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Abstract
We give a conditional derivation of the inhomogeneous critical percolation
manifold of the bow-tie lattice with five different probabilities, a problem
that does not appear at first to fall into any known solvable class. Although
our argument is mathematically rigorous only on a region of the manifold,
we conjecture that the formula is correct over its entire domain, and we provide
a non-rigorous argument for this that employs the negative probability regime
of the triangular lattice critical surface. We discuss how the rigorous portion
of our result substantially broadens the range of lattices in the solvable class
to include certain inhomogeneous and asymmetric bow-tie lattices, and that,
if it could be put on a firm foundation, the negative probability portion of our
method would extend this class to many further systems, including F Y Wu’s
checkerboard formula for the square lattice. We conclude by showing that this
latter problem can in fact be proved using a recent result of Grimmett and
Manolescu for isoradial graphs, lending strong evidence in favor of our other
conjectured results.

This article is part of ‘Lattice models and integrability’, a special issue of
Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu’s
80th birthday.

PACS numbers: 64.60.Ak, 05.20.−y, 89.75.Hc, 05.50.+q, 05.70.Jk

(Some figures may appear in colour only in the online journal)

1. Introduction

Finding critical probabilities and critical manifolds (for inhomogeneous systems) is a
longstanding problem in understanding percolation [1–4], and continues to be the subject of

1751-8113/12/494005+10$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/45/49/494005
mailto:rziff@umich.edu
http://stacks.iop.org/JPhysA/45/494005


J. Phys. A: Math. Theor. 45 (2012) 494005 R M Ziff et al

(a) (b)

Figure 1. A self-dual three-uniform hypergraph. The colored regions can represent any network
of bonds. If they are simple triangles, then we have the split-bond bow-tie lattice [3]. Alternating
(red and blue) generators can be used in the configurations (a) and (b).

much study today [5–12]. Given any lattice, in a homogeneous percolation model we declare
each bond to be open with probability p and closed with complementary probability 1 − p.
The size of connected open clusters grows with p, and there is a lattice-dependent critical
probability, pc, above which there is an infinite cluster. The problem can be generalized
in several ways, one being the inhomogeneous model that assigns different probabilities,
(p1, p2, . . . , pn), to different bonds. The problem now is, with n − 1 of these probabilities set
to arbitrary values, to find the critical value of the remaining probability. The solution may be
written as a function

f (p1, p2, . . . , pn) = 0 (1)

where f is the critical surface, or critical manifold, of the problem.
Recently it has been shown that the critical manifold for a large class of graphs formed

using three-uniform hypergraphs can be found exactly [8, 13–16]. An example of such a
hypergraph is shown in figure 1, where the colored regions, called hyperedges, are not
necessarily simple triangles but can represent any network of bonds (including correlated bonds
as well as internal sites) contained between three boundary vertices. However, we assume for
the moment that all hyperedges are identical, with identical assignments of probabilities (i.e.
ignore the colors for now). The dual of a planar three-uniform hypergraph is also a three-
uniform hypergraph, and, if the hypergraph is self-dual, the critical point can be located using
a simple condition [13]: the probability that all three vertices of a hyperedge connect is equal
to the probability that none connect, or,

Prob(all) = Prob(none). (2)

Condition (2) ensures that the triangle–triangle transformation, i.e. for bond percolation,
replacing the hyperedges, now realized as collections of bonds, on the original lattice by
their duals and replacing the probabilities with their complements (e.g., p → 1 − p), leaves
the connectivity of the boundary vertices invariant. That this implies criticality for a broad
class of lattices is by now well established rigorously [8, 16]. In addition, as long as (2) is
satisfied on all our bond-realized hyperedges, we may replace any hyperedge by its dual with
complemented probabilities, and the system will remain at criticality.

