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ABSTRACT

The problem of reconstructing the three-dimensional (3D) density distribution of a coronal mass ejection (CME)
from three simultaneous coronagraph observations is timely in that the COR1 and COR2 coronagraphs on the
dual-spacecraft STEREO mission complement the LASCO coronagraphs on the SOHO satellite and the Mk4 on
Mauna Loa. While the separation angle between the STEREO spacecraft and the Earth depends on the time since
the launch in 2006, the reconstruction problem is always severely underinformed. So far, all 3D reconstruction
efforts have made use of relatively simple parameterized models in order to determine the 3D structure of the
CME. Such approaches do not utilize the power of 3D MHD simulation to inform the reconstruction. This paper
considers the situation in which a specific CME event observed in coronagraphs from three viewpoints is later
simulated by solving MHD equations. The reconstruction is then subjected to an invertible morphological operator
chosen so that morphed MHD simulation is most consistent with the three-viewpoint coronagraph data. The
morphological operations are explained mathematically and synthetic examples are given. The practical application
to reconstructing CMEs from STEREO and SOHO data is discussed.
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1. INTRODUCTION

Coronal mass ejections (CMEs) are important drivers of space
weather and are of fundamental importance to understanding
stellar winds and magnetic evolution (Schwenn 2006; Chen
2011). Predicting the effects of CMEs on the heliosphere and
planetary magnetospheres is increasingly depending on MHD
simulation and knowledge of the three-dimensional (3D) CME
structure. Despite recent progress in MHD modeling of CMEs
(Fan 2005; Manchester et al. 2008, 2012; Lynch et al. 2009;
Roussev et al. 2012), agreement with observations leaves much
to be desired.

On the other hand, line-of-sight (LOS) effects make empirical
determination of 3D CME structure without strong geometrical
assumptions impossible. Until the STEREO mission (Howard
et al. 2008), CMEs could only be seen in coronagraph images
from a single viewpoint, and with two STEREO spacecraft plus
the Large Angle and Spectrometric Coronagraph Experiment
on the Solar and Heliospheric Observatory and/or the ground-
based Mk4, they can be seen from three viewpoints simulta-
neously. Although three viewpoints provide more information,
they fall far short of providing the information necessary for
tomographic reconstruction (Frazin et al. 2009). Thus, most in-
vestigators have elected to fit parametric geometrical models
of CMEs to the coronagraph data, e.g., Lugaz et al. (2010)
and Thernisien (2011). The literature on CME reconstruction
is reviewed in Mierla et al. (2010), Thernisien et al. (2011),
and Frazin et al. (2009). For a review on 3D reconstruction of
prominences, see Bemporad (2011).

Thus far, no method has utilized the power of 3D MHD
simulation of CMEs (Manchester et al. 2008; van der Holst et al.
2009; Lynch et al. 2009; Wu et al. 2011) for reconstruction,
probably because finding a way to merge simulation and
observational data is not obvious. One might consider data
assimilation (Evensen 2007; Butala et al. 2008; D’Amato et al.
2011), but as the coronagraph data provide only line integrals

of the density (leaving the other MHD variables unconstrained),
it seems unlikely to produce a reasonable solution. The novel
idea introduced in this paper is to combine MHD simulation
with non-rigid image registration techniques in order to create a
spatially “morphed” simulation that agrees with the coronagraph
data better than the initial (unmorphed) simulation. Image
registration is a large topic in the medical literature that generally
considers spatial transformations of an image in order to make
its anatomical features “line-up” with the same features in a
reference image. Image registration is used for a number of
purposes, such as correcting for patient motion (e.g., breathing),
and using images from many different patients for statistical
studies (Crum et al. 2004). In this paper, the term “morphing”
is synonymous with non-rigid image registration.

