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The authors report the simultaneous formation and transfer of GaAsN nanostructure layers to

alternative substrates, a process termed “ion-cut synthesis.” Ion-cut synthesis is induced by nitrogen ion

implantation into GaAs (GaAs:N), followed by spin-on-glass (SOG) mediated wafer bonding and high

temperature rapid thermal annealing (RTA). Due to the low ion-matrix diffusivity of GaAs:N, RTA

induces the formation of both nanostructures and gas bubbles. The gas bubble pressure induces the for-

mation and propagation of cracks, resulting in transfer of the nanostructured layer. The authors discuss

the critical role of the physical properties and the thicknesses of the substrates and the SOG layer to the

achievement of ion-cut synthesis. VC 2011 American Vacuum Society. [DOI: 10.1116/1.3630120]

I. INTRODUCTION

During the past decade, ion implantation followed by

thermal annealing has emerged as a promising approach for

the formation of gas bubbles and/or nanocrystalline phases.

For implantation of light ions into semiconductors, the

formation and coalescence of gas bubbles has led to the de-

velopment of an approach for heterogeneous materials inte-

gration, termed “ion-cut” or Smart CutTM.1 The ion-cut

process involves high-energy ion implantation into a donor

substrate which is then bonded to another substrate. Subse-

quent thermal annealing leads to the formation and coales-

cence of gas bubbles, resulting in the fracture of original

substrate. This surface layer remains bonded to the new

substrate, and the original substrate may be re-used for addi-

tional thin film processing. Ion-cut was first demonstrated

using H ions to transfer crystalline silicon to an amorphous

oxide;1 it was subsequently expanded to other light ions such

as He (Ref. 2) and D,3 as well as H/He co-implantation.4,5

To date, ion-cut has been used to transfer InP to glass,6 SiGe

to Si,7,8 SiC to Si (Ref. 9) and glass,10 GaSb to glass11 and

GaAs,12 Ge to Si,13 garnet to Si, InP, and GaAs,14 and com-

plex oxides such as SrTiO3 to glass15 and LiNbO3 to sili-

con.16 In these light-ion, high-diffusivity systems, bubble

formation and layer transfer have been reported to occur

within relatively low dose17 (3� 1016 – 1� 1017 cm�2) and

temperature18 (400-600 �C) windows.

It is also possible to precipitate nanocrystalline phases using

ion implantation followed by thermal annealing. For example,

precipitation of Si nanocrystals in Si:H (Ref. 19) and SiO2:He
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(Ref. 20), GaN nanocrystals in GaAs:N (Refs. 21–23), and

InN nanocrystals in InAs:N (Ref. 24) have been reported. In

light-ion, high-diffusivity systems, such as Si:H, the formation

of nanocrystals requires high ion doses (1-3� 1017 cm�2) and

high annealing temperatures (600–800 �C),19 conditions which

are very different from those needed for bubble formation and

layer transfer. For both nanocrystals and gas bubbles to be

observed simultaneously, the gas bubbles need to be stable at

the high temperatures required for nanocrystal formation.

Indeed, the high diffusivity of H in Si:H may preclude the for-

mation of gas bubbles at the high temperatures required for

nanocrystal formation. Thus, it is not surprising that the simul-

taneous formation and transfer of a nanostructured layer has

not been reported to date.

On the other hand, in a system with low ion-matrix diffusiv-

ity, the formation of both nanocrystals and bubbles at high

temperature has been reported. For example, in GaAs:N,

precipitation of both nitrogen gas bubbles and nitride nano-

crystals has been observed.23 The GaAsN nanostructures

consisted of nanometer-sized GaN-rich crystallites in an appa-

rently amorphous matrix, which we will refer to as a “GaAs:N

nanocomposite.” Photoluminescence and cathodolumines-

cence spectroscopy showed significant emission in the near-

infrared range, apparently related to those nanostructures.21,22

In addition, due to the observed formation of both nanocrystals

and gas bubbles following high-temperature annealing of

GaAs:N, the simultaneous nanostructuring and layer transfer

of GaAs:N was proposed,23 but not yet achieved.

In this letter, we report on the development and demon-

stration of a new technique for the simultaneous nanostruc-

turing and layer transfer of a GaAs:N film, termed “ion-cut

synthesis.” Ion-cut synthesis is accomplished via N-ion

implantation in GaAs, followed by spin-on glass (SOG)-

mediated wafer bonding and rapid-thermal annealing (RTA).

