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SUMMARY

This article uses log-linear models to describe pairwise agreement among several raters who classify a
sample on a subjective categorical scale. The models describe agreement structure simultaneously for
second-order marginal tables of a multidimensional cross-classification of ratings. Practical difficulties arise
in fitting the models, because models refer to pairwise marginal tables of a very large and sparse table. A
standard analysis that treats the marginal tables as independent yields consistent estimates of model
parameters, but not of the covariance matrix of the estimates. We estimate the covariance matrix using the
jackknife. We apply the models to describe agreement between evaluations made by seven pathologists of
carcinoma in situ of the uterine cervix, using a five-level ordinal scale. Previous analyses showed differences
among the pathologists in their pairwise levels of agreement, but we observe near homogeneity in the
dependence structure of their ratings.

1. INTRODUCTION

Suppose several raters separately classify each member of a sample, using a categorical measure-
ment scale. Many categorical scales are quite subjective, and reliability assessment depends on
evaluation of agreement among the raters. Kraemer! and Verducci et al.? recently discussed basic
issues in evaluating agreement, and described a variety of ways of measuring it. Several
authors®~5 have described multi-rater agreement using generalizations of Cohen’s® kappa.
Others”® showed difficulties with summarizing pairwise agreement by a single measure, and
instead proposed modelling the structure of agreement among raters. This is also the approach
taken in this article.

We illustrate agreement modelling using Table I, based on data presented in Landis and Koch*
and originally reported by Holmquist et al.!® Seven pathologists classified each of 118 slides
in terms of carcinoma in situ of the uterine cervix, based on the most involved lesion, using
the ordered categories: (1) negative; (2) atypical squamous hyperplasia; (3) carcinoma in situ;
(4) squamous carcinoma with early stromal invasion; (5) invasive carcinoma. A 57 contingency
table summarizes the joint classifications of the pathologists.

0277-6715/92/010101-14307.00 Received June 1990
© 1992 by John Wiley & Sons, Ltd. Revised April 1991



102 M. P. BECKER AND A. AGRESTI

Table I. Cross-classification of seven pathologists on five categories
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Data from Holmquist et al,'° as reported by Landis and Koch*

One possible analysis of these data compares the single-rater (that is, first-order) marginal
distributions of the responses. For instance, we could analyse whether some pathologists tended
to make higher ratings than other pathologists. Cox et al.'! and Agresti et al.!? conducted such
an analysis and found strong evidence of differences. Though this is an informative comparison, it
is not the focus of our attention. Instead we model the structure of agreement, focusing on second-
order dependence in the joint distribution. An analysis of agreement should study this depend-
ence as well as the marginal distributions, since there can be weak joint agreement in ratings even
though the marginal distributions are similar; for instance, pairwise ratings could be statistically
independent even though the first-order marginal distributions are identical. Using estimation
methods discussed in this article, we can investigate whether all pairs of raters have the same
structural pattern for agreement, and whether the raters have the same aggregate level of
agreement with other raters.

Section 2 reviews log-linear models for two-rater agreement that this article generalizes.
Section 3 analyses nominal-scale and ordinal-scale muiti-rater agreement by simultaneously
modelling marginal two-rater agreements. Multi-rater tables are often very large and sparse, and
one must use special methods to fit the models and estimate the covariance matrix of parameter
estimates. Section 4 uses models to analyse agreement structure in Table 1. Section 5 gives ways of
modelling agreement between several raters and a standard rating. The final section describes
problems for future research that were suggested by our work.
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2. MODELS FOR AGREEMENT

We first review log-linear models of agreement for the two-rater case. Suppose each rater
separately classifies each of n subjects according to a fixed categorical scale. Let n;; denote the
probability of response i by the first rater and response j by the second rater. The general log-
linear model for this case is

T = exp(diy + 4jo + ki) [ZoZpexp(Agy + Apz + K4p)]

where model parameters satisfy constraints such as £4;; = X4;, = Z;x;; = Z;k;; = 0. We will use
the equivalent simpler formula

logm;; = p+ 4y + 4j5 + ;5 1)

for the expected frequencies {m;; = nm;;}, where u is a normalizing constant, satisfying
exp( — p) = [ZZexp(dsy + 4y + Ka)1/n.

