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Abstract 
 

Mollusks are the second most diverse animal phylum in terms of number of described 

species and nonmarine mollusks are among the most imperiled groups of invertebrate taxa. In 

particular, freshwater and terrestrial mollusks have the highest number of documented 

extinctions of any major taxonomic group. Such extinctions are not without their consequences 

as nonmarine mollusks provide several ecosystem functions including regulation of rates of 

primary production, decomposition, water clarity, and nutrient cycling. Given this and the level 

of fluidity found within freshwater mollusk taxonomy, the proper identification of potentially 

endangered species is an issue of great concern.  

The present study evaluates the taxonomic status of a small freshwater snail endemic to 

southeastern Oregon within the Owyhee River, referred to here as the Owyhee physa. 

Molecular, morphological, and environmental analyses were employed using specimens from 

both a sister species, “Physa gyrina”, and another species with similar morphology and habitat 

conditions as the Owyhee physa, Physa zionis. Molecular analyses also incorporated 

supplemental sequences from other physid species to assess the status of the Owyhee physa 

within the Physidae family. Genetic analyses at the cytochrome oxidase 1 and ITS-1 and ITS-2 

gene regions indicate that the Owyhee physa is a phylogenetically distinct species with “Physa 

gyrina” as its sister species. Using theoretical morphological techniques, the shell morphology 

of each of the three physid species was qualitatively described. Qualitative analyses of these 

morphological descriptions along with the phylogenetic tree and environmental data for each 
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species suggests that convergent evolution played an important role in influencing shell 

morphology within this taxonomic group. The present work has provided additional 

information about the current status of Physidae species richness, but additional studies must 

be done to both broaden and deepen our knowledge of freshwater gastropod diversity.  
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Chapter I: Introduction 

 

Mollusks and the Physidae Family 
 
 

Mollusks are the second most diverse animal phylum on the planet with an estimated 

200,000 formally described and undescribed species (Lydeard et al 2004). Within this group, 

nonmarine mollusks make up 20% - 40% of the species richness and simultaneously represent 

one of the most imperiled groups of invertebrates on the planet (Lydeard et al 2004). 

Freshwater and terrestrial mollusks have the largest number of documented extinctions of any 

major taxonomic group; 42% of the 693 recorded species extinctions since the year 1500 have 

been mollusks (Lydeard et al 2004). These extinctions are not without consequence as 

nonmarine mollusks, particularly freshwater mollusks, provide several ecosystem functions and 

services, including regulating rates of primary production, decomposition, water clarity, and 

nutrient cycling. Freshwater mollusks therefore play an important role in ecosystem stability 

and often substantially affect human welfare (Strayer 2006).  

One of the major factors contributing to the global decline of freshwater mollusks is 

human-induced stress on freshwater ecosystems; these impacts range from habitat 

degradation to competitive or predatory species introductions (Regnier et al 2009). In 

particular, dams are a primary cause of habitat loss and fragmentation for nonmarine mollusks 

(Strayer 2006). River systems that have been affected by dams cover nearly half of the world 

and cause several problems for freshwater mollusks, such as the alteration of flow, 
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temperature, and sediment supply, which may result in environmental conditions that are 

unsuitable for native species (Strayer 2006). Additionally, dams often act as barriers that can 

reduce the ability of invertebrate species to migrate across landscapes in response to 

environmental changes. In the face of increasing industrialization and urban sprawl, freshwater 

species face threats not only to their dispersal abilities, but also in their ability to adapt to biotic 

changes occurring in habitats where they are found.  

The introduction of organisms across major geographic barriers as a result of 

globalization has irreparably impacted freshwater macroinvertebrates. For instance, the 

introduction of zebra mussels, Dreissena polymorpha, into North America has led to the 

extirpation of many populations of mussels through competitive exclusion (Lydeard et al 2004). 

As the number of introduced and invasive species continues to rise, freshwater mollusks face 

an increased risk of extinction due to their dependency on habitats that are becoming 

increasingly restricted and unsuitable. 

As a result of these anthropogenic impacts and other ecological and evolutionary 

constraints, invertebrate species endemicity is very common. It has been suggested that many 

freshwater invertebrate species actually have large ranges, but recent taxonomic studies on 

morphological and molecular characteristics have shown that such wide-spread species actually 

consist of several distinct species, each with its own smaller range (Strayer 2006). High levels of 

endemism often occur in very old river systems, such as the Tennessee and Mobile basins in the 

southern United States, where time and isolation have supported the evolution of distinct 

molluscan species (Lydeard et al 2004). In Alabama alone, over 100 species of aquatic snails 

have never been collected outside of the state. This level of endemism coincides with very 
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restricted ranges, dispersal limitations, and habitat specialization, making these species 

especially vulnerable to extinction (Alabama Department of Conservation and Natural 

Resources 2008).  

In stark contrast to this general trend of restriction and localization, the freshwater 

family Physidae has a broad Holarctic (i.e. Northern hemisphere) distribution which extends 

into Central and South America (Wethington and Lydeard 2007). Thought to be mainly New 

World snails, physids have been introduced worldwide and have a very large and diverse 

geographic range (Harrold and Guralnick 2010). Physidae is the most abundant and widespread 

gastropod group in North America (Wethington and Lydeard 2007) and members of this group 

are recognized by their high-spired, sinistral (left coiled) shells, and lack of an operculum (a 

structure that covers the aperture when the animal retracts into its shell) (Figure 1-1) (Burch 

1982). Physids are hermaphroditic, capable of self-fertilization, and can produce a large number 

of offspring in a single year. Additionally, because many Physidae species have large 

reproduction and maturation rates, their abundances and densities tend to be very high 

wherever they are present (Wethington 2004).  

Physid snails are known to display a wide variety of life history traits that are influenced 

by climate, type of habitat, presence or absence of predators or parasites, and many other 

ecological factors (Wethington 2004). This large variation in the composition of freshwater 

habitats occupied by physid snails has contributed to the development of a number of 

ecophenotypes within this taxonomic group. For example, physid snails reared in the presence 

of fish predators develops thickened, more rotund shells with wide apertures, while those 

reared in the absence of predators do not exhibit such shell modifications (West-Eberhard 
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2003). Physidae diversification has been further promoted by the geographic isolation of water 

bodies inhabited by these snails, particularly for species that depend on passive dispersal 

agents for mobility; this has resulted in several very restricted endemic species known only 

from a single site or a small cluster of related locations (Pip and Franck 2008). 

Due to the high level of diversity within this group and the influence of environmental 

factors on morphology, our understanding of the taxonomy and status of these predominant 

members of freshwater communities of North America is significantly lacking (Wethington and 

Lydeard 2007). Even within this group of largely ubiquitous species, knowledge of the extent to 

which endemicity occurs is unknown. Given the large geographic range and the phenotypic 

plasticity of members of this family, there is the potential that highly restricted species are 

overlooked or misidentified. Therefore, the present study addresses the taxonomic status and 

environmental influence on morphology of a putative species of physid found in southeastern 

Oregon.  