Due to the low ion-matrix diffusivity of GaAs:N, high-

temperature RTA induces the formation of both nanocrystals

and gas bubbles. Since the gas bubble pressure induces the

formation and propagation of cracks, simultaneous nano-

structuring and layer transfer are accomplished. Finally, we

show that the achievement of ion-cut synthesis depends on

the physical properties and thickness of the substrates and

the SOG layer.

II. EXPERIMENTAL METHODS

GaAs films (undoped or Si-doped, �1 lm thick) were

grown by molecular-beam epitaxy on (001) GaAs. These

films were implanted with 100 keV Nþ at a fluence of

5� 1017 cm�2, as described in earlier reports.23,25 To mini-

mize ion channeling, a �7� ion beam angle of incidence

with respect to the sample surface normal was used. During

implantation, the GaAs substrate temperature was main-

tained at �196 �C, as measured by a thermocouple attached

to the sample holder. In preparation for bonding, the N-

implanted GaAs and polycrystalline Al2O3 and AlN sub-

strates were cleaned with a sequence of de-ionized (DI)

water, acetone, and methanol, followed by a final DI water

rinse. Immediately prior to bonding, SOG layers consisting

of either a commercial polymethylsilsesquioxane (PMSSQ)

SOG (Filmtronics FG65), or a methyltrimethoxysilane-1,2-

bis(triethoxysilyl)ethane (MTMS-BTSE) SOG synthesized

at NIST,26 were spin-coated onto the ceramic substrates. In

the case of the PMSSQ films, a thickness of 1000 nm was

achieved by spin-coating the solution at 3500 rpm for 30 s.

To achieve a thickness of 200 nm, the solution was diluted

with 25% ethyl acetate and spun at 3000 rpm for 20 s. 200

nm MTMS-BTSE films were obtained by spin-coating at

1200 rpm for 15 s. Following these surface preparations, �3

mm� 3 mm GaAs:N pieces (�600 lm thick) and �1 cm2

ceramic substrates (�100 lm thick) were pressed together

(at room temperature) with tweezers, a process which we

will refer to as “joining.” The final step consisted of RTA in

N2 gas for 30 s at 800 �C, leading to nanocrystal formation,

solidification of the SOG, and layer transfer.

The morphology and microstructure of the GaAs:N layers

were examined by scanning-electron microscopy (SEM),

atomic force microscopy (AFM), and transmission-electron

microscopy (TEM). The SEM studies of the blistered surfa-

ces were carried out in a FEI Nova Nanolab operating at

5 kV with a beam current of 40 pA. To image the GaAs:N

nanocomposite transferred to insulating substrates, low-

vacuum (�0.8 Torr) SEM was carried out in a Quanta

200 3D operating at 15 or 20 kV, with a beam current of

�0.3 nA. Tapping-mode AFM was performed in a Digital

Instruments Nanoscope IIIA using etched Si tips. TEM was

carried out in a JEOL 3011 high-resolution TEM operating

at 300 kV. For selected-area electron diffraction (SAED)

studies, a �130 nm diameter aperture was used.

The TEM specimens were prepared by the focused ion

beam (FIB) lift-out technique described in Ref. 27. The FIB

lift-out process was carried out in FEI Nova Nanolab and

Quanta 200 3D dual-beam (SEMþ FIB) systems. To mini-

mize surface charging of the SOG and ceramic layers during

SEM imaging, the top surfaces of each layer-transfer sample

were sputter-coated with �50 Å of AuPd or C. To protect

the GaAs:N surface from Ga ion damage during the FIB lift-

out process, �2 lm� 15 lm regions of the surface were

coated with �200 nm of electron-beam-assisted chemical-

vapor-deposited (CVD) Pt followed by �2 lm of ion-beam-

assisted CVD Pt. A 5.0 nA Gaþ beam operating at 30 kV

was then used to mill away the material outside the Pt coated

region, leaving a “FIB lift-out” TEM specimen. Using a

micro-manipulator needle, the TEM specimen was then

attached to a Cu grid with posts for lift-out sample place-

ment. Finally, to produce a region that was sufficiently thin

for electron transparency, FIB-milling steps were performed

at 20 kV, 0.38 nA; 10 kV, 0.12 nA; and 10 kV, 50 pA.