Darroch and McCloud® showed that under certain rather weak assumptions, agreement
models satisfy the quasi-symmetry condition «;; = x; for all i and j. They also showed that the
odds ratios

1;; = (mym;;)/(m;;my), for all i < j,

are natural ones for interpreting models of agreement. Conditional on the event that the raters
classify two subjects in categories i and j, 7;; represents the odds that the ratings are concordant
(that is, that the ratings agree for each subject) rather than discordant. The degree of agreement
increases as {1;;} increase. Darroch and McCloud defined categories i and j as indistinguishable if
1;; = 1 and if 7y = 1 for all other categories k. They used y;; = 1 — (7;;) ' to measure the degree
of distinguishability of those categories.

To describe nominal-scale agreement, Tanner and Young’ used quasi-independence models,
such as log-linear model (1) with

Kij = SI(i = j) 2

where I (.) is the indicator function, equalling 1 when the raters agree and 0 otherwise. For this
model, log(z;;) = 24, and y;; = 1 — exp( — 20) describes beyond-chance agreement — that is,
agreement beyond what we would expect if the first rating were statistically independent of the
second.

For ordinal rating scales, given that two raters disagree, it is unrealistic to expect independent
ratings. There is usually a moderate to strong positive association between the ratings, not
confined to the main diagonal of the table. For instance, suppose there is an underlying
continuum for the rating scale, for which the joint distribution of the raters’ evaluations is
bivariate normal. Then the discretized association will have approximately linear-by-linear
form13.l4

K = Pu;u; (3)

for some set of monotone scores {u;}. It follows from Lauritzen and Wermuth!® that a latent
structure model also implies this form of association when (i) the ratings are conditionally
independent given a latent variable X, and (ii) X has a normal distribution with additive rating
effects, conditional on the two ratings.

For model (3), log 7;; = (u; — u;)?B. The degree of agreement increases as f increases, in
the sense that the odds of concordant ratings for a pair of subjects increase in B. Since
;=1 —exp[ — B(u; — u;)*], the scores in model (3) help determine the distinguishability of
categories. For a given location and scale constraints for the scores, the distinguishability of
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categories i and j increases as |u; — u;| increases; if u; = u;, the conditional distribution for ratings
by one rater is the same whether the other rater picks category i or j, and the categories are
indistinguishable.

Agresti'® described ordinal agreement patterns using model (3) and more general ones that
permit extra agreement on the main diagonal. Becker!” discussed related models. One can select
the scores in these models a priori, or treat them as parameters and estimate them with sample
data. For equal-interval scores, (3) is the uniform association model,'® for which all local odds
ratios {m;m;, | j,/m; j+ 1M, ;) are identical.

3. MODELS FOR MARGINAL AGREEMENT AMONG SEVERAL RATERS

When d raters classify each subject on a scale with r categories, a contingency table having n
observations in r¢ cells describes the joint distribution of the sample ratings. It is sensible to
construct a model that simultaneously describes agreement for the () pairs of raters. Let mg,;;
denote the expected frequency for the cell in row i and column j of the second-order marginal
table for raters a and b. The log-linear model

108 Mapyij = Miaby + Aaby1i + Aavy2j + Kan(hj)y, 1<a<b<d )

applies simultaneously to the (4) second-order marginal distributions of the ¥ contingency table.
The model of independence for each pair of raters is the special case in which all x parameters
equal zero.

One would normally select the form of the x parameter to reflect the nature of the response
classification. When the rating scale is nominal, model (4) with the simple structure

Kiap(is)) = San (i = J) (5

usually fits much better than the model of independence; when the classification is ordinal, a
dependence term of the form

Kiapy(is J) = Banytild; ©)

is usually more appropriate.

