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Chapter 1: Functional Data Analysis Overview 

 Functional data analysis is a way to use the innately smooth nature of functions to gather 

and analyze information stored in these curves’ derivatives.  The methods involved in functional 

data analysis are especially useful in determining the location on and characteristics of a curve 

that differ the most from other generations of the same measure.  Functional data analysis is a 

relatively new idea in the world of statistics with the first textbook published in just 1997.  Since 

then, the idea has really caught on with applications extending to medicine, biostatistics, 

econometrics, and more (Gonzalez-Manteiga & Vieu, 2007).  Providing a way to smooth and 

analyze even very complicated data sets makes it an extremely versatile tool in essentially 

unlimited areas of application. 

 One main use of functional data analysis is to interpolate the notion of “data points” to 

form an entire curve (Ramsay & Silverman, 2005).  A user can control the smoothness of the 

created curve by specifying the number of smooth derivatives needed in their analysis (Ramsay 

& Silverman, 2005).  Fitting a functional data object to maintain smoothness involves first 

establishing a basis set of functions, then creating a matrix of coefficients that represent forming 

a linear combination of these basis functions to fit the data (Ramsay, Hooker, & Graves, 2009).  

One could theoretically employ more and more basis functions to find a perfect fit.  Thus, a user 

must specify the number of smooth derivatives needed in order to ensure that the generated curve 

is smooth enough for the necessary analysis (Ramsay & Silverman, 2005).   

These basis functions are typically one of two types: spline or Fourier.  The spline basis 

first defines a number of break points over an interval.  Between break points, a polynomial of a 

predetermined degree is fit to the data.  At each break point, the two polynomials on either side 

are smoothed together through a process requiring the user to set the number of matching 



FUNCTIONAL DATA ANALYSIS IN CEPHALOMETRICS 5 

 

derivates for the two polynomials.  The most popular spline basis is the B-spline basis system.  

In the B-spline system, the values of all of the spline functions at any given point in time sum to 

one at that point.  The Fourier basis is made up of functions {1, sin(ωt), cos(ωt), sin(2ωt), 

cos(2ωt), …} where ω = 2π/T with T representing the period.  Due to the innate cyclical nature 

of sine and cosine functions, the Fourier basis is typically used for data that is periodic in nature.  

Since it is common for shape analysis to deal with closed-curve contours, Fourier bases typically 

underlie the functional data analysis.  Figure 1 below shows four Fourier basis functions for 

simplicity, but many analyses involve more complex bases made up of dozens of basis functions. 

(Ramsay et al., 2009). 

 

 

Figure 1: A visual representation of the first four Fourier functions. 
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Ramsay and Silverman (2005) have also developed methods for analyzing the data once 

it has been expressed in functional form.  First off, registration is an important tool for lining up 

the functional objects to reduce unwanted variation in the data (Ramsay et al., 2009).  Landmark 

registration uses a smooth, monotonic but non-linear function to warp the time axis in order to 

line up important features or landmarks across all functions (Ramsay et al., 2009).  For an 

example to illustrate the need for registration, suppose we are interested in studying the pubertal 

growth spurt in girls.  This spurt will happen at slightly different ages in different girls, so 

landmark registration will line up each function at the spurt so that a mean curve will be an 

accurate representation of the mean spurt over all girls (Ramsay & Li, 1998).  After registration 

of curves, a common analysis to carry out on the functional data involves functional principal 

component analysis (Ramsay et al., 2009), but more about that method will be discussed in 

Chapter 3. 

Likely due to its newness, functional data analysis has rarely been used in multiple 

dimensions or in image analysis applications (Epifanio & Ventura-Campos, 2011).  One of the 

first two-dimensional analyses involved repeated samples of handwriting, with each sample 

being treated as a function (Ramsay, 2000).  The location of the pen throughout the sample 

provides two-dimensional data in the form of ‘X’ and ‘Y’ coordinates, but a major part of this 

analysis actually separated the ‘X’ and ‘Y’ coordinates of the handwriting curves to be analyzed 

separately, reducing the dimensionality (Ramsay, 2000).  Another early image analysis using 

functional data analysis occurred in 2008 when it was used to distinguish between cancerous and 

benign cells by treating the closed-curve contour of the cell as a function of arc length for 

functional data analysis (Nettel-Aguirre, 2008). 
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 Since then, the idea of functional data analysis in image and shape analysis has expanded 

into even more applications including the analysis of contours of femur bones as well as 

hippocampal differences in patients with Alzheimer’s disease (Epifanio & Ventura-Campos, 

2011).  Despite the very different nature of these studies, all of them are able to distinguish 

between two different groups through fitting functional data objects to the data, isolating the 

important information through principal component analysis, and using basic t-tests to identify 

the important principal component differences between the groups (Epifiano & Ventura-Campos, 

2011).  Ramsay and Silverman (2005) have developed methods that combine principal 

component analysis with functional data analysis, even extending this into multivariate principal 

component analysis, which they demonstrate through analyzing the aforementioned handwriting 

data with ‘X’ and ‘Y’ considered together as a multivariate function. 
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Chapter 2: Mandibular Analysis and Cephalometric Tracing 

 An area in which to consider applying functional data analysis is mandibular tracing and 

analysis.  In orthodontics, doctors use facial profile radiographs, also known as lateral 

cephalograms, to view the shape and position of a patient’s mandible.  With this, orthodontists 

evaluate deformities or malocclusion as well as predict changes that will occur through 

orthodontic treatment (Boeck, Kuramae, Lunardi, Santos-Pinto, & Mazzonetto, 2010).  