Originally discovered by Terrence J. Frest and Edward Johannes in a single stream 

complex of the Owyhee River (Malheur County, Oregon) in 1988, this physid snail (hereafter 

called the Owyhee physa) was rudimentarily described in a report of the Columbia Basin 

Mollusk Species of Special Concern (Frest and Johannes 1995). Frest and Johannes recognize 

that the Owyhee physa may be a distinct species, but did not formally describe it in their report. 

During later surveys, Dr. Robert Hershler of the American Museum of Natural History, David 

Hopper of the Idaho US Fish and Wildlife Service, and Dr. Don Sada of the University of Nevada 

– Reno all noted the Owyhee physa and found no other similar molluscan species in the Great 

Basin and the Owyhee Drainage region (D. Hopper, personal communication). In a family of 
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cosmopolitan species, the Owyhee physa represents a rare case of endemicity more similar to 

that of most freshwater mollusks than to other physids.  

In their 1995 report, Frest and Johannes recommend that this species be considered 

sensitive by the Forest Service, the BLM, and other land management and wildlife agencies 

because of its highly restricted range and ongoing threats to its survival (Frest and Johannes 

1995). However, because the Owyhee physa has not been formally recognized as a species and 

so little is known about the role it plays in its environment, little progress has been made 

towards protecting it. In light of this, the purpose of the present study is to determine the 

taxonomic status of the Owyhee physa. Additionally, because the Owyhee physa requires a very 

specialized habitat and is often the only mollusk found where it occurs, this study will also 

describe how environmental variables influence shell morphology within this taxonomic group 

and, therefore, how this affects the taxonomy of physids which largely depends on 

morphological characters. An assessment of this putative species will advance our 

understanding of patterns of biodiversity within this taxonomic group and provide a proper 

evaluation of its conservation needs.  

  

 

 

  



 
8 

 
 
 
 

References 
 

Alabama Department of Conservation and Natural Resources. 2008. Alabama Snails and 
Mussels. Received: March 3, 2012. http://www.dcnr.state.al.us/watchable-
wildlife/what/inverts/mollusks/ 

 
Burch, J.B. 1982. North American freshwater snails: identification keys, generic synonymy, 

supplemental notes, glossary, references, index. Walkerana, 1: 1-365. 
 
Frest, T.J., and Johannes, E.J. 1995. Interior Columbia Basin Mollusk Species of Special Concern 

– Final Report. Deixis Consultants. 
 
Harrold, Nelson and Robert Guralnick. A Field Guide to the Freshwater Mollusks of Colorado. 

Denver, CO: Colorado Division of Wildlife, 2010. Book. 
 
Lydeard, C., Cowie, R., Ponder, W., Boga, A., Bouchet, P., Clark, S., Cummings, K., Frest, T., 

Gargominy, O., Herbert, D., Hershler, R., Perez, K., Roth, B., Seddon, M., Strong, E., and 
Thompson, F. 2004. The Global Decline of Nonmarine Mollusks. BioScience, 54(4): 321-330. 

 
Pip, E. and Franck, J.P.C. 2008. Molecular phylogenetics of central Canadian Physidae 

(Pulmonata: Basommatophora). Canadian Journal of Zoology, 86: 10-16. 
 
Regnier, C., Fontaine, D., and Bouchet, P. 2009. Not Knowing, Not Recording, Not Listing: 

Numerous Unnoticed Mollusk Extinctions. Conservation Biology, 23(5): 1214-1221. 
 
Strayer, D. 2006. Challenges for Freshwater Invertebrate Conservation. Journal of the North 

American Benthological Society, 25(2): 271-287. 
 
West-Eberhard, Mary Jane. Developmental Plasticity and Evolution. New York, NY: Oxford 

University Press, 2003. Book. 
 
Wethington, A., and Lydeard, C. 2007. A Molecular Phylogeny of Physidae (Gastropoda: 

Basommatophora) Based on Mitochondrial DNA Sequences. Journal of Molluscan Studies, 
73: 241-257. 

 
Wethington, Amy. 2004. Family Physidae. Unpublished manuscript. 

 

 



 
9 

 
 
 
 
Figure 1-1. Close up of “Physa gyrina” individual at 1000 micrometer scale, exhibiting typical 
physid snail features. Shell is sinistral or “left-handed”, lacks an operculum, with a relatively 
high spire. 
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Chapter II: Physidae Classification and Molecular Analyses 

 

Introduction 
 

Throughout the 19th century, taxonomic classification systems divided the Physidae 

family into two genera, Aplexa and Physa, using characters of the organism’s shell and mantle 

edge (Te 1978). Later, taxonomists split the family even further into multiple additional genera 

based on geographic location, morphological traits, and anatomical differences (Baker 1926, 

1928; Starobogatov 1967; etc). However, because physid morphology is heavily influenced by 

environmental variables and anatomical information was too poorly known at the time to be 

decisive, early efforts to classify the Physidae family produced many inconsistent taxonomic 

representations.  

In an attempt to consolidate these classification schemes, George Ang Te (then a PhD 

student at the University of Michigan) produced an unpublished doctoral dissertation in which 

he examined 85 species of physids (78 of which were nominal species, the remainder 

represented populations Te thought were unique) using 71 morphological characters, 34 

anatomical traits and 37 shell traits (Te 1978). Through this work Te described a monophyletic 

classification of the Physidae where he suggested two subfamilies, Aplexinae and Physinae, the 

former with genera Aplexa and Stenophysa, and the latter with genera Physa and Physella 

based on analyses of the penial complex. However, despite the utility of Te’s dissertation, 

including its use as an influential guide to the North American freshwater snails (Burch and 
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Tottenham 1980), the taxonomy of physids has continued to be modified over the last several 

years. For example, two separate studies provide contrasting views on the status of the thermal 

spring snails, Physella johnsoni and Physella wrighti (Remigio et al 2001; Wethington and 

Guralnick 2004). Based on molecular analyses of sequences of the mitochondrial cytochrome 

oxidase I (mtCOI) and 16S rRNA gene regions, Remigio and colleagues (2001) found Physella 

wrighti to be the sister taxon of Physella johnsoni, while Wethington and Guralknick (2004) 

conclude that they are indistinguishable. In an effort to extend the understanding of the 

evolutionary relationships of the Physidae, more recent classification schemes have been 

produced for the Physidae (e.g. Taylor 2003, Wethington and Lydeard 2007).  

