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Chapter One 

Introduction 

 

Adipose tissue functions and obesity 
Adipose tissue is a dynamic endocrine organ necessary for the storage 

and release of lipid in concert with energetic requirements. When energy intake 

surpasses usage, adipose tissue responds by increasing size and/or number of 

adipocytes to facilitate lipid storage (Hirsch, 1969; Hellman, 1961 ;Bertrand, 

1978;Knittle, 1979). Conversely, in intervals of energy deprivation, adipocytes 

release stored lipid. However, when energetic homeostasis is not maintained due 

to prolonged energy surplus, adipose tissue expands to pathological levels 

resulting in obesity and increased risk for obesity-associated disorders, notably 

type 2 diabetes, hypertension, atherosclerosis, and many types of cancer (Kong, 

et al) 

 

Adipocyte differentiation 
 Adipocytes differentiate from committed precursor cells known as 

preadipocytes through a complex but well-defined transcriptional cascade. 

Transcription factors PPARγ and C/EBPα, master regulators of adipogenesis, are 

necessary and sufficient to drive the expression of target genes such as FABP4, 

IRS, and GLUT4 (Rosen et al., 2006). These and many other target genes drive 

the physiological processes characteristic of functional adipocytes, including 

glucose uptake, lipogenesis, lipolysis, and hormone secretion (Winegrad et 

al.,1958; Milstein et al.,1956; Halaas et al.,1995; Frerichs et al.,1962). PPARγ 

activity is required for both acquisition and maintenance of an adipogenic cell 

fate. PPARγ alone is sufficient to drive adipogenesis in fibroblasts (Tontonoz et 
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al, 1994). Ablation of PPARγ activity in mature adipocytes results in 

triacylglycerol loss in vitro (Tamori et al, 2002), and cell death in vivo (Imai, 

2004). While C/EBPα cannot stimulate adipogenesis in the absence of PPARγ, 

its expression appears to be necessary to confer insulin sensitivity to mature 

adipocytes (Wu et al., 1999), in addition to serving as a stimulating of 

PPARγ expression and being a strong driver of adipogenesis (Linhart et al, 2001; 

Rosen et al, 2002; Freytag et al, 1994). Many additional transcription factors 

function to modulate the activity of PPARγ and/or C/EBPα through interaction 

with specific promoters or the transcription factors themselves. These genes 

include KLFs (Mori, 2005; Banerjee, 2003), GATAs (Tong, 2000), and additional 

C/EBPs (Tang 2000 et al.; Tang et al., 2003; Tanaka et al.1997), with some 

families containing both pro- and anti-adipogenic members.    

 

Upstream of transcriptional regulation, adipogenesis is also directed by 

extracellular signaling factors relaying conditions of the surrounding milieu. Such 

extracellular signaling factors include developmental signaling pathways like Wnt, 

Hedgehog, and Notch (Ross et al., 2004; Cousin et al., 2007). Wnt activity is best 

defined of this group, being a strong inhibitor of adipogenesis (Ross et al., 2000). 

Other secreted proteins regulating adipogenesis include insulin and IGF-1. While 

insulin is a well-characterized inducer of adipogenesis, preadipocytes express 

the insulin receptor at relatively low levels. Hence, the pro-adipogenic effects of 

supraphysiological concentrations of insulin in vitro are therefore thought to be 

mediated by the IGF-1 receptor (Smith et al.,1988), which is more highly 

expressed in preadipocytes and also binds insulin, though with reduced affinity 

(Mynarcik et al.,1997; Rubin et al.,1978). Insulin binding to either insulin 

receptors or IGF-1 receptors results in autophosphorylation of tyrosine residues 

and recruitment of scaffolding and substrate proteins, including insulin receptor 

substrate IRS-1 and Src homology 2 domains SH2 (Bevan, 2001). IRS-1 recruits 

and activates PI3 kinase (PI3K), which phosphorylates PIP2 to generate PIP3 

within the cell membrane. This phospholipid serves as an anchoring point for 

additional signaling proteins. PDK1 and Akt are recruited to the cell membrane 
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by PIP3, where PDK1 phosphorylates Akt (also known as PKB) at threonine 308 

(Stokoe et al., 1997). An additional phosphorylation of Akt at serine 473 by 

mTORC2 results in maximal Akt activation (Sarbassov et al., 2005). Akt is a pro-

adipogenic kinase in itself, facilitating adipogenesis through numerous 

mechanisms. These include phosphorylation and nuclear exclusion of the anti-

adipogenic FOXO (Nakae et al., 2003) and GATA2 (Menghini et al., 2005), and 

phosphorylation and activation of the pro-adipogenic CREB (Cypess et al 2001; 

Reusch et al., 2002). Constitutive Akt activity results in spontaneous 

differentiation of 3T3-L1 cells (Magun et al.,1996); Akt therefore serves as a 

major effector of insulin-stimulated adipogenesis.  

 

An additional regulator of adipogenesis sensitive to extracellular milieu is 

the MAP Kinase pathway (MAPK).  However, contradictory roles for ERK1/2 

signaling in adipogenesis have been reported. Some groups have shown rapid 

and transient ERK1/2 activation upon induction of adipogenesis, and inhibition of 

adipogenesis when this activation is blocked (Prusty et al., 2002). Additional 

groups have reported that ERK1/2 phosphorylates C/EBPβ to allow its eventual 

transactivation of C/EBPα and PPARγ (Tang et al., 2005). This observation is 

supported by ERK1 KO animals, which have decreased adiposity and fewer 

adipocytes (Bost et al., 2005). However, other groups have reported that 

sustained ERK activation inhibits adipogenesis and decreases PPARγ activity 

(Hu et al., 1996). The reports can be balanced with a model in which ERK1/2 

signaling is essential in early, mitotic stages of differentiation, but becomes 

inhibitory at later stages. 

 
Lipolysis 

In contrast to adipogenesis, which is generally stimulated under nutrient-

rich conditions, lipolysis is a catabolic pathway that is activated in nutrient-

deprived states to supply tissues with fatty acids. This process utilizes lipases to 

generate free fatty acids and glycerol from stored triglyceride. While a futile cycle 

of lipid hydrolysis and re-esterification is often maintained within adipocytes 
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(Kalderon et al., 2000), this equilibrium is strongly shifted to favor lipolyis by 

stimulation of β-adrenergic receptors. These G protein-coupled receptors 

(GPCRs) couple to Gαs, which stimulates cAMP production. cAMP in turn 

activates cAMP-dependent protein kinase (PKA), which phosphorylates 

hormone-sensitive lipase (HSL) (Duncan et al., 2007). Although HSL was long 

thought to be the primary lipase in lipolysis, HSL knockout mice have surprisingly 

mild lipolytic phenotypes, suggesting involvement of additional enzymes (Wang 

et al., 2001; Haemmerle et al., 2002a; Haemmerle et al., 2002b). This possibility 

was confirmed with the identification of Adipose Triglyceride Lipase (ATGL), 

(Zimmermann et al., 2004; Villena et al., 2004; Jenkins et al., 2004), presenting a 

slightly more complex picture of lipolytic regulation. Current data suggests that 

HSL is a primary contributor to diacylglycerol (DAG) hydrolysis in vivo, 

(Haemmerle, 2002a), but is not strictly required for the initiation of lipolysis. As 

ATGL has preferential activity against triacylglycerol (TAG), reports have 

suggested that HSL and ATGL act together in a synergistic fashion and are both 

essential for lipolytic homeostasis (Zimmermann, 2003; Duncan, 2007). 

 

In addition to lipases, there are multiple adapter and structural proteins 

with important roles in lipolysis. Perilipin (PLIN) normally surrounds lipid droplets, 

protecting the latter from cytoplasmic lipases. However, upon phosphorylation by 

PKA, PLIN remodels to expose the lipid droplet and allow access to lipases 

(Marcinkiewicz et al., 2006). Perilipin’s role in lipid metabolism is supported by 

the abrogation of hormone-stimulated lipolysis in PLIN KO mice (Tansey et al., 

2001). Perilipin also has important roles in controlling protein localization; upon 

lipolytic stimulation, HSL translocates exclusively to lipid droplets containing 

perilipin (Sztalryd et al, 2003). Perilipin phosphorylation also directly regulates 

the localization of CGI-58, a lipase-like protein (Subramanian et al., 2004). CGI-

58 dissociates from perilipin upon PKA stimulation and directly interacts with 

ATGL to increase TAG hydrolysis (Lass et al., 2006). These data suggest a 

model in which CGI-58 may act as a coactivator of ATGL, but remains 

sequestered by perilipin until PKA activation (Granneman and Moore, 2008). 
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Further inhibitory regulation is mediated by phosphodiesterase (PDE) activity, 

which breaks down cAMP to reduce PKA activation. Insulin signaling is a primary 

driver of these phosphodiesterases, including PDE3B (Kitamura et al.,1999; 

Enoksson et al.,1998). Insulin stimulation can also directly reduce 

phosphorylation of HSL (Stralfors et al.,1989), and suppress lipolysis in the fed 

state by down-regulating ATGL expression and promoting re-esterification of fatty 

acids (Kershaw et al., 2006; Campbell et al.,1992). 

  

Adipocyte model systems 
Both the adipogenic transcriptional cascade and the basic metabolic 

functions of adipocytes have been studied thoroughly using in vitro model 

systems. Among the most frequently used of these models are 3T3-L1 cells. This 

cell line was originally isolated from Swiss mouse embryonic tissue by Howard 

Green in 1974, and selected for its innate adipogenic potential (Green and 

Kehinde,1975; Green and Meuth, 1974). Despite being stimulated from polyploid, 

immortalized cells, 3T3-L1 adipogenesis is considered a reasonably accurate 

representation of adipogenesis in vivo. 

  

 Differentiation is induced in 3T3-L1 cells following two days of maintaining 

cells at confluence. On the day of induction, termed D0, cells are fed with fresh 

media containing fetal bovine serum (FBS) and a differentiation cocktail including 

IBMX (M), dexamethasone (D), and insulin (I). These three compounds, together 

termed MDI, provide many independent adipogenic stimuli. The numerous 

mechanisms for adipogenic stimulation by MDI include IBMX-stimulated 

intracellular cAMP accumulation and CREB activation, (Reusch et al., 2000; 

Gonzalez et al.,1989); dexamethasone-stimulated CEBPδ expression (Cao et al., 

1991), and insulin-stimulated Akt phosphorylation (Magun et al., 1996). MDI can 

also block inhibitory pathways, including cAMP-dependent suppression of 

Wnt10b (Bennett et al., 2002). In a standard differentiation protocol, 

preadipocytes are induced at D0 with MDI, and media is replaced at D2 with FBS 

media containing insulin alone. Insulin is removed from the media at D4, after 
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which cells are maintained in FBS media only until they are mature adipocytes at 

approximately D8. Such a differentiation protocol can routinely convert 90% of 

3T3-L1 preadipocytes to adipocytes.  