Abnormalities such as mandibular retrognathism or prognathism (more commonly known as an 

overbite or underbite) can cause functional limitations such as inefficient chewing as well as 

esthetic insecurities for patients (Boeck et al., 2010).  Numerous studies have shown that 

discrepancies between the position of the maxilla and mandible frequently lead to psychological 

issues such as poor self-image and possibly even job-related discrimination for patients (Hickey 

& Vergo, 1991).  For these reasons, adjustments such as mandibular elongation and other 

surgical methods have been studied and performed for decades to correct these maxillary and 

mandibular abnormalities (Molina & Monasterio, 1995).  

 In order to make a cephalogram useful for an orthodontic analysis, tracing must first be 

done to identify important structures of the mouth such as the mandible.  One way to do this 

tracing is to simply identify the contour by eye and trace it by hand (Little).  It has been found 

that the mandible grows in a natural logarithmic spiral fashion, and methods have been 

developed that use predetermined sines and cosines to calculate these changes that will occur 

through surgery (Scolozzi, Link, & Schendel, 2007).  Such methods use just two angles and one 

length measured by hand on a lateral cephalogram for the analysis (Scolozzi et al., 2007; 

Piroozmand, 2001).  These measures are simply lengths and angles, not taking into account the 
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actual contour of the mandible which can be considered a closed curve (McNamara, Bookstein, 

& Shaughnessy, 1985).   

Studies show that positioning can be improved esthetically with changes in SNB, BNP, 

and PgNP, with a larger ANB leading to a greater mandibular advancement after surgery (Boeck 

et al., 2010).  S refers to the sella, N is where the nasal and frontal bones meet along the curve of 

the bridge of the nose, and Pg is the lowest point on the chin (Little).  Figure 2 shows the 

location of these important landmarks and lines.  A and B are both arbitrary points, with A being 

the innermost point on the curve from the maxillary anterior nasal spine to the crest of the 

maxillary alveolar process and B being the innermost point on the curve from the chin to the 

alveolar junction (Little).  As shown in Figure 2, all of the aforementioned angles and lines are   

 

Figure 2: The location of the sella (S), naison (N), 

pogonion (Pg), and arbitrary points A and B on a 

cephalogram tracing. 
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formed by connecting these landmark points (Little).  ANB is commonly used when analyzing 

the length of the mandible because the line between A and N (maxilla and nose) is stable, but the 

position of B will change with changes in the position of the mandible.  Thus, the angle ANB is a 

good way to capture information about the position of the patient’s mandible with respect to the 

position of the maxilla. 

A common program with which to digitize these cephalometric landmarks is called 

tpsDig, and this software can be downloaded online for free from Stony Brook University 

(Zelditch, Swiderski, & Sheets., 2012).  To use this software for landmark image analysis, the 

user must click on each landmark by hand in the exact same order for each image in the analysis.  

This task could potentially be very tedious with many landmarks, many images, or both.  If even 

one single landmark is accidentally not selected or selected in the wrong order, the digitized data 

is unusable for analysis. 

Selecting landmarks by hand or tracing structures by hand has recently been updated 

through various computer programs.  It can be difficult even for the trained eye to identify the 

necessary landmarks and structures on a cephalometric film radiograph, but Dolphin Imaging, a 

popular software used by orthodontists, can turn these radiographs into contours that are easy to 

read.  A study using sixty-four cephalometric radiographs confirms that there is no difference 

between the superimpositions produced by Dolphin Imaging as compared to the hand-drawn 

standard (Huja, Grubaugh, Rummel, Fields, & Beck, 2009).  

In a literature review concerning mandibular elongation, the authors find that in addition 

to surgical methods, functional appliances can also produce significant lengthening of the 

mandible (Cozza, Baccetti, Franchi, Toffol, & McNamara, 2006).  One main caveat of this 

review is that the actual length of the mandible is not enough to holistically assess its length and 
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position in the mouth (Cozza et al., 2006).  It is suggested that measures such as ANB as well as 

positioning of the teeth should also be considered.  For this reason, more sophisticated methods 

should be developed that consider many of these measures together.  All in all, cephalometric 

tracing and choice of key landmarks are important topics in cephalometrics that should be further 

studied, particularly for examination of the mandible. 
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Chapter 3: Shape Analysis and Principal Component Analysis Methods 

 The predetermined anatomical loci of a mandible can be thought of as landmarks in 

traditional shape analysis.  A widely-accepted definition of shape is “all the geometrical 

information that remains when location, scale and rotational effects are filtered out from an 

object,” (Kendall, 1977; Zelditch et al., 2012).  One way to think of shape is to consider these 

landmarks as a web or map of an image, providing more information by interpolating “semi-

landmarks” between the anatomical landmarks (Zelditch et al., 2012).   

