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SUMMARY

The PIN family of proteins is best known for its involvement in polar auxin transport and tropic responses.

PIN6 (At1g77110) is one of the remaining PIN family members in Arabidopsis thaliana to which a biological

function has not yet been ascribed. Here we report that PIN6 is a nectary-enriched gene whose expression

level is positively correlated with total nectar production in Arabidopsis, and whose function is required for

the proper development of short stamens. PIN6 accumulates in internal membranes consistent with the ER,

and multiple lines of evidence demonstrate that PIN6 is required for auxin-dependent responses in nectar-

ies. Wild-type plants expressing auxin-responsive DR5:GFP or DR5:GUS reporters displayed intense signal in

lateral nectaries, but pin6 lateral nectaries showed little or no signal for these reporters. Further, exogenous

auxin treatment increased nectar production more than tenfold in wild-type plants, but nectar production

was not increased in pin6 mutants when treated with auxin. Conversely, the auxin transport inhibitor

N–1–naphthylphthalamic acid (NPA) reduced nectar production in wild-type plants by more than twofold,

but had no significant effect on pin6 lines. Interestingly, a MYB57 transcription factor mutant, myb57–2, clo-

sely phenocopied the loss-of-function mutant pin6–2. However, PIN6 expression was not dependent on

MYB57, and RNA-seq analyses of pin6–2 and myb57–2 mutant nectaries showed little overlap in terms of

differentially expressed genes. Cumulatively, these results demonstrate that PIN6 is required for proper

auxin response and nectary function in Arabidopsis. These results also identify auxin as an important factor

in the regulation of nectar production, and implicate short stamens in the maturation of lateral nectaries.
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INTRODUCTION

Despite its central importance in plant–animal interactions,

the molecular and genetic basis of nectar synthesis and

secretion is largely unknown. Floral nectar is offered to

increase pollinator visitation, while extra-floral nectar is

used to attract mutualistic insects that provide protection

from herbivory (Heil, 2011). Interestingly, although Arabid-

opsis thaliana is highly self-fertile, it has maintained func-

tional nectaries, which have been implicated in facilitating

out-crossing events (Chen et al., 2003; Hoffmann et al.,

2003; Tholl et al., 2005; Kram and Carter, 2009). Thus,

Arabidopsis may be used as a model for functional nectary

analysis (Kram and Carter, 2009).

Arabidopsis flowers produce two types of nectaries:

median and lateral. Lateral nectaries are located at the

base of short stamens and produce >99% of total nectar,

whereas median nectaries occur at the base of long

stamens and petals and produce little or no nectar (Davis

et al., 1998; Kram and Carter, 2009). Nectar production by

both median and lateral nectaries is developmentally regu-

lated. Immature lateral nectaries (to stage 12) accumulate

starch, which is broken down at anthesis and the released

sugars are secreted in mature flowers (stages 13–15; pollen

shed and nectar secretion coincide) (Ren et al., 2007; Kram

and Carter, 2009). In Arabidopsis and most Brassicaceae
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species, the sugars in the secreted nectar are nearly all

hexoses (glucose and fructose) and accumulate in approxi-

mately equal concentrations (Davis et al., 1998).

In recent years, several genes and molecular processes

have been implicated in nectar production in multiple plant

species. For example, Arabidopsis CELL WALL INVERT-

ASE 4 is required for maintaining sink status and

ultimately nectar secretion (Ruhlmann et al., 2010), and the

transcription factor MYB305 regulates starch accumulation

and hydrolysis in tobacco nectaries (Liu et al., 2009; Liu

and Thornburg, 2012). The role of invertases in generating

hexose-rich nectars via post-secretory action has also been

reported (Heil et al., 2005; Nepi et al., 2012; Shenoy et al.,

2012). In addition, the transcription factors AtMYB21 and

AtMYB24 are required for nectary maturation via jasmonic

acid-dependent pathways (Reeves et al., 2012). Jasmonic

acid also induces nectar secretion in the extra-floral nectar-

ies of lima bean (Phaseolus lunatus) (Heil, 2004) and the

floral nectaries of Brassica sp. (Radhika et al., 2010). Other

aspects of nectary development and function have also

been reviewed (Kram and Carter, 2009; Heil, 2011).

Recent transcriptomic analyses identified a large number

of genes whose expression is enriched in the nectaries of

Arabidopsis and Brassica rapa (Kram et al., 2009; Hampton

et al., 2010). One such nectary-enriched gene was PIN6

(At1g77110), a member of a family of auxin-efflux carriers.

Here we demonstrate a role for PIN6 and auxin, as well as

the transcription factor MYB57, in the regulation of nectar

synthesis and secretion in Arabidopsis thaliana.

RESULTS

PIN6 and MYB57 have nectary-enriched expression

profiles

Previous Affymetrix ATH1 microarray analyses identified a

large number of genes with enriched expression in Arabid-

opsis nectaries (Kram et al., 2009). One gene displaying

extreme up-regulation in nectaries is PIN6 (At1g77110)

(Figure 1a). Use of PIN6pro:GUS lines demonstrated

enrichment in both median and lateral nectaries

(Figure 1a), and also showed that PIN6 is expressed in

immature (stage 8) stamen (Figure 1b,c,d). PIN6 expres-

sion was not observed in other floral organs or at other

developmental time points. The expression profiles of all

PIN family genes in mature lateral nectaries and other ref-

erence tissues were also examined. Analysis of previous

microarray data indicated that PIN6 was the only PIN fam-

ily member displaying significant expression in nectaries

(Table S1); this result was later supported by RNA-seq

analyses of mature lateral nectaries (Table 1 and Table S2).

Another gene examined in this study, MYB57 (At3g01530),

displayed nectary enrichment, as demonstrated by

microarray and RT–PCR analysis, although it is also

expressed at lower levels in other floral tissues (Figure 1e).

pin6 and myb57 mutants have altered nectar and nectary

phenotypes

To identify biological roles for PIN6 and MYB57, multiple

T–DNA mutant alleles were identified (Figure 2a). Three

independent homozygous pin6 mutants (all with T–DNA

insertions in introns) were examined for altered expression

level via quantitative RT–PCR, whereas myb57–2 expres-

sion was examined by end-point RT–PCR and Illumina-

based RNA-seq (Figure S1 and Table S2). pin6–1, pin6–2

and pin6–3 were identified as knock-up, knock-out and

knock-down mutants, respectively (Figure 2b, black bars),

whereas myb57–2 was identified as a strong knock-down

mutant due to a T–DNA insertion near the transcriptional

start site (Figure S1 and Table S2).

The reason for the observed increase in PIN6 expression

in pin6–1 is not clear; however, the quantitative RT–PCR

primers used for PIN6 spanned the T–DNA insertion site

for pin6–1, and were located 3′ to the insertion sites for

pin6–2 and pin6–3. Further, 3′ RACE demonstrated that full-

length transcript is produced in pin6–1 (Figure S2). The

presence of a truncated PIN6 transcript in pin6–2 was con-

firmed by RNA-seq in pin6–2 lateral nectaries (Figure S3).

To demonstrate a role for PIN6 and MYB57 in nectary

function, mutant lines were analyzed for total nectar

glucose, as the vast majority (>99%) of sugars in Arabidop-

sis nectar are glucose and fructose in an approximately

equal amounts (Davis et al., 1998). Significantly, PIN6

expression level was positively correlated with total nectar

glucose (Figure 2b, gray bars), with nectar production

being increased approximately 30% in the pin6–1 knock-up

mutant, but significantly reduced in pin6–2 (knock-out) and

pin6–3 (knock-down). Metabolite profiling of pin6–2 nectar

(Table S3) confirmed a significant reduction in nectar

sugar, with total glucose being approximately 75% lower

than in wild-type Col–0, consistent with the results

obtained from the enzymatic assays shown in Figure 2.

