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Electrical stimulation has been widely used to modulate and study the in vitro and in vivo
functionality of the nervous system. Here, we characterized the effect of electrical stimulation on

ASH neuron in Caenorhabditis elegans and employed it to probe the neuron’s age dependent

properties. We utilized an automated microfluidic-based platform and characterized the ASH

neuronal activity in response to an electric current applied to the worm’s body. The electrically

induced ASH neuronal response was observed to be dependent on the magnitude, polarity, and

spatial location of the electrical stimulus as well as on the age of the worm. VC 2011 American
Institute of Physics. [doi:10.1063/1.3615821]

Electrical stimulation is known to trigger neuronal

responses by directly affecting the neuronal membrane

potential.1,2 This has made electrical stimulation of neurons

an exceptional technique for modulating and studying the

functionality of the nervous system. Invasive as well as non-

invasive electrical stimulation approaches have been utilized

to create a functional map of the brain3,4 and modulate sen-

sory perception in monkeys.5,6 Electrical stimulation has

been used in cases of pathological conditions such as anxi-

ety, depression, insomnia, and motoneuron deficiencies.7

Furthermore, neural cells can respond to electric stimulation

in the form of directional migration and growth, a phenom-

enon termed electrotaxis that has been extensively used in

nerve regeneration studies.8

Electrical stimulation has also been shown to induce

locomotory behavioral responses at the whole organism

level.9 This electrotactic behavior has been extensively

investigated in the nematode Caenorhabditis elegans (C. ele-
gans), a widely used model organism in the neuroscience

field. C. elegans navigates towards the negative terminal in

the presence of a direct current (DC) electric field10–12 while

an alternating current (AC) electric field is known to con-

strain its navigation pattern.13 It is speculated that this behav-

ior is mediated by a network of amphid sensory neurons11

and it has been used to robustly transport and sort C. elegans
inside controlled microfluidic environments12,13 as well as

on electrophoretic gels.14

Here, we demonstrate that electric stimulation can be

used to probe the age dependent functionality of the ASH

neuron, a polymodal sensory neuron in C. elegans that has

been implicated in electrotaxis.11 We should emphasize that,

we utilized a direct electric current to stimulate the ASH

neuron and not electric field as previously described.11–13 To

do so, we microfabricated (as described in Ref. 15) a PDMS

(Polydimethylsiloxane) microfluidic chip, the “e-chip” (“e”

stands for electric) (Fig. 1(a)), that integrates a worm trap for

immobilizing and imaging single worms and a set of trans-

parent (indium tin oxide (ITO)) electrodes for applying cur-

rent through the worm’s body at different locations. An array

of micropillars at the inlet, a “flush” microchannel and a

“step” architecture were also implemented, to facilitate auto-

mated operation.16 In order to perform functional (calcium)

imaging of a large number of worms, the operation of the e-

chip and the image acquisition process were controlled by a

custom-made graphical LabVIEW interface as previously

described.16 The experimental protocol consisted of four

steps: (1) individual worms were loaded inside the worm

trap by a constant pressure driven flow (a pressure of 10 psi

was applied at the inlet of the e-chip), (2) the fluorescently

labeled ASH neuron (Fig. 1(b)) was brought into focus using

a piezoelectric stage, (3) an electric current of a particular

magnitude and polarity was applied to the worm’s body and

the corresponding ASH response was recorded and, (4) the

nematode was unloaded by pressurizing the flush channel.

To study the effect of aging on ASH functionality, we

monitored electric current-evoked calcium transients in

worms of 3 different ages (Fig. 2(a)): L4 þ 1 day, L4 þ 3

FIG. 1. (Color online) (a) The e-chip for electrically stimulating single

worms. It consists of a worm trap, a set of ITO electrodes (labeled as 1, 2,

and 3), an array of PDMS micropillars, (labeled as 4) and a flush channel (la-

beled as 5). Scale bar, 150 lm. Magnified views and the step architecture of

the e-chip are shown on the right. Scale bars, 100 lm. (b) Pseudocolor-

enhanced FRET (fluorescence resonance energy transfer) image of a trapped

worm (marked by the dashed square in (a)). The ASH neuron is highlighted

with the arrow in the two FRET channels (CFP and YFP). Scale bar, 5 lm.

a)Author to whom correspondence should be addressed. Electronic mail:

chronis@umich.edu.
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days, and L4 þ 5 days (denoted as “Day 1,” “Day 3,” and

“Day 5” worms, respectively). Recordings of intracellular

calcium levels were performed using the genetically encoded

FRET (fluorescence resonance energy transfer) indicator

TN-XL,16,17 while a 10 s pulse of electric current was

applied to the worm’s body with head-to-tail orientation

(electric current of positive polarity).

To quantify the stimulus-evoked calcium (Ca2+) transi-

ents, we established characteristic metrics that are represen-

tative of the ASH response and are physiologically relevant.