Taylor’s (2003) reclassification of the Physidae, considered the best recent treatment of 

physids (J. Burch, personal communication), is based almost entirely on the terminal male 

reproductive system (i.e. the penial complex) where, unlike other morphological and 

anatomical traits, progressive characters are found consistently. Using five characters of the 

penial complex – form and composition of the penial sheath, proportions and structure of the 

penis, presence or absence of a penial stylet, location of the penial canal pore, and number and 

insertions of penial retractor muscles – Taylor (2003) concluded that the Physidae consists of 23 

genera with about 80 species. However, the taxonomic representation of the Physidae of 

Wethington and Lydeard (2007), based on molecular analyses of two gene regions, penial 

morphology, and reproductive isolation, identified only six groups of physids supported by both 

penial morphology and molecular phylogenetic analyses. This level of taxonomic fluidity 

continues to plague a field where correctly identifying species, their ranges, abundance, and 

conservation status are essential.  
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The proper identification of potentially endangered species is especially important for 

freshwater mollusks. The decline in population sizes of North American freshwater gastropods 

has been well-documented for formally described species, but impacts on unrecognized species 

are particularly important to establish and currently lacking. This concern is recognized 

specifically for a putative species of freshwater snail found in southeastern Oregon, the 

Owyhee physa. This physid is an extremely small, warm-spring, wet-rock snail, bearing 

resemblance to another physid snail, Physa zionis, and is found in very shallow waters where it 

is often the dominant molluscan species (Frest 1995; see Figure 2-1). Its range has thus far been 

described as highly restricted; it has been observed in only a single stream complex along the 

Owyhee River and has been recommended for protection (Frest 1995). As a freshwater mollusk, 

the Owyhee physa may play an important role in the ecosystem in which it is found, potentially 

influencing both ecosystem functions and stability. Because so little is known about this 

putative species, including its taxonomic status and the specific role that it plays within its 

environment, a formal evaluation of this snail is essential. Based on morphological similarities, 

we hypothesized that the Owyhee physa is a distinct species that is closely related to Physa 

zionis, which it resembles. Due to the current atmosphere of taxonomic disarray within 

freshwater mollusks, an assessment of this putative species will advance our understanding of 

patterns of biodiversity within this taxonomic group and provide a proper evaluation of their 

conservation needs.  
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Materials and Methods 
 

Specimen Sampling and Acquisition 
 

David Hopper of the Idaho US Fish and Wildlife Service collected Owyhee physa 

specimens from natural populations in the Owyhee River, Oregon at the Three Forks warm 

springs in 2011. Specimens used for molecular and morphological comparisons with the 

Owyhee physa were acquired from the original authors with published molecular data in 

GenBank.  The P. zionis samples were collected from the Zion National Park in Springdale, Utah 

by Amy Wethington and D. Christopher Rogers (2003). 

 
Extraction and Amplification of DNA 
 

All samples were preserved in 95% ethanol (EtOH). I extracted genomic DNA from 11-13 

individuals of each species using the E.Z.N.A.® Mollusc DNA Kit (Omega Bio-Tek). I then 

prepared DNA templates for amplification by removing a small sample of tissue from the foot of 

each specimen (approximately 10-25 mg) and incubating it at 60°C in ML1 buffer and 

proteinase K (from kit) for at least 1 hour. Following established protocol for mollusks, samples 

were homogenized and DNA was extracted with chloroform to remove polysaccharides, and 

then further purified to eliminate proteins and other contaminants. Where possible, the shells 

of specimens were minimally altered during tissue extraction; however, for smaller and more 

fragile individuals, original shell morphology was not maintained. For each individual, three 

markers were selected for sequencing: mitochondrial cytochrome oxidase I (COI), nuclear first 

internal transcribed spacer (ITS-1), and nuclear second internal transcribed spacer (ITS-2). 

Target fragments were amplified using standard polymerase chain reaction (PCR) procedure for 

each marker using GoTaq polymerase MasterMix (Promega) with the following primer pairs in 
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10 micromolar concentration: LCO1490 and HCO2198 for COI (Folmer et al 1994), ITS-1F and 

ITS-1R for ITS-1 (Schizas et al 1999), and 025 ITS-2F and 026 ITS-2R for ITS-2 (Xu et al 2001). 

These primers amplify approximately 650 base pairs (bp) of the COI gene, 550 bp of the ITS-1 

gene, and 500 bp of the ITS-2 gene, all excluding primers. Annealing temperatures for each 

primer pair were as follows: 45°C for COI, 54°C for 16S, 55°C for ITS-1 and 50°C for ITS-2. Each 

run included a negative control (lacking DNA template) to check for contamination. For each 

PCR product, 4-microliter subsamples were run on a 1% agarose gel using 0.5X concentration of 

TBE buffer solution to determine the presence of target fragments. 

 
Sequencing and Phylogenetic Analyses 
 

The remaining aliquots of the amplified fragments were sequenced through the 

University of Michigan DNA Sequencing Core using the original amplification primers for each 

marker. For each gene region sent for sequencing, four microliters of the PCR product were 

diluted in 16 microliters of water. Amplification primers were used for sequencing and supplied 

to the University of Michigan sequencing facility at one-micromolar concentrations. I edited the 

chromatograms manually using Sequencher version 5.0 and converted the resulting sequences 

into an editable text file using MEGA version 5.05. For each gene region, supplementary 

sequences of other physid and outgroup species were downloaded from GenBank and 

incorporated into the aligned dataset. Supplementary sequences were chosen based on genetic 

similarity to the Owyhee physa sequences. Preliminary DNA datasets were pruned to remove 

redundant sequences. These additional sequences were incorporated into the analyses to 

establish the taxonomic relationship of the physa species of interest and other physid snails and 

were not used to infer any conclusions about the systematics of physids in general.  
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I used the model test function in MEGA version 5.05 to determine the best model of 

nucleotide substitution for each dataset. Phylogenetic trees were constructed using MrBayes® 

v. 3.2.0 Bayesian Inference with the following models: Tamura 3-parameter with Gamma 

distribution (T92+G) for COI; Tamura 3-parameter (T92) for ITS-1 and Jukes Cantor (JC) for ITS-2. 

I examined sequences from each gene region separately, but also examined combined 

sequence data of both internal transcribed spacer genes. For combined Bayesian analyses, 

sequences were partitioned and separate models of nucleotide substitution were used for each 

data partition. Due to the limited number of shared outgroup sequences for ITS-1 and ITS-2 

genes in GenBank, only one outgroup sequence was used for this analysis. For both major gene 

regions (COI and ITS-combined), Bayesian Inference analysis was executed for a maximum of 

10,000,000 generations; current trees and parameter values were recorded every 100 

generations; the first 25% of the trees were discarded; convergence diagnostics were calculated 

every 1,000 generations. 

Preliminary phylogenetic analyses with sequences of other physids obtained from 

GenBank placed the Owyhee physa as a sister lineage to a specimen identified as “P. gyrina” by 

the collector (Dayrat et al 2011). This particular lineage of “P. gyrina”, which was distinct from 

other clades recognized as P. gyrina was represented by only a single sequence and therefore 

additional data were needed to evaluate the relationships of these taxa. I obtained samples of 

“P. gyrina” from the California Academy of Science [Accession Numbers: HQ66033.1, 

HQ659967.1, and HQ659901.1] and additional individuals from the original collector (B. Dayrat, 

University of California – Merced) to supplement the preliminary dataset. All DNA extractions 
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and molecular analyses of these additional specimens were completed using identical protocols 

as described above for the Owyhee physa and P. zionis. 

 
Finalizing Phylogenetic Trees 

All phylogenetic trees were prepared using FigTree version 1.3.1 and edited with Canvas 

v. 14. For each gene region, trees were rooted to the outgroup sequences. 