One of the most basic ways to analyze shape is to use Bookstein shape coordinates which 

involves first identifying three landmarks on an image then rotating and scaling the triangle so 

that one landmark falls at (0,0) and another at (1,0) on a Cartesian coordinate grid (Zelditch et 

al., 2012).  When multiple images have been prepared this way, two of the three coordinates of 

each image are standardized so that location differences in the third coordinate will reveal 

differences in shape between the two images (Zelditch et al., 2012).  When there are more than 

three landmarks, multiple triangles can be analyzed to determine differences in shape (Zelditch et 

al., 2012).   

Bookstein updated the field of cephalometric analysis using this triangle idea through the 

development of a method called the tensor method, using the sella (S), nasion (N), and anterior 

nasal spine (A) as the landmarks for the triangle (McNamara et al., 1985).  In this study, these 

triangles were used to examine changes in subjects’ mandibular shape and growth using a 

Frankel appliance as compared to changes in mandibular length without the appliance, finding 

that the appliance does lead to significant lengthening of the mandible (McNamara et al., 1985).   

Although less intuitive than the Bookstein shape coordinates, a more widely-used method 

of shape analysis is the Procrustes superimposition method (Zelditch et al., 2012).  This process 
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can be summed up in three steps.  First, center the landmarks of an image by subtracting the 

coordinates of the centroid (arithmetic averages of the landmarks’ ‘X’ and ‘Y’ coordinates) from 

the coordinates of each landmark (Rohlf & Slice, 1990).  Then, scale the shape by dividing the 

coordinates of each landmark by the centroid size (Rohlf & Slice, 1990).  Since the shapes are 

centered, the centroid size is simply the square root of the sum of the squared coordinates (Rohlf 

& Slice, 1990).  The last step is to rotate the shape to minimize the sum of the squared 

differences of the coordinates (Rohlf & Slice, 1990).  This “registers” the images by reducing 

variation due to positioning as well as standardizing for size.  When multiple images are lined-up 

in this way, each landmark can be averaged over the images to produce one mean image, and 

variation in one image can be assessed by comparing that image to the computed mean image 

(Rohlf & Slice, 1990). 

Using these Procrustes mean shapes for mandibles, various analyses have been carried 

out in the field of cephalometry.  One example uses Euclidean distance matrix analysis (EDMA) 

to differentiate between different classes of malocclusion (Singh, McNamara, & Lozanoff, 

1998).  Other analyses of Procrustes mean shapes use standard principal component analysis or 

basic comparison of important angles (e.g. ANB) when those shapes are mandibles (Epifiano & 

Ventura-Campos, 2011; McNamara et al., 1985). 

Principal component analysis is a valuable tool in the field of shape analysis because it is 

designed to reduce the dimensionality of high-dimensional data, which shape analysis typically 

involves.  Principal component analysis will break down the information into orthogonal, 

uncorrelated variables, and the amount of variation in the data set coming from each of these 

components is given (Joliffe, 2004).  In landmark analysis, when the first principal component 

explains a large percentage of the total variation, it can be concluded that there is a high 
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dependence between certain landmarks (Epifiano & Ventura-Campos, 2011).  Depending on the 

type of data and desired analysis, principal component analysis can be used as a means for factor 

analysis, regression analysis, outlier detection, and more (Joliffe, 2004). 

 Epifiano and Ventura-Campos (2011) offer an interesting take by combining functional 

data analysis, shape analysis, and principal component analysis.  Using a sample of femura, the 

closed-curve outline of each bone is treated as a function parametrized by arc length (Epifiano & 

Ventura-Campos, 2011).  With this data, principal component analysis is used in both landmark 

description and functional data analysis as a way to differentiate between arthritic and normal 

bones (Epifiano & Ventura-Campos, 2011).  They find that functional principal component 

analysis is even better than landmark analysis because it produces fewer errors in their bone 

characterization (Epifiano & Ventura-Campos, 2011).  This study provides an optimistic outlook 

for applications in other areas of shape analysis by demonstrating an elegant way to use 

functional data analysis for closed-curve shapes. 
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Chapter 4: Data and Hypothesis 

 This femoral analysis by Epifiano and Ventura-Campos provides the inspiration for the 

connection between functional data analysis and cephalometry.  Like the femur, a lateral 

radiograph provides a mandibular contour that can be treated as a closed-curve function for the 

sake of functional data analysis.  It is hypothesized that functional data analysis can be a tool that 

gives orthodontists all of the necessary and valuable information to examine and treat 

mandibular abnormalities using the traced contour.  Further, the goal is that functional data 

analysis can provide more information about the mandible than the traditional landmark methods 

used in orthodontics today.  Additionally, a validation of functional data analysis in 

cephalometrics could solve some current problems with the landmark approach including the 

inefficient and error-prone identification of mandibular landmarks by hand.  Overall, a similar 

analysis to the one presented in Epifiano and Ventura-Campos’ study (2011) will compare 

landmark analysis to functional data analysis using mandible contours. 

