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Abstract
Kinesins are molecular motors which transport various cargoes in the cytoplasm of cells and
are involved in cell division. Previous models for kinesins have only targeted their in vitro
motion. Thus, their applicability is limited to kinesin moving in a fluid with low viscosity.
However, highly viscoelastic fluids have considerable effects on the movement of kinesin. For
example, the high viscosity modifies the relation between the load and the speed of kinesin.
While the velocity of kinesin has a nonlinear dependence with respect to the load in
environments with low viscosity, highly viscous forces change that behavior. Also, the elastic
nature of the fluid changes the velocity of kinesin. The new mechanistic model described in
this paper considers the viscoelasticity of the fluid using subdiffusion. The approach is based
on a generalized Langevin equation and fractional Brownian motion. Results show that a
single kinesin has a maximum velocity when the ratio between the viscosity and elasticity is
about 0.5. Additionally, the new model is able to capture the transient dynamics, which allows
the prediction of the motion of kinesin under time varying loads.

(Some figures may appear in colour only in the online journal)

1. Introduction

Cells use various methods of mechanical transport. Among
these, diffusion is a passive and effective means of transport
in the presence of concentration gradients. However, if a
cargo is too large or the required direction of a transport
is against concentration gradients, then diffusion is not
enough. For this situation, molecular motors are necessary to
move cargoes in the cell. Molecular motors have important
functions in various processes such as muscle contraction,
cell division, vesicle transport, operation of flagella and
cilia, and DNA metabolism [1–4]. The cytoskeletal motors
(e.g., kinesin and dynein) walk along microtubules by
converting chemical energy into mechanical movement. This
paper focuses on kinesin-1 which moves toward the plus end
of microtubules. This motor protein (referred to simply as
kinesin) makes use of energy from the hydrolysis of adenosine
triphosphate (ATP) to carry various vesicles and organelles
to their destinations. Kinesin is also involved in assembling
spindles and segregating chromosome in mitosis [5–7]. Due to
advances in motility assays (e.g., bead assays), laser trapping

systems, and optical technology, the motion of a single
molecule can be observed experimentally in vitro.

Kinesin has two head domains and walks in a hand-over-
hand fashion by generating forces of up to 6 pN [8, 9]. A
step of 16 nm length of each head domain results in a discrete
8 nm advance of the cargo pulled by kinesin. The maximum
velocity of kinesin is about 800 nm s−1. This velocity varies
with the ATP concentration and the load [10–14]. Several
models for kinesin have been created based on experimental
data [15–24]. They can successfully describe the motion
of kinesin in vitro. However, most models have difficulties
predicting the dynamics of kinesin in other conditions. First,
several molecular motors cooperate to pull a common cargo,
and the number of kinesin for one cargo rapidly changes
over time [25]. In addition, molecular motors switch their
tracks [26]. These changes cause continuous transient motion.
Second, the intracellular fluid is different from water (used
for in vitro experiments). It is much more viscous than water
and also has elasticity. The large complex modulus of fluid
is expected to be a significant factor affecting the motion of
kinesin. Holzwarth et al [27] calculated the required force for
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kinesin to pull a cargo in the cytoplasm. With the complex
modulus data of a COS7 cell, they concluded that a very
strong force (∼75 pN) is needed to transport a bead of radius
0.1 µm. However, their results are based on the assumption
that the motion of kinesin in vivo is the same as the motion
in vitro. In addition, their method applies only to steady
state motion. The velocity of kinesin in cellular fluids and
in artificial viscoelastic fluids is observed by [28–30]. They
also estimated the velocity in cellular fluid by using the
force–velocity curve of kinesin in vitro and the viscoelastic
properties that correspond to a very low frequency motion.
Their calculation showed a good match between numerical
and experimental results. However, their method is sensitive
to the selection of the value chosen for the low frequency,
and the effects of elasticity remain unclear. Therefore, the
goal of this paper is to develop a model which is capable
of describing both transient and steady state motions. The
model also considers the viscoelasticity of fluid so that the
effects of viscosity and elasticity on kinesin can be revealed.
The transient dynamics is particularly important in a highly
viscoelastic fluid because kinesin requires a relatively long
time before reaching its equilibrium configuration (i.e. 8 nm
advance of a cargo takes much longer than the time in low
viscous fluid). Thus, previous models which do not consider
the transient motion are insufficient for modeling the motion
of kinesin in a viscoelastic fluid.

To capture both transient and steady state dynamics,
components of kinesin are regarded as linear elastic elements
in our model. We also assume that the diffusion of a free
head to the next binding site is much faster than the time
needed for one cycle of the chemical process to complete
(i.e., the dwell time). Thus, the diffusion time is negligible.
The interactions between motor heads and ATP/ADP are
modeled as Michaelis–Menten kinetics, and the effects of
forces on the rates of chemical kinetics are accounted for by
using the Arrhenius equation [31]. Theoretical studies provide
models for the dynamics of a sphere moving in a viscoelastic
fluid [32–36]. One of the fundamental assumptions of these
studies is that the fluid behaves as if it contains small,
linearly elastic spheres which account for the elasticity of
the fluid. This assumption is feasible if the sphere of interest
is very large compared to other particles in the fluid or the
particles have the shape of sphere. However, the size of a
motor protein and its cargo is comparable to other particles
in the cytoplasm and cells have particles whose shapes are
not sphere. Furthermore, particles present in vivo are not
purely elastic. They have viscosity as well as elasticity.
Thus, their models cannot be simply extended to the motion
of kinesin in a viscoelastic fluid. Hence, newly developed
analysis tools from microrheology have to be used for this
study. Subdiffusion, generalized Langevin equation (GLE),
generalized Stokes Einstein relation (GSE), and fractional
Brownian motion (FBM) are some of the main concepts which
can be used to better understand the effect of viscoelastic fluid
on the motion of kinesin [37–41].