 

 While 3T3-L1 cells are among the most commonly used models of 

adipogenesis, they are committed preadipocytes with only one possible cell fate 

in the absence of genetic intervention. Multipotent adipogenic models can 

therefore also be used to explore preadipocyte commitment and regulation of 

alternative cell fates. Ear mesenchymal stem cells (eMSCs) are one such model. 

These primary cells are obtained from collagenase digestion of mouse ears, and 

have the potential for adipogenic, osteogenic, myogenic, or chondrogenic 

differentiation (Rim et al., 2005; Gawronska-Kozak et al., 2007). One advantage 

of eMSCs is that they can be isolated from genetically modified animals to 

compare adipogenic potential between genotypes, but offer improved adipogenic 

efficiency over other primary cells, such as stromal vascular cells (SVCs) 

obtained from digested adipose tissue. eMSCs can also be isolated from small 

portions of ears without sacrificing an animal. Differentiation protocols for eMSCs 

are similar to those for 3T3-L1s, with the exception of the use of higher insulin 

concentrations in the adipogenic cocktail. 

 

Receptor-mediated nutrient sensing in adipose tissue 
 As a metabolic endocrine organ responsible for the bulk for an organism’s 

energy storage, adipose tissue has unique needs for the sensing states of 

energetic plight and plenty. Adipose tissue has multiple mechanisms in place to 

achieve this task. Many adipose nutrient-sensing pathways are hormonal, such 

as insulin and β adrenergic signaling, and reflect systemic energy levels (Saltiel 

et al., 2001). Others are a more direct reflection of local or intracellular nutritional 

input: for example, AMPK and mTORC pathways. (Laplante et al., 2009; Daval, 

et al., 2006). However, recent studies have suggested that macronutrient-specific 

G protein-coupled receptors (GPCRs) may play an important role in nutrient 

sensing in adipocyte biology. These receptors are known pharmacologically for a 
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wide spectrum of cognate ligands and have large potential for generating 

macronutrient-specific inputs. 

 

 Several GPCRs have been identified as regulators of various aspects of 

adipose tissue biology. Some of the first characterized were GPR41 and 43 

(Brown et al., 2003). These related GPCRs bind to short-chain fatty acids of 

varying lengths. GPR41 is expressed primarily in adipose tissue, while 43 is also 

expressed in immune cells. Further work showed that GPR43 (also known as 

FFA2) stimulates adipogenesis in response to propionate treatment in a GPR43-

dependent manner (Hong et al., 2005). Additional work has shown that GPR41 

stimulates leptin expression in cultured and mouse adipocytes (Xiong et al., 

2004). However, these receptors also suppress lipolysis in mature adipocytes, as 

observed with fatty acid stimulation of GPR43 (Ge et al., 2008) or lactate 

stimulation of the orphan receptor GPR81 (Cai et al., 2008; Ge et al., 2008; Liu et 

al., 2009). The latter receptor is both enriched in adipocytes and upregulated with 

PPARγ activity (Jeninga et al., 2009). Similar results have also been extrapolated 

to GPR108b and 109a, which are highly related to GPR81 (Ahmed et al., 2009). 

 

 Similar regulatory roles have been described for long-chain fatty acid-

binding GPCRs in adipose tissue. Knockdown of GPR120, an omega-3 receptor 

enriched in adipose tissue, inhibits adipogenesis (Gotoh et al., 2007). Moreover, 

knockout of this receptor in vivo results in obesity and inflammation, though 

whether this is attributable specifically to adipose tissue function is unclear 

(Ichimura et al., 2012). GPR84, which binds to medium-chain fatty acids, is 

upregulated in adipocytes with high-fat diet and in response to TNFα-induced 

inflammation (Nagasaki, et al., 2012). Taken together, these data suggest a 

functional role of G protein-coupled receptors in nutrient sensing in adipose 

tissue, and open the door to study novel GPCRs that might also perform this role.  
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Chemosensory receptors are nutrient sensors in non-neural tissues 
 Chemosensory receptors, classified as olfactory, volmeronasal, or taste 

receptors, provide a means for detecting and identifying chemical stimuli in the 

external environment. These GPCRs represent a large family of Class C 

receptors: mice possess over 1000 distinct olfactory receptors, the largest GPCR 

family in existence. This expansive repertoire of available receptors is necessary 

for binding and generating discrete responses to over 10,000 different chemical 

ligands (Mombaerts, 2004). In many cases, chemosensory ligands have clear 

positive or negative associations, such as ‘food’ in response to fructose, or 

‘danger’ in response to bitter toxins. Associations such as these are equally valid 

whether the stimuli are present externally or internally; this suggests that 

chemical detection can also be performed internally, particularly in organs and 

tissues that are most sensitive to the positive or negative outcomes of the 

stimulus. Logically, this task can most easily be accomplished by expression of 

chemosensory receptors in non-neural tissues, rather than independent 

development of additional receptors. Indeed, chemosensory receptors have been 

described in multiple ‘non-canonical’ organ systems as detectors of toxins or 

nutrients. 

 

Nutrient-Sensing Olfactory receptors 

Olfactory receptor expression has been reported in numerous tissues 

outside the nasal epithelium. These extra-nasal tissues include multiple types of 

non-olfactory neurons, the spleen, colon, brainstem, and prostrate (Blache et al., 

1998; Raming et al.,1998; Conzelmann et al., 2000; Yuan et al., 2001). Deep 

Sequencing of 16 assorted tissues (Fig 1.1) showed heterogeneous olfactory 

receptor expression in all samples (Flegel et al., 2013). Components of canonical 

olfactory receptor signaling, such as Gαolf and adenylate cyclase III, have been 

described in the pancreas (Regnauld et al., 2002) and placenta (Itakura et al., 

2006). Ectopic expression is so widespread and heterogeneous that some 

groups have argued that this is consistent with a neutral model of selection 

(Feldmesser et al., 2006), suggesting ectopic receptors are not functional. 
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However, other groups have countered that a subset of ectopic olfactory 

receptors are conserved between species, suggesting a functional significance 

(De la Cruz et al., 2009). 

 

In 2003, Spehr et al presented the first data supporting a functional role for 

ectopic olfactory receptor expression. In this report, they described the 

expression and activity of olfactory receptor hOR17-4 in human sperm (Spehr et 

al., 2003). The receptor was specifically stimulated by bourgeonal, an odorant 

used in perfumery for its resemblance to lily of the valley. Bourgeonal stimulation 

in human sperm resulted in dose-dependent calcium flux, as observed in nasal 

olfactory receptors, along with chemotaxis and increased swimming speed. It has 

been hypothesized, but not demonstrated, that the olfactory-aided chemosensing 

ability of sperm cells facilitates locating the egg, which might produce 

chemoattractant ligands.  An additional report of functional ectopic olfactory 

receptors showed the expression of six olfactory receptors, Gαolf, and adenylate 

cyclase III in ciliated cells of the renal tubule (Pluznick et al., 2009). This group 

hypothesized that a filtering organ such as the kidney might utilize the vast 

capacity of olfactory receptors for chemical identification. They demonstrated that 

mice lacking adenylate cyclase III, an enzyme required for canonical olfaction, 

have reduced glomerular filtration rates. However, they failed to show olfactory 

receptor activation or the existence of odorants within renal tubules. Although 

reports demonstrating ectopic olfactory receptor expression are more numerous 

than those demonstrating ectopic olfactory receptor function, these receptors 

nonetheless remain an enticing target for pharmacological and physiological 

study. 

 

Nutrient-Sensing Taste Receptors 
Taste receptors are charged with providing a measure of the nutrient 

density of food. Sweet taste receptors in particular detect simple sugars, some 

complex carbohydrates, and more recently, artificial sweeteners. Umami, or 

‘savory’ receptors, bind to amino acids as cognate ligands and serve as protein 
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sensors. Both of these receptors, particularly sweet taste receptors, evoke 

hedonistic neural pathways and reward systems and promote a positive 

association and desire for more nutrient-rich food. Bitter taste receptors, on the 

other hand, are sensitive to a large catalogue of structurally diverse bitter 

compounds, such as quinine or strychnine, often associated with toxins in plant 

material (Chandrashekar et al., 2006). While the sensations of reward or 

avoidance evoked by these receptors are quite divergent, all are expressed and 

have been functionally characterized outside of the gustatory system. 

 

Bitter taste receptors represent the largest family of taste receptors, the 

T2Rs, with at least 25 members in humans (Behrens et al., 2009). In the 

gustatory system they function largely to prevent ingestion of toxic substances; a 

similar role exists in several other organ systems, including the upper respiratory 

tract, trachea, and gut (Lee et al., 2012; Deshpande et al., 2010; Jeon et al., 

2008). In the respiratory tract, T2R activation results in bronchodilation in 

response to inhalation of bitterants (Lee et al., 2012; Deshpande et al., 2010). In 

the hormone-secreting enteroendocrine cell of the gut, activation of bitter taste 

receptors stimulates cholecystokinin (CCK) secretion (Masuho et al., 2005) in a 

SREBP-2 dependent manner (Jeon et al., 2008). CCK functions to slow gastric 

emptying and increase efficiency of fat absorption, while SREBP-2 activity is 

regulated by cholesterol intake. Bitter taste receptor mT2R138 was also shown to 

be an SREPB-2 target gene, and the plant-based diets that more often 

accompany bitter tastants are also low in cholesterol and fat. Taken together, 

these data suggest that SREBP-2 might ‘prime’ the gut during a low cholesterol 

diet by driving expression of mT2R128 to intercept plant-based toxins, which 

would also stimulate CCK secretion to slow gastric emptying and increase fat 

absorption.  

 

Umami receptors elicit a savory response in the tongue by binding to 

amino acids and thereby providing neural cues for high dietary protein content. 

This receptor consists of a heterodimer of proteins from the T1R family, T1R1 
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and T1R3 (Zhao et al., 2003). However, recent work has demonstrated that 

these receptors also sense extracellular amino acids in muscle tissue (Wauson 

et al., 2012). In this model, amino acids activate T1R1/T1R3 on multiple types of 

muscle cells and integrate this signal to mTORC1; when T1R1 or T1R3 

expression is depleted, mTORC1’s sensitivity to amino acids is reduced and 

autophagy is stimulated. These results were further expanded to show that mice 

lacking T1R3 have increased autophagy in heart, skeletal muscle, and liver when 

fasted. Interestingly, the authors also demonstrated a role for amino acid sensing 

in β cell insulin secretion: loss of T1R3 from MIN6 cells resulted in decreased 

insulin content and secretion, possibly due to reduced mTORC1-stimulated 

translation. Lastly, a role of amino acid sensing by taste receptors has also been 

proposed in the gut. Here, application of glutamate to perfused rat jejunum 

resulted in activation of canonical taste signal transduction mechanisms and 

increased peptide absorption (Mace et al., 2009). 

