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We examine the influence of the wetting layers (WLs) and the quantum dot (QD) size

distribution on the sub-bandgap external quantum efficiency (EQE) of QD solar cells. We use a

finite-element Schrödinger-Poisson model that considers QD and wetting layer shapes, sizes, and

spacings from cross-sectional scanning tunneling and atomic force micrographs. A comparison

between experiments and computations reveals an insignificant contribution of the WL to the

sub-bandgap EQE and a broadening of sub-bandgap EQE associated with a variation in QD sizes

in the growth direction. VC 2011 American Institute of Physics. [doi:10.1063/1.3631785]

I. INTRODUCTION

Quantum dot (QD) superlattices (SLs) have been pro-

posed for improving solar cell efficiency by providing inter-

mediate energy bands to allow sub-bandgap photon

absorption,1,2 thereby enhancing the photocurrent.3 Although

photocurrent enhancement from QD-based solar cells has

been demonstrated,3–15 QD cells have consistently exhibited

lower open-circuit voltages (VOC) and conversion efficien-

cies than the GaAs reference cells. The QD cells to date have

involved “zero-dimensional” structures produced using the

Stranski-Krastanov (SK) growth process. SK QD structures

have been reported to contain two-dimensional wetting

layers (WLs)16 and a distribution of QD sizes,17 which are

expected to influence the energies and broadening of the in-

termediate bands (IBs). A comparison of the properties of p-
i-n heterostuctures containing either SK InAs QDs or thin

InAs layers reveals insignificant sub-bandgap external quan-

tum efficiency (EQE) due to the WL in comparison with

cells containing only QDs.12 A comparison of calculated

energy level splittings for a vertically aligned pair of InAs

QDs in a GaAs matrix with identical or variable sizes in ad-

jacent layers reveals a more significant level splitting for the

QD pair with size variation.18 However, the influence of the

WL and the QD size variation on the EQE of p-i-n hetero-

structures containing multilayer QD arrays has not yet been

reported.

Here, we examine the relative influence of the WL and

the QD size distribution on the sub-bandgap EQE of molecu-

lar beam epitaxially (MBE) grown QD solar cells. Realistic

QD shapes, sizes, and SL vertical periods from cross-

sectional scanning tunneling microscopy (XSTM) and areal

densities from atomic force microscopy (AFM) are used as

input into finite-element Schrödinger-Poisson calculations of

the EQE. A comparison between experiments and simula-

tions reveals a broadening of sub-bandgap EQE associated

with a variation in QD sizes in the growth direction and an

insignificant contribution of the WL to the sub-bandgap

EQE. This unique combination of experiment and theory

provides new insight for designing QD SLs for a wide vari-

ety of applications.

II. EXPERIMENTAL PROCEDURES

The heterostructures were grown on Zn-doped p-GaAs

(001) substrates by MBE, using solid Ga, Be, Si, Al, In, and

As2 sources. The target doping concentrations were

�1� 1018 cm�3 for both p- and n-type layers. An initial

250-nm-thick Be-doped p-GaAs and a 500-nm-thick

undoped GaAs buffer layer were grown at 580 �C, followed

by a 20-nm-thick undoped GaAs layer grown at 500 �C, both

with a V:III ratio of 12:1. Subsequently, three-period InAs/

GaAs QD SLs consisting of 2.6 monolayers (MLs) of InAs

and a 5 nm GaAs spacer were grown at 500 �C.19 This approach

is expected to lead to the formation of QDs via a SK growth

mode transition. For the p-i-n structure, the final QD layer was

capped with a 500-nm-thick layer of undoped GaAs. Next, layers

of 200-nm-thick n-GaAs, 50-nm-thick Al0.3Ga0.7As, and 20-nm-

thick heavily doped n-GaAs were then grown in succession.

For the control p-i-n heterostructures, 15-nm-thick GaAs

layer was grown instead of the QD layers. To reduce the

quasi-Fermi level discontinuities within the QD SL, a total

i-layer thickness of >1 lm were utilized. 2� 2 mm2 cells

without anti-reflection coatings were fabricated using stand-

ard photolithography with front Ge/Ni/Au n-type and back

Au/Zn p-type contacts deposited by e-beam evaporation. The

front contact shadowing was �6% of the surface area.

The EQE as a function of wavelength (k) was measured

with a halogen lamp calibrated with a National Institute of

Standards and Technology traceable silicon photodetector.