2. CME RECONSTRUCTION VIA MORPHOLOGICAL
TRANSFORMATION

2.1. Mathematical Preliminaries

Consider triple-viewpoint coronagraph observations of a
CME at a fixed time t. The CME has an unknown density
ρ(r), where r ∈ R

3 is the 3D coordinate vector. This density
ρ ∈ L2 can be thought of as a function that maps L2 onto R,
where L2 is the space of square integrable functions on R

3. The
coronagraph images contain information about ρ(r), as they
detect the Thomson scattered solar disk light (van de Hulst
1950; Frazin & Janzen 2002; Frazin et al. 2010). All of the
intensity values in the usable pixels of the three coronagraph
images can be placed into a single vector y with N components,
similarly to the procedure described in Frazin & Janzen (2002).
The relationship between the kth component of y, yk, and ρ is an
integral over the kth LOS, given by the Thomson scattering
function. Thus, the model for this LOS integration can be
summarized as yk = Ak(ρ(r)), where Ak is a functional that
is the Thomson scattering integral operator over the kth LOS.
Considering all of the N components of y simultaneously leads
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to the notation y = A(ρ(r)), where A is a linear map from L2 to
R

N . As discussed in Frazin et al. (2009), since three viewpoints
are not nearly enough information to invert A with any type of
classical methodology, it is necessary to seek another avenue.

Consider an MHD simulation of the CME event. One of the
simulation outputs is the density ρ0(r), from which synthetic
coronagraph images y0 ≡ A(ρ0(r)) may be calculated. One is
likely to find significant differences between y and y0, and it may
be assumed that ρ0(r) �= ρ(r), and, thus, ρ(r) remains unknown.
However, if one can find a modified version of ρ0(r), say, ρ ′(r)
such that y ′ = Ak(ρ ′(r)) is closer to y than is y0, there is potential
to learn more about the CME. The aim of the present endeavor
is to find a plausible “morphological transformation” of ρ0(r)
so that y ′ is closer to y than is y0. Here the term “morphological
transformation” refers to remapping the spatial domain of the
simulation output. A morphological transformation operator
Mϕ is defined as Mϕ(ρ0(r)) ≡ ρ0(r′

ϕ(r)), where r′
ϕ(r) : R

3 →
R

3 is a (generally nonlinear) remapping of the coordinate space
and ϕ is a vector of parameters that controls the remapping.
Defining yϕ ≡ A(ρ0(r′

ϕ(r))), the aim to find a plausible
transformation Mϕ such that yϕ is a better match to y than y0,
and the reconstruction is then taken to be ρϕ(r) ≡ Mϕ(ρ0(r)).

The 3 × 3 Jacobian matrix of the transformation is defined
as Jϕ = ∂r′

ϕ/∂r and its determinant is denoted as |Jϕ|. Only a
finite volume of R

3 is occupied by the CME and it is assumed
to be contained within the computational reconstruction domain
U ⊂ R

3. It is assumed that U is simply connected, such as the
interior of a cube or a sphere. The compliment of U (i.e., the
portion of R

3 outside of U) will no longer be considered. Now,
the transformation r′

ϕ is invertible on U if and only if |Jϕ| exists
and is strictly positive or strictly negative everywhere on U ,
meaning that sign changes or zeros in |Jϕ| correspond to lack of
invertibility. Only transformations with differentiable inverses
and positive values of |Jϕ| are sought (a negative determinant
corresponds to reversal of orientation). Such transformations
are called diffeomorphisms (Christensen et al. 1996), and the
use of diffeomorphisms in image processing is reviewed in
Chun & Fessler (2009), Le Guyader et al. (2012), Cordero-
Grande et al. (2012), and references therein. In one dimension,
diffeomorphisms are simply monotonic transformations. In
two dimensions (2D), diffeomorphisms can be thought of as
stretching and twisting a sheet of rubber without cutting or
folding, so that a Cartesian coordinate grid line would never
cross itself. A “plausible transformation” sought here is a
diffeomorphism that improves agreement between yϕ and y.

