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Improved power conversion efficiency of InP solar cells using organic

window layers

Ning Li, Kyusang Lee, Christopher K. Renshaw, Xin Xiao, and Stephen R. Forrest®
Departments of Electrical Engineering and Computer Science, Materials Science and Engineering,
and Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 28 November 2010; accepted 8 January 2011; published online 2 February 2011)

We employ the organic semiconductor 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) as a
nanometer thick window layer for p-InP/indium tin oxide (ITO) Schottky barrier diode solar cells.
The power conversion efficiency is enhanced compared to ITO/InP cells lacking the PTCDA
window layer, primarily due to neutralizing InP surface state charges via hole injection from the
PTCDA. This leads to an increased ITO/p-InP Schottky barrier height, and hence to an increased
open circuit voltage. The power conversion efficiency of the cells increases from 13.2 = 0.5% for the
ITO/InP cell to 15.4+0.4% for the ITO/4 nm PTCDA/p-InP cell under 1 sun, AM1.5G simulated
solar illumination. The PTCDA window layer is also shown to contribute to the photocurrent by
light absorption followed by exciton dissociation at the organic/inorganic semiconductor
interface. © 2011 American Institute of Physics. [doi:10.1063/1.3549692]

The performance of inorganic solar cells can be en-
hanced using large bandgap semiconductor windows known
as heterocontact layers.l_7 These layers can improve the solar
cell photocurrent and open circuit voltage in both Schottky
barrier' and p-n junction5 devices, primarily by reducing the
effects of surface states at the contact/semiconductor inter-
face. The window layer is often comprised of lattice matched
M-V compounds grown on the GaAs and InP surfaces,’
metal-oxides, or amorphous semiconductors.*”’

Here we show that using an organic semiconductor win-
dow layer in an otherwise conventional metal/InP Schottky
diode can also improve solar cell performance, but with re-
duced fabrication complexity and without the requirement
for epitaxial growth encountered in layered inorganic p-n
junctions.1 This work is based on the previous observation
that deposition of the archetype organic semiconductor
3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) be-
tween a metal electrode and InP results in a significant in-
crease in the interface barrier height (¢g) as compared with
an analogous Schottky-type metal/InP junction.8’9 We also
show that excitons generated in the PTCDA dissociate at
the organic-inorganic (OI) semiconductor heterojunction,
thereby contributing to the photocurrent of the solar cell.'?
By adding a thin layer of PTCDA between an indium tin
oxide (ITO) cathode and a p-InP epitaxial active region, the
open circuit voltage (V,.) and the power conversion effi-
ciency (7,) of the solar cell are increased from V,.
=0.62*=0.3 V for a conventional cell to V,.=0.75=03 V
for devices with a 6=4 nm thick PTCDA layer at one sun,
AM1.5G simulated solar illumination. This leads to an in-
crease in 7, from 13.2%=0.5% for devices without PTCDA to
15.4%=0.4% for devices with 6=4 nm PTCDA.

The solar cell active region was grown by gas source
molecular beam epitaxy on a p-type, Zn-doped (100) InP
substrate. The epitaxial structure consists of a 0.1 wm thick
Be doped (3 X 10'® cm™) p-type InP buffer layer and a 4um
thick lightly Be doped (3 10'® cm™) absorption region.
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Following growth, the epitaxial wafer was cleaned by se-
quential immersion for 5 min in acetone, isopropanol main-
tained at 140 °C, and then for 1 min in 25% NH,OH:H,O to
remove the native oxide. The back contact consisted of 20
nm Pd/5 nm Zn/20 nm Pd/200 nm Au and was then alloyed
at 400 °C for 1 min. Conventional InP Schottky barrier solar
cells were fabricated by ITO sputter deposition through a
shadow mask with 1 mm diameter circular openings. The
deposition rate was 0.1 A/s for the first 100 A and then
increased to 0.3 A/s to achieve a total thickness of 1000 A.
The PTCDA source material was purified three times by sub-
limation prior to deposition.11 Window layers from &
=1 nm to 30 nm thick were deposited by vacuum thermal
evaporation at a rate of 1 A/s in a high vacuum chamber with
a base pressure <2 X 107 Torr. The ITO sputter deposition
rate and thickness for window layer devices were similar to
those used for the ITO/InP diodes.