Low-intensity illumination (�100 mW/cm2) from the halo-

gen lamp was modulated by a chopper, spectrally filtered

with a monochromator, and guided via an optical fiber to the

sample. The photocurrent was then measured at room tem-

perature using a lock-in amplifier referenced to the chopper
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frequency. AFM was performed on samples grown with simi-

lar conditions except that the final QD layer was left

uncapped. XSTM measurements were obtained on samples

grown in a similar manner but with five-period InAs/GaAs

QD SLs on n-GaAs and capped with n-GaAs. To differentiate

the GaAs and QDs within the XSTM images, we estimated

the top height criterion as follows. Bright regions protruding

at least 4.2 Å above the GaAs background were assessed as

possible QDs. Within the bright regions, pixels with tip

heights of at least 1.8 Å above the GaAs background were

considered to be part of the QD.20 We examined several high

resolution XSTM images and obtained QD height and lateral

size distributions from more than 100 QDs.

III. FINITE-ELEMENT SCHRÖDINGER-POISSON
CALCULATIONS

To calculate the EQE enhancement due to the presence

of the QDs, we use a finite-element solution of the Poisson

(1) and Schrödinger (2) equations. The Schrödinger equation

includes a confining potential, V0, that accounts for the influ-

ence of misfit strain, and the electric potential U.

r2U ¼ � q
e0e

; (1)

� �h2

2m�
r2Wþ ðeUþ V0ÞW ¼ KW; (2)

where q is the charge density, e is the permittivity, W are the

wave functions, K are the eigenstates, m* is the carrier effec-

tive mass, and e is the electron charge. The Poisson equation,

coupled to the diffusion equations for the electrons and

holes, is first solved on the scale of the whole p-i-n structure,

and thus, the position-dependent built-in potential can be

determined. The value of the built-in electric field in the het-

erostructure region is found to be �7.5� 105 V/m. The

charge density in Eq. (1) is calculated for the p-i-n structure

described above, using literature values for the carrier mobi-

lities, with /¼ 0 defined as the Fermi level of the bottom

GaAs layer.

We consider In-Ga interdiffusion in the WLs based upon

an analysis of XSTM data from Ref. 16. Thus, the position-

dependent In concentration in the wetting layer, xIn, is approxi-

mated by a Gaussian profile, xIn¼ 0:32 expð�ðz� z0iÞ2= r2Þ,
where z0i is the position in the middle of the ith QD layer along

the growth (z-) direction, and r is the standard deviation,

which equals 1.25 nm. We take the inhomogeneous In con-

centration16 into account via the linear combination of car-

rier effective masses, so that the effective mass of the alloy

is position-dependent, m*(z) in Eq. (2), given by

m�ðzÞ ¼ xInðzÞm�In þ ð1� xInðzÞÞm�Ga; (3)

The mechanical strain field in the QDs and WLs is found

numerically using a finite-element continuum elasticity

model, with QD dimensions and xIn from an analysis of

XSTM data. The lattice constants in the inhomogeneous

WLs are then determined using Vegard’s law, as follows:

aðzÞ ¼ xInðzÞaIn þ ð1� xInðzÞÞaGa; (4)

The strain-modified band offsets, which we use to determine

the confining potential profile for the QD heterostructure, are

determined using deformation potentials from the

literature.21

Using the valence and (conduction) band wave functions

Wn (Wk), and energy levels En (Ek), at photon momentum

q¼ 0, the optical absorption spectrum of a QD becomes

aQDðxÞ ¼
2ffiffiffiffiffiffi
2p
p

r

ffiffiffi
l
e

r
�h2p
V
ð e

m0

Þ2A2

ðX
n;k

�h

Ek � En

�
�����
ð

V

W�kð0;~r Þ
� @
@x

Wnð0;~r Þ
�

d3~r

����
2

þ
����
ð

V

W�kð0;~r Þ
� @
@y

Wnð0;~r Þ
�

d3~r

����
2�
ðf ðEnÞ�f ðEkÞÞ

� expf�ðE��hxÞ2Þ=2r2gdE; (5)

