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Abstract

My dissertation aims to understand a firm’s optimal capital structure decision when it con-

fronts Knightian uncertainty. It contains three chapters.

In Chapter One, I derive the optimal capital structure of a firm when its manager is

ambiguity-averse. My model predicts substantially lower leverage for such firms, in compar-

ison to traditional static trade-off models. I use the 1982 Voluntary Restraint Agreement

(VRA) on steel import quotas between the U.S. government and the European Community

as an exogenous reduction in Knightian uncertainty faced by firms in the U.S. steel industry.

Using a difference-in-difference methodology, I find that when uncertainty is resolved, a me-

dian firm in the U.S. steel industry increases its market and book leverage by approximately

12% relative to a matched control firm from another industry. The results are not explained

away by changes in traditional risk factors or by a change in expected future profitability.

In Chapter Two, I develop a new measure of Knightian uncertainty using a mixture

of normal distributions. Using this novel measure, I find that a median firm in the sample

decreases its market leverage by approximately 3.6%, when the firm’s measure of uncertainty

increases by one standard deviation. I also find an increase in a firm’s uncertainty measure

from the minimum to the maximum is associated with a 6.3% increase in the firm’s propensity

to take almost zero leverage.

In Chapter Three, I consider a firm’s decision to exercise real options, when the firm

faces Knightian uncertainty about the evolution of project value. I provide two continuous

time applications extended from the discrete time applications in Miao and Wang (2011)

that show the value of waiting (which increases with risk) decreases with uncertainty. I

incorporate ambiguity-averse investors who are uncertain about the evolution of a firm’s

assets into the dynamic capital structure model of Leland (1994). I show that even in this

dynamic setting, uncertainty provides a more plausible explanation for firms taking on low

leverage than risk alone.

viii



Chapter 1

Knightian Uncertainty and Capital

Structure: Theory and Evidence

1.1 Introduction

“· · · there is no possibility of forming in any way groups of instances of sufficient

homogeneity to make possible a quantitative determination of true probability.

Business decisions, for example, deal with situations which are far too unique,

generally speaking, for any sort of statistical tabulation to have any value for

guidance. The concept of objectively measurable probability or chance is simply

inapplicable.”

– (Knight, 1921, p. 231)

According to Knight (1921), risk applies to situations where agents can accurately mea-

sure the odds of prospects. Uncertainty (or ambiguity), on the other hand, applies to sit-

uations where agents do not have the information necessary to assess probabilities in the

first place. For example, an automobile company might forecast that the risk of producing

a defective car is exactly one out of 2,000, yet they will not be able to accurately fore-

cast the economic outlook for the automobile industry in 30 years because there are too

many unknown factors to calculate. Hence, uncertainty in this sense is common in business

decisions.

To financial economists, it is a puzzle that firms take on lower leverage than predicted

by trade-off models of capital structure (Miller, 1977; Bradley et al., 1984; Graham, 2000).

The median corporate market leverage ratio in the United States between 1990 and 2008 is
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around 20% (Minton and Wruck, 2001; Lemmon and Zender, 2001). The traditional models

based on pure risk (not Knightian uncertainty) often predict leverage ratios in excess of

50%, given reasonable exogenous parameters (Berk and DeMarzo, 2008; Frank and Goyal,

2008). Moreover, Strebulaev and Yang (2012) document a zero-leverage puzzle: between

1962 and 2006, about 10% of public non-financial firms take on zero debt, and 32% have

zero or negative net debt.

To address these puzzles, I examine the effect of Knightian uncertainty on leverage. I

incorporate a manager’s ambiguity aversion into a static trade-off model. I derive the optimal

capital structure when the manager faces Knightian uncertainty over the firm’s future cash

flow. The model shows that the amount of uncertainty and the manager’s aversion toward

it lead to substantially lower leverage than the traditional counterpart. The intuition is

clear. A Knightian manager is unsure about the true distribution of the next period’s cash

flow. Instead, she maintains a set of distributions (priors) that she thinks are plausible,

and displays aversion toward this uncertainty. Her ambiguity aversion causes her to pay

more attention to the outcomes of relatively pessimistic priors. Hence, the marginal cost

of default increases with both the amount of uncertainty perceived by the manager and

her aversion toward it, while the tax benefit of debt decreases. To balance this trade-off,

the ambiguity-averse manager takes on considerably lower leverage than she would in the

absence of uncertainty.

I show that there is a distinction between the effect of uncertainty and the effect of

risk on leverage. A firm’s optimal debt does not strictly decrease with risk. As in Bradley

et al. (1984), when the firm’s cash flow is highly volatile, the manager may want to increase

debt to increase the value of tax shields. I show that it is true even when the manger is

risk-averse. In contrast, in the presence of ambiguity, an ambiguity-averse but risk-neutral

manager strictly decreases debt as the level of ambiguity rises. In particular, I show that

an ambiguity-averse but risk-neutral manager takes on strictly less debt than an ambiguity-

neutral but risk-averse manager, given a fixed level of risk. Therefore, uncertainty provides

a more plausible explanation for firms having low leverage than risk alone.

To empirically test this prediction, I use a difference-in-difference methodology to es-

timate the causal effect of the resolution of uncertainty on leverage. I consider the 1982

Voluntary Restraint Agreement (VRA) on steel import quotas between the U.S. government

and the European Community (EC) as an exogenous reduction in the amount of Knightian

uncertainty faced by U.S. steel firms. Prior to this agreement, U.S. steel manufacturers faced

considerable Knightian uncertainty over the outcomes of antidumping (AD) and countervail-

ing duty (CVD) legal proceedings that they filed against European steel producers. The 1982

2



VRA resolved the uncertainty confronted by the U.S. steel industry in the pre-VRA period,

providing an empirical setting to estimate the causal effect of the resolution of uncertainty

on leverage. The key identification assumption is that the 1982 VRA is exogenous to the

leverage decision of U.S. steel manufacturers. The null hypothesis is that when uncertainty

is resolved by the 1982 VRA, the average change in leverage is the same for both U.S. steel

firms (the treatment) and the matched control firms. The results suggest that when uncer-

tainty is resolved by the 1982 VRA, a median firm in the steel industry increases its market

and book leverage by 11.5% and 12.3%, respectively, relative to a matched control firm from

another industry. These results are economically strong and statistically significant. More

importantly, the results are not explained away by changes in traditional factors such as risk,

bankruptcy cost, and future profitability.

I conduct a few placebo tests in which I assume the VRA happens at different times,

instead of in 1982. Steel firms and matched control firms respond similarly to the placebo

shocks. In addition, following Bertrand et al. (2004), I time-average the data before and after

the 1982 VRA shock and run a difference-in-difference analysis on this averaged outcome

variable. My results remain robust.

One potential concern is that the U.S. steel firms may have lobbied for the enactment of

the 1982 VRA. If leverage (the outcome variable) is a direct reason for the passage of the

VRA, this poses a threat to the internal validity of the difference-in-difference methodology.

However, any lobbying by steel firms is likely to be driven by concerns over profitability rather

than issues related to leverage alone. Then, as long as the profitability of a firm is included

in the regression as a firm-specific control variable, the difference-in-difference estimator

identifies the causal effect of the resolution of uncertainty on a steel firm’s leverage. Moreover,

the U.S. government independently had a strong incentive to negotiate the VRA with the

EC, even absent any lobbying by steel firms. The U.S. government had a concurrent dispute

with the EC over a natural gas pipeline from the Soviet Union to Western Europe (the Trans-

Siberian Pipeline). The U.S. government believed that the punitive duties on steel imports

would make talks over the pipeline issue even more problematic and impede cooperation

with Europe (Moore, 1996). During the Cold War (1947-1991), the U.S. government saw

it as a critical security issue (The Weinberger Paper, Pentagon Report, 1981). Therefore, I

argue that the 1982 VRA may be treated as exogenous to the leverage of U.S. steel firms.

There is a long-standing body of research on explaining the low-leverage puzzle. A

number of recent dynamic trade-off models have been able to predict lower optimal leverage

ratios (Goldstein et al., 2001; Morellec, 2004; Strebulaev, 2007). The dynamic trade-off mod-

els that incorporate endogenous investment are also able to predict lower optimal leverage
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ratios (Hennessy and Whited, 2005, 2007; DeAngelo et al., 2011). These models represent

an important step toward explaining the low-leverage puzzle. My contribution is to propose

a simple model that provides a plausible new reason (a manager’s ambiguity-aversion) for

firms having low leverage. A second contribution of this paper is to present empirical evi-

dence that suggests there is a causal relationship between uncertainty and leverage, adding

to what we know of the empirical determinants of leverage (e.g., Titman and Wessels, 1988;

Rajan and Zingales, 1995; Lemmon et al., 2008). My results suggest that the amount of

uncertainty perceived by a firm is an important determinant of leverage.1

The Ellsberg Paradox (Ellsberg, 1961) illustrates the Knightian distinction between risk

and ambiguity. In experiments, agents are typically ambiguity-averse: they prefer a risky

bet to an uncertain one.2 Gilboa and Schmeidler (1989) show that the Ellsberg paradox can

be resolved by using multiple priors and a maxmin objective. An ambiguity-averse agent

computes expected utility under the worst-case scenario among the priors that he thinks

are possible. Klibanoff et al. (2005; henceforth, KMM) extend the multiple priors model

to allow smooth preferences toward ambiguity. Their model provides a separation between

the attitude to ambiguity and the amount of the ambiguity itself. In this paper, I use the

KMM framework to model the amount of ambiguity perceived by a manager and her aversion

toward it.

In Section 2, I begin by providing an outline of the smooth ambiguity aversion model

proposed by KMM. Then, I consider a simple static trade-off model of capital structure and

incorporate the manager’s ambiguity aversion into the model to derive the firm’s optimal

capital structure. I also consider the relevant comparative statics of the ambiguity-aversion

augmented model. In Section 3, I describe the nature and the timing of 1982 VRA, provide

the details of the difference-in-difference methodology, as well as the construction of the

matched sample. The main empirical results are presented in Section 4. In Section 5, I

perform robustness checks for the results. Section 6 concludes.

1In Chapter 2, I propose a new measure of Knightian uncertainty and find that there is an economically
sizeable and statistically significant negative relationship between uncertainty and leverage.

2Details about the Ellsberg Paradox are in Appendix 1.A.
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1.2 Theory: Trade-off Model with a Manager’s Ambi-

guity Aversion

1.2.1 Smooth ambiguity aversion preference

This section provides a brief review of Klibanoff, Marinacci and Mukerji (2005)’s smooth

ambiguity aversion model. For clear exposition, I introduce a discrete version of the KMM

model. Consider an agent who cares about the realization of a random variable X. The

agent is uncertain about the true distribution of X. He maintains Π = {F1, · · · , Fn} as the

set of distributions that he thinks are plausible as the true distribution for X. It is evident

that if Π is a singleton, then there is no ambiguity about the distribution of X. The agent

attaches his own subjective belief µi to Fi in Π, being the true distribution of the random

variable X.

The smooth ambiguity aversion preference is expressed as follows: First, the agent eval-

uates all possible first-stage expected utilities of X corresponding to a distribution Fi in Π.

He gets a set of the (first-stage) expected utilities, each being indexed by i.

Step 1:

∫
u(x)dFi each Fi ∈ Π

where u(·) is a usual Bernoulli utility function. Second, the agent transforms each first-stage

expected utility by an increasing function φ(·).

Step 2: φ

(∫
u(x)dFi

)
each Fi ∈ Π

Finally, the agent obtains the second-stage expectation V (x) by averaging the transformed

first-stage expected utilities by his subjective belief µi attached to a corresponding Fi in Π

for i = {1, · · · , n}.

Step 3: V (x) :=
n∑
i=1

µi · φ
(∫

u(x)dFi

)
(1.1)

In this representation, the agent’s preference is “an expected utility over expected utilities.”

The role of the function φ(·) in the second step is critical. The shape of φ(·) describes

the agent’s attitude towards ambiguity, analogous to the attitude toward risk characterized

by the shape of utility function u(·). In particular, if φ(·) is concave, the agent evaluates the

final stage expectation of the concave transformed first-stage expected utilities. As with risk

5



aversion, the concave transformation reflects his aversion to ambiguity; he attaches a larger

weight to lower first-stage expected utility. If φ is convex, as with risk seeking, the agent

tends to put a higher weight on higher first stage expected utility. Accordingly, he displays

ambiguity-seeking behavior. On the other hand, the amount of ambiguity is characterized by

the dispersion of the set of priors Π. KMM emphasize that such separation is a distinction

of their model from other models, including the multiple priors model.3

1.2.2 Trade-off model with ambiguity aversion

1.2.2.1 The model

The model is based on a standard trade-off model (Kraus and Litzenberger, 1973; Bradley

et al., 1984). The firm’s leverage is determined by a single period trade-off between the tax

benefit of debt and the deadweight costs of bankruptcy. Investors are assumed to be risk and

ambiguity neutral. The firm faces a constant marginal tax rate on end-of-period cash flow.

If the firm is unable to make the promised debt payments, it incurs deadweight financial

distress costs. If the cash flow is negative, due to limited liability, no debt is paid. If the

cash flow is positive but not enough to cover the debt payment B, the firm defaults. There

is a deadweight loss of kX in the process. When the cash flow is enough for the firm not to

default, equity holders receive (X −B)(1− τ).

Suppose the firm’s next period cash flow (X) has a distribution F (x). Then, the market

value of debt is:

D(B) =

(
1

1 + r

)(∫ B

0

x(1− k) dF (x) +

∫ ∞
B

B dF (x)

)
(1.2)

and the market value of equity is:

E(B) =

(
1

1 + r

)(∫ ∞
B

(1− τ)(x−B) dF (x)

)
, (1.3)

where r is a risk-free rate. The levered firm value is V (B) = D(B) + E(B). It is useful to

3In the max-min model, the manager always chooses the worst-case prior in Π. Hence, the dispersion
of Π represents both the amount of ambiguity and the attitude toward it. If the manager is infinitely
ambiguity-averse, the smooth ambiguity model in effect coincides with the multiple priors model (Klibanoff
et al., 2005).
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rewrite V (B) as:

V (B) =
1

1 + r


∫ ∞

0

(1− τ)x dF (x)︸ ︷︷ ︸
unlevered firm value

−
∫ B

0

k x dF (x)︸ ︷︷ ︸
deadweight loss

due to bankruptcy

+ τ

∫ B

0

x dF (x) + τ

∫ ∞
B

B dF (x)︸ ︷︷ ︸
Tax benefit from debt

 .

I assume that a manager faces Knightian uncertainty and is averse toward it. However, I

assume that she is still risk-neutral. As a Knightian decision maker, the manager is uncertain

about the true distribution of cash flow, F (x). Instead, she maintains Π, a set of all possible

distributions {Fi(x)}ni=1 that she thinks are plausible as the true distribution for the cash

flow. She associates the subjective belief µi to each Fi(x) in Π. When making a decision

about the optimal leverage, the manager considers the expected firm value for each Fi and

displays aversion to ambiguity characterized by the concave function φ(·). Because of her

ambiguity aversion, she assigns higher weights to firm values with relatively pessimistic

priors in Π. Therefore, she makes a lower leverage decision than in the absence of ambiguity.

When Π is a singleton, the manager is absolutely sure about the true distribution of cash

flow, thereby the model becomes a traditional single-period static trade off model.

Precisely, the manager chooses the optimal leverage to maximize the firm value applying

the smooth ambiguity-averse preference:

max
B>0

n∑
i=1

φ(V (B|Fi)) · µi︸ ︷︷ ︸
=Eµ
[
φ(V (B|F ))

]
. (1.4)

Here, I slightly abuse the notation. V (B|Fi) is the levered firm value when it takes the debt

amount B given a distribution Fi(x) in Π.

The first-order condition is:

Eµ
[
φ′(V (B|F ))

∂V (B|F )

∂B

]
= 0. (1.5)

As usual, the optimal debt level B can be obtained by solving (1.5) for B.

Lemma 1.1 states that when the ambiguity-averse manager chooses the optimal debt, she

behaves as if she were ambiguity-neutral but pays more attention to relatively pessimistic

priors. It is a special case of Proposition 5 of Rigotti et al. (2008).
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Lemma 1.1 (Existence). The first-order condition (1.5) is equivalent to:

Eµ
[
φ′(V (B|F ))

∂

∂B
V (B|F )

]
= Eµ∗

[
∂V (B|F )

∂B

]
= 0. (1.6)

Formally, given her subjective belief µ to the set Π of priors, there exists a Radon-Nykodym

derivative Z such that:

dµ∗ = Z · dµ , (1.7)

where:

Z =
φ′(V (B|F ))

Eµ(φ′(V (B|F )))
and EµZ = 1 .

Proof. See Appendix 1.B.1.

The belief µ∗ is interpreted as an adjusted belief: the subjective belief µ is adjusted

by φ
′
(V (B|F )). I refer to µ∗ as an ambiguity-adjusted belief in the following sense. In

a case where the manager’s subjective belief µ on Π is assumed to be uniform (i.e., she

thinks all distributions in Π are equally likely), her ambiguity aversion forces her to put the

largest weight on the worst case prior that yields the highest marginal value φ
′
(·). Note

that Lemma 1.1 states the existence, not the uniqueness of a density Z. I thus obtain the

following corollary to Lemma 1.1.

Corollary 1.1. The optimality condition (1.6) becomes:

kB · Eµ∗ [f(B)] = τ
(
1− Eµ∗ [F (B)]

)
, (1.8)

where Eµ∗ [f(x)] =
∑n

i=1 µ
∗
i · fi(x), a mixture of densities fi(x) with ambiguity adjusted belief

µ∗i .
4

Proof. See Appendix 1.B.2.

The intuition of Corollary 1.1 is as follows. The Knightian manager is uncertain about

the true density (f(B)). Instead, she finds the set of densities that she thinks are plausible

({fi(B)}ni=1) and averages them with her ambiguity-adjusted belief (Eµ∗ [f(B)]). Similarly,

4When the manager is absolutely sure about the distribution F (x) (i.e., the set Π is a singleton), then
the optimality condition (1.8) becomes the usual first-order condition:

∂V (B)

∂B
= kBf(B)− τ(1− F (B)) = 0,

because when Π is a singleton, µ becomes degenerate, therefore f∗(x) is f(x).
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she also maintains the set of distributions of the firm being solvent (
{∫∞

B
fi(x)dx

}n
i=1

=

{1− Fi(B)}ni=1), then obtains the ambiguity-adjusted distribution of the firm being solvent

(1−Eµ∗ [F (B)]). The optimality condition (1.8) means that the ambiguity-adjusted marginal

cost of default and the ambiguity-adjusted marginal tax benefit of debt must be equal.

1.2.2.2 Comparative statics of the optimal leverage

Now, I determine two comparative statics of the optimal leverage with respect to the amount

of uncertainty perceived by the manager and degree of her aversion toward it. Proposition 1.1

states that (a) while keeping the amount of uncertainty fixed, as the manager’s ambiguity

aversion rises, she may reduce the optimal level of debt, and (b) while keeping the manager’s

ambiguity aversion fixed, as the amount of uncertainty she faces increases, she may reduce

the optimal level of debt.

The amount of uncertainty perceived by the manager is measured by the dispersion of

Π. I denote it as δ. For this section, I assume that all distributions in Π are gaussian and

variance of them is common and known, therefore the manager is unsure only about the

mean of the distribution for the firm’s cash flow. Then, the dispersion of Π is defined as

δ = max |θi − θj| for all i 6= j, where θi is the mean parameter of distribution Fi in Π.5

Meanwhile, the degree of a manager’s ambiguity aversion is characterized by the degree

of concavity of φ(·). Following Klibanoff et al. (2005), I assume that the manager displays

constant absolute ambiguity aversion (CAAA). That is,

φ(x) =

{
1− e−αx α > 0

x α = 0
(1.9)

where the parameter α is the coefficient of absolute ambiguity aversion such that:

α = −φ
′′
(x)

φ′(x)
.

Similar to the coefficient of risk aversion, α represents the degree of concavity of φ(·), and

therefore represents the degree of the manager’s ambiguity aversion.

Proposition 1.1. Ceteris paribus, the optimal amount of debt B that satisfies the first-order

5In general, the dispersion of Π can be characterized by the maximum statistical distance D(·||·) between
any two distributions in Π, maxD(Fi||Fj) for all i 6= j in {1, · · · , n}.
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condition (1.8) decreases with α, the manager’s degree of ambiguity aversion. That is,

∂B

∂α
< 0 .

Also, the optimal amount of debt B decreases with the amount of uncertainty that the man-

ager perceives. Let the amount of uncertainty be δ. Then,

∂B

∂δ
< 0 .

Proof. See Appendix 1.B.3 on page 28.

The intuition is as follows. By Lemma 1.1 (therefore, Corollary 1.1), as ambiguity-

aversion (α) increases, the manager puts higher weight on relatively pessimistic priors in Π.

Hence, given an optimal debt level B, as α increases, the ambiguity-adjusted marginal cost

of default (kB · Eµ∗ [f(B)]) increases, while the ambiguity-adjusted marginal tax benefit of

debt (τ
(
1− Eµ∗ [F (B)]

)
) decreases. To balance this trade-off, the manager must optimally

reduce the amount of debt.

The optimal leverage ratio is defined as:

Leverage ratio =
B∗

E(B∗) +B∗
, (1.10)

where B∗ is the optimal amount of debt computed from the first-order condition (1.8), and

E(B∗) is the market value of equity at B∗ using (1.3). Figure 1.1 on page 38 illustrates a

numerical example of the comparative statics of the optimal leverage ratio with respect to

the variation in the manager’s degree of ambiguity aversion. The computation details are in

Appendix 1.C.

Next, as the amount of uncertainty (δ) increases, the pessimistic prior in Π gets worse (i.e.,

shifted left). According to the optimality condition (1.8), the ambiguity adjusted marginal

cost of default (kBEµ∗ [f(B)]) increases with δ, while the ambiguity-adjusted marginal tax

benefit of debt decreases. Therefore, the ambiguity-averse manager must optimally reduce

the optimal level of debt to balance this trade-off. Figure 1.2 illustrates a numerical example

of the comparative statics of the optimal leverage ratio with respect to the variation in the

amount of uncertainty. The leverage ratio at the given optimal debt B∗ is computed using

(1.10). The computation details are in Appendix 1.C.

From Proposition 1.1 (see also Figures 1.1 and 1.2 on page 38), the effect of uncertainty on

leverage is clear. As uncertainty increases, leverage strictly decreases. One can ask whether
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risk aversion without invoking ambiguity aversion is also sufficient. Qualitatively, the effects

of uncertainty and risk on leverage are similar. Because the certainty equivalent of the

risk-averse manager decreases with risk, the risk-averse manager also tends to employ lower

leverage than the risk-neutral manager. Quantitatively, however, the effect of uncertainty on

leverage is higher than that of risk. Moreover, the risk-averse manager’s choice of leverage

does not strictly decrease with the risk of cash flow, whereas the ambiguity-averse manager’s

choice of leverage strictly decreases with uncertainty.

Proposition 1.2. For a risk-averse but ambiguity-neutral manager, there exists a level of

risk, σ, such that (i) the optimal debt, B, strictly decreases with risk when the current risk

is lower than σ,
∂B

∂σ
< 0 if σ < σ

(ii) the optimal debt, B, increases or remains the same with increasing risk when the current

risk is higher than σ,
∂B

∂σ
≥ 0 if σ ≥ σ

Proof. See Appendix 1.B.4. σ is a solution of the integral equation (1.20) on page 30 in

Appendix 1.B.4.

In contrast to Proposition 1.1, Proposition 1.2 states that the optimal level of debt does

not strictly decrease with risk. When a firm’s cash flow is less volatile, an increase in risk

sufficiently increases the marginal cost of default, but decreases the marginal tax benefit at

the current optimal level of debt. Therefore, she must decrease the optimal level of debt to

balance this trade-off. When the cash flow of a firm is highly volatile, the manager is more

likely to gamble on the chance of the firm being solvent in the next period. That is, when

the present risk is high, the default intensity can decrease with risk. But, the manager can

gain additional tax benefit of debt by adding an additional amount of debt, as long as the

firm is still solvent in the next period. Therefore, when the firm’s cash flow is highly volatile,

the manager may want to increase debt to increase the value of tax shields. Bradley et al.

(1984) also point out that when the manager of a firm is risk-neutral, the effect of risk on

the optimal level of debt is undetermined. In Proposition 1.2, I show that it is true even

when the manager is risk-averse.

Figure 1.3 on page 39 illustrates numerical examples of Propositions 1.2. The leverage

ratio at the risk-averse but ambiguity-neutral manager’s optimal debt choice B∗ is computed

using (1.10). The figure depicts that the risk-averse but ambiguity-neutral manager’s optimal

leverage does not strictly decrease with risk after a certain level of risk with the reasonable
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proportional deadweight cost (k = 0.4) and marginal tax rate (τ = 0.35).

Next, consider two managers. Manager “A” is risk-neutral but ambiguity-averse with

CAAA preference. Manager “R” is risk-averse with CARA preference, but is ambiguity-

neutral. For a given level of risk, the optimal leverage ratio of manager “A”, is strictly

less than that of manager “R,” if and only if, the amount of uncertainty perceived by the

managers (δ), the level of the risk of the firm’s cash flow (σ), the coefficient of absolute

ambiguity aversion (α) of the manager “A”, and the coefficient of absolute risk aversion (ρ)

of the manager “R” satisfy the following condition:

ρ((1− τ)x0 + τBR −B0) < α(V (BR|θ2)− V (BR|θ1)) , (1.11)

where B0 ∈ [(1− k)B,B] satisfies

kB u′(B0) f(B) =

∫ ∞
B

u′((1− τ)x+ τB)f(x)dx , (1.12)

and the optimal leverage taken by the manager “R”, BR, satisfies

−KBRu
′(B0)

∫
Π

f(BR|θ)dµ(θ) + τ

∫
Π

∫ x̄

BR

u′((1− τ)x+ τBR)f(x|θ)dxdµ(θ) = 0. (1.13)

Note that Π = {f(·|θ)}θ∈Θ is the compact set of prior about the cash flow distribution, µ is

associated belief over Π, u(·) is the CARA function, and φ(·) is the CAAA function given

by (1.9) on page 9. The details to derive the condition (1.11) are available in Appendix 1.B.5

on page 31.