 
Results 

 
Sequence Data 

 
I obtained sequences of the COI gene region from 35 individuals (13 Owyhee physa, 11 

“Physa gyrina”, and 11 Physa zionis) and aligned these with 91 sequences of other physids from 

GenBank (GenBank accession numbers are provided in Appendix 2-1). I also obtained 

sequences of a region of both the ITS-1 and ITS-2 gene regions from 35 (12 Owyhee physa, 11 

“Physa gyrina”, and 12 Physa zionis) individuals and included these with two sequences of 

Physa acuta from GenBank (See Appendix 2-1 for accession numbers). 

Individuals from the Owyhee physa population and those from the “P. gyrina” 

population have an average genetic distance of 4.5%, while the Owyhee physa have within 

population mean distance of 0.05% (Table 2-1 and 2-2). In contrast, the genetic distance 

between “P. gyrina” and Owyhee physa individuals in ITS-1 and ITS-2 gene regions was 1.8% 

(0.1% within Owyhee) and 0.8% (0.3% within Owyhee), respectively (Table 2-1 and 2-2). 

 
Gene Trees 
 

The T92+G model was determined to be the best model for the COI dataset. The tree 

resolved many clades with strong posterior probability (pp) support. Three main groups of the 
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sequences of interest are highlighted in the tree derived from the COI dataset. The first group 

(green, Figure 2-2; pp 1.0) contains all of the individuals identified as “P. gyrina” by Benoit 

Dayrat (2011) from California. The second group (red, Figure 2-2; pp 1.0) is recognized as the 

sister group to “P. gyrina” and contains all of the individuals of the Owyhee physa from Oregon. 

And the third group (blue, Figure 2-2; pp 1.0) contains all of the individuals of P. zionis that were 

sequenced for this study and a sequence downloaded from GenBank of the same taxonomic 

description (See Figure 2-2 and Appendix for GenBank accession number). 

The T92 model was determined to be the best model for the ITS-1 dataset and the JC 

model was best for the ITS-2 dataset. Trees reconstructed from analysis of the individual 

datasets (not shown) exhibited similar topologies as those obtained from the combined 

dataset. Four main sets of sequences are present in the tree derived from analysis of the 

combined ITS-1 and ITS-2 data (Figure 2-3). The first group contains all 11 individuals pre-

identified as “Physa gyrina” (Figure 2-3; pp 0.966). The second group contains all 12 of the 

Owyhee physa individuals (Figure 2-3; pp 0.875). The third group contains all of the individuals 

pre-identified as Physa zionis from Zion National Park, Utah (Figure 2-3; pp 1.0). Finally, the 

fourth group is a single sequence from the species Physa acuta from GenBank. 

 
Discussion 

 
 

The goal of this study was to determine the species status of the Owyhee physa within 

the Physidae family based on analyses of sequence data. Examination of 105 sequences from 

35 individuals within the genus Physa revealed that the Owyhee specimens represent a 

monophyletic clade with strong support values in trees constructed from sequences of one 
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mitochondrial and two nuclear gene regions (Figures 2-2 and 2-3). Although the two gene trees 

differ in their support values (high posterior probability values in the COI tree and moderate 

values in the ITS tree), the Owyhee clade remained monophyletic and distinct among the trees 

that were constructed. 

Dispersal of populations into unique habitats and their subsequent isolation have been 

suggested as mechanisms that can lead to speciation (Darwin 1859). Separated by a distance of 

roughly 600 miles, prolonged geographic isolation and habitat specialization may have resulted 

in the accumulation of significant genetic differences between the Owyhee physa and “P. 

gyrina”.  

While there are no standardized genetic benchmarks to determine what constitutes a 

valid species, the genetic distances between the Owyhee physa and “P. gyrina” at each of the 

gene regions suggests that they have a relatively recent history of divergence but are clearly 

distinct. The mean levels of genetic divergence between the Owyhee physa and its sister taxon 

were 4.9% (COI), 1.8% (ITS-1) and 0.8% (ITS-2), which are not uncommon values in 

distinguishing between physid species. In their analysis of relationships and evolutionary history 

of three species of the genus Physella, Remigio and colleagues (2001) found that the ranges of 

molecular distances separating Physa wrighti from Physa johnsoni were 0.6%-1.6% at 16S and 

1.4-1.9% at COI, and the distance separating Physa wrighti and Physa gyrina were 0.6%-1.4% at 

16S and 0.5-1.2% at COI. Similarly, in the most recent taxonomic evaluation of the 

taxonomically contentious physid species Physa natricina using Physa acuta and Physa anatina 

as reference taxa, Gates et al (2013) found that the genetic divergence between the two 

reference taxa was 4.1% using combined COI and 16S sequences. Because morphological and 
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anatomical characteristics are not often useful in distinguishing between physid species due to 

the fact that these characteristics can be influenced by environmental conditions, these traits 

have not been included here as species discriminators. Nonetheless, based on the genetic 

distances and the strong posterior probability values of the reciprocally monophyletic clades, 

the status of the Owyhee physa as a distinct species is supported. 

The molecular data analyzed for this study illustrates that there are still many gaps to fill 

in our understanding of Physidae taxonomy. The most recent investigations of the Physidae 

have focused on clarifying the relationships among already recognized species (e.g. Gates et al 

2013, Rogers and Wethington 2007), but few to date have conducted thorough surveys to help 

determine the overall species richness of this taxonomic group. The Owyhee physa represents 

one instance of a species discovery, but it also provides evidence that numerous other species 

are yet to be identified. For example, the sister group of the Owyhee physa, “P. gyrina”, was 

given its preliminary taxonomic name based on morphological similarity to the recognized 

cosmopolitan species Physa gyrina. However, based on the mitochondrial COI gene tree 

produced here (Figure 2-2), a clade consisting of sequences of “P. gyrina” falls out quite 

distinctly from those that consist entirely of sequences from Physa gyrina. 

In addition, due to their morphological similarities, we expected that the Owyhee physa 

is more closely related to Physa zionis than the molecular data show. This suggests that the 

morphological similarity of these two species may be a result of similar environmental 

pressures and convergent evolution. Although we have not collected data to rigorously analyze 

how convergent evolution may be influencing the morphological similarity of the Owyhee 
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physa and Physa zionis, Chapter 3 of this study focuses on their morphology in the context of 

their environments to qualitatively compare them. 

Our understanding of the relationships between species is contingent upon correctly 

identifying them. Morphological data alone are often too variable to be used as species 

discrimination tools, causing taxonomic redundancies where in fact distinct species should be 

listed. Thus, it is essential that future studies incorporate thorough regional surveys and genetic 

analyses to develop a more complete history of the Physidae family in North America. 
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Table 2-1. Average genetic distances between pairs of species with standard error calculations 
and the evolutionary model used. Models used for these analyses were Tamura 3-Parameter 
with Gamma distribution (T92+G), Tamura 3-Parameter (T92), and Jukes-Cantor (JC). 