Other nectar metabolites displaying significant differences

between pin6–2 and Col–0 are highlighted in Table S3.

Although not fully penetrant, pin6–1 flowers also often dis-

played large nectar droplets, which were not observed in

wild-type Col–0 (Figure 2b). Total nectar glucose was also

significantly reduced in myb57–2 (Figure 2). Finally, the

putative involvement of PIN6 in auxin-dependent processes

led us to examine nectar production in the auxin co-recep-

tor mutant tir1–1 (Ruegger et al., 1998; Dharmasiri et al.,

2005). Total nectar glucose was significantly increased in

tir1–1, phenocopying the pin6–1 knock-up mutant.

pin6 and myb57 mutants have altered floral morphology

To identify potential reasons for the altered nectar secre-

tion observed in pin6 and myb57 lines, mutant flowers

were subjected to gross morphological analyses. pin6–1

and pin6–3 showed no observable differences in overall
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floral morphology or nectary size compared with wild-type

(Figure 3); however, pin6–2 flowers had petals that failed

to fully expand, often had reduced nectary size, and lacked

one or both short stamens significantly more frequently

than wild-type (Figure 3 and Table 2). A wild-type Arabid-

opsis flower usually has four long stamens and two short

stamens. The abnormal developmental phenotype of pin6–

2 was complemented using a PIN6pro:PIN6-GFP construct

(Figure S4), producing plants with petals that fully

expanded, showed restored nectary size, and for which

86.6 � 4.5% of flowers had both short stamens present,

compared to 84.3 � 3.2% of wild-type.

myb57–2 partially phenocopied the pin6–2 knockout

mutant, having smaller lateral nectaries and missing one

or both short stamens significantly more often than Col–0

(Figure 3 and Table 2). Further, when present, the short

stamens of myb57–2 displayed a petaloid phenotype

(Figure 4b,c). Interestingly, myb57–2 in the DR5:GUS back-

ground displayed extensive staining in the anther portion

of the petal/anther fusion. RT–PCR on RNA isolated from

myb57–2 anther/petal fusions also demonstrated a large

Table 1 Normalized RNAseq counts for PIN-family gene
expression in mature lateral nectariesa

Col–0 myb57–2 pin6–2

PIN1 3 3 11
PIN2 0 1 0
PIN3 346 286 745
PIN4 4 2 5
PIN5 1 0 0
PIN6 26 662 22 601 9900b

PIN7 15 14 8
PIN8 1 1 4

aFull read counts are presented in Table S2.
bNo reads were identified after the 3′ end of the T–DNA insertion
site in pin6–2 (see Figure S3).

(a)
(b) (c)

(d)

(e)

Figure 1. PIN6 and MYB57 have nectary-

enriched expression patterns.

(a) Normalized mean ATH1 GeneChip probe set

signal intensity for Arabidopsis PIN6. Original

array data for all tissues were presented by

Kram et al. (2009). ILN, immature lateral nectar-

ies; MLN, mature lateral nectaries; MMN,

mature median nectaries.

(b–d) Staining of GUS activity in the nectaries

of stage 14–15 PIN6:GUS flowers; staining was

not observed in other floral tissues or develop-

mental stages. (b) GUS staining in nectaries. (c,

d) GUS staining in a stage 8 stamen; side and

top views, respectively.

(e) Normalized mean ATH1 GeneChip probe set

signal intensity for MYB57. Inset: RT–PCR vali-

dation of MYB57 expression patterns; the nec-

tary lane comprised pooled median and lateral

nectaries.
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increase in PIN6 expression compared with RNA isolated

from Col–0 short stamen anthers. It should be noted that

the petaloid stamen phenotype reverted to wild-type when

complemented with a full-length genomic clone of MYB57

(Figure S4); however, the total number of short stamens

present in complemented lines was only partially restored,

with 72 � 9.8% of flowers having both short stamens

present, compared to 39.3 � 16.2% in myb57–2 and

84.3 � 3.2% in wild-type. The total amount of nectar in

complemented myb57–2 lines was also partially restored,

to 72 � 19% of wild-type levels, whereas the amount of

nectar in myb57–2 was 45 � 9% of wild-type levels. The

reason for the partial complementation phenotype of

myb57–2 is unknown, although it is possible that MYB57 is

mis-expressed in the myb57–2 mutant background due to

the T–DNA insertion being located in the promoter region,

and is thus not a true null allele.

RNA profiling of lateral nectaries from pin6–2 and

myb57–2

pin6–2 and myb57–2 flowers partially phenocopied each

other, displaying smaller lateral nectaries and reduced nec-

tar production (Figures 2 and 3), as well as often lacking

one or both short stamens (Figure 3 and Table 2). Further,

PIN6 was mis-expressed in myb57–2 petaloid stamens

(Figure 4). These results suggest that expression of these

two genes may be dependent on the other for expression.

RT-PCR analysis of gene expression in stage 14–15 (post-

anthesis) flowers indicated that PIN6 is expressed at nor-

mal levels in myb57–2, and that MYB57 is also expressed

normally in pin6–2 (Figure S1). Expression of a strong

nectary-specific gene required for nectar production,

AtSWEET9 (Lin IW, Chen L-Q, Sosso D, Gase K, Kim S-G,

Kessler D, Klinkenberg P, Qu X-Q, Hou B-H, Carter C,

Baldwin IT, Frommer WB, submitted), was also not altered

in either myb57–2 or pin6–2. These results were later con-

firmed by transcriptome analysis of RNA isolated from the

mature lateral nectaries of pin6–2 and myb57–2, as counts

for both of these genes in each other’s backgrounds were

similar to those of the wild-type (Table S2, first column).

Comparative analyses of the pin6–2 and myb57–2 mature

lateral nectary transcriptomes identified many genes that

were differentially expressed compared with wild-type in

one or the other mutant background, but few that were dif-

ferentially expressed in both pin6–2 and myb57–2 (Table

S2). Genes with counts twofold higher or lower in both

pin6–2 and myb57–2 versus wild-type are listed in the sec-

ond and third columns of Table S2, respectively, with the

vast majority being expressed at relatively low levels. No

significant enrichment in gene ontologies was identified

for genes that are differentially expressed in both pin6–2

and myb57–2 versus wild-type.

It should be noted that we also examined the previously

described myb57–1 mutant (SALK_065776), and did not

observe any noticeable floral phenotype, consistent with

previous findings (Cheng et al., 2009). MYB57 activity was

previously implicated in stamen development through

Figure 2. pin6 and myb57 T–DNA mutant allele series and associated nectar

secretion phenotypes.

(a) Three independent pin6 T–DNA mutants with altered gene expression

levels were identified; the relative position of each mutation is indicated by

arrowheads. A single mutant, myb57–2, resulted in a strong knockdown for

MYB57.

(b) Quantitative RT–PCR (black bars) was used to examine changes in PIN6

expression in whole flowers of each mutant line (n = 3, P < 0.001 for each

mutant line versus wild-type). The mean PIN6 expression in each mutant rel-

ative to wild-type is shown; the mean wild-type expression level is indicated

by a dashed line. Total nectar glucose (gray bars) was also evaluated in pin6

mutants, as well as myb57–2 and tir1–1, and is also shown relative to wild-

type nectar glucose (n = 10, P < 0.005 versus wild-type for each mutant line).