Because condition (1.11) is less intuitive, I refer to Figure 1.3 on page 39 to provide the

quantitative effect of uncertainty on leverage as compared to that of risk on leverage. When

the coefficient of ambiguity aversion (α = 3) is comparable to that of risk aversion (ρ = 2)

and the amount of uncertainty is fixed as δ/σ = |θmin− θmax|/σ = 2, the manager “A” takes

on strictly less leverage than the manager “R”, given a fixed level of risk. The computation

details to generate the figure are in Appendix 1.D on page 35.

The comparability between the coefficient of ambiguity aversion α = 4 and that of risk

aversion ρ = 2 has to be justified. Consider the following thought experiment related to

the Ellsberg paradox following Ju and Miao (2007). The idea is that the ambiguity pre-

mium computed as the difference between the certainty equivalent from risky situation and

non-ambiguity equivalents from ambiguous situation must be reasonable. Camerer (1999)

reported that the ambiguity premium is typically on the order of 10–20 percent of the ex-
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pected value of a bet in the Ellsberg-style experiments (Ju and Miao, 2007). Given this

evidence, the choice of ambiguity aversion parameter (α = 4) in Figure 1.3 on page 39 seems

reasonable with respect to the risk aversion parameter (ρ = 2). The calibration details are

available in Appendix 1.A on page 26.

Strebulaev and Yang (2012) document the puzzling evidence that the substantial number

of large public non-financial U.S. firms follow a zero-debt or almost zero-debt policy. Ac-

cording to Proposition 1.1 and 1.2, uncertainty has a better chance to explain the tendency

of firms taking extremely low or zero leverage because the optimal leverage strictly decreases

with uncertainty, whereas it does not strictly decrease with risk. In Chapter 2, I report an

empirical result supporting this theoretical prediction: the amount of uncertainty perceived

by a manager is positively related to the firm’s propensity of taking almost zero-leverage.

1.3 Evidence: Resolution of Uncertainty on Leverage

For an empirical test, I use difference-in-difference methodology to estimate the causal effect

of the resolution of uncertainty on leverage. I consider the 1982 VRA on steel import

quotas between the U.S. government and the EC as an exogenous reduction in the amount

of Knightian uncertainty faced by U.S. steel firms. Prior to this agreement, U.S. steel

manufacturers faced considerable Knightian uncertainty over the outcomes of AD and CVD

legal proceedings that they filed against European steel producers.

Prediction. By Proposition 1.1, when uncertainty perceived by U.S. steel firms is resolved

by the 1982 VRA, steel firms increase leverage relative to (matched) control firms in the

post-VRA period.

In the next section, I provide the details of the nature and the timing of the 1982 VRA.

1.3.1 1982 VRA impact on U.S. steel imports

In January 1982, U.S. steel companies filed a large number of AD and CVD petitions against

European steel producers due to a substantial increase in imports from the EC (February

14, 1982, The New York Times). According to the World Bank’s AD/CVD database, on

January 11, 1982, major U.S. steel manufacturers including Bethlehem Steel, U.S. Steel,

Republic Steel, Inland Steel, Jones and Laughlin Steel, National Steel, and Cyclops Steel

filed 33 AD and 61 CVD petitions against eight EC countries.
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However, the AD and CVD laws were long and cumbersome for U.S steel firms. These

laws require the complainant to do an enormous amount of investigation simply to file a

complaint (Range, 1980, p. 283). Once a complaint is filed, the ITA that administers the

law has considerable discretion over whether it will pursue the complaint. Even if the ITA

agrees to do so, the complainant must go through long and costly procedures (Solomon, 1978,

Section 2). Both the formulation and investigation of a complaint are likely to be impeded

by the foreign producers reluctant to provide sensitive data to the ITA (Solomon, 1978,

footnote 12). And relief, if granted, consists of the imposition of a duty rather than an award

of damages to the complainant. Such relief does not necessarily benefit the complainant,

because the importer can shift to the other foreign producers not subject to the duties

(Solomon, 1978, p. 449).

Indeed, the ITA’s highly discretionary interpretation of AD/CVD laws results in highly

arbitrary injury determinations (Caine, 1981). Part of the reason is that the ITA often lacks

the critical information to determine the fairness of an exporter’s selling price.6 Accordingly,

the ITA is regularly forced to make subjective accounting determinations (Harvard Law

Review, 1983; Solomon, 1978). An example of the arbitrariness of this process is provided

by the wide disparity between injury determinations calculated by the ITA in its preliminary

CVD proceedings and those calculated in its final proceedings in the steel cases. For instance,

in June 1982 the margin of subsidy found by the ITA for the British Steel Corporation

was 40.4%, but in August 1982 the margin was 20.3%. (August 26, 1982, The New York

Times).7 Hence, although the steel firms know that the cases will resolve, they are unsure

of the likelihood of the outcomes because of the discretionary scope and arbitrariness of the

decision process of the ITA. Therefore, I claim that the U.S. steel industry in the pre-VRA

period was more likely to face a high degree of Knightian uncertainty.

One potential concern is that the intervention-seeking steel industry may have lobbied

for the 1982 VRA. One can ask whether or not it is a potential threat to the internal validity

of difference-in-difference methodology. However, I argue that the 1982 VRA is not an event

driven by the U.S. steel firms’ lobbying because the U.S. government had strong incentives

to negotiate VRA with the EC. It wanted to avoid the open-ended and prohibitive duties on

many European steel exports. Complicating matters was a concurrent dispute with the EC

6For the fair value calculation, it is necessary to make adjustments for differences in the physical char-
acteristics of the merchandise in the markets being compared, differences in the quantities being sold, and
differences in the circumstances of the sale (the credit terms, grantees, technical assistance, advertising, and
services being provided by the seller). In addition, fluctuations in exchange rates must be considered.

7In addition, the decisions of laws are not strictly enforceable, if favorable to the complainant. As stated
in The New York Times (August 5, 1982): “Ian MacGregor, chairman of the British Steel Corporation,
insisted that if the American decision to impose stiff duties on steel imports from Common Market countries
went into effect, he would take legal action to overturn it.”
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over a natural gas pipeline from the Soviet Union to Western Europe (the Trans-Siberian

Pipeline) (Moore, 1996).8

During the Cold War, the U.S. government worried that the Trans-Siberian Pipeline

would make the EC dangerously dependent on Russian energy sources and that the earnings

flowing from Western Europe to the Soviet Union would relieve many of the Soviet’s economic

problems, increasing the Soviet’s military strength. Increased Soviet strength was likely

to significantly add to the U.S. defense burden (The Weinberger Paper, Pentagon Report,

1981).9 To impede the growth of the Soviet’s military power and economic leverage, the U.S.

government strongly opposed the construction of the Trans-Siberian Pipeline. It embargoed

U.S. companies’ selling supplies for the pipeline’s construction and asked their European

allies to deny supplying parts for the pipeline. Unexpectedly, in mid-1982, Britain and

France defied the Reagan Administration’s sanctions, insisting that the contract between the

Soviet Union and European companies had to be honored (January 11, July 9, August 3,

and September 2, 1982, The New York Times). The U.S. government believed that punitive

duties on steel exports would make talks over the pipeline issue even more problematic and

impede cooperation on what it saw as a critical security issue (The Haig Paper, Department

of State Report, 1981).10

Moreover, a VRA program provides distinct political advantages for the U.S. government

over AD/CVD duties or legislative quotas.11 A VRA program insures that the government

would retain controls over the trade policy decisions. Such discretion would not have been

possible if final AD and CVD duties had been imposed.12 A VRA program also enables

the government to control the timing of protection offered to industry. Unlike AD/CVD

duties, it specifies an expiration date (Caine, 1981).13 In addition, the free-market Reagan

administration could assert to the public that the government did not impose the tariffs

8The Trans-Siberian Pipeline project was first proposed in 1978 and was constructed in 1982-1984. It
created the transcontinental gas transportation system from the western Ukraine to Central and Western
European countries (Hardt, 1982).

9Declassified 2004. http://www.margaretthatcher.org/document/110933
10Declassified 2004. http://www.margaretthatcher.org/document/110934
11The Reagan Administration preferred VRA to legislative quotas. VRAs were perceived as less rigid

and less permanent than legislative quotas. Second, the Administration feared that, once the Congress gave
favorable treatment to one industry, it would be likely to provide comparable benefits to the other industries.
Third, VRA would provide a way of circumventing the General Agreement on Tariffs and Trade (GATT)’s
prohibition of quotas or would at least reduce the danger of retaliation by other countries under GATT
(Lowenfeld, 1983; Harvard Law Review, 1983).

12The ITA can impose the final duties without any direct involvement of either the president or any other
elected officials (Harvard Law Review, 1983) ([see also Anderson (1993) for the empirical evidence]).

13Duties can remain indefinitely subject to a five-year review. Article 11 of the General Agreement on
Tariffs and Trade 1994 states “· · · anti-dumping duty shall remain in force only as long as and to the extent
necessary to counteract dumping which is causing injury.”
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but negotiated the agreement, to retain their free-trade rhetoric. From the Europeans’

perspective, they also had an incentive to negotiate with the U.S. According to Viscount

Davignon, the Commissioner of Industry for the European Economic Community, “· · · the

ceiling is preferable to the duties because the duties would have reduced trade to a trickle

and cost thousand of jobs in the Europe.” (October 22, 1982, The New York Times) These

factors strongly induced the U.S. to enter negotiations with the EC for the 1982 VRA (Moore,

1996).

Second, empirical evidence that the 1982 VRA was driven by the steel firms’ lobby

is weak. Theoretically, the steel industry has attributes consistent with successful lobby-

ing characteristics: relatively small numbers of actors in the group and loyal unionization.

Empirically, however, measures of lobbying power, such as concentration and unionization,

are poor explanatory variables for obtaining the government’s protection (see Trefler 1993;

Markusen 1996). The empirical findings documented in Trefler (1993) refer to general gov-

ernment protections rather than VRAs, in particular. However, whether the steel industry’s

lobbying was effective for the 1982 VRA is empirically questionable, if theoretically probable.

Therefore, I claim the 1982 VRA is exogenous to U.S. steel firms’ leverage because it was

most likely implemented by the U.S. government.

The VRA went into effect on October 22, 1982. Its effect was comprehensive and imme-

diate, limiting EC exports to 5.5% of the U.S. market beginning November 1, 1982 (October

22, 1982, The New York Times). In return, the U.S. firms dropped their unfair trade pe-

titions and agreed to refrain from filing new cases until the VRA expired in January 1986.

The VRA allowed U.S. firms to avoid further litigation costs and provided protection against

all EC imports rather than a subgroup only (Moore, 1996). The large uncertainty perceived

by the U.S. steel industry during the pre-VRA period was immediately resolved by the an-

nouncement of the 1982 VRA. In the absence of the VRA, the U.S. steel industry would

have gone through cumbersome legal AD and CVD proceedings, whose effective outcomes

are highly uncertain in the Knightian sense.

1.3.2 Empirical strategy and sample selection

1.3.2.1 Data

The data set used for the study consists of all nonfinancial firm-year observations in the

annual Compustat database from 1971 to 2004. The period between 1978 and 1987 is for

the 1982 VRA analysis and other periods are used for the placebo tests. In particular, the
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period from 1978 to 1982 is designated as the pre-VRA period, and the period from 1983 to

1987 as the post-VRA period. I also require that all firm-year observations have valid data

for book assets. All ratios are trimmed at the upper and lower one percentile to mitigate

the effect of outliers and eradicate errors in the data. To incorporate the future expected

profitability of a firm, I obtain median analyst forecasts of a firm’s next-year earnings per

share (EPS) from the IBES database and merge them with the accounting information

obtained from the annual Compustat.

The definitions of each variable are detailed in Table 1.1 on page 40. The definitions are

standard except for the time-varying forward-looking asset volatility. Following Faulkender

and Petersen (2006, p. 60), I infer the time-varying asset volatility from the volatility of

monthly equity returns. Departing from Faulkender and Petersen, I use the GARCH model

to estimate the time-varying volatility of equity returns at a monthly frequency, because

the GARCH-based asset volatility estimate is a more accurate forward-looking risk measure

than the historical standard deviation approach. The GARCH model emphasizes a recent

surprise close to the event for study, therefore it incorporates the realized asset volatility, as

well as the forward-looking asset volatility when the 1982 VRA news arrives. The details of

measuring the asset volatility using the GARCH model are in Appendix 1.E on page 36.

The distinction between the effect of risk and uncertainty is a critical study of this pa-

per. A competing hypothesis against Knightian uncertainty is based on risk: the 1982 VRA

reduces a U.S. steel firm’s forward-looking asset risk, which completely explains away an

increase in a steel firm’s leverage in the post-VRA period. If the risk-based competing hy-

pothesis is accurate, after controlling the forward-looking asset risk of the steel industry, the

estimated effect of resolution of uncertainty in the post-VRA period should be statistically

insignificant and/or its economic strength should be negligible. To rule out the risk-based

competing hypothesis, the careful measurement of asset volatility is necessary.

1.3.2.2 Difference-in-Difference

The 1982 VRA is assumed to provide the resolution of uncertainty faced by the steel industry

in the pre-VRA period, which is exogenous to the leverage decision of U.S steel producers.

Precisely, the model used to estimate the causal effect of the resolution of uncertainty on

U.S. steel firms’ leverage is:

Yit = αt + αi + βDit + Γ′Xit + uit , (1.14)

17



where (αt, αi, Xit) are the firm-specific controls where αt represents the time fixed effect, αi

the time-invariant firm fixed effect, and Xit the time-varying observed firm characteristics.14

The treatment group includes all U.S. steel producers. Three digit SIC codes are used to

identify the steel manufacturers (331, 332) except firms producing non-ferrous metals, which

are not covered under the 1982 VRA. For the control group, I select a subset of those firms

similar to the steel manufacturers in the pretreatment firm characteristics. I use the standard

propensity matching method for the selection of control firms.

The post-treatment indicator variable Dit takes unity if a firm belongs to the U.S. steel

industry in the post-VRA period (1983-1987). The difference-in-difference estimator, β,

identifies the causal strength of Dit on Yit while keeping (αt, αi, Xit) fixed. A vector of

time-varying observed firm-specific controls Xit includes firm size, profitability, tangibility,

market-to-book ratio, time-varying asset volatility, annual stock return, and median analyst’s

forecast of profitability in year t+ 1. Yit is the response variable: market leverage and book

leverage. The error term uit is allowed to be serially correlated within firms and possibly

heteroskedastic (Bertrand et al. 2004; Petersen 2009).

Selecting firm size, profitability, tangibility, and market-to-book ratio as firm-specific

control variables is standard in the empirical capital structure literature (Rajan and Zingales

1995; Fama and French 2002; Leary and Roberts 2005). The rationale to include the other

control variables is as follows. When good news arrives to the stock market, the steel

industry’s stock price tends to increase. Market leverage is defined as total debt divided

by the sum of total debt and the market value of equity. Hence, an increase in a firm’s

stock price mechanically decreases its market leverage (Welch, 2004). When protected by

the VRA, the U.S. steel industry is expected to be less competitive. Combining with the

fact that the VRA provides the fixed term of protection, the future profitability of steel

firms likely increases, and the future operating risk of the steel industry likely diminishes

in the post-VRA period. To control these level effects, I include firm-specific annualized

stock returns, median analyst forecast of next year’s profitability, and time-varying forward-

looking asset volatility as control variables. Then, the model (1.14) on the preceding page

identifies the causal effect of resolution of uncertainty on leverage partialing out the other

accompanying level effects described above.

14The linear model (1.14) identifies the causal strength of Dit on Yit under the following assumptions:

1. Parallel-trends (conditional mean independence): E[Yit(0)|αt, αi, Xit, Dit] = E[Yit(0)|αt, αi, Xit].

2. Time-invariant causal effect of Dit on Yit: E[Yit(1)− Yit(0)|αt, αi, Xit] = β.

3. Linearity: E[Yit(0)|αt, αi, Xit] = αi + αt + Γ′Xit.

Yit = Yit(0) + Dit(Yit(1) − Yit(0)), where {Yit(0), Yit(1)} are the standard potential outcomes notation for
the response variable Yit (Rosenbaum and Rubin, 1983).
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1.3.2.3 Constructing the matched sample

Table 1.2 on page 41 represents the comparison of the firm characteristic variables between

the treatment and control group in the pre-VRA period (1978-1982). The Pre-match columns

suggest that before matching, the means of observable firm characteristics in both groups

are statistically significantly different, based on the sufficiently high t-statistics. Due to the

imbalance of the pretreatment firm characteristics, a simple comparison of all non-steel firms

to all firms in the steel industry is suspect.

For the correct causal inference of the treatment, we must compare treatment and control

groups that are as similar as possible in pretreatment firm characteristics. If two groups

have very different pretreatment firm characteristics, the prediction of counterfactual for the

treatment group will be made using information of firms from the control group that looks

very different from the treatment group (likewise for the prediction of counterfactual for the

control group). Hence, the imbalance of firm characteristic variables between two groups

leads to the estimation error of the causal effect of the treatment on the outcome.

The matched sample is constructed using the standard propensity score method (Rosen-

baum and Rubin, 1983).15 In the pre-VRA period, a logit model is estimated with the binary

dependent variable, the indicator whether a firm belongs to the U.S. steel industry. Asset

volatility, market-to-book ratio, annual stock return, and market leverage are the indepen-

dent variables.16 Then, I obtain the propensity scores of every firm in the sample from the

estimated logit model. Finally, for each firm in the U.S. steel industry, I find up to four near-

est non-steel firms in terms of the predicted propensity score with a caliper (i.e., propensity

score distance) 0.05 to avoid the extreme counterfactuals.17 In addition, I restrict the sample

to firm-year observations that fall in the overlap between the domains of propensity scores

for the treatment and control groups (i.e., common support condition). As a result, there

are 41 unique steel-producing firms in the treatment group and 146 matched-control firms.

The post-match columns in Table 1.2 on page 41 present the results of the propensity score

matching. After matching, based on the sufficiently low t-statistics, the firms in the treatment

and control groups are statistically similar in terms of the means of each pretreatment firm-

15As a robustness check, I alternatively use Mahalanobis-metric direct matching with a caliper of 0.05 to
construct the matched sample. The results are robust to this alternate matching method. The details are
discussed in Section 1.5.2 and shown in Table 1.10.

16For a robustness check, as the independent variables, I use a different set of firm characteristics: size,
profitability, tangibility, and market-to-book ratio. Table 1.10 shows that the results are robust to the use
of alternative matching variables.

17I also use the different caliper sizes such as 1 and 0.08. The unreported results are robust to these
alternative caliper sizes.
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characteristic variable: tangibility, firm size, market-to-book ratio, profitability, time-varying

volatility of asset, and simulated marginal corporate tax rate available from Graham (2000).

The post-matching standard bias column in the table measures the difference in the means

of each control variable divided by the standard deviation in the treatment group. Rubin

and Thomas (2000) suggest that for reasonable balancing, the absolute standard bias of each

covariate should be less than 0.25. Before matching, some of the absolute standard biases

of control variables appear to be larger than 0.25. After matching, all absolute standard

biases are less than 0.25. I perform the non-parametric test of the null hypothesis as to

whether or not the distributions of the propensity scores of the treatment and control group

are same after matching. The substantially high p-value (0.72) suggests to accept the null

hypothesis. Finally, Figure 1.4 on page 42 illustrates the empirical distributions of each

matching variable across the two groups after matching. As can be seen, those distributions

are comparable. In sum, after matching, the pretreatment firm characteristics are balanced

across the treatment and control groups, as desired.

1.4 Main Results

Table 1.5 on page 46 presents the main results of difference-in-difference (DID) analysis

with the matched sample specified in (1.14) on page 17. The estimated coefficient of D(i, t)

(i.e., the DID estimate) in the table represents the estimated causal effect of resolution of

uncertainty on steel firms’ leverage relative to matched control firms. All standard errors

are computed with clustering at the firm-level, thus robust to heteroscedasticity and within-

firm serial correlation. In Models 1 and 2, all DID estimates are positive and statistically

significant at the 5% level, observing sufficiently large t-statistics. That is, steel firms increase

their leverage relative to matched control firms when uncertainty is resolved in the post-VRA

period.

To gauge the economic strength of the causal effect of resolution of uncertainty on lever-

age, consider a median firm in the steel industry whose market leverage is 0.48 and book

leverage is 0.26 in year 1982. The estimated coefficients of Dit are 0.055 and 0.032, respec-

tively. Scaling by its leverage, I find that when uncertainty is resolved, a median steel firm

increases its market (book) leverage by 0.055/0.48 = 11.3% (0.032/0.26 = 12.3%) relative

to a matched control firm. These results are economically strong.

By including the firm-specific control variables, level effects accompanied by the resolution

of uncertainty as a result of the 1982 VRA are absorbed by those control variables. The signs

of estimated coefficients of the control variables seem consistent with standard intuitions.
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The size and tangibility of firms are positively related to leverage. Profitability enters with a

negative sign. The estimated coefficient of median analyst forecast of earnings per share as a

proxy for the next year’s profitability is negative and statistically significant at the 5% level.

The negative sign on profitability seems counterintuitive to the standard trade-off theory.

However, the empirical studies typically find a negative relation between profitability and

leverage ([see Frank and Goyal (2008) and the references therein]). Market-to-book ratio is

negatively related to market leverage. It is consistent with trade-off theories because growth

firms lose more of their value when they go into distress. By definition, market leverage

is inversely related to an increase in the market value of equity (Welch, 2004). Hence, it

seems reasonable that a firm’s stock return is also negatively related to its market leverage.

Forward-looking asset volatility is also negatively related to leverage. It is also consistent

with trade-off theories because firms with more volatile assets will have higher probabilities

and expected costs of bankruptcy.

Models 3 and 4 in Table 1.5 on page 46 present the results when the excess price-cost

margin of a firm (henceforth, EPCM) is included as an additional control variable for the firm-

level market power. Following Gaspar and Massa (2006), the EPCM of a firm is computed

as the difference between a firm’s price-cost margin (Lerner index) and the average operating

profit margin of its industry. The price-cost margin is defined as sales minus cost of goods sold

minus selling, general, and administrative expenses divided by total asset. The estimated

coefficient of EPCM is positive, although statistically insignificant at the 10% level. When

the steel industry is protected by import quotas, these firms face less competition and the

price-cost margin of a steel firm increases accordingly. The steel firms facing a less risky

environment tend to take on more leverage. Therefore, there is likely a positive relation

between the EPCM of a firm and its leverage.

In addition to leverage, I estimate the causal effect of resolution of uncertainty on a steel

firm’s cash holding ratio (cash/asset). I propose that cash is not only a less risky asset, but

also a less uncertain asset than debt. Therefore, the prediction is that when uncertainty is

resolved, a steel firm likely reduces its cash holding to a matched control firm. Table 1.7 on

page 48 presents the results that verify the prediction. The estimated coefficient of D(i, t)

(the DID estimate) is negative (-0.22) and statistically significant at the 10% level. Consider

a median firm whose cash holding ratio is 0.06 in the pre-VRA period. When uncertainty is

resolved, a median firm reduces its cash holding ratio by 0.022/0.06 = 36.7% compared to a

matched control firm. This effect is also economically strong.

One of the key assumptions to ensure the internal validity of the difference-in-difference

methodology is the parallel-trends assumption (Roberts and Whited, 2011). In the absence
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of the 1982 VRA, the average change in leverage would have been the same for both the

treatment and control groups. Because we never observe the true error terms uit of the

model (1.14) on page 17, we cannot perform the formal statistical test to ensure the necessary

and sufficient conditions for the parallel-trends assumption. But it is still possible to check

the necessary condition by comparing trends in the outcome variable across the treatment

and control groups in the pre-treatment period (Roberts and Whited, 2011). Since I have

multiple pretreatment firm-year observations (1979-1982), I can perform a two-sample test

to compare the average growth rates (average slopes) of the treatment and matched control

groups.

Table 1.4 on page 44 presents the results of these tests. For example, in the second row

the difference in the means of market-leverage growth rate of the two groups in 1979-1980

is 0.044. The high p-value from the two-sample t-test suggests that the the difference is

statistically insignificant. In addition, the sufficiently high p-value from rank-sum test also

suggests the distributions of market-leverage growth rate of the treatment and control group

are statistically indistinguishable. I perform similar tests for book leverage and cash holding

ratio in the pretreatment periods (1978-1982). All tests suggest that the average trends of

leverage of the treatment and control group in the pre-VRA period are statistically similar,

based on sufficiently high p-values of both t-tests and rank-sum tests. Statistically, the

necessary condition for the parallel-trends assumption appears to be satisfied, as desired.

Figure 1.5 on page 45 depicts the average market-leverage trends of U.S. steel firms and

the matched control firms. In the pre-VRA period (1979-1982), the trends across the two

groups are comparable. It is expected from the results of the formal statistical tests presented

in Table 1.4. In the post-VRA period (1983-1987), the two lines diverges noticeably. While

the mean market leverage of the matched control group remains the same, that of the

treatment group sharply increases. This difference in the average market leverage between

the treatment and matched control provides the (informal) time-varying estimates of the

causal effect of VRA on the market leverage of the U.S. steel industry in the post-VRA

period. The discrepancy between the two lines in the post-VRA period in Figure 1.5 suggests

a large positive effect of the VRA (i.e., the resolution of uncertainty) on the leverage of steel

firms relative to the matched control firms. The DID estimates (0.055) for market leverage

presented in Table 1.5 on page 46 is conceptually equivalent to the time-averaged differences

between the two lines. Note that to generate this figure, I require that all firms in the two

groups have full firm-year observations in the pre- and post-VRA period (10 years).
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1.5 Robustness Checks

1.5.1 Collapsing the data into two periods

Bertrand et al. (2004) suggest that the most conservative way to deal with the within-

firm serial correlation of errors is to ignore the time-series information. Following Bertrand

et al., I time-average the data before and after the 1982 VRA and run analysis (1.14) on

this averaged outcome variable in a panel of length 2 (Bertrand et al., 2004, Section 4.5.).