 

Like bitter and umami taste receptors, metabolic roles for sweet taste 

receptors have also been described. The sweet taste receptor is similar to 

umami, with the exception that T1R3 heteodimerizes with T1R family protein 

T1R2 rather than T1R1 (Nelson et al., 2001). The T1R3 subunit is therefore 

necessary for both sweet and umami taste. An early description of functional 

sweet taste receptors outside the gustatory system was by Mace et al in 2007. In 

this report, the investigators described expression of sweet taste receptors and 

multiple gustatory signal transduction components in the rat jejunum, where 

artificial sweetener perfusion increased apical translocation of GLUT2 to 

stimulate glucose absorption (Mace et at., 2007). Subsequent reports have 

shown that sweet taste receptors are expressed in the hormone-secreting 

enteroendocrine cells of the gut, where their activation stimulates secretion of the 

incretin hormone GLP-1. Studies conducted in animals deficient in sweet taste 

receptors or some sweet taste receptor signaling mechanisms have shown 

abrogated sweetener-stimulated incretin secretion (Kokrashvili et al., 2009; Jang 

et al., 2007). However, human studies have shown conflicting results (Brown et 
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al., 2009; Fujita et al., 2009; Ma et al., 2009), with the majority showing no effect 

of artificial sweeteners on incretin secretion (Brown et al., 2009). Another recent 

demonstration of metabolically functioning sweet taste receptors has been in the 

pancreas; artificial sweeteners stimulated insulin release in MIN6 cells and 

isolated β cells in a calcium and cAMP-dependent manner (Nakagawa et al., 

2009). This result has been expanded in vivo to suggest that an active ligand of 

pancreatic sweet taste receptors is actually fructose, and sweet taste receptor 

knockout mice have ablated pancreatic fructose responses {Kyriazis et al., 2012). 

 

Sweet taste receptor biology 
 Perception of sweet tastants is initiated on the tongue by binding of 

specific carbohydrate molecules, including glucose, sucrose, fructose to the 

sweet taste receptor. Sweet receptor ligands can also include artificial 

sweeteners such as saccharin and acesulfame potassium, sweet proteins such 

as brazzein, or inhibitors such as lactisole. These receptor ligands bind to a 

heterodimer of T1R2 and T1R3 (Nelson et al., 2001), two receptors that, along 

with T1R1, make up the T1R family of GPCRs. T1R2 heterodimerizes with T1R3 

to form a maximally functional sweet taste receptor, though there is some 

evidence for T1R2 and T1R3 having independent activity (see below). Ligand 

binding to T1R2 occurs primarily, but not exclusively, in the large extracellular 

Venus Fly Trap domain of T1R2.  However, binding can also occur in the 

transmembrane and cystein rich domains of T1R3 (Fig 1.2, Assadi-Porter et al., 

2010). Studies indicate that there are no conserved residues in the binding 

domain of T1R2 that are necessary for binding all ligands; different sugars, and 

particularly artificial sweeteners, have different structural binding requirements. 

(Cui et al., 2006; Masuda et al., 2012). A lack of conservation of binding 

mechanisms is logical in the case of artificial sweeteners, which were developed 

very recently with no evolutionary selective pressure. There is also significant 

inter-species variability in sweet taste perception; mice are insensitive to 

aspartame and cyclamate, two widely used sweeteners in humans, while cats, 
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dolphins, and several other exclusive carnivores have pseudogenized sweet 

taste receptors (Jiang et al., 2012). 

 

Sweet taste receptor signaling 
While much work has been done to characterize sweet taste receptor 

signal transduction, some fundamental questions in the field remain unanswered. 

Immediately downstream of ligand binding, sweet taste receptors have been 

proposed to couple to gustducin, a G protein closely related to transducin that 

promotes the breakdown of cAMP. Gustducin knockout mice have reduced, but 

not completely ablated, sensitivity to sweeteners (Wong et al.,1996; Danilova et 

al., 2006). This suggests that additional G proteins may contribute to signal 

transduction in vivo. In heterologous expression systems, functional coupling to 

Gαi/o and the concomitant decreases in cAMP concentrations have also been 

demonstrated with sweetener treatment (Ozeck et al., 2004; Sainz et al., 2007). 

Unfortunately, many mechanistic experiments are performed in heterologous 

overexpression systems rather than in vivo or ex vivo, adding additional 

limitations to data interpretation. 

 

Downstream of G proteins, in vitro data is more consistent between 

different laboratories. In lingual cells, Gβγ activates phospholipase Cβ2 to 

produce IP3 and diacylglycerol. IP3 binding to endoplasmic reticulum receptors 

produces calcium transients and leads to gating of the transient receptor 

potential protein TRPM5. Accordingly, mice deficient in PLC β2, the IP3 receptor, 

or TRPM5 have impaired, but not completely ablated, taste sensitivities 

(Hisatsune et al., 2007; Damak et al., 2006; Dotson et al., 2005; Zhang et al., 

2003). This mechanism also appears to be largely conserved for sweet taste 

receptors in non-neural cells; taste receptors in the pancreas stimulate insulin 

secretion in a PLC β2-dependent manner, and taste receptor activation in 

virtually all ectopic systems generates calcium transients (Nakagawa et al., 2009; 

Mace et al., 2007; Rozengurt et al., 2006; Wauson et al., 2012).  
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Although most evidence suggests that T1R2 and T1R3 function as 

obligate heterodimers, there are some indications that these receptors might 

function as homodimers or that additional carbohydrate receptors exist. Firstly, 

the N-terminal domains of T1R2 and T1R3 have been shown to homodimerize in 

inclusion bodies, and change conformation in response to ligands (Maitrepierre 

et al, ;Nie et al, 2006). T1R2 and T1R3 have distinct affinities for different 

sweeteners (Nie et al., 2005). Additionally, neither T1R2 nor T1R3 knockout mice 

have a complete loss of sweet taste sensitivity (Delay et al., 2006; Treesukosol et 

al., 2009). Lastly, while T1R3 KO mice have impaired glucose tolerance during 

an oral glucose tolerance test, this phenotype is not shared with T1R2 KO 

animals (Geraedts et al., 2012). This data, combined with the observation that 

loss of signal transduction mechanisms in mice also does not result in complete 

loss of taste perception, suggests that there may be an alternative receptors or 

signaling pathways intrinsic to sweet taste detection.  

 

Artificial sweetener consumption 
 Five artificial sweeteners are currently approved for use in the United 

States. These are saccharin (Sweet N’ Low ®, Sweet Twin), aspartame 

(Nutrasweet, Equal ®), acesulfame potassium (Sweet One, Sunnet), sucralose 

(Splenda ®) and neotame (Fig 1.3). Saccharin was the first compound 

developed, discovered by accident in 1878 when a Johns Hopkins University 

chemist licked his hand after an experiment (Myers, 2007). Similar accidental 

discoveries involving poor lab hygiene led to the development of aspartame in 

1965 and acesulfame potassium (AceK) in 1967. While most artificial sweeteners 

are available in individual packets for consumer use, many are also used in diet 

beverage formulations. Concentrations and identities of sweeteners used in a 

given beverage will vary with time, logistics, public opinion and preference. 

Beverage distributors will commonly follow different formulations for bottled 

versus fountain drinks. Tab® remains one of the few brands widely utilizing 

saccharin in its diet formulas, while aspartame holds the largest market share 

with many distributors. AceK is primarily used in conjunction with other 
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sweeteners, while neotame, the newest product on the market, has relatively little 

consumer exposure. All five sweeteners have an FDA-recommended maximum 

daily intake (Fig 1.3) (Kroger et al., 2006). 

 
Effects of artificial sweetener consumption on metabolism 

As recent increases in obesity rates occurred in conjunction with the rise 

in artificial sweetener usage, many studies have investigated a possible link 

between obesity and artificial sweetener intake. Paranoia surrounding artificial 

sweetener usage has resulted in erroneous correlations at various times with 

breast cancer, post-traumatic stress disorder, lupus, and global warming 

(conspiracycritic7, 2013). Controversy around artificial sweeteners and obesity 

may have began with a 1986 study showing increased appetite after drinking 

aspartame-sweetened water relative to plain water (Blundell et al., 1986). This 

study was among the first to suggest that an ‘uncoupling’ between taste 

perception and food intake might have metabolic consequences. However, 

multiple studies have failed to repeat this observation or show any increase in 

food intake following artificial sweetener consumption (Rodin et al.,1990; Mattes 

et al.,1990; Canty et al.,1991). A 2005 study made a stir when it suggested that 

diet soda consumption was a predictor of obesity (Dergance et al., 2005). 

However, the cause and effect of this relationship has not been determined, as 

people who are already overweight may be more likely to favor diet beverages. 

Still other studies suggest that aspartame consumption may aid in weight loss 

(Blackburn et al.,1997) or have no effect (Porikos et al.,1977). In the case of 

aspartame, meta-analysis suggests that reasonable artificial sweetener 

consumption is associated with a lower body weight (de la Hunty et al., 2006), 

and dietary societies have endorsed their use (Fitch et al., 2012). 

 

Although data from human studies indicates that artificial sweetener 

consumption has no effect on glucose homeostasis, insulin or GLP-1 secretion, 

animal models suggest strong taste receptor effects through the gut and 

pancreas.  Similarly, while few studies have repeatable data demonstrating 
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weight gain associated with artificial sweetener use, some laboratories have 

observed this effect in rats. In one study, rats fed a saccharin-supplemented diet 

showed a greater increase in body weight over rats on a control diet (Swithers et 

al., 2008). The same group extrapolated these results to show that mice that had 

previously been exposed to saccharin had impaired glucose tolerance (Swithers 

et al., 2012). These discrepancies within and between model systems concerning 

effects of artificial sweeteners on metabolic systems emphasize the need for 

further study of these widely consumed compounds. 