Particularly, we extracted the peak, steepness of the rising

phase, and the decay rate from the calcium transients at the

presence of the stimulus (Fig. 2(b)). These parameters are in-

dicative of the maximum calcium concentration (peak), the

rate of calcium influx (steepness of the rising phase), and the

rate of calcium efflux (decay rate) in the ASH neuron. We

utilized a curve fitting modeling approach to derive a quanti-

tative estimate of these parameters.18 We first modeled the

ratio transients with a first-order differential equation (1) that

relates the rate of change of intracellular calcium concentra-

tion dCa(t) / dt to the rate of calcium influx and efflux (indi-

cated by parameters a and b respectively)

dCaðtÞ
dt

¼ a � e�s:t � b � CaðtÞ (1)

The above equation states that upon neuronal activation: (a)

calcium enters the cell at a rate equal to “a” (calcium influx),

which then decays exponentially with a time constant “s”

and (b) the neuron depletes itself of calcium at a rate propor-

tional to the extra calcium present inside the cell due to

depolarization. We curve fitted this differential equation to

the experimentally obtained FRET ratio transients and

extracted the values of the coefficients, “a” and “b”.

All three parameters, the maximum calcium concentra-

tion, the rate of calcium influx and efflux were observed to

increase with age (Fig. 2(b)). These trends can be attributed

to several mechanisms. It is possible that electric current-

evoked neuronal calcium transients are triggered directly by

the activation of voltage gated calcium channels (VGCC’s)

such as the L-type calcium channels in the ASH neuron.19

Studies have revealed an increase in the L-type Ca2þ chan-

nels and a subsequent increase in the voltage gated Ca2þ cur-

rents in aged rat hippocampal CA1 neurons.20 Therefore, the

observed age-dependent calcium influx might be due to an

age-associated increase in the density of VGCC’s in the

ASH neuron, similar to the increase in hippocampal CA1

neurons.

Studies have also reported an increase in neural calcium

level in aged rat’s adrenergic neurons due to an impairment

of intracellular calcium regulatory/buffering mechanisms.21

Ca2þ buffers regulate calcium transients and modulate the

amplitude and duration of Ca2þ influx, by mechanisms that

involve Ca2þ binding proteins and calcium sequestering or-

ganelles such as the mitochondria and the endoplasmic retic-

ulum. Strong calcium buffering slows the rate of

intracellular calcium clearance from the cytoplasm, which is

depicted by an increase in the duration of the intracellular

calcium transients and a sustained Caþ2 influx. On the other

hand, weak calcium buffering results in an increased calcium

influx and in a limited duration of the calcium rise, which is

observed in the calcium transients from aged worms. Thus, it

is possible that the age-dependent characteristics of the ASH

calcium transients might be also associated with the age-de-

pendent decline in the calcium buffering mechanisms.

We should point out that the age-dependent ASH func-

tionality has been previously studied using glycerol as a

chemical stimulus.16 In contrast to the electric current

evoked responses, glycerol evoked ASH responses indicated

an increased peak and rate of calcium influx in younger ages

(up to Day 3), followed by a decrease in older ages (Day 5).

While, glycerol-evoked ASH calcium transients also involve

the participation of VGCC’s, those channels are triggered by

upstream signaling pathways involving olfactory G-protein

coupled receptors (GPCR’s).22 GPCR’s can recognize a spe-

cific chemical stimulus or an osmotic shock (e.g., glycerol),

but might not be activated at the presence of an electrical

stimulus. Thus, we speculate that observed age-dependent

glycerol evoked ASH neuronal responses are due to age-

associated changes in the glycerol induced signaling cascade

that acts upstream of the VGCC’s.

The electrotactic behavior of C. elegans has been

reported to be sensitive to the polarity of the applied electric

field.11,12 To investigate the effect of electrical polarity, we

applied an electric current to the worm’s body with a tail-to-

head orientation (electric current of negative polarity). We

obtained ASH calcium transients from Day 1 worms, in

response to three different electric current magnitudes

(Fig. 3). A preferential bias with respect to the polarity of

electric current was observed. Increasing the magnitude,

reduced neural depolarization while magnitudes higher than

0.01 lA hyperpolarized ASH. This trend was also observed

for Day 3 and Day 5 worms (data not shown).

We also obtained ASH calcium transients from Day 1

worms, in response to electric current applied between the

head and the mid-body (electrodes 1 and 2 in Fig. 1(a)) as

well as between the tail and the mid-body (electrodes 2 and

3 in Fig. 1(a)) of the worm. The above mentioned polarity

FIG. 2. (Color online) Age-dependent effects of electric current of positive

polarity in ASH. (a) Individual curves represent an average of 15 recordings

from Day 1, Day 3, and Day 5 worms. Shaded regions represent standard

error of mean. The dashed line represents the presence of the stimulus. (b)

Mean values of the peak, a, and b constants of the calcium transients for

three different ages. Error bars represent standard error of mean.
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dependent ASH response was only observed in the former

case. No ASH response was observed in the latter case.

In conclusion, this study reveals that the electrically

induced ASH neuronal response in C. elegans is not only de-

pendent on the magnitude and polarity of the electric current

but also on the age of the worm. Compared to other forms of

stimuli (chemical, mechanical, and thermal), the ease with

which, an electrical stimulus can be precisely controlled in

terms of delivery, strength, and spatial location, makes it a

powerful tool to probe into the physiology of the nervous

system of C. elegans and study its age-dependent properties.

We envision the use of electrical stimulation as a well con-

trollable and highly tunable stimulus for performing in vivo
functional imaging, as part of a high-throughput anti-aging

drug screening assay.
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FIG. 3. (Color online) Effect of electric current of negative polarity in ASH

in Day 1 worms. Individual curves represent an average of 15 recordings

corresponding to electric current magnitudes of 0.001 lA, 0.01 lA, and 0.1

lA, respectively. ASH is hyperpolarized when stimulated with a current of

0.1 lA. Shaded regions represent standard error of mean.
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