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The wetting angle of a liquid droplet on a dielectric substrate can be tuned by an applied electric
field. Recent experiments revealed an intriguing phenomenon where the contact line between a
droplet and a substrate may lose stability under a relatively large field, leading to the ejection of
small droplets from the edge of the mother droplet. While this behavior may pose a limit on the
achievable wetting angle, it also provides an interesting approach to produce patterns of tiny
droplets. We propose a phase field model to explain the mechanism, which combines
thermodynamics and convective viscous flow. Our study suggests that instability is preceded by a
contact angle reduction and extrusion of a thin layer from the edge of the droplet. While instability
appears when the electric field is above a critical value, it can be suppressed with increased surface
energy of the droplet. © 2011 American Institute of Physics. �doi:10.1063/1.3544460�

I. INTRODUCTION

Miniaturization has been a continuing trend in technol-
ogy because it may bring inherent advantages such as lower
cost, higher speed, and greater density. The “lab-on-chip”
system for biomedical diagnosis1,2 is one example fueled by
the above advantages. Fully exploring the potential requires
controlled surface morphology3 and morphological
transition4 at small scale. Studies suggest that the wettability
of a liquid droplet on a dielectric substrate can be controlled
by applying an electric field. This electrowetting approach
has become a very promising mechanism to control the sur-
face morphology. Generally speaking, the electrowetting
phenomena can be classified into three classes, where an
electric field is applied to �i� a conductive droplet, �ii� a
dielectric liquid, or �iii� a leaky dielectric liquid. They all
have significant potentials for various applications. For in-
stance, in class �i� the controlled electrowetting of conduc-
tive droplets has be explored for next generation optical sys-
tems such as camera lens,5–7 where a variable focal length
can be achieved by an electric field. Recently Hayes et al.8

proposed an electrowetting-based reflective display technol-
ogy corresponding to class �ii�. In this application an oil film
in each pixel ruptures upon the applied voltage and contracts
into a corner, which exposes the underlying reflective sur-
face. Another example in this class is electric field induced
interface instability of liquid bilayers.9–13 Based on these ef-
fects wetting-dewetting ratchets have been proposed to trans-
port dielectric liquids.14,15 A leaky dielectric system in class
�iii� exploits both the dielectric and conductivity effects.16

This paper focuses on controlled electrowetting of con-
ductive droplets, i.e., class �i�. The first observation of elec-
trowetting can be traced back to the work of Lippmann,17

who found that the capillary depression of mercury in con-
tact with electrolyte solutions could be varied by applying an
electric field. While conductive water with added ions can
demonstrate similar behavior, the electrolytic decomposition

of water under the associated current has practically limited
the application. Recently several researchers have used thin
insulating layer to separate the conductive liquid from a me-
tallic electrode to eliminate the problem of electrolysis,18

which significantly broadens the potentials. Different aspects
on electrowetting have been investigated. Welters et al.19 and
Sondag-Huethorst et al.20 calculated the effective interfacial
tension, which was reduced by an applied voltage. Berge18

considered the minimization of the free energy and related
the corresponding thermodynamic potentials by a Legendre
transformation. Jones et al.21,22 and Zeng et al.23 investigated
the forces exerted on a droplet and used the Maxwell stress
tensor method for the calculation. Recent experiments re-
vealed the saturation and instability of the contact angle
when the applied voltage is above a critical value.24–28 An
intriguing phenomenon is that the contact line between a
droplet and a substrate may lose stability under a relatively
large field, leading to the ejection of small droplets from the
edge of the mother droplet.24,28 These experimental observa-
tions suggest that the electrowetting process involves rich
dynamics. Capturing the physics requires a dynamic model
beyond energetic analysis alone. Different from works focus-
ing on equilibrium morphologies, in this paper we propose a
phase field model that combines thermodynamics and vis-
cous flow to predict the electrowetting process and the cor-
responding morphology evolution. In contrast to sharp inter-
face, the phase field model exploits the concept of diffuse
interface, which has been shown to be a powerful approach
in many studies.29–34 Our approach allows study and design
of systems of complex droplet morphologies, patterned elec-
trodes, and topographical surface patterns. With the under-
standing of the dynamic aspects, we aim to elucidate how
instability occurs and how it leads to various morphologies.