Data for this analysis were collected by researchers at the University of Michigan in 2007 

for a study concerning the relation between cephalometric structures and the facial esthetics 

during a smile.  The data contain a wealth of length and angular measurements used by 

orthodontists in assessing these structures, including those presented in Figure 2 on page 9.  

These cephalometric measurements were produced electronically using the Dolphin Digital 

Imaging System, which has been proven to be comparable to the hand-drawn standard, as 

previously mentioned.  These measurements were made from an image containing tracings of the 

important dental landmarks and contours, generated from a lateral radiograph from the right side 

of the face.  An example of one such tracing from this data set in its entirety is provided in 

Figure 3 on the following page.  
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Figure 3: One complete tracing from the data set before any 

transformations have been applied. 

 

The full data set consists of cephalometric tracings from 24 subjects.  These 24 subjects 

are all healthy female dental students from the University of Michigan in Ann Arbor.  Their ages 

range from 22 to 28 with a mean of 24.3 years old.  The average height and weight are 1.7 

meters and 58.2 kilograms, respectively.  The data was collected for the purpose of examining 

smiles, but the presence of mandible tracings makes it an excellent data set for the purposes of 

this project. 

To prepare the data for this analysis, the first step was to digitize the images using a 

standard office scanner.  Next, the digitized images were uploaded into Adobe Photoshop 

software.  Using the “ruler” tool in this software, the images were rotated to align to a standard 
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horizontal line in each image.  This line, commonly called the Frankfurt horizontal, is a standard 

reference in cephalometrics and was created to be as close as possible to parallel to the ground 

when a human holds their head naturally (Piroozmand, 2001).   In Figure 3 on page 16, this is the 

nearly-horizontal line that passes from the far left size of the image to the far right side of the 

image.  Next, the “polygonal lasso” tool in Adobe Photoshop was used to isolate the tracing of 

just the mandibular contour, eliminating all other unnecessary lines from the image.  The tracing 

that is left represents a closed planar curve of the boundary of the mandible, and all 24 tracings 

in this data set are visible in Appendix A. 

For landmark analysis, each cephalometric image was uploaded in tpsDig, and 10 

landmarks were selected along the mandible by hand for each image.  These landmarks were 

chosen by the fact that they correspond to the anatomical curves of a mandible.  Figure 4 on page 

18 is an example mandible that shows the location of these 10 landmarks.  The coordinates for 

each landmark were saved through tpsDig for analysis.  For functional data analysis, a free 

raster-vector software called WinTopo Freeware, available at wintopo.com, was used to translate 

the mandibular contour into over 1000 Cartesian coordinates for use in R.  As assessed by eye 

and visible in Figure 5 on page 18, this process introduces no substantial variation in the 

analysis.  This image shows a magnified section of the mandible to display that the software fits 

a vector so close to the contour that the rasterized contour is visible on both sides of the vector, 

meaning that we can assume this software is accurately vectorizing each mandibular contour. 

The primary analyses for this study were carried out using R, a free statistical software 

available at r-project.org.  Ramsay and Silverman (2005) provide a number of functions 

accessible through the ‘fda’ library in R that are necessary for this analysis.  The details of each 
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R analysis will be presented separately for landmark and functional analyses in Chapters 5 and 6, 

respectively.  All R code used in this analysis is available in Appendix B. 

 

Figure 4: One isolated mandibular tracing from the data 

set demonstrating the position of the 10 landmarks 

selected for this analysis. 

 

 

 

 

Figure 5: A magnified look at the calculated vector (green) 

as compared to the actual contour (black) of a mandible. 
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Chapter 5: Landmark Analysis of Mandibles 

 The current standard for mandibular analysis makes assessments using the anatomical 

landmarks present on a lateral cephalogram.  As aforementioned, the angle ANB is used in 

examining the positioning and length of the mandible.  Our data set includes the ANB for each 

subject, ranging from -2.0° to 6.5° with a mean of 2.52°.  Of the 24 subjects, two subjects have 

an ANB less than 0° which is typically classified as an underbite, and six subjects have an ANB 

greater than 4° which is typically classified as an overbite.  However, the boxplot of ANB in 

Figure 6 shows that there are no outliers in this data set.  This finding is not surprising because 

all of the subjects in the study are considered healthy, normal individuals.   

 

Figure 6: A boxplot of ANB angle measures for all subjects 

shows that there are no outliers in the set. 

 

 

 This data only tells us about the length of the mandible, not necessarily the shape of the 

mandible.  To assess the shape of the mandibles in our data set using landmark analysis, the 

same procedure was followed that was carried out in Epifiano and Ventura-Campos’ study 

(2011) on femur contours.  First, the shapes are rotated and scaled using the Procrustes method 
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through the ‘shapes’ library in R.  Next, a generalized Procrustes analysis is performed using the 

‘procGPA’ function in R.  This first uses the landmarks to register each image so that only the 

necessary shape data are present. The generalized Procrustes analysis also calculates a mean 

shape based on these 24 standardized contours.  The Procruses registration is shown for all 24 

mandibles in Figure 7, and the Procrustes mean shape with labeled landmarks is shown in Figure 

8 on page 21.  A noticeable effect of the Procrustes registration is that the mandibles are rotated 

approximately 90° clockwise. 