 

Model: Sweet taste receptors act as nutrient sensors in adipose tissue 
 During my doctoral research, I have investigated sweet taste receptor 

activity in adipose tissue. This was initiated based upon three lines of evidence: 

1), Adipose tissue is known to utilize nutrient-sensing GPCRs; 2), Sweet taste 

receptors have been shown to act as carbohydrate sensors in other metabolic 

tissues; and 3), Preliminary data indicated expression of chemosensory 

receptors in adipose tissue (see Chapter 2). We reasoned that as a positive 

nutrient sensor, sweet taste receptor activation might stimulate adipogenesis and 

anabolic processes such as lipogenesis, while suppressing catabolic processes, 

such as lipolysis (Fig 1.4). We aimed to address these questions both in vitro 

(Chapter 2) and in vivo (Chapter 3) using gain-of-function and loss-of-function 

approaches. The completion of this study represents a thorough investigation of 

a novel aspect of adipocyte biology; characterizes previously unknown 

phenotypes stimulated by artificial sweetener treatment in adipose tissue; and 

perhaps most importantly, presents evidence for a previously unrecognized 

saccharin-binding receptor. 
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Figure 1.1. Ectopic olfactory receptor expression. 
Adapted from (Flegel et al., 2013) Sixteen different human tissues (upper labels) were 
submitted to Deep Sequencing for assessment of olfactory receptor expression. The 
heat map (lower panel) indicates which olfactory receptors are expressed with what 
degree of confidence. Expression of multiple receptors was confirmed in all tested 
tissues, with the most ubiquitous expression in the testes. 
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Figure 1.2. Human sweet taste receptors.  
Human sweet taste receptors consist of a heterodimer of GPCRs T1R2 and T1R3. 
Though some ligands bind exclusively to one receptor (aspartame, cyclamate, lactisole), 
others are capable of binding to either (glucose, brazzein). VFTD, Venus Fly Trap 
Domain; CRD, cystein-rich domdain; TMD, transmembrane domain. The large losses in 
taste sensitivity in both T1R2 and T1R3 KO mice suggest that the T1R2/T1R3 
heterodimer is necessary for maximal receptor function, though several groups have 
reported homodimer activity.  
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Figure 1.3. FDA-approved artificial sweeteners and recommended intake. 
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Figure 1.4. Proposed role for sweet taste receptors and artificial sweeteners in 
adipogenesis and adipocyte metabolism. 
We hypothesize that sweet taste receptor activation in preadipocytes stimulates 
adipogenesis, in accordance with a role as a positive nutrient sensor, and promotes 
reciprocal regulation of anabolic and catabolic processes in mature adipocytes. These 
anabolic pathways might include lipogenesis and glucose uptake, which we predict 
would be stimulated by sweet taste receptor activity. Conversely, lipolysis is a catabolic 
process that might be inhibited by local carbohydrate sensing. In preadipocytes, we 
hypothesize that artificial sweetener treatment will enhance adipogenesis in a sweet 
taste receptor-dependent manner. 
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Chapter Two 

Artificial Sweeteners Enhance Adipogenesis and Suppress Lipolysis 

Independent of Sweet Taste Receptors 

 

Abstract 
 

Adipogenesis is stimulated by the transcription factors PPARγ and 

C/EBPα, whose activity is sufficient to form new adipocytes from mesenchymal 

precursor cells. However, the autocrine, paracrine, and hormonal signaling 

factors upstream of PPARγ activity are less defined. GPCRs have been shown to 

act upstream of transcriptional activators of adipogenesis by binding fatty acids to 

modulate adipogenesis and adipocyte metabolism. The sweet taste receptors 

T1R2 and T1R3 have also been shown to act as nutrient sensors in metabolic 

tissues by binding carbohydrate. Here we report that sweet taste receptors are 

expressed in adipose tissue, and that treatment of mouse and human precursor 

cells with artificial sweeteners enhances adipogenesis. Saccharin treatment in 

3T3-L1 cells and primary mesenchymal stem cells stimulates Akt 

phosphorylation and activation of its downstream targets, a probable mechanism 

for enhanced adipogenesis. Saccharin-stimulated Akt phosphylation is rapid, 

PI3K-dependent, and occurs in the presence of high concentrations of insulin 

and dexamethasone. However, neither saccharin-stimulated adipogenesis nor 

Akt phosphorylation is dependent on the expression of T1R2 or T1R3. In mature 

adipocytes, artificial sweetener treatment suppresses lipolysis, concomitant with 

a reduction in phosphorylation of HSL. Like sweetener-stimulated adipogenesis, 

lipolytic regulation by saccharin is also independent of T1R2 and T1R3. These 

results suggest that 1) some artificial sweeteners have previously 
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uncharacterized metabolic effects on adipose tissue that are potentially important 

to human populations, and 2) T1R2 and T1R3 may not be the sole receptors 

sensitive to the artificial sweeteners as used in our studies.  

 

Introduction 
 

Adipogenesis and lipolysis are major mechanisms for the storage and 

release, respectively, of triacyglycerol. Proper regulation of these processes in 

adipose tissue is essential for maintenance of energetic homeostasis and 

prevention of diabetes. In conditions of nutrient excess, adipocytes differentiate 

from mesenchymal precursor cells to provide additional reservoirs for lipid 

storage. These same nutritional conditions result in reciprocal regulation of 

anabolic and catabolic processes in mature adipocytes to promote triglyceride 

accumulation. In preadipocytes, adipogenic stimulation results in the activation of 

transcription factors PPARγ and C/EBPα, primary drivers of the adipogenic 

program that stimulate expression of terminal adipocyte genes such as FABP4 

and GLUT4 (Rosen and MacDougald, 2006). However, the upstream 

endogenous vascular- or adipocyte-derived factor(s) that are sensed as the key 

signals to stimulate nutritional excess remain largely unknown. Nutritive signals 

may serve as such a stimulus, as has been demonstrated by fatty acids acting 

through GPR43 and GPR120 to promote preadipocyte differentiation in vitro 

(Gotoh et al., 2007; Hong et al., 2005).  Available energy is also sensed through 

a similar mechanism in mature adipocytes, where GPCRs mediate effects on 

lipolysis of short chain fatty acids, lactate, β-hydroxybutyrate, β-

hydroxyoctanoate, and succinate (Ahmed et al., 2009; Duncan et al., 2008; Liu et 

al., 2009; Ren et al., 2009a; Taggart et al., 2005). A hypothesis explored in this 

manuscript is whether nutritive signals regulating adipocyte differentiation and 

metabolism are also mediated in part by sweet taste receptors. 

 

The sweet taste receptor consists of an obligate heterodimer of the 

GPCRs T1R2 and T1R3 (Nelson et al., 2001; Zhao et al., 2003). Sugars and 
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artificial sweeteners such as saccharin or AceK bind primarily to T1R2 (Xu et al., 

2004), though direct binding to T1R3 has also been described (Nie et al., 2005). 

Originally characterized in the tongue as a mediator of saccharin preference, 

these receptors have subsequently been described in the brain, bladder, 

pancreas, and gut (Dyer et al., 2005; Elliott et al.; Nakagawa et al., 2009; Ren et 

al., 2009b), with metabolic roles defined in the latter two tissues. Thus, in the 

enteroendocrine cells of the small intestine, activation of sweet taste receptors 

promotes glucose uptake and release of incretin hormones such as glucagon-like 

peptide 1 (Jang et al., 2007; Mace et al., 2007). T1R2/T1R3 also functions in the 

pancreas, where its activation in β cells mediates stimulatory effect of fructose on 

glucose-induced insulin secretion (Kyriazis et al., 2012; Nakagawa et al., 2009).  

 

While there have been numerous reports of sweet taste receptor 

activation in response to artificial sweeteners in ectopic systems, experiments in 

taste receptor KO animals suggest that an additional receptor(s) may be capable 

of binding to sweet tastants (Treesukosol et al., 2009; Zhao et al., 2003; 

Zukerman et al., 2009). In addition, binding of artificial sweeteners to the N-

terminal domain of T1R2 or T1R3 in the absence of its dimerization partner 

suggests that these receptors may be capable of functioning independently 

(Maitrepierre et al.; Nie et al., 2006; Nie et al., 2005). While the input of 

T1R2/T1R3 may be important in the tongue and metabolic tissues, these studies 

indicate that there may be additional receptors sensitive to carbohydrates and 

sweeteners.  

 

In this manuscript we report that T1R2 and T1R3 are constitutively 

expressed throughout adipogenesis of cultured cells and within adipose tissue. 

Treatment with artificial sweeteners such as saccharin or AceK stimulates 

adipogenesis of mouse and human precursors.  Saccharin treatment also 

stimulates phosphorylation of Akt and its downstream effectors. However, T1R2 

and T1R3 are dispensable for both saccharin-stimulated adipogenesis and Akt 

phosphorylation. In mature adipocytes, exposure to artificial sweeteners 
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suppresses basal and stimulated lipolysis, which is also not dependent on sweet 

taste receptor expression. Taken together these data demonstrate unexpected 

roles for artificial sweeteners in adipocyte differentiation and metabolism, and 

support the presence of additional ‘sweet receptors.’ 

 
Results 
Chemosensory receptors are regulated with adiposity. 

Our investigation of sweet taste receptors in adipose tissue biology was 

initiated by a screen for novel regulators of obesity.  We analyzed RNA isolated 

from epididymal white adipose tissue (eWAT) in wild-type C57Bl/6 mice on a 

high-fat diet by Affymetrix microarray. These mice showed a typical response to 

high fat diet feeding that resulted in a variable distribution of adiposity (0.5-2.1 g 

eWAT). We then examined adipocyte genes whose expression correlated, either 

positively or negatively, with the weight of fat pads across the sample set. From 

this analysis, we identified over 40 chemosensory receptors expressed in 

adipose tissue. These included olfactory, taste, volmeronasal, and trace amino 

acid receptors. Surprisingly, correlation analysis also showed a cluster of 12 

chemosensory receptors whose expression changed significantly with altered fat 

pad weight (Fig 2.1). These data represent an early indication that chemosensory 

receptors are present in adipose tissue, and their surprising pattern of expression 

suggests that chemosensory receptors could have regulatory functions in 

adipose tissue. 

 

Sweet taste receptors T1R2 and T1R3 are expressed constitutively 
throughout adipogenesis and in 3T3-L1 cells and eMSCs.  

As microarray data indicated that chemosensory receptors were 

expressed in adipose tissue, we chose to investigate sweet taste receptors as 

candidate metabolic regulators. This was because sweet taste receptors have 

known metabolic roles in other tissues and ligands for sweet taste receptors are 

well characterized, making a theoretically simple model for receptor activation. 

To evaluate the expression of taste receptors during adipogenesis, 3T3-L1 



 41 

preadipocytes were differentiated into mature adipocytes and RNA was isolated 

at the indicated time points. In 3T3-L1 cells, expression of T1R2 increases two-

fold and T1R3 decreases by half within the first four hours of adipogenesis, 

returning back to baseline by 12 hours (Fig 2.2A). Over the full time course of 

adipogenesis expression of both T1R2 and T1R3 peaks at day two, returning to 

near-preadipocyte levels by day eight (Fig 2.2B). We also examined sweet taste 

receptor expression in eMSCs as an independent adipogenic model. We found 

that sweet taste receptor expression in this system was reminiscent of 3T3-L1 

cells; T1R2 and T1R3 both peak in expression at day two of adipogenesis before 

returning to preadipocyte levels at day twelve (Fig 2.2C). 