More general forms for «k are also possible. For instance, one could let {§,,} in (5) vary by
rating category. Often, though, one prefers to achieve parsimony by searching for similarity in the
agreement structure among the marginal tables. Also, it is useful to summarize the agreement of
each rater with the other raters, to check whether certain raters tend to have notably high or low
aggregate levels of agreement. For models (5) and (6), one could attempt to describe aggregate
agreement for each rater by considering the parsimonious special cases

5(ab) = (04 + 65)/2 (7a)

Bany = (Ba + B5)/2. (7b)

Models (7a) and (7b) are equivalent to (5) and (6) when there are only d = 2 or 3 raters, but are
simpler when d > 3. The rationale for such models is similar to that of two-way ANOVA models
without interaction. They express the pairwise associations as a sum of main effects. There is also
a resemblance to the Bradley-Terry model (see, for example, Agresti,'® Section 10.6), in the sense
that they describe parsimoniously (%) parameters for pairs of raters by a single parameter for each
rater.

When (7) holds, a large value of §, or f, means that rater a tends to have strong agreements
with the other raters. When it holds withé, = ... =d,0r f, = ... = fB,, there is homogeneity
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in the agreement parameters for all ($) second-order marginal tables. Alternatively, one could
consider simpler versions of models (5) and (6) that have homogeneity within and between subsets
of raters; for instance, d;,=4, for i and j in subset C,, é;;=4, for i and j in subset C,, and
dy=0sforiin C, and jin C,.

It is a non-trivial matter to fit these models, since they differ from ordinary log-linear models.
They apply to second-order marginal distributions rather than to the interior cells of the
complete r* table to which the usual multinomial sampling model applies. One fitting approach is
based on maximizing a multinomial likelihood for the complete table subject to the constraints
that second-order marginal tables simultaneously satisfy (4). Haber?® used the method of
constrained maximum likelihood, described by Aitchison and Silvey,2! to fit simple log-linear
models to marginal configurations of contingency tables. The iterative procedure, however,
involves inverting a matrix of rank greater than the number of cells in the table. With current
computing capabilities, this approach is not feasible for large tables such as occur when there are
several raters and the rating scale is polytomous.

We used an alternative, much simpler approach for fitting multi-rater agreement models. We
fitted the models directly to the interior cells of a r x r x () table, in which the kth r x r layer refers
to classifications for the kth pair of raters; that is, each layer of this table is a second-order
marginal table of the complete r table. This table sacrifices information about the joint ratings,
retaining only the pairwise rating information. When d is large, this ‘pairwise-ratings table’ is
much smaller and less sparse than the complete table. For Table I, for instance, the complete table
has 118 observations in 57 = 78,125 cells, whereas the pairwise-ratings table has 118 x (J) = 2478
observations in 5 x 5 x (7) = 525 cells. We fitted the agreement model to the pairwise-ratings table
by using a maximum likelihood routine that treats the (%) layers as independent multinomial
samples. For the general heterogeneous model (4), this corresponds to fitting an agreement model
separately to each second-order margin of the complete table. For simpler models such as (7), the
analysis pools information from different layers to estimate the agreement parameters. In either
case, assuming the model holds for the two-factor margins of the complete table, the consistency
of the sample proportions in each marginal table ensures the consistency of these ‘pseudo ML’
estimates.

Of course, samples in different layers of the pairwise-ratings table are not truly independent,
since each layer classifies the same subjects. The pseudo ML estimated covariance matrix of the
parameter estimates obtained by treating the (%) layers as independent is not appropriate, and it is
necessary to obtain a separate estimated covariance matrix that takes the dependence into
account. White?? specified the correct form for the covariance matrix for misspecified likelihoods,
and Lipsitz et al.?® showed that one can obtain an asymptotically equivalent estimate with the
jackknife technique. In each step, one fits the model to the pairwise-ratings table obtained after
deleting an observation from the complete table. The jackknife procedure also yields alternative
estimates of the parameters in the model of interest.