2.2. Expansions of the Object and Deformation

Following Chun & Fessler (2009), the transformation can be
written as

r′ = r + q(r;ϕ) , (1)

where q = (qx(r;ϕx), qy(r;ϕy), qz(r;ϕz)) is the deformation,
which is controlled by the parameter vector ϕ = (ϕx, ϕy, ϕz).
The x-component of deformation is given by the basis
expansion:

qx(r;ϕx) =
∑
ijk

ϕijk
x β

(x

s
− i

)
β

(y

s
− j

)
β

(z

s
− k

)
, (2)

where i, j, and k are spatial indices that refer to the spline
knots, r = (x, y, z), s is the spacing of the spline knots (s is
typically an integer number of pixels), and β(t) is the third-
order polynomial B-spline basis function (Unser 1999). Similar

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1. Cubic B-spline, β(t), in Equation (3). Note that this function is only
nonzero in the interval (−2, 2).

equations hold for qy and qz. In this way, the deformation is a
continuous function controlled by a finite number of parameters.
Thus, if the computational volume is a cube with M3 voxels
and the spline knots are placed at every s = p pixels in each
dimension (meaning that a spline knot is in the center of p3

voxels), then ϕx has (M/p)3 components. Since the parameter
vector ϕ = (ϕx, ϕy, ϕz) = ({ϕijk

x }, {ϕijk
y }, {ϕijk

z }), ϕ has a total
3(M/p)3 components. Analytically, the polynomial B-spline of
order q is given by the formula (Unser 1999)

β(t) = 1

q!

q+1∑
k=0

(
q + 1

k

)
(−1)k

(
t − k +

q + 1

2

)q

+

, (3)

where the first factor after the sum symbol is the binomial
coefficient, q is the degree of the spline, and the ( )q+ operator
indicates that if the value of the argument negative the result is
0, otherwise the qth power is taken. B-splines are a very useful
basis because they differentiable up to order q, have compact
support and readily lend themselves to rapid processing (Unser
1999). The function β(t) for q = 3 is shown in Figure 1.

Since ρ0(r) and Mϕ(ρ0(r)) ∈ L2, they need to be defined
as (piecewise) continuous functions. For this, a third-order
B-spline function expansion also suffices:

ρ0(r) =
∑
ijk

ψijkβ(x − i)β(y − j )β(z − k) , (4)

where ψ is a vector of coefficients. As one is likely to perform
most manipulations of this sort on a digital computer, it is
useful to consider a sampling of r, which is most easily done on
regular grid of voxels (3D; or pixels in 2D). The most convenient
sampling grid is the set of integers (which become pixel/voxel
numbers). Thus, the values of r of interest are a range of integer
values for the x, y, and z coordinates, of which there are M3

triads of values, one for each of the M3 voxels. For example,
assume the integers i ′, j ′, and k′ are within the computation
cube, then one may evaluate ρ0([i ′, j ′, k′]) in Equation (4) by
setting x = i ′, y = j ′, z = k′, which will result in a sum over
several nonzero terms, corresponding to the nearest neighbors
in each dimension. Let ρ0 represent the vector of values ρ0 on
this sampling grid of r, i.e., ρ0 is a vector with M3 components.
Then, using Equation (4), ρ0 is given by

(ρ0)m =
∑

n

ψnβ(in − im)β(jn − jm)β(kn − km), (5)
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where {im}, {jm}, and {km} are index vectors with M3 com-
ponents so that as m goes from 0 to M3 − 1, the vec-
tor rm ≡ (im, jm, km) samples all of the voxel centers, and
ψm ≡ ψimjmkm . As Equation (5) is linear and finite dimensional,
it can be written in matrix–vector form as

ρ0 = T0ψ, (6)

where ψ ≡ {ψm} and (T0)mn ≡ β(in − im)β(jn − jm)β(kn −
km). Note that there is no significant dimension reduction
in Equation (6), in fact, for a common choice of the spline
representation ψ has the same number of components as ρ0,
implying that T0 is a square matrix (Unser 1999).