II. DYNAMIC MODEL

Figure 1 shows a conductive droplet on a thin dielectric
layer. Electric field is applied to the system by connecting
one end of the power supply to the droplet while the other toa�Electronic mail: weilu@umich.edu.

JOURNAL OF APPLIED PHYSICS 109, 034309 �2011�

0021-8979/2011/109�3�/034309/6/$30.00 © 2011 American Institute of Physics109, 034309-1

Downloaded 28 Jun 2013 to 141.211.173.82. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3544460
http://dx.doi.org/10.1063/1.3544460


the electrode beneath the dielectric layer. We will use the
phase field approach to model the morphological evolution
of the droplet. In contrast to interface tracking methods such
as boundary element methods, the interfaces are not modeled
explicitly but given implicitly by the concentration field.
Consequently, complex changes will not cause any additional
computational difficulty. Phenomena such as a film breaking
into isolated islands can be captured naturally. We have ap-
plied a similar approach to study interface diffusion prob-
lems in several material systems.35–37 In the two-dimensional
model in Fig. 1, we consider the region enclosed by the
dashed line as a two-phase system composed of the droplet
and the surrounding medium �air�. Denote the concentration
of each phase by its volume fraction, and define a spatially
continuous and time dependent concentration function,
c�x , t�, where x is the position vector and t is time. The
droplet region is described by c�x , t�=1 while the medium by
c�x , t�=0.

The free energy of the system depends on the phase
configuration and electric field distribution, namely,

G = �
Vp

� f�c� +
1

2
h��c�2 −

1

2
�0�r�c�����2�dV

−
1

2
�

Vs

�0�r
s����2dV + �

A

��sm + ��sd − �sm���c��dA .

�1�

The first integration extends over the volume of the two-
phase droplet and medium region, Vp. The second integration
extends over the volume of the layer of the dielectric sub-
strate, Vs. The last integration extends over the boundary area
between the two volumes, A.

The first integration accounts for the energy in the two-
phase region. The f�c� term represents the chemical energy
that drives phase separation. To describe phase separation,
one may choose any function with double wells. Here we
take f�c�= f0c2�1−c�2, where f0 is a positive constant. The
function has two minima corresponding to the droplet and
medium phases, respectively. The interfacial energy between
the droplet and the medium is described by a concentration
gradient term h��c�2, where h is a material constant. The
value of h can be related to surface tension.38 The third term

accounts for the electrostatic energy. Here, �0=8.85
�10−12 F /m is the vacuum permittivity, �r is the dielectric
constant, and � is the electric potential. The dielectric con-
stant may be interpolated using a transition function, ��c�, to
make a rapid and smooth variation in the value, namely,
�r�c�=�r

droplet��c�+�r
medium�1−��c��. Here we take ��c�

=1 /2�1−tanh�5–10c��. Note that ��cdroplet�=1 and
��cmedium�=0. We will use the same ��c� function for the
surface integration part in Eq. �1�. The specific form of ��c�
is insignificant when the interface is thin. We take �r

droplet

=0 for the conductive droplet, which is an isopotential body
with no electric field inside. Thus the corresponding volume
integration of �0�r�c�����2 /2 in Eq. �1� vanishes inside the
droplet.

The second integration accounts for the electrostatic en-
ergy in the dielectric substrate layer, where �r

s is the dielectric
constant. The third integration describes the interfacial en-
ergy. Here �sd and �sm represent the interfacial energy per
unit area between the substrate and the droplet, the substrate
and the medium, respectively. The transition function, ��c�,
effectively selects the corresponding boundary energy based
on the phase variable c.