where l and e are material permeability and permittivity,

respectively; n and k are the indices of the initial and final

confined states, f(E) is the electronic occupancy given by the

Fermi distribution, assuming that the Fermi level is in the

middle of the bulk GaAs bandgap, r is thermal broadening

(0.026 eV at room temperature), V is the unit cell volume,

and A¼ 1 (1/3) for heavy (light) holes. The net effective

absorption of a unit cell containing QDs is then determined

using the volumetric average of the combined heavy and light

hole absorption in the QDs and the absorption in the GaAs

barrier.22

The absorption coefficients, refractive indices, carrier

effective masses, and carrier diffusion lengths of GaAs are

taken from literature reports.23 For the typical QD densities

in our samples, the lateral spacing between QDs is on the

order of 40 to 90 nm. Based on the solution of the Schrö-

dinger equation, at such a large lateral separation between

the dots, it is reasonable to assume that the overlap integrals

between the wave functions of electrons in these dots are

negligibly small, and the lateral coupling between QDs will

not contribute significantly to the miniband broadening. The

tunneling transmission coefficient between states in verti-

cally stacked QDs for the confined electrons at the top of the

potential well is T � 16 exp
�
�2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�V0=�h2

q �
< 10�4,

where a is the spacing between the QDs in adjacent layers.

For the calculations, we consider an array of QDs infinitely

periodic in x and y, arranged in three period SLs along the z-

(growth) axis.

The EQE of the device is calculated from the short-

circuit photocurrent density at the i-p interface. The steady-

state photogeneration-drift-diffusion equations are solved for

the electron current density on the p-side of the i-p interface,

neglecting the dark current. The photocurrent density is

normalized to the incident solar photon flux Uinc(k), accord-

ing to

EQEðkÞ ¼ 1

FincðkÞ

�ðWi

�Wn

Fðk; zÞaðk; zÞdz

þ Fðk;WiÞ
aðk;WiÞLn

1þ aðk;WiÞLn

�
; (6)
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where Ln is the electron diffusion length in the p-region,

F(k, z) is the photon flux traversing the plane at position z in

the intrinsic region, a(k, z) is the absorption coefficient of

either the bulk or the QD-doped semiconductor, Wi and Wn

are the thicknesses of the intrinsic and n-type layers, respec-

tively, and Finc(k) is the incident (solar) photon flux. The

position z¼ 0 corresponds to the position of the n-i interface.

A transfer matrix approach is used to calculate the propaga-

tion of randomly polarized solar illumination normally inci-

dent on the p-i-n structure.

IV. RESULTS AND DISCUSSION

Figure 1(a) shows an AFM image of an InAs/GaAs QD

SL, with QD density of �1.0� 1010 cm�2. Figure 1(b) shows

a representative XSTM image of the QD SLs. In Fig. 1(b),

fringes with a spacing of 5.65 and 6.06 Å, corresponding to

the (001) planes of GaAs and InAs, respectively, are observed

in the darker and brighter regions of the image. The distribu-

tion of QD sizes, estimated from several high resolution

XSTM images, is presented in Fig. 2 for each period of QDs.

We fit the size distributions with a Gaussian distribution for

QD frequency as a function of diameter (or height) and used

the maximum likelihood estimation method to obtain the most

probable QD diameter (or height).24 For the 1st, 2nd, and 3rd

period of QDs, the maximum likelihood diameters (heights),

dML (hML), are 12.0 6 0.5, 15.9 6 0.5, and 19.4 6 0.5 nm

(3.5 6 0.3, 3.8 6 0.3, and 4.1 6 0.3 nm), respectively.

To compute the optical absorption and EQE of the

3-period QD SLs, we assume axially-symmetric ellipsoids

with dML and hML as defined in Fig. 2, and 100 nm (5.8 nm)

lateral (vertical) SL periods. We then compare the experi-

mental and computed EQEs for the following configurations:

three SLs containing identically sized QDs with diameter

(height) of 12.0 (3.5) nm, 15.9 (3.8) nm, and 19.4 (4.1) nm

without WLs; SLs with increasing QD sizes in the subse-

quent layers, as listed in Table I, embedded in either GaAs

or InxGa1�xAs WLs; and SL with three period of WLs only.

To consider the effect of QD size variations, we com-

pare the calculated EQEs for SLs containing identically sized

QDs without WLs. The calculated EQEs are plotted in Fig.

3(a), where the additional spectral response at wavelengths

longer than the GaAs absorption edge (at k¼ 870 nm) is

apparent for all SLs.