Inset: the arrowhead indicates a large nectar droplet that is often present in

pin6–1 (knock-up mutant) but is not observed in Col–0 flowers; LN, lateral

nectary. ‘n.a.’ indicates that quantitative RT–PCR assays were not applicable.

Table 2 Number of short stamens present in pin6–2 and myb57–2
flowers

Plant line

Mean percentages of plants with 0, 1 or 2 short
stamens per flowera

0 1 2

Wild-type

(Col–0)
1.3 � 0.6 14.3 � 3.1 84.3 � 3.2

pin6–2 50.3 � 6.4

(P = 1.8 3 10�4)

37.3 � 7.6

(P = 8.1 3 10�3)

12.3 � 1.5

(P = 4.0 3 10�6)

myb57–2 19.0 � 14.8

(P = 0.11)

41.7 � 4.5

(P = 9.6 3 10�4)

39.3 � 16.2

(P = 9.1 3 10�3)

an = 3 biological replicates of 100 flowers each. P values versus
Col–0 are indicated (paired Student’s t test); significant changes
are shown in bold. Wild-type Arabidopsis flowers usually have
two short stamens and four long stamens.
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redundant action with MYB21 and MYB24; however, only

in higher-order mutants of these genes did stamens fail to

properly elongate (Cheng et al., 2009). Cheng et al. (2009)

did not report missing short stamens or petaloid stamen

phenotypes in the myb57–1 or higher-order myb mutants.

The T–DNA insertion in myb57–1 occurs toward the 3′ end

of the third and final exon of this mutant, thus it is possible

some functional MYB57 is produced, resulting in no visible

change in phenotype.

Auxin responses are altered in pin6 nectaries

To further examine a role for PIN6 and auxin in nectar

production, pin6 alleles were crossed into the auxin-respon-

sive DR5:GFP reporter line and examined by confocal laser

scanning microscopy. In the wild-type background, the DR5:

GFP reporter displayed extensive signal in the distal portion

of both lateral and median nectaries (Figure 5a), which

co-localized with expression of a PIN6pro:PIN6–GFP repor-

ter gene (Figure 5d–f). However, the DR5:GFP signal was

greatly reduced in the lateral nectaries of both the pin6–1

(knock-up) and pin6–2 (knock-out) backgrounds, even when

the nectary morphology was normal (Figure 5b,c). Interest-

ingly, DR5-dependent signal did not appear to be reduced

in the median nectaries of pin6–1 or pin6–2. Similar obser-

vations were made for DR5:GUS for both the pin6–1 and

pin6–2 alleles (Figure S5). Significantly, plant lines expressing

PIN6pro:PIN6–GFP demonstrated that PIN6 expression over-

laps with that of auxin response in Arabidopsis nectaries.

As DR5 reporter genes were expressed at a lower level

in both knock-out (pin6–2) and knock-up (pin6–1) mutants

in the lateral nectaries, the mutants’ responses to exoge-

nous synthetic auxin [a–naphthaleneacetic acid (NAA)] and

auxin transport inhibitor N–1–naphthylphthalamic acid

(NPA) were examined. We observed a positive correlation

between NAA concentration and nectar production in feed-

ing experiments with up to 100 lM NAA in 10% sucrose

solutions, with a sharp decline at higher concentrations

(Peter M. Klinkenberg and Clay J. Carter, unpublished

data); therefore 100 lM NAA and NPA were used in these

studies. Exogenous NAA significantly increased nectar pro-

duction in wild-type Col–0 (>10-fold), whereas NPA caused

a > 2-fold reduction (Figure 6). Conversely, in pin6–1, NAA

significantly reduced nectar production and NPA had no

significant effect (Figure 6). No differences in nectar

production were observed when pin6–2 was treated with

NAA or NPA. While not statistically significant, nectar pro-

duction in pin6–3 (knockdown) displayed responses to

NAA and NPA that were similar to those for Col–0, but with

smaller magnitude. These results may be due to pin6–3

being a knock-down rather than a knock-out mutant.

DISCUSSION

We previously identified a large number of genes in

Arabidopsis with nectary-enriched expression profiles

(Kram et al., 2009), and have subsequently used a

large-scale reverse genetics approach to identify factors

(a)

(b)

(c)

Figure 3. Gross morphology of pin6 and myb57 mutant flowers.

pin6–1 and pin6–3 displayed normal floral morphologies; however, pin6–2 had petals that failed to expand (a,b), smaller nectaries and missing short stamens (c)

(Table 1). In addition, myb57–2 partially phenocopied pin6–2 in having reduced nectary size (c), missing short stamens at a significantly increased rate versus

Col–0 (c) (Table 1), and less total nectar (see Figure 2). Scale bars = 500 lm (a,b), 50 lm (c). SS, short stamen; P, petal; LN, lateral nectary.
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controlling nectar production in the Brassicaceae. This

report describes initial efforts to characterize the

involvement of PIN6 and MYB57 in Arabidopsis nectary

function.

The canonical function of the PIN family of proteins is

polar auxin transport, which controls differential growth

and cellular response via establishment of auxin gradients

(Feraru and Friml, 2008; Kleine-Vehn and Friml, 2008;

Krecek et al., 2009; Petrasek and Friml, 2009; Robert and

Friml, 2009; Vanneste and Friml, 2009; Friml, 2010;

Grunewald and Friml, 2010; Wabnik et al., 2011a). PIN6 has

been characterized as an irregular PIN protein that does not

follow the typical intron–exon motif of most characterized

PINs. Specifically, PIN6 has a shorter hydrophilic loop in the

middle of its protein structure; however, like PIN1 and PIN4,

it has ten transmembrane domains (Paponov et al. 2005)

and demonstrates in vitro auxin transporter activity (Petr-

asek et al., 2006). Nonetheless, a biological function has not

yet been ascribed to PIN6.

The role of PIN6 in the nectary auxin response

Microarray and reporter assays demonstrated that PIN6 is

highly up-regulated in nectaries (Figures 1 and 5), with

other PIN genes being expressed at very low levels

(Table 1 and Table S1). This specificity of expression

suggested a very particular role for PIN6 and auxin in

nectary function, which was supported by several findings

in this study as discussed below.

Three independent pin6 T–DNA mutant alleles with

differing PIN6 expression levels were examined here. Inter-

estingly, the level of PIN6 expression positively correlated

with nectar production (Figure 2). To obtain an explanation

for this phenotype, we first examined floral and nectary

morphology. An attractive initial hypothesis was that PIN6

activity may affect nectary size, which in turn would affect

nectar production. Indeed, pin6–2 often did have smaller

nectaries and petals that failed to fully expand; however,

no noticeable differences in nectary size or morphology

were observed for pin6–1 (knock-up mutant) or pin6–3

(knock-down), even though they had contrasting nectar

secretion phenotypes.