Since an MHD simulation is unlikely to represent the density
on a spline basis, determining the values of the vector ψ is
a separate pre-processing step that can be carried out very
rapidly (Unser 1999). Once ψ and ϕ have been determined,
the reconstruction of the CME density is simply:

ρϕ(r) = Mϕ(ρ0(r)) (7)

= ρ0(r + qϕ(r)) (8)

=
∑
ijk

ψijkβ(x + qx(r;ϕx) − i)β(y + qy(r;ϕy) − j )

× β(z + qz(r;ϕz) − k), (9)

where qx is given by Equation (2). Similarly to Equation (6),
Equation (9) can be written in matrix–vector notation as

ρϕ = Tϕψ , (10)

where ρϕ is a sampled version of ρϕ(r) at points {rm}, and the
deformation matrix is defined as

(Tϕ)mn ≡ β(in + qx(rn;ϕx) − im)β(jn + qy(rn;ϕy) − jm)

× β(kn + qz(rn;ϕz) − km). (11)

Note that Equation (10) is linear in the expansion coefficients of
the simulation ψ , but it is more complex than Equation (6)
because the qx, qy, and qz terms in Equation (11) all in-
volve expansions, as in Equation (2). Note that when ϕ =
0, which corresponds to zero deformation, Tϕ = T0 and
ρϕ = ρ0.

2.3. Determining ϕ

Given a pixelized coronagraph observations y, the corre-
sponding synthetic coronagraph images from the morphed sim-
ulation can be written as

yϕ = ATϕρϕ, (12)

where A is a discrete approximation of the Thomson scattering
operator (Frazin & Janzen 2002). The values of ϕ are determined
by minimizing a scalar difference metric D(y, yϕ) with respect
to ϕ. Recall that for the case considered here, the vector y
consists of several coronagraph images, therefore, D(y, yϕ)
should be a useful measure of the similarity between image
vectors y and yϕ . In case of real data, D might be required
to be robust to noise and various artifacts in the observed
images such as stray light concentrations, diffraction rings,
calibration differences between spacecraft, etc. Difficulties in
some coronagraph images are discussed in the coronagraph
intercalibration paper by Frazin et al. (2012). While finding

the best form of D for a given set of instruments is a challenging
problem, for the purposes of this paper it suffices to use a very
simple form:

D(y, yϕ) = ‖y − yϕ‖2 = ‖y − ATϕψ‖2. (13)

Unless p 
 1 (which allows only coarse deformations),
Equation (13) has roughly as many free parameters as the
standard tomography problem. As reconstruction from only a
few viewpoints is a vastly undetermined problem (Frazin et al.
2009), at first glance it might not appear that much has been
gained by taking this approach. However, requiring |Jϕ| > 0
globally greatly restricts the available solution space, in effect,
regularizing the problem.

Minimizing D(y, yϕ) with respect to ϕ is unlikely to produce
to result in a deformation with the property |Jϕ| > 0, so, instead,
it is useful to perform the following optimization:

ϕ̂ = argmin

ϕ
{D(y, yϕ) + λP(ϕ)}, (14)

where ϕ̂ is the estimate of ϕ based on the data y, P(ϕ) is
a penalty function that enforces desirable properties of the
deformation (e.g., |Jϕ| > 0) globally, and λ is a parameter that
controls the relative importance of the penalty term. Chun &
Fessler (2009) review the literature on the restrictions of spline
coefficients that result in diffeomorphic maps, and introduce
a new penalty function that allows fairly large deformations
and depends only on the differences between spline coefficients
at neighboring knot positions. We use the Chun & Fessler
(2009) penalty, also given in Appendix C, for the examples
given here.