The system can change its configuration in two ways;
mass relocation and electric field redistribution. The energy
variation associated with mass relocation gives

�G = �
Vp

� f��c��c + h��c����c� −
1

2
�0�r��c�

�����2�c�dV + �
A

��sd − �sm����c��cdA . �2�

Here f��c�=df�c� /dc. The variation essentially defines a
chemical potential �=�G /�c which can be obtained by ap-
plying the divergence theorem to Eq. �2�. By prescribing a
boundary condition of hn ·�c+ ��sd−�sm����c�=0 on area A
to cancel the area integration, where n is the normal direction
of A, we obtain

� = f��c� − h�2c − 1/2�0�r��c�����2. �3�

When diffusion is the only mass transport mechanism,
the mass flux is given by J=−M ��, where M is the mobil-
ity. A viscous flow with velocity v adds a convective term,
cv, to the flux, where J=−M ��+cv. Here we consider an
incompressible flow so that � ·v=0. The application of the
mass conservation relation, �c /�t+� ·J=0, leads to a con-
vective Cahn–Hilliard equation, namely,

�c

�t
+ v · �c = ��M � �� . �4�

The droplet and medium cannot transport pass the boundary
A, which leads to a boundary condition of n ·J=0. This con-
dition can be written as n ·��=0 since the flow velocity
vanishes on the boundary A due to the nonslip boundary
condition. To consider diffusion on the surface of the droplet,
we take the form M�c�=M0c�1−c�, where M0 is a constant.
Note that M�c� vanishes outside the interfacial region.

With the presence of a diffuse interface, the equation
describes the viscous flow of the liquid droplet is39

Vp

Vs

A
smγsdγ

FIG. 1. �Color online� A schematic of a droplet on a dielectric substrate. An
electric field is applied on the conductive droplet and the electrode beneath
the dielectric layer. The region enclosed by the dashed line represents the
phase field calculation domain. The contact angle is denoted by 	.
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0 = − �p + � · �
 � v� + � � c . �5�

Here 
 is the viscosity, and p the pressure that enforces the
incompressibility constraint � ·v=0. The viscosity is depen-
dent on the concentration, 
=
0c, where 
0 is the droplet
viscosity. The last term ��c accounts for the force at the
interface. For a microscale droplet, the Reynolds number is
small so that the inertial term has been neglected. Equations
�4� and �5� need to be solved simultaneously to obtain evo-
lution sequence of the system.

The electric potential satisfies the Laplace equation,

� · ��r � �� = 0. �6�

In the substrate region the dielectric constant in Eq. �6� is
replaced by �r

s. Note that the substrate can significantly affect
the evolution of the droplet by influencing the electric field
distribution. The droplet is conductive and an isopotential
body. The boundary of the droplet is obtained by the c=0.5
contour. The electric field calculation domain includes the
dielectric layer and the two phase region outside the droplet.
We prescribe the Dirichlet boundary conditions on the sur-
faces of the droplet ��=0� and the electrode ��=applied
voltage�, and Neumann boundary conditions on other bound-
aries.

Normalize Eqs. �4�–�6� with a characteristic velocity Vc,
length Lc, and time tc=Lc /Vc. Equation �6� retains the same
form after normalization. The choice of the magnitudes of
the characteristic quantities depends on the physical details
to resolve and computational convenience. The normalized
equations are given by

�c

�t
+ v · �c =

1

Pe
� · �M � �� , �7�

� = f��c� − Ch2�2c −
1

2
�r��c�����2, �8�

− �p + � · �
 � v� +
1

Ca
� � c = 0. �9�

The mobility M and viscosity 
 are dimensionless numbers
normalized by the mobility and viscosity of the droplet, M0

and 
0. We have the normalized expression f��c�= �4c3

−6c2+2c�. The potential field � is normalized by �c

=Lc
	fo /�0. The Péclet number, Pe=VcLc / �M0f0� reflects the

ratio of the diffusive time scale and the convective time
scale. The significance of the interface energy is described by
the Cahn number, Ch=	h / f0 /Lc. Define �= ��sd−�sm�Lc /h.
The normalized boundary conditions on A for Eq. �7� are
given by n ·��=0 and n ·�c+����c�=0. The capillary num-
ber Ca=
0Vc / �Lcf0� affects the relative magnitude of vis-
cous force and interface force. Non-slip boundary condition
on A is applied for Eq. �9�.