These results suggest that PIN6 and auxin may play a

direct role in the regulation of nectar production rather

than singularly affecting nectary development, a conclu-

sion supported by several findings in this study. For

example, a very strong DR5:GFP signal was observed in

post-anthesis nectaries of the Col–0 background, which

co-localized with PIN6–GFP at nectary tips (Figure 5). This

observation is consistent with previous studies suggesting

that the floral nectaries of multiple plant species produce

indoleacetic acid (IAA) immediately prior to anthesis (En-

dress, 1994; Aloni et al., 2006). Aloni et al. (2006) used

DR5:GUS expression analyses as a proxy to follow the ini-

tiation and progression of free auxin production in floral

organs throughout development, including nectaries. The

authors suggested that free IAA has two primary func-

tions in flower development: (i) promotion of growth

within the organs that produce auxin, and (ii) repression

of development in adjacent organs that do not produce

auxin (Aloni et al., 2006). One conclusion of their study

was that auxin production shifts from anthers to nectaries

at anthesis. It was suggested that IAA derived from

anthers in pre-anthesis Arabidopsis flowers prevents nec-

tar secretion until anthesis, whereupon nectaries become

the primary sites of auxin synthesis in flowers (Aloni

et al., 2006). However, it is important to note that DR5-

based reporters are only a proxy for the auxin response,

not auxin synthesis itself. Thus, nectaries may sequester

auxin from surrounding tissues instead of directly synthe-

sizing auxin, thereby controlling auxin homeostasis and

response. Indeed, an analysis of the RNA-seq data in

Table S2 indicates that genes involved in IAA biosynthesis

(Mano and Nemoto, 2012) are expressed at very low lev-

els (Table S4, most of these genes are near or in the low-

est quartile of all genes for total RNA-seq counts). This

analysis suggests that nectaries may not produce large

amounts of free IAA; however, more studies are required

(a)

(c) (d) (e)

(b)

Figure 4. MYB57 is required for proper development of short stamens.

(a) Wild-type Col–0 flower with one sepal removed to reveal the location of

a lateral nectary (LN) and a short stamen (SS).

(b,c) myb57–2 flowers. When present, the short stamen in myb57–2 flowers

displayed a petaloid phenotype.

(d) myb57–2 in the DR5:GUS background stained intensely in the anther

portion of the short stamen, and RNA isolated from the myb57–2 short

stamen showed a significant increase in PIN6 expression compared with

wild-type short stamens.

© 2013 The Authors
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to determine whether or not nectaries are active sites of

auxin synthesis.

Another piece of evidence for a role for PIN6 and auxin in

nectary function was that the auxin-dependent DR5:GFP

signal in both the pin6–1 (knock-up) and pin6–2 (knock-out)

alleles was significantly decreased in mature lateral nectar-

ies (even when the nectary morphology was normal in

pin6–2), whereas median nectaries appeared unaffected

(Figure 5). This result was unexpected because: (i) pin6–1

and pin6–2 have opposite expression levels and nectar

secretion phenotypes relative to wild-type Col–0, and (ii)

PIN6 is highly expressed in both median and lateral nectar-

ies, so it is expected that both nectary types would be

affected equally. PIN6 is most closely related to PIN5, which

was previously localized to the ER membrane (Mravec

et al., 2009), thus differing from the plasma membrane

localization of other described PINs. Mravec et al. (2009)

also showed via transient expression assays that PIN6 and

PIN8 appear to be located in the ER of tobacco BY–2 cells.

The observed localization patterns of PIN6pro:PIN6–GFP

(Figure 5e,f) are consistent with the previously suggested

ER localization; unfortunately, attempts to observe co-local-

ization of PIN6–GFP with ER-specific dyes (e.g. ER-Tracker

Red) and even diamidino-2-phenylindole (DAPI; nuclear

stain) were unsuccessful because the thick cuticle covering

the nectaries prevented staining in sub-epidermal cells.

The presence of PIN6 on the ER membrane suggests

that it may play a role in intracellular auxin homeostasis,

(a) (b) (c)

(d) (e) (f)

Figure 5. PIN6 is required for proper auxin responses in nectaries.

(a) Confocal laser scanning microscopy of the DR5:GFP auxin-responsive reporter in the Col–0 background displayed strong signal in the distal portions of both

lateral and median nectaries from stage 14 flowers (post-anthesis, secretory nectary).

(b,c) The auxin-responsive signal was significantly reduced in the lateral nectaries of both pin6–2 (b) and pin6–1 (c). Interestingly, DR5:GFP signal was still

observed in the median nectaries of both pin6–1 and pin6–2.
(d–f) Wild-type plants expressing a PIN6pro:PIN6-GFP fusion showed that PIN6 is also expressed in the distal nectary (d,e) (overlaps with DR5:GFP expression),

and that it accumulates in internal membranes (f) (arrowheads indicate modified open stomata of a lateral nectary).

LN, lateral nectary; MN, median nectary. Scale bars = 100 lm (a–e) and 20 lm (f). DAPI was used as a counter-stain in (a)–(c), (e) and (f); endogenous autofluo-

rescence provided the background in (d).

Figure 6. Exogenous auxin increases and auxin transport inhibitor (NPA)

decreases total nectar sugar in wild-type Arabidopsis flowers.

The peduncles of freshly cut inflorescences were placed in 10% buffered

sucrose solutions containing either 100 lM NAA (synthetic auxin) or NPA

(auxin transport inhibitor) in microcentrifuge tubes covered in Parafilm

(Pechiney Plastic Packaging Company, Chicago, IL, USA). Peduncles were

chosen based on the number of inflorescences nearing stage 13 (anthesis),

which averaged between four and five for every three peduncles treated. Fol-

lowing 20 h incubation in a dark, humid environment, nectar was collected

from the lateral nectaries of five stage 15 flowers (post-anthesis, secretory)

using paper wicks, and assayed for total glucose. Data are presented as the

percentage increase or decrease in total nectar glucose relative to mock

treatments for each individual line (n = 3 biological replicates of nectar col-

lected from five flowers each, **P < 0.005 relative to mock treated flowers).
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as demonstrated for PIN5 (Mravec et al., 2009) and later

expanded upon from a mechanistic perspective by Wabnik

et al. (2011b). Thus, the function of PIN6 may be to

sequester auxin from the cytosol into the lumen of the ER,

thereby modulating cytosolic auxin concentrations and its

cellular availability for auxin-dependent processes such as

the SCFTIR1/AFB signaling pathway (Gray et al., 2001;

Dharmasiri et al., 2005; Kepinski and Leyser, 2005). This

idea is supported by the finding that, in the pin6–1 mutant,

which has nearly a twofold increase in PIN6 transcript

(Figure 2), the DR5:GFP signal is significantly reduced in

lateral nectaries (Figure 5), and did not respond to exoge-

nously applied auxin (Figure 6). Thus, the increased PIN6

expression in pin6–1 may result in decreased cytosolically

available auxin and a concomitant reduction in SCFTIR1/AFB

signaling. This notion is further supported by the finding

that the auxin co-receptor mutant tir1–1 (Ruegger et al.,

1998) phenocopied pin6–1 with regard to nectar secretion,

secreting significantly higher amounts of nectar than Col–0

(Figure 2).

Additionally, one may expect auxin-responsive genes to

be down-regulated in pin6–2 nectaries (due to decreased

DR5:GFP signal in pin6–2 nectaries, Figure 5); indeed,

seven of 271 genes with more than twofold higher counts

in Col–0 versus pin6–2 nectaries were annotated as being

auxin-responsive via GO annotation at http://arabidopsis.

org/tools/bulk/go/index.jsp (data from Table S2; only genes

with counts in the top half of all genes expressed in

nectaries were analyzed due to low counts in remaining

genes). These genes included At4g30080 (auxin response

factor 16), At4g36740 (homeobox protein 40), At3g11820

(syntaxin of plants 121), At4g23570 (phosphatase-related),

At4g37390 (auxin-responsive GH3 family protein), At5g35735

(auxin-responsive family protein) and At2g33830 (dormancy/

auxin-associated family protein). However, enrichment of

auxin-responsive genes was not statistically significant,

which suggests that at least part of the auxin response in

nectaries may be independent of transcriptional processes.