The energy level alignment at the OI interface was mea-
sured using ultraviolet photoemission spectroscopy (UPS)
and X-ray photoemission spectroscopy (XPS). Photolumi-
nescence (PL) data were obtained using a spectrofluorometer
at incident and detection angles of 45°. The diode external
quantum efficiency (EQE) was obtained using a monochro-
mator, a lock-in amplifier, and a tungsten-halogen illumina-
tion source whose intensity was referenced to a calibrated Si
photodetector. The current density (J) versus voltage (V)
characteristics were measured using a semiconductor param-
eter analyzer in the dark and under simulated AM1.5G illu-
mination. The illumination intensity was calibrated using a
National Renewable Energy Laboratory Si reference solar
cell.

Figure 1 shows the PL and excitation spectra of the InP
epitaxial layers with and without PTCDA windows. We ob-
serve that the InP PL intensities of the PTCDA-coated
samples are more than double that of bare InP. Now, the PL
quantum efficiency 7p; is expressed as: np; <k, o0/ (Kyqa
+k,,+k,), where k,,, is the radiative recombination rate, k,,,
is the nonradiative recombination rate in the bulk of the
semiconductor, and k& is the nonradiative surface recombina-
tion rate. Since short wavelength (A=409 nm) optical exci-
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FIG. 1. Photoluminescence (excitation at A=409 nm) and excitation (emis-
sion at A\=930 nm) spectra of a p-InP epitaxial wafer and of the same wafer
with  various thicknesses (&) of 3,4,9,10-perylene-tetracarboxylic-
dianhydride (PTCDA) capping layer. Inset: Energy levels of p-InP and
PTCDA inferred from ultraviolet photoemission spectroscopy. Units of eV
are applied to the numbers in the inset.

tation as used in Fig. 1 primarily impacts the filling of
surface and near-surface defects, the enhanced PL indicates
a reduced k,. Specifically, the spectrally dependent absorp-
tion of InP suggests that the absorption length in InP at A
=900 nm is ~1 um, while at A=400 nm it is only
~20 nm.

When PTCDA is deposited on an InP surface, holes are
injected from the PTCDA, thereby neutralizing negatively
charged traps at the InP surface. This increases ¢p, as shown
in Fig. 1, inset. As a result, the active surface trap density
that accounts for the nonradiative surface recombination is
reduced.

The conclusion that PTCDA reduces surface recombina-
tion is confirmed by the excitation spectra, which show that
the PL intensity enhancement is significantly larger at short
(A<420 nm) than at long wavelengths (A >580 nm), par-
ticularly when we note that 6=5 nm PTCDA may attenuate
the excitation signal in the short wavelength region. It is also
observed that the PL intensity of the PTCDA-capped
samples increases slightly with illumination over time, indi-
cating that surface trap filling of the deepest levels takes
several minutes to complete.

The energy level diagram of the PTCDA/InP interface,
inferred from UPS data, is shown in the inset of Fig. 1.
As-grown p-InP exhibits a surface vacuum level at
42%+0.1 eV relative to Ep, whereas the PTCDA deposited
on InP has a vacuum level at 4.5+ 0.1 eV. The energy band
bending at the InP surface is shown both before (dashed line,
¢p=1.1=0.1 eV), and after PTCDA deposition (solid line,
dp=dp+Adp). Here, Ay is the incremental increase in bar-
rier height that results from the change in the surface state
charge on deposition of the PTCDA. After depositing 5 A
PTCDA, The In 3d peak in the InP XPS spectrum was
shifted by 20 meV toward a higher binding energy with re-
spect to the Fermi level, which indicates more surface band
bending,12 and A¢p is on the order of 20 meV. Since the
highest occupied molecular orbital (HOMO) energy level of
PTCDA is 1.9%£0.1 eV below Ep, the discontinuity between
the valence band maximum of InP and the PTCDA HOMO is
(0.8-Agpg) eV. The energy difference between the lowest un-
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FIG. 2. Current density-voltage (J-V) characteristics of p-InP/PTCDA solar
cells with PTCDA window layer thicknesses of =0, 1, 2, 4, and 8 nm.
Inset: Measured (symbols) and fit (lines) dark J-V characteristics of p-InP/
PTCDA solar cells with §=0, 3, and 30 nm.

occupied molecular orbital (LUMO) energy level of PTCDA
and the InP conduction band minimum is negligible. As a
result, the photogenerated electrons in window layer cells are
transported from the InP to the ITO electrode through the
PTCDA without encountering an energy barrier.