In this paper, we will drop the requirement that each hyperedge be identical, a
generalization that is also discussed in [16]. Then the applicability of (2) for critical manifolds
depends not only on the lattice, but also on the way in which probabilities are assigned to the
bonds. Consider the situation in figure 2, in which different probabilities are assigned over
four triangles. Here, employing the triangle–triangle transformation by simply replacing each
triangle by its dual with complementary probabilities produces the system in figure 2(b).
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(a)

(b)

(c)

Figure 2. (a) An assignment of probabilities over four triangles of the split-bond bow-tie lattice;
(b) the system resulting from the triangle–triangle (or star–triangle [1]) transformation; (c) the dual
system (shifted), which is inequivalent to (b). These figures are repeated periodically to form their
respective lattices.

However, this is not the dual process (figure 2(c))—the underlying lattice is indeed the
graph-theoretic dual, but the probabilities are scrambled. If the triangle–triangle transformation
does not produce the correct dual model, equation (2) cannot give the critical manifold.

By considering this generalization, we will obtain critical manifolds, both rigorous and
non-, on lattices that can be cast in the form of those shown in figure 1. Although many of
these have unit cells contained between four boundary vertices rather than the usual three, this
method is not applicable to general lattices of this type, such as the kagome lattice.

2. The checkerboard model critical manifold

One system with a conjectured exact solution that apparently cannot be verified directly by
(2) is the ‘checkerboard’ lattice, which is just the square lattice but with the probability
assignments shown in figure 3. In 1979, Wu [2] proposed that the critical manifold for this
system is given by C(p, r, s, t) = 0, where

C(p, r, s, t) ≡ 1 − pr − ps − rs − pt − rt

−st + prs + prt + rst + pst. (3)

This formula was also found by some of the present authors [5] by considering the general
mathematical form first-order in all the probabilities and which reduces to known exact results
(square lattice, honeycomb lattice, etc) in the appropriate limits of p, r, s and t. Computer
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Figure 3. The bonds on the inhomogeneous checkerboard lattice.

Figure 4. The decomposition of the checkerboard into triangles. The dual triangles are in dotted
blue.

simulations [5] verified this result to more than six-digit accuracy at several points. Equation (3)
also follows from more general arguments in the Potts model [2, 17], however, some doubt was
raised that the q-state manifold is actually correct [18]. Our goal here is to derive (3) directly
from percolation duality arguments. From a mathematically rigorous standpoint, we will only
be partially successful in this as our argument relies crucially on a step that makes use of the
negative probability region of the triangular lattice critical manifold. Nevertheless, we will
conjecture that this regime is meaningful and that critical manifolds derived in this way are
correct. We will also show that our conjecture implies an even wider class of inhomogeneous
solutions than (3), leading to an array of new lattices with critical thresholds that can apparently
(and unexpectedly) be found exactly.

One special case in which (3) is easy to verify is where

p + r = 1, s + t = 1. (4)

Here, we present a simple example of our general approach by breaking the lattice into two
types of hyperedges, as shown in figure 4 with the dual hyperedges shown in blue (dotted), and
the triangle–triangle transformation yields the dual rotated 180◦. Equation (2) can be applied
separately to each of the two hyperedges, and gives (4). However, a direct examination of the
general checkerboard lattice does not reveal a simple way to relate the four bond probabilities.

3. A duality-based derivation

The key to applying duality for the checkerboard is to put diagonals into alternate squares and
split them into two, forming the split-bond bow-tie lattice [3] (see figure 1). In fact, in [5] the
threshold for the inhomogeneous bow-tie lattice shown in figure 5 was also conjectured by
assuming a consistent multi-linear form, with the result B(p, r, s, t, u) = 0, where

B(p, r, s, t, u) = 1 − u − pr − ps − rs − pt − rt − st + prs + prt + pst + rst + pru

+ stu − prstu (5)

= C(p, r, s, t) − u(1 − pr − st + prst). (6)
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Figure 5. The bow-tie lattice with the assignment of probabilities on the right. The critical manifold
for this system is given by equation (5).

(a) (b)

Figure 6. (a) The triangle–triangle transformation on the bow-tie lattice with a split bond; (b) the
dual transformation. The triangle–triangle transformation yields the dual rotated 180◦.