As mentioned above, whereas exogenously applied

auxin (via peduncles placed in 100 lM NAA in 10%

sucrose solutions) resulted in a large increase in nectar

production in Col–0, it caused a significant reduction in

pin6–1, no change in pin6–2, and a small but statistically

insignificant increase in pin6–3 (Figure 6). The results we

observed with wild-type flowers were consistent with a

previous study in which exogenous auxin and gibberellic

acid (GA3) (applied by spraying, not in cultured flowers)

caused significant increases in nectar volume, nectar

sugar concentration, dry nectar sugar mass, insect

visitation abundance and seed yield in two species clo-

sely related to Arabidopsis (Brassica campestris and Bras-

sica oleracea) (Mishra and Sharma, 1988). Other studies

on excised flowers of snapdragon (Antirrhinum majus)

supported a conflicting role for auxin in inhibiting nectar

secretion (Shuel, 1959, 1964, 1978); however, under some

conditions, exogenous IAA resulted in an increase in nec-

tar production, suggesting a dual role for auxin in nectar

production (Shuel, 1964). Whether these conflicting obser-

vations result from species differences (Brassicaceae ver-

sus snapdragon) or experimental design (the snapdragon

studies used 500 lM IAA, whereas this study used 100 lM
NAA) are unclear; however, we observed a positive corre-

lation between NAA concentration and nectar production

in our sucrose feeding experiments up to 100 lM NAA in

10% sucrose solutions, with a sharp decline at higher

NAA concentrations (Peter M. Klinkenberg and Clay J.

Carter, unpublished data). Significantly, through 14C-

labeled IAA and sucrose experiments, Shuel (1978)

concluded that exogenously applied auxin affects the

secretory process itself within nectaries, rather than the

movement of sugars to nectaries.

In contrast to NAA application, the auxin transport inhib-

itor NPA caused a significant decrease in nectar production

in Col–0, but not in any of the pin6 mutants (Figure 6). The

accumulation of PIN6 and auxin at nectary tips was also

intriguing, and suggests that PIN6 may also play a role in

defining nectary polarity. The reason for PIN6 expression

in the distal nectary is uncertain; however, other nectary-

enriched genes, such as CELL WALL INVERTASE 4 and a

sesquiterpine synthase (At5g44630), appear to be expressed

throughout the entire nectary (Tholl et al., 2005; Ruhlmann

et al., 2010), suggesting that sub-domains exist within the

Arabidopsis nectary. Cumulatively, these results indicate

that fine-tuned control of auxin concentration in the

sub-epidermal nectary parenchyma is essential for proper

nectary function.

As to why median nectaries still have a strong DR5:GFP

signal in pin6 mutant backgrounds, it should be noted that

lateral nectaries secrete >99% of nectar in Arabidopsis, and

there are also clear differences in gene expression and

development between median and lateral nectaries (Davis

et al., 1998; Kram and Carter, 2009; Kram et al., 2009). For

example, a cupin-family gene, At1g74820, was previously

found to be highly up-regulated in median versus lateral

nectaries (Kram et al., 2009). RNA-seq analysis in this study

identified At1g74820 as being expressed at a level that was

24-fold higher in the mature lateral nectaries of pin6–2

compared with Col–0 (Table S2). The cupin family of genes

includes the auxin receptor AUXIN BINDING PROTEIN 1

(Shi and Yang, 2011) and other auxin binding proteins

(Ohmiya, 2002). Thus, it is possible that At1g74820 may

play a role in regulating the auxin response in nectaries.

The role of PIN6 and MYB57 in short stamen development

We also found that the pin6–2 and myb57–2 mutants

partially phenocopied one another in having significantly

reduced nectar production, nectary size and short stamen

presence; however, differences between these two lines
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included that pin6–2 had petals that failed to fully expand

(Figure 3), whereas myb57–2 had petaloid short stamens

(when short stamens were present). Since PIN6 is

expressed at normal levels in both myb57–2 whole flowers

and mature lateral nectaries, it is unlikely that MYB57

directly regulates PIN6 expression (Figure S1 and Table

S2). However, the anther portion of petaloid stamens in

myb57–2 stained strongly in the DR5:GUS background in

mature flowers, and PIN6 was also found to be mis-

expressed in myb57–2 petaloid stamens instead of only

being expressed in the nectaries of wild-type Col-0 flowers.

As PIN6 is also expressed in immature stamens of wild-

type plants (Figure 1), which coincides with auxin produc-

tion or response in stamens at this stage (Aloni et al.,

2006), these results are not necessarily surprising. It is cur-

rently unknown whether PIN6 activity is required for the

petaloid short stamen phenotype observed in myb57–2, or

whether PIN6 mis-expression in myb57–2 short stamens is

a consequence of the petaloid phenotype. Nonetheless, the

observed role of MYB57 in the proper development of short

stamens is consistent with previous results, as MYB57

involvement in stamen elongation, through redundant

action with MYB21 and MYB24, has been demonstrated

previously (Cheng et al., 2009). Interestingly, MYB21 and

MYB24 are also highly expressed in nectaries and are

required for proper floral maturation (Reeves et al., 2012).

Indeed, myb21 null mutants do not secrete nectar (Peter M.

Klinkenberg and Clay J. Carter, unpublished data).

Cumulatively, these observations suggest the existence

of an indirect link between MYB57 and PIN6, as well as a

general role for PIN6 in the auxin response in mature flow-

ers. The fact that small under-developed nectaries occur

when short stamens are absent is consistent with previous

results. Most floral jasmonic acid appears to be produced

in stamen filaments (Ishiguro et al., 2001), and is not only

required for floral maturation as a whole, including nectar-

ies (Cheng et al., 2009; Reeves et al., 2012), but may also

induce floral nectar secretion (Radhika et al., 2010). Indeed,

when short stamens are present in pin6–2 and myb57–2,

nectary morphology occasionally appears normal (e.g.

Figure 5b). The link between stamen presence and nectary

development and maturation is unclear; however, one pre-

viously proposed model is that jasmonic acid is trans-

ported downwards from filaments to the rest of the flower

for maturation and expansion of other organs, such as pet-

als (Ishiguro et al., 2001). Regardless, PIN6 activity is

clearly required for proper nectary function, even when

nectary morpology is normal, as demonstrated by the

reduced nectar secretion phenotype of pin6–3 (Figure 2).

CONCLUSIONS

To conclude, we have demonstrated a clear role for PIN6,

auxin and MYB57 in nectary development and function.

These results indicate a crucial role for auxin homeostasis

in nectaries for proper nectar secretion and floral develop-

ment. Future studies will focus on the involvement of

endogenous nectary auxin production in flower and nec-

tary maturation, the precise role of PIN6 in regulating the

auxin response in nectaries, and how PIN6 expression is

regulated.