With the jackknife approach to estimation, we assume that cell counts in the second-order
marginal tables have muitinomial covariance structure, but we do not need to make assumptions
about the distribution of the d-way joint ratings in the complete 7 table. Another advantage of
the jackknife is that we only need to focus on the parameters of interest in estimating the
covariance matrix. For large problems such as modelling Table I, considerable simplification
results from the ability to ignore the extremely large number of nuisance parameters (for example,
the single-factor terms in model (1)). For other advantages of the jackknife when there may be
model misspecification, see Shao.?* When there is a large number of non-empty cells, the
jackknife becomes more time consuming and it may be more practical to use the bootstrap to
estimate the covariance matrix.
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Suppose we want to compare the fit of two models to the () marginal tables. To do this, we
cannot use the usual likelihood-ratio statistics, since our analysis does not yield maximized
likelihoods for the two models (and even if we could obtain such complete-table maximized
likelihoods and fitted values, the table is often so sparse that likelihood-ratio statistics would have
dubious utility). A simpler way to compare models is to construct Wald statistics, with use of
estimated parameters for the more complex model. The Wald statistics are simply the statistics
used in weighted least squares (WLS) methodology (Grizzle et al.2®) for testing the fit of the
simpler model when it is expressed in terms of parameters of the more complex model. Our use of
this methodology parallels the functional asymptotic regression methodology outlined by Imrey
et al,>® who used WLS methods in combination with estimates obtained from a ML fit of a
model.

To illustrate, suppose we want to compare (6) with a homogeneous agreement model in which
{Ba} are identical. Equivalently, we can test the fit of the model

By = B, for all pairs (ab),

assuming model (6) holds. Let ¢ = (4), and let h be the (t — 1)x 1 vector h= (/?(12) - ﬁ(13,,
Bas — Baay - - ./)’.\LAet A be the (r — 1) x¢ matrix with elements a; =1, a;;,;,= — 1, a;=0
otherwise. Let Cov(f) denote the jackknife estimated covariance matrix of {f,}, and let
S=A c/oV([?) A’. The statistic b’ S~ ' h tests homogeneity of the agreement parameters. Under the
null hypothesis of homogeneous agreement, this statistic has an asymptotic chi-squared
distribution with (4) — 1 degrees of freedom.

4. EXAMPLE

To fit multi-rater agreement models to Table I, we used the GLIM system (Numerical Algorithms
Group?”), release 3-77. We used SAS (PROC IML) for Wald tests. We first consider the
independence model, the heterogeneous diagonal parameter model (5), and the heterogeneous
uniform association model ((6) with equal-interval scores). The pseudo ML fits for these models
for the different layers of the pairwise-ratings table are identical to those obtained by separate
fitting of the corresponding bivariate models (for example, (2) and (3)) to the second-order
marginal tables. To describe their goodness-of-fit, we report in Table II the components of the
likelihood-ratio goodness-of-fit, statistic G for the separate layers. These values are useful mainly
for comparative purposes, since even the second-order marginal tables are quite sparse, with
typically lots of zeros and small counts and a few large counts. (We do not report the Pearson
statistic, because its behaviour is known te be highly erratic when tables contain both large and
very small counts.?8) Table II shows that the independence model fits poorly. Addition of the
main-diagonal parameter (model (5)) makes a considerable improvement. The improvement is
substantially greater yet for the uniform association model. Comparison of this model to model
(5) illustrates how, for ordinal data, models that assume quasi-independence are generally
inadequate.

Though we should interpret results cautiously, the uniform association model fits the 21
marginal tables quite well. Inspection of residuals for marginal tables having relatively large G2
values indicates that in most cases this is due to an observation in which one rater’s classification
differs substantially from the others. In particular, the observation with ratings (5, 5, 1, 4, 5, 5, 4)
by the 7 pathologists seemed highly influential in the fitting process for tables involving rater C.
Table II also reports G* values for model (6) with this observation deleted. For marginal tables
involving rater C, the G? value is considerably reduced compared to the full data set. (The
reduction is even more dramatic for the Pearson statistics. The sum of its values equals 60689 for
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Table I1. Goodness-of-fit statistics for models fitted to pairwise marginal tables