The GLE is used with some modifications in this work
to predict the motion of a spherical cargo in the cytoplasm.
This equation is an improved version of the Langevin equation

which governs the motion of a particle in a purely viscous
fluid (used for in vitro models). Thermal fluctuations of a
cargo in a purely viscous fluid have a white noise distribution
(normal diffusion) because there is no temporal correlation in
the fluctuations. Thus, the resulting mean square displacement
(MSD) of the cargo is proportional to t (time). However,
the cytoplasm exhibits subdiffusion where the MSD due to
thermal fluctuations is proportional to tα , where α is a constant
(0 < α < 1). This MSD results in a complex modulus which
has fractional slopes over frequency on a log scale [42]. In
contrast, a system composed of linear elastic and viscous
elements has integer slopes. This indicates that subdiffusion
cannot be accurately modeled as a system composed of linear
springs and dashpots. Therefore, the motion of a particle in
cellular fluid has to be described using the GLE. Note that
subdiffusion results from temporal correlations in thermal
fluctuations. This means that the system dynamics depends
not only on current states but also on past states. The GLE
accounts for this behavior by using a convolution term of
velocities and a memory function.

To study kinesin in a viscoelastic fluid, it is necessary
to start by first measuring the complex modulus of the fluid.
Since the properties of a fluid are measured by interactions
between the particles in the fluid and a measurement probe,
the size of the probe is an important parameter. The size of
kinesin cargoes is of the order of 1 µm, so microrheology
has to be employed. In microrheology, there are two ways of
measuring the complex modulus of a fluid [43]. The active
method is to apply forces to a probe particle from the outside
of the system by using an optical trap or a magnetic tweezer.
The passive method uses thermal fluctuations as excitation
mechanism. In this method, a particle that already exists in the
fluid is used as a probe to minimize the intervention into the
original system. The MSD of the probe particle is observed
over time using video tracking or laser tracking systems. The
GSE provides a method to calculate the complex modulus
from the measured MSD by using the GLE. The Fourier
transform of the GLE establishes the relation between the
complex modulus and the MSD in the frequency domain.
Finally, the experimental MSD data is transformed to the
frequency domain and substituted into the GLE [44]. This
method is limited by the distance the particle is allowed to
travel. In a highly dense fluid, the area in which a particle
can travel by thermal fluctuations is very small compared to
its size. It is also possible that the particle becomes trapped
in networks of long polymers and cannot escape without
external forces. It is reported that the MSD of a particle in
a viscoelastic fluid flattens after a long time [39, 44–46].
This observation supports the idea that the particle becomes
trapped by polymers. Thus, the features of a motion of a
particle that travels over a long distance in a fluid cannot
be found passively. Nevertheless, this passive method is used
frequently because it is less invasive compared to the active
method where the external force can have effects not only on
the probe particle but also on other particles in the fluid.

Generally, the complex modulus of a viscoelastic fluid
over frequency can correspond to a power law behavior, and
the power can vary over the frequency of excitation. In this
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Figure 1. The mechanochemical cycle of kinesin. The plus and minus signs denote the polarity of microtubule. (a), (b) ATP binding to the
leading head results in a conformational change in the molecule. The trailing head moves to the next binding site by relaxing the stresses
caused by the conformational change and by Brownian motion. (c) The free head strongly binds to the new binding site by dissociating
ADP. (d) ATP is hydrolyzed into ADP and phosphate. Then, the trailing head become weakly bound after releasing phosphate. The cycle
repeats starting with (a).

paper, however, the complex modulus corresponding to a
power law with a constant power is considered. For example,
water mixed with 2 mg ml−1 of xanthan follows such a power
law [28]. This assumption is reasonable for some cellular
fluids also. For example, the cytoplasms of PC12 and NT2
cells have complex modulus whose powers are approximately
constant over a wide range of frequencies [29, 47]. To simplify
the memory function in the GLE, the complex modulus is
assumed to have a single constant fraction number in this
paper. This assumption leads to a FBM which comes from
a single fractional Gaussian noise [37]. The FBM provides a
simple memory function which is proportional to t−α (where
α characterizes the ratio between viscosity and elasticity). A
fluid characterized by a small α has higher elasticity and lower
viscosity than a fluid characterized by a large α.

Two stochastic factors are inherent in the motion of
kinesin. One comes from the thermal fluctuations, and the
other is related to the chemical reaction between ATP and
the motor heads. The model used here is deterministic and
provides predictions for the mean behavior of kinesin for
both transient and steady state motions. A deterministic model
is used because it has significantly higher computational
efficiency than any other stochastic computational model.

2. Description of the model

The model of kinesin moving in a viscoelastic fluid takes into
account two main processes: the walking motion of kinesin,
and the forces created by the viscoelastic fluid. The first
process is modeled based on the mechanistic mathematical
formulation of [48–50]. The second process, viscoelastic

effects in a subdiffusional environment, is implemented using
the FBM.

2.1. Walking of kinesin

A kinesin molecule is assumed to be composed of two heads,
two neck linkers, and one neck. Each head is connected
to the neck by a neck linker, and the cargo is linked to
the neck via a cargo linker. Kinesin walks toward the plus
end of a microtubule by a repeated mechanochemical cycle,
as depicted in figure 1. Each linker is assumed to be a
linearly elastic element. The linkers are also assumed to have
tether behavior. They resist tensile forces, but do not carry
compressive loads. Thus, the dynamics is not linear.