 
Gene Region Species 1 Species 2 Distance Std Error Model 

      

COI Owyhee “P. gyrina” 0.049 0.009 T92+G 

COI Owyhee P. zionis 0.205 0.023 T92+G 

COI “P. gyrina” P. zionis 0.200 0.023 T92+G 

      

ITS1 Owyhee “P. gyrina” 0.018 0.006 T92 

ITS1 Owyhee P. zionis 0.102 0.014 T92 

ITS1 “P. gyrina” P. zionis 0.084 0.012 T92 

      

ITS2 Owyhee “P. gyrina” 0.008 0.004 JC 

ITS2 Owyhee P. zionis 0.021 0.006 JC 

ITS2 “P. gyrina” P. zionis 0.025 0.007 JC 

 
 
Table 2-2. Average genetic distances within the Owyhee physa with standard error calculations 
and the evolutionary model used. Models used for these analyses were Tamura 3-Parameter 
with Gamma distribution (T92+G), Tamura 3-Parameter (T92), and Jukes-Cantor (JC). 

 
Gene Region Distance Std Error Model 

    

COI 0.000502 0.000353 T92+G 

    

ITS-1 0.000996 0.000538 T92 

    

ITS-2 0.00033 0.000315 JC 
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Figure 2-1. Shell images of (A) the Owyhee physa, (B) Physa zionis and (C) “Physa gyrina”.  
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Figure 2-2. Consensus tree recovered from Bayesian analyses of the mitochondrial COI gene 
region. Numbers on branches indicate Bayesian posterior probabilities. Branch length scale is 
on the lower left. 
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Figure 2-3. Consensus tree recovered from Bayesian analyses of the combined nuclear ITS-1 
and ITS-2 gene regions. Numbers on branches indicate Bayesian posterior probabilities. Branch 
length scale is on the lower left. Sequenced specimens are denoted by the following: the 
Owyhee physa individuals are represented by Physa001 – Physa014, “Physa gyrina” individuals 
are Pgyrina1 – Pgyrina12, and Physa zionis individuals are PzUtah001 – PzUtah012 
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Appendix 2-1. Morphological ID (Genus species) and GenBank accession numbers of individuals 
used in molecular analyses. 

 
Morphological ID GenBank Accession Numbers 

COI ITS-1 ITS-2 

    

Physa acuta AY651188 - - 

Physa acuta EU038368 - - 

Physa acuta EU038356 - - 

Physa acuta EU038367 - - 

Physa acuta EU038366 - - 

Physa acuta EU038357 - - 

Physa acuta AY651174 - - 

Physa acuta EU038360 - - 

Physa acuta AY651181 - - 

Physa acuta AY282589 - - 

Physa acuta AY651203 - - 

Physa acuta EU038361 - - 

Physa acuta GU247996 - - 

Physa acuta GU247993 - - 

Physa acuta GU247995 - - 

Physa acuta FJ373016 - - 

Physa acuta - HQ283259 HQ283272 

Physella anatina AY651177 - - 

Physella anatina AY651176 - - 

Physella anatina AY651175 - - 

Physa ancillaria EU038388 - - 

Physa ancillaria EU038392 - - 

Physa ancillaria EU038385 - - 

Physa ancillaria EU038383 - - 

Physa ancillaria EU038382 - - 

Physa ancillaria EU038358 - - 

Physa ancillaria EU038387 - - 

Physa ancillaria EU038359 - - 

Physa ancillaria EU038381 - - 

Physa ancillaria EU038380 - - 

Physella virgata AY651171 - - 

Physella virgata AY651170 - - 

Physa integra EF488674 - - 
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Morphological ID GenBank Accession Numbers 

 COI ITS-1 ITS-2 

    

Physa heterostropha AY651192 - - 

Physa heterostropha AY651193 - - 

Physa winnipegensis EF488681 - - 

Physella spelunca AY651205 - - 

Physella cupreonitens AY651183 - - 

Physella wolfiana AY651179 - - 

Physella wrighti AF419323 - - 

Physella wrighti AF346745 - - 

Physella aurea AY651202 - - 

Physella aurea AY651201 - - 

Physa gyrina EU038398 - - 

Physa gyrina HQ660033 - - 

Physa gyrina EU038373 - - 

Physa gyrina EF488671 - - 

Physa gyrina EU038374 - - 

Physa gyrina EF488670 - - 

Physella gyrina AY651178 - - 

Physella gyrina JF806435 - - 

Physella johnsoni AF346739 - - 

Physella johnsoni AY651172 - - 

Physella johnsoni AF346737 - - 

Physella johnsoni AY651173 - - 

Physella johnsoni AF346736 - - 

Petrophysa zionis AY651198 - - 

Physa natricina GU830944 - - 

Physa natricina GU830951 - - 

Physa natricina GU830950 - - 

Physa natricina GU830949 - - 

Physa natricina GU830942 - - 

Physa natricina GU830947 - - 

Physa natricina GU830946 - - 

Physa fontinalis AY651189 - - 

Physa fontinalis FJ373018 - - 

Physa fontinalis EU818796 - - 

Physa fontinalis AY651190 - - 

Physella hendersoni AY651196 - - 

Physella hendersoni AY651194 - - 

Physa skinneri EF488673 - - 

Physa skinneri EF488672 - - 
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Morphological ID GenBank Accession Numbers 

 COI ITS-1 ITS-2 

    

Physa jennessi GU680897 - - 

Physa jennessi GU680896 - - 

Physa jennessi GU680894 - - Physa jennessi GU680892 - - 

Physa pomilia EU038353 - - 

Physa pomilia EU038363 - - 

Physa vernalis EU038375 - - 

Physa vernalis EU038376 - - 

Biomphalaria pfeifferi DQ084831 - - 

Biomphalaria pfeifferi AF199099 - - 

Biomphalaria pfeifferi AF199101 - - 

Biomphalaria pfeifferi AF199102 - - 

Biomphalaria pfeifferi AF199104 - - 

Biomphalaria kuhniana AY030380 - - 
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Chapter III: Morphology, Habitat, and Convergent Evolution  
 
 

Introduction 
 
 

In many gastropod species, shell morphology is a function of several variables, including 

mechanical stability, predator defense, sexual selection, and climate selection (Britton 1995; 

Wilson, Glaubrecht, and Meyer 2004; Goodfriend 1986). However, some shell shapes are found 

more often in certain habitat types. For example, environments that are high-intensity and 

wave-washed, such as rocky intertidal zones, are often inhabited by snails with wide-aperture 

shells and relatively low surface areas (Urabe 1998). Snails with high spires and highly sculpted 

forms, on the other hand, are commonly found in environments with quieter, calmer waters 

(Urabe 1998). Although many exceptions exist, the large influence of the environment and 

ecological pressures on shell morphology suggests that convergent evolution may play an 

important role in the development of shell shape in molluscan species.  

The present study aims to compare shell morphologies of the Owyhee physa, Physa 

zionis, and “Physa gyrina” in the context of the environments in which each species is found. To 

address these phenotypic differences, high-resolution images and three-dimensional models of 

shell morphology were used to describe the shell structures of the three species, both 

qualitatively and quantitatively. Morphological analyses that utilize mathematical methods are 

variable and include morphometrics, theoretical morphology, constructional morphology, and 
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functional morphology. Although the focus of each discipline is different, what unites them is 

their use of models or statistical tools to study biological shape and form.  