 

 

Figure 8: The tracings of all 24 mandibles after landmark selection and 

Procrustes rotation and scaling. 
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Figure 9: The Procrustes mean mandible for the data set with labeled 

landmarks. 

 

 

 The generalized Procrustes analysis in R also performs a principal component analysis.  

Figure 10 provides a visualization of the first four principal components which account for 

29.6%, 21.0%, 15.4%, and 12.7% of the variation in the data, respectively, for a total of 78.7% 

of variation.  Each image shows the coordinates of the mean mandible with vectors along each 

respective principal component (Epifiano & Ventura-Campos, 2011).  The fact that the variation 

is very spread out amongst many principal components indicates that there is not a high 

dependence between landmarks (Epifiano & Ventura-Campos, 2011).  This may be the reason 

that these principal components in Figure 10 appear to be complex even with this visualization. 
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Figure 10: Each image shows the coordinates of the Procrustes mean mandible with 

vectors in the direction of the respective principal component for the first four principal 

components. 

 

 

 

In this type of analysis, the shape variability in the data is assessed through the root mean 

square of the full Procrustes distance (Dryden & Mardia, 1998).  In our data, this root mean 

square is 0.07 which indicates very little shape variability (Dryden & Mardia, 1998).  The 

Procrustes distance for each shape is a way to indicate how close that shape is to the Procrustes 

mean shape (Dryden & Mardia, 1998).  The boxplot of Procrustes distances for all mandibles in 
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Figure 11 shows that there are no outliers in this set, meaning that none of the mandibles’ 

landmarks are significantly different than those of the mean mandible. Again, this is not 

surprising because the data comes from normal, healthy individuals. 

 

 

Figure 11: A boxplot of all Procrustes mean differences, indicating 

that there are no outliers in the set. 
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Chapter 6: Functional Data Analysis of Mandibles 

 In landmark analysis, the information in shape of the mandible is reduced to just 10 

landmarks, but functional data analysis retains much more information.  After using the raster-

vector software, each mandible contour is made up of over 1000 coordinates, providing 

information about every millimeter of the curve.  Like in landmark analysis, it is necessary for 

each mandible to be represented by the same number of points.  However, because the data 

points are so dense in this method, we do not lose very much information by eliminating every 

few points along the curve as necessary to force each coordinate set to be the same size. 

 Once all tracings have the same number of coordinates, functional data objects can be 

created.  Because we are treating this as closed-curve data, the cyclical Fourier basis is used to 

define our functional objects.  Selecting too many basis functions will result in introducing extra 

noise into the data, but selecting too few could over-smooth (over-simplify) the data.  It is 

reasonable to detect both extremes of this problem by eye through plotting the data, and 45 

Fourier basis functions have been chosen for the purposes of this analysis.  Once this basis is 

defined through the ‘create.fourier.basis’ function in R, the ‘smooth.basis’ function can be used 

to create a linear combination of the bases for each replicate in the data set (Ramsay et al., 2009).  

For multivariate data like the ‘X’ and ‘Y’ data in this analysis, these functions have been built to 

consider the variables together, providing a better analysis than separating the data (Ramsay et 

al., 2009; Ramsay, 2000).  This is possible by considering the position of the curve in space at 

equidistant points along the arc length of the curve. 

 Like the Procrustes method in landmark analysis, it is necessary to line up these 

functional data objects as well.  Landmark registration and continuous registration are both 

processes developed for functional data analysis to solve this problem.  Landmark registration 
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involves specifying predetermined peaks, zeroes, or other defining features, and the time axis of 

each curve will be warped to meet those landmarks at the same point in time (Ramsay & 

Silverman, 2005).  Continuous registration prevents the need for this tedious landmark selection 

process by considering the whole curve and warping each curve to match a specified target curve 

(Ramsay & Silverman, 2005).  Because we have data on the whole curve, the ‘register.fd’ 

function was used to continuously register our 24 curves.  Even though the multivariate data is 

being considered together, the ‘X’ and ‘Y’ registered curves are shown separately in Figures 12 

and 13 on page 26, respectively, for simplicity. 

 

  

Figure 12: The ‘X’ values for all mandibles as a function of arc length after 

registration has been performed. 
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Figure 13: The ‘Y’ values for all mandibles as a function of arc length after 

registration has been performed. 

