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Gate control and amplification of magnetoresistance are demonstrated at room temperature in a fully

epitaxial three-terminal GaAs-based device. In addition to the two ferromagnetic spin injector and

detector electrodes of a MnAs/AlAs/GaAs:Mn/AlAs/MnAs vertical spin valve, a third non-magnetic

gate electrode (Ti/Au) is placed directly on top of the heavily p-doped GaAs channel layer. The

magnetoresistance of the device can be amplified to reach values as high as 500% at room temperature

with the application of a bias to the gate terminal, which modulates the spin selectivity of the tunnel

barriers. The experimental results are modeled by solving spin drift-diffusion and tunneling equations

self consistently. VC 2011 American Institute of Physics. [doi:10.1063/1.3652765]

The magnetoresistance (MR) effect measured in GaAs-

based spin valves at room temperature is �1%.1 It is therefore

essential to be able to amplify the magnetoresistive effect by

controlling the flow of spin polarized carriers in a conven-

tional spin valve. Such control, generally using a third (or

gate) terminal, has been proposed2 by several authors by

invoking different physical principles. Some of these include

magnetic bipolar junction transistors,3,4 spin Hall effect tran-

sistors,5 and the electrical modulation of spin-orbit coupling

in the channel of a spin valve.6–8 Higher values of magnetore-

sistance have been measured at or near room temperature in

semiconductor-based tunneling magnetoresistance (TMR)

devices9 and vertical spin valves.1 This is due to the short tun-

neling or transport distance in these devices controlled by epi-

taxial growth. In this work, we developed a GaAs/MnAs

vertical spin valve with a third gate terminal, and produced

�500% modulation of the magnetoresistance at room temper-

ature. The gate terminal effectively shifts the band energy in

the GaAs channel and thereby changes spin injection, trans-

port, and detection. The modulation of magnetoresistance has

been analyzed by a model based on one-dimensional (1D)

spin drift-diffusion and the voltage dependence of tunneling

resistance at the tunnel injector contacts.

The three-terminal device is schematically shown in Fig.

1(a), together with the biasing scheme for the measurements.

A description of the molecular beam epitaxial growth of the

heterostructure and subsequent device processing is provided

as supplementary information.10 A micrograph of the fabri-

cated device and its dimensions are shown as an inset to Fig.

1(a). To verify spin injection and precession in our channel,

three-terminal Hanle measurements11 were carried out on a

lateral device (since such measurements cannot be done in the

vertical configuration) with identical doping level and thick-

ness of the pþ-GaAs channel region, tunnel barrier, and spin

contacts as the vertical spin-valve structure. The results are

shown in Fig. 1(b). A fit to our Hanle data using the standard

equation Dl(B)¼Dl(0)/(1þ (xLs)2) gives a spin lifetime

and diffusion length of 400 ps and �14 nm, respectively. The

relatively high spin lifetime can be attributed to two effects:

(1) enhancement of spin accumulation at the FM/SC inter-

face12 and (2) suppression of spin relaxation due to Mn dop-

ants in the GaAs channel.13 A more rigorous study needs to be

done to quantify the contributions from each and is beyond

the scope of this paper. However, from our low Dl(0) value,

spin accumulation at the interface states dominating the Hanle

signal can be ruled out.

MR measurements were made with the devices in a

closed-loop He cryostat placed between the poles of an electro-

magnet. The magnetic field is applied in-plane along the easy

axis of MnAs [�1�120]. Measurements were first made with no

bias (gate floating) applied to the gate (third) terminal, the de-

vice thereby behaving as a vertical spin valve. The characteris-

tics of such a device1 and similar two-terminal vertical

devices14 have been reported but are described here for com-

pleteness. As will be evident later, analysis of the magnetore-

sistance behavior of such a device helps us to explain the

observed characteristics of the three-terminal device. A con-

stant dc bias current (Ids) is applied between the two MnAs con-

tact layers (source and drain), and the voltage Vds is measured

between the same terminals while varying the applied magnetic

field. The magnetoresistance response at a bias current of

20 nA measured at room temperature is shown in Fig. 2(a).

The magnetoresistance is calculated as MR¼ (VAP�VP)/VP,

where VP and VAP are the measured terminal voltage Vds for

parallel and anti-parallel alignment of the two MnAs contacts.

