in fed state simulated intestinal 

fluid (FeSSIF) to determine the influence of NaTC and lecithin mixed micelles on 

cocrystal solubility relative to acetate buffer, which is the same media without NaTC and 

lecithin.  FeSSIF was selected due to its high concentrations of NaTC and lecithin, and its 

frequent use. 
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Carbamazepine-saccharin, carbamazepine-salicylic acid, carbamazepine 4-

aminobenzoic acid and indomethacin-saccharin all exhibited higher solubilities than the 

parent drug in both FeSSIF and buffer. However, cocrystal solubilization was lower than 

that of the drug due to the preferential solubilization of the drug by FeSSIF; this occurs as 

the drug components were solubilized while the coformers were not (Ks
coformer = 0).  Even 

though cocrystal solubilities were higher in FeSSIF relative to buffer, the preferential 

micellar solubilization of the drug was observed to reduce Scocrystal/Sdrug. Appreciable 

differences in Scocrystal/Sdrug related to the magnitude of the drug solubilization.  For 

example, carbamazepine was 1.8 times more soluble in FeSSIF relative to buffer while 

indomethacin was 16 times more soluble in FeSSIF relative to buffer.  The preferential 

solubilization of indomethacin resulted in a reduction of Scocrystal/Sdrug for IND-SAC while 

the solubilization of carbamazepine in FeSSIF was not substantial enough to reduce 

Scocrystal/Sdrug.  

Scocrystal/Sdrug was found to be a good predictor of the relative supersaturation 

observed between different media, in this case FeSSIF compared to buffer.  

Indomethacin-saccharin, which has a lower Scocrystal/Sdrug in FeSSIF relative to buffer, 

exhibits a lower supersaturation in FeSSIF relative to buffer, which is maintained for four 

hours.  The cocrystal achieved a higher supersaturation in buffer relative to FeSSIF, 

however this supersaturation could not be maintained due to solution-mediated 

transformation after 10 minutes. The indomethacin concentrations during dissolution 

were higher in FeSSIF relative to buffer, which was in agreement with the equilibrium 

solubility studies.  

Because FeSSIF, and other “physiologically relevant” media, are more expensive 

than aqueous buffers and synthetic surfactants, it is useful to predict the cocrystal 

solubility in a given media based on the cocrystal Ksp and the component solubilities in a 

given media.  Solubility predictions in different media provide valuable information 

while sparing the materials necessary to obtain a robust solubility characterization. 

Therefore, mathematical models were developed to predict the cocrystal solubility in 

FeSSIF based on the aqueous cocrystal solubility (Ksp) and the component solubilities in 

FeSSIF. The cocrystal solubilities predicted using the mathematical models were in 

excellent agreement with the experimental results.  Previously, the increase in cocrystal 
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solubility in a synthetic micellar solution relative to a solution at the same pH without 

surfactant was found to correspond to the square-root of the ratio of drug solubility 

increase in the same solutions; this relationship was found to apply to the mixed micelles 

of NaTC and lecithin. The predicted cocrystal solubilization estimated from the observed 

drug solubilization in FeSSIF was also in excellent agreement with the measured values.  

FeSSIF has been found to overestimate the solubility of BCS class II drugs under 

fed state conditions compared to human intestinal fluid, however future work 

investigating the effects of human intestinal fluid in the fed state on Scocrystal/Sdrug is 

essential to evaluate whether bio-surfactants are capable of reducing Scocrystal/Sdrug which 

may result in improved (or in some cases inferior) pharmacokinetic behavior.  The 

derived mathematical equations allow for the cocrystal solubility and Scocrystal/Sdrug 

prediction in any aqueous media containing a micellar component, from knowledge of 

the cocrystal Ksp and the component solubilities in the given media.  Therefore, future 

work would involve applying these models to understand the pharmacokinetic behavior 

of a cocrystal in the fed versus fasted state.  However, in order to evaluate this 

correlation, the solution conditions of both the fed and fasted state must be confirmed.   

The cocrystalline salts of fluoxetine HCl are shown to exhibit different apparent 

solubilities in water, however prior to the work presented in this thesis, the solubility 

dependence of cocrystalline salts on pH, and solution concentrations of counter-ion and 

coformer had not been explored.  The solution chemistry of the cocrystalline salts of 

fluoxetine HCl (1:1 benzoic acid, 2:1 fumaric acid and 2:1 succinic acid) were 

investigated to gain insights into the key parameters that are required to characterize the 

cocrystalline salt solubility under a variety of solution conditions.  

Similar to salts and cocrystals, cocrystalline salts exhibit solubility product 

behavior that is dependent on the equilibrium solution concentrations of drug, coformer 

and counter-ion; the drug solution concentrations in equilibrium with a cocrystalline salt 

decrease with increasing counter-ion or coformer in solution.  The solubility product 

behavior of HCl salts is often problematic due to the reduction in solubility in the 

concentrations of chloride that are present throughout the GI tract.  Cocrystalline salts 

were observed to exhibit a weaker dependence on counter-ion relative to the parent salt, 

which may be useful to mitigate the common-ion effect.  The order of solubility 
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dependence on chloride, from strongest to weakest, was observed to be salt >2:1 

cocrystalline salt > 1:1 cocrystalline salt. 

