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Solutions are developed for isothermal, mass-limited rarefactions in which the temperature is held

constant by continued heating. The case of spatially constant temperature and fixed total energy is

also revisited. These solutions are useful in the context of experiments in which plasmas are contin-

uously heated for long periods (up to tens of ns) by present-day lasers or hohlraums.
VC 2011 American Institute of Physics. [doi:10.1063/1.3642612]

The expansion of plasmas is of fundamental importance

in a wide range of circumstances, for example, including

laser-heated systems1 and supernova explosions.2 This lends

value to simple models of such expansions, from the very ba-

sic, self-similar, adiabatic and isothermal rarefactions of

semi-infinite slabs often discussed in books3,4 to other simple

models discussed in the literature. In particular, see Qi and

Krishnan5 and references therein. Much of this work6,7 was

motivated by the exploding laser targets used for x-ray lasers

and for laser-plasma-interaction studies,8 and there has

some9 but been relatively little work since 1990 on single-

fluid expansions. There is more recent work on two-fluid

expansions,10,11 in which some electrons eventually pull

ahead of the ions, motivated by particle acceleration from

surfaces driven by high-irradiance lasers. Here, however, we

are concerned with the behavior away from the ion front and

thus with single-fluid models.

An aspect of the prior work is the absence of models for

the expansion of a constant-temperature plasma of finite

mass, save for the approximate result given by London and

Rosen.6 Yet this case is of some relevance, both for a period

of time in exploding-foil targets and for the expansion of

plasma of finite mass whose temperature is sustained in

some way, such as by a hohlraum or by a radiative shock.

Electron heat conduction is quite rapid in densities below

solid density, so that constant-temperature models are often

sensible approximations. The present brief communication is

intended to address this finite mass, constant-temperature re-

gime. We refer below to the paper6 by London and Rosen as

LR, to the paper5 by Qi and Krishnan as QK, and to the pa-

per7 by Hunter and London as HL.

Before beginning a calculation, it is worthwhile to recall

some of the relevant physical context. The single fluid treat-

ment is justified as follows. In the expanding plasma, the

electron fluid motion is continuously in steady state relative

to that of the ion fluid, establishing an electric field E of

magnitude given by eneE ¼ �rpe, where the electron

charge, number density, and pressure are e, ne, and pe,

respectively. This electric field in turn accelerates the ions

with the effect that the net source in the equation for the mo-

mentum density is �rp, with p being the total pressure. The

importance of the cases with spatially constant temperature

considered here is that these are realistic because for typical

conditions electron heat conduction is fast. One can find the

timescale for electron heat conduction from

qCv
@Te

@t

����
hc

¼ �r � jrTe; (1)

where the mass density, electron temperature, specific heat

at constant volume, and heat conduction coefficient are q,

Te, Cv, and j, respectively. For the fully ionized plasmas

typically of interest here Cv¼ (1þZ)kB=(Amp), where the

average charge, average atomic number, proton mass,

and Boltzmann constant are Z, A, mp, and kB, respectively,

and

j ¼ 128

3p
nekBTe

me�ei
kB; (2)

in which the electron mass is me and the electron-ion

collision rate is �ei ¼ Zx4
pe ln K=ð6

ffiffiffi
2
p

p3=2neðkBTe=meÞ3=2Þ,
which in s�1 is 3� 10�6lnKneZT

�3=2
eV for ne in cm�3 and TeV

in eV. (Note kB¼ 1.6� 10�12 ergs=eV, xpe is the electron

plasma frequency, and ln K is the Coulomb logarithm.)

From this one can find the ratio of the temperature equilibra-

tion timescale, tequil, to the expansion timescale, texp. The

equilibration timescale is defined in typical fashion from

Eq. (1) as

tequil ¼
qCvL

2

j
; (3)

while texp, the experiment duration, is the period of time dur-

ing which the expansion has continued. This typically would

be the time interval in an experiment from the initial deposi-

tion of energy to the time of observation. Here L is the spa-

tial scale of the expanding system at any texp, for which a

basic estimate would be texp times the sound speed. The ratio

tequil=texp, shown in Fig. 1, is proportional to texp, rather than

to 1=texp, because of the factor L2 in tequil. Typical laser

blowoff plasmas are below 1021 cm�3 in electron density.