Table 1.8 on page 49 reports the results of this exercise. Compared to the main results in

Table 1.5 on page 46, in Model 1 for market leverage, the DID estimate (i.e., the estimated

coefficient of D(i)) increases from 0.05 to 0.057, while its statistical significance remains

similar. In Model 2 for book leverage, the DID estimate decreases from 0.032 to 0.029, and

its statistical significance decreases from 0.03 to 0.12 in terms of p-value. Models 3 and

4 present the results of similar analyses when excess price-cost margin is employed as an

additional control variable. The results of Models 3 and 4 are similar to those of Models 1

and 2.

Losing the statistical significance of the DID estimates in this exercise is expected because

collapsing the data into two periods substantially reduces the sample size, while the number

of covariates remains the same. As such, I lose a degree of freedom, which leads to the weaker

statistical significance of the DID estimates. This aspect is also pointed out in Bertrand et al.

(2004).18 However, the signs of DID estimates are consistent with the main results presented

in Table 1.5, and the magnitude of them is also comparable. The results suggest that the

causal effect of the resolution of uncertainty provided by the 1982 VRA on a steel firm’s

leverage remains economically strong in the most conservative setup.

1.5.2 Placebo tests and alternative matching methods

Could the observed increase in a steel firm’s leverage responding to the resolution of uncer-

tainty simply be random? A way to answer to this question is to generate “placebo-shocks”

as in Bertrand et al. (2004). Specifically, I conduct three placebo tests in which I pretend

the VRA happens, instead of in 1982, at different times: 1979, 1994, and 2002. The results

appear in Table 1.9 on page 50. In the 1979 and 1994 placebo-VRAs, none of the DID

estimates is statistically or economically significant, observing the weak economic strength

and the sufficiently small t-statistics. In the 2002 placebo-VRA, all of the DID estimates are

18Bertrand et al. (2004) states that “· · · The downside of these procedures (both raw and residual aggre-
gation) is that their power is quite low and diminishes fast with sample size.”
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statistically insignificant at the 10% level. Although their economic strength seems nonneg-

ligible, they enter with a negative sign. As a result, none of the placebo VRAs can generate

the economically and statistically effect as significant as that estimated using the actual 1982

VRA shock.

Next, I show that the main results are robust to alternative matching methods. To

begin, I match on the same pretreatment characteristics as shown in Section 1.3.2.3: the

volatility of asset, stock return, market-to-book ratio, and market leverage ratio. Here, I use

a Mahalanobis-metric to measure the distance of two firms with the chosen characteristics.

Each steel firm is matched to the four nearest non-steel firms within a caliper of 0.05.19 The

alternative matching (I) columns in Table 1.10 on page 51 present the results of difference-in-

difference analysis with the matched sample using this matching method. The DID estimates

are similar to those presented in Table 1.5 in terms of statistical and economic significance.

Finally, to check the sensitivity of selection of matching variables, I use a different set

of characteristic variables to estimate the propensity scores: tangibility, size, profitability,

and market-to-book ratio. As before, each steel firm is matched up to four nearest non-steel

firms in terms of the predicted propensity score with a caliper 0.05. The alternative matching

(II) columns in Table 1.10 present the results. All of the DID estimates are economically

strong and statistically significant at the 10% level. The economic magnitude and statistical

significance of DID estimates are similar to those of the main results presented in Table 1.5.

1.6 Conclusion

This paper shows that the Knightian uncertainty perceived by a manager and her aversion

toward it are important drivers of leverage. The model incorporates an ambiguity-averse

manager and predicts a substantially lower optimal leverage ratio than its traditional coun-

terpart. Quantitatively, the effect of uncertainty on leverage is higher than that of risk.

Moreover, the firm’s leverage strictly decreases with uncertainty, whereas it can be non-

monotone in risk even when the manager is risk-averse. Therefore, I argue that uncertainty

provides a more plausible explanation for firms taking on low leverage than risk.

I find a causal relationship between uncertainty and leverage. Prior to the 1982 VRA, U.S.

19This caliper is chosen following Rubin and Thomas (2000). They advise that in the case of Mahalanobis-
distance matching, when the variance of linear propensity score in the treatment group is less than twice as
large as that in the control group, a caliper of 20% standard deviation of propensity score of the treatment
group removes 98% of the bias in a normally distributed covariates. I find that the standard deviation of
linearized propensity scores of treatment group is 0.27, whereas that of control group is 0.28. Hence, it seems
proper to use 0.2× 0.27 ≈ 0.05 as a caliper.
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steel firms likely perceived high Knightian uncertainty about the likelihood of outcomes of

AD and CVD legal proceedings. The source of uncertainty was that the ITA had considerable

discretion and often made highly arbitrary injury determinations. I use the 1982 VRA as

an exogenous reduction in Knightian uncertainty faced by firms in the U.S. steel industry.

Using a difference-in-difference methodology with the matched sample, I find that when

uncertainty is resolved, a median firm in the steel industry increases its market leverage by

11.5% and its book leverage by 12.3% as compared to a matched control firm. These results

are economically strong and statistically significant. Most importantly, the results are not

explained away by changes in traditional factors such as risk and future profitability.

The 1982 VRA was implemented by the U.S. government because of its own strong po-

litical incentives. Therefore, the internal validity of the difference-in-difference methodology

is not threatened by steel firms lobbying for the VRA. I also show that the results are robust

to placebo shocks and to alternative matching methods.

This paper is, to the best of my knowledge, the first paper that investigates the effect

of Knightian uncertainty on optimal capital structure. It contributes to the capital struc-

ture literature by providing a formal model and empirical evidence showing that Knightian

uncertainty provides a sensible explanation for firms taking on low leverage.
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1.A Ellsberg Paradox and Reasonable Ambiguity aver-

sion Parameter

Agents are given the opportunity to bet on the draw of a ball from one of two urns. Urn

A has 50 red and 50 black balls, while urn B has 100 balls in an unknown mix of red and

black. First, the agents are offered a choice between two bets: (a) $100 if the ball drawn

from urn A is red and nothing if it is black, or (b) $100 if the ball drawn from urn B is

red and nothing if it is black. In the first experiment, the agents generally prefer the first

bet over the second. Therefore, the predicted probability of red in urn B must be strictly

less than 0.5. Next, the agents are offered a choice between two new bets: (a) $100 if the

ball drawn from urn A is black and nothing if it is red, (b) $100 if the ball drawn from

urn B is black and nothing if it is red. Again the first bet has been generally preferred in

experiments. It implies that the predicted probability of black in urn B must be less than 0.5,

i.e., the predicted probability of red in urn B must be strictly higher than 0.5. Indeed, this

probability assessment is inconsistent since one cannot simultaneously assign to the event

“red from urn B” a probability that is strictly less and also more than 0.5. Ellsberg (1961)

interprets this behavior as an aversion to the ambiguity about the odds for urn B. Therefore

the agents prefer to bet on events with known odds than on events with ambiguous odds.

This phenomenon is referred to as ambiguity aversion (Ellsberg, 1961).

Consider the above Ellsberg experiment. Assume that the risk-averse agent display the

constant absolute risk aversion (CARA) u(x) = 1 − e−ρx and the ambiguity averse agent

display the constant absolute ambiguity aversion (CAAA) φ(x) = 1 − e−αx. The agent

knows that the distribution of red and black balls in Urn A is (1/2,1/2). When she evaluates

a “risky” bet on Urn A, her certainty equivalent is equal to, given the CARA coefficient

ρ = 2,

u−1

(
1

2
u(100) +

1

2
u(0)

)
= 0.28. (1.15)

The agent believes that there are two possible equally likely distributions: her set of priors

Π = {(0, 1), (1, 0)} and µ = (1/2, 1/2). But she is averse to this uncertainty and displays

CAAA. When she evaluates a “ambiguous” bet on Urn B, her non-ambiguity equivalent –

the payoff amount she would accept in lieu of the ambiguous situation – can be computed

as, given the CAAA coefficient α = 4,

φ−1

(
1

2
φ(1) +

1

2
φ(0)

)
= 0.17. (1.16)
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The difference between the certainty equivalent (1.15) and the non-ambiguity equivalent (1.16)

is a measure of ambiguity premium (Klibanoff et al., 2005; Ju and Miao, 2007). Camerer

(1999) reported that the ambiguity premium is typically on the order of 10 - 20% of the

expected value of a bet in the behavioral setting (in this example, 0.2 × 0.5 = 0.1). There-

fore, the choice of CAAA ambiguity aversion parameter seems reasonable with respect to

the CARA risk aversion parameter.

1.B Proofs

1.B.1 Proof of Lemma 1.1

Proof. Assume Π is compact so that I can interchange differentiation and integration.20

Eµ
[
φ
′
(V (B|F ))VB(B|F )

]
= Eµ(φ

′
(V (B|F ))) · Eµ

[
φ
′
(V (B|F ))

Eµ(φ′(V (B|F )))

∂V (B|F )

∂B

]
.

Since,

Eµ
[
φ
′
(V (B|F ))

Eµφ′(V (B|F ))

]
= 1 .

I can define Z = φ
′
(V (B|F ))

Eµφ′ (V (B|F ))
as the density (Radon-Nykodym derivative) of µ∗ with respect

to µ. That is,

dµ∗ =
φ
′
(V (B|F ))

Eµ(φ′(V (B|F )))
· dµ

Thus, the first order condition can be rewritten as:

Eµ∗ [VB(B|F ))] =

∫
Π

VB(B|F )dµ∗(F ) = 0 .

1.B.2 Proof of Corollary 1.1

Proof. Assume a finite dimensional parameter space Θ. Any parametric setting, Π :=

{F (·|θ)}θ∈Θ, therefore Π is fully indexed by θ. Assume also Π is compact.

20In a case where Π is not compact, I use the Lebesgue dominated convergence theorem. Provided there
exists a integrable function g such that |Φ′(·)| < g(·), I can interchange integration and differentiation
(Folland, 1999).
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The first-order condition is:∫
Π

φ′(V (B|θ))∂V (B|θ)
∂B

dµ(θ) =

∫
Π

φ′(V (B|θ))
(
kBf(B|θ)− τ

∫ ∞
B

f(x)dx

)
dµ(θ)

= kB

∫
Π

f(B|θ)φ′(V (B|θ))dµ(θ)− τ
∫

Π

φ′(V (B|θ))
(∫

[B,∞]

f(x|θ)dx
)
dµ(θ)

= kB

∫
Π

f(B|θ)φ′(V (B|θ))dµ(θ)− τ
∫

Π

φ′(V (B|θ)) (1− F (B|θ)) dµ(θ)

= kB

∫
Π

f(B|θ) φ′(V (B, θ))∫
Π
φ′(V (B, θ))dµ(θ)

dµ(θ)− τ
(

1−
∫

Π

F (B|θ) φ′(V (B|θ))∫
Π
φ′(V (B, θ))dµ(θ)

dµ(θ)

)
= kB

∫
Π

f(B|θ)dµ∗(θ)− τ
(

1−
∫

Π

F (B|θ)dµ∗(θ)
)

= kB Eµ∗ [f(B)]− τ
(
1− Eµ∗ [F (B)]

)
= 0 .

That is, the manager balances the trade-off between the ambiguity-adjusted marginal tax

benefit of debt and ambiguity-adjusted marginal default cost of debt.

In addition, the sufficient condition for the optimality holds. To see this, obtain the

second-order condition:

∂

∂B

(∫
Π

φ′(V (B|θ))∂V (B|θ)
∂B

dµ(θ)

)
=

∫
Π

(
φ′′(V (B|θ))∂V (B|θ)

∂B
+ φ′(V (B|θ))∂

2V (B|θ)
∂B2

)
dµ(θ)

=

∫
Π

−αφ′(V (B|θ))∂V (B|θ)
∂B

dµ(θ) +

∫
Π

φ′(V (B|θ))∂
2V (B|θ)
∂B2

dµ(θ)

=

∫
Π

φ′(V (B|θ))(−kf(B|θ)− kBf ′(B|θ)− τf(B|θ))dµ(θ) < 0 .

In the second line, I use the property of CAAA such that φ′′(x) = −αφ′(x), then the first term

vanishes due to the FOC. The last line evidently holds because φ′(V ) > 0 and B < θ.

1.B.3 Proof of Proposition 1.1

Proof. Let G(α,B,Π) =
∫

Π
φ′(V (B|θ))∂V (B|θ)

∂B
dµ(θ) = 0. Since the sufficient condition for

the optimality of B holds (i.e., ∂G
∂B

< 0), by the implicit function theorem, it is enough to
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show ∂G
∂α

< 0. Because φ′(x) = αe−αx and ∂
∂α
φ′(x) = 1

α
φ′(x)− φ′(x)x,

∂G

∂α
=

∫
Π

(
1

α
φ′(V (B|θ))− φ′(V (B|θ))V (B|θ)

)
(−kBf(B) + τ(1− F (B)))dµ(θ)

= −
∫

Π

φ′(V (B|θ))V (B|θ)(−kBf(B) + τ(1− F (B)))dµ(θ) < 0 .

In the first line, I use the FOC (1.8) on page 8. The first term of the second line also vanishes

because of FOC. Observe V (B, θ) > 0 and V ′(B, θ) > 0 for all θ in Π. Therefore, the last

line is valid.

Next, let the reference parameter be θ0 and the amount of uncertainty be δ. Accordingly,

the set of priors is defined as Π = [θ, θ], where θ = θ0 +δ and θ = θ0−δ. Assume the manager

puts the uniform belief µ(dθ) = 1
2δ
dθ on Π. Then, at the optimal B satisfying (1.8),

∂

∂δ

(∫ θ0+δ

θ0−δ
(−kBf(B|θ) + τF (B|θ))φ′(V (B|θ)) 1

2δ
dθ

)
= (−kBf(B|θ) + τF (B|θ))φ′(V (B|θ)) + (−kBf(B|θ) + τF (B|θ))φ′(V (B|θ))

−1

δ

∫
Π

(−kBf(B|θ) + τF (B|θ))φ′(V (B|θ)) 1

2δ
dθ < 0 .

where F (B|θ) = 1−F (B|θ). At the optimal B that satisfies (1.8), the last term in the second

line vanishes due to the FOC, and−kBf(B|θ)+τF (B|θ) > 0 and−kBf(B|θ)+τF (B|θ) < 0.

Finally, observe φ′(v) is (exponentially) monotone decreasing function and V (B|θ) < V (B|θ),
where θ < θ. Therefore, the last line is valid.

1.B.4 Proof of Proposition 1.2

Lemma 1.2. When a (risk-averse) manager faces uncertainty, the ambiguity-neutral man-

ager combines the uncertainty about the distribution and risk of the distribution into the

variance of a new density. Precisely, let Π = {F (·|θ)}θ∈Θ be the compact set of prior and µ

associated belief over Π. Then, there exists a density f̂ given by:

f̂(x) =

∫
Π

f(x|θ)dµ(θ) ,

such that ∫
Π

(∫ x

x

u(x)f(x|θ)dx
)
dµ(θ) =

∫ x

x

u(x)f̂(x)dx .
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That is, an ambiguity-neutral manager acts behaviorally the same as a Bayesian manager

who puts the prior µ(dθ) on the parameter of f(x|θ).

Proof. By Fubini’s theorem,∫
Π

(∫ x

x

u(x)f(x|θ)dx
)
dµ(θ) =

∫ x

x

u(x)

(∫
Π

f(x|θ)dµ(θ)

)
dx =

∫ x

x

u(x)f̂(x)dx

Proof of Proposition 1.2 on page 11. According to Lemma 1.2 on the preceding page, in the

presence of uncertainty, a risk-averse but ambiguity-neutral manger constructs the new com-

pounding distribution f̂(x) combining the uncertainty and risk of the distribution. For the

simplicity of notation, use f(x) instead of f̂(x).

The risk-averse but ambiguity-neutral manager’s optimality condition for B is:

f(B)(u(B)− u(B(1− k))) = τ

∫ ∞
B

u′((1− τ)x+ τB)f(x)dx , (1.17)

where u(·) CARA utility function such that u′(x) > 0, u′′(x) < 0 and α = −u′′/u′. Because

u(x) is continuous and differentiable on [(1−k)B,B], by the mean value theorem there exists

B0 ∈ [(1− k)B,B] such that:

kB u′(B0) f(B) =

∫ ∞
B

u′((1− τ)x+ τB)f(x)dx . (1.18)

Let

G(B, σ) = −kB u′(B0) f(B) +

∫ ∞
B

u′((1− τ)x+ τB)f(x)dx = 0 . (1.19)

Then, by the implicit function theorem,

∂B

∂σ
= −

∂G
∂σ
∂G
∂B

.

From (1.19), we have:

−∂G
∂B

= k u′(B0)f(B) + k B u′(B0)
∂f(B)

∂B
+ τ u′(B)− τ 2

∫ ∞
B

u′′((1− τ)x+ τB)f(x)dx > 0

and
∂G

∂σ
= −k B u′(B0)

∂f(B)

∂σ
+ τ

∂

∂σ

∫ ∞
B

u′((1− τ)x+ τB)f(x)dx (1.20)
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Since u′(t) > 0 for all t ∈ [B,∞], we have:

∂G

∂σ
< −k B u′(B0)

∂f(B)

∂σ
+ sup

t∈[B,∞)

u′((1− τ)x+ τB) · ∂
∂σ

∫ ∞
B

f(x)dx .

Assuming B < EX = θ, ∂
∂σ

(∫∞
B
f(x)dx

)
< 0 for all 0 < σ < +∞. Hence, (i) if:

∂f(B)

∂σ
> 0⇐⇒ σ < θ −B ,

then combining with −∂G
∂B

> 0:

∂G

∂σ
< 0⇐⇒ ∂B

∂σ
< 0 .

Otherwise, let a solution of equation (1.20) be σ. Then, if θ −B < σ < σ,

∂G

∂σ
< 0⇐⇒ ∂B

∂σ
< 0 ,

but (ii) if σ ≥ σ, then:
∂G

∂σ
≥ 0⇐⇒ ∂B

∂σ
≥ 0 .

1.B.5 Derivation of the condition (1.11)

Assume Π is compact. Let the optimal leverage taken by the risk-averse but ambiguity-

neutral manager be BR, which then satisfies the first-order condition:

GR(BR) = −KBRu
′(B0)

∫
Π

f(BR|θ)dµ(θ) + τ

∫
Π

∫ x̄

BR

u′((1− τ)x+ τBR)f(x|θ)dxdµ(θ) = 0 ,

(1.21)

where B0 ∈ [(1 − k)BR, BR] defined in (1.18). Let the optimal leverage taken by the risk-

neutral but ambiguity-averse manager be BA, which then satisfies the first-order condition:

GA(BA) = −kB
∫

Π

φ′(V (BA|θ))f(BA|θ)dµ(θ) + τ

∫
Π

φ(V (BA|θ))
∫ x̄

BR

f(x|θ)dxdµ(θ) = 0 .

(1.22)

Assuming B < θ, ∂GR
∂B

< 0 and ∂GA
∂B

< 0. That is, GR(B) and GA(B) are monotonically

decreasing in B.

Since GA(B) is a monotone decreasing function on B, it is sufficient to show that
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GA(BR) < 0 in order to prove BA < BR.

GA(BR) = −kBR

∫
Π

φ′(V (BR|θ))f(BR|θ)dµ(θ) + τ

∫
Π

φ′(V (BR|θ))
(∫ ∞

BR

f(x|θ)dx
)
dµ(θ) .

By the mean value theorem, there exists a θ1 ∈ Π such that:

GA(BR) = −kBRφ
′(V (BR|θ1))

∫
Π

f(BR|θ)dµ(θ)

+τ

∫
Π

φ′(V (BR|θ))
(∫ ∞

BR

f(x|θ)dx
)
dµ(θ) . (1.23)

According to (1.21),

kBR

∫
Π

f(BR|θ)dµ(θ) = τ

∫ ∞
BR

u′((1− τ)x+ τBR)

u′(B0)

(∫
Π

f(x|θ)dµ(θ)

)
dx .

Plug it into (1.23),

GA(BR) = −τφ′(V (BR|θ1))

∫ ∞
BR

u′((1− τ)x+ τBR)

u′(B0)

(∫
Π

f(x|θ)dµ(θ)

)
dx

+τ

∫
Π

φ′(V (BR|θ))
(∫ ∞

BR

f(x|θ)dx
)
dµ(θ)

=

(
−φ′(V (BR|θ1))

u′((1− τ)x0 + τBR)

u′(B0)
+ φ′(V (BR|θ2))

)
×
∫

Π

(∫ ∞
BR

f(x|θ)dx
)
dµ(θ), (1.24)

where θ2 ∈ Π and x0 ∈ [BR, x]. I use the mean value theorem twice in the the last line.

According to (1.24), for any given BR, BA < BR if and only if:

u′((1− τ)x0 + τBR)

u′(B0)
>
φ′(V (BR|θ2))

φ′(V (BR|θ1))
. (1.25)

Assuming φ(·) is the CAAA and u(·) is the CARA preference, (1.25) is equivalent to:

ρ((1− τ)x0 + τBR −B0) < α(V (BR|θ2)− V (BR|θ1)) , (1.26)

where α is the coefficient of absolute ambiguity aversion, and ρ is the coefficient of absolute

risk aversion.

Note that the condition (1.26) is more easily satisfied when keeping all the other things
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fixed, (i) the ambiguity aversion (α) is higher than risk aversion (ρ), (ii) the dispersion of

Π (i.e., ‖θ1 − θ2‖ = δ) is higher relative to risk (σ), because a decrease in σ decreases

x0 ∈ [BR, x] and increases B0 ∈ [(1 − k)BR, BR], which the left-hand side of the inequality

decreases.

1.C Ambiguity-averse Manager: Numerical Examples

To compute the optimal debt of the ambiguity-augmented model, I make the following

assumptions:

1. The Knightian manager is risk-neutral and knows X ∼ N(θ, σ2). She is certain about

the variance σ2, but uncertain about the mean θ. Instead, she collects all candidates

of distribution Fi(x) for X and constructs Π = {Fi(x)}ni=1.

2. Suppose all distributions {Fi(x)}ni=1 are Gaussian distributions with a known and com-

mon standard deviation σ. Then Fi(x) = F (x; θi, σ) is fully indexed by θi when σ is

known. The set Π is assumed to be finite, so I can write Π = {θi}Ni=1 without loss of

any information.

3. The manager’s attitude toward ambiguity is characterized by the constant absolute

ambiguity aversion (CAAA) function as (1.9) on page 9 in Definition 1.

4. The dispersion of Π, denoted as ||Π||, represents the amount of uncertainty the manager

faces. Under assumption 2,

Π = {θmin, · · · , θmax}, θmin < θmax.

Then, the length of the interval |θmax− θmin| can be a representation of ‖Π‖. A larger

‖Π‖ implies that the manager believes that the true mean belongs to a larger interval

(i.e., she confronts higher uncertainty). Fixing the average of {θi}ni=1, as ‖Π‖ increases,

the lowest possible mean θmin decreases. Although θmax also increases as ‖Π‖ increases,

the manager’s ambiguity aversion forces her to pay higher attention to the worst case

(θmin) than the best (θmax).

5. N , the number of possible prior, is assumed to be 3 and the firm’s volatility σ is 0.3.

The manager believes all three priors in ‖Π‖ are equally likely. That is,

Π = {θ1, θ2, θ3}, σ = 0.3, and µ(θi) =
1

3
, where i = 1, 2, 3 (1.27)
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such that ‖Π‖ = |θ1 − θ3|.

6. The optimal leverage ratio is defined as:

Levarage ratio =
B∗

E(B∗) +B∗
, (1.28)

where B∗ is the optimal amount of debt computed from a relevant first-order condition,

and E(B∗) is market value of equity at B∗ using (1.3) on page 6.

Under these assumptions, the ambiguity-averse manager chooses the optimal debt level to

satisfy:

max
B>0

3∑
i=1

µ(θi) · φ(V (B, θi)) (1.29)

with respect to (1.9) on page 9, (1.27) and

V (B, θi) =

(
1

1 + r

)(∫ B

0

x(1− k) f(x; θi, σ)dx+

∫ ∞
B

(
(1− τ)x+ τB)

)
f(x; θi, σ)dx

)
,

where f(x; θi, σ) is the normal density with the mean θi ∈ Π and a known standard deviation

σ.

According to Proposition 1.1 on page 7, the first-order condition of (1.29) is:

3∑
i=1

µ∗(θi)
∂V (B, θi)

∂B
= 0, (1.30)

where the ambiguity-adjusted belief is:

µ∗(θi) ≡
µ(θi)φ

′
(V (B, θi))∑3

j µ(θj)φ
′(V (B, θj))

.

Then the optimal leverage B satisfies:

kBf ∗(B) = τ(1− F ∗(B)) ,

where f ∗ =
∑3

i µ
∗(θi)f(x|θi) is a mixture of normal densities f(x|θi) with ambiguity-adjusted

belief µ∗(θi). It is a discrete counterpart of Corollary 1.1 on page 8.

For the numerical computations, I set the marginal corporate tax rate as τ = 0.35 and

the proportional deadweight cost of default as k = 0.4. The particular choice of tax rates

are applicable to the recent period 1990 - 2009 after the 1986 Tax Reform Act (Graham,
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2000). I also fix the set of priors and associated belief as:

Π = {0.7, 1, 1, 3} µ(θi) =
1

3
i = 1, 2, 3 , (1.31)

such that the amount of uncertainty is fixed as ‖Π‖ = 0.3. The other parameters are set

as before: σ = 0.3, τ = 0.35, and k = 0.4. I now change only the manager’s degree

of ambiguity aversion (α) and numerically compute the optimal leverage decisions of the

ambiguity-aversion augmented model with varying α. Figure 1.1 on page 38 illustrates

the results. As expected, the result is consistent with Proposition 1.1 on page 9. As the

manager’s ambiguity aversion increases (α rises), she takes on less leverage. In Figure 1.1,

the ambiguity-averse manager (α = 8) takes substantially less leverage (0.64) than the

ambiguity-neutral manager (0.80).