Pathologist Independence ()] Unif. Assoc. Additive
pair (d.f. = 16) df. =15) df. = 15) model
A-B 1312 309 162 15-7* 15-7*
A-C 1393 887 445 301 306
A-D 1173 747 243 255 257
A-E 1133 627 134 131 131
A-F 97-3 81-8 24-8 246 246
A-G 1334 529 55 79 83
B-C 94-1 43-6 230 79 89
B-D 971 532 114 114 11-8
B-E 1362 532 47 43 9-7
B-F 856 624 216 21-1 2111
B-G 1413 403 75 83 84
C-D 1059 551 41-5 336 341
C-E 104-1 703 287 13-9 142
C-F 884 58-8 355 192 19-7
C-G 1234 408 262 13-3 137
D-E 101-2 832 326 330 340
D-F 852 512 113 122 133
D-G 1492 689 2:6 23 84
E-F 84:8 758 380 373 384
E-G 1286 59-6 45 63 64
F-G 90-9 529 72 93 97

* Observation (5, 5, 1, 4, §, 5, 4) deleted

the 21 original tables, and 527-3 with this observation deleted.) For all subsequent analyses, we
deleted this observation. We did this mainly to make more meaningful comparisons of fits of
models. We do not encourage deletion of observations as a general strategy, and our later
substantive conclusions about agreement remain unaltered if we do not delete this observation. In
summary, model (6) with equally-spaced scores seems to describe well the agreement structure
among these seven raters.

Table III contains pseudo ML and jackknife parameter estimates for model (6). It also reports
their jackknife estimated standard errors, which apply to both sets of estimates. Using the pseudo
ML estimate as the initial estimate, the iterative process for fitting the model with a deleted
observation converged in almost all instances within two steps. In each case, the jackknife
parameter estimate is slightly weaker than the pseudo ML estimate, which suggests that the
pseudo ML estimates may be biased upwards. We do not report the 21 x 21 jackknife correlation
matrix of the estimates; the estimated correlation between estimates of f,,, and B4 was almost
always weak (below 0-20) when raters (a, b) and (c, d) formed disjoint sets, but ranged from weak
to quite strong (several values exceeding 0-75) when the sets had a rater in common. For this
heterogeneous agreement model, one could also use ML with separate marginal tables to obtain
standard errors of the parameter estimates, but one would need the jackknife or some other
method to estimate correlations of estimates from separate tables.

Inspection of Table III reveals a certain consistency of results for the 21 marginal tables. For
each table, B is positive and indicates a relatively strong local odds ratio. It therefore makes sense
to consider possible simplification of the agreement model. One can fit models that are special
cases of (6) in two ways. As with (6), one can fit the model directly to the pairwise-ratings table to
obtain pseudo ML estimates, and use the jackknife to obtain estimated standard errors, or, one
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Table III. Parameter estimates for model (6) fitted to marginal tables (jackknife a.s.e. values in parentheses)

Pathologist B C D E F G

A 1-84* 1-88 1-49 1-53 115 218
1-73% 175 1-42 147 1-08 2:04

(0-340) (0-461) 0291) (0-263) (0-270) (0422)
B 1-67 1-68 273 1-34 256
1-61 1-62 2:59 1-24 236

0.271) (0-256) (0-444) (0-352) (0-563)
C 1-53 1-81 1-42 229
1-45 1-75 1-34 2:16

(0-301) (0-284) (0-352) (0-448)
D 1-32 1-41 3-88
127 133 337

(0-247) (0-286) (0947)
E 091 248
0-84 230

(0-276) (0-472)
F 1-79
1-64

(0:323)

* ML estimates
t Jackknife estimates

can apply weighted least squares, using as responses the pseudo ML estimates of { B, } for model
(6) and using the jackknife estimated covariance matrix of those estimates. The former approach
gives fitted values in the cells of the marginal tables, but the second approach may give more
efficient estimates of model parameters, since it recognizes the dependences among the marginal
tables in forming the estimates of model parameters.

