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Several papers have occurred in the literature on the 
subject of assigning output variables to equations in the 
course of deriving a solution procedure for the equations. 
Such an assignment is called an output set assignment. 

Steward (1962) showed that if an output set assign- 
ment fails to exist, the equations are singular, that is, re- 
dundant or inconsistent. Given an output set assignment, 
effective algorithms exist to precedence order the equa- 
tions (Harary, 1960; Steward, 1962; Sargent and Wester- 
berg, 1964) and to locate minimum tear orderings within 
the irreducible groups found in the precedence order 
(Barkley and Motard, 1972). For nonsquare equation sets 
(that is, n equations in m variables, rn > n) ,  algorithms 
exist to find the output assignment which minimizes the 
number of tear variables resulting (Lee, Christensen, and 
Rudd, 1966) or to avoid singular equation sets being left 
for subsequent solution (Edie and Westerberg, 1971). 

The subject has directly or indirectly therefore received 
considerable attention. The purpose of this note is to point 
out that the assigning of an output set for several criteria 
can be formulated as an Assignment Problem or a Bottle- 
neck Problem in linear programming and thus solved by 
existing, very powerful algorithms for those problems. 

OUTPUT SET ASSIGNMENT PROBLEM 

First we shall define an index set for each equation fi:  

J ( i )  = { j I xj occurs in fi) 

Then an output set assignment may be defined as follows: 
For each equation fi, i = 1, 2, . . . n, assign a variable xj, 
i E J ( i ) .  The assignment must be such that each xi, i = 
1, 2, . . . m (k n ) ,  is assigned to at most one equation. We 
can represent the kth assignment OSA(k)  by the ordered 
sequence of numbers 

OSA(k)  = { j ( k ,  I), j ( k ,  2 ) ,  . . ., j (k  n)} 
where i (k, I) is the index of the variable assigned to equa- 
tion l in output assignment k .  

WEIGHTED OUTPUT ASSIGNMENT, LPl 

To each variable x j  in equation fi, assign a weight Wij 1 
0. The weight should reflect the relative desirability of as- 
signing the variable xj to fi. Do this for every equation. 

For convenience define 

W m a , = M a x { W ~ j l i = l , 2 ,  .... n; j r J ( i ) }  

Then for each equation i and variable xj, j { J ( i ) ,  assign a 
negative weight of large magnitude such as - n(Wmax + 
1)  (or develop the Assignment Algorithm to ignore any 
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variables xj, i 1 J (i) , in f i )  . 
The weighted output assignment considered here then 

results from finding the output assignment k which maxi- 

mizes Wij(k,i) where here j ( k ,  i) is again the index of 

the variable assigned to f i  in assignment k. This problem is 
equivalent to solving the following linear programming 
problem which we shall call LP1: 

n 

i=l 

n m  

so that 

5 E i j = 1 ,  i = l , 2 ,  . . .  n 

2 eijL1, j = l , 2 ,  . . .  m 

(1)  

( 2 )  

E i j  A 0, (3)  

j = 1  

i=l 
all 

The constraints effectively constrain each eij to lie in the 
range 0 6 eij 4 1. An optimum solution to this problem 
will be at an extreme point, and each extreme point has 
the property that each ~ i j  is either 0 or 1. If eij is either 0 
or 1, then constraints (1) and (2 )  combined force us to 
find exactly one eij = 1 in each equation f i  and no more 
than one ~ i j  = 1 in each column j .  

Thus if epq = 1 at the solution, we assign variable q to 
equation p .  Note, if the objective 2 2 Wij eij < 0 at the 

solution to LP1, then no output assignment exists for the 
equation set and the equations are singular. LP1 is the 
form of an Assignment Problem in linear programming. 

WEIGHTED OUTPUT ASSIGNMENT, LP2 

Another useful form for a weighted output assignment 
can also be proposed (Hendry, 1972). Here we assign a 
weight Wij > 0 for j E J ( i )  and Wij = 0 for i / J ( i ) .  Again 
the weight reflects the desirability of assigning the variable 
xj to fi. The objective changes, however; we wish in this 
case to choose an output assignment which maximizes the 
minimum desirability Wij associated with any of the as- 
signed variables. The associated linear programming prob- 
lem, which we shall call LP2, has the form 

Max Y 

i j  

€$pY 
such that 

wijeij 1 y i =  1,2,  ..., n 

j = 1 , 2 , .  . ., m 
(4) 

and 

plus constraints ( l ) ,  (2) ,  and ( 3 )  of problem LP1. Again, 
because of constraints ( l ) ,  ( 2 ) ,  and (3) ,  we obtain an 
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output set assignment if one exists. If y at the solution is 
zero, no output assignment exists for the equation set. LP2 
is the form of a Bottleneck Problem in linear programming. 
Again a very efficient solution algorithm exists ( Garfinkel, 
1971). 

DIFFERENT CRITERION FOR CHOOSING THE Wij 

Assigning an arbitrary output set. Choose all Wij, j E ](i), 
equal to one. Assign the remaining Wij as before. Then 
the solution to LP1 or LP2 will be an arbitrary assignment. 

Maximum Product Assignment. Westerberg and Edie 
(1971b) developed the maximum product criterion for 
assigning an output set. The criterion was developed to 
find the output assignment with hopefully the best con- 
vergence properties if a solution procedure is derived based 
on it. The objective, for n equations in n unknowns, is to 
find the assignment which maximizes the product 

A 
at a guessed solution point x. We define 

and 

Then the weights Wij in LP1 can be chosen as 

bij z 0 

[negative number of b,, = 0 
large magnitude 

Note, LP2 could be used but the implications have not 
been investigated. Also note that, for LP2, we set all Wij 
= 0 for the case b,j = 0 above. 