The forces between the neck and the cargo are determined
by three cases of interaction between the cargo and the kinesin
molecule. Figure 2 shows those cases.

The force exerted by the neck linker is depicted
in figure 3. The backward head is free or weakly bound in
most states of its mechanochemical cycle. Also, there is no
evidence that a cargo moves significantly during the time
when the kinesin changes from the state where both heads
strongly bound to the state where only the forward head is
strongly bound. Thus, the model assumes that a load on the
cargo linker is transferred to the neck linker of the forward
head only, and the load does not act on the other neck linker.

Based on the interaction and forces depicted in figures 2
and 3, the relation between the position of the neck and cargo
and the resulting forces can be expressed as follows.
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Figure 2. Interactions between the cargo and a kinesin. (a) The kinesin pulls the cargo. (b) The cargo pulls the kinesin. (c) The cargo linker
is slack.

Figure 3. Forces acting on the neck by the neck linker of the forward head. The equilibrium position of the neck is shown by the bold dot
line. The arrows represent the forces exerted on neck by the neck linkers when the neck is not at its the equilibrium position. The directions
of the arrows/forces are toward the equilibrium position.

If a kinesin pulls the cargo (i.e., xn(t) ≥ xc(t)+ Lc), then

Kc[xn(t)− xc(t)− Lc] = Kn[(xfhd−xn(t))−9]

and Fc(t) = FL(t)+ Kc[xn(t)−xc(t)−Lc].
(1a)

If the cargo pulls a kinesin (i.e., xn(t) ≤ xc(t)− Lc), then

Kc[xc(t)− xn(t)− Lc] = [9 − (xfhd − xn(t))]

and Fc(t) = FL(t)+ Kc[xn(t)− xc(t)+ Lc].
(1b)

Finally, if the cargo linker is slack (i.e., xc(t) − Lc < xn(t) <
xc(t)+ Lc), then

0 = Kn[(xfhd − xn(t))−9] and

Fc(t) = FL(t).
(1c)

Variables xfhd, xbhd, xn and xc in equation (1) denote the
positions of the forward head, the backward head, the neck
and the cargo.9 is the distance between the forward head and
neck when the internal strain in the neck linker is zero. The
value of 9 is chosen as 4 nm. Kc and Kn are the stiffness of
the cargo linker and neck linker, and FL is the external load.
Lc is the unstretched length of the cargo linker, and Fc is the
resultant force on the cargo.

Each head experiences the attachment of ATP and its
hydrolysis at every step. This chemical reaction is described
by a Michaelis–Menten kinetics as

E + S(K + ATP)

k1f
k1b

ES(KATP)→k2f E

+ P(K + ADP+ Pi), (2)

where E, S, P and K denote enzyme, substrate, product, and
kinesin, respectively.

By using single molecule Michaelis–Menten equa-
tions [51], the rate of these two reactions can be calculated
as

dρ
dt
= ±

2k2f [ATP]

KM + [ATP]
, (3)

where KM =
k1b+k2f

k1f
. The variable ρ is a state variable whose

time rate of change captures the average velocity of the
chemical process. The value of ρ becomes 1 (or−1) when the
chemical reaction is complete. Then, ρ starts to decrease (or
increase) to reach −1 (or 1). The values of 1 and −1 are not
physical but just reference values to capture the instants when
a cycle of the chemical reaction completes. A more detailed
explanation is given in [48].

This chemical reaction depends on the force that acts on
the motor heads because the force affects the geometry of
the heads. A reaction rate constant depends exponentially on
the energy difference between states [31]. Thus, the effects
of the force on the chemical kinetics can be included in the
dissociation rate constant of ATP by accounting for the strains
in the protein (i.e., changes in the geometry of the protein) due
to forces. That can be expressed as

k1b = k1b,0 exp

[
1
2κ|xfhd − xn −8c|

2

kBT

]
, (4)
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where xfhd and xn denote the positions of the forward head
and the neck, and 8c and κ are constants of the model.
This equation captures the fact that the rate constant k1b is
minimum (k1b = k1b,0) when the protein is in equilibrium,
i.e. when xfhd − xn = 8c.

The motion of kinesin involves two time scales. The time
needed for one cycle of the chemical process to complete
is referred to as the dwell time. The diffusion time is the
required time for a head which just become free to step to
the next binding site by Brownian motion and by relaxing the
stresses due to the conformational change. This diffusion time
is much shorter than the dwell time in vitro [52]. For a higher
viscous fluid, the diffusion time increases, but the increase is
not large enough to make the diffusion time comparable to
the dwell time. Since the size of a kinesin neck and that of a
head are very small compared to polymers and other particles
in a cell, it is plausible to assume that the diffusion time is
very short even in highly viscous environments (e.g., in vivo).
Furthermore, the cargo also experiences increased drag forces
in fluids with increased viscosity. That causes the chemical
reaction to slow down. For nano-size particles, the viscosity
that the particles experience increases exponentially over their
sizes [53, 54]. As the cargo is larger than the kinesin heads
and neck, the effect of the high viscosity on the chemical
reaction is stronger than its effect on the diffusion time. The
supplementary material of Gennerich and Schild [55] provides
further evidence of this assumption using the experimental
data of [25] . Thus, we can assume that diffusion occurs
approximately instantaneously.