We can establish this result for a subset of the parameter space by considering the construction
shown in figure 6, in which the right- and left-pointing triangles on the split-bond bow-tie
lattice are given the probabilities (p, r, u1) and (s, t, u2), respectively. Separately imposing
the criterion (2) on the different triangles results in a critical system and gives the separate
conditions,

pru1 − p − r − u1 + 1 = 0 (7)

and

stu2 − s − t − u2 + 1 = 0, (8)

which, provided p + r � 1 and s + t � 1 to ensure that the probabilities u1, u2 � 0, can be
written,

u1 = 1 − p − r

1 − pr
(9)

and

u2 = 1 − s − t

1 − st
. (10)

This appears somewhat trivial, since we have just set the different triangles independently to
their critical values, as before. However, the bonds u1 and u2 can be combined into a single
effective bond of probability u, a trick originally employed by one of the present authors [3]
to find the homogeneous bow-tie bond threshold (this argument was recently generalized to
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the q-state Potts model in [19]). In order to cross this bond, it is necessary that at least one of
u1 and u2 be open, i.e.

u = 1 − (1 − u1)(1 − u2) = u1 + u2 − u1u2. (11)

Using (9) and (10) in (11) immediately gives the inhomogeneous bow-tie result (6), and the
checkerboard when we set u = 0. However, this last step is more subtle than it appears, as we
discuss in the next section.

4. Balancing super-critical and sub-critical triangles

Everything up to equation (11) has been grounded in rigorous theory. In particular, in the
terminology of [16], we have a self-dual hyperlattice percolation model, and so by their
theorem 2.1, the system is critical. We may thus consider equation (5) to be firmly established,
provided we require p + r � 1 and s + t � 1. However, there is nothing in the formula (5)
that suggests such stringent inequalities are necessary and it is tempting to speculate that (5)
actually holds more generally. In fact, setting u = 0 does not even give us the checkerboard
unless we allow either p + r > 1 or s + t > 1; according to (11), setting u = 0 means
u1 = u2 = 0, and thus p + r = s + t = 1.

On the other hand, the critical manifold for the checkerboard, (3), if it is correct, allows
one to select three of the probabilities, say p, r and s, arbitrarily, and then provides the value
of t to make the system critical. One might choose, for example, p and r to make the right-
pointing triangle super-critical, i.e. p + r > 1, but the result is that u1 becomes negative. In
fact, it might take any value in (−∞, 0], even though both p and r ∈ [0, 1], and so in this
regime, u1 is not a probability but a parameter, which we call the criticality parameter, that
measures the degree of super-criticality in the triangle. Correspondingly, in equation (11),
choosing u1 or u2 (but not both) negative is formally allowed so long as the resulting u from
(11) is in [0, 1]. Suppose we choose u1 to have some value in (−∞, 0], then it is easy to see
that for any u ∈ [0, 1] there is a u2 � u also in [0, 1] that satisfies (11). As such, for u1 < 0,
we can interpret equation (11) as describing a bond with probability u2 that is attached to
a sink, making the actual traversal probability u. This effect is described by the parameter
u1 ∈ (−∞, 0], which we call the sink parameter. Now, if we set p and r to super-critical
values, then in order for the whole system to be critical, it is necessary that the left-pointing
triangle be sub-critical. Clearly, it can be made so by sufficiently lowering the probability of
the u2 bond with some sink. The conjecture that lies at the heart of our extension of (6) is that
criticality is achieved by setting the sink parameter equal to the criticality parameter, and in this
way balancing the super-criticality on the right with sub-criticality on the left. Now we may
set u = 0 without needing u1 = u2 = 0 because u1 < 0. In this way, we speculatively extend
the validity of the inhomogeneous bow-tie manifold (6) to cases in which either p + r > 1
and s + t < 1, or p + r < 1 and s + t > 1, and recover the checkerboard as the special case
u = 0. Note that p + r and s + t still cannot both be greater than one because then the system
is super-critical regardless of the value of u. We note here that we might also have formulated
this procedure in the dual process (the dotted lines in figure 6). In this case, rather than having
a negative probability, one of the probabilities, say 1 − u1, would be greater than 1. Now the
two sides are connected through a bond, composed of two edges in series, with probability
(1 − u1)(1 − u2) and this effective probability is in the appropriate range, [0, 1].