EXPERIMENTAL PROCEDURES

Plant materials and growth

The background for all plant materials was Arabidopsis thaliana
cv Col–0. T–DNA mutant lines for PIN6 (At1g77110: pin6–1,
SALK_082098; pin6–2,SALK_046393; pin6–3, SALK_095142C) and
MYB57 (At3g01530: myb57–2, SALK_030969) were obtained from
the Arabidopsis Biological Resource Center (Columbus, OH)
(Alonso et al., 2003), and genotyped to obtain homozygous
mutants as described at http://signal.salk.edu/tdnaprimers.2.html.
PIN6pro:GUS seed was also obtained from the Arabidopsis Bio-
logical Resource Center (CS9371), and DR5:GUS, DR5:GFP and
tir1-1 were previously described (Ulmasov et al., 1997; Ruegger
et al., 1998; Benkova et al., 2003). PIN6pro:PIN6–GFP lines were
created by amplifying a 6602 bp PIN6 genomic fragment from
Col–0 DNA using the PIN6–FULL–F and PIN6–GFP–R primers
(Table S5) and Phusion polymerase (New England BioLabs, http://
www.neb.com), and directly cloned into the XhoI and XmaI sites
of the GFP-containing binary vector pORE–R4 (Coutu et al., 2007).
This fragment contained 3051 bp of sequence upstream of the
PIN6 start codon, together with the full PIN6 coding region, minus
the stop codon, and was cloned in-frame with the GFP coding
region found in pORE–R4. The sequence of the resulting con-
struct, pCC15, was confirmed via dideoxy sequencing at the Uni-
versity of Minnesota DNA Sequencing and Analysis Facility (St
Paul, MN), and transformed into Arabidopsis using Agrobacte-
rium tumefaciens (GV3101) by the floral-dip method (Clough and
Bent, 1998). Transformed seedlings were selected on solid Mu-
rashige and Skoog (MS) medium with kanamycin (50 lg ml). For
myb57–2 complementation, the full-length gene (promoter and
coding region of MYB57) was PCR-amplified using the primer pair
MYB57 comp–F and MYB57 comp–R (Table S5), and then ligated
into the EcoRI and SpeI sites of the plant transformation vector
pORE_O3 (Coutu et al., 2007), generating the construct pPMK23.
myb57–2 was transformed with pPMK23 using Agrobacterium-
mediated transformation by the floral-dip method (Clough and
Bent, 1998). Transformed plants were selected on half-strength
Murashige & Skoog medium with 50 lM phosphinothricin.
Healthy seedlings were transplanted into soil and genotyped for
the presence of pPMK23. All plants were grown in individual pots
on a peat-based growth medium with vermiculite and perlite
(Pro-Mix BX; Premier Horticulture, http://www.pthorticulture.com/)
in Percival AR66LX environmental chambers (http://www.percival-
scientific.com/) under standard conditions: 16 h day/8 h night
cycle, with a photosynthetic flux of 150 lmol m�2 sec�1 and a
temperature of 23°C.

Chemicals and reagents

Unless noted otherwise, all chemicals were obtained from Sigma-
Aldrich Chemical Co. (http://www.sigmaaldrich.com/) or Thermo
Fisher Scientific (http://www.fishersci.com/).

Microscopic analyses

Scanning electron microscopy and confocal analyses were per-
formed as previously described (Ruhlmann et al., 2010), except
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that DAPI, which is usually used as a nuclear stain, was found
to extensively label the thick cuticle covering the nectaries. The
cuticle prevented extensive staining of nectary parenchyma nuclei,
even with extended periods of incubation. Thus, DAPI was used
primarily as a counter-stain to observe the nectary surface. Flow-
ers with sepals removed were briefly placed in 300 nM DAPI, and
rinsed in ddH2O just prior to imaging.

Gene expression analyses

Promoter–GUS assays were performed as previously described
(Jefferson et al., 1987). For both end-point and quantitative
RT–PCR, RNA was isolated from tissues using an Absolutely RNA
Miniprep kit according to the manufacturer’s instructions (Agilent,
http://www.agilent.com/). RNA quality was confirmed by spectro-
photometric analysis and agarose gel electrophoresis. For end-
point RT–PCR analyses, total RNA (200 ng) was used as a template
in the Promega reverse transcription system (http://www.promega.
com/). The resulting cDNA (1 ll) was PCR-amplified using GoTaq
Green Master Mix (Promega) according to the manufacturer’s
instructions. Expression was analyzed on 1% agarose gels using
SybrSafe (Invitrogen, http://www.invitrogen.com/). A minimum of
three biological replicates and corresponding PCR reactions were
used to confirm results. The sequences of the primers designed
for gene expression analyses are given in Table S5. For 3′ RACE in
pin6 mutants, total RNA was reverse-transcribed using the Pro-
mega reverse trancription system with the 3′ adapter + the oligo
(dT)oligonucleotide primer (Table S5), and subsequently subjected
to PCR amplification using the PIN6 qPCR F and 3′ RACE adapter
oligonucleotide primers. RACE PCR products were subjected to
DNA sequencing at the University of Minnesota DNA Sequencing
and Analysis Facility (St Paul, MN).

For quantitative real-time PCR analyses, total RNA (100 ng) from
pin6–1, pin6–2, pin6–3 and wild-type Arabidopsis flowers was
used as template for cDNA synthesis via the QuantiTech reverse
transcription kit (Qiagen, http://www.qiagen.com/). Synthesized
cDNA (50 ng) was added to the real-time PCR reaction set-up,
which included 12.5 ll of 2 x Rotor-Gene SYBR Green PCR Master
Mix (Qiagen), 2.5 lM forward primer and 2.5 lM reverse primer to
a final reaction volume of 25 ll. Primers were designed based on
the Roche Universal Probe Library (www.roche-applied-science.
com) using the accession numbers At1g77110 (PIN6) and
At1g49240 (ACTIN8) (Table S1). The PIN6 quantitative RT–PCR
primers spanned the T–DNA insertion site for pin6–1, and were
located 3′ to the insertion sites for pin6–2 and pin6–3. Standard
curve reactions were prepared using serial dilutions of shoot
cDNA and ACTIN8 primers. The standard curve, pin6 and wild-
type reactions were set up in triplicate and incubated at 95°C for
5 min, then underwent 40 cycles of 95°C for 5 sec followed by
60°C for 10 sec in a Corbett Rotor-Gene 3000 Light Cycler (http://
www.corbettlifescience.com/). SYBR Green fluorescence was
detected during the 60°C incubation step. Standard reaction analy-
sis was performed using the ROTOR-GENE 6 software. PCR reactions
were performed six times. The three most efficient trials were cho-
sen for final comparison.

Nectar collection and metabolite analysis

Nectar collection was performed as previously described (Bender
et al., 2012). Briefly, a single biological replicate for nectar glucose
assays consisted of nectar collected from the lateral nectaries of
ten stage 14–15 flowers using small, uniform wicks cut from
Whatman No. 1 filter paper (http://www.whatman.com/). Com-
pleted wicks were placed in 500 ll of nuclease-free water for elu-
tion, and stored at �20°C until further analysis. Relative glucose

concentration was then analyzed using a modified glucose oxi-
dase assay as previously described (Bethke and Busse, 2008; Ruhl-
mann et al., 2010; Bender et al., 2012). Nectar collection for full
metabolite analyses was performed as for glucose assays, except
that 20 flowers were used for a single biological replicate, and the
nectar was eluted in 100 ll nuclease-free water. Nectar samples
used for metabolomic analyses were flash-frozen and stored at
�80°C until analyzed via GC9GC/MS (Agilent, Santa Clara, CA,
USA, http://www.agilent.com) as previously described (Bender
et al., 2012) at the W.M. Metabolomics Research Laboratory at
Iowa State University (Ames, IA).

Hormone treatment assays

The peduncles of freshly cut inflorescences were placed in 10%
w/v sucrose solutions in MES-buffered MS medium (pH 5.8)
containing 100 lM of either the synthetic auxin a–naphthalene-
acetic acid (NAA; MP Biomedicals, http://www.mpbio.com/) or
the auxin transport inhibitor N–1–naphthylphthalamic acid (NPA;
Supelco, www.sigmaaldrich.com/Supelco). Peduncles were cho-
sen based on the number of inflorescences nearing stage 13
(anthesis), which averaged between four and five for every three
peduncles treated. Following a 20 h incubation in a dark, humid
environment, nectar was collected from the lateral nectaries of
five stage 14–15 flowers (post-anthesis, secretory) using paper
wicks and assayed for total glucose. Data are presented as the
percentage increase or decrease in total nectar glucose relative
to mock treatments for each individual line (n = 3 biological rep-
licates of nectar collected from five flowers each, **P < 0.005
relative to mock treatments via Student’s paired two-tailed
t-test).