When we used the pseudo ML approach to fit the homogeneous agreement version of (6),
which assumes all B, equal some value B, we obtained f = 1-70 for the estimated common
association. The asymptotic standard error, estimated with the jackknife, was a.s.e. (8) = 0-15. We
compared the fit of the homogeneous uniform association model to the independence model
using

z=P/[as.e(B)}=11-28.

There is extremely strong evidence that the agreement is better than that expected by chance. The
WLS estimate of § for the model B, = B equals 1-60, with a.s.e = 0-12, leading to the same
substantive conclusion.

Using the jackknife estimated covariance matrix of the § estimates from the heterogeneous
uniform association model, we tested the adequacy of the simpler homogeneous model by
conducting a Wald test of equality of the 21 § parameters from the marginal tables. For the
pseudo ML parameter estimates, this statistic equalled 51-4, based on d.f. = 20. The hetero-
geneous model provided some improvement in fit. The estimated values in Table III, however,
indicate that, except for perhaps the D-G and E-F agreements, none of the estimates differs
substantively from the ‘uniform’ estimate.

A less drastic special case of model (6) is the additive model (7b). The pseudo ML approach
gives fitted values in the cells of the pairwise-ratings table, and Table II shows components of the
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Table IV. Pseudo ML estimated parameters {[?,,} for additive model, and estimated covariances ( x 1000)

Rater
A B C D E F G
Estimate
Covariance with: 1-56 2:09 1-81 1-60 1-51 072 3-28
A 217 - 05 1-1 01 2-1 1-5 - 31
B - 05 159 -30 —-03 47 1-3 44
C 11 - 30 225 — 14 1-4 1-1 56
D 01 —-03 —14 204 —-21 2-4 56
E 2-1 47 1-4 —-21 170 -39 2:6
F 1-5 1-3 1-1 2-4 -39 30-2 - 08
G -31 44 56 56 2:6 —08 337

—-

Table V. Fit provided by additive model (7b) to pseudo ML estimates of {f,,} in

heterogeneous model (6)

Pathologist B C D E F G
A 1-84* 1-88 1-49 1-53 1-15 218
1-83t 1-69 1-58 1-64 1-14 242
B 1-67 1-68 273 1-34 2:56
1-96 1-84 1-80 1-40 2:68
C 1-53 1-81 1-42 229
1-71 1-55 1-27 255
D 1-32 1-41 388
1-55 1-15 243
E 091 248
111 239
F 1-79
2:00
* Model (6)
t Model (7b)

G? statistic for each pair of raters. This simple model seems to fit as well as the heterogeneous
model (6), except for the D-G and B-E marginal tables. Table IV shows pseudo ML estimates of
{B.}, together with estimated covariances of those estimates. Table V compares the pseudo ML
estimates of {B,, } for model (6) to those predicted by the additive model (7b). The additive model
does a reasonably good job in predicting the heterogeneous estimates for 19 of the 21 pairs of
raters, with marked discrepancies occurring for the D-G and B-E pairs. The WLS test of fit of the
additive model (assuming (6) holds) has chi-squared statistic equal to 26-2, based on d.f. = 14, and
reflects this lack of fit. Simpler models that assume homogeneity of pairwise agreement
parameters within and between subsets of raters showed even greater lack of fit.

We can use the estimated parameters for the additive model to describe aggregate agreement
for the raters. A Bonferroni multiple comparison of the 21 pairs of estimates of {8,}, using an
overall 0-95 confidence coefficient, reveals that the agreement component for rater G is signific-
antly higher than all others, and the agreement component for rater F is significantly lower than
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all others. The only other slight evidence of a difference is between E and B. Thus, rater G tends to
have highest agreement with other raters, rater F the lowest, and the similarity of other estimated
{B.} suggests that agreements between other pairs of raters are approximately uniform.

In summary, we can give quite a simple description to Table 1. The simple additive model (7b)
fits reasonably well, rater G has highest and rater F has lowest aggregate agreement with the
other raters, and the other raters have similar aggregate agreements and similar pairwise levels of
agreement.