The optimization problem posed in Equation (14) can be dif-
ficult depending on the choice of the functionals D and P . The
simple form of D in Equation (13) results in maximum tractabil-
ity for the optimization problem; however, the problem is still
non-quadratic in ϕ and is likely to have many local minima,
as is common with image registration problems. These issues
are discussed in, e.g., Wachowiak et al. (2004). Remarkably
enough, a straightforward implementation of a multi-scale con-
jugate gradient worked well in all of our numerical experiments,
including the results presented here. The multi-scale conjugate
gradient algorithm is given in Appendix B.

3. EXAMPLES

Section 2.2 gives the expansions for the case of three
spatial dimensions (3D), but for simplicity, only 2D examples
are given here. To reduce the expressions in Section 2.2,
one only needs to ignore the factors corresponding to the z
dimension.

These examples utilize the 2D simulations calculated with
the Center for Shock Radiation Hydrodynamics (CRASH)
simulation code (van der Holst et al. 2011). The CRASH
code simulates shock tube experiments carried out by the
experimentalists at CRASH. In the CRASH experiments, a
20 μm thick beryllium foil disk is irradiated with a high-power
laser. In the simulation, the interaction between the laser and
the Be disk is simplified by assuming that the driving radiation
is thermalized. This drives a shock wave down a cylindrical
plastic tube about 4 mm in length that is filled with xenon gas
(Myra et al. 2012). The CRASH simulations shown here were
calculated in (adaptive mesh) cylindrical coordinates under the
assumption of azimuthal symmetry. The code allows various
beryllium target thicknesses and laser power settings. Here we
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Figure 2. Results from Experiment 0. Upper left: the shock density in run A (source). Upper right: the shock density in run B. Lower right: density difference of
target–morphed source. Lower left: density of morphed source.

(A color version of this figure is available in the online journal.)
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Figure 3. Deformation grid found for Experiment 0.

(A color version of this figure is available in the online journal.)

take two runs of the simulation with different parameters, taken
at the same instant in time after the laser firing. We will call these
runs A and B. The upper left panel of Figure 2 shows the density
for run A and the upper left shows that of run B. The densities
from each run were binned to square arrays of 2562 pixels. The
density values in the figure (given by the color scales of the
images) are in kg m−3, and each pixel is about 1.35 μm. Each
panel shows the x–y plane in which the shock is propagating in
the +x direction. Due to the azimuthal symmetry, the bottom
edge of each panel corresponds to the axis of the cylindrical
shock tube, and the upper edge corresponds to the wall of
the tube.
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Figure 4. Projection data in Experiment 1. The thick green line is the data
vector used for the inversion, the thin black line is the simulated data vector
made from the morphed source, and the red dashed line is the simulated data
from the source before morphing.

(A color version of this figure is available in the online journal.)

Experiment 0 shows the ability of the algorithm to morph
the source into the target given all of the information about
the target. In Experiment 0, the run A’s 2562 density values
(put into a single column vector) played the role of ρ0 in
Section 2.2. This density vector is called the “source.” The data
vector y was similarly given by run B’s 2562 density values,
thus, requiring A to be the 2562 × 2562 identity matrix, i.e.,
y = ρ target. Run B’s density vector is called the “target.” We
used the multi-scale conjugate gradient method described in
Appendix B to determine ϕ and thereby morphed the source
to better match the target. The image of the morphed source,
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Figure 5. Deformation grid found for Experiment 1.

(A color version of this figure is available in the online journal.)

i.e., Tϕψ , is shown in the lower left panel of Figure 2. The
lower right panel shows an image of the difference in density
between the target and morphed source. Before the morphing,
the sum squared difference between the source and the target was
about 1.9 × 108, and the corresponding value for the difference
between the morphed source and the target was about 2.8×107,
a reduction of about 85%. Figure 3 shows the corresponding
deformation applied to set of grid lines in the x–y plane.