Kevorkian and Snoeck Criterion. In a paper by Kevor- 
kian and Snoeck (1973), a criterion was stated for choos- 
ing the output set based on relative errors. Unfortunately 
the presentation is not complete, but it appears their cri- 
terion is the same as the maximum product criterion. This 
results because the maximum product criterion is indepen- 
dent of row and column scaling, and thus rescaling each 
column in the Jacobian to reflect relative errors rather than 
absolute errors will not change the resulting assignment. 
Thus it appears their problem can also be converted to a 
linear programming prob!em of the form of LP1. 

Minimize Maximum Row Sum Norm. Westerberg and 
Edie (1971a) proposed several criteria based on local 
iteration operator norms for choosing output sets for a 
system of n equations in n unknowns. To choose the out- 
put set, the equations are linearized in terms of perturba- 
tion variables about an assumed solution. The criteria for 
choosing an output assignment were then associated with 
minimizing one of three possible norms for the matrix 
operator associated with a Jacobi iteration scheme (Carna- 
han et al., 1969). Hendry (1972) reformulated one of 
the criteria, the row sum norm criterion, as a Bottleneck 
Problem. Using the nomenclature of the previous section, 
the contribution to the I-ow sum norm of the local Jacobi 
iteration operator for assigning variable x, to equation f l  is 

By choosing 
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A large number, rij = 0 
w . .  - 1 l / r . .  , bij Z 0, rij z 0 

‘ I  - 1 0 , Otherwise 

the minimum row sum norm criterion is satisfied by solv- 
ing as the problem LP2. [Hendry (1972) demonstrated 
the effectiveness of choosing an output assignment using 
this criterion by deriving a solution procedure based on it 
for a fairly simple multistage reactor system described by 
Frank ( 1967). Frank chose an apparently reasonable solu- 
tion method and then had great d,fficulty in arriving at a 
numerical solution. The procedure found by Hendry con- 
verged readily.] 

Algebraic Simplicity. Lee and Ozawa ( 1971) suggested 
assigning weights to reflect algebraic properties of the 
equations and variables. For example, if an equation f i  

can be conveniently rearranged algebraically to solve ex- 
plicitly for the variable xj, then Wij can be set high 
whereas if the variable is only implicitly given by the 
equation, its weight can be set very low. An example might 
be in the equation which defines log mean temperature 
drivine force. 

Here only the variable AT{, is conveniently found as an 
output variable. 

NONSQUARE SYSTEMS 

For nonsquare systems, n equations in m > n variables, 
the acyclic algorithm of Lee, Christensen, and Rudd 
(1966) should be used first in an attempt to find an as- 
signment which leaves a set of equations and variables 
which fully precedence order. In a nonsquare system, the 
m - n variables not assigned to equations become the de- 
cision variables for the problem, and, if some variables 
are preferred as decision variables they can be given low 
weights in all equations in which they occur to make them 
less attractive as output variables. If they must be deci- 
sions, they can obviously be treated as not being in the 
equations in the first place. 

DISCUSSION 

This paper is based on the independent work of two re- 
search groups: (1) Hendry and Hughes and ( 2 )  Gupta 
and Westerberg. The latter group was made aware of solv- 
ing the maximum product criterion problem as a linear 
programming problem by independent inputs from Mc. 
White and Thomas (1970) and Edie (1970). At the same 
time the former group discovered the same result (Hendry, 
1972). 

In a master’s project report by Gupta ( 1972), an explicit 
statement of the Assignment Algorithm is given, and it has 
been implemenked in the GENDER system (Cmningham 
and Westerberg, 1972). The algorithm uses the so-called 
“Hungarian Algorithm” for solving the linear programming 
problem. In this algorithm partial output assignments are 
readily estended. Thus one can add an equation to or de- 
lete an equation from a set already having an assignment 
and modify rather quickly the existing assignment to ac- 
count for the modification. Similarly one can add or remove 
columns, that is, variables. 
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Chen et al. (1972) have developed an elution technique 
for the determination of the dew point concentration of 
binary mixtures in the 98 to 100 mole % range. The 
experimental results of Chen et al. (1973) exhibit a phe- 
nomena which could not be observed with less accurate 
methods. The dew point isotherm is multiple valued in 
the region (- 5°C) about the critical temperature T ,  
of the more volatile component. Isotherms at tempera- 
tures slightly above T, are quadruple valued, as observed 
in methane-n-pentane (Chen et al., 1973); and at T, 
and slightly lower temperatures the isotherms are triple 
valued or S shaped, as observed in methane-n-butane 
(Chen et al., 1973). This phenomena has been termed 
double retrograde vaporization by Carnahan et al. ( 1972). 

The present study evaluates the ability of the Benedict- 
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Webb-Rubin (BWR) (1951) equation of state for the 
computation of these phenomena. 

COMPUTATION 

The BWR equation was used in an iterative fashion to 
calculate fugacities, various derivatives, and K-values as 
required. The ordinary BWR combin;n< rules with the 
modification proposed by Stotler and Benedict (1953) 
were used: 

which introduces a binary interaction parameter m. 
The points A, B, C, D on Figure 1 have certain mathe- 

matical restrictions which may be used for computational 
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