III. MATERIALS SELECTION

The first step towards the simultaneous formation and

transfer of a GaAs:N nanocomposite layer involves the iden-

tification of suitable alternative substrates and bonding layers.

Although SOGs have been employed as an intermediate layer

for wafer bonding and layer transfer of dissimilar materi-

als,28,29 the application of SOG-mediated transfer to this
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new process is particularly challenging due to the high tem-

peratures (RTA >750 �C) required for nanostructure forma-

tion. For this purpose, we compare the driving force for

delamination or fracture (the energy release rate, G) with its

corresponding materials property that governs failure (the

toughness, C), aiming to maintain G<C. Here, G is propor-

tional to a thermal expansion coefficient (TEC) mismatch and

thickness, but independent of the in-plane dimensions of the

wafer(s),30 as follows:

G / DaðTÞ½ �2�h: (1)

We first consider the step of joining the implanted GaAs wa-

fer to a ceramic substrate, as shown in Fig. 1(a), neglecting

the thickness of the viscous SOG layer. We then consider the

step of high-temperature annealing, at which point much of

the original substrate is removed (via layer splitting), as

shown in Fig. 1(b), leaving the transferred GaAsN nano-

structure layer with a thickness similar to that of the solidi-

fied SOG bonding layer.

Following the initial joining of the implanted GaAs and ce-

ramic substrate, as shown in Fig. 1(a), subsequent excursions

between RT and the RTA temperature result in an increased G.

Since the SOG thickness (O(100 nm)) is much less than those

of the substrates (O(100 lm)), the contribution of the bonding

layer to G is neglected. For each GaAs/ceramic substrate pair,

G is calculated using Eq. 1, with Da¼Dajoined, the difference

in the TECs of the two substrates, and h¼ hceramic, the thick-

ness of the ceramic substrate.31 To minimize G, substrates with

TECs similar to that of GaAs were chosen, namely Al2O3 and

AlN. We note that aGaAs � 5.7� 10�6 �C�1, aAl2O3
�

5.4� 10�6 �C�1, and aAlN � 4.0� 10�6 �C�1.

Following the high-T annealing step, shown in Fig. 1(b),

the original GaAs substrate is removed by layer splitting,

and the remaining bonding and transferred nanocomposite

layers, with similar thicknesses, are both expected to contrib-

ute to G. In this case, the relevant toughness is that of the sol-

idified bonding layer, CSOG. Neglecting the transferred layer,

G is then expressed as in Eq. (1), with Daannealed¼ aceramic

�aSOG and h¼ hSOG, the thickness of the solidified bonding

layer.

First, we consider the influence of hSOG using a commer-

cial MSSQ SOG (Filmtronics FG65).32 The �1000 nm (�200

nm) thick SOG layers are referred to as “thick” (“thin”) bond-

ing layers. The surface morphology of the transferred layer

achieved with the thick bonding layer is shown in the SEM

image in Fig. 2(a). The transferred GaAs:N layers contain

channel cracks that apparently extend into the bonding layer,

as suggested by the AFM image and corresponding line-cut in

Fig. 2(b). The presence of channel cracks suggests an overall

tensile stress in the bonding and transferred layers. The rms

roughness (Rrms) of the transferred layer is 190 6 30 nm, as

determined from areas similar to that shown by the dashed-

line box in Fig. 2(b) (i.e., excluding channel cracks).

For a “thin” SOG layer, as shown in Fig. 2(c), channel-

cracking is not apparent. In addition, as shown in the AFM

image in Fig. 2(d), the Rrms of the transferred area is 60 6 20

nm, roughly half that of the cracked layer in Fig. 2(b). The

AFM image also reveals “hole” defects [highlighted with

dashed circles in Fig. 2(d)]. The depths of these defects are

on the order of the transferred film thickness, and their diam-

eters are similar to those of the circular blisters observed in

unbonded layers.25 Thus, it is likely that these defects are

due to the formation of blisters and/or voids in localized

areas with insufficient bonding.

We also examined the influence of Daannealed, which is

equal to aceramic� aSOG, via SOG with a TEC similar to

those of the ceramic substrates. For this purpose, we used a

MTMS-BTSE copolymer based SOG, which has been

observed to exhibit a composition-dependent TEC.26 A TEC

of �6� 10�6 �C�1 is feasible with 50 mol. % BTSE in the

SOG formulation synthesized from pure MTMS. In particu-

lar, the TEC of the copolymer decreases with increasing

BTSE concentration, with a BTSE concentration of �50%

which is most desirable for TEC-matching of the SOG film

to the ceramic substrates.