Experiment 1 is more analogous to the problem of CME re-
construction from only three points of view. The thick solid
green line in Figure 4 shows a single vector containing pro-
jections (parallel line integrals) of the run B (target) density
at three different angles (29◦, 89◦, and 149◦ from the verti-
cal direction). Each projection has 362 elements (which ade-
quately samples projections of 256×256 pixel object), thus, the
x-axis in the figure shows goes from 1 to 1086. This list of

1086 numbers forms the vector y. The dashed red line shows
the same projections of run A’s density (source), Aρ0. The thin
black line shows the projections of the morphed source, i.e.,
Aρϕ = ATϕψ . Before morphing, the initial data misfit was,√

(‖y − Aρ0‖2)/(‖y‖2) ≈ 0.26, and after morphing the misfit

value improved to
√

(‖y − Aρϕ‖2)/(‖y‖2) ≈ 0.06. Before the
morphing, the sum squared difference between the source and
the target was again about 1.9×108, and the corresponding value
for the difference between the morphed source and the target
was about 9.3 × 107, a reduction of over 50%. Figure 5 shows
the corresponding deformation applied to set of grid lines in the
x–y plane, which are not as distorted as that shown in Figure 3.
This is because the deformation was determined with much less
information.

Figure 6 is similar to Figure 2, but it shows the effect of vastly
reduced information in Experiment 1. Unlike in Figure 2, the
hook-like feature on the left part of the source, which is not
present in the target, is not greatly reduced in size. Other more
subtle features that were adjusted in Experiment 0 were not
adjusted in Experiment 1. However, similarly to Experiment
0, the morphing greatly increases the size of the cavity-type
structure to better match the target.

Experiment 2 was the same as Experiment 1, except λ
in Equation (14) was set to 0, which removes the Jacobian
constraint. This allowed the optimization algorithm to find a
solution ϕ that made the value of D(y, yϕ) close to 0. The
resulting deformation grid is shown in Figure 7, where many
obvious manifestations of |Jϕ| < 0 (making the deformation
non-diffeomorphic) can be seen where grid lines cross upon
themselves and so on. Figure 8 shows the resulting morphed
source, and it manifests a considerable amount of undesirable
structure including several islands and a large plume in the lower
left of the image. Compared with Experiment 1, this example
helps to illustrate the power of the simple geometrical constraint
|Jϕ| > 0 to regularize the inversion problem.
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Figure 6. Results from Experiment 1. Upper left: the shock density in run A (source). Upper right: the shock density in run B. Lower right: density difference of
target–morphed source. Lower left: density of morphed source.

(A color version of this figure is available in the online journal.)
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Figure 7. Deformation grid found for Experiment 2.

(A color version of this figure is available in the online journal.)
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Figure 8. Morphed source for Experiment 2.

(A color version of this figure is available in the online journal.)

4. DISCUSSION

This paper has addressed the challenging problem of CME
reconstruction from coronagraph images at three viewpoints.
The challenge arises from the fact that three viewpoints are
far too little information to perform classical tomographic
inversion, in which one must solve for the value of a high-
dimensional model that specifies the density at every point. The
other option that presently exists for CME reconstruction is to
create a simple geometrical model that is a function of less
than about a dozen free parameters, and to use the coronagraph
observations to determine those parameters (Thernisien 2011).
On the other hand, the latest generation of MHD simulations of
CMEs produce realistic 3D structures that are far too complex
to be captured a parametric model (Manchester et al. 2008).
While data assimilation is the classical avenue for combining
numerical hydrodynamics and physical measurements of a
system, the problem of having only line integrals of the density
and no measurements about other state variables seems rather
daunting and has not been addressed. The method suggested
here is an attempt to utilize image registration technology to
morph the numerical hydrodynamics simulation to improve

agreement with the data. The power of the method comes from
the fact that enforcing a simple differentiability constraint is
highly constraining regularizer that compensates for the lack of
information in the data.

The application of this method to multi-coronagraph obser-
vations of CMEs has a number of open questions.