Figure 2 shows the J-V characteristics of InP solar cells
with various & in the dark, and under one sun, AM1.5G illu-
mination. All devices with §=4 nm show similar photocur-
rent densities. However, V,.=0.62 =0.3 V for devices with-
out PTCDA (6=0), while V,.=0.75%0.3 V for those with
6=4 nm. The power conversion efficiency is correspond-
ingly increased from 13.2+0.5% for 6=0 to 15.4+0.4% for
those with =4 nm.

The forward J-V characteristics are fit using: J
=J [exp{(¢V—-JR,)/nkT}—1]. The fits, shown in Fig. 2 inset,
yield the diode ideality factor, n, the specific series resis-
tance, R,, and the saturation dark current, J,, as listed in
Table I together with the measured V,.. Previously, it has
been shown that the OI interface can be modeled as a semi-
conductor heterojunction® to yield J=J; o exp(=ADy/kT),
where J|  is the saturation dark current of the device without
a PTCDA window layer. Assuming a short circuit photocur-
rent density of Jy., we can write the V. as

kT | J kT | J
VOC: n_ln|:£:| = n_1n|:£:| +nA(I)B
q Js q 5,0

In InP-PTCDA devices, the increase in V. is due to both a
reduced J; and an increased n. The reduction in J, results
from the increased Schottky barrier height with PTCDA
deposition. The increased 7 is attributed to a reduced forward
bias voltage across InP due to the drop across PTCDA. Note

TABLE 1. Dark current fitting parameters.

P n R, J, v,
(nm) (Q-cm?) (X107 A/em?) %
0 1.31 0.80 48 0.62
1 1.43 1.3 15 0.71
3 1.47 0.86 15 0.75
5 1.56 0.75 4.0 0.75
10 1.56 0.83 26 0.76
30 1.59 1.0 3.6 0.76
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FIG. 3. External quantum efficiency (EQE) vs wavelength for p-InP/
PTCDA solar cells with PTCDA layer thicknesses of 6=0 (solid line), 3,
(dash), and 10 nm (dot). The PTCDA absorption spectrum is shown as a
reference. The EQE of devices with 24 nm thick bathocuproine (BCP) (dash
dot) and 30 nm MoOj; (dash dot dot) exciton blocking layers (EBLs) be-
tween PTCDA and ITO are also shown. Inset: Photoluminescence of
PTCDA in the Quartz/PTCDA/exciton blocking layer (EBL)/ITO structures
with no EBL (solid line), with 12 nm BCP (dash dot), and with 30 nm MoO4
(dash dot dot).

that R, does not increase with the increased 9, resulting in the
same fill factor for devices with and without PTCDA.
Figure 3 shows the EQE versus N\ for various 6. For
6<3 nm, the EQE is close to that of the ITO/InP solar cell
at A>500 nm. However, at shorter wavelengths, the EQE
for PTCDA capped cells is increased due to increased
PTCDA transparency and reduced surface recombination.
When 6=10 nm, the EQE is significantly decreased in the
PTCDA absorption region between A=420 and 580 nm.
Measurements of PTCDA PL on quartz substrates indicate
that excitons generated in PTCDA are quenched by ITO de-
posited on its surface, as inferred from the PL spectra for
these samples in Fig. 3, inset. To reduce quenching, a batho-
cuproine (BCP) or MoOjs exciton blocking layer (EBL) is
sandwiched between the PTCDA and the ITO cathode, re-
sulting in a significant increase in PTCDA PL intensity.
When BCP is employed in a window layer solar cell, the
EQE loss at A=480 nm disappears, whereas the use of
MoOj; results in a peak at this wavelength that corresponds to
the PTCDA absorption maximum. These results indicate that
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excitons in an organic (e.g., PTCDA) can dissociate at its
interface with an inorganic semiconductor (InP), ultimately
contributing to an increased solar cell efficiency beyond that
obtained with a conventional, “passive” window layer.

The stability of the PTCDA-InP devices has not been
systematically tested, although we see no degradation in per-
formance after exposure to air for several days. This is con-
sistent with the observation that PTCDA is a highly stable
organic compound.

In summary, we have found that PTCDA can be used as
a window layer that both decreases the recombination rate
while generating photocurrent due to exciton dissociation
at the InP surface in an ITO/PTCDA/InP solar cell. The
solar cell power conversion efficiency is increased from
13.2£0.5% to 15.4*+0.4% by using a 4 nm thick PTCDA
window layer, largely due to a concomitant increase in V.
that arises from neutralizing InP surface states.
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ergy Frontier Center at the University of Southern California
(Grant No. DE-SC0001011, CKR), the Air Force Office of
Scientific Research (NL), and Global Photonic Energy Corp.
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