We are able to achieve a value of MR ffi 25%, which is the

largest reported in any semiconductor spin valve at room tem-

perature. The measured variation of MR with bias current is

shown in Fig. 2(b), where a decrease of MR with increasing

bias is observed. No magnetoresistance was observed in control

devices with (a) channel thickness much greater than the spin

diffusion length and (b) the top MnAs contact replaced by a

non-ferromagnetic Ti/Au contact.

a) Author to whom correspondence should be addressed. Electronic mail:

pkb@eecs.umich.edu.
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The results of three-terminal measurements, with the

application of a gate bias, are described next. With reference

to Fig. 1(a), a constant current bias Ids is applied between the

two MnAs contacts and a voltage Vg is applied to the gate ter-

minal. The two MnAs contacts are successively set in parallel

and anti-parallel magnetization with the application of appro-

priate magnetic fields (depending on the individual coerciv-

ities of the contacts) and in each case Vds¼VP or VAP is

measured as the gate bias is varied. Figures 3(a) and 3(b)

depict the measured variation of MR with Vg at room temper-

ature for two values of Ids. The control of magnetoresistance

with the gate terminal is evident. Very large values of magne-

toresistance are measured in our experiment. The source to

drain current is biased high to achieve a higher MR amplifica-

tion ratio (MR(Vg¼Vcritical)/MR(Vg¼ 0)). However, the de-

vice can be biased either high or low; the amplification

magnitude and characteristics will not be affected.

In order to understand the variation of MR with current

bias in the two-terminal spin valve and the control of MR

with the gate electrode, it is first important to note that the

GaAs channel is heavily doped p-type (p � 9� 1019 cm�3)

with Mn acceptors. The Mn concentration at this doping level

is �0.9%, for which there is no ferromagnetism at room tem-

perature15 and the Curie temperature is �20 K.16 The incorpo-

ration of Mn in the GaAs channel serves two purposes: first,

high quality single-crystal pþ-GaAs can be grown at

T � 250 �C, which is essential here, and second, the Mn

atoms provide valence band states in the channel for spin

polarized carrier transport. The band diagram of the two-

terminal heterostructure spin valve with the Schottky tunnel

injector contacts, together with the doping profile and the

Fermi levels, is obtained by a self-consistent solution of the

Schrödinger and Poisson equations and is shown in Fig. 4(a)

for zero applied bias. With an applied current bias, spin polar-

ized electrons injected by the source MnAs/AlAs/GaAs tunnel

barrier are transported across empty valence band states at the

Fermi energy in the GaAs channel and are collected at the

drain ferromagnet-semiconductor Schottky tunnel contact.1 At

the same time, the band bending in the semiconductor

changes, mostly at the drain end, accompanied by a change in

width and height of the drain Schottky tunnel barrier (see sup-

plementary document). In effect, the interface resistance and

spin selectivity of the tunnel contacts are modulated. Addi-

tionally, at high values of applied bias, unpolarized electrons

FIG. 2. (Color online) (a) Magnetoresistance response at a current bias (Ids)

of 20 nA at T¼ 300 K. The arrows indicate magnetic field sweep direction.

(b) Measured and calculated magnetoresistance as a function of current bias

at T¼ 300 K.

FIG. 3. (Color online) Measured and calculated magnetoresistance as

a function of gate voltage at T¼ 300 K at a current bias of (a) 2 mA and (b)

3 mA.

FIG. 4. (Color online) (a) Calculated energy band diagram of the vertical

spin valve heterostructure. The channel is degenerately p-doped, and the

Fermi-level lies within the valence band of the pþ -GaAs channel. (b) Cir-

cuit model of the three-terminal device.