1. What are good choices for the data misfit functionD(y, yϕ)?
2. What are the effects of utilizing a CME simulation that is

significantly incorrect?
3. Will the constraint |Jϕ| > 0 work as well in 3D as it seems

to in 2D? If not, are there other useful constraints that can
be placed on the transformation?

4. How can the method be extended to four dimensions (4D),
i.e., three spatial dimensions plus time?

5. Once the reconstructions have been achieved, how can one
make scientific use of them?

The extension to 4D is discussed in Appendix A. In a partial
answer to the last question, one could imagine creating several
CME simulations with different initial configurations and look
for commonality between the morphings. Or perhaps one might
look at the deformation field itself to get clues as to how
to improve the simulation. Clearly, it would be important to
perform this exercise systematically over a number of CMEs in
order to gain physical insight.

The author thanks Alfred H. Hero, Eric Myra, Ward B.
Manchester IV, Paul Shearer, Jeff Fessler, and most especially
Se Young Chun for their help. This research was supported by
the NSF CDI program, award 1027192.

APPENDIX A

EXTENSTION TO FOUR DIMENSIONS

Thus far, this paper has only considered the deformation
field q(r;ϕ) at a given instant in time t. There may significant
advantage to considering a time series of data y(t), and a time-
dependent deformation field, q(r, t;ϕ) (with a corresponding
redefinition of ϕ), since additional constraints become available.
This section discusses several possibilities for spatio-temporal
constraints.

One straightforward way to create the time-dependent de-
formation field would be to add a temporal spline factor to
Equation (2). For example, the x-component of deformation
may given by the basis expansion:

qx(r, t;ϕx) =
∑
ijkl

ϕijkl
x β

(
t

τ
− l

)
β

(x

s
− i

)

× β
(y

s
− j

)
β

(z

s
− k

)
, (A1)

where τ is the temporal grid spacing. Of course, the spatial
Jacobian constraints, discussed in Section 2.1, must apply at
each time t, and therefore are independent of the index l in
Equation (A1). At the most simplistic level, one expects the
deformation field to vary smoothly in time, so one can restrict
the solution space (regularize) by penalizing its time derivatives
in a cost function.

Assuming that at any time t ′ the deformation q(r, t ′;ϕ) is
a spatial diffeomorphism, enforcing smoothness (e.g., with the
temporal spline in Equation (A1)) in the temporal dimension
will also lead to a 4D diffeomorphism, as the transformation
will be smooth and bijective.

6
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Another way to restrict the solution space by requiring
the deformation to be consistent with the principle of mass
conservation. Note that one can require that the deformation
does not alter the mass locally simply by requiring |Jϕ| = 1
(volume preserving deformation), but this would lead to very
restrictive solution space, indeed. However, less restrictive is to
assume that ∂q(r, t;ϕ)/∂t can be interpreted as an empirical
correction to the velocity from the MHD simulation v0(r, t).
Thus, the corrected velocity is

v(r, t) ≡ v0(r, t) + δv(r, t), (A2)

where δv(r, t) ≡ ∂q(r, t;ϕ)/∂t . Now, away from the computa-
tional boundary zones (where a source is presumably “feeding”
the CME eruption or letting it escape the computational do-
main), one can assume mass conservation:

0 = ∂ρ0

∂t
+ ∇ ·

[
ρ0

(
v0 +

∂q(r, t;ϕ)

∂t

)]
, (A3)

where Equation (A3) uses the fact that the morphological
operation does not alter the density values, hence only the
simulation density ρ0 enters into the equation. Since the MHD
simulation already satisfies the condition: ∂ρ0/∂t +∇ · (ρ0v0) =
0, Equation (A3) reduces to

0 = ∇ ·
(

ρ0
∂q(r, t;ϕ)

∂t

)
. (A4)

Equation (A4) provides a set of constraints on the time deriva-
tive of the deformation and it utilizes the simulation density ρ0.
These derivatives can be evaluated using Equation (A1) and one
could place them into an additional penalty term of the cost func-
tion. One undesirable property of enforcing constraints (A4) is
the fact that the simulation density ρ0 is only an approximation
of the true (unknown) density ρ. One may consider schemes in
which one also uses an improved estimate of ρ instead of ρ0.