Schouten? analysed Table I by calculating Cohen’s kappa for each pair of pathologists, using
the collapsed scale in which he combined the first two and last three categories. Schouten
concluded that agreement among pathologists A, B, E and G is substantial, each of these
pathologists has at least moderate agreement with pathologist C, and pathologists D and F each
has less agreement with the others. Schouten’s conclusions reflect the variation in marginal
distributions for the seven pathologists. Pathologists who had similar marginal distributions for
this collapsed scale tended to have higher levels of agreement, as described by kappa.

Our conclusion differs somewhat from Schouten’s, because our models use the full five-point
ordinal scale and describe the agreement structure with adjustment for marginal discrepancies.
The models describe agreement in terms of concordance of ratings, and there can be high
concordance (for example, large values of 7;;) even when there are substantial discrepancies in
marginal distributions. In summary, though there are substantive differences in the seven
marginal distributions of ratings, our analyses suggests that (adjusting for such differences) there
is near homogeneity in the pattern and strength of agreement.

5. COMPARING SEVERAL RATERS TO A STANDARD

Simplifications in the fitting process are sometimes possible when we want to describe simulitan-
eously agreement between d raters and a ‘standard’ rating. The standard might be a known
correct classification, or it might simply be the current ‘best’ known way of making a rating. For
nominal rating scales, Tanner and Young’ considered two types of models for this situation — one
when raters examine independent samples, and the other when raters examine the same sample.
We now propose models for ordinal-scale agreement for these two cases, and we propose models
of nominal-scale agreement for the second case that differ from the Tanner and Young model.
When raters examine independent samples, the responses form d separate tables, where the kth
table compares rater k to the standard. Let m;; denote the expected frequency when the standard
classification is i and the rater classification is j, for the kth rater, and consider the model

logmy, =p+ A7 + A) + A2 + AR + A% + k. j) (8)

where S is standard rating, N is non-standard rating and R is rater.

For instance, the structure x,(i, j) = B, u;u; + 8,1 (i = j) permits levels of association {f,} and
main-diagonal elevation parameters {J,} between each rater and the standard to vary by rater.
Special cases include heterogeneous linear-by-linear association for the S-N agreements
(6, = ...9d,4=0)and the Tanner and Young model for nominal-scale agreement between each
rater and the standard (8, = ... = f; =0). Since the k layers of this table now truly are
independent samples, we can fit the model with standard methods for log-linear models.

Next, suppose the d raters examine the same sample. Let i = (ig, . . . , i;), where i, is the rating
by the standard. Let {m;}, withi = (i, . . . , i), denote the expected frequencies in the r**! cross-
classification of ratings. Let m;;, be the expected frequency in the cell in row i and column j for
the marginal table between rater k and the standard, k=1, ..., d. We could model the d
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pairwise marginal agreements between the raters and the standard by
log mijuy = By + Aigy + Ajay + ki), 1<k <4, 9

where the form for k,(i, j) depends on the measurement scale. We can fit such a model using the
methodology described in Section 3, treating the data as d independent r x r tables for purposes of
obtaining the estimates.

For the second case, it might sometimes be reasonable to assume that, conditional on the
standard rating, ratings by other pairs of raters are statistically independent. Then model (9) is

equivalent to the log-linear model
d

d
logm; = u + hZO Ay + kzl Ki(ix» i) (10

for the complete table, since standard collapsibility conditions imply that the d partial associ-
ations of each rater with the standard are identical to the marginal associations. Thus, when the
complete table is not too large, one can obtain parameter estimates and the estimated covariance
structure for model (9) directly by fitting model (10). One can then check the conditional
independence assumption by analysing the fit of (10). When the model fits adequately, one can
investigate further whether a simpler model of homogeneous agreement with the standard fits
adequately.

When all raters observe the same sample, Tanner and Young proposed a log-linear model that
allows the most general interaction pattern among the raters and describes conditional agreement
between each rater and the standard. A practical difficulty with this model is that it forces
expected frequency estimates to equal the observed data in each cell of the r marginal cross-
classification of the raters. Because of the sparseness of this table, ML estimates rarely exist for
this appraoch.