FIG. 1. (Color online) (a) Schematic diagram of the device heterostructure

and measurement scheme. Inset shows a micrograph of a fabricated device

before passivation and metallization. The top MnAs electrode is 15 lm in di-

ameter, the channel region is 75 lm in diameter, and the bottom MnAs is

200 lm in diameter. (b) Three-terminal Hanle data on a Mn doped GaAs

channel at room temperature for a bias current of 100, 200, and 300 lA.
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from filled valence band states below the Fermi level in GaAs

can tunnel into the MnAs contact layer and result in a compo-

nent of unpolarized current. The bias dependence of magneto-

resistance due to the changes in the bands and contacts is

analyzed by describing spin transport with the drift-diffusion

model of Valet and Fert17 and Yu and Flatte.18 Tunneling

across the source and drain Schottky barriers is analyzed with

the Tsu-Esaki model19 using the WKB approximation, assum-

ing no spin scattering at the ferromagnet-semiconductor inter-

faces. The spin diffusion length at room temperature in the p-

doped GaAs is obtained from our temperature-dependent

measurements reported earlier.1 Thus, the bias dependence of

the tunneling resistance and the MR of the device are

obtained. A two-channel model for spin-up and spin-down

carriers across the device is described in the supplementary

document, together with the relevant equations. Spin injection

into a semiconductor material causes the electrochemical

potential of spin-up and spin-down electrons to split in the

channel. Although the transport direction is vertical in this de-

vice, the physics is similar to a lateral spin device, allowing us

to model spin transport in this structure using the widely

known two-channel spin transport model.20 The calculated

variation of MR with bias in the two-terminal spin valve is

shown alongside the measured data in Fig. 2(b), and the agree-

ment is very good.

To understand the increase, peaking, and near-

symmetrical decrease of the magnetoresistance with gate

bias, reference is made to the resistive model of the device

shown in Fig. 4(b). Rt1 and Rt2 are the magnetization and

bias dependent interface resistance of the drain and source

Schottky tunnel contacts, respectively, Rd is the series resist-

ance of the p-doped GaAs channel, and Rg is the resistance

of the gate contact. With no applied gate bias (gate terminal

floating), the voltage measured across the device is

Vds¼ jIdsj (Rt1þRt2þRd), where jIdsj is the magnitude of

the constant current bias applied across the device. When a

gate bias is applied, the bands in GaAs and the tunnel barrier

thickness are changed, mostly at the drain contact. A current

Ig will flow across Rg and a reduced current (jIdsj � Ig) will

flow across Rd and Rt2 to obey Kirchoff’s current law; conse-

quently Vds ¼ (jIdsj�Ig)(Rt2þRd)þ jIdsjRt1. The current

flowing through Rt1 is always equal to Ibias since Ibias is an

externally applied constant current bias. Similarly, when

Ig¼ jIdsj, no current flows across Rt2 and Rd and

Vds¼ jIdsjRt1. With increasing Vg, Ig becomes larger than

jIdsj, and at a critical value of Vg, the net voltage drop across

the source and drain terminal is made zero (voltage drop

across Rt1 is equal to the voltage drop across Rd and Rt2, but

opposite in sign). At this critical gate voltage, in the parallel

magnetization configuration of the two MnAs contacts,

Vds¼Vp � 0 and MR becomes very large. At this point,

there is no net tunneling between the source and drain con-

tacts. For larger values of Vg, the polarity of Vds is reversed

and finite in value (voltage drop across Rt1 is smaller com-

pared to the voltage drop across Rd and Rt2), leading to a

sharp decrease of MR. The rise and fall of MR is near sym-

metric with Vg, as observed experimentally, since the change

of Vds with Vg is also near-symmetric around Vds ffi 0 (see

supplementary information). As Ibias is increased, the critical

value of Vg, for which MR is a maximum, should also

increase since a larger current Ig would be required to offset

Ibias. This is observed experimentally as seen in Figs. 3(a)

and 3(b). The calculated variation of MR with Vg, with

respect to the equivalent circuit of Fig. 4(b), is shown by the

dashed curves in Figs. 3(a) and 3(b) and is in reasonable

agreement with measured data. Also shown by the solid

curves in Figs. 3(a) and 3(b) are the calculated MR in ac-

cordance with the self-consistent drift-diffusion and tunnel-

ing model. The observed variation of MR with Vg is a result

of the change in the effective bias applied between the two

MnAs Schottky tunnel contacts, which change the band

bending in GaAs, the tunnel barrier thickness, and the inter-

face resistance and spin selectivity of the tunnel contacts. In

effect, the gate terminal modulates the spin current collected

at the drain terminal.
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