 

 

 Now that the data has been smoothed and registered, functional principal components 

analysis can be carried out to discern the important information from the data.  The function 

‘pca.fd’ is used to perform this analysis for our multivariate functional data, and the first three 

principal components are displayed in Figures 14 through 16 on page 27.  The first three 

principal components account for 40.6%, 28.7%, and 10.5% of the variation, respectively, for a 

total of 79.8% of the overall variation.  Again, the ‘X’ and ‘Y’ data are separated here for the 

ease of visualization, but they are considered together in the analysis.  In each of these figures, 

the mean curve is shown in the middle, and the effect of the given principal component is shown 

by the curves on either side of the mean curve.  This allows for visualization of the exact location 

on the curve where there is the most variation, as opposed to forcing this on to just a few 

predetermined landmarks. 



FUNCTIONAL DATA ANALYSIS IN CEPHALOMETRICS 27 

 

 

Figure 14: The effect of the first principal component on the ‘X’ values (left) and ‘Y’ 

values (right) of the mean function. 

 

  

 

Figure 15: The effect of the second principal component on the ‘X’ values (left) and 

‘Y’ values (right) of the mean function. 

 

 

 

Figure 16: The effect of the third principal component on the ‘X’ values (left) and ‘Y’ 

values (right) of the mean function. 
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 For this analysis, only three principal components are used because after these large 

initial few, the logarithm of eigenvalues decreases with a linear trend, as shown in Figure 17 

(Ramsay et al., 2009).  Because the first three are well above the linear trend, we can assume that 

they are the most important (Ramsay et al., 2009).  With just these three principal components, 

we are able to see exactly where almost 80% of the variation lies on the mandible.  Functional 

data analysis provides a tool to employ as much information about the curve as possible while 

still breaking down the variation into three simple principal components. 

 

 

Figure 17: The log eigenvalues for each subsequent principal component. 
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Chapter 7: Conclusions and Recommendation 

 Functional data analysis has emerged as a valuable tool in many areas of application, and 

this list can be extended to cephalometry.  Current measures used in cephalometric analysis are 

limited in the information they contain.  Distances or angles between anatomical structures are 

the current basis of analysis, but this completely ignores the multi-dimensional relationships of 

structures like the contour of the mandible.  Suppose a patient has a mandible of normal length, 

but the condyloid or coronoid process is deformed.  The measurement of mandibular length as 

well as the ANB would be normal in the cephalometric data, and the deformed shape could go 

unnoticed.  Landmark analysis helps solve this problem by characterizing shape in addition to 

these lengths and angles.  However, landmark analysis has its limitations, too.  Identifying 

landmarks is a process done by hand, using computer software to click each landmark in the 

exact same order for every image.  Additionally, once this tedious and error-prone process is 

complete, the actual shape to analyze has been reduced to simply the number of landmarks 

chosen.  This could potentially ignore a great deal of shape information. 

 Functional data analysis can solve these problems.  It adds the multi-dimensional shape 

information that traditional cephalometric analysis is lacking, and it is much more user-friendly 

than landmark analysis.  Treating each coordinate along the curve as a semi-landmark, functional 

data analysis provides hundreds or thousands of landmarks rather than just a dozen. Additionally, 

this digitization is automatic and does not require hand-selection that is prone to human error.  

Functional data analysis retains a very large amount of information, but it can still be 

summarized in a small number of principal components through the methods developed by 

Ramsay.  In our study, the landmark analysis contained just 10 landmarks per image, and four 

principal components were necessary to account for 78.7% of the total variation.  In comparison, 
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the functional data analysis contained 1000 semi-landmarks per image, and only three principal 

components were necessary to account for 79.8% of the total variation.  Thus, a greater amount 

of information can be considered, an easier method can be used for computation, and an even 

more elegant summary of the information can be provided through the use of functional data 

analysis in cephalometrics. 

 Despite this optimistic suggestion of the role of functional data analysis in cephalometry, 

further analysis is necessary to confirm its efficacy.  The data set used in this study consisted of 

only 24 healthy, normal cephalograms.  Further research should analyze a wider range of 

mandibles, and an investigation should be pursued to find if functional principal component 

analysis can differentiate between different types of mandibles such as those that need 

mandibular elongation and those that do not.  This type of analysis was not possible with the 

given data set, but the success of differentiation using functional principal component analysis of 

contours in related studies suggests that this would likely be possible to replicate with mandibles 

(Epifiano & Ventura-Campos, 2011; Nettel-Aguirre, 2008). 

 While it is an excellent step to begin considering two-dimensional shapes over one-

dimensional lengths, another limitation of this study is that it does not include even more 

dimensions.  The currently available data consist of two-dimensional lateral cephalograms, but 

this does not take into account the possibility of the mandible being offset to the left or right of 

the patient’s face, something that would only show up in three dimensions.  Because the 

functional principal component methods have already been developed to deal with high 

dimensions, it would be an interesting and likely simple extension to perform this analysis in 

three dimensions, as long as three-dimensional data were available. 
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 All in all, this extension of functional data analysis could bring easier and more accurate 

examination methods of the mandible to the field of orthodontics.  As long as the contour of the 

mandible has been traced, all of the methods for fitting functional objects and analyzing the 

principal components of the contour are free and easy to execute.  Once a larger data set allows 

for a more accurate mean mandible to be calculated, subsequent mandibles can be compared to 

this standard through functional data analysis to standardize mandibular shape examination 

rather than relying on human judgment.  While this analysis focuses on the shape of the 

mandible, orthodontists can further this idea by using functional data analysis to assess shape in 

even more aspects of a cephalogram, leading to easier and more informative assessments of 

potential orthodontic problems. 
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Appendix A 

 

 

Figure 18: All 24 cephalometric tracings of the mandible used in this analysis. 
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Appendix B 

The following is the full code used to generate images and perform all aforementioned analysis 

using the free statistical software, R. 