APPENDIX B

MULTI-SCALE OPTIMIZATION

Multi-scale optimization is commonly used for image pro-
cessing. The idea is to perform the optimization at the coarsest
scale first and to perform the optimization again at successively
finer scales. In the case of image registration problems, this
avoids many local minima in the original problem because only
the coarsest scales are calculated first. In addition, multi-scale
optimization provides a “warm start” to each successive opti-
mization at a finer scale, greatly speeding convergence.

Before starting the optimization process, one must first cal-
culate the “image pyramid” corresponding to a multi-resolution
representation of the object to be deformed, in this case, ρ0. In
case of B-spline representations, image pyramids can be calcu-
lated very quickly (Unser 1999). The image pyramid of ρ0 is the
collection of images {ρJ

0 }, where ρJ
0 is defined as Jth reduction

of ρ0 (also, ρ0
0 ≡ ρ0). Consider a 2D example in which ρ0 is a

256 × 256 pixel image and reductions are by a factor of two in
each dimension, then ρJ

0 is an image that is (256/2J )×(256/2J ).
In accordance with Equation (4), accompanying each image ρJ

0

is its B-spline representation ψJ . The optimization problem in
Equation (14) is to be done at a scale J. Thus, the operators AJ

and TJ
ϕJ are needed as well. Note that ϕJ has (3M)/(2J p) com-

ponents, so that the size of the optimization problem decreases

quickly with J. The AJ operators need to be constructed for the
specific problem so that each maps an image at scale J to R

N ,
the data space where y is defined.

For the difference functional in Equation (13), the multi-scale
optimization proceeds as follows.

1. Start at the coarsest scale J = Jmax, with initial guess
ϕJmax


 ≡ 0.
2. Using the nonlinear conjugate gradient algorithm, solve for

ϕ̂J , with initial guess ϕstart = ϕ̂J

 :

ϕ̂J = argmin

ϕ
‖y − AJ TJ

ϕψJ ‖2 + λP(ϕ). (B1)

3. Interpolate ϕ̂J to the next finer scale, call the result ϕ̂J−1

 .

This is the “warm start.”
4. If J > 0, set J → J − 1, and go back to step 2.

APPENDIX C

CHUN’S PENALTY

The diffeomorphism constraint is enforced via a penalty
the penalty function proposed in Chun & Fessler (2009). For
completeness, their formulation is presented here. First we
define the function:

p(t; ζ1, ζ2) =

⎧⎪⎨
⎪⎩

1
2 (1 − ζ1)2, t < ζ1

0, ζ1 � t � ζ2
1
2 (1 − ζ2)2, t > ζ2

⎫⎪⎬
⎪⎭ . (C1)

Incorporating this new function into the penalty function (see
Equation (2)), we have

P(ϕ) =
∑

γ∈{x,y,z}

∑
i,j,k

[
p
(
ϕi+1,j,k

γ − ϕi,j,k
γ ; ζ

γ,x

1 , ζ
γ,x

2

)

+ p
(
ϕi,j+1,k

γ − ϕi,j,k
γ ; ζ

γ,y

1 , ζ
γ,y

2

)
+ p

(
ϕi,j,k+1

γ − ϕi,j,k
γ ; ζ

γ,z

1 , ζ
γ,z

2

)]
, (C2)

where ζ
γ,δ

1 = −mk, in which δ ∈ {x, y, z}, and ζ
γ,δ

2 = mk

when δ �= γ , and ζ
γ,δ

2 = mK when δ = γ . Recall that m was
the spline knot spacing, the code in the examples presented here
used k = 0.495m and K = 9m.
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