The geometric form of invertebrate shells in particular has been a prevalent system for 

morphological studies since the early 1900s. David Raup, considered the founder of theoretical 

morphology, was the first to use digital-computer simulations to study invertebrate shell 

morphology and morphogenesis (Raup 1961, 1962). In these early studies, Raup focused 

primarily on analyzing the geometry of shell coiling in existent and non-existent shell shapes 

(Raup 1966, 1967) and examining echinoid (sea urchin) shell growth (Raup 1968). Later, others 

such as Okamoto (1988a, 1988b), Ackerly (1989), and Savazzi (1990) expanded on these 

previous discussions of shell growth patterns and the models used to construct them. Because 

invertebrate shells come in a wide variety of shapes and display varying patterns of 

morphogenesis, they lend themselves well to evolutionary and ecological studies of diversity. 

Here, we assess morphological variation using modeling approaches and qualitative 

descriptions and use this information in tandem with environmental data to address how these 

variables influence phenotype among the three physid species. The use of these morphological 

descriptions has the potential to provide valuable information about the impact their 

evolutionary histories have had on shell shape. When assessed in conjunction with 

environmental data for each species’ habitat, these morphological descriptions may allow us to 

better understand the influence that convergent evolution has on shell morphology within this 

highly diverse and widespread family. 
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Materials and Methods 
 
Morphological Descriptions 

Using a Leica MZ16 microscope and Image Pro Discover v.5 camera software, 

photographs were taken of 12 individuals of Owyhee physa, “Physa gyrina”, and Physa zionis 

specimens. Each shell was placed on a glass slide, held in place using a small piece of modeling 

clay, and photographed in two different positions: aperture-side up with the spire aligned 

vertically on the slide; aperture-side down with the spire aligned vertically on the slide. For 

each photograph, a scale bar indicating 1000 micrometers was used. 

Models of shell morphology were produced with the help of Janice Pappas, research 

scientist at the University of Michigan Museum of Paleontology. Physa shell morphology was 

modeled using the methods of Pappas and Miller (Accepted) and is based on parametric three-

dimensional (3D) equations (Pappas 2005a, b, 2008). The idea in using such methods is to take 

basic geometric forms, combine them and change their shape in a three-dimensional fashion to 

produce a 3D surface. Three-dimensionality is represented as variables in the x-, y-, and z-

directions where the parameters u and v represent whorl and aperture attributes, respectively. 

Typically, gastropod shell morphology is modeled with helical curves as a basis (e.g., Moseley 

1838, 1842; Thompson 1917; Raup 1961, 1966; Raup and Michelson 1965; Okamoto 1988; 

Savazzi 1990; Checa 1991; Prusinkiewicz and Fowler 1995). Instead, we start with the 3D 

surface of a basic geometric form and create morphological variation by changing the functions 

and their values within each set of parametric equations (Pappas and Miller, Accepted).  The 3D 

form that results is a model representing the notable attributes of the actual shell surface of 

study (Pappas, personal communication). 
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Habitat Data  
 

Using ISI Web of Science and public government agency resources, I conducted a 

literature review for environmental data and descriptions for the locations where each of the 

three physid species are found: the Owyhee River at Three Forks in Malheur County, Oregon for 

the Owyhee physa; Zion National Park in Hurricane, Utah for Physa zionis; and the Sierra 

Nevada foothills, California for “Physa gyrina”. For each location, data on the following 

environmental variables were collected to describe their respective habitats: habitat type 

(temporary or permanent), climate classification, mean annual precipitation, regional elevation 

range, and geography type. 

Results 
 
Morphological Descriptions 

Three-dimensional shell models and high-resolution photographs of each species can be 

found in Figure 3-1. Using these model renderings and images, qualitative shell descriptions are 

as follows: 

Owyhee physa. The shell is thin, brown to dark brown in color, and semiovate shaped. 

The spire is very small and low, unlike that of most physid species. The aperture is nearly as 

long as the shell and is wide, with no operculum. The coil of the shell is sinistral or “left-

handed” and the outer lip leading into the aperture is thin and sharp. The length of the shell 

ranged from 3.0 mm – 4.5 mm for the individuals used for sequencing. The spire of each shell 

contained two complete whorls. 

“Physa gyrina”. The shell is elliptical to elliptically oval shaped and can be found in 

colors that range from tan to dark brown. The spire is high with rounded whorls. The aperture is 
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considerably longer than the spire and is elongately oval. The outer lip is sharp and curved and 

the coil of the shell is sinistral. The length of the shell measured between 6 mm – 12 mm for the 

individuals used for sequencing. The spire of each shell contained four complete whorls. 

Physa zionis. The shell is thin, tan to cinnamon colored, and semiovate in shape 

(Pilsbury 1925). As stated in the original description of the species, there is a very small and low 

spire containing small growth lines along the last whorl. The aperture is almost as long as the 

shell and is very broadly open, with no operculum. The outer lip is thin and sharp and the coil of 

the shell is sinistral (Pilsbury 1925). The length of the shell ranged from 3.5 mm – 4 mm for 

individuals used for sequencing. The spire of each shell contained two complete whorls.  

Because the construction of morphological models is mathematically intensive, details 

on the specific quantitative values included in each model will not be presented here. However, 

shell models can be compared in terms of how similar the parameter values in the x-, y-, and z- 

directions are relative to the other species. This information is described as follows: 

For each Physa model, changes in the x-, y-, and z-directions indicate particular shell 

morphological attributes from solutions to the first partial derivatives of the parametric 3D 

equations (Figure 3-1). In the x-direction with respect to parameter v, the change among the 

three Physa species is relatively small, but the order of change in minimum dimension of 

aperture size and shape is the Owyhee physa, Physa zionis, followed by “Physa gyrina”. 

Specifically, the Owyhee physa and Physa zionis are closer in value to each other than they are 

to “Physa gyrina”. Change in the y-direction with respect to parameter v reflects change in 

maximum dimension of size and shape of the aperture. “Physa gyrina” has the largest value 

followed by Physa zionis, then the Owyhee physa. However, the values for Physa zionis and the 
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Owyhee physa are much closer to each other than they are to “Physa gyrina”. Changes in the z-

direction with respect to parameter u define the change in maximum dimension of whorl size 

and shape. Physa zionis has the largest value followed closely by “Physa gyrina”, then the 

Owyhee physa. In this case, “Physa gyrina” and the Owyhee physa are closer together in value 

than either one is to Physa zionis. This reflects the complexity of the interrelationship between 

changes in aperture shape with changes in each whorl diameter from top to bottom of the shell 

(Pappas, personal communication). 

 
Habitat Description 
 

The Owyhee physa is a warm-spring snail found in very shallow small springs and seeps 

within rock cliff faces along the Owyhee River, Oregon (Frest and Johannes 1995). Substrates 

within the habitat vary from basalt bedrock to sand, gravel, and cobbles. The area is in a major 

river canyon with exposed volcanic rock and open, dry sage scrub (Frest and Johannes 1995). 

Similarly, Physa zionis is found within a major river canyon along the north fork of the Virgin 

River in Zion National Park, Utah (Oliver and Bosworth 1999). This species is located in places 

where water seeps from joints within the rock cliffs along canyon walls and where green algae 

forms on the wet rock faces below (Pilsbury 1925). Finally, “Physa gyrina” is found in temporary 

creeks of the Sierra Nevada Foothills, California. Where individuals are present, the water is 

calm, clear, and shallow with a maximum depth of one foot (B. Dayrat, personal 

communication, 2013).   