I turn to compute the optimal leverage ratio with respect to the amount of uncertainty

perceived by the manager. I specify the set of priors as Π =
{

1− u
2
, 1, 1 + u

2

}
such that

the amount of manager’s ambiguity ‖Π‖ = u. For this simulation, I fix the degree of

the manager’s ambiguity aversion as α = 8, and set τ = 0.35 and k = 0.4. I change

only the amount of uncertainty ‖Π‖ from 0 to 0.8, and numerically determine the optimal

leverage decisions of the ambiguity-aversion augmented model with varying ‖Π‖. Figure 1.2

on page 38 presents the numerical results. Point B in the figure represents the optimal

leverage decision when the manager faces no uncertainty about the distribution of cash flow.

As can be seen, the manager who faces the amount of uncertainty ‖Π‖ = 0.3, 30% dispersion

from the reference mean (θ2 = 1), takes substantially less debt (0.61) than the manager who

faces no uncertainty (0.83).

1.D Risk-Averse but Ambiguity-Neutral Manager: Nu-

merical Examples

I first characterize a manager’s risk aversion as the constant absolute risk aversion function

(CARA) such as:

u(x) = 1− e−ρx where ρ > 0 , (1.32)

where the coefficient of absolute risk aversion is −u′′(x)/u
′
(x) = ρ. Besides, I set the

exogenous parameters as τ = 0.35 and k = 0.4. The risk-averse but ambiguity-neutral

manager’s optimal amount of debt is computed using the first-order condition (1.17), and

the leverage ratio is computed using (1.28). The three lines (2), (3), and (4) 1.3 represent
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the choice of optimal leverages of the risk-averse but ambiguity-neutral manager when her

relative risk coefficient increases from 0.5 to 2.

I turn to compute the optimal leverage chosen by the ambiguity-averse but risk-neutral

manager. The three lines (5), (6), and (7) in Figure 1.3 represent the results. I assume

the manager displays the constant absolute ambiguity aversion as (1.9). The coefficient of

ambiguity aversion increases from α = 3 to α = 6. The computation procedures are the

same as the first simulation of Section 1.C.

1.E Measuring Asset Volatility

Since we can rarely observe the asset value, let alone the asset volatility, of a firm, I estimate

the asset volatility of a firm implied from the volatility of observed equity return process.

Specifically, following Faulkender and Petersen (2006), I estimate the asset volatility by

multiplying the equity volatility by the equity-asset-ratio. The precise formula for asset

volatility at time t is:

σVt =

√(
Et
Vt

)2

σ2
Et

+

(
Dt

Vt

)2

σ2
Dt

+ 2

(
Dt

Vt

)(
Et
Vt

)
ρ σDtσEt , (1.33)

where V is the market value of asset, E the market value of equity, D the total debt, σD

the volatility of debt, and ρ the correlation coefficient between debt and equity. Assuming

σD = 0, I have:

σVt =
Et
Vt
σEt . (1.34)

Comparing with (1.33), the approximation (1.34) understates the true asset volatility except

for the all equity firm.21 Also, the magnitude of error increases with the debt-to-asset ratio.

However, the difference-in-difference analysis also relies on the change of control variables.

Hence, this type of measurement error will be mitigated.

The GARCH model is used to estimate the time-varying equity volatility. That is, to-

morrow’s volatility is predicted to be a weighted average of the (i) long run average variance,

(ii) today’s volatility (forecasted from yesterday), and (iii) the news effect (today’s squared

21Alternatively, the Merton formula provides the approximation of volatility of asset such as:

σVt =
∂V/V

∂E/E
σEt =

1

∆(σVt)

E

V
σEt ,

where ∆(Vt) is the option’s delta. Faulkender and Petersen (2006) report that this alternative does not affect
the results when running capital structure panel regression (Faulkender and Petersen, 2006, p. 60).
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equity return).

rit = εit
√
σE,it εit ∼ N(0, 1) , (1.35)

σE,it = ci︸︷︷︸
(i)

+bi σE,it−1︸ ︷︷ ︸
(ii)

+ai r
2
it−1︸︷︷︸
(iii)

, (1.36)

so that a firm i’s conditional equity volatility at time t given information t− 1,

rit|Ft−1 ∼ N(0, σE,it) . (1.37)

The GARCH-based volatility estimate is a more accurate time-varying risk measure com-

pared to the historical standard deviation approach. According to (1.35), the GARCH model

emphasizes a surprise close to the event for study, therefore it incorporates the realized, as

well as the forward-looking risk of an asset when the 1982-VRA news arrives.

37



Ambiguity-neutral manager (Α=0) 

0 5 10 15 20
0.60

0.65

0.70

0.75

0.80

Manager's ambiguity-aversion HΑL

L
ev

er
ag

e
R

at
io ΦHxL = 1-ã-Α*x

Point A denotes the leverage choice taken by a ambiguity-neutral manager (α = 0). The manager is
assumed to display the constant absoluteref ambiguity aversion characterized in (1.9). The set of priors
and associated beliefs are set as Π = {0.7, 1, 1.3} and {µi}3i=1 = 1/3. The common and known standard
deviation is set as σ = 0.3, the marginal tax rate τ = 0.35, and the proportional deadweight cost k = 0.4.
The leverage ratio is defined as B∗/(E(B∗) +B∗) where E(B∗) is the market value of equity at B∗

computed using (1.3). The computation details to generate this figure are in Appendix 1.C.

Figure 1.1 Optimal leverage ratio when ambiguity aversion parameter α increases
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This figure illustrates the optimal leverage ratios when changing the amount of uncertainty perceived by
the manager. As the amount of uncertainty increases, the optimal leverage decreases. To generate this
figure, the manager’s ambiguity aversion parameter is fixed as α = 8. The other parameters are set as
τ = 0.35, k = 0.4, and σ = 0.3.

Figure 1.2 Optimal leverage ratio when the amount of uncertainty increases.
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This figure presents the comparative statics of optimal leverage with respect to the risk of a firm’s cash
flow. The top solid line (1) represents the case where a manager is risk neutral and ambiguity neutral. The
three dotted lines (2) - (4) represent the optimal leverage decisions when the manager is risk-averse but
ambiguity-neutral when the degree of manager’s risk aversion increases from ρ = 0.5 to ρ = 2. The black
dashed lines (5), (6), and (7) denote the optimal leverages when the manager is ambiguity-averse but
risk-neutral ([α = 3 for line (4), α = 4 for line (5), and α = 6 for line (6)]). Note that the amount of
uncertainty faced by the managers is set as amount of uncertaity/σ = 2, the marginal corporate tax rate
and proportional bankruptcy cost as τ = 0.35 and k = 0.4 for this figure.

Figure 1.3 Comparison of the optimal leverage between the ambiguity-neutral but
risk-averse manager and the ambiguity-averse but risk-neutral manager
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Table 1.1 Variable Definitions

Variables Definition

Book Equity Stockholders Equity + Deferred Taxes and Investment Tax Credit - Preferred Stock (PSTKQ)
if (PSTKQ) missing then Preferred Stock Redemption Value (PSTKRQ)

Total Debt Long term debt + Short term debt
Market Equity Common Shares Outstanding * Closing Price
Market Leverage Total Debt / Market Value of Asset
Book Leverage Total Debt / Total Asset
Market-to-Book (Market Equity + Total Debt + Preferred stock value

- Deferred taxes and investment tax credits) / Total Asset
Firm Size log(Sales [millions of dollars (henceforth, MM$)])
Tangibility Plant Property and Equipment / Total Asset
Profitability Earnings Before Interest, Taxes, Depreciation and Amortization / Total Asset
Marginal Tax Rate (MTR) Simulated Marginal Tax Rate available in Graham (1996)
Price-cost margin (Sales - Cost of Goods Sold - Selling Expense)/ Total Asset
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Table 1.2 Comparison of the Firm-specific Control Variables between the Treatment (U.S. Steel Industry) and Control
Groups Before and After Propensity Score Matching

This table presents the results of two sample tests to compare the means of the treatment and matched control groups before and after the propensity
score matching described in Section 1.3.2.3. Prior to matching, the means of each pretreatment characteristic variable of the treatment and matched
control group are statistically significantly different, based on the sufficiently large t-statistics. However, after matching, they are statistically
indistinguishable based on the sufficiently small t-statistics. The standard bias of each variable measures a standardized differences in mean: the
difference in means of each control variable of the treated and control group divided by the standard deviation of the treatment group, (XT −XC)/σT .
The bottom table presents the result of Wilcoxon rank-sum test of the null hypothesis whether the distributions of the estimated propensity scores
of the treatment and control group are same after matching.

Pre-Matching Post-Matching

Mean Std. Bias Two sample t-test Mean Std. Bias Two sample t-test

Variables Treated Control (XT −XC)/σT t-stats p-val Treated Control (XT −XC)/σT t-stats p-val

Market Leverage 0.44 0.29 0.62 3.86 0.00 0.44 0.43 0.02 0.11 0.92
Book Leverage 0.26 0.25 0.06 0.34 0.73 0.26 0.27 -0.05 -0.24 0.81
Cash/Asset 0.08 0.12 -0.32 -1.68 0.09 0.08 0.08 -0.03 -0.15 0.89
Tangibility 0.45 0.36 0.50 2.74 0.01 0.45 0.37 0.46 2.00 0.05
Firm Size 5.35 4.26 0.55 2.99 0.00 5.35 4.91 0.22 0.99 0.33
Mkt-to-Book 0.62 1.33 -0.63 -2.81 0.01 0.62 0.62 0.01 0.11 0.91
Profitability 0.04 -0.02 0.07 0.32 0.75 0.04 0.08 -0.05 -1.62 0.11
vol(Asset) 0.23 0.36 -0.78 -3.91 0.00 0.23 0.24 -0.04 -0.20 0.84
Annual Stock Ret. -0.12 0.23 -0.67 -3.66 0.00 -0.12 -0.12 0.00 0.01 0.99
Marginal Tax rate 0.40 0.41 -0.10 -0.13 0.90 0.40 0.42 -0.20 -1.04 0.30

Two-sample Wilcoxon rank-sum (Mann-Whitney) test
H0: Distributions of estimated propensity score of the treatment and the matched control group are same

p-val = 0.719
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The solid lines represent the estimated Epanechnikov kernel densities of each variable of the treatment group (U.S. steel manufacturers), the dashed
lines denote those of the matched control group.

Figure 1.4 Post-matching Balance of Firm Characteristics Variables
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Table 1.3 Summary Statistics of the Firm-specific Control Variables of Treatment and Matched Control Groups in the
Pre- and Post-VRA Period

Panel A represents the summary statistics of the firm-specific control variables of the treatment and matched control group in the pre-VRA period

(1978-1982). To construct the matched control group, I use the standard propensity score matching described in Section 1.3.2.3. Panel B represents

the summary statistics of the firm-specific control variables of the treatment and matched control groups in the post-VRA period (1983-1987). The

definitions of variables are in Table 1.1.

Panel A: Pre-VRA Period (1978-1982)

Treatment Matched Control

Firm Characteristics Mean Std Median Mean Std Median

Profitability 0.143 0.095 0.137 0.138 0.086 0.140
Mkt-to-Book 0.685 0.348 0.623 0.740 0.522 0.628
Tangibility 0.421 0.136 0.430 0.351 0.200 0.336
Firm Size 5.579 1.523 5.510 5.029 2.114 4.869
vol(Asset) 0.247 0.113 0.244 0.249 0.131 0.225
Ann. Stock Ret 0.128 0.416 0.067 0.147 0.458 0.078
MTR (before int.) 0.429 0.056 0.460 0.436 0.064 0.460

Panel B: Post-VRA Period (1983-1987)

Treatment Matched Control

Firm Characteristics Mean Std Median Mean Std Median

Profitability 0.081 0.090 0.094 0.080 0.180 0.102
Mk-to-Book 0.732 0.299 0.663 0.782 0.320 0.714
Tangibility 0.415 0.156 0.417 0.362 0.212 0.346
Firm Size 5.506 1.791 5.463 4.887 2.362 4.636
vol(Asset) 0.255 0.116 0.247 0.264 0.145 0.232
Ann. Stock Ret 0.174 0.483 0.128 0.171 0.465 0.105
MTR (before int.) 0.362 0.112 0.390 0.392 0.112 0.453
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Table 1.4 Necessary Condition for Parallel-Trends Assumption in the Pre-VRA Period

This table presents the results of checking the necessary condition of the parallel-trends assumption. Columns

(1) and (2) represent the means and standard deviations of leverage growth rate of the treatment and matched

control group in the pre-VRA period (1978-1982). Column (3) represents the results of two sample t-test

to explore whether the means of leverage growth rate of the treatment and matched control group are

statistically different. Column (4) reports the results of Wilcoxon rank-sum test of the null hypothesis if two

samples are drawn from the same distributions.

(1) (2) (3) (4)
Treatment Matched Control Two sample test Ranksum

Growth rate Mean Std Mean Std Diff t-stats p-val p-val

ML (1978-1979) 0.198 0.686 0.037 0.534 -0.161 -1.453 0.148 0.214
ML (1979-1980) 0.206 1.501 0.249 2.088 0.044 0.115 0.908 0.745
ML (1980-1981) 0.040 0.391 0.324 1.569 0.284 1.074 0.284 0.189
ML (1981-1982) 0.605 2.141 0.388 1.179 -0.217 -0.830 0.408 0.654

BL (1978-1979) 0.153 0.639 0.066 0.587 -0.087 -0.754 0.452 0.822
BL (1979-1980) 0.291 1.593 0.265 2.016 -0.026 -0.071 0.944 0.552
BL (1980-1981) -0.036 0.247 0.277 2.344 0.313 0.798 0.426 0.246
BL (1981-1982) 0.358 1.303 0.178 0.812 -0.180 -1.055 0.293 0.118
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This figure provides the graphical examination of parallel-trends assumption for market leverage. If the parallel-trends holds, the pre-treatment
trends across the treatment and control groups are parallel. The figure illustrates the market-leverage trend of the treatment group (steel industry)
and that of the matched control group using the standard four nearest propensity score matching. The pre-VRA period is the period between 1978
and 1982 and the post-VRA period is the period between 1983 and 1987. The pre-VRA trends across the two groups seem parallel, whereas the
market-leverage trend of the treatment seems to diverge from that of the matched control group in the post-VRA era. It implies that in the
pre-VRA period, the parallel-trends assumption is met.

Figure 1.5 The Pre- and Post-trends of the Treatment and Matched Control Groups
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Table 1.5 Difference-in-Differences with the Matched Sample
This table presents the main results of difference-in-difference (DID) analysis with the matched sample
specified in (1.14). The outcome variable is market and book leverage. The treatment group is the U.S. steel
industry. The matched control firms are constructed using the standard propensity score matching. Each
firm in the steel industry is matched up to nearest four non-steel firms in terms of its estimated propensity
score. The post-treatment variable D(i, t) = 1 if a firm belongs to the U.S. steel industry (the treatment
group) and is in the post-VRA period (1983-1987). The estimated coefficient of D(i, t) (i.e., the DID
estimate) represents the estimated causal effect of resolution of uncertainty on steel firms’ leverage relative
to matched control firms. The definitions of other variables are provided in Table 1.1. All regressions include
firm and year fixed effects. Standard errors are computed with clustering at the firm-level, thus robust to
heteroscedasticity and within-firm serial correlation. The t-statistics of the coefficient estimates are reported
in parentheses. Statistical significance at the 10%, 5%, and 1% levels are denoted by “*”, “**”, and “***”,
respectively.

Model 1 Model 2 Model 3 Model 4
Market Lev. Book Lev. Market Lev. Book Lev.

D(i,t) 0.055*** 0.032** 0.046** 0.028*
(3.034) (2.158) (2.510) (1.921)

Profitability -0.116 -0.045 -0.107 -0.042
(-1.399) (-0.651) (-1.194) (-0.634)

Tangibility 0.299*** 0.222*** 0.252*** 0.204***
(3.979) (3.471) (3.635) (3.397)

Firm Size 0.033 0.022 0.048** 0.029*
(1.585) (1.363) (2.581) (1.741)

Market-to-Book -0.010 0.094** -0.003 0.096***
(-0.384) (2.614) (-0.160) (2.831)

Med. Analyst For. -0.021*** -0.006** -0.020*** -0.005
(-4.208) (-2.008) (-4.000) (-1.539)

vol(Asset) -1.281*** -0.817*** -1.374*** -0.905***
(-8.099) (-7.864) (-9.599) (-8.429)

Annual Stock Ret. -0.014 0.005 -0.010 0.011
(-1.338) (0.568) (-0.874) (1.216)

Excess Price-cost Mar. 0.102 0.100
(1.570) (1.550)

Constant 0.413*** 0.165 0.351*** 0.147
(2.996) (1.654) (2.688) (1.392)

Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Within R2 0.671 0.442 0.691 0.475
Num. of Obs. 735 735 693 693
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Table 1.6 Additional Test (Cash/Asset): Necessary Condition for Parallel-Trends As-
sumption in the Pre-VRA Period

This table presents the results of checking the necessary condition of the parallel-trends assumption. Columns

(1) and (2) represent the means and standard deviations of cash holding ratio (cash/asset) growth rate of the

treatment and matched control group in the pre-VRA period (1978-1982). Column (3) presents the results

of two sample t-test to explore whether the means of leverage growth rate of the treatment and matched

control group are statistically different. Column (4) reports the results of Wilcoxon rank-sum test of the

null hypothesis if two samples are drawn from the same distributions.

(1) (2) (3) (4)
Treatment Matched Control Two sample test Ranksum

Growth rate Mean Std Mean Std Diff t-stats p-val p-val

Cash (1978-1979) 0.175 0.984 0.466 2.055 0.291 0.821 0.413 0.773
Cash (1979-1980) 1.435 5.453 0.367 2.302 -1.068 -1.741 0.084 0.691
Cash (1980-1981) 0.392 1.429 0.170 1.262 -0.222 -0.917 0.361 0.322
Cash (1981-1982) 0.799 2.069 0.279 1.474 -0.520 -1.782 0.076 0.235
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Table 1.7 Additional Test (Cash/Asset): Difference-in-Differences with the Matched
Sample

This table presents the additional results of difference-in-difference (DID) analysis with the matched sample
specified in (1.14). The outcome variable is cash/asset ratio. The treatment group is the U.S. steel industry.
The matched control firms are constructed using the standard propensity score matching. Each firm in the
steel industry is matched up to nearest four non-steel firms in terms of its estimated propensity score. The
post-treatment variable D(i, t) = 1 if a firm belongs to the steel producing industry (the treatment group)
and is in the post-VRA period (1983-1987). The definitions of other variables are provided in Table 1.1. The
estimated coefficient of D(i, t) (i.e., the DID estimate) represents the causal effect of resolution of uncertainty
on cash holding ratio. All regressions include firm and year fixed effects. Standard errors are computed with
clustering at the firm-level, thus robust to heteroscedasticity and within-firm serial correlation. The t-
statistics of the coefficient estimates are reported in parentheses. Statistical significance at the 10%, 5%,
and 1% levels are denoted by “*”, “**”, and “***”, respectively.

Model 1 Model 2
Cash/Asset Cash/Asset

D(i,t) -0.022* -0.022
(-1.707) (-1.635)

Profitability 0.058 0.113
(0.772) (1.181)

Tangibility -0.334*** -0.340***
(-5.497) (-5.150)

Firm Size -0.003 -0.004
(-0.232) (-0.239)

Market-to-Book -0.036** -0.036*
(-2.072) (-1.918)

Med. Analyst For. -0.006* -0.006**
(-1.972) (-2.001)

vol(Asset) 0.085* 0.097*
(1.730) (1.707)

Annual Stock Ret. 0.008 0.009
(1.205) (1.278)

Excess Price-cost Mar. 0.039
(0.881)

Constant 0.238*** 0.232**
(2.620) (2.376)

Firm fixed effects Yes Yes
Year fixed effects Yes Yes

Within R2 0.203 0.207
Num. of Obs. 734 692
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Table 1.8 Collapsing the Data into Two Periods (à la Bertrand et al., 2004)
This table presents the results of difference-in-differences (DID) estimator ignoring time series information
proposed by Bertrand et al. (2004). Following Bertrand et al., I time-average the data before and after the
1982 VRA and run analysis (1.14) on this averaged outcome variable in a panel of length 2. That is, the
DID model (1.14) becomes ∆Yi = β0 + βDi + γ′∆Xi + ∆ui. ∆ represents the change between pre- and
post-variables. The treatment D(i) = 1 if a firm belongs to the U.S. steel industry. β represent the DID
estimator: the causal effect of resolution of uncertainty on the change of leverage. As Bertrand et al. (2004)
suggest, this is most conservative way robust to the within-firm serial correlation of errors. The t-statistics
are reported in parentheses. All standard errors are robust to heteroscedasticity. Statistical significance at
the 10%, 5%, and 1% levels are denoted by “*”, “**”, and “***”, respectively.

Model 1 Model 2 Model 3 Model 4
∆ Market Lev. ∆ Book Lev. ∆ Market Lev. ∆ Book Lev.

D(i) 0.057*** 0.029 0.061*** 0.036*
(2.642) (1.562) (2.721) (1.889)

∆ Profitability -0.018 0.126 0.377 0.420
(-0.070) (0.566) (0.959) (1.137)

∆ Market-to-Book 0.029 0.175*** -0.004 0.164***
(0.544) (3.517) (-0.073) (3.137)

∆ Tangibility 0.523*** 0.374*** 0.480*** 0.381***
(3.584) (3.014) (3.455) (3.256)

∆ Firm Size -0.011 -0.021 0.008 -0.023
(-0.301) (-0.729) (0.236) (-0.691)

∆ Med. Anal. Forecast -0.032*** -0.016** -0.034*** -0.016**
(-3.497) (-2.511) (-3.676) (-2.335)

∆ vol(Asset) -1.478*** -1.113*** -1.464*** -1.151***
(-6.846) (-8.956) (-5.926) (-7.666)

∆ Annual Stock Ret. 0.048 0.083*** 0.045 0.082***
(1.177) (2.798) (1.132) (2.819)

∆ Excess Price-cost Mar. 0.418 0.429
(1.213) (1.244)

Constant -0.051*** -0.018 -0.039** -0.011
(-3.129) (-1.465) (-2.175) (-0.723)

Adj. R2 0.690 0.595 0.679 0.604
Num. of Obs. 93 93 87 87
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Table 1.9 Difference-in-Difference with the Placebo Shocks at 1979, 1993, and 2001
This table presents the results of tests with placebo-VRAs had they taken place in 1979, 1993 or 2001 instead of 1982. In each test, I use the
difference-in-difference methodology with the propensity-score based matched sample the same as Section 1.3.2.3. In all tests, none of the DID
estimates (i.e., the estimated coefficients of D(i, t)) is statistically significantly positive, observing the sufficiently small t-statistics. Standard errors
are computed with clustering at the firm-level, thus robust to heteroscedasticity and within-firm serial correlation. The t-statistics are reported in
parentheses. Statistical significance at the 10%, 5%, and 1% levels are denoted by “*”, “**”, and “***”, respectively.

1979 Placebo Shock 1993 Placebo Shock 2001 Placebo Shock

Market Lev. Book Lev. Market Lev. Book Lev. Market Lev. Book Lev.

D(i,t) 0.005 0.003 0.018 0.003 -0.023 -0.033
(0.262) (0.247) (0.893) (0.182) (-0.713) (-1.497)

Profitability -0.819*** -0.357*** 0.020 0.035 -0.053 -0.144
(-7.191) (-3.045) (0.190) (0.474) (-0.307) (-1.198)

Tangibility 0.080 0.163** 0.136* 0.098 0.024 0.166*
(0.999) (2.032) (1.750) (1.599) (0.240) (1.887)

Firm Size 0.105*** 0.079*** 0.032 0.050** 0.043 0.052*
(4.120) (3.084) (1.461) (2.506) (1.205) (1.806)

Market-to-Book -0.050** 0.031 -0.070*** 0.010 -0.062* 0.062**
(-2.200) (1.454) (-3.738) (0.684) (-1.925) (2.417)

Med. Analyst For. 0.000 -0.000** -0.020*** -0.012** -0.009** -0.003
(0.055) (-2.356) (-3.610) (-2.085) (-2.178) (-1.101)

vol(Asset) -0.879*** -0.499*** -0.838*** -0.562*** -0.833*** -0.478***
(-6.056) (-5.746) (-6.855) (-5.708) (-8.808) (-6.508)

Annual Stock Ret. -0.009 0.016** -0.001 0.017* -0.021* 0.008
(-0.843) (2.400) (-0.096) (1.930) (-1.719) (0.760)

Constant 0.067 -0.150 0.472*** 0.127 0.385 0.004
(0.403) (-1.084) (3.379) (1.083) (1.661) (0.019)

Firm & Year fixed effects Yes Yes Yes Yes Yes Yes

Within R2 0.641 0.399 0.585 0.380 0.690 0.447
Num. of Obs. 691 691 950 950 436 436
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Table 1.10 Difference-in-Difference with Alternative Matching Methods
This table presents the results of difference-in-difference with the matched sample using alternative matching methods: (I) Mahalanobis-metric
matching with a caliper 0.05, and (II) propensity score matching with the different set of matching variables. As before, the treatment group is the
U.S. steel industry. The outcome variables are market and book leverage ratio. Case (I) Mahalanobis-metric matching with a caliper 0.05: I take each
firm in the steel industry and match it up to nearest four non-steel firms in terms of Mahalanobis-metric instead of the propensity score distance.
The firm characteristics that I match on are the same as Section 1.3.2.3. Case (II) the propensity score matching with the different set of matching
variables: I match on the firm size, tangibility, profitability, and market-to-book ratio. The unreported results suggest that both alternative matching
methods are successful in balancing the pretreatment firm characteristics. All standard errors are computed with clustering at the firm-level. The
t-statistics are reported in parentheses. Statistical significance at the 10%, 5%, and 1% levels are denoted by “*”, “**”, and “***”, respectively.