2.2. Effects of viscoelasticity

2.2.1. Approximate FBM. Due to the small size of the
kinesin molecule, direct effects of the fluid on it can be
neglected. However, the viscoelastic effects on the cargo are
important. They are described with the GLE. One obtains

mc
dvc(t)

dt
= −ζ

∫ t

0
vc(τ )H(t − τ) dτ + Fth(t)+ F(t), (5)

where H(t) is the memory function, Fth(t) is the force caused
by thermal fluctuations, ζ is a constant which represents the
intensity of the viscoelastic forces, and mc and vc are the mass
and velocity of the cargo. For a purely viscous fluid, ζ is
the usual damping coefficient (and has a value of 6πrη for
a sphere of radius r moving in the fluid).

The force Fth(t) is related to the memory function by
〈Fth(t)Fth(t′)〉 = kBTζH(t− t′), where 〈·〉 represents the mean
over time. This force is not included in our deterministic
model because its mean value is zero.

The objective of the model is to predict the motion for
a given force. However, the original GLE in equation (5)
has an implicit form for the velocity. To solve this problem,
the original GLE is converted into an explicit form for the
displacement. Also, the inertial term is neglected because the
size of the cargo is of the order of 1 µm and thus, its inertia is
very small compared to other forces. The thermal fluctuations
of the cargo are very fast compared to the time scale of
the walking of kinesin. Thus, most of the thermal forces are

assumed to cancel out rapidly, and their effects on the kinesin
molecule is considered negligible. With these assumptions,
one obtains

xc(t) = xc(0)+
1
ζ

∫ t

0
D(t − τ)Fc(τ ) dτ, (6)

where D(t) = L−1
[

1
sL{H(t)} ], with L and L−1 representing the

Laplace transform and inverse Laplace transform.
Experiments on certain neuron cells have revealed that

the complex modulus of the intracellular fluid approximately
follows a FBM with a single fractional number α ≈ 0.8
(where α characterizes the ratio between viscosity and
elasticity) [29]. Substituting in equation (6) the expression for
the memory function of FBM with a single α, one obtains

xc(t) = xc(0)+
1
ζ

0(α)

0(3− α)

∫ t

0
M(t − τ)Fc(τ ) dτ, (7)

where M(τ ) = |τ |α−1 is the memory function of this modified
GLE, and 0 is the gamma function [37]. Note that ζ is related
to the magnitude of complex modulus of a viscoelastic fluid
(see equations (11) and (12)).

The current position and force on the cargo can be
calculated using equations (1) and (7). However, equation (7)
involves high computational costs due to two issues related to
the convolution term.

First, the numerical calculation of the convolution term
is difficult because the function, M(t − τ) = |t − τ |α−1, is
infinite at τ = t. To address this issue, we approximate the
force Fc on the cargo as linearly varying in time between two
time instances which are very close, i.e. between τ = t−ε and
t. This approximation enables the integration between t−ε and
t as follows∫ t

t−ε
M(t − τ)Fc(τ ) dτ =

∫ t

t−ε
(t − τ)α−1Fc(τ ) dτ

'

∫ t

t−ε
(t − τ)α−1

[
Fc(t)+

Fc(t)− Fc(t − ε)

ε
(τ − t)

]
dτ

= Fc(t)
1
α
εα +

Fc(t)− Fc(t − ε)

ε

1
α + 1

(−εα+1). (8)

Second, the convolution term in equation (7) has to be
computed at every time step, and that increases the calculation
time significantly. To address this issue, we developed a
new method which approximates the memory function.
Specifically, the rate of change of the memory function is
proportional to (t−τ)α−2, and this value is small in the region
where τ is not close to t. So, the memory function can be
assumed to be piece-wise linear in that region (figure 4). Then,
the calculation of the convolution integral can be simplified as
follows∫ t

0
M(t − τ)Fc(τ ) dτ =

∫ t

0
(t − τ)α−1Fc(τ ) dτ

≈

[∫ u1

0
(a1τ + b1)Fc(τ ) dτ

+

∫ u2

u1

(a2τ + b2)Fc(τ ) dτ + · · ·

+

∫ uN

uN−1

(aNτ + bN)Fc(τ ) dτ
]

5
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Figure 4. Approximation of the memory function, M(t − τ). The
memory function for α = 0.5 and t = 1000 (×10 ms) is shown.
aiτ + bi indicates the equation for the ith linear approximation.

+

∫ t

uN

(t − τ)α−1Fc(τ ) dτ

=

i=N∑
i=0

[ai(U(ui+1)− U(ui))+ bi(V(ui+1)− V(ui))]

+

∫ t

uN

(t − τ)α−1Fc(τ ) dτ, (9)

where ui are time instances between 0 and t, while ai and bi

are slopes and y-intercepts of each line, as shown in figure 4.
The functions U(ui) and V(ui) are defined as

∫ ui
0 τFc(τ ) dτ

and
∫ ui

0 Fc(τ ) dτ .
While all past data is needed to compute the convolution

term at the current instant, the simplified computation of
equation (9) requires discrete data only at few time instances
ui and the calculation of a single integral (only from uN to t
instead of one from 0 to t). Hence, this approach reduces the
calculation time significantly.