 

############################# 

############################# 

#### simple ANB analysis #### 

############################# 
############################# 

 

 

par(mfrow=c(1,1)) 

data=read.csv("subjraceanb.csv",sep=",",header=FALSE) 

colnames(data)=c("subj","race","anb") 

 

boxplot(data[,3]) #no outliers for anb 

 

 

 

################################# 

################################# 

#### TPS landmark data - PCA #### 

################################# 

################################# 

 

 

#load packages/libraries 

install.packages("calibrate") 

library(calibrate) 

install.packages("RGraphics") 

library(RGraphics) 

install.packages("shapes") 

library(shapes) 

 

#initialize data array 

dataarray=array(0,dim=c(10,2,24)) 

 

#ceph1 

data=read.csv("tps01",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,1]=data 
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#ceph2 

data=read.csv("tps02",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,2]=data 

 

#ceph3 

data=read.csv("tps03",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,3]=data 

 

#ceph4 

data=read.csv("tps04",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,4]=data 

 

#ceph5 

data=read.csv("tps05",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,5]=data 

 

#ceph6 

data=read.csv("tps06",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,6]=data 

 

#ceph7 

data=read.csv("tps07",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,7]=data 

 

#ceph8 

data=read.csv("tps08",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 
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dataarray[,,8]=data 

 

#ceph9 

data=read.csv("tps09",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,9]=data 

 

#ceph10 

data=read.csv("tps10",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,10]=data 

 

#ceph11 

data=read.csv("tps11",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,11]=data 

 

#ceph12 

data=read.csv("tps12",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,12]=data 

 

#ceph13 

data=read.csv("tps13",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,13]=data 

 

#ceph14 

data=read.csv("tps14",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,14]=data 

 

#ceph15 

data=read.csv("tps15",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 
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data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,15]=data 

 

#ceph16 

data=read.csv("tps16",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,16]=data 

 

#ceph17 

data=read.csv("tps17",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,17]=data 

 

#ceph18 

data=read.csv("tps18",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,18]=data 

 

#ceph19 

data=read.csv("tps19",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,19]=data 

 

#ceph20 

data=read.csv("tps20",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,20]=data 

 

#ceph21 

data=read.csv("tps21",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,21]=data 

 

#ceph22 
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data=read.csv("tps22",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,22]=data 

 

#ceph23 

data=read.csv("tps23",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,23]=data 

 

#ceph24 

data=read.csv("tps24",header=TRUE) 

data=do.call(rbind,strsplit(as.matrix(data)," ")) 

data=data[1:(nrow(data)-1),] 

data=matrix(as.numeric(data),nrow=nrow(data),ncol=2) 

dataarray[,,24]=data 

 

 

#perform generalized procrustes analysis 

x=procGPA(dataarray, scale=TRUE, reflect=FALSE, eigen2d=TRUE, 

tol1=1e-05, tol2=1e-05, proc.output=FALSE, distances=TRUE, 

pcaoutput=TRUE, alpha=0, affine=FALSE) 

#x 

 

par(mfrow=c(1,1)) 

#plot mean shape, label landmarks, connect points 

plot(x$mshape,type='o',pch=20,xlim=c(-0.5,0.5),ylim=c(-

0.5,0.5),xlab="x",ylab="y",main="Procrustes Mean Mandible") 

textxy(x$mshape[,1],x$mshape[,2],1:10) 

 

#plot all procrustes mandibles on top of each other 

plot(x$rotated[,,1],type='l',col=1,xlim=c(-0.5,0.5),ylim=c(-

0.5,0.5),xlab='x',ylab='y',main='All Procrustes Mandibles') 

for(i in 2:x$n) 

{ 

  lines(x$rotated[,,i],type='l',col=i) 

} 

 

#plot first four PCs 

par(mfrow=c(2,2)) 

for(a in 1:4) 

{  
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  plot(x$mshape,type='p',pch=20,xlim=c(-0.5,0.5),ylim=c(-

0.5,0.5),xlab="x",ylab="y",main=paste("PC",as.character(a),

",",as.character(round(x$percent[a],2)),"%")) 

  for(i in 1:x$k) #i is landmark number 

  { 

    tempx=0; tempy=0 

    for(j in 1:x$n) #j is ceph number 

    { 

      tempx=tempx+(x$stdscores[j,a]*x$rotated[i,1,j])  

      tempy=tempy+(x$stdscores[j,a]*x$rotated[i,2,j])  