Alternative Matching (I) Alternative Matching (II)

Market Leverage Book Leverage Cash/Asset Market Leverage Book Leverage Cash/Asset

D(i,t) 0.050*** 0.027** -0.021* 0.058*** 0.029* -0.021*
(2.609) (1.986) (-1.707) (3.086) (1.909) (-1.717)

Profitability -0.178*** -0.075 0.039 -0.181** -0.170*** 0.145***
(-2.991) (-1.146) (0.819) (-2.014) (-2.935) (2.764)

Tangibility 0.114 0.029 -0.402*** 0.167** 0.091 -0.373***
(1.472) (0.347) (-5.694) (2.165) (1.375) (-4.256)

Firm Size 0.040 0.039* -0.029 0.021 0.031* 0.015
(1.239) (1.770) (-1.624) (1.029) (1.793) (0.899)

Market-to-Book -0.059* 0.096** 0.011 -0.065*** 0.086*** -0.026
(-1.955) (2.543) (0.538) (-2.834) (3.954) (-1.155)

vol(Asset) -0.768*** -0.470*** -0.109 -1.229*** -0.634*** 0.045
(-3.520) (-3.162) (-1.567) (-12.112) (-7.992) (0.715)

Annual Stock Ret. -0.026*** -0.001 0.011** -0.002 0.001 0.012*
(-2.814) (-0.115) (2.260) (-0.251) (0.192) (1.669)

Med. Analyst For. -0.032*** -0.017*** 0.000 -0.002 -0.001 -0.001
(-5.142) (-3.874) (0.080) (-0.333) (-0.208) (-0.460)

Constant 0.384* 0.074 0.440*** 0.555*** 0.153 0.104
(1.652) (0.474) (4.005) (4.615) (1.415) (1.146)

Firm & Year fixed effects Yes Yes Yes Yes Yes Yes

Within-in R2 0.614 0.285 0.223 0.693 0.421 0.237
Number of Obs. 899 899 898 682 682 681
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Chapter 2

A New Measure of Knightian

Uncertainty

2.1 Introduction

Theoretical work on decision making in the presence of Knightian uncertainty is abundant

(for example, see Gilboa and Schmeidler (1989) and the subsequent literature). However,

to the best of my knowledge, efforts to estimate firm-level uncertainty directly from the

data seem limited. As proxies for uncertainty, researchers often use measures such as the

analyst forecast dispersion and the earnings response coefficient. One dissatisfaction with

these measures is that the data required to compute them are not always reliably available.

As a new measure of the amount of uncertainty faced by a firm, I use the statistical dis-

tance between a mixture of normal distributions (i.e., a weighted sum of normal component

distributions) and a single normal distribution. As in Chapter 1, in my model, the Knightian

manager is unsure about which one of the three normal distributions is the true distribution

of the firm’s profitability in the next period. Instead, she attaches her own subjective belief

(weight) to each distribution being the true distribution.

I consider the realized profitability of a firm over time. First, I fit a single normal dis-

tribution to the sample of observed profitability. This is the benchmark case where the

manager of the firm is absolutely certain about the distribution of its future profitability.

Next, I fit a mixture of three normal distributions to the same data. Finally, I compute

the Jensen-Shannon distance (henceforth, JS distance) between the mixture of the three

distributions and the single normal distribution. I measure the amount of uncertainty per-

ceived by the firm by this statistical distance. The JS distance is conceptually similar to the
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Kullback-Leibler divergence, with the notable difference that it is a finite metric (Pollard,

2002).

I then present empirical evidence that suggests the amount of uncertainty perceived by

a firm (i.e., the JS distance) is an important determinant of leverage. I run between-group

regressions of leverage on the JS distance (i.e., the firm-specific amount of uncertainty), along

with other firm-specific controls and industry fixed effects. I find a statistically significant

and economically sizable negative effect of the firm’s uncertainty on leverage. Consider a

median firm in the sample whose JS distance is 0.253. If this firm’s JS distance increases by

one standard deviation (0.14), its market leverage decreases by approximately 0.14 × 0.051

or 0.71%. Scaling by the mean market leverage in the sample (0.2), a one standard deviation

increase in the firm’s JS distance decreases its market leverage by approximately 3.6%. The

same procedure leads to about a 3% fall in book leverage. The results are economically sizable

and statistically significant. The paper therefore adds to what we know of the empirical

determinants of a firm’s leverage (e.g., Titman and Wessels, 1988; Rajan and Zingales, 1995;

Lemmon et al., 2008).

Strebulaev and Yang (2012) document a zero-leverage puzzle: between 1962 and 2006,

about 10% of public non-financial firms take on almost zero debt, and 32% have zero or

negative net debt. They also point out that the zero-leverage puzzle is not a short-term fad.

Can uncertainty provide a reasonable explanation to a firm’s extremely low leverage taking

tendency? Following Strebulaev and Yang (2012), I classify a firm as an almost zero-leverage

firm if its time-averaged leverage is less than 5%. I run a logit regression of the propensity of

a firm’s taking almost zero leverage on the JS distance. Keeping the other covariates fixed

as their mean values, an increase in JS distance from one standard deviation below its mean

to one standard deviation above its mean is associated with an increase in the propensity

of a firm’s taking almost zero leverage by 2.4%; an impact of changing JS distance from the

minimum to the maximum is associated with an increase in the propensity of a firm’s taking

an almost zero leverage by 6.3%.

Section 2.2 provides the crux of the smooth ambiguity aversion model proposed by KMM.

The details about the mixture of normal distributions and the firm-level JS distance are also

provided. Section 2.3 details the empirical studies. Section 2.5 concludes.
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2.2 New Firm-specific Measure of Uncertainty

2.2.1 New uncertainty measure using a mixture of normal distri-

butions

In Chapter 1, I show that an ambiguity-averse manager translates her physical belief µ over

the set of priors Π into an ambiguity-adjusted belief by her degree of ambiguity aversion char-

acterized by the concavity of function φ(·) (Lemma 1.1 on page 7). As a risk-averse manager

faces the same amount of risk as a risk-neutral manager, an ambiguity-averse manager con-

fronts the same amount of uncertainty as an ambiguity-neutral manager (see the details

in Lemma 1.1). Therefore, without loss of generality, I assume the manager is ambiguity-

neutral, to measure the firm-level amount of uncertainty.

Assume that the set of priors, Π, is a collection of three normal distributions with a

parameter vector ϑi = (θi, σi) for i = 1, 2, 3. Then, Π is fully indexed by ϑi, and is rewritten

as Π = {N(θi, σi)}3
i=1. Assuming the manager is ambiguity-neutral, (i.e., φ(x) = refx), by

Fubini’s theorem, her smooth ambiguity-averse preference (1.1) on page 5 becomes:

3∑
i=1

φ
(∫

u(x) fN(x;ϑi)dx
)
µ(ϑi) =

∫
u(x)

(
3∑
i=1

µifN(x;ϑi)

)
dx , (2.1)

where fN(x;ϑi) is a normal density with parameters (θi, σi) associated with the normal

distribution N(θi, σ
2
i ) and µi is the manager’s associated belief to N(θi, σ

2
i ) in Π.

Define the finite mixture density Λ(x) associated with the mixture of normal distributions:

Λ(x) =
3∑
i=1

µifN(x;ϑi). (2.2)

If the parameters {(θi, σi), µi}3
i=1 of the mixture density Λ(x) are estimated from the firm’s

realized profitability samples, one immediately specifies the manager’s set of priors, Π, and

her associated belief µ over Π.

Figure 2.1 on the following page presents an example of estimating the parameters

of a mixture of three normal distributions. The figure illustrates the histogram of prof-

itability (earnings/asset) of a company in the pharmaceutical industry from 1970 to 2008.

Conventionally, one can find the maximum likelihood (ML) estimates of the parameters

{µi, θi, σi}3
i=1. Dempster et al. (1977) show that under fairly mild regularity conditions, ex-

pectation maximization (EM) algorithms more efficiently converge to a local maximum of
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the mixture likelihood function (Hamilton, 1994). The details of the EM algorithms used

to estimate the parameters of a mixture of normal distributions are in Appendix 2.B on

page 65. Using the EM algorithms, I estimate the parameters of the mixture density Λ(x)

for the pharmaceutical company:

{θi}3
i=1 = {−0.25,−0.07, 0.04}, {σi}3

i=1 = {0.13, 0.06, 0.02}, {µ}3
i=1 = {0.21, 0.55, 0.24}

(2.3)
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The solid line represents the mixture density Λ(x) =
∑3
i µifN (x; θi, σ

2
i ) fitted to the sample. The dashed

lines represent each of three components weighted by belief µi · fN (x; θi, σ
2
i ) for i = 1, 2, 3. The dotted line

represents the density of the single normal distribution N(θ0, σ
2
0) fitted to the sample.

Figure 2.1 Estimation of the mixture of three normal distributions from the realized
profitability samples of a representative firm in the pharmaceutical industry
between 1970 and 2008

The manager of the firm faces the empirical distribution as shown in Figure 2.1. The

mixture of normal distributions represents the case where the Knightian manager is unsure

about which distribution of Π = {N(θi, σ
2
i )}3

i=1 is true one for the firm’s profitability in the

next period; instead, she attaches her own subjective belief µi to each N(θi, σ
2
i ) being the

true distribution. Next, consider the case where the manager is absolutely sure that the

firm’s next period profitability follows the single normal distribution N(θ0, σ
2
0). I consider it

as the benchmark case where the manager faces no uncertainty.

Next, I measure the firm’s amount of uncertainty by the statistical distance between the
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single distribution N(θ0, σ
2
0) and the mixture of three normal distributions

∑3
i=1 µi ·N(θi, σ

2
i ).

The statistical distance between two arbitrary distributions is often measured by the rela-

tive entropy (or Kullback-Leibler divergence) from one to another (Pollard 2002; Cover

and Thomas 2006). However, the divergence is a quasi-metric that violates the symme-

try property. Hence, I use the JS distance to measure the statistical distance between two

distributions. The JS distance is the square root of the Jensen-Shannon divergence that

is the symmetrized Kullback-Leibler divergence. The JS distance is bounded below from 0

and above by 1. The zero JS distance means that two distributions are identical, whereas

unity represents complete dissimilarities between two distributions. Figure 2.2 illustrates

two examples of JS distance between two distributions. Intuitively, JS distance measures

how much the two distributions are similar. Note that large variances of the distributions

do not necessarily imply a large JS distance. The details about the formula and properties

of the JS distance are in Appendix 2.A on page 65.

N(3, 0.52)N(0, 0.52)

Jensen-Shannon Distance = 0.830
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Jensen-Shannon Distance = 0.470
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Figure (a) depicts the JS distance (0.8) between two normal distributions N(0, 0.52) and N(3, 0.52), and
Figure (b) shows the JS distance (0.4) between two normal distributions N(0, 22) and N(3, 22).

Figure 2.2 Two examples of the JS distance

Table 2.4 on page 69 presents the JS distances of the 48 Fama-French industries. The

“JS dist” column presents the industry-specific amount of uncertainty measured by the JS

distance between the mixture of normal distributions and the single normal distribution

fitted to the industry-specific profitability samples from 1970 to 2008. The ranking of the

industries seems intuitive. The technology industries (e.g., computers, business services, and

electrical equipments) face higher uncertainty than the manufacturing industries (e.g., ships

and textiles). I argue that the high-tech industries likely employ innovative technologies,

56



which is riskier as well as more uncertain, than the industries employing mature technology.

When a firm employs an innovative technology, Knightian uncertainty is likely due to the

lack of historical observations of the profitability of this technology. Accordingly, managers

in high-tech industries are presumably unsure of the distribution of the cash flow generated

by the innovative technology.

2.3 New Uncertainty Measure and Leverage

2.3.1 Data

The data set consists of all nonfinancial firm-year observations in the annual Compustat

database from 1971 to 2004. I require that all firm-year observations have valid data for

book assets. All ratios are winsorized at the upper and lower one percentile to mitigate

the effect of outliers and eradicate errors in the data. I obtain analyst median, as well as

the highest and lowest forecasts of a firm’s next-year earnings per share (EPS) from the

IBES database and merge them with the accounting information obtained from the annual

Compustat database. The variable definitions are in Table 2.1 on page 67.

2.3.2 Pairwise correlations

Table 2.3 on page 68 presents the summary statistics of firm-level JS distance. There are

11,882 firm-year observations. The mean and standard deviation of JS distance are 0.27

and 0.14 respectively. The minimum and maximum of JS distance are 0.003 and 0.625.

Table 2.5 on page 71 presents the correlations between other measures that are often used

as a proxy for firm-level uncertainty in the literature (see Garfinkel 2009 and the references

therein). I compare the firm-level JS distance against the four other firm-level measures:

firm age, volatility of analyst’s median forecast, and time-averaged difference between the

lowest and highest analyst’s forecasts. The JS distance is positively correlated (0.033) with

the time-averaged difference between the lowest and highest analyst’s forecasts for the firm’s

EPS, and is negatively correlated (-0.167) with the firm’s age. The estimated coefficients of

correlation are statistically significant at the 5% level. The estimate of correlation coefficient

between the JS distance and the volatility of median forecasts is negative (-0.002), but

statistically insignificant at the 10% level. Note that the earnings coefficient response (ERC)

is also often used for measuring a firm’s time-varying amount of uncertainty (Pastor et al.,

2009). However, I run between-group regressions of leverage, where all the dependent and
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independent variables are averaged over all years in the sample period. I find that time-

averaged ERC is highly correlated with the time-averaged difference between the lowest and

highest analyst’s forecasts.

Table 2.6 on page 72 presents the pairwise correlations between the firm-characteristic

variables and JS distance. JS distance is negatively correlated with leverage, profitability,

tangibility, and firm size, while positively correlated with the firm’s cash holding ratio and

market-to-book ratio. These correlations are intuitive. As the amount of uncertainty of a

firm increases, the firm tends to take on less leverage. Young and small firms are likely more

uncertain than mature firms, due to the lack of historical observations of their profitability. I

argue that cash is less risky, as well as a less uncertain asset than debt. Hence, when the firm

faces higher uncertainty, its cash holdings more likely increase. A high market-to-book ratio

implies high growth opportunities. These opportunities likely result from a large investment

in innovative technology. Hence, the positive relation between a firm’s market-to-book ratio

and its uncertainty seems reasonable.

2.3.3 Between-firm leverage regression with new measure of un-

certainty

In order to investigate the relationship between a firm’s uncertainty as measured by the

JS distance and its leverage, I run the following between-firm regression of leverage on the

firm-level JS distance with industry fixed effects:

Leveragei = α + β · JSdisti + γ′X i + λ · vol(Profit.)i + δ · ηj + εi, (2.4)

where Leveragei is firm i’s leverage averaged over all years in the sample period (1971-

2004). The time-averaged firm-specific control variables X i include profitability, tangibility,

market-to-book ratio, and firm size. vol(Profit.)i is firm i’s volatility of profitability during

the sample period, and ηj is the industry-specific mean leverage, where j indexes a specific

industry in the 48 Fama-French industries. JSdisti is the amount of uncertainty faced by

firm i.

To obtain the JS distance at the firm level (i.e., the amount of uncertainty faced by the

firm), I first collect the quarterly earnings of each firm from 1970 to 2008. Then, I estimate

the mixture density and the single normal density fitted to these samples. I compute the

JS distance between the estimated mixture and single density. To ensure the convergence of

EM algorithms, I only include the firms with at least 12 valid realized earnings during the
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sample period. I also winsorize the JS distance variable at the top and bottom 1%.

Table 2.7 on page 73 provides the results of regression estimates of (2.4) on the preceding

page. Models 1 and 2 present the benchmark results without the firm’s JS distance. The

signs of the estimates are as expected. A firm with high market-to-book ratio and high

profitability takes on low leverage, whereas a firm with large sales and high tangible assets

takes on high leverage. In Model 2 for market leverage, the volatility of profitability is

negatively related to market leverage although the estimate is not statistically significant

at the 10% level. Firms with more volatile assets will have higher default probabilities and

expected costs of bankruptcy. Hence, they are expected to choose low leverage. However,

it is counterintuitive that in Model 1 for book leverage, the estimate of the volatility of

profitability is positive and it is statistically significant at the 10% level.

Models 3 and 4 in Table 2.7 present the results of between-group leverage regressions with

JS distance in (2.4). In Model 3, book leverage is the dependent variable; market leverage is

the dependent variable in Model 4. The coefficient estimates of JS distance in Models 3 and

4 enter with negative signs. The t-statistics (-3.4 in Model 3 and -4.1 in Model 4) provide

evidence that they are statistically significant at the 1% level. High uncertainty measured

by JS distance is associated with low leverage. In addition, the signs of coefficient estimates

of the other control variables are consistent with intuitions, as in the benchmark models

(Models 1 and 2).

To assess the economic magnitude of the effect of uncertainty on the firm’s mean lever-

age, consider a median firm in the sample whose JS distance is 0.253. Suppose this firm’s

JS distance increases by one standard deviation (0.14). Then, its mean market leverage

decreases by approximately 0.14 × 0.051 or 0.71%. Scaled by the mean market leverage in

the sample (0.2), a one standard deviation increase of the firm’s JS distance decreases its

mean market leverage by approximately 3.6%. The same procedure leads to about a 3% fall

in mean book leverage.

The coefficient estimate of volatility of profitability in Model 4 in Table 2.7 is statistically

insignificant at the 10% level. In Model 3, the coefficient of the volatility of profitability is

statistically significant but enters with a positive sign. Whereas, in both Models 3 and

4, uncertainty (i.e., JS distance) is negatively associated with leverage. The coefficient

estimates of JS distance are statistically significant at the 1% level. The results suggest that

uncertainty provides a plausible explanation for a firm’s taking on low leverage.

It is not certain whether or not there is severe correlation between the JS distance and

the volatility of profitability. The high correlation between covariates causes the instability
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of the estimates, as well as the inefficiency of the estimates. I find no statistical evidence of

severe multicollinearity between the JS distance and the volatility of profitability. In Model

3, the variance inflation factors (VIF) of all covariates excluding the industry dummies are

reported from 1.11 to 3.94, which are under the threshold of severe multicollinearity (Greene,

2012, pg. 130).1 Model 4 reports similar VIF results.

2.3.4 Additional test: uncertainty and cash holding

I argue that cash is less risky, as well as a less uncertain asset, than debt. Hence, the

prediction is that the high uncertainty of a firm is likely associated with an increase in the

firm’s cash holdings. To validate this prediction, I run the between-firm regression of a firms’s

cash holding ratio on the firm’s JS distance, along with the firm-specific control variables

including the volatility of a firm’s profitability. Table 2.8 on page 74 presents the results. In

Model 2, the coefficient estimate of the JS distance is positive and statistically significant

at the 1% level. Consider a median firm whose cash holding ratio is 0.26. A one standard

deviation increase in JS distance is associated with an increase in the cash holding ratio by

1.23% (0.14 × 0.088). Scaling by the cash holding ratio (0.26), a one standard deviation

increase in uncertainty is associated with an approximately 4.7% increase in its cash holding

ratio. The result is economically sizeable.

2.3.5 Uncertainty and almost zero leverage firms

This section shows that the propensity of a firm’s taking almost zero leverage is positively

correlated with the firm’s JS distance. Following Strebulaev and Yang (2012), I classify a

firm as an almost zero leverage-firm (AZL) if its time-averaged leverage is less than 5%.

Table 2.9 on page 75 presents the percentages of the almost zero market leverage firms in

the 48 Fama-French industries. For instance, there are 661 firms in the Drugs industry of

the 48 Fama-French industries during the sample period 1970-2008; 309 (46.7%) firms take

on less than or equal to 5% time-averaged market leverage. There are 11,611 firms in the

sample; approximately 20% of them are almost zero market leverage firms.

The model used to estimate the relationship between the JS distance and the propensity

1Though VIF is an imperfect measure of the multicollinearity between covariates, it can exclude severe
multicollinearity among the covariates. By a rule of thumb, multicollinearity is severe if VIF is higher than
10.
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of firms’ taking almost zero leverage is:

logit(P[AZLi|Ξi]) = α + β · JSdisti + γ′X i + λ · vol(Prof.)i + ηj, (2.5)

where AZLi is a dummy variable that is 1 if a firm has less than 5% time-averaged leverage,

and Ξi is a vector of the independent variables: Ξi =
(
JSdisti, V ol(Prof.)i, X i, ηj

)
. The

time-averaged firm-specific control variables X i are the same as in the model (2.4) on page 58:

profitability, tangibility, market-to-book ratio, and firm size. vol(Profit.)i is firm i’s volatility

of profitability during the sample period and ηj is the industry fixed-effects, where j indexes

a specific industry in the 48 Fama-French industries. JSdisti is the amount of uncertainty

faced by an individual firm i.

Table 2.10 on page 76 presents the results of logit regressions, where the dependent binary

variable is 1 if a firm’s time-averaged market leverage is less than 5%: in Models 1 and 3, the

variable AZ-BL is 1 if a firm’s time-averaged book leverage is less than 5%; in Models 2 and

4, the variable AZ-ML is 1 if a firm’s time-averaged market leverage is less than 5%. The

regression results suggest that the firms tend to take almost zero leverage, when they are

small, to have high market-to-book ratios and profitability, and to have less tangible assets.

Based on the sufficiently high t-statistics, these relationships are statistically significant at

the 1% level. When the firm faces higher uncertainty as measured by the JS distance, it is

more likely to take on almost-zero leverage. The economic signicance of the JS distance is

measured by the change in propensity of a firm’s taking almost zero leverage for the change

in its JS distance. Fixing the other covariates as their mean values, an increase in JS distance

from one standard deviation below to one standard deviation above its mean is associated

with an increase in the propensity of firms’ taking on almost zero market (book) leverage

by 2.4% (3.2%); an impact of changing JS distance from the minimum to the maximum is

associated with an increase in the propensity of firms’ taking an almost zero market (book)

leverage policy by 6.3% (7.2%). The regression estimates of JS distance are also statistically

significant at the 1% level. It is counter-intuitive to observe the coefficient estimates of

the volatility of profitability that enter with negative signs in Models 3 and 4. However,

Strebulaev and Yang (2012) also find the similar empirical results (see Table 3 in Strebulaev

and Yang 2012).
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2.4 Earnings Response Coefficient as a Proxy for Un-

certainty

In this section, instead of using the new measure of uncertainty, I use the earnings response

coefficient (ERC) – the stock price reaction to an earnings announcement– as an empirical

proxy for a firm’s uncertainty. The rationale is as follows. Because they use Bayesian

updating, investors who are most uncertain about the profitability of a firm (investors’

precision of prior is very low) should respond strongly to earnings surprises (i.e., update

their posterior belief by more) (Pastor et al., 2009). In the literature, ERC is widely used

as a proxy for the uncertainty of the firm’s future profitability (Pastor et al., 2009; Cremers

and Yan, 2009; He et al., 2010). However, as I mentioned, my new measure is superior to the

ERC because the ERC is a proxy, not a direct measure, for the amount of uncertainty that

the firm faces. However, the purpose of this section is to confirm that there is a negative

relationship between uncertainty when I use the alternative proxy for the uncertaity.

I obtain firm-quarter observations from the Compustat quarterly database of publicly

traded US firms from 1990 to 2009. I again exclude the utility and financial firms. To con-

struct ERC, I follow the details in Pastor et al. (2009). They use two different ERC measures:

ERC(1) is the average of the firm’s previous 12 stock price reactions to quarterly earnings

surprises and ERC(2) is the negative of the regression slope of the firm’s last 20 quarterly

earnings surprises on its abnormal stock returns on the firm’s earnings announcements. In

this paper, I use ERC(1) as a proxy for the manager’s ambiguity about the firm’s prospects.

Specifically, I obtain RC, which is the abnormal return due to a quarterly earnings an-

nouncement divided by the unexpected quarterly earnings. The abnormal return is measured

as the cumulative return of stock i in excess of the industry return starting one trading day

before the firm’s earnings announcement and ending one trading day after the same an-

nouncement. Quarterly earnings announcement dates are obtained from the IBES dataset.

The industry returns are the daily returns of the 48 value-weighted industry portfolios avail-

able from Ken French’s website. The unexpected quarterly earnings are equal to the differ-

ence between the actual quarterly earnings per share (obtained from the IBES unadjusted

actuals file) and the mean of all analyst forecasts of EPS using the latest forecasts in IBES

for the given fiscal quarter, deflated by the book equity per share of the firm. Because RCs

are noisy, I require at least six valid observations of RCs. I trim RC at 5% and 95%, and

average the trimmed quarterly RCs over the rolling three-year window to obtain ERC(1).

As stated by Pastor et al. (2009), earnings surprises and stock returns should have the

same sign, that is, ERC(1) should be positive. Consistent with their finding, I also find
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that 24% of my sample are of negative ERC(1). Hence, I construct from ERC(1) two new

variables: (i) ERC+ if ERC(1) > 0 otherwise zero and (ii) ERC− if ERC(1) < 0 otherwise

zero. Table 2.11 provides the summary statistics of ERC(1) in my sample. The mean is 4.33,

the median 3.43, the standard deviation 5.98, the minimum is -14.65, and the maximum is

30.64. I take nonlinear (log) transformation of ERC(1) to balance its scale to that of the

dependent variable, market (or book) leverage.

I adopt a firm fixed effect regression, which enables me to investigate the relationship

between the firm’s uncertainty and its leverage in a given time. I estimate the following

model:

Leverageit = α + β+ ln(ERC+
it ) + β− ln(ERC−it ) + γXit + ηi + νt + εit, (2.6)

where Leverageit is the book or market leverage of firm i at time t, ηi is a firm fixed effect,

νt a year fixed effect, ln(ERC+
it ) and ln(ERC−it ) the uncertainty about the firm’s earnings at

time t, and Xit a set of firm level controls measured at time t, and εit an error term.