One can see that heat conduction will be rapid for most cases

of interest.

We commence the derivation with the usual equations

for the conservation of mass and momentum, beinga)Electronic mail: rpdrake@umich.edu.
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@q
@t
þr � ðquÞ ¼ 0 and (4)

@u

@t
þ u � ruþ 1

q
@p

@r
¼ 0; (5)

respectively, where q is mass density, u is velocity, and p is

pressure. We seek here symmetric planar or spherical expan-

sions, so u is radial and these equations become

@q
@t
þ u

@q
@r
þ q

@u

@r
þ su

r

� �
and (6)

@u

@t
þ u

@u

@r
þ 1

q
@p

@r
¼ 0; (7)

where s is zero for planar expansions and 2 for spherical

ones.

For the assumed free, homogeneous expansion u / r
and we use the ultimately convenient form that

u ¼ 1

L

dL

dt
r; (8)

where the scale length L is a function of t only. We also use

an ideal-gas equation of state with gas constant R and tem-

perature T and assume R and T to be constant in space as is

justified above. Then Eq. (7) becomes

rL00

L
þ RT

q
@q
@r
¼ 0; (9)

where the prime indicates a derivative in time. This equation

has spatial solution

q ¼ q̂ exp � r2L00

2RTL

� �
; (10)

where q̂ is the time-dependent density at r¼ 0. This maxi-

mum density is related to other quantities by conservation of

total mass. For the planar case with areal mass density r one

finds

q̂pl ¼ r

ffiffiffi
2

p

r ffiffiffiffiffiffiffiffiffi
L00

LRT

r
; (11)

while for the spherical case with total mass M one finds

q̂sph ¼
M

ð2pÞ3=2

L00

LRT

� �3=2

: (12)

We find the implications of the mass equation by substituting

Eqs. (8) and (11) or (12) and into Eq. (6) with the appropriate

value for s. In both cases, one finds that the solution is

RT¼LL00. As a result the profiles become

q̂pl ¼
ffiffiffi
2

p

r
r
L

exp � r2

2L2

� �
and (13)

q̂sph ¼
M

ð2pÞ3=2

1

L3
exp � r2

2L2

� �
: (14)

These density profiles are well known but the unmet chal-

lenge is posed by the seemingly simple equation RT¼ LL00.
We consider the case when RT is held constant for all time

by some heat source. This turns out to have a solution, which

can be evaluated numerically. The solution to

@

@t
L
@2L

@t2

� �
¼ 0 (15)

can be written

L ¼ Lo

1:88
exp � Erf�1 i

2ffiffiffi
p
p t

to

� �� �2
" #

; (16)

where as we will see the initial state has L¼ Lo at t¼ to and

the origin of the factor 1.88 is described below. To convert

this to a more tractable form, one must further discuss the

error function and its inverse. One has

iz ¼ Erf�1 ErfðizÞ½ � ¼ Erf�1 i
2ffiffiffi
p
p ez2

DðzÞ
� �

; (17)

where

ErfðxÞ ¼ 2ffiffiffi
p
p
ðx

0

e�y2

dy; so (18)

ErfðizÞ ¼ i
2ffiffiffi
p
p
ðz

0

ey2

dy ¼ i
2ffiffiffi
p
p ez2

DðzÞ; (19)

where D(z) is the Dawson function,

DðzÞ ¼ e�z2

ðz

0

ey2

dy: (20)

With this definition of z we have

L ¼ Loez2

1:88
; (21)

where z is a solution of ðz

0

et2 dt ¼ t

to
: (22)

FIG. 1. This is the ratio of the electron temperature equilibration time to the

experiment duration texp, evaluated for texp¼ 10 ns and for a fully ionized Be

plasma. When this quantity is small, the plasma will remain isothermal.
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The factor 1.88 is, to three-digit accuracy, the solution of Eq.