    } 

    

segments(x$mshape[i,1],x$mshape[i,2],tempx+x$mshape[i,1],te

mpy+x$mshape[i,2]) 

  } 

} 

 

#investigate differences in shape 

par(mfrow=c(1,1)) 

x$rmsd1 #root mean square of full Procrustes distance is 0.07 

which means shape variability in the data is quite small 

boxplot(x$rho) #no outliers 

 

 

 

########################### 

########################### 

####### FDA and PCA ####### 

########################### 

########################### 

 

 

#load data into array 

dataarray=array(0,dim=c(1000,24,2)) 

 

data=read.csv("coord01.3.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,1,1]=data[,1] 

dataarray[,1,2]=data[,2] 

 

data=read.csv("coord02.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,2,1]=data[,1] 
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dataarray[,2,2]=data[,2] 

 

data=read.csv("coord03.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,3,1]=data[,1] 

dataarray[,3,2]=data[,2] 

 

data=read.csv("coord04.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,4,1]=data[,1] 

dataarray[,4,2]=data[,2] 

 

data=read.csv("coord05.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,5,1]=data[,1] 

dataarray[,5,2]=data[,2] 

 

data=read.csv("coord06.2.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,6,1]=data[,1] 

dataarray[,6,2]=data[,2] 

 

data=read.csv("coord07.asc",header=FALSE)[,2:3] 

data=rbind(data[7:nrow(data),],data[1:6,]) 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,7,1]=data[,1] 

dataarray[,7,2]=data[,2] 

 

data=read.csv("coord08.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,8,1]=data[,1] 

dataarray[,8,2]=data[,2] 

 

data=read.csv("coord09.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 
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n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,9,1]=data[,1] 

dataarray[,9,2]=data[,2] 

 

data=read.csv("coord10.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,10,1]=data[,1] 

dataarray[,10,2]=data[,2] 

 

data=read.csv("coord11.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,11,1]=data[,1] 

dataarray[,11,2]=data[,2] 

 

data=read.csv("coord12.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,12,1]=data[,1] 

dataarray[,12,2]=data[,2] 

 

data=read.csv("coord13.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,13,1]=data[,1] 

dataarray[,13,2]=data[,2] 

 

data=read.csv("coord14.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,14,1]=data[,1] 

dataarray[,14,2]=data[,2] 

 

data=read.csv("coord15.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,15,1]=data[,1] 

dataarray[,15,2]=data[,2] 
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data=read.csv("coord16.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,16,1]=data[,1] 

dataarray[,16,2]=data[,2] 

 

data=read.csv("coord17.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,17,1]=data[,1] 

dataarray[,17,2]=data[,2] 

 

data=read.csv("coord18.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,18,1]=data[,1] 

dataarray[,18,2]=data[,2] 

 

data=read.csv("coord19.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,19,1]=data[,1] 

dataarray[,19,2]=data[,2] 

 

data=read.csv("coord20.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,20,1]=data[,1] 

dataarray[,20,2]=data[,2] 

 

data=read.csv("coord21.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,21,1]=data[,1] 

dataarray[,21,2]=data[,2] 

 

data=read.csv("coord22.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,22,1]=data[,1] 
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dataarray[,22,2]=data[,2] 

 

data=read.csv("coord23.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,23,1]=data[,1] 

dataarray[,23,2]=data[,2] 

 

data=read.csv("coord24.asc",header=FALSE)[,2:3] 

diff=nrow(data)-1000 

n=floor(nrow(data)/diff) 

data=data[-(seq(n,to=n*diff,by=n)),] 

dataarray[,24,1]=data[,1] 

dataarray[,24,2]=data[,2] 

 

 

#create functional objects 

fdarange=c(0,100) 

fdabasis=create.fourier.basis(fdarange,45) 

fdatime=seq(0,100,len=1000) 

fdafd=smooth.basis(fdatime,dataarray,fdabasis)$fd 

fdafd$fdnames[[1]]="Percent Arc Length" 

fdafd$fdnames[[2]]="Replications" 

fdafd$fdnames[[3]]=list("X","Y") 

plot(fdafd) 

 

#perform continuous registration 

reglist=register.fd(fdafd$meanfd,fdafd) 

names(reglist) 

plot(reglist$regfd) 

#plot(reglist$warpfd) 

 

nharm=4 

fdapcaList=pca.fd(reglist$regfd,nharm) 

plot.pca.fd(fdapcaList) #plots first 4 PCs 

 

plot(fdapcaList$meanfd) #plots registered mean X and registered 

mean Y 

 

#eigenvalue information 

fdaeig=fdapcaList$values 

neig=12 

x=matrix(1,neig-nharm,2) 

x[,2]=(nharm+1):neig 

y=log10(fdaeig[(nharm+1):neig]) 

c=lsfit(x,y,int=FALSE)$coef 
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par(mfrow=c(1,1),cex=1.2) 

plot(1:neig,log10(fdaeig[1:neig]),"b",xlab="Eigenvalue 

Number",ylab="Log10 Eigenvalue") 

lines(1:neig,c[1]+c[2]*(1:neig),lty=2) 