 

Saccharin stimulates adipogenesis of mouse and human precursor cells.  
To assess the effects of sweet taste receptor activity on adipogenesis, we 

utilized the artificial sweeteners saccharin (sacc) and AceK as T1R2/T1R3 

ligands. These agonists, as opposed to natural sugars, are useful for metabolic 

studies because they are not metabolized and are ~500-fold sweeter than 

sucrose (Renwick, 1986; Sweatman and Renwick, 1979). Firstly, 3T3-L1 cells 

were treated throughout adipogenesis with an adipogenic cocktail containing 

dexamethasone and insulin (D, dexamethasone; I, insulin), supplemented with 

increasing concentrations of saccharin. This supplementation robustly stimulated 

adipogenesis in a concentration-dependent manner, resulting in increased lipid 

accumulation and FABP4 expression (Fig 2.3A). FABP4 was then quantified over 

multiple experiments to empirically determine minimal saccharin concentrations 

necessary to enhance adipogenesis (Fig 2.3B); this densitometric analysis 

indicates that 0.45 mM saccharin is the lowest effective dose to significantly 

increase FABP4 accumulation in 3T3-L1 cells, while higher doses result in a 

nearly 10-fold increase. 

  

 3T3-L1 cells induced with DI and treated with saccharin show enhanced 

adipogenesis, which could be due to a specific synergistic interaction of the 

signaling pathways activated by saccharin and DI. To test this, we differentiated 
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3T3-L1 cells with multiple combinations of the full MDI cocktail (M, 

methylisobutylxanthine; D, dexamethasone; I, insulin), including each component 

individually or no induction at all (FBS, fetal bovine serum), in the presence or 

absence of saccharin (Fig 2.3C). Using this approach, we observed that 

saccharin treatment is effective regardless of differentiation conditions, with 

saccharin-stimulated enhancement of adipogenesis observed under all tested 

conditions and also in the absence of any other adipogenic stimulation. These 

data suggest that saccharin-stimulated adipogenesis is versatile and does not 

require a ‘priming’ effect of growth factors in differentiation media, or prior 

activation of a specific adipogenic pathway to be effective.  

 

To determine if these effects of saccharin on adipogenesis are relevant in 

broader contexts, we next evaluated whether saccharin stimulation of 

adipogenesis could be extrapolated to other cell models.  Using multipotent, 

primary eMSCs, we also observed that saccharin was sufficient to stimulate lipid 

accumulation and expression of FABP4 (Fig 2.3D). As observed in 3T3-L1s, 

sweetener effects occurred independently of differentiation conditions, as eMSCs 

induced with MDI, DI, or FBS alone ubiquitously showed an enhancement of 

adipogenesis with saccharin treatment. 

 

 Finally, we tested the applicability of these findings to human systems by 

using stromal vascular cells (SVCs) isolated from human WAT. In this model, we 

found that saccharin markedly enhanced lipid accumulation and FABP4 

expression following adipogenic induction with MDI (Fig 2.3E). Taken together, 

these results indicate that adipogenesis of mouse and human precursors is 

stimulated by distinct sweet taste receptor ligands, consistent with a model for 

artificial sweeteners acting as nutritive signals. 

 

AceK stimulates adipogenesis of mouse and human precursor cells. 
To test if effects on adipogenesis were conserved among other artificial 

sweeteners, we repeated the previous experiments in the presence of AceK. 
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Similar to saccharin, we observed enhancement of adipogenesis in 3T3-L1 cells 

supplemented with AceK (Fig 2.4A) at similar concentrations observed with 

saccharin. Similar results were also observed in eMSCs, where AceK 

supplementation enhanced adipogenesis independent of the differentiation 

induction conditions (Fig 2.4B). Lastly, we repeated this experiment in human 

SVCs. In these primary cells, AceK stimulated lipid and FABP4 accumulation (Fig 

2.4C). These results suggest that pro-adipogenic effects may be broadly 

conserved among different types of artificial sweeteners. 

 

Saccharin enhancement of adipogenesis is temporally dependent.  
To further characterize sweetener-stimulated adipogenesis, we evaluated 

the temporal requirements of saccharin treatment to enhance adipogenesis. We 

treated differentiating 3T3-L1 cells with saccharin at varying time intervals (Fig 

2.5A). Cells treated with saccharin for the first two or four days of adipogenesis 

demonstrate enhanced adipogenesis, with four days of treatment being more 

pronounced. The effects of four days of saccharin treatment are similar to, but 

slightly less than, those observed with eight. However, saccharin treatment must 

begin within this time window, because there is no effect on adipogenesis in cells 

treated with saccharin from day four through day eight. This observation 

suggests that the duration of saccharin treatment is not nearly as important as 

the time of initiation. We then examined the transcriptional profile of cells that had 

been treated with saccharin for the first four days of adipogenesis (Fig 2.5B,C). 

We observed that sweetener-stimulated PPARγ and C/EBPα expression does 

not differ from control cells until day five, after the removal of saccharin from the 

differentiation media. PPARγ expression was doubled and C/EBPα expression 

tripled by D8 in sweetener-treated cells (Fig 2.5B,C, right panels). No sweetener-

stimulated changes between treatments were observed at earlier time points, 

although saccharin did slightly and transiently increase PPARγ and C/EBPα 

expression at 2 hrs post-induction (Fig 2.5B,C, left panels). These data suggest 

that sweeteners stimulate early events in adipogenesis (D0-D4) that are 

propagated following termination of the sweetener treatment. 
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Artificial sweetener treatment has minimal effects on the early 
transcriptional program.  

Because essential elements of sweetener signaling occur in the first 2 or 4 

days of adipogenesis, we profiled transcriptional regulators of adipogenesis 

active in this time period. However, after profiling numerous transcription factors 

and regulatory genes, including C/EBPδ (Fig 2.6A), C/EBPβ (Fig 2.6B), PREF1 

(Fig 2.6C), FOXO1, and Wnt10b, (data not shown), we observed few significant 

alterations in early markers of the adipogenic transcription cascade. These data 

suggest that although sweeteners clearly have important roles regulating 

adipogenesis in the first 4 days of adipogenesis, this regulation may not occur 

transcriptionally, or involves transcription factors we have not evaluated.  

 

Saccharin acutely activates Akt and ERK1/2 signaling pathways in 
preadipocytes. 

 In the absence of clear sweetener-stimulated transcriptional regulation of 

adipogenesis, we examined additional signal transduction cascades that might 

mediate sweetener effects. In other contexts (taste cells, β cells, and 

enteroendocrine cells) sweet taste receptor activation produces intracellular Ca2+ 

transients (Kyriazis et al., 2012; Liu and Liman, 2003; Mace et al., 2007). 

However, while we successfully generated calcium transients with endothelin-1 

treatment in 3T3-L1 cells, we did not find evidence for sweetener-stimulated 

calcium flux in preadipocytes at or above concentrations that stimulate 

adipogenesis (data not shown). This suggests either an independent pathway or 

independent receptors are responsible for signal transduction in adipose tissue. 

Thus, we focused on known adipogenic signaling pathways as a means for 

sweetener-stimulated lipid accumulation (Rosen and MacDougald, 2006). To 

evaluate stimulation of such pathways, we treated serum-starved 3T3-L1 

preadipocytes with saccharin and screened lysates for activated signaling 

proteins. Using this approach, we observed that saccharin treatment stimulates 

phosphorylation of Akt at T308 and S473 (Fig 2.7A), a modification that is well 
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characterized for its pro-adipogenic effects. Importantly, saccharin also 

stimulates phosphorylation of CREB and FOXO1, which are known downstream 

targets of Akt involved in promoting preadipocyte differentiation (Cypess et al.; 

Klemm et al., 2001; Nakae et al., 2003). Similar to the lack of calcium transients, 

this is the first known report of artificial sweeteners stimulating Akt signaling, 

which implicates novel pathways, novel receptors, or both, in transducing 

metabolic signals from artificial sweeteners. 

 

To further investigate this novel signal transduction mechanism in 

preadipocytes, we evaluated saccharin-stimulated signaling upstream of Akt 

phosphorylation by using PI3K, MEK, or PLCβ inhibitors. We observed that the 

ability of saccharin to stimulate Akt phosphorylation is blocked by PI3K inhibitors 

LY294002 (Fig 2.7B) and wortmannin (Figure 2.7C). Inhibition of MEK signaling 

with U0216 has no effect on saccharin-stimulated Akt phosphorylation, while 

inhibition of PKC with U73122 shows a partial block (Fig 2.7C). These data 

suggest that this novel sweetener-stimulated Akt phosphorylation occurs, like 

insulin signaling, in a PI3K-dependent manner.  

 

We further examined saccharin-stimulated Akt phosphorylation using 

timecourses of saccharin treatment in 3T3-L1 cells. Here we observed that Akt 

phosphorylation is rapid, occurring within 5 min, and persists for at least 1 hr in 

serum-starved cells (Fig 2.7D). While maximal activation for T308 occurs within 5 

min, S473 phosphorylation increases throughout the time course and is 

maximally activated at 60 min. 

 

Finally, we evaluated the ability of saccharin to stimulate Akt 

phosphorylation in the context of adipogenesis, when Akt is already strongly 

activated by high concentrations of insulin. Even in the presence of high basal 

Akt phosphorylation, 3T3-L1 preadipocytes induced with DI demonstrated 

augmented phosphorylation in the presence of saccharin (Fig 2.7E). This 

augmented phosphorylation is observed within 30 minutes and persists to 6 hrs 
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following induction. Interestingly, phosphorylation of ERK1/2 is also enhanced in 

differentiating 3T3-L1 cells. However, this saccharin-stimulated ERK1/2 activity is 

not present in serum-starved cells (data not shown). Although maximal ERK1/2 

phosphorylation at 30 min is not influenced by saccharin treatment, the activation 

of ERK persists to 16 h, with some increase in basal phosphorylation observed 

out to 72 h post-induction. While further experiments will be required to explain 

this difference in ERK activity between serum-starved and DI-stimulated 

conditions, a ‘priming’ effect of growth factor signaling may be necessary for 

saccharin-stimulated ERK1/2 phosphorylation. 