IV. SYNTHESIS AND TRANSFER
OF GaAs:N LAYERS

Using the MTMS-BTSE SOG, we achieved the formation

and transfer of nanostructured GaAs:N layers to both Al2O3

and AlN substrates. For example, the surface of the layer

FIG. 1. (Color online) Schematic of nanocomposite synthesis and layer

transfer. (a) An ion-implanted GaAs substrate is bonded to a new substrate

using a spin-on glass layer. (b) Following thermal annealing, GaN nanocrys-

tals nucleate in the GaAs matrix, forming a GaAs:N nanocomposite layer.

Simultaneously, nitrogen gas bubbles lead to interfacial cracking between

the GaAs:N nanocomposite layer and GaAs substrate, inducing separation

from the GaAs substrate. In principle, the damaged layer of the “parent”

GaAs substrate may be polished off and the parent substrate recycled for

further processing.
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transferred to Al2O3, shown in the SEM and AFM micro-

graphs in Figs. 2(e) and 2(f) appears featureless, with

Rrms¼ 20 6 5 nm. This Rrms is larger than that of the as-

implanted GaAs:N layer (�3 nm), but it is comparable to the

�15 nm value reported for the low-temperature transfer of a

crystalline GaAs layer to a silicon substrate using plasma-

enhanced chemical vapor-deposited SiO2 bonding layers.33

Following the joining and annealing of the GaAs:N layers

with Al2O3 and AlN substrates, the interfaces and microstruc-

tures were examined using cross-sectional transmission-elec-

tron microscopy (XTEM), as shown in Fig. 3. Figures 3(a)

and 3(c) show bright-field XTEM images of GaAs:N layers

transferred to Al2O3 and AlN substrates, respectively. In both

cases, featureless GaAs:N nanocomposite/SOG interfaces are

apparent. In addition, a featureless SOG/AlN interface is

apparent in Fig. 3(c). For both Al2O3 and AlN substrates, the

transferred layer consists of a 50 nm polycrystalline GaAs

layer plus a 150 nm nanocomposite layer, with a total thick-

ness of �200 nm, which corresponds to the depth of maxi-

mum N ion concentration, as will be discussed below.

The occurrence of layer transfer at the depth of maximum

N ion concentration suggests a transfer mechanism based

on gas pressure. In earlier studies of ion-beam-synthesized

GaAsN nanocomposite layers, surface blister formation

was attributed to the RTA-induced formation and coales-

cence of gas bubbles at the depth of maximum N ion

concentration.21–23,25 Indeed, Monte Carlo simulations of

N-implantation-induced vacancy and N depth profiles indi-

cate that nanostructuring and bubble formation occur at

depths of 150 and 200 nm, which correspond to the pre-

dicted maxima in implantation-induced damage and N con-

centration, respectively.34 Since delamination occurs at the

depth of maximum N concentration, independent of the con-

straint imposed by the bonded receiver substrate, it is

expected to be governed by the gas pressure in the bubbles/

voids.

Nanostructure formation within the transferred GaAs:N

nanocomposite was examined using dark-field (DF) XTEM,

SAED, and high-resolution TEM (HRTEM). Figures 3(b)

and 3(d) show {111} DF XTEM images, with corresponding

FIG. 2. (Color online) Improved transfer quality of GaAs:N nanocomposite layers with various bonding conditions. SEM and AFM images of GaAs:N layers

transferred to alumina with bonding layers consisting of (a) and (b) �1 lm “thick” PMSSQ SOG, (c) and (d) �200 nm “thin” PMSSQ SOG, and (e) and (f)

�200 nm “thin” BTSE-MTMS SOG. The SEM image of the surface of the transferred layer bonded with thick PMSSQ in (a) reveals surface “channel” cracks.