Finally, the position of cargo is calculated by substituting
equations (8) and (9) into (7). One obtains

xc(t) = xc(0)+
1
ζ

0(α)

0(3− α)

[
i=N∑
i=0

{ai(U(ui+1)

− U(ui))+ bi(V(ui+1)− V(ui))}

+

∫ t−ε

uN

(t − τ)α−1Fc(τ ) dτ + Fc(t)
1
α
εα

+
Fc(t)− Fc(t − ε)

ε

1
α + 1

(−εα+1)

]
. (10)

2.2.2. Relation between the FBM and the complex modulus.
Because a viscoelastic fluid allows energy storage and loss,
its modulus contains both real and imaginary part. In the
frequency domain, the complex modulus G is expressed as
G(f ) = G′(f ) + jG′′(f ), where f represents frequency. The
value of the real and imaginary part are determined by MSD

and α as follows [44]

|G(f )| =
kBT

πrMSD(t = 1/f )0[1+ α(f )]
G′(f ) = |G(f )| cos(πα(f )/2)

G′′(f ) = |G(f )| sin(πα(f )/2).

(11)

where r is radius of the interesting sphere in the fluid. The
phase of the complex modulus can be expressed with α. An
α value of 0 (or 1) corresponds to a fluid which is purely
elastic (or purely viscous). For the fluid characterized by a
single fractional number, a small α indicates that the fluid has
higher elasticity and lower viscosity and vice versa. Gr and fr
are used to determine the magnitude of the complex modulus.
The magnitude at a certain frequency depends on the values of
MSD and α at that frequency. Also, MSD depends on α and
ζ [37] as follows

MSD(t) =
kBT

ζ

sin(απ)
π(1− α/2)(1− α)α

tα. (12)

Thus, ζ in equation (7) is determined using equations (11) and
(12).

The parameter fr is a reference frequency (a value around
0.01 s−1). The parameter Gr is the ratio of G′′ for water and
G′′ for the fluid of interest at the reference frequency f = fr.

If viscosity and elasticity are caused by independent
elements like a spring and a dashpot, then one can define
viscosity and elasticity separately. Then, it is easy to observe
their effects separately. For a fluid of a single fractional
number, however, viscosity and elasticity are coupled by the
fractional number. Therefore, it is impossible to change one
property while the other is fixed. Either viscosity or elasticity
can be the reference for the magnitude of viscoelasticity.
If the elasticity is used as the reference value, then a fluid
characterized by a large α has higher elasticity and higher
viscosity than a fluid characterized by a small α. Then, the
comparison of the motion of kinesin over α can become
unclear because both properties increase with α. Thus, using
G′′ as a reference value of viscosity can lead to more clear
comparisons for various values of α.

G′′ has a slope of α over frequency in a log scale. Thus,
the ratio between G′′ and G′′water changes over frequency. The
reference frequency fr deals with this issue. When f > fr, the
smaller α is, the lower the viscosity of the fluid is. When
f < fr, the relation between α and viscosity is reversed. As we
want a fluid of small α to have low viscosity over a wide range
of frequencies, fr is chosen to have a low value (fr = 0.01 s−1),
as shown in figure 5.

2.3. Calculation procedure

To compute the motion using our model, the variables
which determine the mechanochemical motion of kinesin are
updated in time. During each time step 1t (which typically is
a small fraction of the dwell time) the cargo and neck interact
as given by the mechanical governing equations (equations (1)
and (10)). The (past) data is stored to evaluate the memory
effects due to the viscoelastic fluid. At the current time

6
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Figure 5. Complex modulus for Gr = 1000, and α = 0.1, 0.4, 0.7
and 1.

instant t, the required (past) data are the value of Fc(τ ) for
all τ from uN to t−1t, xfhd(t−1t), xbhd(t−1t), xn(t−1t),
xc(t−1t), ρ,

∫ t−1t
0 Fc dτ , and

∫ t−1t
0 τFc dτ . Here,1t denotes

the time interval between the current time instant t and the
previous time instant. The cargo is assumed to interact with
a kinesin at time t in the same mode as at time t − 1t. Note
that there are three different modes of interaction between the
cargo and a kinesin as described in figure 2.

Next, the values of three variables (xc, xn and Fc) are
calculated at the current time t using (1) (which provides two
relations) and equation (10) (which relates xc(t) and Fc(t)).

Next, the newly calculated variables are used to ascertain
if they satisfy the assumed interaction (e.g., slack or no slack,
assisting or resisting loads, etc). If they do not satisfy the
assumed interaction, then the interaction type is updated and
the calculation for the dynamics is carried out again over that
time step.

Next, the rate of the chemical state variable is obtained
using equations (3) and (4). Then, the value of ρ is calculated
as ρ(t) = ρ(t − 1t) + dρ

dt 1t. If ρ(t) is between 1 and −1,
the chemical cycle has not completed. Thus, the heads of
kinesin remains in their previous position. If ρ(t) is larger
than 1 (or less than −1), the time instant t̃ when the chemical
cycle is completed (t −1t ≤ t̃ ≤ t) is computed by capturing
the instant when ρ becomes 1 (or −1) through a linear
interpolation. The positions and forces at the current time
are also changed to the values corresponding to t̃. At that
instant the heads are assumed to change positions. Namely, the
trailing head is instantaneously relocated to the next binding
site because the diffusing of the head is assumed to occur
instantaneously. Also, the forces are updated to the values
corresponding to that instant and those new positions. This
procedure is carried out at every time instant during the
calculation.

2.4. Parameter values

Experimentally obtained in vitro steady state force–velocity
curves [14] are used to determine Kn, k1f , k1b,0, k2f , κ and8c.

Table 1. Parameters of the model.