A summary of the environmental characteristics for each species can be found in Table 

3-1. 
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Discussion 
 
 

Snail shells are an important determinant of fitness, particularly for aquatic snails, and 

are known for exhibiting considerable phenotypic plasticity (Kemp and Bertness 1984). Specific 

shell morphologies are favored depending on different environmental conditions, such as 

current velocity, predator presence and abundance, and temperature (Raffaelli 1978; Hunter 

1989; Crowl and Schnell 1990; Vermeij 1993; Johnson and Brown 1997; Minton et al. 2008). 

Because shell shape and size play important roles in an organism’s ability to not only defend 

itself against predators and acquire resources, but also to stay level within the flow regime of 

its habitat, species with similar selection pressures often exhibit similar morphologies. Since 

snail shells show such a high level of ecophenotypic plasticity, convergent evolution is a 

prevalent mechanism in explaining the evolutionary history of shell shape among species (Serb 

et al 2011). 

The endemic gastropod fauna of Lake Tanganyika in East Africa, for example, garnered 

considerable attention from early malacologists who incorrectly placed them in marine 

gastropod families (Bourguignat 1890; Moore 1898, 1899, 1903). Studies of the internal 

anatomy of the Tanganyika snails confirmed that they belong in freshwater families and are not 

closely related to the marine snails that they so resemble (West and Cohen 1996). With heavily 

calcified shells and displaying coarse ribbing, spines, and apertural lip thickening, Tanganyika 

and marine snails share several environmental pressures that led many to believe that their 

strikingly similar morphologies are a result of convergent evolution (West and Cohen 1996). 

Although many snail morphologies do not follow general environmentally adaptive 
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explanations, convergence of shell morphology can often be explained, at least in part, by 

environmental similarities. 

The family Physidae is known for being geographically widespread relative to other 

freshwater molluscan taxa, and for having species with great environmental tolerances and 

exhibiting ecophenotypic plasticity. These traits have allowed species within this family to 

exploit a wide range of habitats, from ditches and ponds to streams and rivers (Burch 1982). In 

an example of this phenotypic plasticity, during a laboratory experiment physid snails reared in 

the presence of a fish (a shell-crushing predator), produced rotund shells, while those reared in 

the presence of a crayfish (a shell-entry predator), produced elongate shells (DeWitt 1995). 

These observations support functional predictions that rotund shells are more crush-resistant 

because the crushing force is spread across a larger surface area (Palmer 1979), while elongate 

shells are more entry-resistant because the shell entryway is narrowed (Snyder 1966; Osenberg 

1988). At this level of analysis (i.e. within a species), phenotypic plasticity is not evidence of 

diverging populations, but rather represents the diversity of life-history strategies present 

within a species. This morphological diversity has the potential to confer fitness advantages 

given different environmental variables and explains, to some degree, the high tolerance for 

environmental variance found in the Physidae. 

It is important to note here that because the purpose of this study was not to test 

convergent evolution within the Physidae family, but rather to exhibit their morphological 

similarities in the context of their environments, extensive details of their evolutionary history 

in their environments will not be presented. However, here we have shown that although the 
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Owyhee physa and Physa zionis are members of distinct clades, they share morphological traits 

that may be a result of the similar habitats in which they are found.  

The shells of the Owyhee physa and Physa zionis ranged from 3 mm – 4.5 mm in length 

with wide apertures that contain a large, broad-sized foot. As described by Pilsbury (1925) 

when referencing Physa zionis, both species have hemispherical shells and no projecting spire. 

Conversely, “Physa gyrina” exhibits typical physid shell characteristics with a long, large 

aperture and a high spire. As seen in Figure 3-1 and Figure 3-2, the Owyhee physa is far more 

similar morphologically to Physa zionis than to “Physa gyrina”, despite their genetic 

relatedness. Such similarities suggest that the shared morphological traits between these two 

species may be influenced, at least in part, by similar selective pressures in their environments. 

Although the present data do not address these environmental pressures in detail, they do 

highlight some general trends in the composition each habitats. 

The Owyhee physa and Physa zionis are found in habitats that share at least two major 

environmental features. Both species are established in regions characterized by large, canyon 

landscapes and semi-arid steppe climate. While many ecological and evolutionary factors 

influence morphology, these broad-scale environmental similarities may indicate that the 

Owyhee physa and Physa zionis share other habitat characteristics that led to their similar 

morphologies. To adequately assess the impact that convergent evolution has had on species 

within this taxonomic group, future studies should collect detailed historical and contemporary 

ecological and environmental variables for each species of interest and compare those variables 

with morphological characteristics. 
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The Physidae family is the most diverse group of freshwater mollusks in North America, 

but currently our understanding of the relationships among species and the mechanisms that 

led to this diversity is significantly lacking. The present study has provided evidence to suggest 

that convergent evolution may play an important role in influencing the level of diversity seen 

in this freshwater family and be a contributing factor in the current level of taxonomic fluidity 

found within this and other groups of freshwater mollusks. 
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Table 3-1. Regional habitat data for the Owyhee physa, Physa zionis, and “Physa gyrina”. 

 
 Owyhee physa Physa zionis “Physa gyrina” 

Location Oregon Utah California 
    

Habitat Type Permanent Temporary Temporary 
    

Climate Semi-Arid Steppe 
Climate 

Midlatitude Desert 
Climate/Semi-Arid 

Steppe Climate 

Mediterranean/Boreal 
Climate 

    
Mean Annual 
Precipitation 

15-20 in 14 in 20 - 80 in 

    
Regional Elevation 2,100-6,800 ft 3,600-8,700 ft 1,000-14,500 ft 

    
Geography Type Canyons Canyons Mountains/Valleys 
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Figure 3-1. Shell photos and models of the Owyhee physa (top row), P. zionis (middle row), and 
“P. gyrina” (bottom row).  (Shell photos:  Alex Moore; models: Janice L. Pappas). 
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Chapter IV: Implications and Future Work  

 
 

Discussion  

Implications 

Within the last century, the rate of biodiversity loss has grown to exceed that of 

historical background rates by a factor of at least 100 (Pimm et al 1995). Additionally, the 

projected loss of species in the coming century has a median estimate of 30% (Barnosky et al 

2011). Anthropogenic impacts, such as resource depletion, habitat fragmentation, non-native 

species and pathogen introductions, overexploitation, and global climate change are the 

primary causes of these losses (e.g. Tilman et al 1994; Jackson et al 2001; Thomas et al 2004). 

These and other human activities have been documented as directly causing several recent 

extinctions. For example, the Caribbean monk seal was officially declared extinct in 2008 by the 

IUCN as a result of overhunting for food and oil (Kovaks 2008). Similarly, the last known 

individual of the Pyrenean ibex was found dead in 2000 of unknown causes. The species had 

once been very abundant in the Spanish Pyrenees Mountains but their populations drastically 

declined in the 19th and 20th centuries due to hunting pressures and competition with domestic 

and wild ungulates (Folch et al 2009).  