The firm-specific control variables are the profitability of the firm at time t, the market-

to-book ratio at time t, the tangibility at time t, the median leverage in the industry at time

t, the log of size at time t, and the volatility of firm’s past three-years earnings. Table 2.1

provides the variable definitions.

Table 2.12 provides the results of estimated model (2.6). All standard errors are clustered

at the firm level. Models 1 and 2 represent the benchmark results with the control variables

and firm fixed effects but without the firm’s uncertainty measures (ERC+ and ERC−). All

the signs and the order of magnitudes of the coefficient estimates are consistent with the

previous literature (for example, Lemmon et al. (2008)). That is, a firm with high market-

to-book ratio and high profitability has lower book and market leverage, whereas a firm with

large sales revenue has higher book and market leverage.

Models 3 and 4 present the results of firm-fixed effect panel regressions with ERC. In

Model 3, book leverage is the dependent variable and market leverage is the dependent

variable in Model 4. The coefficients of the ERC variables (ln(ERC+) and ln(ERC−)) in

Models 3 and 4 enter with a negative sign. The t-statistics (-5.8 in Model 3 and -3.4 in Model

4) provide evidence that they are statistically significantly different from zero. That is, firms

experiencing high uncertainty reduce leverage. In addition, all estimates of the other control

variables are of the expected sign and statistically significant.

To assess the economic magnitude of the effect of uncertainty on the firm’s leverage, con-

sider a median firm in the sample whose ln(ERC+) is 1.842. Suppose this firm’s uncertainty
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increases in a given year by one standard deviation (0.8). Then, its book leverage decreases

by approximately 0.8× 0.006 or approximately 0.5%. Scaling by the average book leverage

in the sample 0.21, I find that one standard deviation increase of the firm’s uncertainty

measured by ln(ERC+) leads to a 2.4% fall in book leverage. The same procedure leads to

a 2.3% fall in market leverage. These results are sizable.

Notice that the estimated coefficient of volatility of EBIT in Models 3 is reported as close

to zero and statistically insignificant (t-statistic 0.8). In Model 4, the estimated coefficient

of volatility of EBIT is statistically significant but enters with a positive sign. On the other

hand, uncertainty has a statistically significant negative effect on firm’s leverage in Models

3 and 4. Although multicollinearity between the volatility and uncertainty is possible, I find

no statistical evidence of severe multicollinearity between ERC and volatility of EBIT. In

Model 3, the variance inflation factors (VIF) of all covariates are reported from 1.02 to 1.77,

and the mean VIF of the model is reported as around 1.73, which excludes the possibility of

severe multicollinearity between the covariates. Model 4 reports similar VIF results.

2.5 Conclusion

I consider a manager who faces Knightian uncertainty about the firm;s profitability in the

next period. I develop a new empirical measure for the amount of Knightian uncertainty

faced by the manager. I propose that a mixture of normal distributions characterizes the

case where the manager is unsure about the distribution of the firm’s future profitability,

whereas a single normal distribution characterizes the case when she is absolutely sure about

the distribution. I measure the Jensen-Shannon distance (JS distance) between the single

normal distribution and the mixture of three normal distributions fitted to the firm’s realized

profitability samples. This JS distance is the amount of uncertainty faced by the firm.

Using this new measure, I run between-firm regressions of leverage on uncertainty along

with other firm-specific control variables including the volatility of profitability. When the

JS distance increases by one standard deviation, the median firm in the sample increases its

market leverage by approximately 3.6%. Finally, I run logit regressions of the propensity

of a firm having almost zero leverage on its JS distance. The results suggest that changing

the JS distance from the minimum to the maximum is associated with an increase in the

propensity of a firm having almost zero market (book) leverage by 6.3% (7.2%). Therefore,

the amount of uncertainty perceived by a firm is an important determinant of its leverage.
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2.A Jensen-Shannon Statistical Distance

The complete discussion of various statistical distances can be found in Cover and Thomas

(2006). The relative entropy or the Kullback-Leibler divergence between to two probability

functions p(x) and q(x) is defined by

D(p||q) =

∫
p(x) log

p(x)

q(x)
dx (2.7)

The KL divergence appears in statistics as the expected value of the log likelihood ratio. It

therefore determines the ability to discriminate between two distributions p(x) and q(x).

However, this is a quasimetric due to the asymmetric nature. Hence, we may use the

symmetrized version of KL divergence known as the Jensen-Shannon divergence. That is

JSD(p||q) = π1D(p||m) + π2D(q||m) (2.8)

where π1+π2 = 1 and m = π1p+π2q. For the complete symmetry, I set π1 = π2 = 1
2
. Finally,

the Jensen-Shannon metric is defined as the square root of Jensen-Shannon divergence.

2.B Expectation Maximization Algorithms

A dataset composed of N datapoints is considered. For a mixture of K components of

normal distributions, the probability of a datapoint xj is defined by

P (xj) =
K∑
k=1

πkP (xj|k) =
K∑
k=1

πkN(µk, σ
2
k) (2.9)

where πk ∈ [0, 1] is a prior satisfying
∑K

k=1 πk = 1. The mixture of normal distributions is

then described by the set of parameters θ = {πk, µk, σk}Kk=1, which needs to be estimated

from the observations {xj}Nj=1

The parameters of the mixture of normal distributions can be estimated via maximizing

its log-likelihood function with observation x = {xj}Nj=1:

L(θ|x) =
N∑
j=1

logP (xj) (2.10)

Conventionally, we can find ML estimates of θ using a direct method such as gradient-
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based numerical optimization. Dempster et al. (1977) show that under fairly mild regularity

conditions, the expectation-maximization (EM) algorithms converge to a local maximum of

the mixture likelihood function.

First, we introduce hidden state variable zj (1×K vector) associated with the observation

xj: zj is k-dimension 0/1 vector with (zj)i = zij = 1 if xj arises from the i-th component of

the mixture. Then, the log-likelihood function with this auxiliary variables zij is

L(θ, z|x) =
N∑
j=1

K∑
k=1

zkj (log πk + logN(µk, σk)) (2.11)

Dempster et al. (1977) show that EM algorithms are applied to this problem by treating zij

as missing (hidden) data. It proceeds iteratively in two steps, E (for expectation) and M

(for maximization). The addition of the hidden variables to the problem is handled by the

E-step. which takes the conditional expectation of the augmented log likelihood function

(2.11), given the observed x, using the current fit for θ. Then M-step on u-th iterations

maximizes the augmented log-likelihood functions to provide the updated parameter θ(u+1).

More precisely,

E -step :

zukj =
πukN(µuk , σ

u
k )∑K

i=1 π
u
i N(µui , σ

u
i )

Eu
k =

K∑
j=1

zukj

M -step :

πu+1
k =

Eu
k

N

µu+1
k =

∑N
j=1 z

u
kjxj

Eu
k

σu+1
k =

√∑N
j=1 z

u
kj(xj − µk+1)2

Eu
k

The iteration stops when the increase in the log-likelihood function at each iteration becomes

too small. That is, L
u+1

Lu < ε, for example ε = 10−4. The statistical literature asserts that

the EM is more reliable than the direct ML estimation (McLachlan and Krishnan, 1997).
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Table 2.1 Variable Definitions

Variables Definition

Book Equity Stockholders Equity + Deferred Taxes and Investment Tax Credit
- Preferred Stock (PSTKQ) if (PSTKQ) missing

then Preferred Stock Redemption Value (PSTKRQ)
Total Debt Long term debt + Short term debt
Market Equity Common Shares Outstanding * Closing Price
Market Leverage Total Debt / Market Value of Asset
Book Leverage Total Debt / Total Asset
Market-to-Book (Market Equity + Total Debt + Preferred stock value

- Deferred taxes and investment tax credits) / Total Asset
Firm Size log(Sales[millions of dollars(henceforth, MM$)])
Tangibility Plant Property and Equipment / Total Asset
Profitability (Earnings Before Interest, Taxes, Depreciation

and Amortization) / Total Asset
Vol(Prof.) Volatility of profitability (minimum 5 years of data required)
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Table 2.2 Summary Statistics of Firm-Quarter Observations, 1990-2009

This table presents summary statistics of firm-quarter observations from Compustat quarterly database

covering the period 1990-2009. The total the number of firms is 6,081. The panel is unbalanced. Profitability

is EBIT/Asset, Tangibility PPE/Assets. The volatility of profitability is computed from the firm’s past 12-

quarters profitability observations.

Variable Mean Median Std. Dev. Number of obs.

Market Leverage 0.196 0.141 0.199 109131
Book Leverage 0.207 0.192 0.176 109131
Market-to-Book 1.671 1.256 1.315 99031
Profitability 0.028 0.033 0.042 109131
Vol. of Profitability 0.34 0.275 1.279 108958
Tangibility 0.295 0.231 0.228 109032
Log(firm age[years]) 2.572 2.546 0.843 109131
Log(R&D[MM$]) 0.025 0.016 0.034 55657
Log(Sales[MM$]) 4.839 4.833 1.847 108629

Table 2.3 Summary Statistics of Firm-level Jensen-Shannon Distance

This table represents the summary statistics of the firm-level Jensen-Shannon Distance (the JS distance).

Only firms with at least 12 valid quarterly earnings observations during 1970-2008 are included. There are

11,882 firms in the filtered sample.

JS Distance

N 11882
mean 0.270
sd 0.139
min 0.003
p5 0.071
p25 0.164
p50 0.253
p75 0.363
p95 0.526
max 0.625
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Table 2.4: Jensen-Shannon Distances in the 48 Fama-French Industries
This table represents (i) the parameter estimates of the mixture of three normal distributions, (ii) the parameter estimates of the
single normal distribution, and (iii) the Jensen-Shannon distance (the JS distance) between the mixture of normal distributions and
the single distribution in the 48 Fama-French industries. {(θi, σi)}3i=1 are the parameter estimates of i-th component of the mixture
and {µi}3i=1 is the manager’s belief attached to each i-th component of the mixture. (θ0, σ0) are the parameter estimates of the single
normal distribution representing the case where the manager faces no uncertainty. The JS distance represents the statistical distance
between the mixture of normal distributions and the single normal distribution. The rows of the table are sorted in descending order
of the JS distances.

Parameters of Mixture Components
Means Variances Belief Single Normal

48-FF θ1 θ2 θ3 σ1 σ2 σ3 µ1 µ2 µ3 θ0 σ0 JSdist
Mines -0.021 0.033 -0.199 0.042 0.026 0.130 0.351 0.515 0.134 -0.017 0.095 0.312
Gold -0.237 0.003 -0.073 0.124 0.029 0.052 0.101 0.683 0.217 -0.037 0.090 0.299
MedEq -0.171 0.037 -0.039 0.089 0.022 0.047 0.199 0.514 0.288 -0.026 0.093 0.286
Chems -0.043 -0.188 0.039 0.056 0.025 0.021 0.148 0.014 0.837 0.023 0.048 0.279
BusSv -0.044 -0.192 0.034 0.050 0.077 0.028 0.229 0.077 0.694 -0.001 0.075 0.265
Comps -0.157 -0.033 0.035 0.069 0.045 0.026 0.113 0.248 0.640 -0.003 0.073 0.260
ElcEq 0.037 -0.027 -0.131 0.021 0.038 0.033 0.755 0.201 0.044 0.017 0.048 0.250
LabEq 0.035 -0.139 -0.029 0.022 0.029 0.040 0.754 0.039 0.207 0.015 0.048 0.234
Soda -0.031 0.076 0.033 0.057 0.030 0.013 0.242 0.211 0.547 0.026 0.049 0.230
Toys -0.218 0.031 -0.067 0.036 0.033 0.061 0.027 0.807 0.166 0.008 0.065 0.227
Drugs -0.066 -0.248 0.039 0.062 0.131 0.021 0.547 0.214 0.239 -0.080 0.124 0.226
Mach -0.028 0.033 -0.132 0.039 0.022 0.031 0.147 0.822 0.031 0.019 0.043 0.224
Chips -0.138 0.034 -0.026 0.034 0.024 0.040 0.041 0.737 0.222 0.013 0.049 0.210
Telcm -0.002 0.042 -0.103 0.031 0.020 0.037 0.293 0.650 0.057 0.021 0.044 0.210
Smoke 0.043 0.170 0.057 0.021 0.025 0.065 0.590 0.088 0.322 0.058 0.054 0.208
Hlth -0.100 0.038 -0.016 0.021 0.021 0.035 0.024 0.814 0.162 0.026 0.036 0.197
Autos 0.080 -0.024 0.034 0.011 0.038 0.019 0.050 0.113 0.836 0.030 0.030 0.150
Hshld 0.037 0.037 -0.032 0.025 0.025 0.039 0.437 0.414 0.149 0.027 0.037 0.147
Guns 0.043 -0.018 0.028 0.027 0.046 0.018 0.202 0.119 0.679 0.025 0.030 0.143
Oil 0.037 -0.102 -0.007 0.024 0.023 0.034 0.699 0.027 0.274 0.021 0.039 0.140
Whlsl -0.037 0.027 0.026 0.028 0.020 0.021 0.099 0.893 0.008 0.020 0.028 0.140
Aero 0.067 -0.020 0.031 0.010 0.024 0.014 0.086 0.088 0.826 0.030 0.023 0.140
Rubbr -0.020 0.037 -0.080 0.029 0.021 0.010 0.098 0.891 0.011 0.030 0.029 0.139
Beer 0.042 0.011 -0.056 0.022 0.028 0.012 0.786 0.182 0.032 0.033 0.030 0.122
Fun 0.106 0.030 -0.022 0.018 0.027 0.053 0.054 0.673 0.273 0.020 0.047 0.111
PerSv -0.054 0.033 -0.097 0.024 0.029 0.011 0.047 0.942 0.011 0.027 0.036 0.106

Continued on next page
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Table 2.4 Jensen-Shannon Distances in the 48 Fama-French Industries (Continued)
Parameters of Mixture Components

Means Variances Belief Single Normal
48-FF θ1 θ2 θ3 σ1 σ2 σ3 µ1 µ2 µ3 θ0 σ0 JSdist
Boxes 0.036 0.068 -0.015 0.014 0.015 0.017 0.850 0.104 0.046 0.037 0.020 0.100
Books -0.033 0.039 0.093 0.021 0.023 0.015 0.081 0.838 0.080 0.037 0.034 0.099
Coal 0.024 0.081 -0.035 0.020 0.008 0.011 0.919 0.026 0.055 0.022 0.025 0.091
Meals -0.038 0.040 0.014 0.010 0.020 0.025 0.025 0.713 0.262 0.032 0.026 0.086
Trans 0.034 0.035 -0.024 0.021 0.021 0.018 0.746 0.186 0.069 0.030 0.025 0.086
Food -0.021 0.081 0.035 0.019 0.013 0.020 0.076 0.079 0.845 0.034 0.028 0.077
Agric 0.017 0.073 -0.049 0.025 0.025 0.027 0.705 0.119 0.176 0.012 0.042 0.075
Cnstr 0.021 0.021 -0.047 0.023 0.023 0.015 0.283 0.672 0.045 0.018 0.027 0.074
BldMt 0.036 0.042 -0.033 0.024 0.026 0.014 0.960 0.000 0.039 0.034 0.027 0.068
Rtail 0.031 -0.032 0.089 0.024 0.016 0.012 0.886 0.059 0.055 0.031 0.030 0.064
Clths 0.035 -0.030 0.105 0.027 0.014 0.012 0.907 0.054 0.040 0.034 0.033 0.059
Ships 0.080 -0.012 0.031 0.010 0.011 0.018 0.035 0.067 0.898 0.030 0.022 0.055
FabPr 0.069 0.032 -0.011 0.012 0.018 0.011 0.074 0.855 0.070 0.032 0.022 0.047
Txtls 0.077 -0.005 0.034 0.013 0.010 0.018 0.049 0.057 0.894 0.034 0.022 0.042
Steel 0.029 0.029 -0.023 0.022 0.022 0.010 0.261 0.701 0.038 0.027 0.023 0.041
Paper 0.038 0.038 0.038 0.022 0.022 0.022 0.187 0.647 0.166 0.038 0.021 0.011
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Table 2.5 Pairwise Correlations between the Other Measures for proxy for Uncertainty and Jensen-Shannon Distance

This table presents correlations between other measures as a proxy for firm-level uncertainty. Comparing the JS distance against four other measures:

firm’s age, volatility of analyst’s median forecast (Vol(Med. Forecast)), and time-averaged difference between the lowest and highest analyst’s forecasts

for a firm’s earnings per share (High - Low). The number in parenthesis represents p-value of each correlation coefficient.

Variables JS Distance vol(Prof.) High-Low vol(Med. Forecast) Firm Age

JS Distance 1.000

vol(Prof.) 0.271 1.000
(0.000)

High-Low 0.033 0.083 1.000
(0.009) (0.000)

vol(Med. Forecast) -0.002 0.149 0.731 1.000
(0.899) (0.000) (0.000)

Firm Age -0.167 -0.111 0.036 0.117 1.000
(0.000) (0.000) (0.005) (0.000)
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Table 2.6 Pairwise Correlations between Firm-characteristic Variables and Jensen-Shannon Distance

This table presents the pairwise correlations between the firm-characteristic variables and the Jensen-Shannon distance (the JS distance). The

definitions of variables are detailed in Table 2.1. The number in parenthesis represents p-value of each correlation coefficient.

Variables BL ML Cash/Asset Profitility Mkt-to-Bk Tangibility Firm Size vol(Prof.) JS Dist.

Book Lev. 1.000

Market Lev. 0.734 1.000
(0.000)

Cash/Asset -0.412 -0.548 1.000
(0.000) (0.000)

Profitability -0.227 0.171 -0.304 1.000
(0.000) (0.000) (0.000)

Mkt-to-Bk 0.181 -0.284 0.297 -0.814 1.000
(0.000) (0.000) (0.000) (0.000)

Tangibility 0.283 0.329 -0.417 0.181 -0.159 1.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Firm Size -0.057 0.229 -0.342 0.613 -0.507 0.115 1.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

vol(Prof.) 0.174 -0.195 0.254 -0.759 0.694 -0.168 -0.557 1.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

JS Dist. 0.004 -0.098 0.154 -0.189 0.156 -0.075 -0.225 0.271 1.000
(0.665) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 2.7 Jensen-Shannon Distance and Leverage

This table presents the results of the between-group regression of leverage on the JS distance (i.e., the

amount of uncertainty faced by the firm), the volatility of the firm’s profitability, and firm-specific control

variables with industry median leverage. Industry is classified using the 48 Fama-French classification. The

definitions of variables are detailed in Table 2.1 on page 67. Standard errors are computed being robust

to heteroscedasticity. The t-statistics of the coefficient estimates are reported in parentheses. Statistical

significance at the 10%, 5%, and 1% levels are denoted by “*”, “**”, and “***”, respectively.

Model 1 Model 2 Model 3 Model 4
Book Lev. Market Lev. Book Lev. Market Lev.

JS Distance -0.044** -0.051***
(Amount of Uncertainty) (-2.559) (-3.073)
Profitability -0.114*** -0.119*** -0.114*** -0.119***

(-7.525) (-5.345) (-7.619) (-5.394)
Market-to-Book -0.000 -0.022*** -0.000 -0.022***

(-0.132) (-6.787) (-0.199) (-6.877)
Firm Size 0.004 0.006** 0.004 0.006**

(1.409) (2.228) (1.412) (2.257)
vol(Prof.) 0.024* -0.017 0.028** -0.011

(1.986) (-1.253) (2.477) (-0.834)
Tangibility 0.223*** 0.185*** 0.222*** 0.184***

(3.914) (3.796) (3.970) (3.874)
Industry Mean BL 0.844*** 0.844***

(10.123) (10.142)
Industry Mean ML 0.788*** 0.785***

(15.892) (15.938)
Constant -0.042* 0.028* -0.030 0.042***

(-1.900) (1.900) (-1.525) (3.209)

R-squared 0.211 0.282 0.212 0.283
Num. of Obs. 11566 11566 11566 11566
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Table 2.8 Additional Test: Jensen-Shannon Distance and Cash/Asset ratio

This table presents the results of the between-group regression of Cash/Asset ratio on the Jensen-Shannon

distance (the JS distance), the volatility of the firm’s profitability, and firm specific controls with industry

fixed effects. Industry is classified using the 48 Fama-French classification. Standard errors are computed

being robust to heteroscedasticity. The t-statistics of the coefficient estimates are reported in parentheses.

Statistical significance at the 10%, 5%, and 1% levels are denoted by “*”, “**”, and “***”, respectively.

Model 1 Model 2
Cash/Asset Cash/Asset

JS Distance 0.088***
(Amount of Uncertainty) (8.426)
Profitability -0.030*** -0.030***

(-5.528) (-5.563)
Market-to-Book 0.005*** 0.005***

(7.238) (7.635)
Firm Size -0.000 -0.000

(-0.218) (-0.020)
vol(Prof.) -0.009 -0.018***

(-1.430) (-2.886)
Tangibility -0.338*** -0.333***

(-38.281) (-37.806)
Constant 0.266*** 0.237***

(12.173) (10.761)

Industry FE Yes Yes

R-squared 0.411 0.414
Num. of Obs. 11566 11566
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Table 2.9 Almost Zero Market Leverage Firms
This table presents the percentage of almost zero market leverage firms in the 48 Fama-French industries.

The table is sorted in descending order of the JS distance (i.e., the amount of uncertainty).

FF 48 Industries Almost Zero Lev. (%) Num. of firms JS Distance

Mines 25.0% 56 0.312
Gold 23.2% 56 0.299
MedEq 41.1% 438 0.286
Chems 15.2% 211 0.279
BusSv 36.0% 1713 0.265
Comps 34.4% 607 0.26
ElcEq 12.4% 186 0.25
LabEq 30.4% 280 0.234
Soda 15.4% 26 0.23
Toys 10.4% 135 0.227
Drugs 46.7% 661 0.226
Mach 12.7% 434 0.224
Chips 27.7% 689 0.21
Telcm 7.9% 494 0.21
Smoke 0.0% 7 0.208
Hlth 10.1% 288 0.197
Autos 9.1% 176 0.15
Hshld 12.6% 239 0.147
Guns 20.0% 20 0.143
Oil 11.6% 704 0.14
Aero 8.8% 57 0.14
Whlsl 8.8% 554 0.14
Rubbr 8.5% 153 0.139
Beer 10.0% 40 0.122
Fun 9.1% 286 0.111
PerSv 15.4% 169 0.106
Boxes 2.6% 39 0.1
Books 17.1% 105 0.099
Coal 0.0% 32 0.091
Meals 8.6% 314 0.086
Trans 7.5% 321 0.086
Food 8.5% 211 0.077
Agric 12.2% 49 0.075
Cnstr 4.1% 170 0.074
BldMt 6.3% 272 0.068
Rtail 11.7% 737 0.064
Clths 15.6% 179 0.059
Ships 7.7% 26 0.055
FabPr 7.0% 57 0.047
Txtls 2.9% 105 0.042
Steel 2.4% 170 0.041
Paper 5.5% 145 0.011
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Table 2.10 Determinants of Almost Zero Leverage Policy

This table presents the logit regression on the sample 1978-2006. The dependent variable is the dummy

that equals 1 if the firm has leverage less than 5%: AZ-ML represents a dummy that equals 1 if the firm

has market leverage less than 5%; AZ-BL represents a dummy that equals 1 if the firm has book leverage

less than 5%. JS distance is the amount of uncertainty faced by the firm. All other independent variables

are defined in Table 2.1 on page 67. Standard errors are computed being robust to heteroscedasticity. The

t-statistics of the coefficient estimates are reported in parentheses. Statistical significance at the 10%, 5%,

and 1% levels are denoted by “*”, “**”, and “***”, respectively.

Model 1 Model 2 Model 3 Model 4
AZ-BL AZ-ML AZ-BL AZ-ML

JS Distance 0.878*** 0.703***
(Amount of Uncertainty) (4.229) (3.637)
Market-to-Book 0.098*** 0.225*** 0.100*** 0.227***

(8.136) (18.958) (8.245) (19.079)
Profitability 0.735*** 1.067*** 0.748*** 1.070***

(6.754) (11.258) (6.833) (11.287)
Firm Size -0.063*** -0.053*** -0.065*** -0.054***

(-3.649) (-3.353) (-3.730) (-3.379)
vol(Prof.) -0.973*** -0.547*** -1.060*** -0.616***

(-7.001) (-5.135) (-7.510) (-5.707)
Tangibility -4.801*** -3.859*** -4.743*** -3.833***

(-21.005) (-20.713) (-20.786) (-20.612)
Industry Mean BL -8.168*** -8.219***

(-13.225) (-13.284)
Industry Mean ML -7.094*** -7.082***

(-21.623) (-21.567)
Constant 1.474*** 0.904*** 1.254*** 0.715***

(8.818) (8.510) (7.158) (6.057)

R-squared 0.137 0.187 0.139 0.188
N 11840 11840 11840 11840
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Table 2.11 Summary Statistics of Earnings Response Coefficient (ERC)

When I compute the summary statistics of ln(ERC+) and ln(ERC−), I only include the entries that are

non-zero. ln(ERC+) = ln(1 + ERC · 1ERC>0) and ln(ERC−) = − ln(1− ERC · 1ERC<0).

Stats ERC ln(ERC+) ln(ERC−)

N 109131 83177 25954
Mean 4.332 1.762 -1.101
Median 3.427 1.842 -1.109
Std. Dev 5.975 0.750 0.599
Min -14.646 0 -2.750
Max 30.644 3.455 0
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Table 2.12 Earnings Response Coefficient (ERC) and Leverage

This table presents the results of panel regressions of leverage on the measures of uncertainty (ln(ERC+) and

ln(ERC−)) and the other firm specific control variables with firm fixed effects. ln(ERC+) = ln(1 + ERC ·
1ERC>0) and ln(ERC−) = − ln(1 − ERC · 1ERC<0). Profitability is the ratio EBIT/Asset, Tangibility

the ratio PPENT/Assets. Industry Median BL (ML) is the median book (market) leverage across all firms

in the same industry at the same time. The parenthesis represents the t-statistic of the coefficient estimate.