For the first time, mathematical models that describe cocrystalline salt solubility 

dependence on pH, counter-ion, coformer and stoichiometry are derived considering the 

heterogeneous solution equilibria describing cocrystalline salt dissociation and 

component ionization. Based on the derived mathematical models, chloride salts exhibit 

pH independent solubility below pHmax, and cocrystallization with a coformer with a pKa 

below the pHmax of the salt is predicted to impart solubility-pH dependence to the salt 

plateau region due to the ionization of the coformer.  The derived mathematical models 

allowed for the evaluation of the cocrystalline salt solubility product by nonlinear 

regression analysis of the cocrystalline salt solubility dependence on counter-ion.   

The solubility-pH dependence of the fluoxetine HCl cocrystalline salts were 

predicted to increase with pH based on the derived mathematical models considering the 

cocrystalline salt solubility product, Ksp, and the coformer ionization constant(s) (Ka).  

Based on the derived solubility-pH models, a cocrystalline salt that exhibits a lower 

intrinsic solubility than the parent salt achieves a pHmax where the cocrystalline salt and 

parent salt solubilities are equal.  Above the pHmax, the cocrystalline salt is expected to 

have a solubility advantage relative to the parent salt. 

The cocrystalline salt solubility was observed to increase with increasing pH, 

when the solution-pH could be independently modified to the pH range in which a 

solubility increase was predicted.  The coformers, particularly benzoic acid, exhibited a 

self-buffering effect such that the solution pH range in which the cocrystalline salt 

solubility was predicted to increase could not be achieved.  The 2:1 fluoxetine HCl 

fumaric acid cocrystalline salt was evaluated in the pH range of 1.4 to 2.88, and above 

pH 2.88 the solution pH could not be independently modified.  However, suspension of 

this cocrystalline salt in a pH 7 phosphate buffer generated a supersaturation of 2 relative 

to the parent salt.  

The solubility product behavior of cocrystals has been useful to design screening 

and synthesis methods such as the reaction crystallization method; this method is also 

applicable to screen and synthesize cocrystalline salts by generating supersaturation with 

respect to the cocrystalline salts by increasing the component concentrations in solution.  
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Because cocrystalline salts exhibit solubility product behavior, the equilibrium solubility 

of a metastable cocrystalline salt can be accessed at the eutectic point between the salt 

and the cocrystalline salt in solutions containing excess coformer.  The solutions must 

contain excess coformer because excess chloride is shown to increase cocrystalline salt 

solubility relative to the parent salt, while excess coformer decreases the cocrystalline salt 

solubility relative to the parent salt. The stoichiometric solubility can be determined from 

the component solution concentrations in equilibrium at the eutectic point based on the 

derived mathematical expressions. 

Succinic acid was observed to increase the solubility of the fluoxetine HCl salt; 

therefore to characterize the solubility of the fluoxetine HCl succinic acid cocrystalline 

salt, the solution complexation of the ionized fluoxetine with the unionized succinic acid 

was quantified using an apparent complexation constant, K11. A mathematical equation 

describing the cocrystalline salt solubility was derived incorporating 1:1 solution 

complexation. The proposed solubility model was in excellent agreement with both the 

solid phase stability studies and solubility studies carried out for this cocrystalline salt, 

which enabled an estimate of the equilibrium cocrystalline salt solubility in the absence 

of coformer.  

The contribution of the cocrystalline salt lattice energy to the aqueous solubility 

was determined by evaluating the ideal solubilities of the salt and cocrystalline salts from 

their fusion temperature and enthalpy of fusion. Similar to cocrystals, the fusion 

properties of the cocrystalline salts studied were not predictive of their aqueous 

solubilities.  The 1:1 fluoxetine HCl benzoic acid cocrystalline salt exhibited the lowest 

ideal solubility, however this was the least soluble cocrystalline salt. Though 

cocrystalline salts exhibit different fusion properties relative to the parent salt, their 

aqueous solubilities were dominated by solvent-solute interactions relative to lattice 

contributions.  

Currently, cocrystals and cocrystalline salts are under-utilized as supersaturating 

solid forms due to a lack of understanding of their solution chemistry.  The majority of 

the cocrystals presented in this work exhibit higher solubilities than the parent compound; 

therefore kinetic approaches would have grossly underestimated the true equilibrium 

solubility, and would give no indication to the solubility behavior under different solution 
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conditions.  The solubility models presented in this thesis allow for the identification of 

solution conditions that will enable the cocrystal and cocrystalline salt solubility 

advantage relative to the parent compound. The eutectic point measurements used in this 

work were useful to characterize both cocrystal and cocrystalline salt solubility under 

equilibrium conditions.  Eutectic measurements in media with and without surfactant 

provide valuable information concerning the surfactant interactions with cocrystal 

components, which can be used to calculate the surfactant necessary to achieve a CSC or 

a target Scocrystal/Sdrug. The cocrystal solubility and supersaturation can be engineered by 

taking advantage of any solution mechanism that alters cocrystal solubility relative to the 

parent drug. 

 

 

 

 

 

 