III. NUMERICAL APPROACH

We first develop a finite element approach to solve the
diffusion Eqs. �7� and �8�. Following the standard procedure
for variational formulation,40,41 we take a weighted integral

of the governing equation with a test function w�x�. After
integration by parts, the problem becomes finding a function
of c such that


 �c

�t
,w�

Vp

+ �v · �c,w�Vp
+ 
M

Pe
� �,�w�

Vp

= 0, �10�

��,w�Vp
= �f�,w�Vp

+ Ch2��c,�w�Vp
−

1

2
��r�����2,w�Vp

+ Ch2����,w�A. �11�

Here the usually inner product notations, �f ,w�Vp
=�Vp

fwdV
and �f ,w�A=�AfwdA are used. Note that substituting Eq. �8�
into Eq. �7� directly would result in a fourth order derivative
in c. This would require higher order continuity in the func-
tions, and increase the computational complexity. We adopt a
technique similar to what has been used in thin plate finite
element by considering Eqs. �7� and �8� separately. Two
separate forms, Eqs. �10� and �11�, are obtained. This tech-
nique strategically avoids directly formulating a fourth order
derivative in the diffusion equation.

A function such as c�x , t� can be expressed by interpo-
lating shape functions Nj�x� and the nodal values,

c�x,t� = 

j

Nj�x�cj�t� . �12�

Here cj is the nodal value of c at node point j of the element.
Similarly, we have w�x , t�=
 jNj�x�cj�t� and ��x , t�
=
 jNj�x�� j�t�. Putting these expressions into Eq. �10�, we
obtain a system of ordinary differential equations in the form
of

A1
dc�t�

dt
+ A2c�t� = a�t� , �13�

where c= �c1 ,c2 , . . .�T, �A1�ij =�NiNjdV, �A2�ij =�Ni�v ·�Nj�
dV, and �a�i=−��M /Pe��� ·�NidV.

We partition the time domain 0� t�T into equal inter-
vals of time step 
t. At t=0, the solution is known from the
initial configuration. To advance the solution in time from
step n to n+1, we use the forward Euler algorithm, dcn /dt
= �cn+1−cn� /
t, where cn=c�n
t�. Then Eq. �13� is dis-
cretized as

cn+1 = 
tA1
−1�an − A2cn� + cn, �14�

where an=a�n
t�.
Following the similar procedure, we can obtain the dis-

crete form of Eq. �11�, where

B��t� = b1 + b2 + b3 + b4, �15�

where �= ��1 ,�2 , . . .�T, �B�ij =�NiNjdV, �b1�i=��4c3−6c2

+2c�NidV, �b2�i=Ch2��c ·�NidV, �b3�i=
−�1 /2���r�����2NidV, and �b4�i=Chi����NidA.

We use the regular finite element approach to solve the
electric potential field Eq. �6� and the flow field Eq. �9�. The
term ��c /Ca in Eq. �9� is treated as a body force. It is a
natural choice to calculate diffusion, flow and electric field
on the same finite element mesh for coupling. The following
is the outline to compute cn+1 from cn. First, compute the
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electric field �n at the nodal points that corresponds to the
concentration distribution cn. Then substitute the solution of
�n into the Eq. �15� to get �n, and the modified Navier–
Stokes equation to get vn. Substituting �n and vn into Eq.
�14� gives cn+1. Repeat the procedure to evolve the concen-
tration profile and thus the droplet morphology.