To quantify the position of sub-bandgap EQE peak, we

consider the first moment of the calculated sub-bandgap

EQE(k), which is an integral of the EQE weighted by the

wavelength, normalized by the integral of the EQE,

m ¼
Ð k2

k1
EQEðkÞkdk=

Ð k2

k1
EQEðkÞdk, where k1¼ 870 nm and

k2¼ 1100 nm. Here, m¼ 910, 916, and 932 nm for a SL

with QD diameters of 19.4, 15.9, and 12.0 nm, respectively.

Due to the reduction in QD volumetric fraction and average

transition matrix element, the calculated EQE is reduced

from 1.44% to 0.6% as QD diameter decreases from 19.4 to

12 nm.

For a fixed QD aspect ratio, the sub-bandgap EQE is

expected to blue-shift with the decreasing QD size due to

stronger quantum confinement. However, we do not observe

a clear trend in the sub-bandgap EQE as QD size decreases.

This is due to the effect of aspect ratio of the ellipsoidal QDs

on quantum confinement and the attendant variation in inter-

layer spacing. The results shown in Fig. 3(a) are based on

matching QD geometry as closely as possible to the experi-

mental morphology; some insight into the related effect of

the optical bandgap variation with QD interlayer spacing is

provided in Ref. 25.

FIG. 1. (Color online) (a) AFM image of InAs/GaAs QD SLs grown on

GaAs buffer layers. (b) High-resolution XSTM topographic image of InAs/

GaAs QD SLs.

FIG. 2. (a)-(f) The in-plane diameter and height distributions for each pe-

riod of QDs determined from an analysis of XSTM images. The Frequency

is the percentage of QDs with diameters or heights within a specified range.

Fits to a Gaussian distribution are shown as solid lines, with v values (a)

0.93, (b) 0.99, (c) 0.98, (d) 0.93, (e) 0.95, and (f) 0.88. For the 1st, 2nd, and

3rd period of QDs, a maximum likelihood estimate of QD diameters

(heights) gives dML (hML) values of 12.0 6 0.5, 15.9 6 0.5, and 19.4 6 0.5

nm (3.5 6 0.3, 3.8 6 0.3, and 4.1 6 0.3 nm), respectively.

TABLE I. Dimensions of the InAs QDs determined from an analysis of

XSTM images.

Period Height (nm) Diameter (nm)

3rd 4.1 19.4

2nd 3.8 15.9

1st 3.5 12.0
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We have also examined the influence of vertical varia-

tions in QD sizes by comparing the calculated EQE for QD

SL with variations in QD sizes between layers along the ver-

tical growth direction with the experimental EQEs of the

control and QD cells, as shown in Fig. 3(b). The calculated

EQEs in Fig. 3(b) exhibit a broad sub-bandgap EQE exten-

sion similar to that of the measured EQE of the QD cell. The

first moment of the calculated EQE for the QD SL with vary-

ing diameters, m¼ 927 nm, also agrees well with the experi-

mental value of 922 nm.

To account for the WL contributions to the sub-bandgap

EQE, we compare the measured EQE of the QD cell with the

calculated EQEs of (1) SL with WLs only and SLs with ver-

tical QD size variation (2) without and (3) with WLs, as

shown in Fig. 3(c). When WLs are included in the SL, the

calculated EQE¼ 1.02% at k¼ 920 nm (the wavelength cor-

responding to the first moment of the sub-bandgap EQE),

which leads to improved agreement with the measured value

of 1.04%. The small discrepancy might be due to additional

spectral broadening of photocurrent response resulting from

in-plane QD size distributions. In addition, the WL contribu-

tion to the sub-bandgap EQE is insignificant in comparison

to that of the QDs. At k¼ 920 nm, the calculated WL

EQE¼ 0.17%, while the QD EQE¼ 0.82%. This is consist-

ent with the measured EQE for which a peak associated with

the WL is not apparent. The WL contribution is insignificant

due to its low strain-induced confinement potentials (�41

meV for the maximum CB potential; �8 mV for the VB),

small average matrix element, and low interband absorption

strength.

V. CONCLUSIONS

In summary, we have studied the influence of WL and

QD size variation on sub-bandgap EQE of QD solar cells

using a finite-element Schrödinger-Poisson model that con-

siders realistic QD sizes and shapes obtained from MBE-

grown InAs QD on GaAs structures. A comparison between

experiment and simulation reveals a broadening of sub-

bandgap EQE associated with a variation in QD sizes in the

growth direction. Furthermore, the inhomogeneous WL con-

tribution to the sub-bandgap EQE is predicted to be much

weaker than that of the QD SLs.
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