 

T1R2 and T1R3 are not required for saccharin-stimulated adipogenesis or 

Akt phosphorylation.   
Our data thus far have suggested that sweet taste receptors are perhaps 

the most probable candidates for binding sweeteners in adipose tissue; however, 

some of our observations are not consistent with the current literature on 

receptor signaling. To determine if sweet taste receptors are the mediators of 

artificial sweetener effects on adipose tissue, we investigated the dependence of 

saccharin-stimulated adipogenesis and Akt signaling on the presence of sweet 

taste receptors. We reasoned that if saccharin acts through T1R2/T1R3, 

knockout of either receptor would block the effects of artificial sweeteners on 

both adipogenesis and Akt phosphorylation. We therefore investigated these 

phenotypes in eMSCs derived from T1R2 or T1R3 knockout mice, beginning with 

T1R3-null eMSCs. We observed that these progenitor cells had no deficiency in 

adipogenesis relative to wild-type controls, suggesting that either sweet taste 

receptor activity is not essential for in vitro adipogenesis, or that a suitible taste 

receptor ligand is not present under in vitro conditions (Fig 2.8A, ‘0 mM 

saccharin’). We then evaluated the ability of saccharin to stimulate adipogenesis 

in the absence of T1R3; surprisingly, we observed that T1R3 KO had no effect 

on saccharin-stimulated lipid accumulation (Fig 2.8A). Accordingly, when we also 

measured the ability of saccharin to stimulate Akt phosphorylation in the absence 
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of T1R3, we observed no difference in the timing (Fig 2.8B) or dose-dependence 

(Fig 2.8C) of Akt phosphorylation between genotypes.  

 

We next investigated saccharin activity in T1R2 KO eMSCs. Firstly, we 

examined the adipogenic efficiency of T1R2 KO eMSCs relative to wild-type 

cells; we observed that, like T1R3 KO, T1R2 had no effect on adipogenesis in 

cells differentiated with dexamethasone and insulin (Fig 2.8D, ‘0 mM saccharin’). 

We also evaluated the ability of saccharin to enhance adipogenesis in the 

absence of T1R2. Like T1R3, we observed that T1R2 is not required for 

saccharin-stimulated lipid accumulation (Fig 2.8D). This dispensability of T1R2 in 

sweetener-stimulated adipogenesis coincides with equal sweetener-stimulated 

Akt phosphorylation in WT and T1R2 KO cells, as measured in both the context 

of saccharin-stimulated adipogenesis (Fig 2.8E) and dose-dependence in 

undifferentiated eMSC precursors (Fig 2.8F). These data suggest that neither 

T1R2 nor T1R3 are individually necessary for saccharin-mediated enhancement 

of adipogenesis or Akt phosphorylation in preadipocytes. In this case, saccharin 

could be binding to an uncharacterized receptor, or both T1R2 and T1R3 might 

be acting as homodimers to transduce metabolic signals. 

 

Artificial sweeteners suppress lipolysis.  
Although the receptor identity remains unknown, these data demonstrate 

robust effects of artificial sweeteners on preadipocytes and adipogenesis. Hence, 

we speculated that artificial sweeteners might also regulate metabolic processes 

in mature adipocytes. To address this possibility, we performed an unbiased 

metabolomic analysis of compounds regulated by saccharin treatment in 3T3-L1 

adipocytes (Fig 2.9A). This analysis, which screened a library of metabolites by 

mass spectrometry, showed a subpopulation of fatty acids, including palmitate 

(Fig 2.9B) were reduced with saccharin treatment. Based on this data, we 

hypothesized that saccharin might regulate lipolysis in mature adipocytes. 

Indeed, while sweetener treatment had no effect on glucose uptake (Fig 2.9C) or 

lipogenesis (data not shown), we observed that treatment of 3T3-L1 adipocytes 
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with saccharin reduced glycerol (Fig 2.9D) and non-esterifed fatty acid (NEFA, 

Fig 2.9E) release from adipocytes within 30 min. Importantly this effect is not due 

to osmotic stress, as equimolar treatment with mannitol has no effect. A similar 

effect was also observed with the artificial sweeteners AceK and sucralose (sucr, 

Fig 2.9F). These results could also be extrapolated to an ex vivo system, where 

isolated epididymal fat pads incubated with saccharin for 4 hrs resulted in a 

reduction in media glycerol. Interestingly, an intraperitoneal injection of 

saccharin, rather than an ex vivo incubation, was also sufficient to reduce 

glycerol release when the fat pad was excised 20 min post-injection (Fig 2.9G).  

 

T1R2/T1R3 are not required for suppression of lipolysis by saccharin. 

While T1R2 and T1R3 were the most likely binding candidates for artificial 

sweeteners, data in preadipocytes suggests that these receptors might not be 

involved. We tested for T1R/T1R3 involvement by performing lipolysis assays in 

T1R2 and T1R3 KO eMSCs. As we observed in preadipocytes, loss of T1R3 (Fig 

2.10A) or T1R2 (Fig 2.10B) failed to block saccharin effects on lipolysis, and no 

significant differences were observed between genotypes. Furthermore, we 

tested saccharin’s effects in the presence of lactisole, a pharmacological inhibitor 

of human T1R3. In human preadipocytes, saccharin treatment is sufficient to 

suppress lipolysis, and lactisole treatment fails to block this suppression (Fig 

2.10C). These data support our previous observations that saccharin acts in 

adipocytes in a T1R2/T1R3 independent manner.  

 

We next investigated mechanisms for lipolytic regulation by artificial 

sweeteners. We observed that the addition of saccharin to 3T3-L1 adipocytes 

suppresses phosphorylation of HSL (Fig 2.10D). Interestingly, saccharin 

significantly blunted the stimulation of both glycerol release and HSL 

phosphorylation by forskolin (Fsk), an adenylyl cyclase activator. We 

hypothesized that saccharin might act through Akt signaling, as in preadipocytes, 

to suppress lipolysis in a PI3K dependent manner. However, treatment with 

LY294002 also failed to block saccharin-mediated suppression of lipolysis (Fig 
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2.10E). Additionally, although sachharin stimulated Akt phosphorylation 

adipocytes, this does not occur until 45 min of treatment, inconsistent with the 

timing of lipolysis suppression (data not shown). As cAMP is an important 

regulator of lipolytic activity upstream of HSL, we speculated that saccharin 

treatment might reduce cAMP concentrations in adipocytes. However, saccharin 

had no effect on cAMP concentrations (Fig 2.10F), suggesting that it may act 

downstream of PKA. Taken together, these results suggest that saccharin 

regulates lipolysis independently of T1R2/T1R3 and many known mediators of 

lipolytic activity.  

 

Discussion 

 

One strategy currently utilized to curtail the obesity epidemic is extensive 

use of non-nutritive sweeteners. Such artificial sweeteners, including saccharin, 

AceK, aspartame, sucralose, and neotame, have little to no caloric value but are 

hundreds of times sweeter than sucrose. However, controversy has erupted over 

studies suggesting that high-level consumers of artificial sweeteners may actually 

be at greater risk for overweight and obesity (Dergance et al., 2005). While not all 

studies agree with this assessment (Blackburn et al., 1997; Porikos and 

Koopmans, 1988; Rodin, 1990), the hypothesis that artificial sweeteners 

‘uncouple’ anticipated caloric density perceived by the tongue from the actual 

calories ingested has gained a distinct foothold. Some argue that this uncoupling 

leads to increased insulin secretion, food intake, and weight gain (Swithers and 

Davidson, 2008; Swithers et al.). This controversy has been further complicated 

by reports identifying functional sweet taste receptors sensitive to these artificial 

sweeteners in many tissues outside the tongue. The studies presented in this 

chapter extend these previous reports by identifying adipose tissue as an 

additional metabolic tissue harboring sweet taste receptors; however, their 

functional role in this context remains unclear.  

  



 50 

 Our results demonstrate that artificial sweeteners, particularly saccharin, 

can regulate metabolism in adipose tissue. While the active concentrations here 

are likely higher than would be observed under normal dietary conditions 

(Colburn et al., 1981; Sweatman et al., 1981), this remains an important proof of 

principle for potential downstream effects of artificial sweetener use, particularly 

in the absence of a characterized receptor. Equally interesting are two additional 

observations of our experiments: firstly, that artificial sweeteners are capable of 

acting in the absence of T1R2/T1R3; and secondly, that sweet taste receptors 

are expressed in adipose tissue.  

 

The observation of saccharin activity in the absence of T1R2/T1R3 has 

several potential explanations. Some groups have hypothesized that T1R2/T1R3 

is not actually an obligate heterodimer, as it has been routinely described, but 

rather each component might function separately as a homodimer. Thus far, 

homodimer ligand binding has been demonstrated in isolated N-terminal domains 

(NTDs), though not in intact receptors (Maitrepierre et al.; Nie et al., 2006; Nie et 

al., 2005). However, some reports suggest that T1R3 in the gut may function 

independently, as T1R3 but not T1R2 KO mice have impaired glucose tolerance 

on an oral glucose tolerance test (Geraedts, et al). Both T1R2 and T1R3 

knockout mice are highly, but not totally, deficient in sweet-taste sensitivity (Zhao 

et al., 2003), suggesting that while heterodimerization is important for maximal 

receptor function, it may not be absolutely required for activity. This 

homodimerization model has been proposed by an independent group describing 

sweet taste receptor activity in adipose tissue (Masubuchi et al.). In their model, 

T1R3, but not T1R2, is required for inhibition of adipogenesis by sweet taste 

receptors. The authors show conflicting results to our own, in that saccharin 

treatment inhibits adipogenesis and reduces expression of PPARγ and C/EBPa. 

This effect is partially blocked with knockdown of T1R3. We hypothesize that the 

higher concentrations of sweetener routinely used by this group (20 mM 

saccharin) may have caused apoptosis or impaired cellular function rather than 

true inhibition of adipogenesis, as we have observed cell death at higher 
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saccharin concentrations (data not shown). Further work will be required to 

elucidate differences between these model systems, and whether T1R2 or T1R3 

homodimerize in this context.  

 

A second possibility for saccharin receptor binding is through bitter taste 

receptors, which are known to bind to saccharin and AceK at high 

concentrations; this is the cause of aversion and ‘metallic’ aftertaste with high 

doses of some sweeteners (Kuhn et al., 2004). To date, expression of one bitter 

taste receptor has been reported in an adipogenic system- Tas2R46 in human 

MSCs (Lund et al.). However, saccharin does not appear to activate hTas2R46 in 

vitro (Brockhoff et al., 2007; Meyerhof et al.), arguing against a homologous 

event in mice. Microarray data suggests that bitter taste receptors T2R106, 108, 

and 137 are expressed in WAT (Fig 2.1, data not shown). However, the ligands 

for these receptors have not been characterized and their propensity for 

saccharin binding is unknown. We also predict saccharin binding would occur at 

higher concentrations that those at which we observed functional effects 

(Brockhoff et al.). However, we have not directly tested for the involvement of 

bitter taste receptors, as these experiments are hampered by complex and 

overlapping pharmacology among many receptors (Meyerhof et al.). Thus, bitter 

taste receptor activity mediating saccharin effects is still a small but tenable 

possibility. 