IV. RESULTS AND DISCUSSIONS

In the phase field model, the interface thickness is given
by �=	h /W, where W is the barrier height between the two
wells in the free energy function f .38 In our model the value
of W is f0 /16. The relation between the surface energy and
phase field parameters can be obtained by interface profile
integration. When two phases corresponding to the two wells
of f are in equilibrium with a flat interface, the concentration
profile takes the form of c=1 /2�1+tanh�4x /���. Then the
surface energy density between the droplet and the medium,
�dm, can be calculated from

�dm = �
−�

�

h
 �c

�x
�2

dx =
1

3
	hf0. �16�

When the medium is air, �dm is the surface energy of the
droplet.

We take 	h / f0=1 nm, which gives an interface thick-
ness of about 4 nm. This is sufficient to capture the interface
location well. The surface energy of a water droplet in the air
is 0.07 J /m2. From the relationship in Eq. �16� we have f0

=2.1�108 J /m3 and h=2.1�10−10 J /m. Take Lc=10 nm
to scale the phenomena we are interested in. The correspond-
ing Cahn number is 0.1. The characteristic time tc=Lc /Vc is
the time required for the fluid to be convected a distance on
the order of the characteristic length, tc�0.1 �s. The vis-
cosity of water at room temperature is about 10−3 Pa s. The
corresponding capillary number, Ca, is about 4.76�10−5. To
relate M0 to an experimentally accessible quantity, one may
linearize Eqs. �7� and �8� around the equilibrium
concentration.42 This gives a common diffusion equation
with the corresponding diffusion coefficient being D
=2M0f0. The diffusion coefficient of water at room tempera-
ture is about 0.2272 Å2 /ps. These values give Pe�0.88.

All the simulations are performed on a rectangular two-
phase domain with dimensions of 560�320 in length nor-
malized by Lc. The initial configuration is a circular droplet
with radius of 80 in contact with the substrate surface. The
dielectric substrate has �r

s=4 with a thickness of 5. We
choose the calculation domain size to be large enough so that
it provides enough space for the morphological evolution of
the droplet. We first calculate the contact angle without elec-
tric field. The parameter � indicates the substrate/medium
and substrate/droplet interfacial energy difference, which af-
fects the contact angle. The simulations start with a circular
droplet just in contact with the substrate, which has an initial
contact angle close to 180°. We find that the contact angle
changes faster comparing to the overall morphology evolu-
tion since changing the contact angle only involves a small
amount of local mass transport around the edge of the drop-
let. We measure the equilibrium contact angle from the simu-
lation and compare them with the analytical results. The

measurement is achieved by using the 0.5 contour to obtain
the droplet morphology, and then calculating the slope near
the contact region. The analytical equilibrium angle is ob-
tained from the Young’s relation, cos 	c= ��sm−�sd� /�dm.
Consider the parameter �= ��sd−�sm�Lc /h. A hydrophilic
surface has ��0 where the droplet/substrate interface has
lower energy and the droplet wets the substrate. This leads to
an equilibrium contact angle 	c less than 90°. On the other
hand, a hydrophobic surface has ��0 and an equilibrium
contact angle 	c greater than 90°. With Lc=10 nm, h=2.1
�10−10 J /m, and �dm=0.07 J /m2, we have cos 	c=−0.3�.
This relation is represented by the straight line in Fig. 2. The
simulation results agree well with the theoretical predictions.

Figure 3 shows representative results of the droplet mor-
phology evolution when an electric field is applied. The
simulations start from the equilibrium morphology without
an electric field. Results for various applied electric potential
are given. In all simulations � is taken to be �0.5. A higher
applied voltage leads to larger driving force and thus faster
morphology evolution. The droplet becomes more wetting
with increased voltage, which is indicated by the decreased
contact angle in column c. Our simulations show that when
the voltage is low and the dielectric layer is thin, the equi-
librium contact angle under electric field, 	, follows �cos 	
−cos 	c���2. This relation is consistent with the
Lippmann–Young law.43 Some recent analyses suggest that

-2.5 -1.5 -0.5 0.5 1.5 2.5
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

β

co
s
θ

simulation
analytical results

FIG. 2. �Color online� The equilibrium contact angles from simulations
agree well with the analytical results of the Young’s relation, cos 	c=
−0.3�.