One somewhat puzzling property of the checkerboard manifold (3) is its S4 symmetry
[17]—it is invariant under the interchange of any two probabilities. Most of these result from
ordinary rotation, translation, and reflection symmetries, but the fact that one can switch
two adjacent bonds without also switching the other two is rather surprising. However, our
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(a) (b)

Figure 7. (a) An assignment of probabilities on the split-bond bow-tie lattice which is self-dual
under the triangle–triangle transformation; (b) the corresponding bow-tie lattice with the bond
merged. This system differs from that in figure 5 in that every second row is rotated 180◦.

derivation makes it clear how this symmetry arises; in figure 6(a), it makes no difference to
the result if we flip, say, the right triangle about a horizontal line through its center without
flipping the other one.

The checkerboard manifold for percolation has previously been tested numerically [5].
Setting p = 73/90, and s = t = r in (3) leads to the prediction rc = 0.4. Using the hull-gradient
method, it was found that rc = 0.400 000 04(10), completely consistent with the formula (the
number in brackets is the standard deviation in the last digits). As already mentioned, for the
checkerboard formula to make the correct prediction, either u1 or u2 must be negative, and
in this case u1 = −5/16. Thus, the numerical result can be seen as strong support for the
above negative ‘probability’ argument. The inhomogeneous bow-tie formula (5) was checked
using the configuration u = r = s = p and t = 1/2, which predicts pc = 0.381 966 01 . . . .
Numerically, pc = 0.381 9654(5), placing our prediction easily inside two standard deviations.
However, for these parameters, both u1 and u2 are positive, and thus we are in the completely
rigorous regime of equation (5).

5. Extension to asymmetric bow-tie lattices

Our construction has implications for systems other than the inhomogeneous bow-tie and
checkerboard lattices. For example, consider figure 7, in which triangles in each row are
rotated 180◦ relative to the row above, a particular realization of figure 1(b). The triangle–
triangle transformation again yields the dual, and thus the solution will also be given by (5). It
is not obvious that figures 5 and 7 should have the same solution. For example, setting r = 0 in
figure 5 results in the self-dual martini-B lattice [20–22] (figure 8(a)), whereas setting r = 0 in
figure 7(b) also gives a self-dual lattice (figure 8(b)) but it bears only a slight resemblance to the
martini-B lattice. Nevertheless, these lattices have identical inhomogeneous critical manifolds
and for the homogenous case, both have pc = 1/2.

In addition to this freedom to alternate the triangles in neighboring rows, it is also not
necessary that the left- and right-pointing triangles contain the same generators. Figures 1(a)
and (b) give possible ways to arrange alternating triangular generators. Consider figure 9(a),
in which we use the martini-A lattice generator on the right and the triangular generator
on the left. More specifically, we would put a generator for the martini-A lattice with a
bond across the bottom in the right triangle, a simple triangle in the left, and combine the
central parallel bonds by the above procedure. The result is a kind of asymmetric bow-tie
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(a) (b)

Figure 8. (a) The self-dual martini-B lattice, which results from setting r = 0 in figure 5(b);
(b) the self-dual lattice that results from setting r = 0 in figure 7(b). These two lattices have
identical critical manifolds.

(a) (b)

(c) (d )

Figure 9. Asymmetric bow-tie lattices, for which exact bond thresholds can now be found:
(c) 1 − p − p2 − 4p3 − 2p4 + 15p5 − 10p6 + p8 = 0, pc = 0.481 216 . . .; (b) 1 − 2p2 − 7p3 +
25p5 −27p6 +10p7 − p8 = 0, pc = 0.516 867 . . .; (a) 1− p2 −5p3 −3p4 +14p5 −8p6 + p7 = 0,
pc = 0.575 716 . . . ; (d) 1−p2−4p3−6p4+9p5+14p6−22p7+9p8−p9 = 0, pc = 0.566 302 . . ..