Standard errors are computed with clustering at firm level. The firm-quarter observations are taken from

the Compustat quarterly database covering the period 1990 - 2009. * p < 0.1, ** p < 0.05, *** p < 0.01

Model 1 Model 2 Model 3 Model 4
BL ML BL ML

log(ERC+) -0.006*** -0.004***
(Amount of Uncertainty) (-5.576) (-3.362)
log(ERC-) 0.007*** 0.005***

(3.840) (2.589)
vol(Prof.) 0.000 0.001*** 0.000 0.001***

(0.378) (2.963) (0.316) (2.929)
Market-to-Book -0.010*** -0.027*** -0.010*** -0.027***

(-11.097) (-23.266) (-11.219) (-23.306)
Profitability -0.214*** -0.408*** -0.215*** -0.409***

(-9.317) (-14.248) (-9.370) (-14.247)
Tangibility 0.102*** 0.104*** 0.103*** 0.105***

(5.490) (5.175) (5.553) (5.205)
Firm Size 0.034*** 0.039*** 0.035*** 0.040***

(8.975) (11.550) (9.180) (11.685)
Industry Med. BL 0.377*** 0.377***

(15.857) (15.896)
Industry Med. ML 0.456*** 0.456***

(22.380) (22.377)
Firm Fixed Effects Yes Yes Yes Yes

R-squared 0.784 0.796 0.784 0.796
N 93192 93192 93192 93192
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Chapter 3

Uncertainty, Real Options, and

Dynamic Capital Structure

3.1 Introduction

Dixit (1992, page 190) describes the standard real options model as “a theory of optimal

inertia” (or “a benevolent tyranny of the status quo”):

“ . . . firms that refuse to invest even when the currently available rates of return

are far in excess of the cost of capital may be optimally waiting to be surer that

this state of affairs is not transitory. Likewise, farmers who carry large losses may

be rationally keeping their operation alive on the chance that the future may be

brighter.”

Dixit and Pindyck (1994) show that an increase in the risk of the value of the project (in

the sense of a mean preserving spread) raises the value of waiting and delays option exercise

both in the case of irreversible investment and for an exit option.

However, Miao and Wang (2011) show that the standard real-option approach excludes

the situation where agents are unsure about the likelihood of states of the world. Rather, the

standard approach assumes that agents are absolutely certain about the stochastic process

that determines the underlying state variable. They show that when an ambiguity-averse

agent faces Knightian uncertainty about the evolution of the underlying project value, in-

creased ambiguity lowers the value of waiting. Assuming that there is no uncertainty about

the termination payoff after the option exercise, a more ambiguity-averse agent will exercise
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the option earlier.1

To distinguish the effect of uncertainty from that of risk on exercising the option, I first

provide two applications borrowed from Miao and Wang (2011): irreversible investment and

firm exit. In Section 3.2, I extend their results from the discrete time to the continuous

time setting. The continuous time formulation has distinct benefits over the discrete time

counterpart. It allows for a closed form solution of the optimal option exercise boundary.

Furthermore, the continuous time real options model with no uncertainty has important

applications in the literature (see e.g., Leland (1994) on capital structure).

In Section 3.3, I incorporate Knightian uncertainty about the evolution of the firm’s

assets and investors’ ambiguity-aversion into the model of Leland (1994). Here, I assume

that ambiguity-averse investors display a max-min preference (Gilboa and Schmeidler, 1989),

in contrast to the previous two chapters which assumed smooth ambiguity aversion (Klibanoff

et al., 2005). I then show the ambiguity-aversion augmented model predicts substantially

lower leverage than the benchmark model without uncertianty. Therefore, I propose that

uncertainty provides a more plausible explanation for firms taking on low leverage than risk

alone, even in a dynamic setting.

3.2 Risk, Knightian Uncertainty and Real Option

3.2.1 The set of priors in the dynamic setting2

Suppose (Xt), the value of the underlying project, evolves as:

dXt

Xt

= µ dt+ σ dWt, (3.1)

where (Wt) is a Brownian motion with respect to the reference probability measure Q, µ is

the expected growth rate, and σ is the volatility of the process. The manager is uncertain

about the true measure Q. Instead, she considers a set of “perturbed” equivalent measures

from the reference measure Q.3

1Miao and Wang (2011) also shows that if the agent is also uncertain about the termination payoffs, he
may also exercise the option later. This is because ambiguity lowers both the termination payoff and the
option value, and the decrease in the termination value dominates that in the option value.

2This section closely follows Epstein and Wang (1994) and Nishimura and Ozaki (2004).
3Q1 and Q2 are equivalent probability measures on (E,F), if for any event A in E, Q1(A) = 0 if and

only if Q2(A) = 0. Intuitively, this condition tells us that events under Q1 are possible (or impossible) if
and only if they are possible (or impossible) under Q1.
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Consider the probability space (E,F , Q) and the Brownian filtration (Ft)t∈[0,T ], where

Ft is a the completed natural filtration of Brownian motion (Wt) defined on (E,F , Q).4 To

construct the set of priors from the reference probability measure Q on (E,F), first define a

Q-martingale process as follows. Consider a process (θt) that satisfies the Novikov condition.

That is,

EQ
[∫ T

0

θs(ω)2ds

]
<∞.

Define

zθt := exp

(
−1

2

∫ t

0

θ2
sds−

∫ t

0

θsdWs

)
, such that EQ[ZT ] = zθ0 = 1.

In other words,
dzθt
zt

= −θtdWt.

Because EQ[zθT ] = zθ0 = 1 and zθt > 0 for all t, the Radon-Nykodym theorem (Duffie, 2001,

pg. 332) ensures (θt) generates a probability measure Qθ on (E,F) that is equivalent to Q,

where

dQθ = zθt · dQ on Ft for all t ∈ [0, T ].

Thus, a set of priors Π can be constructed by arbitrary selections of θ := (θt)

Π := {Qθ}.

Note that (θt) = 0 represents no ambiguity (i.e., Π is a singleton). By the Girsanov theorem

(Karatzas and Shereve, 1988), we have a Qθ-Brownian motion (W θ
t ) such that

W θ
t =

∫ t

0

θs ds+Wt.

When the manager is unsure about the true probability measure Q on (E,F), she considers

the set of priors Π and faces the set of dynamics

dXt

Xt

= (µ− σθt)dt+ σdW θ
t . (3.2)

When making a decision, the manager considers all stochastic differential equations (SDE)

of Xt (3.2) with θt varying. In the absence of ambiguity (i.e., (θt) = 0), the firm considers a

unique SDE (3.1) as the dynamics of the state variable. According to this setup, the firm’s

Knightian uncertainty is limited “only” to the drift of the driving process. It is a consequence

of the Brownian environment and the assumption of equivalence between the measures in Π

4A completed natural filtration Ft is generated by σ(Ws; s ≤ t) and the Q-null sets of FT .
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(Epstein and Wang, 1994).

3.2.2 Irreversible investment

The irreversible investment decision is an example where an agent decides whether to exercise

an option (i.e., invest) in order to pursue upside potential. It is analogous to the exercising

of an American call option written on the underlying project value with a fixed investment

cost as the strike price. The model was first developed by McDonald and Siegel (1986).

The following example is a continuous time extension from Miao and Wang (2011) and is a

special case of the model in Nishimura and Ozaki (2007).

Denote the value of the option to invest by V (x) where x represents the underlying project

value. In the absence of ambiguity, the process (Xt) evolves according to (3.1). Suppose

the firm must pay a fixed sunk cost I to invest. Then, the payoff from investing at time

t is Ω(Xt) = Xt − I and the firm choosing the stopping policy τ := inf{t : Xt(ω) = x∗}
maximizes its expected present value, given the current Xt = x,

V (x) = max
τ

Et[e−ρ (τ−t)Ω(Xτ )]. (3.3)

Note that ρ is the firm’s subjective discount rate. I allow the stopping time τ to be infinite,

so that (3.3) may be time-homogenous.

During the small time interval [t, t+ dt), the firm’s optimal investment decision may be

described as choosing between two options: invest now at time t or wait for a short time

period dt. If the firm chooses to exercise the option at time t, it obtains the payoff Ω(x). If

the firm waits for dt, the underlying project value becomes Xt + dXt where dXt is a random

increment from the perspective of time t. The firm captures a capital gain V (Xt + dXt).

Because the investment opportunity yields no cash flow up to the time τ that the investment

is undertaken, the only gain from holding the option is its capital appreciation. To express

this into time-t equivalent units, it must be discounted by e−ρ dt. Then, by the principle of

optimality, the Bellman equation for the firm’s optimal investment decision problem (3.3)

becomes

V (x) = max

 Ω(x)︸︷︷︸
Payoff of

immediate investment

, e−ρ dtEt[V (x+ dx)]︸ ︷︷ ︸
Capital gain


= max

{
Ω(x) , Et[dV ] + V − ρ V dt

}
. (3.4)
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In the last line, I use e−ρ dt ≈ (1− ρdt) as dt→ 0 and Ito’s lemma.

Now, suppose the firm faces Knightian uncertainty about the true dynamics of the under-

lying value process (Xt). Assume the manager is ambiguity averse with max-min preferences

(Gilboa and Schmeidler, 1989). Then, the firm’s optimal investment decision is

V (x) = max

{
Ω(x) , min

Qθ∈Π
e−ρ dtEQ

θ

t [V (Xt + dXt)]

}
= max

{
Ω(x) , min

Qθ∈Π
EQθ [dV ] + V − ρV dt

}
. (3.5)

In order to ensure dynamic consistency in the recursive relation, I assume i.i.d Knightian

uncertainty: θt(ω) ∈ [−κ, κ] for any given t (Epstein and Wang, 1994; Nishimura and Ozaki,

2007).5 In the time-homogenous case, choosing the optimal stopping time is equivalent to

choosing the optimal threshold. Therefore, there exits a threshold x∗ such that when x < x∗,

it is optimal for the firm to wait

ρV = min
Qθ∈Π

1

dt
EQθ [dV ]

= min
θt∈[−κ,κ]

(
(µ− θtσ)xV ′(x) +

1

2
σ2x2V ′′(x)

)
. (3.6)

Assuming that V (·) is twice differentiable and conjecture that V ′(x) > 0. Then I have the

following Hamilton-Jacobi-Bellman equation

ρV = (µ− κσ)xV ′(x) +
1

2
σ2x2V ′′(x). (3.7)

5I.i.d ambiguity is the special case of strong rectangularity. The details are available in Epstein and
Wang (1994) and Nishimura and Ozaki (2007). Rectangularity of Π (i.e., (θt)) is necessary for the dynamic
consistency of the value function. Consider the following value function:

V (xt) = min
Qθ∈Π

EQ
θ

t

[∫ T

t

e−ρ (s−t)f(Xs)ds

]
.

Because of the rectangularity of Π, the above value function satisfies the following recursive relation:

V (xt) = min
Qθ∈Π

EQ
θ

t

[∫ t+h

t

e−ρ (s−t)f(Xs)ds+ e−ρhV (Xt+h)

]
.

That is, when ξ is FT -measurable and s ≤ t ≤ T , the rectangularity of Π ensures

min
Q∈Π

EQt [ξ] = min
Q∈Π

EQt
[
EQs [ξ]

]
= min
Q∈Π

EQt
[

min
Q′∈Π

EQ
′

s [ξ]

]
.
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Moreover, V (x) must satisfy the conditions:

V (0) = 0, (3.8)

V (x∗) = Ω(x∗) = x∗ − I, value matching (3.9)

V ′(x∗) = Ω′(x∗) = 1. smooth pasting (3.10)

The first condition ensures when the value of project is zero, the option written on it must

have no value. The second condition ensures the continuity of value function V (x). The

smooth pasting condition is necessary because x∗ is endogenously chosen by the manager of

the firm. The details about smooth pasting condition are available in Appendix 3.A.1 on

page 99 (or see Dixit and Pindyck (1994, Chapter 4)).

The following propositions 3.1 is special cases of the results in Nishimura and Ozaki

(2007).

Proposition 3.1. (a) The value function V (x) that satisfies (3.7) and the conditions (3.8),

(3.9), and (3.10) is:

V (x) = A1x
β1 ,

where

A1 =
1

β1

(
β1

β1 − 1
I

)1−β1
.

In addition, the critical investment trigger x∗ is

x∗ =
β1

β1 − 1
I =

(
1 +

1

β1 − 1

)
I > I, (3.11)

where β1 > 1 is one of the solutions of the following characteristic equation associated with

the HJB equation (3.7): Q(β) = 1
2
σ2β(β − 1) + (µ− κσ)β − ρ = 0. Specifically,

β1 =
1

σ2

−(µ− κσ − σ2

2

)
+

√(
µ− κσ − σ2

2

)2

+ 2ρσ2

 .

(b) In the absence of Knightian uncertainty (i.e., κ = 0), an increase in risk (σ2) raises the

critical value (exercise boundary) x∗ at which it is optimal for the firm to invest. That is,

∂x∗

∂σ2
> 0.

(c) An increase in ambiguity (κ) lowers the critical value x∗ at which it is optimal for the
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firm to invest. That is,
∂x∗

∂κ
< 0.

Moreover, when the firm confronts a sufficiently large amount of Knightian uncertainty, it

is optimal for the firm to follow the NPV rule. That is,

lim
κ→∞

x∗ = I.

Proof. See Appendix 3.A.2 on page 99.
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This figure illustrates the optimal investment trigger (x∗) when changing the level of risk of the underlying
project value process. To generate this figure, I set the expected growth rate of project value as µ = 0.05,
the firm’s subjective discount rate ρ = 0.1 > µ, and the fixed sunk cost at the time of investment I = 0.3.
Moreover, I assume that there is no uncertainty (κ = 0).

Figure 3.1 Comparative statistics of the optimal investment trigger (x∗) with respect
to the change in risk (σ)

Figure 3.1 and Figure 3.2 provide numerical examples to illustrate Proposition 3.1-(b).

As can be seen from Figure 3.1, when the level of risk (σ) increases from 0.01 to 0.1, the

optimal investment trigger x∗ increases from 0.6 to 0.793. That is, the firm is more likely

to wait to capture the upside potential. Figure 3.2 illustrates that in contrast, the effect of

uncertainty deceases the value of waiting. When the level of uncertainty (κ) increases from

0.1 to 1, the optimal investment trigger x∗ decreases from 0.59 to 0.5. Therefore, when the

firm faces the higher ambiguity about the expected growth rate of the underlying project

value, it is less likely to wait. It is important to understand that Proposition 3.1-(b) crucially
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relies on the assumption that there is no uncertainty after the investment. That is, Ω(x)

involves no Knightian uncertainty.

WHxL = x - 0.3
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This figure illustrates the optimal investment trigger (x∗) when changing the level of Knightian uncertainty
of the underlying project value process. To generate this figure, I set the expected growth rate of project
value as µ = 0.05, the level of risk of the project value process σ = 0.01, the firm’s subjective discount rate
ρ = 0.1 > µ, and the fixed sunk cost at the time of investment I = 0.3.

Figure 3.2 Comparative statistics of the optimal investment trigger (x∗) with respect
to the change in the level of Knightian uncertainty (κ)

Standard option theory indicates that the simple NPV rule is incorrect (x∗ > I); risk and

irreversibility drive a wedge between the critical value x∗ and the sunk cost I (see Dixit and

Pindyck (1994)). However, when the firm confronts a sufficiently large amount of Knightian

uncertainty, it is optimal to follow the NPV rule. That is, as the amount of uncertainty (κ)

is infinite, the optimal investment trigger x∗ converges to I.

3.2.3 Exit option

This example is a continuous time extension of an example in Miao and Wang (2011).

Consider a firm in an industry. The process (Xt) can be interpreted as a productivity (or

demand) shock. Staying in business at time t yields profits with a fixed cost c > 0, so that

the net profit is f(x) = x− c. The firm may decide to exit and seek outside option γ that is

assumed to be constant. Then the firm chooses the stopping policy τ = inf{t : Xt(ω) = x∗}
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to maximize, given Xt = x,

V (x) = max
τ

Et
[∫ τ

t

e−ρ(s−t)f(Xs)ds+ e−ρ(τ−t)Ω(Xτ )

]
. (3.12)

Again I assume that the stopping time τ can be infinite, so that the value function V (x) is

time-homogenous.

Similar to the irreversible investment example, for the short time interval [t, t+ dt), the

firm chooses either to exit and obtain Ω(x) or continue to obtain profits and the capital

gain. Precisely, solving (3.12) is equivalent to solving the following Bellman equation, given

Xt = x:

V (x) = max

 Ω(x)︸︷︷︸
outside option

, f(x)dt︸ ︷︷ ︸
dividend

+Et
[
e−ρ dtV (Xt+dt)

]︸ ︷︷ ︸
capital gain


= max

{
Ω(x) , f(x)dt+ Et[dV ] + V − ρV dt

}
. (3.13)

When the firm faces Knightian uncertainty about the dynamics of (Xt), (3.13) becomes:

V (x) = max

{
Ω(x) , f(x)dt+ min

Qθ∈Π
EQ

θ

t [dV ] + V − ρV dt
}

When x > x∗, V (x) satisfies

ρV (x) = f(x) + min
Qθ∈Π

1

dt
EQθ [dV ]

= f(x) + min
θt∈[−κ,κ]

(
(µ− θtσ)xV ′(x) +

1

2
σ2x2V ′′(x)

)
.

where in the second line I use the i.i.d. uncertainty assumption. Conjecturing that V ′(x) > 0,

I have the following HJB equation:

ρV = (µ− κσ)xV ′ +
1

2
σ2x2V ′′ + f(x), (3.14)

where f(x) = x− c. The solution of (3.14) is a linear combination of a general solution and

a particular solution:

V (x) = vp(x) + A1x
β1 + A2x

β2 ,
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where β1 > 1 and β2 < 0 are the solutions of the characteristic equation Q(x):

Q(β) =
1

2
σ2β(β − 1) + (µ− κσ)β − ρ = 0. (3.15)

In addition, V (x) must satisfy the following conditions:

lim
x→∞

V (x) = vp(x) transversality (3.16)

V (x∗) = Ω(x∗) = γ value matching (3.17)

V ′(x∗) = Ω′(x∗) = 0 smooth pasting (3.18)

Note that the transversality condition ensures that A1 = 0 because β1 > 1.
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This figure illustrates the optimal exit trigger (x∗) when changing the level of risk of the underlying project
value process. To generate this figure, I set the expected growth rate of project value as µ = 0.02, the
firm’s subjective discount rate ρ = 0.1 > µ, and the constant outside option value Ω(x) = γ = 1. Moreover,
I assume that there is no uncertainty (κ = 0).

Figure 3.3 Comparative statistics of the optimal exit trigger (x∗) with respect to the
change in risk (σ)

Proposition 3.2. (a) The value function V (x) that satisfies (3.14) and the conditions (3.16),

(3.17), and (3.18) is:

V (x) = vp(x) + A2x
β2 ,

where

vp(x) =
x

ρ− (µ− κσ)
− c

ρ
, A2 = − 1

β2

(x∗)1−β2 1

ρ− (µ− κσ)
,

88



and the optimal exit trigger x∗ is

x∗ =
β2

β2 − 1

(
γ +

c

ρ

)
(ρ− (µ− κσ)),

where β2 < 0 are the solution of (3.15). Specifically,

β2 =
1

σ2

−(µ− κσ − σ2

2

)
−

√(
µ− κσ − σ2

2

)2

+ 2ρσ2

 .

(b) In the absence of Knightian uncertainty, an increase in risk lowers the optimal exit

trigger. That is,
∂x∗

∂σ2
< 0.

(c) An increase in Knightian uncertainty (κ) raises the optimal exit trigger. In other words,

∂x∗

∂κ
> 0.

Proof. See Appendix 3.A.3 on page 102.

Figure 3.3 and Figure 3.4 provide numerical examples to illustrate Proposition 3.2-(b). As

can be seen from Figure 3.3, when the firm confronts a higher level of risk, the continuation

value increases while the outside option stays constant. Hence, the optimal exit trigger

decreases. By contrast, Figure 3.4 illustrates that as the firm confronts a higher level of

uncertainty, the continuation value decreases while the outside option stays const. Therefore,

the optimal exit trigger increases with Knightian uncertainty.

According to Proposition 3.2, firms may stay in business longer in riskier situations,

even though they suffer losses, hoping for the upside potential. However, as stated by Miao

and Wang (2011), this prediction seems to be inconsistent with the empirical observation

of the large amount of quick exit in the IT industry in recent years. Knightian uncertianty

may provide a plausible explanation to this issue. When firms are more uncertain about

the industry demand or their productivity, they are less sure about the likelihood of their

effective cash flows. When the firm’s uncertainty increases, the continuation value of firms

is lower and the exit trigger higher. Therefore, it is optimal for firms to exit earlier.
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This figure illustrates the optimal exit trigger (x∗) when changing the level of Knightian uncertainty of the
underlying project value process. To generate this figure, I set the expected growth rate of project value as
µ = 0.02, the level of risk σ = 0.1, the firm’s subjective discount rate ρ = 0.1 > µ, the time-invariant
production cost c = 0.5, and the constant outside option value Ω(x) = γ = 1.

Figure 3.4 Comparative statistics of the optimal exit trigger (x∗) with respect to the
change in the level of Knightian uncertainty (κ)

3.3 Dynamic Capital Structure with Uncertainty

3.3.1 The model with the investors’ uncertainty aversion

The standard model of dynamic capital structure model is based on Leland (1994). A firm’s

asset value is assumed to follow the risk-neutral dynamics

dVt/Vt = µ dt+ σ dWt (3.19)

where Wt is a Brownian motion under the risk-neutral measure Q, and µ < r is the expected

asset growth rate. The firm generates cash flow at the rate of δVt at time t, for some constant

δ ∈ (0,∞).

The firm issues debt so as to obtain the tax shields offered for interest expense. It has

a constant marginal tax rate τ ∈ [0, 1). For a simple time homogenous setting, the debt is

modeled as a consol bond that pays coupons indefinitely at a constant rate c. Thus, in the

interval [t, t+ dt), the coupon payment is c dt.

The investors of the firm (the equity and bond holders) are uncertain about the dynamics
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of the asset value process (Vt). Instead, they maintain a set of perturbed versions of reference

motion (Vt) that they think possible: they think there are the perturbed versions of Wt given

by:

dW θ
t = θtdt+ dWt.

As discussed in Section 3.2.1, the evolution of the firm’s asset process under the investors’

uncertainty about the reference measure Q is

dVt
Vt

= µdt+ σ(dW θ
t − θtdt) = (µ− θtσ)dt+ σdW θ

t , (3.20)

and note that an element of the set of measures Π = {Qθ} can be indexed by (θt). I assume

that there is no information asymmetry between the claim holders: they face the same

amount of uncertainty (i.e., share the same set of priors Π) and have the same max-min

ambiguity aversion preferences.

The firm is operated by its shareholders. For simplicity, their only action is choosing

when to default. A liquidation policy is a choice of optimal stopping time τd(vB) = inf{t :

Vt(ω) = vB} where vB is an endogenous optimal default trigger. Following Duffie and Lando

(2003), given an asset level at liquidation of vB, I assume that the liquidation value of assets

is the expected present value at the time t of the cash flows to be generated by the assets:

min
Qθ∈Π

EQ
θ

t

[∫ ∞
t

e−r(s−t)δVsds

]
=

δVt
(r − µ+ κσ)

∣∣∣
Vt=vB

. (3.21)

At the chosen default time, a fraction α ∈ [0, 1] of the assets are lost as a deadweight cost.

The value of remaining assets
(1− α)δvB

(r − µ+ κσ)

is assigned to the debt-holders by absolute priority.

The equity holders of the firm chooses the optimal stopping policy τd(vB) to maximize,

given the current value Vt = v,

E(v) = max
τd

min
Qθ∈Π

EQ
θ

t

[∫ τd

t

e−r(s−t)(δVs − (1− τ)c)ds

]
. (3.22)

When the firm is solvent, the value of equity satisfies the following no-arbitrage equation
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(i.e., HJB equation):

rE(v) = δv − (1− τ)c+ min
Qθ∈Π

1

dt
EQ

θ

t [dE(v)]

= δv − (1− τ)c+ µvE ′(v) +
1

2
σ2v2E ′′(v) + min

Qθ∈Π

1

dt
EQ

θ

t [dW ]︸ ︷︷ ︸
6=0

due to ambiguity

σvE ′(v)

= δv − (1− τ)c+ µvE ′(v) +
σ2

2
v2E ′′(v) + min

Qθ∈Π

1

dt
EQ

θ

t [−θt dt+ dW θ]σE ′(v)

= δv − (1− τ)c+ µvE ′(v) +
σ2

2
v2E ′′(v) + min

θt∈[−κ,κ]
(−θt)σvE ′(v)

= δv − (1− τ)c+ (µ− κσ)︸ ︷︷ ︸
Ambigiuty

adjusted drift

vE ′(v) +
σ2

2
v2E ′′(v) (3.23)

Here, I assume that from the set of possible pricing measures, the market chooses the mini-

mum pricing measure in the set. In the third line, I assume i.i.d. uncertainty and conjecture

that E ′(v) > 0. Limited liability for the equity holders ensures the following conditions:

lim
v→∞

E(v) =
δv

r − µ+ κσ
, E(vB) = 0, E ′(vB) = 0 (3.24)

Proposition 3.3. The value of equity that satisfies the no-arbitrage equation (3.23) with the

conditions (3.24) is

E(v; vB, c) =
δ v

(r − µ+ κσ)
− (1− τ)c

r

(
1−

(
v

vB(c)

)−β)
− δ vB(c)

(r − µ+ κσ)

(
v

vB(c)

)−β
.