(22) for t¼ to, assuring that L¼Lo for t¼ to. Figure 2 com-

pares the solution for L=Lo from Eqs. (21) and (22) with the fit

L=Lo ¼ 0:95ðt=toÞ1:2; (23)

which is accurate to better than 7% over the range

1� t=to� 100. Thus, the time dependent profiles are given

by Eqs. (13) and (14) with L from Eq. (23) or a numerical

evaluation of Eq. (22), and one needs to know a value of L
at some initial time. One can also note that LR report a solu-

tion of Eq. (15), valid in the (very late time) limit that

ln[t=to]� 1, which can be written as

L=Lo ¼
ffiffiffi
2
p
ðt=toÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln½

ffiffiffi
2
p
ðt=toÞ�

q
: (24)

To provide concrete examples, one may consider two possible

experiments using large plasmas at the National Ignition

Facility12 (NIF). The goal of such experiments might be to

produce collisionless and=or magnetized flows relevant to col-

lisionless shocks or magnetization of blast waves, and indeed

some experiments similar to these have been selected for NIF.

In the design of such experiments, one is likely to focus on

ion density rather than mass density, in order to evaluate rele-

vant quantities such as ion skin depth or collision lengths, so

Fig. 3 shows ion density. Using 1 MJ of laser energy at a

wavelength of 0.35 lm, NIF can irradiate a 5 mm diameter

target with an irradiance of 1014 W=cm2 for 50 ns, or a larger

area for a shorter time. For the case of a C target this will sus-

tain an electron temperature near 2 keV, so that the sound

speed is 330 lm=ns. The mass ablation rate will be about 2.6

lm=ns. In experiments seeking to drive collisionless shocks,

for example, one might use a 5-lm-thick target having

r¼ 0.0012 g=cm2 with Lo¼ 660 lm at to¼ 2 ns, and observe

the system at 10 ns when it is still planar. Fig. 3(a) shows this

case. In experiments seeking to produce spherical blast waves

one might use a 26-lm-thick target of 5 mm diameter, having

M¼ 0.0012 g, with Lo¼ 6.6 mm at to¼ 20 ns, and observe the

spherically expanding system at 50 ns. Fig. 3(b) shows this

case. In both cases shown, the right hand edge of the figure

corresponds to a velocity of about 1000 km=s.

The other relevant case is one in which heat deposition

stops at some time but heat conduction remains strong

enough to keep T constant in space. This case has been

treated in various limits by LR, QK, and HL. (One may note

that all three previous papers incorrectly state that the expan-

sion is adiabatic after the heating stops, which is not the case

because there is heat conduction. QK also do not mention

that their expansion is mass limited, although this is the case

in their solutions.) HL, in their Eqs. (20)–(24), include solu-

tions for the time dependence of the scale length and for the

relation of temperature and scale length. These solutions

require that one know the scale length Lo, the temperature

To, and @L=@t at time to, along with the total mass M.

For the aid of readers who may at some point seek to

connect these papers, and to consider whether their assump-

tions are sufficiently general for some given application,

some discussion of the relevant equation of state properties

may be useful. One writes the pressure as p¼qRT and the

specific internal energy as �¼CvT, where T varies in time

but not space, and we take the gas constant R to in fact be

constant (a simplification). Identifying this as an

“isothermal” case, one might be tempted to take the poly-

tropic index c to be 1. If this were the case, then the results

in the previous papers would be incorrect. However, in this

case, there is not only one c. It is the “acoustic c” whose

value is one.4 The internal energy per particle remains

(n=2)kBT, where n is the number of degrees of freedom,

which is 3 for constant R. The corresponding “shock c” is

cs¼ 1þ 2=n¼ 5=3, and the specific heat is Cv¼ @(3RT=2)

=@Tjv¼ 3R=2. These results with the above profiles enable

us to reduce the equation for conservation of energy,

@

@t
q�þ qu2

2

� �
þr � quð�þ u2=2Þ þ puÞ

� 	
¼ 0; (25)

to

TL0 þ ð3=2ÞLT0 ¼ 0; (26)

for the planar case, in agreement with Eq. (7) of LR (Ref. 6)

for no heating and to

TL0 þ ð1=2ÞLT0 ¼ 0; (27)

FIG. 2. (Color online) The ratio L=Lo from Eq. (21) is shown against t=to,

along with the fit 0.95(t=to)1.2.

FIG. 3. (Color online) The ion density is shown for two

isothermal cases corresponding to potential NIF experi-

ments described in the text. (a) planar and (b) spherical.
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for the spherical case. These are consistent with the general

result shown in HL.
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