lattice, which, at first glance, does not obviously fall into the solvable three-uniform class.
However, the present argument shows that it does, and in this case we do not need to make
use of negative probabilities, so its exact bond threshold is given rigorously by the solution
of 1 − p − p2 − 4p3 − 2p4 + 15p5 − 10p6 + p8 = 0, pc = 0.481 216 . . . . Of course, there
is an endless variety of these kinds of lattices, and we give a small sampling in figure 9 with
their bond thresholds given in the caption. While the threshold in figure 9(a) is rigorous, the
rest rely on the negative probability conjecture. Thus, even though the rigorous part of our
argument expands the class of solvable lattices, from a mathematical perspective it is only a
part of what would be obtained by a proof that the negative probability regime of the triangular
critical manifold has the meaning and utility we have conjectured.
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(a) (b)

Figure 10. (a) Isoradial construction for a general inhomogeneous checkerboard lattice, with the
angles θi related to the probabilities by (13); (b) tiling of the plane with quadrilaterals, resulting in
an isoradial checkerboard. A circle of fixed radius can be placed with its center inside each face
such that the vertices of the face lie on the circle’s circumference.

6. Relation to isoradial percolation

Recently, Grimmett and Manolescu [23] proved a conjecture of Kenyon [24] on the criticality
of a class of graphs that can be embedded in the plane such that all polygons of bonds
fall on circles of identical radii with centers enclosed within the polygons. This embedding
is equivalent to covering the plane with a tiling of rhombi, such that the edges connecting
opposite vertices form the lattice and dual-lattice bonds. According to the formula of Kenyon,
criticality corresponds to assigning a probability pi to a bond that subtends an angle θi from
the center of the circles (see figure 10(a)) by the formula

pi

1 − pi
= sin([π − θi]/3)

sin(θi/3)
(12)

or

tan(θi/3) =
√

3
1 − pi

1 + pi
. (13)

It turns out that this criticality condition can be used to prove Wu’s checkerboard criticality
condition (3). In figure 10(b) we show a tiling of the plane by a general quadrilateral that
falls on an isoradial circle. Evidently, we can tile the plane with these by alternately flipping
the quadrilaterals in a pattern that exactly emulates the repetition of probabilities on the
checkerboard lattice. Say that the four angles subtending the four arbitrary bonds are θ1, θ1,
θ3 and θ4, such that θ1 + θ1 + θ3 + θ4 = 2π . We use the identity

tan(a + b + c + d) = ua + ub + uc + ud − uabc − uabd − uacd − ubcd

1 − uab − uac − uad − ubc − ubd − ucd + uabcd
(14)

where ua ≡ tan a, uab ≡ tan a tan b, etc, with a = θ1/3, b = θ2/3, c = θ3/3, and d = θ4/3,
and use (13) to relate tan θi/3 to pi (with p1 = p, p2 = r, p3 = s, and p4 = t). Setting the
result of (14) to tan(2π/3) = −√

3, and after some computer algebra, we indeed find that
Wu’s formula (3) results. Thus, the S4 symmetry inherent in Wu’s formula follows from the
isoradial criticality result (12).
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On the other hand, it does not seem possible to put the bow-tie lattice in an isoradial
embedding, and consequently we cannot use the isoradial result to prove that formula. However,
because the bow-tie formula gives the checkerboard formula in the limit that u = 0, and also
because the general bow-tie formula is definitely valid for cases in which u1 > 0 and u2 > 0,
it seems highly likely that the bow-tie formula (5) is valid for all values of its parameters.

7. Conclusion

We have generalized the criticality condition (2) to systems of inhomogeneous three-
hypergraphs, proposing several new lattices with exact critical manifolds. Applying this idea
to the bow-tie lattice, we are able to obtain the previously conjectured manifolds for the
inhomogeneous bow-tie and checkerboard lattices, although for the latter and some cases of
the former, we must introduce intermediate bonds with negative probability. The meaning of
such bonds is not entirely clear, although for the checkerboard case at least this approach is
confirmed by the isoradial construction. In the final results (3) and (6), of course, all bonds
have positive probability in [0, 1].
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