As shown in the AFM image and corresponding line-cut in (b), these cracks penetrate through the �200 nm thick transferred layer to the substrate. A compari-

son of the SEM images for the “thick” and “thin” PMSSQ SOG layers in (a) and (c) reveals that the roughness of the transferred layer is reduced by decreasing

the thickness of the PMSSQ SOG layer. However, the AFM image and corresponding line-cut for the “thin” PMSSQ SOG in (d) reveals pit defects (high-

lighted by dashed circles) with depths approximately equal to the transferred layer thickness, suggesting that localized blister formation occurs instead of layer

transfer, possibly due to the formation and spalling of blisters in localized areas with insufficient bonding. For the thermally-matched BTSE-MTMS SOG,

these defects are apparently eliminated, as shown by the SEM and AFM images in (e) and (f).
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SAED patterns as insets, for the GaAs:N layers transferred

to Al2O3 and AlN substrates, respectively. In both cases, the

interfaces between the GaAs:N nanocomposite layer, depos-

ited polycrystalline-Pt layer, and solidified SOG bonding

layer are indicated with a dashed line. In addition, the

GaAs:N nanocomposite layers contain nanometer-sized

bright features, as labeled with arrows in Figs. 3(b) and 3(d),

confirming the formation and integration of nanostructured

layers with the Al2O3 and AlN substrates.

Identification of the nanostructures was performed using

SAED and HRTEM collected from the transferred GaAs:N

nanocomposite layers. Comparisons of the interplanar spac-

ings measured by SAED and the powder diffraction stand-

ards from GaAs and zincblende GaN are shown in Table I.

For the GaAs:N nanocomposite layer transferred to the

Al2O3 (AlN) substrate, d-spacings of 3.26, 2.00, and 1.69 Å

(3.26, 2.00, and 1.70 Å) are observed, within 0.6% of the

{111}, {220}, and {311} interplanar spacings of GaAs.

Additionally, d-spacings of 2.60 and 1.59 Å (2.60 and 1.62

Å) are apparent, within 1.9% of the {111} and {220} inter-

planar spacings of ZB GaN. The nucleation of ZB GaN

nanocrystals is confirmed by HRTEM studies, which reveal

average lattice fringe spacings of 2.02 (Fig. 4(a)) and 2.26 Å

(Fig. 4(b)), within 0.5% of the {102}, {200} interplanar

spacings of ZB GaN.

V. SUMMARY AND CONCLUSIONS

In summary, we report a new technique for the simultane-

ous nanostructuring and layer transfer of a GaAs:N film,

termed “ion-cut synthesis.” Ion-cut synthesis is accom-

plished via N-ion implantation in GaAs, followed by SOG-

mediated wafer bonding and RTA. Due to the low ion-

matrix diffusivity of GaAs:N, high-temperature RTA indu-

ces the formation of both nanocrystals and gas bubbles. We

show that the successful achievement of ion-cut synthesis

depends on the physical properties and thickness of the sub-

strates and bonding layer. Ion-cut synthesis is expected to be

useful for the integration of semiconductor nanocomposites

with a wide variety of functional alternative substrates.
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FIG. 3. Nanostructure formation in transferred layers. (a) Bright-field, and

(b) dark-field cross-sectional TEM images of GaAs:N layers transferred to

an Al2O3 substrate. (c) Bright-field, and (d) dark-field cross-sectional TEM

images of GaAs:N layers transferred to an AlN substrate. In both (b) and

(d), corresponding SAED patterns are shown as insets. The SAED patterns

of the transferred GaAs:N layers indicate the presence of both zincblende

(ZB) GaAs and ZB GaN crystallites. In the dark-field TEM images in (b)

and (d), dashed lines indicate smooth interfaces between the GaAs:N nano-

crystal and SOG bonding layers. Furthermore, nanometer-size bright fea-

tures in the GaAs:N layers, indicated by arrows, confirm the formation of

nanocrystallites.

TABLE I. Comparison of the interplanar distances measured by selected area

electron diffraction of the GaAs:N nanostructured layers with the powder

diffraction standards for zincblende (ZB) GaN and GaAs.

d-spacing (Å) (experimental) Powder diffraction standard

Fig. 3(b) Fig. 3(d) ZB GaN (hkl) GaAs (hkl)

3.26 3.26 3.26 (111)

2.60 2.60 2.60 (111)

2.00 2.00 2.00 (220)

1.69 1.70 1.70 (311)

1.59 1.62 1.59 (220)

FIG. 4. High-resolution TEM images of transferred nanocomposite layers.

Examples of nanometer-sized GaN crystallites are circled for layers trans-

ferred to (a) Al2O3, and (b) AlN substrates.
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