Parameter Value Units

Kc 0.346 pN nm−1

Kn 2.238 pN nm−1

k1f 1.513 µM−1 s−1

k1b,0 1.026 s−1

k2f 98.972 s−1

Lc 40 nm
8c 1.430 nm
κ 2.561 pN nm−1

Their values are shown in table 1. The fit is achieved by the
nonlinear least-squares fit toolbox in MatLab (MathWorks).
The values of KM and k2f are similar to their values calculated
from previous in vitro experiments [10, 14]. The length of
the cargo linker is assumed to be 100 nm because it consists
of 400–900 amino acid residues [8]. The length of the cargo
linker projected along the microtubule is calculated as 40 nm
for a cargo of 1 µm radius by using the geometric relation
provided in [56]. Since the friction exerted on the cargo
by the fluid is not considerable in vitro, the motion of the
cargo is very fast (and occurs between relatively long dwell
times). Hence, the in vitro force–velocity curve is insufficient
to determine the value of Kc. Instead, Kc is determined
such that the total stiffness between the cargo and the
microtubule ( KnKc

Kn+Kc
) matches values obtained experimentally

(approximately 0.3 pN nm−1) [57]. Figure 6 shows that the
model is able to predict the velocity of kinesin very well by
using the identified parameters.

The stall force of kinesin can be obtained also by using
the model. To do that, one can extrapolate the force–velocity
curve given by the model beyond 6 pN. A polynomial
extrapolation predicts the stall forces of 7.6 pN and 6.1 pN
for ATP concentrations of 2 mM and 5 µM which are close to
the values presented in [14].

3. Results

In most previous studies of kinesin transport, the effects of
the properties of the fluid were not analyzed because they
do not play a major role in vitro. In a highly viscoelastic
fluid, however, the properties of the fluid can have significant
influences on kinesin behavior. The model introduced in this
paper is designed to account for these effects. Since the
friction exerted by the fluid decreases with the size of the
cargo, a nano-sized cargo may be too small to clearly highlight
the effectiveness of the model. Hence, the radius of the cargo
is selected as 1 µm in this paper.

In this section, we analyze the motion of kinesin in fluids
with various properties to reveal the effects of viscosity and
elasticity. In addition, the response of kinesin to fluctuating
loads is examined by using the ability of the model to predict
transient dynamics. Notably, we observe that even if the
magnitudes of the fluctuating loads are the same, the speed
of the kinesin changes with the frequency of the load.
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Figure 6. Experimental and predicted force–velocity curves for [ATP] = 2 mM and 5 µM.

Figure 7. Effect of load on force–velocity curves for transport in
various purely viscous fluids; [ATP] = 2 mM.

3.1. Effects of load and viscosity

Many researchers have demonstrated that the speed of kinesin
in vitro depends on the load [14, 52, 58, 59]. If a single motor
has no load, its in vitro velocity is about 800 nm s−1 when the
concentration of ATP is 2 mM. The speed decreases to about
200–300 nm s−1 under a load of 6 pN. This speed is about
25% of the speed in the absence of a load. This large decrease
indicates that the effect of the load is dominant in a fluid of low
viscosity. However, the dependence of the velocity on the load
becomes weak if the fluid is highly viscous. When viscosity
is 1000 times higher than that of water, for example, the
velocity under a high load (6 pN) is just 50% of the velocity
under no load. Another noticeable feature is the nonlinear
relationship between load and velocity. For a fluid having low
viscosity, kinesin maintains its highest velocity (for a given
ATP concentration) even if the load is small (0–3 pN). As the
load increases, the velocity of kinesin starts to decrease. The
rate of decrease keeps growing with the load. This nonlinear
behavior of kinesin abates in a highly viscous fluid. Because
kinesin significantly slows down when moving in fluids with
high viscosity (even without a load), its force–velocity curve
has an almost constant slope for high Gr, as shown in figure 7.
Similarly, figure 8 shows that the effects of the load are more
pronounced as Gr decreases.

Figure 8. Effect of viscosity on velocity at various loads for
transport in purely viscous fluids; [ATP] = 2 mM.

3.2. Effects of elasticity

For viscoelastic fluids, it is difficult to observe the effects
of elasticity when Gr is small. Fluids governed by the GLE
have viscosity and elasticity that are proportional to Gr. So,
in the range of low Gr, viscous and elastic force are weak.
To observe the effect of elasticity, transport velocities in
fluids with complex moduli corresponding to Gr higher than
approximately 200 need to be compared. Thus, velocities of
kinesin for various α were calculated for Gr values of 500,
1000 and 1500.

The effect of the elastic component of the fluid force
depends on α, as shown in figure 9. Recall that a small α
value corresponds to a low viscosity and a high elasticity.
This property results in the rapid deceleration of the high
initial velocity. The velocities can be examined by dividing
the motion into three parts. At the beginning (t < 0.2 s), the
motion in the fluid with smaller α is faster because the viscous
force is small while the elastic force is negligible (Part 1). As
the kinesin moves forward (0.2 s < t < 3 s), the intriguing
relation between α and velocities is revealed. Since elasticity
creates different forces over α, the motor protein has high
speeds at α = 0.3–0.5 (Part 2). For longer travel (t > 3 s), the
speed of kinesin is approximately proportional to α (Part 3).
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Figure 9. Velocity over time for [ATP] = 2 mM, Gr = 1000,
α = 0.1, 0.4, 0.7 and 1. For α of 1, the velocity does not change
because there is no elastic force. For α less than 1, the velocity
decreases over time due to the growth of the elastic component of
the fluid force.

Part 3 may be inconsequential for kinesin transport for
the following reasons. First, Part 3 can only take place if
kinesin were to move for a very long time, which would
require a run length much longer than that of a typical single

kinesin. In vitro, a single kinesin moves about 0.8 µm, and
that takes about 1 s. After that, the kinesin detaches from
the microtubule [59]. The run length depends on the load,
but the order of magnitude of the time for a run length does
not change significantly. If this run length and its duration are
also valid for viscoelastic fluids, then Part 2 will dominate the
motion of a single kinesin. Although the run length increases
by some factor [60], kinesin may not have an opportunity to
enter into Part 3. Thus, if the steady state begins during Part
2, then there will be no Part 3.