 

The remaining possibilities to explain saccharin activity in the absence of 

T1R2 or T1R3 are 1) Saccharin binding to an uncharacterized ‘sweet’ receptor, 

or 2) Saccharin passing directly into the cell independent of receptor activity. 

Mass spectrometry analysis of mouse fat pads following prolonged saccharin 

exposure in drinking water suggests that saccharin does not readily diffuse into 

adipose tissue, and what is internalized is cleared quickly (data not shown). 

Additionally, the vast majority of ingested saccharin is excreted in urine, arguing 

against significant saccharin internalization in adipose tissue (Sweatman et al., 

1981). The most likely candidate of these possibilities is therefore binding of an 
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uncharacterized receptor. Data supporting the existence of additional receptors 

sensitive to sweeteners are similar to data supporting T1R2/T1R3 homodimers: 

R2 and R3 KO mice have greatly impaired, but not ablated sweet sensitivity, and 

retain relatively normal responses to polycose (Zukerman et al., 2009). However, 

the observation that TRPM5 and PLCβ KO mice also have impaired, but not 

ablated, sensitivity favors the existence of an independent receptor, a different 

signaling pathway, or both (Damak et al., 2006; Dotson et al., 2005), rather than 

exclusively supporting homodimers. Behavioral studies in T1R2 and T1R3 KO 

also mice support the presence of additional ‘sweet’ sensors (Treesukosol et al. 

2012). 

 

Perhaps the most intriguing question remaining from this study is the 

physiological role, if any, of sweet taste receptors in adipose tissue. Though we 

are the second group to describe them (Masubuchi et al. 2013), there has been 

no consensus on the function of these receptors. We have screened numerous 

pathways for sensitivity to sweetener treatment, but few had detectable 

alterations with sweeteners, and none of those changes were dependent on the 

expression of T1R2/T1R3. However many other candidate pathways remain 

untested. One possible function for sweet taste receptors in adipose tissue is 

regulation of hormone secretion, as has been observed in the pancreas and gut. 

It is also possible that these receptors have significant functionality in vivo that is 

not reflected under in vitro culture conditions; adipose-specific T1R2 and T1R3 

KO mice would be necessary to address this possibility. Taken together, these 

data unveil a novel role for artificial sweeteners in adipose biology, and suggest 

that sweet taste receptors may represent a broader and more complex group of 

receptors than is currently appreciated. 

 
Materials and Methods 
 

Microarray 
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Four micrograms of cDNA from male wild-type mice was converted to sense 

orientation, then fragmented and biotinylated using Ovation FL Module (NuGen 

Inc.) following standard manufactures protocol. The probe was then hybridized to 

Affymetrix Mouse Gene ST 1.0 GeneChips for 20 hrs at 45 °C, stained, and 

washed using a Fluidics FS450 instrument, and then scanned with the Affymetric 

7G Scanner 3000. Gene profiling data are available form the GEO database with 

the accession number GSE37514. 

 

Cell Culture 

3T3-L1 cells were differentiated as previously described (Hemati et al., 1997). 

Briefly, cells two days after confluence (D0) were treated with DMEM containing 

10% fetal bovine serum, 1 µM dexamethasone, 1 µg/mL insulin, and 0.5 mM 

methylisobutylxanthine, or combinations thereof. Cells were fed every two days, 

with insulin and FBS supplementation on D2, and FBS alone from D4 to the 

conclusion of the experiment. In general, artificial sweeteners were added to 

differentiation media at induction and replaced with media every two days. 

Saccharin, AceK, and sucralose were from the Sigma-Aldrich Co. (St. Louis, 

MO). Adipogenesis was evaluated by Oil Red-O (Sigma-Aldrich Co., St. Louis, 

MO) staining as previously described (Cawthorn et al.). 

 

eMSC isolation 

eMSCs were isolated from wild-type, T1R2, and T1R3 KO mice as previously 

described (Rim et al., 2005a, as modified by Mori et al 2012). Briefly, mouse ears 

were sterilized and incubated for 1 hr in collagenase to obtain a cell suspension. 

Pre-confluent cells were supplemented with 50 µg/mL FGF during the initial 

growth period (Mori et al., 2012), and maintained at 5% CO2  in DMEM/F:12 

supplemented with 15% FBS. For differentiation, 1 µM dexamethasone, 5 µg/mL 

insulin, and 0.5 mM methylisobutylxantine where added to maintenance media. 

As in 3T3-L1 cells, cells are fed every two days, with insulin remaining in media 

for the first four.  
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Glucose Uptake 

3T3-L1 adipocytes were serum-starved in HBSS with 0.5% BSA for 4 hrs. Cells 

were then incubated with 4 nM insulin for 10 min before treating with 50 µM 

cytochalasin B to block background translocation. After 20 min of insulin 

treatment, 0.1 µCi/mL of C14 2-deoxyglucose (Perkin Elmer, Waltham MA) was 

added. Ten minutes later (30 min-post insulin), adipocytes are placed on ice and 

lysed in 0.1% SDS. 2-deoxyglucose internalized in the cell was then quantified by 

scintillation counting.    

 

Lipolysis 

Lipolysis assays were conducted in differentiated adipocytes at least eight days 

after induction of adipogenesis for 3T3-L1 cells or twelve days for eMSCs and 

human SVCs. Accumulation of glycerol and NEFA in assay media was 

determined in HBSS with assay kits from Sigma-Aldrich Co (St. Louis, MO; 

FG0100), and Wako Diagnostics (Richmond, VA; NEFA-HR(2). Cells were 

treated for 2 hrs, or the time indicated. Lipolysis in mouse explants was 

performed as described under ‘Animals.’ Lipolysis in human adipocytes was 

performed on human preadipocytes acquired from ZenBio (Research Triangle 

Park, NC), and induced the provided differentiation media as per manufacturer’s 

instructions. Lactisole was purchased from Sigma (St. Louis, MO).  Forskolin 

(Sigma, St. Louis MO) was used at 10 µM and saccharin at 4.5 mM unless 

otherwise indicated. 

 

cAMP 

cAMP was measured by ELISA (Cayman Chemical, Ann Arbor MI) according to 

manufacturer’s instructions. 

 

Human SVC isolation 

SVCs were isolated from a subcutaneous fat depot of a 54-year-old diabetic 

patient in the same manner as eMSCs (Rim et al., 2005b). Human SVCs were 

maintained and differentiated in the same manner as eMSCs. Human samples 
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were obtained with the approval of the Institutional Review Board of the 

University of Michigan Medical School Institutional Review Boards 

(HUM00060733).  

 

Immunoblot analysis 

Cell extracts were lysed in a 1% SDS buffer (1% SDS, 12.7 mM EDTA, 60 mM 

Tris-HCL, pH 6.8) and heated to 95 °C. Lysates were then centrifuged to pellet 

cell debris, transferred to a fresh tube, and protein concentration was quantified 

with a BCA assay (Thermo Scientific, Waltham MA). 4x SDS loading buffer (4% 

SDS, 240 mM Tris-HCl, 40% glycerol, 0.05% bromophenol blue, and 2.5% 2-

mercaptoethanol) was added to a constant amount of protein before separation 

on Bis-Tris polyacrylamide gels (Invitrogen). For evaluation of adipogenesis 

markers, a constant volume of lysate was used. SDS-PAGE and immunoblotting 

were performed as described previously (Cawthorn et al.) Membranes were 

immunoblotted with antibodies from Cell Signaling Technology, Inc. (Danvers, 

MA) for C/EBPa (#2295), pAkt 308 (#9271) and pAkt473 (#9275 or #4060), 

pFOXO1 (#9461), pCREB (#9191), pHSL (#4126) and pERK (#9101), total Akt 

(#9272), total ERK1/2 (#4695), total FOXO1(#9462), total HSL(#4107) and total 

CREB(9197). Laminin antibody was obtained from Novus Biologicals (Littleton, 

CO). PPARγ1/2 antibody was obtained from Millipore (Temucula, CA). FABP4 

antibody was obtained from R&D Systems (MAB1143, Minneapolis, MN). 

 

mRNA quantification by RT-PCR 

Total RNA was prepared from frozen tissue or cells using RNA Stat60 according 

to the manufacturer’s protocol (Tel-Test, Inc., Friendsville TX). Total RNA was 

quantified and reverse transcribed with random hexamers (Taqman Reverse 

Transcription kit, Applied Biosystems, Foster City CA). Quantitative PCR was 

performed using the MyiQ real-time PCR detection system with SYBR green 

reagents (Bio-Rad Laboratoreis, Hercules CA). Reverse transcription, primer 

design, and qPCR were performed as described previously (Cawthorn et al.). 

Primer sequences are as follows:  
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T1R2 F GTCCGCTGCACCAAGCA 

R GTTCGTCGAAGAAGAGCTGGTT 

T1R3 F CCAGGCAACCAGGTGCCAGTC 

R CGCCTTGCAGTCCACGCAGT 

PPARγ F CCAGAGCATGGTGCCTTCGC 

R TTCCGAAGTTGGTGGGCCAGA 

C/EBPα F TGGACAAGAACAGCAACGAG 

R TCACTGGTCAACTCCAGCAC 

PREF1 F CCTCCTGTTGCAGTATAACAGCG 

R GGTCATGTCAATCTTCTCGGG 

WNT10b F ACGACATGGACTTCGGAGAGAAGT 

R CATTCTCGCCTGGATGTCCC 

C/EBPβ F GGGACTTGATGCAATCCGG 

R AACCCCGCAGGAACATCTTT 

C/EBPδ F CGCCGCAACCAGGAGAT 

R GCTGATGCAGCTTCTCGTTCT 

FOXO1 F GCTTTTGTCACATGCAGGT 

R CGCACAGAGCACTCCATAAA 

 

Animals 

C57BL/6J mice were purchased from The Jackson Laboratory (Bar Harbor ME). 

Procedures for this work were approved by the Committee on the Use and Care 

of Animals at the University of Michigan, with daily care of animals overseen by 

the unit for laboratory animal medicine (PRO0001369). Animals were maintained 

on a 12-hour light/dark cycle and fed standard chow ad libitum (Purina Lab Diet 

5LOD, St. Louis MO). For saccharin effects on ex vivo lipolysis, 10-week-old 

male mice were injected with a sodium saccharin solution at 100 mg/kg. After 20 

min, animals were euthanized with CO2 and epididymal fat depots were excised. 

Depots were then weighed and cut into ~40 mg pieces, which were then cultured 

at 5% CO2 in HBSS for 4 hrs before quantifying glycerol in media. T1R2 and 
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T1R3 KO animals were acquired from BjörnTyrberg and developed by Charles 

Zuker; both have been previously described (Zhao et al., 2003). 