Microarray data mining

The mean probe set signal intensities for all PIN family genes
expressed in Arabidopsis nectaries, as identified by an Affymetrix
ATH1 GeneChip� microarray (http://www.affymetrix.com/), were
compared to those in 13 tissues at multiple developmental stages,
and are presented in Table S1. The raw normalized microarray
data used for the analyses presented here were originally pre-
sented by Kram et al. (2009).

RNA-seq analyses

Collection of mature lateral nectaries from stage 14–15 flowers
(Col–0, pin6–2 and myb57–2), and subsequent RNA isolation and
quality controls were performed as previously described (Kram
et al., 2009). Sequencing libraries were created using TruSeq
RNA Sample Prep Kits (Illumina, http://www.illumina.com), and
sequenced as 100 bp single end reads via Illumina HiSeq 2000 at
the University of Minnesota DNA Sequencing and Analysis Facil-
ity (St Paul, MN). The number of reads for the wild-type Col–0,
myb57–2 and pin6–2 samples were 24 712 426, 28 031 745 and
17 085 542, respectively. Sequences were compared to the
TAIR10 reference (version updated 14 December 2010) using
BLASTN version 2.2.25+ (National Center for Biotechnology Infor-
mation; Altschul et al., 1997). Quantification of splice variants
was performed using BOWTIE (version 0.12.7) and TOPHAT (version
1.3.3) (Langmead et al., 2009; Trapnell et al., 2009). For blastn
alignments, an E–value cut-off of 10�5 and a bit score of at least
75 were required. Counts were normalized using upper-quartile
normalization (Bullard et al., 2010). The correction multipliers
were 1.05, 0.79 and 1.27 for the wild-type, myb57–2 and pin6–2
samples, respectively. Full RNA-seq count data are presented in
Table S2, and corresponding data have been deposited in NCBI
Sequence Read Archive as SRA056392.

© 2013 The Authors
The Plant Journal © 2013 John Wiley & Sons Ltd, The Plant Journal, (2013), 74, 893–904

902 Ricci L. Bender et al.



ACKNOWLEDGEMENTS

The authors thank Bryan Bandli (Research Instrumentation
Laboratory, University of Minnesota Duluth) for assistance with
scanning electron microscopy imaging, Molly Gorder and Mengy-
uan Jia for technical assistance, and Dr Marci Surpin (Valent Bio-
Sciences Corporation, Long Grove, IL, USA) for helpful
discussions. We also thank Dr Bill Gray (University of Minnesota)
for helpful discussions and providing seed for the DR5 reporter
lines and tir1-1. This work was funded by a grant from the US
National Science Foundation (#0820730) to C.J.C.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this article.
Figure S1. PIN6 expression in mature flowers is not dependent on
MYB57.

Figure S2. 3′ RACE analysis of PIN6 transcripts in pin6–1.

Figure S3. RNA-seq count distribution for PIN6 in pin6–2 and wild-
type mature lateral nectaries.

Figure S4. Complementation phenotypes of pin6–2 and myb57–2.

Figure S5. DR5:GUS expression in pin6 mutant backgrounds.

Table S1. PIN family gene expression in Arabidopsis nectaries and
reference tissues.

Table S2. RNA-seq count data for pin6–2 and myb57–2 mature
lateral nectaries.

Table S3. Analysis of pin6–2 nectar metabolites.

Table S4. Analysis of gene expression associated with IAA synthe-
sis and inactivation/homeostasis.

Table S5. Oligonucleotide primers used in this study.

REFERENCES

Aloni, R., Aloni, E., Langhans, M. and Ullrich, C.I. (2006) Role of auxin in reg-

ulating Arabidopsis flower development. Planta, 223, 315–328.
Alonso, J.M., Stepanova, A.N., Leisse, T.J. et al. (2003) Genome-wide inser-

tional mutagenesis of Arabidopsis thaliana. Science, 301, 653–657.
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W.

and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res. 25, 3389–3402.
Bender, R., Klinkenberg, P., Jiang, Z., Bauer, B., Karypis, G., Nguyen, N.,

Perera, M.A.D.N., Nikolau, B.J. and Carter, C.J. (2012) Functional

genomics of nectar production in the Brassicaceae. Flora, 207,

491–496.
Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jur-

gens, G. and Friml, J. (2003) Local, efflux-dependent auxin gradients as a

common module for plant organ formation. Cell, 115, 591–602.
Bethke, P.C. and Busse, J.C. (2008) Validation of a simple, colorimetric,

microplate assay using Amplex Red for the determination of glucose and

sucrose in potato tubers and other vegetables. Am. J. Potato Res. 85,

414–421.
Bullard, J.H., Purdom, E., Hansen, K.D. and Dudoit, S. (2010) Evaluation of

statistical methods for normalization and differential expression in

mRNA-Seq experiments. BMC Bioinformatics, 11, 94.

Chen, F., Tholl, D., D’Auria, J.C., Farooq, A., Pichersky, E. and Gershenzon,

J. (2003) Biosynthesis and emission of terpenoid volatiles from Arabid-

opsis flowers. Plant Cell, 15, 481–494.
Cheng, H., Song, S.S., Xiao, L.T., Soo, H.M., Cheng, Z.W., Xie, D.X. and

Peng, J.R. (2009) Gibberellin acts through jasmonate to control the

expression of MYB21, MYB24, and MYB57 to promote stamen filament

growth in Arabidopsis. PLoS Genet. 5, e1000440.

Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agro-

bacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16,

735–743.
Coutu, C., Brandle, J., Brown, D., Brown, K., Miki, B., Simmonds, J. and

Hegedus, D.D. (2007) pORE: a modular binary vector series suited for

both monocot and dicot plant transformation. Transgenic Res. 16,

771–781.
Davis, A.R., Pylatuik, J.D., Paradis, J.C. and Low, N.H. (1998) Nectar-carbo-

hydrate production and composition vary in relation to nectary anatomy

and location within individual flowers of several species of Brassicaceae.

Planta, 205, 305–318.
Dharmasiri, N., Dharmasiri, S. and Estelle, M. (2005) The F–box protein TIR1

is an auxin receptor. Nature, 435, 441–445.
Endress, P.K. (1994) Diversity and Evolutionary Biology of Tropical Flowers.

Cambridge, UK: Cambridge University Press.

Feraru, E. and Friml, J. (2008) PIN polar targeting. Plant Physiol. 147,

1553–1559.
Friml, J. (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin

transport. Eur. J. Cell Biol. 89, 231–235.
Gray, W.M., Kepinski, S., Rouse, D., Leyser, O. and Estelle, M. (2001) Auxin

regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature,

414, 271–276.
Grunewald, W. and Friml, J. (2010) The march of the PINs: developmental

plasticity by dynamic polar targeting in plant cells. EMBO J. 29, 2700–
2714.

Hampton, M., Xu, W.W., Kram, B.W., Chambers, E.M., Ehrnriter, J.S., Gra-

lewski, J.H., Joyal, T. and Carter, C.J. (2010) Identification of differential

gene expression in Brassica rapa nectaries through expressed sequence

tag analysis. PLoS ONE, 5, e8782.

Heil, M. (2004) Induction of two indirect defences benefits Lima bean

(Phaseolus lunatus, Fabaceae) in nature. J. Ecol. 92, 527–536.
Heil, M. (2011) Nectar: generation, regulation and ecological functions.