The elastic force exerted by the fluid on the cargo is
related to the displacement of the cargo. A simple spring
cannot be an accurate substitute for the elasticity of a
complex fluid. However, a combination of a spring and a
virtual reference is a physically feasible approximation for the
dynamics. Figure 10 shows the conceptual explanation of the
function of the elastic force on a molecular motor. When a
cargo starts to move in the fluid, the elastic component of the
fluid force is small and proportional to `, where ` refers to the
distance between the cargo and the virtual reference. As the
kinesin continues to move, the cargo and the virtual reference
move also. The cargo moves faster than the virtual reference,
and the difference in their velocities increases `, which in
turn increases the elastic component of the fluid force. The
increased force decreases the speed of kinesin until the motion

Figure 10. Behavior of the elastic component of the fluid force. VR denotes the virtual reference. When the motion of the cargo starts, ` is
very small (a). ` increases as the kinesin moves (b). The steady state begins, and ` becomes `s (c). In the steady state, ` remains constant
` = `s (d).
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Figure 11. Steady state velocity versus α for Gr = 500, 1000, and
1500 and [ATP] = 2 mM.

of the cargo and the virtual reference are balanced. Then, `
does not change, and ` = `s.

To capture the steady state motion, the memory function
in the GLE has to be modified. The original memory function
contains all past states. Thus, the continuously accumulating
states in the function prohibit a steady state. However, for
a long travel, states from the distant past have no effect on
the current motion of kinesin. This is similar to the idea of
a virtual reference. That means there exists a limited range
of time in which the memory function varies. Beyond that,
the memory function should have a constant value. This
physically insightful approach, however, raises a challenge,
namely that the current data about the cytoplasm do not supply
too many clues about the steady states. Nevertheless, we can
estimate the limited range from the experiments on the steady
state motion of kinesin in the following way. In a cell, a
cargo proceeds by pushing its way through polymers in the
cytoplasm. In this motion, the key for establishing the limited
range is the effective length, `s. This length indicates the
distance over which one polymer affects the cargo. `s depends
on the size of the cargo and the length of the polymers. We
assume that the average effect of the length of the polymers
on `s is the same regardless of the values of α and Gr. If this
assumption is applicable for a wide range of Gr, the size of
the cargo is the only parameter that determines `s. Thus, `s is
assumed to be proportional to the radius of the cargo (`s = βr,
and β is constant over Gr and α). In experiments with kinesin
in an artificially mixed viscoelastic fluid (α = 0.51, Gr = 1590
and [ATP] = 1 mM), the steady state velocity of a single
motor is about 370 nm s−1 [28]. By inserting this data into our
model, the value of β was calculated as 0.25. With the concept
of `s, the steady state velocities were obtained for Gr = 500,
1000, and 1500 and are shown in figure 11. These results
support the idea that the steady state begins during Part 2. The
exciting result is that a single kinesin can transport cargoes
faster in a viscoelastic fluid than in a purely viscous fluid, and
it has a maximum velocity (for a given value of Gr) when α is
between 0.4 and 0.5, as shown in figure 11. This indicates that
a ratio of approximately 0.5 between elasticity and viscosity

builds the optimal circumstance for the fast transport (done by
a single kinesin) in a highly viscoelastic fluid.

3.3. Motion of vesicles in vivo

Kinesins are involved in fast anterograde axonal transport.
Their degraded intracellular transport capacity can cause
neurodegenerative diseases such as Alzheimer’s [61]. Thus,
speed of kinesin is one of the most significant characteristics
of the transport. The speed of kinesin in vivo is affected by the
viscoelasticity of the cellular fluid. The characteristics of the
viscoelastic fluid may lead to a slower or a faster transport.

The key parameters of the viscoelastic fluid are α and Gr.
Parameter α provides information regarding the ratio between
viscosity and elasticity, and parameter Gr is an indicator for
the magnitude of energy dissipation/viscosity/friction in the
fluid. The model is able to predict the motion of kinesin if α or
Gr are constant over frequency, as happens in some cytoplasm.
Hill et al [29] measured the MSD of vesicles in the neurites
of PC12 cells. They also tracked the motion of vesicles of
radius 0.3–0.4 µm which are transported by kinesin. They
found an average velocity of 1250 nm s−1. The complex
modulus of the cytoplasm of PC12 cells follows the FBM with
the constant α and Gr (α = 0.75 and Gr = 2154), as shown
in figure 12(a). Our model predicts that for the Gr value of
2154 (as in the PC12 cell), a cargo of radius 0.35 µm (the size
of vesicles used in experiments) has high velocities when α
is 0.2–0.8 (figure 12(b)). Though the predicted velocity is less
than the observed velocity, α of 0.75 is the value for faster
transport for the given Gr value. Note that the speed of vesicles
in PC12 cells changes over time [29]. This speed is even
higher than the maximum speed of a single kinesin in vitro.
This considerably faster transport was also found by other
researchers [25, 62, 63]. Thus, it is possible that the faster
transport observed in vivo is due to other factors such as the
cooperation of several kinesins. We also note that the values
of α for several other cytoplasms vary over frequency [64].
Thus, the FBM with fixed α and Gr is not a general tool to
predict motion of beads in any cytoplasm.