The current rate of reduction in species richness and undisturbed habitat substantially 

affects not only the markets and local communities that rely on these goods, but also the 

ecosystem services and functions that they provide. In the last 20 years, a number of studies 
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have been conducted to determine the impacts that biodiversity loss has on community 

structure, ecosystem services and functions (Cardinale et al 2011; Steinbeiss et al 2008; Ruiz-

Jaen and Potvin 2010; etc). Meta-analyses of these studies have shown that a decline in 

biodiversity at all scales (i.e. genes, species, and functional groups) reduces the efficiency by 

which communities capture essential resources and convert them into biomass (Cardinale et al 

2011; Balvanera et al 2006; Cardinale et al 2006; Worm et al 2006; Cardinale et al 2007; 

Stachowicz et al 2007). Furthermore, there is an increasing amount of evidence to suggest that 

biodiversity is correlated with certain provisioning and regulating ecosystem services, such as 

biocontrol (e.g. disease prevalence, resistance to plant invasion, abundance of herbivorous 

pests, etc) and carbon sequestration (Cardinale et al 2012). As species richness declines, the 

services that they provide become unable to meet the needs of both natural and human 

communities. 

There no longer exists any natural areas that have not been affected by humans, but 

relative to other systems, freshwater habitats are considered the most endangered (Allan and 

Flecker 1993; Malmqvist and Rundle 2002). Freshwater regions are naturally scarce; the total 

surface area of fresh waters of all kinds is only 5-10 million km2 (Shiklomanov 1993; Cole et al. 

2006), which is less than the area of Europe (Strayer et al 2006). Furthermore, because 

freshwater habitats are embedded in and are downhill of terrestrial regions, they are 

unavoidably impacted by human activities that are concentrated around their drainage basins 

(Strayer et al 2006). The disproportionate impact that freshwater habitats experience due to 

human activities places freshwater biota at an increased risk of decline and extinction. 
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Although it is well known that freshwater habitats are at enormous risk due to human 

influence, knowledge of the groups of species that are most at risk within these habitats is 

highly variable. For instance, the best studied groups of freshwater invertebrates have roughly 

the same number of described species as freshwater fish, but have received approximately one-

tenth of the attention from scientists (Strayer et al 2006; Dudgeon et al 2005). The biased focus 

of taxonomic studies on charismatic megafauna and economically important biota has left our 

understanding of freshwater invertebrate taxonomy highly fragmented and incomplete. 

Moreover, like the habitats in which they are found, freshwater species are in rapid decline 

worldwide, due to five main factors: overexploitation, water pollution, flow modification, 

degradation of habitats, and invasion by exotic species (Dudgeon et al 2005). But because of 

the taxonomic bias present in studies of freshwater taxa, it is difficult to assess how these 

factors may be impacting groups that have historically been studied less. 

The present study has provided some much needed additional information about the 

taxonomy of the freshwater mollusk family Physidae. Based primarily on molecular data, this 

study supports the inclusion of the Owyhee physa as a distinct species within this family. Found 

only in one stream complex of the Owyhee River (Oregon) and nowhere else, the Owyhee 

physa is a highly endemic species with a very restricted range. Much like all other freshwater 

habitats, the Owyhee River has historically been affected by human use. Flowing from 

northeastern Nevada through southeastern Oregon, the Owyhee River was drastically modified 

in 1933 when the Owyhee Dam was built in northern Malheur County, Oregon (Bureau of 

Reclamation 2006). Constructed to provide agricultural irrigation to the region surrounding the 

Snake River, this impoundment caused the extirpation of migrating fish, such as salmon, from 



 
50 

the Owyhee River Basin (Oregon Environmental Council 2009). The Owyhee River and 

surrounding areas have also experienced anthropogenic impacts as a result of the recreational 

uses that are permitted in the region, including camping, fishing, kayaking and other boating 

activities. 

Without a clear understanding of the impacts that these activities have on the habitat 

and the organisms found therein,  and other species remain at risk for population decline and 

extinction. Currently, portions of the Owyhee River are protected under the Wild and Scenic 

Rivers Act of 1968 and the Omnibus Public Land Management Act of 2009 (Owyhee Initiative 

2011), but much of this protection focuses on the conservation of habitats for large mammals 

and wildlife. To adequately conserve those species that are at most risk, it is essential to know 

what species are present and their status within their habitat. 

The present study has called into focus how incomplete our knowledge of freshwater 

invertebrate taxonomy is, especially within this region of the United States. Through this work, 

we were able to not only identify the Owyhee physa as a distinct, endemic species, but our data 

also suggests that “Physa gyrina”, the sister taxon of , may also be a new and currently 

undescribed species. Because much of what is known about freshwater gastropod diversity in 

the United States has focused heavily on the Mobile Bay basin and the American southwest 

(Strong et al 2008), the present work provides evidence to support additional studies in regions 

that have historically received far less attention. 

New species discoveries contribute not only to our understanding of regional diversity 

and the evolutionary relationships among species, but also how we view conservation of this 

biological diversity. Without a proper evaluation of the species that exist and the roles that they 
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play in their environment, our ability to effectively protect them is severely limited. This study 

has provided additional information about the current status of Physidae species richness, but 

additional studies must be done to both broaden and deepen our knowledge of freshwater 

gastropod diversity. 

 

Future Work 

The establishment of the Owyhee physa as a new species along with evidence to 

support the eventual species status of “Physa gyrina” contributes substantially to our 

knowledge of freshwater invertebrate taxonomy, particularly freshwater gastropods. However, 

because an estimated 10,000 species of freshwater mollusks are predicted to be currently 

undescribed, additional work is essential (Lydeard et al 2004). To further our taxonomic and 

biological understanding of this understudied group, future investigations should focus on 

increasing the number of regional surveys, particularly in the western and midwestern United 

States, and incorporate modern molecular analyses in taxonomic evaluations. Because 

freshwater taxonomic classifications are both incomplete and highly variable, evaluating 

putative species on the basis of morphological and anatomical characters alone is insufficient 

for species discrimination efforts. Including molecular techniques in the analyses of putative 

species will provide information not only on the evolutionary history of populations based on 

genetic data, but also on how morphology and anatomical characters may change under 

different environmental pressures and relative to genetic distances. 

Conducting formal evaluations of potentially new species is a crucial first step in gaining 

a better understanding of the biological diversity present in freshwater taxa. However, because 
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of the current rate at which freshwater habitats are being modified and lost, future studies 

should do more than solely determine the taxonomic status of putative species.  is found in a 

region of the Owyhee River that has seen increased foot-traffic and human influence in recent 

years, primarily due to the remote location that affords beautiful scenic views, fishing and 

boating, and the presence natural hot springs (D. Hopper, personal communication). Although 

this study has presented data to support the species status of the Owyhee physa, little more 

than this is known about the species. In light of the current status of freshwater ecosystems, 

future studies of  and other freshwater species should investigate their ecology and the roles 

that they play in their respective habitats. Freshwater ecosystems contain many poorly 

understood and unrecognized ecological networks as a result of the limited research that has 

been done within these systems. Increased efforts to investigate these understudied regions 

will not only provide basic biological knowledge of the organisms found within these habitats, 

but will also help to uncover how global change and species losses will alter the way that these 

ecosystems function and persist.  
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