Trends Plant Sci. 16, 191–200.
Heil, M., Rattke, J. and Boland, W. (2005) Postsecretory hydrolysis of

nectar sucrose and specialization in ant/plant mutualism. Science, 308,

560–563.
Hoffmann, M.H., Bremer, M., Schneider, K., Burger, F., Stolle, E. and Moritz,

G. (2003) Flower visitors in a natural population of Arabidopsis thaliana.

Plant Biol. 5, 491–494.
Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I. and Okada, K. (2001) The

DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholi-

pase A1 catalyzing the initial step of jasmonic acid biosynthesis, which

synchronizes pollen maturation, anther dehiscence, and flower opening

in Arabidopsis. Plant Cell, 13, 2191–2209.
Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: b–glu-

curonidase as a sensitive and versatile gene fusion marker in higher

plants. EMBO J. 6, 3901–3907.
Kepinski, S. and Leyser, O. (2005) The Arabidopsis F–box protein TIR1 is an

auxin receptor. Nature, 435, 446–451.
Kleine-Vehn, J. and Friml, J. (2008) Polar targeting and endocytic recycling

in auxin-dependent plant development. Annu. Rev. Cell Dev. Biol. 24,

447–473.
Kram, B.W. and Carter, C.J. (2009) Arabidopsis thaliana as a model for func-

tional nectary analysis. Sex. Plant Reprod. 22, 235–246.
Kram, B.W., Xu, W.W. and Carter, C.J. (2009) Uncovering the Arabidopsis

thaliana nectary transcriptome: investigation of differential gene expres-

sion in floral nectariferous tissues. BMC Plant Biol. 9, 92.

Krecek, P., Skupa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J. and Zazi-

malova, E. (2009) The PIN-FORMED (PIN) protein family of auxin trans-

porters. Genome Biol. 10, 249.

Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. (2009) Ultrafast and

memory-efficient alignment of short DNA sequences to the human gen-

ome. Genome Biol. 10, R25.

Liu, G. and Thornburg, R.W. (2012) Knockdown of MYB305 disrupts nectary

starch metabolism and floral nectar production. Plant J. 70, 377–388.
Liu, G., Ren, G., Guirgis, A. and Thornburg, R.W. (2009) The MYB305 tran-

scription factor regulates expression of nectarin genes in the ornamental

tobacco floral nectary. Plant Cell, 21, 2672–2687.
Mano, Y. and Nemoto, K. (2012) The pathway of auxin biosynthesis in

plants. J. Exp. Bot. 63, 2853–2872.
Mishra, R. and Sharma, S. (1988) Growth regulators affect nectar-pollen

production and insect foraging in Brassica seed crops. Curr. Sci., 57,

1297–1299.
Mravec, J., Skupa, P., Bailly, A. et al. (2009) Subcellular homeostasis of phy-

tohormone auxin is mediated by the ER-localized PIN5 transporter. Nat-

ure, 459, 1136–1140.

© 2013 The Authors
The Plant Journal © 2013 John Wiley & Sons Ltd, The Plant Journal, (2013), 74, 893–904

PIN6 and auxin control nectary function 903



Nepi, M., Soligo, C., Nocentini, D., Abate, M., Guarnieri, M., Cai, G., Bini,

L., Puglia, M., Bianchi, L. and Pacini, E. (2012) Amino acids and

protein profile in floral nectar: much more than a simple reward.

Flora, 207, 475–481.
Ohmiya, A. (2002) Characterization of ABP19/20, sequence homologues of

germin-like protein in Prunus persica L. Plant Sci. 163, 683–689.
Paponov, I.A., Teale, W.D., Trebar, M., Blilou, I. and Palme, K. (2005) The

PIN auxin efflux facilitators: evolutionary and functional perspectives.

Trends Plant Sci. 10, 170–177.
Petrasek, J. and Friml, J. (2009) Auxin transport routes in plant develop-

ment. Development, 136, 2675–2688.
Petrasek, J., Mravec, J., Bouchard, R. et al. (2006) PIN proteins perform a

rate-limiting function in cellular auxin efflux. Science, 312, 914–918.
Radhika, V., Kost, C., Boland, W. and Heil, M. (2010) The role of jasmonates

in floral nectar secretion. PLoS ONE, 5, e9265.

Reeves, P.H., Ellis, C.M., Ploense, S.E. et al. (2012) A regulatory network for

coordinated flower maturation. PLoS Genet. 8, e1002506.

Ren, G., Healy, R.A., Klyne, A.M., Horner, H.T., James, M.G. and Thorn-

burg, R.W. (2007) Transient starch metabolism in ornamental tobacco

floral nectaries regulates nectar composition and release. Plant Sci. 173,

277–290.
Robert, H.S. and Friml, J. (2009) Auxin and other signals on the move in

plants. Nat. Chem. Biol. 5, 325–332.
Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J. and Estelle, M.

(1998) The TIR1 protein of Arabidopsis functions in auxin response and

is related to human SKP2 and yeast grr1p. Genes Dev. 12, 198–207.
Ruhlmann, J.M., Kram, B.W. and Carter, C.J. (2010) CELL WALL INVERT-

ASE 4 is required for nectar production in Arabidopsis. J. Exp. Bot. 61,

395–404.

Shenoy, M., Radhika, V., Satish, S. and Borges, R.M. (2012) Composition of

extrafloral nectar influences interactions between the myrmecophyte

Humboldtia brunonis and its ant associates. J. Chem. Ecol. 38, 88–99.
Shi, J.H. and Yang, Z.B. (2011) Is ABP1 an auxin receptor yet? Mol. Plant, 4,

635–640.
Shuel, R.W. (1959) Studies of nectar secretion in excised flowers. II. The

influence of certain growth regulators and enzyme inhibitors. Can. J.

Bot. 37, 1167–1180.
Shuel, R.W. (1964) Nectar secretion in excised flowers. III. The dual effect of

indolyl-3–acetic acid. J. Apic. Res. 3, 99–111.
Shuel, R.W. (1978) Nectar secretion in excised flowers. V. Effects of indole-

acetic acid and sugar supply on distribution of [14C]sucrose in flower tis-

sues and nectar. Can. J. Bot. 56, 565–571.
Tholl, D., Chen, F., Petri, J., Gershenzon, J. and Pichersky, E. (2005) Two

sesquiterpene synthases are responsible for the complex mixture of ses-

quiterpenes emitted from Arabidopsis flowers. Plant J. 42, 757–771.
Trapnell, C., Pachter, L. and Salzberg, S.L. (2009) TopHat: discovering splice

junctions with RNA-Seq. Bioinformatics, 25, 1105–1111.
Ulmasov, T., Murfett, J., Hagen, G. and Guilfoyle, T.J. (1997) Aux/IAA pro-

teins repress expression of reporter genes containing natural and highly

active synthetic auxin response elements. Plant Cell, 9, 1963–1971.
Vanneste, S. and Friml, J. (2009) Auxin: a trigger for change in plant devel-

opment. Cell, 136, 1005–1016.
Wabnik, K., Govaerts, W., Friml, J. and Kleine-Vehn, J. (2011a) Feedback

models for polarized auxin transport: an emerging trend. Mol. BioSyst. 7,

2352–2359.
Wabnik, K., Kleine-Vehn, J., Govaerts, W. and Friml, J. (2011b) Prototype

cell-to-cell auxin transport mechanism by intracellular auxin compart-

mentalization. Trends Plant Sci. 16, 468–475.

© 2013 The Authors
The Plant Journal © 2013 John Wiley & Sons Ltd, The Plant Journal, (2013), 74, 893–904

904 Ricci L. Bender et al.