6. COMMENTS

In general, a model that specifies homogeneous pairwise agreement structure may fit well even
though raters have different marginal distributions and even though pairs of raters have different
levels of agreement as measured by an index such as kappa. When this happens, it often indicates
that variation in the index of agreement is due to the variation in the marginal distributions. If the
observers could calibrate their ratings so that the marginal distributions were identical (perhaps
matching some standard distribution), they might be interchangeable with respect to their
distributions of pairwise ratings. For instance, for an ordinal rating scale, this interchangeability
might occur if some observers adjusted their ratings upwards or downwards.

Agreement involves both similarity of first-order marginal distributions for raters and strong
pairwise association between them. Neither strong association nor identical marginal distribu-
tions is sufficient to ensure strong agreement. We have focused on modelling association in this
article. Strong association is indicative of consistency between classification of different raters, at
least in terms of odds of concordance, and is the primary determinant of agreement with ratings
calibrated to match a standard.

An alternative approach to modelling agreement is to focus on conditional agreement among
the raters.” Model parameters then describe agreement between a pair of raters, for fixed ratings
by the other d — 2 raters. In most applications we believe this has less descriptive important than
marginal agreement for each pair of raters. It is usually not sensible to condition on other ratings
to describe the agreement between two raters.

The methods we have employed in this paper apply more generally than to rater agreement
problems. In many longitudinal studies, marginal associations are more relevant than partial
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associations. In a panel study in which one observes responses for each subject at times
1,2,. .., d, one might want to describe simultaneously the associations between responses at all
pairs of times. One might have interest in whether the association is homogeneous for all pairs of
times that are the same number of time units apart, for instance, or, in a social mobility study, one
might want to model simultaneously associations that correspond to one-step transitions.

For some data sets, alternative analyses to those we have described might be more appropriate.
For instance, suppose there were two different methods of making ratings, and one sample of
raters used one method and a second sample used the other method. One might have interest in
whether there was a difference between the level of agreement among raters who used one method
and the level of agreement among raters who used the other method. For model (6), one could
describe aggregate agreement for the two methods using the special case of a homogeneous f for
pairs of raters using method one, and another homogeneous B for pairs of raters using method
two. One would then compare levels of agreement using the difference in f# estimates. For this
problem, a ‘random effects’ approach might be more reasonable. One could treat raters using
each method as a sample, and use average pairwise agreement for each method to estimate a
mean pairwise agreement for a population of raters.

More generally, one could incorporate covariates in the model. Interest can then focus
additionally on association between each rater’s rating and the covariates as well as on the
agreement among raters, controlling for the covariates. One can view the analysis described in the
previous paragraph as resulting from use of a single binary covariate that identifies the method of
making the rating.

7. FUTURE RESEARCH PROBLEMS

Our work in this area suggests several interesting problems for future research. Many of these
concern special difficulties presented by sparse data. For instance, in Section 4 we analysed
goodness-of-fit by checking each two-way marginal table separately. It would be useful to test
goodness-of-fit simultaneously for the 21 marginal tables. Using an estimate of the joint
covariance matrix of the 525 cell counts in those marginal tables, one could obtain an
approximate distribution of X? or G? as calculated for the pairwise-rating table. It follows from
results in Rao and Scott*® that the asymptotic distribution is a weighted sum of 315 y2 random
variables, where the weights are eigenvalues of a 315 x 315 matrix. The application of these results
to highly sparse tables such as in this paper is dubious, and this is a topic for future work. The
same remark applies to use of statistics such as G? to compare fits of nested, unsaturated models
for the pairwise-rating table. Rotnitzky and Jewell*® have conducted some work of this type, in a
simpler setting, for semiparametric generalized linear models for cluster correlated data.

Another concern relates to the efficiency of treating the second-order marginal tables as
independent in estimating parameters in agreement models. We used this procedure because of its
simplicity compared to maximizing the likelihood for the entire table. Based on efficiency results
in Liang and Zeger®! for cases in which each subject has the same number of repeated
observations, we conjecture that there is little efficiency loss when the jackknife estimates from
separate marginal tables have weak to moderate correlations, as was the case in the example we
analyzed.
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