(3.25)

The optimal default trigger vB is

vB(c) =
(1− τ)c

δ r

β

(β + 1)
(r − µ+ κσ), (3.26)

where

β(κ, σ) =
1

σ2

(µ− κσ − σ2

2

)
+

√(
µ− κσ − σ2

2

)2

+ 2rσ2

 > 0. (3.27)

Proof. See Appendix 3.B.1 on page 105.

The value of equity (3.25) is merely the market value of assets at time t less the market

value of after-tax (effective) coupon payment to debt holders before default, and less the
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market value of the debt holders’ claim to vB at the time of default.

Corollary 3.1. Fix a coupon rate c. Then, (a) in the absence of Knightian uncertainty, the

optimal boundary vB decreases with the level of risk of cash flow. That is,

∂vB
∂σ

< 0.

(b) vB increases with the level of uncertainty. That is,

∂vB
∂κ

> 0.

Proof. This is an immediate corollary to Proposition 3.2 on page 88 by setting γ = 0 and

f(v) = δv − (1− τ)c.

The market value of debt is the present value of a claim that pays the constant coupon

rate c dt for [t, t+dt) until τd and a liquidation payment αδvB/(r−µ+κσ) when the firm goes

bankrupt at τd. Hence, the no-arbitrage equation for the value of debt, given the current

asset value Vt = v, is

rD(v) = c+ min
Qθ

1

dt
EQ

θ

t [dD(v)] = c+ (µ− κσ)vD′(v) +
1

2
σ2v2D′′(v). (3.28)

Again, I assume i.i.d uncertainty and conjecture that D′(v) > 0. It must satisfy the condi-

tions:

D(vB) =
(1− α)δvB

(r − µ+ κσ)
, lim

v→∞
D(v) =

c

r
. (3.29)

Proposition 3.4. The value of debt that satisfies the no-arbitrage equation (3.28) with the

conditions (3.29) is

D(v; vB, c) =
c

r
·

(
1−

(
v

vB(c)

)−β)
+

(1− α) δ vB(c)

(r − µ+ κσ)
·
(

v

vB(c)

)−β
, (3.30)

where β is given by (3.27).

Proof. See Appendix 3.B.2 on page 105.

The optimal coupon rate c∗, given the initial asset value v, is chosen so as to maximize

the initial total firm value that is the initial value of equity (3.25) plus the value of debt

(3.30).
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(A) This figure illustrates the comparative statics of the optimal trigger vB with respect to risk σ.
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(B) This figure illustrates the comparative statics of the optimal trigger vB with respect to changes in
uncertainty κ. To generate these figures, I fix the coupon rate c = 8, the expected growth asset rate
µ = 0.0113, the risk free discount rate r = 0.06, the marginal tax rate τ = 0.35, the proportional
deadweight cost α = 0.3, the rate of cash flow δ = 0.05 and the initial value of assets v = 100. Moreover, in
Figure (A), I set κ = 0, while I set σ = 0.1 in Figure (B).

Figure 3.5 Comparative statics of the optimal trigger vB

Proposition 3.5. The optimal coupon rate is

c∗ =
δv

(r − µ+ κσ)

r(1 + β)

β(1− τ)

(
(1 + β)τ + α(1− τ)β

τ

)(−1/β)

(3.31)

where β is given by (3.27).
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(A) This figure illustrates the comparative statics of the optimal coupon c with respect to risk σ. The
dotted-dashed line represents when κ = 0 (without uncertainty), the dashed line when κ = 0.1, and the
solid line when κ = 0.6.
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(B) This figure illustrates the comparative statics of the optimal coupon c with respect to changes in
uncertainty κ. The dotted-dashed line represents when σ = 0.05, the dashed line when σ = 0.1, and the
solid line when σ = 0.5. To generate these figures, the other parameters are set as: the expected asset
growth rate µ = 0.0113, the risk free discount rate r = 0.06, the marginal tax rate τ = 0.35, the
proportional deadweight cost α = 0.3, the rate of cash flow δ = 0.05 and the initial value of assets v = 100.

Figure 3.6 Comparative statics of the optimal coupon c∗

Proof. See Appendix 3.B.3 on page 106.

Remark 3.1. For robustness, I verify that the sum of market value of equity given by (3.25)

and equity given by (3.30) is the same as the unlevered market value of the firm plus the

value of tax benefits and less the value of bankruptcy costs. I check this equivalence in
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(A) This figure illustrates the comparative statics of the value of equity E(v) with respect to changes in the
level of risk (σ). The dotted-dashed line represents when κ = 0 (without uncertainty), the dashed line
when κ = 0.1, and the solid line when κ = 0.3.
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(B) This figure illustrates the comparative statics of the value of equity E(v) with respect to changes in
uncertainty κ. The dotted-dashed line represents when σ = 0.06, the dashed line when σ = 0.1, and the
solid line when σ = 0.3. To generate these figures, the other parameters are set as: the expected asset
growth rate µ = 0.0113, the risk free discount rate r = 0.06, the marginal tax rate τ = 0.35, the
proportional deadweight cost α = 0.3, the rate of cash flow δ = 0.05 and the initial value of assets v = 100.

Figure 3.7 Comparative statics of the value of equity E(v)

Appendix 3.B.4 on page 106.

I turn to establish the comparative statics of the optimal leverage with respect to changes

in the level of risk and uncertainty. For the numerical computations, I set the expected

growth rate of the asset value process µ, the level of risk σ, the initial value of asset v, the
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risk free rate r, the marginal corporate tax rate τ , the cash-flow generation rate δ, and the

proportional deadweight bankruptcy cost α as:

v = 100, δ = 0.05, µ = 0.011, σ = 0.05, r = 0.06, τ = 0.35, α = 0.3 (3.32)

The optimal leverage ratio can be computed as:

Leverage ratio =
D(v; vB(c∗), c∗)

D(v; vB(c∗), c∗) + E(v; vB(c∗), c∗)
(3.33)

where c∗ is the optimal coupon found as (3.31), E(v; vB(c∗), c∗) is the market value of equity

at c∗ using (3.25), and D(v; vB(c∗), c∗) is the market value of debt at c∗ using (3.30). Figure

3.8-(B) illustrates the optimal leverage ratio of the firm with respect to changes in the

amount of uncertainty (κ). As can be seen, the optimal leverage ratio decreases with the

amount of uncertainty. The benchmark model without uncertainty (κ = 0) predicts the

optimal leverage ratio about 83%, given the level of risk σ = 0.1. When the amount of

uncertainty increases as κ = 0.8, the optimal leverage decreases to about 68%. That is, the

presence of substantial amount of Knightian uncertainty reduces the optimal leverage ratio

by approximately 22%.

Figure 3.8-(A) illustrates the comparative statics of the firm’s optimal leverage ratio

with respect to changes in the level of risk. Qualitatively, the effect of risk also decreases

the optimal leverage ratio. However, in order for risk alone to generate the low leverage

ratio comparable to the level from the model with uncertainty, the required level of risk

may increase up to σ = 0.3. In order for the model without uncertainty to generate 68%

optimal leverage ratio, the required level of risk of cash flow should increase from σ = 0.1

(benchmark) to σ = 0.3.

3.4 Conclusion

Standard real option theory predicts that an increase in the risk of the underlying project

value increases the value of waiting and delays the exercise of the option. Unlike risk, uncer-

tainty erodes the value of waiting, so the firm exercises the option sooner. This prediction

crucially depends on the assumption that there is no uncertainty about the termination

payoff from the exercise of the option.

The benchmark dynamic capital structure model (Leland, 1994) generates an optimal
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(A) This figure illustrates the optimal leverage ratio computed as (3.33) when changing the level of
volatility of underlying process (σ). The dotted-dashed line represents when κ = 0 (without uncertainty),
the dashed line when κ = 0.2, and the solid line when κ = 0.8.
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(B) This figure illustrates the optimal leverage ratio computed as (3.33) when changing the level of
uncertainty (κ). The level of risk are fixed as σ = 0.05 (dot-dashed line), σ = 0.1 (dashed line), and σ = 0.3
(solid line). To generate these figures, the other parameters are set as: the expected asset growth rate
µ = 0.0113, the risk free discount rate r = 0.06, the marginal tax rate τ = 0.35, the proportional
deadweight cost α = 0.3, the rate of cash flow δ = 0.05 and the initial value of assets v = 100.

Figure 3.8 Comparative statistics of the optimal leverage ratio

leverage ratio for a firm of about 80%, given reasonable parameters. I incorporate investors’

ambiguity about the expected growth rate of the firm’s assets into the model. The ambiguity-

augmented model generates an optimal leverage ratio of about 60%. This shows that uncer-

tainty provides a plausible explanation for firms taking on low leverage even in a dynamic

setting.

98



3.A Proofs for Section 3.2

3.A.1 Proof of Smooth-Pasting Condition

Proof. For simplicity, let the continuation (waiting) region be x < x∗, and stopping region

be x > x∗. By continuity of the value function, V (x∗) = Ω(x∗). Suppose the smooth pasting

condition violated, then V (x) and Ω(x) meet at a kink.

case 1: V ′(x∗) > Ω′(x∗)

It implies V (x) < Ω(x) when x < x∗. Therefore, it is optimal to stop and collect Ω(x) when

x < x∗. However, it contradicts to the optimality of x∗.

case 2: V ′(x∗) < Ω′(x∗)

Instead of stopping at x = x∗, consider the alternative strategy that waits ∆t and reassess

the situation. If the next state is x∗ + ∆h, stop, if the next state is x∗ − ∆h, continue.

Let p be 0.5(1 + µ(x)/σ(x) ·∆h) where ∆h =
√

∆t. By waiting ∆t, the total payoff of the

alternative strategy is,

f(x∗)∆t+ (1− ρ∆t) [pΩ(x∗ + ∆h) + (1− p)V (x∗ −∆h)]

= f(x∗)∆t+ (1− ρ∆t) [V (x∗) + (pΩ′(x∗)− (1− p)V ′(x∗))∆h+ · · · ]
∆t→0

= Ω(x∗) + 0.5 [Ω′(x∗)− V ′(x∗)] ∆h > Ω(x∗).

In the second line, I use the value matching condition V (x∗) = Ω(x∗). Thus, the alternative

strategy is better than stopping at x = x∗. Hence, it contradicts to the optimality of x∗.

3.A.2 Proof of Proposition 3.1

Proof. It is well known that the solution of (3.7) is

V (x) = A1x
β1 + A2x

β2
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where are β1 > 0 and β2 < 0 are the solutions of the characteristic equation (3.15). Under

the condition µ− κσ < ρ, it is immediate that β1 > 1, To see this

β1 =
1

σ2

−(µ− κσ − σ2

2

)
+

√(
µ− κσ − σ2

2

)2

+ 2ρσ2


>

1

σ2

(
−
(
µ− κσ − σ2

2

)
+

∣∣∣∣µ− κσ +
1

2
σ2

∣∣∣∣) ≥ 1

if µ− κσ ≥ −σ2

2
, equal to unity. Otherwise, it is more than unity. And,

β2 =
1

σ2

−(µ− κσ − σ2

2

)
−

√(
µ− κσ − σ2

2

)2

+ 2ρσ2

 < 0. (3.34)

Combining β2 < 0 and V (0) = 0 implies A2 = 0. Hence,

V (xt) = A1x
β1
t

where A1 and x∗ are determined by the value matching and smooth pasting conditions:

A1x
∗β1 = x∗ − I,

A1β1x
∗β1−1 = 1.

Specifically,

x∗ =
β1

β1 − 1
I =

(
1 +

1

β1 − 1

)
I > I, such that

∂x∗

∂β1

< 0

A1 =
1

β1

(
β1

β1 − 1
I

)β1−1

.

With no uncertainty (κ = 0), an increase of risk in the sense of mean preserving spread

increase the optimal boundary. To see this,

∂Q =
∂Q

∂β

∂β

∂σ2
+
∂Q

∂σ2

∣∣∣∣∣
β=β1>1

= 0,

and we know
∂Q

∂σ2
= β(β − 1)

∣∣∣∣∣
β=β1

> 0
∂Q

∂β

∣∣∣∣∣
β=β1

> 0.
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Hence, it has to be
∂β1

∂σ2
< 0.

Therefore, the boundary increases with risk, because

∂x∗

∂σ2
=
∂x∗

∂β1

∂β1

∂σ2
> 0.

When x < x∗, the value of waiting increases with risk as well. To see this, when x < x∗,

∂ log V (x)

∂β1

=
∂

∂β1

log
(

(β1 − 1)β1−1I1−β1β−β11 xβ1
)

= − log I + log(β1 − 1)− log β1 + log x

< − log I + log(β1 − 1)− log β1 + log x∗

= − log I + log(β1 − 1)− log β1 + log

(
β1

β1 − 1
I

)
= 0.

Because V (x) > 0 for all x, we have

∂V (x)

∂β1

< 0.

Therefore,
∂V (x)

∂σ2
=
∂V (x)

∂β1

∂β1

∂σ2
> 0.

On the other hand, fixing risk (σ), an increase in uncertainty (κ) lowers the optimal

boundary. To see this,

∂β1

∂κ
=

1

σ

1−
(
µ− κσ − 1

2
σ2
)√(

µ− κσ − σ2

2

)2
+ 2ρσ2

 > 0.

Hence,
∂x∗

∂κ
=
∂x∗

∂β1

∂β1

∂κ
< 0.

Also, the value of postponing investment is decreasing with uncertainty, because for x < x∗

∂V (x)

∂κ
=
∂V

∂β1

∂β1

∂κ
< 0.
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3.A.3 Proof of Proposition 3.2

Proof. The following particular solution satisfies (3.14):

vp(x) =
x

ρ− (µ− κσ)
− c

ρ
.

Now I turn to find the coefficients A1 and A2 of the general solution. As xt is sufficient large,

the shutdown option has no value. That is,

lim
x→∞

V (x) = vp(x).

Given the positivity of β1 > 1, A1 = 0. Hence,

V (x) =
x

ρ− (µ− κσ)
− c

ρ
+ A2x

β2 ,

where

β2 = −
(
µ− κσ
σ2

− 1

2

)
−

√(
δ

σ2
− 1

2

)2

+
2ρ

σ2
< 0.

The coefficient A2 and the optimal exit trigger x∗ can be determined by the value matching

and smooth pasting conditions at the boundary x∗:

A2x
∗β2 +

x∗

ρ− (µ− κσ)
− c

ρ
= γ by the value matching V (x∗) = Ω(x∗)

β2A2x
∗β2−1 +

1

ρ− (µ− κσ)
= 0 by the smooth pasting V ′(x∗) = Ω′(x∗).

Then, we obtain

x∗ =
β2

β2 − 1

(
γ +

c

ρ

)
(ρ− (µ− κσ)) such that

∂x∗

∂β2

< 0,

A2 = − 1

β2

x∗1−β2
1

ρ− (µ− κσ)
.

When κ = 0, because of β2 < 0, we know

∂Q

∂σ2
= β(β − 1)

∣∣∣∣∣
β=β2

> 0,
∂Q

∂β

∣∣∣∣∣
β=β2

< 0.

102



Since

∂Q =
∂Q

∂β

∂β

∂σ2
+
∂Q

∂σ2

∣∣∣∣∣
β=β2

= 0,

where Q(·) is the characteristic equation (3.15), we have the following

∂β2

∂σ2
> 0.

Therefore,
∂x∗

∂σ2
=
∂x∗

∂β2

∂β2

∂σ2
< 0.

In the meantime, with no uncertainty κ = 0,

∂V (x)

∂β2

=
∂

∂β2

(
x

ρ− µ
+
c

ρ
+ A2x

β2

)
.

Since the first two terms are not related with σ, it is enough to determine the sign of the

last term. For x ≥ x∗,

∂ logA2x
β2

∂β2

=
∂

∂β2

(− log(−β2) + (1− β2) log x∗ − log(ρ− µ) + β2 log x)

≥ ∂

∂β2

(− log(−β2) + (1− β2) log x∗ − log(ρ− µ) + β2 log x∗)

=
∂

∂β2

(− log(−β2) + log x∗ − log(ρ− µ))

=
∂

∂β2

(
− log(−β2) + log

(
β2

β2 − 1

(
γ +

c

ρ

)
(ρ− µ)

)
− log(ρ− µ)

)
=

∂

∂β2

(− log(1− β2) + log(γ + c/ρ))

=
1

1− β2

> 0.

Because V (x) > 0 for all x, therefore,

∂V (x)

∂σ2
=
∂V

∂β2

∂β2

∂σ2
> 0.

Now, I turn to investigate the effect of changes in uncertainty (κ) on the optimal investment

trigger x∗, given the level of risk.

∂x∗

∂κ
=

β2

β2 − 1

(
γ +

c

ρ

)
σ − 1

(β2 − 1)2

(
γ +

c

ρ

)
(ρ− δ)∂β2

∂κ
, (3.35)
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where

0 <
∂β2

∂κ
=

1

σ

1 +
µ−κσ
σ2 − 1

2√
2ρ
σ2 +

(
µ−κσ
σ2 − 1

2

)2

 <
2

σ
.

Since

Q(β) = β2 +
2

σ2
(µ− κσ − 1

2
σ2)β − 2ρ

σ2
= 0,

and β2 < 0 < 1 < β1, we have

β1 + β2 = −2

(
µ− κσ
σ2

− 1

2

)
, β1β2 = −2

ρ

σ2
,

and

(β1 − 1)(β2 − 1) =
2

σ2
(µ− κσ − ρ).

Plugging them into (3.35) on the previous page and with some computations, we have

∂x∗

∂κ
=

(
γ +

c

ρ

)(
β2σ

σ3(β1 − 1)

2(µ− κσ − ρ)
− σ4(β1 − 1)2

4(ρ− µ+ κσ)2
(ρ− µ+ κσ)

∂β2

∂κ

)
=

(
γ +

c

ρ

)
σ3(β1 − 1)

2(ρ− µ+ κσ)

(
−β2 −

σ

2
(β1 − 1)

∂β2

∂κ

)

=

(
γ +

c

ρ

)
σ3(β1 − 1)

2(ρ− µ+ κσ)

−β2 −
σ

2
(β1 − 1)

1

σ

1 +
µ−κσ
σ2 − 1

2√
2ρ
σ2 +

(
µ−κσ
σ2 − 1

2

)2

 .

Let A :=
(
µ−κσ
σ2 − 1

2

)
and B := 2ρ

σ2 . Then,

∂x∗

∂κ
=

(
γ +

c

ρ

)
σ3(β1 − 1)

2(ρ− µ+ κσ)︸ ︷︷ ︸
:=∆>0

(
A+
√
A2 +B − 1

2
(−A+

√
A2 +B − 1)

(
1 +

A√
A2 +B

))

= ∆
1

2

(
1 +

A√
A2 +B

)(
A+
√
A2 +B + 1

)
= ∆

1

2

(
1 +

A√
A2 +B

)(µ− κσ
σ2

− 1

2

)
+

√(
µ− κσ
σ2

− 1

2

)2

+B + 1


= ∆

1

2

(
1 +

A√
A2 +B

)(µ− κσ
σ2

+
1

2

)
+

√(
µ− κσ
σ2

− 1

2

)2

+B


> ∆

1

2

(
1 +

A√
A2 +B

){(
µ− κσ
σ2

+
1

2

)
+
∣∣∣µ− κσ

σ2
− 1

2

∣∣∣} > 0.
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3.B Proofs for Section 3.3

3.B.1 Proof of Proposition 3.3

Proof. The solution to (3.23) on page 92 is the sum of a particular solution and a general

solution:

E(v) =
δ

(r − µ+ κσ)
v − (1− τ)

r
c+ A2v

−β, (3.36)

where−β is the positive solution of the characteristic equation associated with the HJB (3.23)

on page 92:

Q(β) =
1

2
σ2β(β − 1) + (µ− κσ)β − r = 0.

Solve it for β, then we have (3.27) on page 92. Apply the conditions (3.24) on page 92 and

we have,

δ

r − µ+ κσ
vB −

(1− τ)c

r
+ A2v

−β
B = 0

δ

r − µ+ κσ
− A2βv

−β−1
B = 0

Solve them for vB, we have (3.26) on page 92 and

A2 =
(1− τ)c

r
vB −

δ

(r − µ+ κσ)
vβ+1
B

Plug it into (3.36), we have (3.25) on page 92.

3.B.2 Proof of Proposition 3.4

Proof. The value of debt D(v) that satisfies (3.28) on page 93 can be represented as

D(v) =
c

r
+ Av−β. (3.37)

Apply the first boundary condition of (3.29) on page 93,

A = −c
r

(
v

vB

)−β
+

(1− α)δ vB
(r − µ+ κσ)

(
v

vB

)−β
.

Plug it into (3.37), we have (3.30) on page 93.
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3.B.3 Proof of Proposition 3.5

Proof. The initial share holders chooses the optimal coupon rate to maximize

max
c
E(v; vB, c) +D(v; vB, c)

where E(v; vB, c) is given by (3.25) and D(v; vB, c) is given by (3.30). From the FOC of the

above, and after some manipulations, we have

vB = v

(
α(1− τ)β + τ(1 + β)

τ

)−1/β

.

Plug it into (3.26) on page 92 and we have (3.31) on page 94.

3.B.4 Balance sheet checks

The tax benefits of the firm are considered as the present value of a claim that pays τ c until

the firm defaults, and pays nothing at the time default τd.

Proposition 3.6. Assume i.i.d. uncertainty and conjecture that T ′(v) > 0. The tax benefits

of the firm satisfies the following no-arbitrage equation

r T (v) = τ c+ min
Qθ

1

dt
EQ

θ

t [dT (v)] = τ c+ (µ− κσ)T ′(v) +
1

2
σ2v2T ′′(v),

with the conditions:

T (vB) = 0, lim
v→∞

T (v) =
τc

r
. (3.38)

Therefore,

T (v; vB, c) =
τc

r

(
1−

(
v

vB

)−β)
. (3.39)

Proof. The tax benefits yields a flow of payoff τc. By the condition TB(vB) = 0,

TB(vB) =
τc

r
+ A2v

−β
B = 0

. Solve it for A2,

A2 = −τc
r

(
1

vB

)−β
.
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Hence,

TB(v) =
τc

r

(
1−

(
v

vB

)−β)
.

Figure 3.9 provide the comparative statics of tax benefits with respect of changes in the

amount of uncertainty κ. As can be seen, the tax benefits decrease with the amount of

uncertainty.

0.0 0.2 0.4 0.6 0.8 1.0
5

10

15

20

25

30

35

Amount of uncertainty HΚL

T
ax

be
ne

fi
ts

This figure illustrates the tax benefits of the firm when changing the level of uncertainty κ. To generate
this figure, I set the expected rate of return µ = 0.0113, the risk free discount rate r = 0.06, the marginal
tax rate τ = 0.35, the proportional deadweight cost α = 0.3, the rate of cash flow δ = 0.05, the level of risk
σ = 0.1, and the initial value of assets v = 100.

Figure 3.9 Comparative statistics of the tax benefits with respect to changes in ambi-
guity (κ)

The present value of bankruptcy cost is the present value of a claim that pays nothing

until default, but when the firm defaults, it receives (negative payment) αδvB/(r − µ+ κσ)

where α is the proportional bankruptcy cost.

The no-arbitrage equation for the bankruptcy costs is

rC(v) = max
Qθ

1

dt
EQ

θ

t [dC(v)]

= max
θt∈[−κ,κ]

(µ− θtσ) v C ′(v)︸ ︷︷ ︸
<0

+
1

2
σ2v2C ′′(v)

= (µ− κσ)vC ′(v) +
1

2
σ2v2C ′′(v). (3.40)
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In the first line, the worst case is the maximum appreciation because the deadweight cost

will be lost at the time of default. In the second line, I assume the i.i.d. uncertainty and

conjecture that the cost function is decreasing in v (i.e., C ′(v) < 0). It also must satisfy the

conditions:

C(vB) = α
δvB

(r − µ+ κσ)
, lim

v→∞
C(v) = 0. (3.41)

Proposition 3.7. The market value of bankruptcy cost that satisfy no-arbitrage condi-

tion (3.40) and the conditions (3.41),

C(v; vB, c) = α
δvB

(r − µ+ κσ)

(
v

vB

)−β
. (3.42)

Proof. By the transversality condition,

C(v) = A2v
−β

Use the condition C(vB) = α δvB
(r−µ+κσ)

,

A2 =
α δvB

(r − µ+ κσ)

(
v

vB

)−β
Plug it into the above, we have (3.42).

Figure 3.10 illustrates the comparative statics of tax benefits with respect of changes in

the amount of uncertainty κ. As can be seen, the bankruptcy costs increase with the amount

of uncertainty.

The total levered firm value is

δv

(r − µ+ κσ)
+ T (v; vB, c)− C(v; vB, c), (3.43)

that is the market value of cash flows to be generated by the current asset level v plus the

tax benefits of debt, and less the bankruptcy costs of debt. It must be the same as the right

hand side of the balance sheet:

E(v; vB, c) +B(v; vB, c) (3.44)

that is the sum of the market value of equity and debt. Hence, the market value of equity
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This figure illustrates the bankruptcy cost of the firm when changing the level of uncertainty κ. To
generate this figure, I set the expected rate of return µ = 0.0113, the risk free discount rate r = 0.06, the
marginal tax rate τ = 0.35, the proportional deadweight cost α = 0.3, the rate of cash flow δ = 0.05, the
level of risk σ = 0.05, and the initial value of assets v = 100.

Figure 3.10 Comparative statistics of the bankruptcy cost with respect to the change
in ambiguity (κ)

can be found as

E(v; vB, c) =
δv

(r − µ+ κσ)
+ T (v; vB, c)− C(v; vB, c)−B(v; vB, c).

It is not surprising to see the above coincides to (3.25) on page 92. Note that the optimal

coupon can be also found from the first order condition of (3.43),

∂T (v; vB, c)

∂c
=
∂C(v; vB, c)

∂c
.

It is simple trade-off theory.
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