3.4. Effects of the frequency of fluctuating loads

The model provides accurate predictions for transient motions
of kinesin. To observe the dynamics of kinesin under time
varying loads, sinusoidally fluctuating loads are applied to
the cargo. Of course, these fluctuations are transferred to the
motor heads through the linkers. Thus, the rate of chemical
reaction at the heads changes. The behavior of the cargo can
be conceptually understood as the motion of a very small
body connected to the ground by a spring and a dashpot.
If the body experiences a fluctuating load, the amplitude of
its fluctuating displacement is inversely proportional to the
spring stiffness, the dashpot viscosity and the frequency of
the load. Similar to that simple system, the fluctuations in
the position of the cargo decrease as the viscoelasticity of the
fluid increases, or the frequency of the load increases. As a
result, the effects of the fluctuations vanish at high frequency,
and the velocity–frequency curve flattens. In contrast, at
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Figure 12. (a) The complex modulus of PC12 cell. Circles and stars are the experimental data, and lines represents the complex modulus of
α = 0.75 and Gr = 2154. (b) The predicted velocity of the cargo of radius 0.35 µm for Gr = 2154 and various α. The arrow indicates the
velocity corresponding to the property of PC12 cells.

lower frequencies, this curve has exponential variation. The
approximate exponential curve is obtained using least mean
square fitting to exact model predictions.

To discover the relationship between the motion of
kinesin and the frequency of the load, two values are
calculated: the changes in velocity (1v), and the frequency
(fτ ) corresponding to 90% of the velocity difference. These
values are shown in figure 13(a). For Gr = 500, the changes
in velocity over frequency are large compared to other Gr
values, and 1 v has its highest value at α = 0.6. The
dependence of the velocity on frequency becomes weak when
the viscoelasticity is strong, as shown in figure 13(b) (not
unlike the case of a rigid body connected to the ground by
a spring and dashpot). The value of fτ also decreases over
Gr. The velocity for high Gr saturates at a relatively low
frequency because viscoelasticity accelerates the saturation of
the velocity–frequency curve, as shown in figure 13(c). This
result indicates that kinesin is more sensitive to a fluctuating
load in a fluid with low viscoelasticity than in a fluid with high
viscoelasticity.

4. Conclusions

The newly developed model for the motion of kinesin
provides solutions for several restrictions of existing models.
By regarding a kinesin molecule as a structure composed of
linearly elastic elements, it is possible to capture its transient
and steady state dynamics. This approach also enables the
prediction of the response of molecular motors under time
varying loads. For a sinusoidally fluctuating load, the speed
of kinesin changes with the frequency of the load. However,
the effects of the fluctuation disappear at high frequency.

To describe the transport done by kinesin in a viscoelastic
fluid, the GLE was applied to the model. The GLE was
converted into a form which is suitable for calculating
displacements with previous forces. This method is also useful
for analyzing movements of other motor proteins in the
presence of subdiffusion.

The cytoplasms is a highly viscoelastic fluid. We focused
on the effect of large viscosity and elasticity on transport

by molecular motor. Fluids having viscosity comparable with
that of water do not have significant effects on the motion
of kinesin. However, highly viscous fluids decrease the speed
of kinesin to a quarter of its velocity in water. Moreover, the
high viscosity also influences the shape of the force–velocity
curve. While the curve for a fluid with low viscosity has a
region where velocities are almost constant, the presence of
large viscosity excludes that behavior.

To observe the effect of elasticity, the velocity of kinesin
was calculated for various α. Due to the complicated features
of the complex modulus in subdiffusion, the viscoelastic
properties were carefully designed. For fluids exhibiting
subdiffusion, viscosity and elasticity cannot be changed
individually. It would be great if a fluid of small α would
have a lower viscosity and higher elasticity than another fluid
of high α. However, it is unavoidable that this relation is not
followed in some frequency range for fluids following FBM.
This problematic frequency range was reduced by a carefully
selected reference frequency and by choosing the viscosity
as the reference value for the magnitude of viscoelasticity.
However, for a pure FBM, the elastic component of the fluid
force grows as a motor walks. As a result, the α value (for the
maximum instantaneous velocity) changes over time. Initially,
α corresponding to the maximum velocity is 0.1. If a steady
state analysis is pursued, the value continuously increases over
time.

Experimental data obtained through passive microrheol-
ogy provides only limited information regarding the steady
motion of a particle under a constant force in a cellular
fluids. To address this issue, we used experimental steady
state velocity values for cargoes transported by kinesin in
a viscoelastic fluid and made an assumption regarding the
effective length of the memory function. This approach
predicted that kinesin has a maximum steady state velocity
when α is 0.4–0.5. Experimental research could verify this
result. Also, in vivo experiments could directly measure the
required distance for a particle to reach a steady state velocity
under a constant force. Moreover, the fundamental equation
used in this paper is available for the FBM having a single
fractional number. This approximation is well suited for
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Figure 13. The response of kinesin to a load of
FL(t) = 2− 2 sin[(2π fL)t]. fL denotes the frequency of the load. (a)
Velocity–frequency curve for α = 0.7, Gr = 500. (b) 1v versus. α
for Gr = 500, 1000, and 1500. (c) fτ versus α for Gr = 500, 1000,
and 1500.

artificially created fluids and simulated cytoplasm [28, 47, 65].
However, it is not guaranteed that this relationship holds for
every fluid. To cover more general cases, the memory function
has to be extended to the level of describing the FBM with
multiple fractional numbers. In addition, it is likely that a
spatially varying complex modulus is present in vivo. That

may require the memory function to transform continuously
with the change in the complex modulus.
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