FIG. 3. �Color online� Morphology evolution of droplets under various ap-
plied voltages. Each row corresponds to an evolution sequence under an
applied voltage. A:�=0.6, B:�=0.8, C:�=1.0, D:�=1.2. a : t=20, b : t
=200, and c: t=600. The parameter � is taken to be �0.5.
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the surface profiles of droplets may display a diverging cur-
vature at local regions very close to the contact line.44–46 We
do not aim to resolve such very local effect in this study,
which requires extremely fine mesh. When the applied volt-
age is high enough, as shown in row C, ripples starts to
emerge at the droplet edges at about t=200. This instability
is qualitatively consistent with recent experimental
observations,24,28 where the contact line has been found to
become unstable at a high voltage, leading to the ejection of
small droplets from the edge of the original droplet. With a
higher voltage in row D, the instability appears earlier at
about t=20, when the overall droplet morphology has not
evolved much.

Our simulations suggest that instability happens by first
forming an extruding layer at the edge of the droplet. This
initially continuous thin layer breaks into small droplets dur-
ing its extension. To understand this breakage mechanism, it
is illuminating to imagine a thin liquid film under an electric
field, e.g., the field in the fringe of a droplet. The surface
energy prefers a flat surface while the electric static energy
prefers a wavy surface. The competition determines a fast
growth wavelength of the surface perturbation. The electro-
static energy per volume is proportional to �0V2 while the
surface energy per area is proportional to �dm. Thus the
wavelength is proportional to �dm /�0V2. For a given instabil-
ity mode or wavelength, larger droplet surface energy re-
quires higher instability voltage. While detailed morphology
evolution has been obtained from our numerical simulations,
this simple picture may help to explain the experimental ob-
servation that droplet ejection can be suppressed by adding
salt to the water droplet. The ion–dipole bond formed be-
tween the water molecule and ion is stronger than the hydro-
gen bond formed between the water molecules. The addi-
tional energy needed to break the stronger bond raises the
surface energy. It is this increase in surface energy that con-
tributes to suppress the instability.

We have conducted a parametric study to investigate
how � affects the instability and summarized the results in
Fig. 4. For each given �, the measured contact angle de-
creases with voltage. For each given voltage, the contact
angle increases with �. When the voltage is high enough, say
�=1, droplets with smaller � starts to lose stability. Insets
�a� with �=−2.5 and �b� with �=1.5 show the morphology
and instability. Small isolated droplets with similar dimen-
sions emerge at the edge of the original droplets in both
situations. The droplet with lower � demonstrates lower pro-
file and more contact area with the substrate. However, a

droplet with higher � can be stable under the same applied
voltage. The inset �c� shows an example of a stable morphol-
ogy for �=2.5. Our simulations show that the emergence of
instability involves a decrease of the contact angle first. For
hydrophobic surface with 	�90°, an applied high voltage
will first cause the contact angle to become less then 90°,
followed by the extrusion of a thin layer from the edge of the
droplet, and further breakage into small droplets. Figure 5
shows the time it takes from the initial equilibrium morphol-
ogy to the emergence of instability after an electric field is
applied. It can be observed that instability emerges more
quickly for small � or small initial equilibrium contact
angles. Instability also emerges more quickly under larger
electric fields.

In summary, our model and simulations have revealed
the morphology evolution of a droplet on a dielectric sub-
strate and the essential dynamic process about how instabil-
ity emerges. The onset of the emission of small droplets is
related to the competition between the smoothing effect of
the surface energy and the roughing effect of the electrostatic
energy. Thus by changing parameters, such as the surface
energy of the droplet, the instability can be suppressed. The
proposed modeling and simulation approaches can provide
useful guidance for designing novel micro/nanoscale devices
where electrowetting mechanism is used to dynamically
change the morphology.
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