 

Unbiased Metabolomics 

Sample preparation 

To prepare samples for untargeted metabolomics, metabolites were extracted 

from adipocytes according to the protocol of Lorenz et al (Lorenz et al.).  Briefly, 

500 µL of cold 8:1:1 methanol: chloroform: water were added to each well of a 6-

well cell culture plate which had previously been aspirated of all media and 

quenched by freezing with liquid nitrogen.  The plate was then scraped with a cell 

scraper to release and lyse cells.  The cell extract was transferred by pipette to a 

microcentrifuge tube, and residual cell debris was pelleted by centrifugation at 

15,000 x g for 10 minutes.  The supernatant was directly analyzed by LC-MS. 

Unbiased LC-MS analysis 

Cell extracts were analyzed by LC-MS using an Agilent 1200 HPLC coupled to 

an Agilent 6210 time-of-flight mass spectrometer.  Chromatographic separation 

was performed via mixed-mode anion exchange – hydrophilic interaction 

chromatography using a Phenomenex Luna NH2 3µ column, 15 cm x 2 mm ID.  

Mobile phase A for the separation was acetonitrile and mobile phase B was 5mM 

ammonium acetate in water, adjusted to pH 9.9 with ammonium hydroxide.   The 

gradient consisted of a 20 minute linear ramp from 20% to 100% B, followed by a 

2-minute hold at 100% B and a subsequent 13-minute re-equilibration period at 

20% B.  The sample injection volume was 20 µL and the flow rate was 0.25 

mL/min.  Detection was performed by electrospray ionization mass spectrometry 

in negative ion mode.  MS parameters were as follows: gas temp 350°C, drying 

gas 10 L/min, nebulizer 20 psig, capillary voltage 3500V, scan range 50-1200, 

internal reference mass correction enabled. 

Data analysis 

Untargeted metabolomics data analysis was performed using Agilent Masshunter 

Qualitative Analysis and Mass Profiler Professional software. Features in the 

data were first detected using the Find by Feature algorithm in Masshunter 
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Qualitative Analysis, and were then aligned between samples by accurate mass 

and retention time using Mass Profiler Professional.  To minimize gaps in the 

data, recursive detection of aligned features was performed using the Find by 

Formula algorithm.  Once a final list of features was generated, compounds were 

assigned putative identities by searching against the online Metlin database 

(http://metlin.scripps.edu).  In many cases, the Metlin search resulted in multiple 

possible matches for each feature within a 10 ppm mass error window.  

Metabolite matches were ranked in order of ascending mass error, and among 

matches with equivalent mass error, in order of ascending Metlin ID number.  

The top database ID was not considered to be the valid metabolite identity, but 

rather as providing guidance for further confirmation using authentic standards as 

needed.  Following putative metabolite identification, statistical analysis and data 

reduction techniques including principle component analysis were used to 

determine statistically different features between sample groups and to assess 

global differences in the metabolome between treatment conditions. 

 

Calcium Imaging 

3T3-L1 cells were incubated with Fluo4 (Life Technologies, Grand Island NY) in 

glass bottom dishes (MatTek, Ashland, MA) for 30 min before imaging by 

confocal microscopy (Olympus FV500 Confocal Microscope, Olympus IX-71). 

Sweeteners were delivered by pipette as 10x solutions and allowed to diffuse 

through dishes maintained at 37 °C while monitoring the green fluorescence 

channel. Experiments were conducted with the assistance of the Michigan 

Diabetes Research and Training Center Morphology and Image Analysis Core.  
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Figure 2.1. Chemosensory receptors are regulated with adiposity. 
Ten representative chemosensory receptors show regulated expression with varying 
adiposity in gonadal white adipose tissue; all olfactory receptors are shown in black, with 
bitter (Tas2R) or volmeronasal (V1r) receptors in gray. Chemosensory receptor 
correlations with adiposity may be positive or negative with a wide variety of slopes, 
suggesting that these receptors may have very divergent functions in adipose tissue. 
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Figure 2.2. Sweet taste receptors T1R2 and T1R3 are expressed constitutively 
throughout adipogenesis in 3T3-L1 cells and eMSCs. 
A) T1R2 and T1R3 expression in the first 12 hours of adipogenesis in 3T3-L1 cells. B) 
T1R2 and T1R3 expression over eight days of differentiation in 3T3-L1 cells. C) T1R2 
and T1R3 expression in differentiating eMSCs. Data are expressed as mean plus S.D. 
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Figure 2.3. Saccharin stimulates adipogenesis in mouse and human precursor 
cells. 
A) 3T3-L1 cells were differentiated with DI in the presence of the indicated 
concentrations of saccharin. Seven days after induction, cells were stained for neutral 
lipid with Oil Red-O (upper panel) and lysates were evaluated for expression of FABP4 
(lower panel). ERK1/2 was used as a loading control. B) Densitometric quantification of 
saccharin-stimulated FABP4 accumulation from four independent experiments in DI-
treated 3T3-L1 cells. Data are expressed as mean plus S.D. P-values <0.01 are 
indicated with **, and <0.005 with ***.  C) 3T3-L1 cells were differentiated with all 
components of the MDI cocktail together or individually in the presence or absence of 
4.5 mM saccharin. Adipogenesis was then evaluated after 8 days in all differentiation 
conditions by Western blotting for FABP4. D) eMSCs were incubated in the presence of 
MDI, DI, or FBS media with or without 2 mM saccharin supplementation. At day 16 of 
differentiation, degree of differentiation was evaluated with photomicrographs (upper 
panels) and by expression of FABP4 (lower panels). E) Human SVCs were induced with 
MDI for 14 days in the absence or presence of 4.5 mM saccharin. Adipogenesis was 
evaluated with photomicrographs and by expression of FABP4.  
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Figure 2.4. AceK stimulates adipogenesis in mouse and human precursor cells. 
A) 3T3-L1 cells were induced with DI and treated for 8 days with the indicated 
concentrations of AceK. After 8 days, cells were stained for neutral lipid with Oil Red-O. 
B) eMSCs were incubated in the presence of MDI, DI, or FBS media with or without a 2 
mM AceK. After 16 days, degree of differentiation was evaluated with photomicrographs 
(upper panels) and by expression of FABP4 (lower panels). C) Human SVCs were 
induced with MDI for 14 days in the absence or presence of 4.5 mM AceK. Adipogenesis 
was determined with photomicrographs (upper panel) and by expression of FABP4 
(lower panel).  
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Figure 2.5. Saccharin enhancement of adipogenesis is temporally dependent. 
A) 3T3-L1 cells were induced for differentiation with DI and supplemented with 4.5 mM 
sacc at the indicated time points. Cells were stained with Oil Red-O (upper panel) and 
lysates collected for immunoblotting after 8 days (lower panels). B) PPARγ and C) 
C/EBPα expression were measured over a time course of adipogenesis in 3T3-L1 cells 
induced with DI and treated with vehicle, 4.5 mM sacc, or 4.5 mM AceK for 4 days. Left 
panels indicate the first 12 hours of differentiation, while right panels indicate the full 
adipogenesis time course. Significance was determined using Student’s t-test. 
Significant differences (P-value <0.05) between vehicle and both sacc and AceK are 
denoted ‘A’, between vehicle and sacc denoted ‘B’, between vehicle and AceK denoted 
‘C’, and between sacc and AceK denoted ‘D.’ Significant differences between vehicle 
treatment and preadipocytes (Time 0) controls denoted *. Data are expressed as mean 
plus S.D.  
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Figure 2.6. Artificial sweetener treatment has minimal effects on the early 
transcriptional program. 
A) Samples obtained as in Fig 2.5B,C, were evaluated for the expression CEBPδ (A), 
CEBPβ (B), and PREF1 (C). Left panels indicate the first 12 hours of differentiation, 
while right panels indicate full adipogenic time course. Significance was determined 
using Student’s t-test. Significant differences (P-value <0.05) between vehicle and both 
sacc and AceK are denoted ‘A’, between vehicle and sacc denoted ‘B’, between vehicle 
and AceK denoted ‘C’, and between sacc and AceK denoted ‘D.’ Significant differences 
between vehicle treatment and preadipocytes (Time 0) controls denoted *. Data are 
expressed as mean plus S.D.  
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Figure 2.7. Saccharin activates Akt and ERK1/2 signaling pathways in 
preadipocytes. 
A) 3T3-L1 preadipocytes were serum-starved for two hours in HBSS, then treated with 
0.45 or 4.5 mM saccharin for 30 min before lysis and immunoblot analyses with the 
indicated antibodies. B) 3T3-L1 cells were serum-starved in HBSS for two hrs, and 
pretreated with 50 µM LY 294002 for 1 hr. Cells were then treated with the indicated 
concentrations of saccharin in the absence or presence of LY294002 for 30 min. After 
lysis, samples were probed by immunoblot with the indicated antibodies. 25 nM insulin 
was used in the presence of LY as a control. C) 3T3-L1 cells were serum starved in 
HBSS for 2 h, and pretreated with 1 µM U0216, 5 µM U73122, or 2 µM wortmannin for 1 
hr. Cells were then treated with 4.5 mM saccharin in the absence or presence of each 
inhibitor for 30 min before immunoblotting for the indicated proteins. D) 3T3-L1 
preadipocytes were serum-starved in HBSS for 2 hrs and treated with 4.5 mM saccharin 
for the indicated time periods before harvesting for immunoblotting. E) 3T3-L1 cells were 
stimulated with DI in the presence or absence of 4.5 mM saccharin. Lysates were 
prepared at the indicated time points and probed by immunoblot for the indicated 
proteins. T308, threonine 308; S473, serine 473; T Akt, total Akt; T CREB, total CREB; T 
FOXO1, total FOXO1; T ERK1/2, total ERK1/2; WM, wortmannin. 
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Figure 2.8. T1R3 and T1R2 are not required for saccharin-stimulated adipogenesis 
or Akt phosphorylation. 
A) WT and T1R3 KO eMSCs were allowed to differentiate in FBS supplemented with 
increasing concentrations of saccharin. After 12 days, lipid accumulation was evaluated 
with Oil Red-O. B) WT and T1R3 KO eMSCs were serum starved for 2 hrs in HBSS 
treated with 4.5 mM saccharin for the time periods indicated. Lysates were collected for 
immunoblotting against the indicated proteins. C) WT and T1R3 KO eMSCs were serum 
starved for 2 hrs in HBSS and treated for 30 min with increasing concentrations of 
saccharin (0.02-4.5 mM) before collecting lysates for immunoblotting. D) WT and T1R2 
KO eMSCs were allowed to differentiate in FBS supplemented with increasing 
concentrations of saccharin. After 12 days, lipid accumulation was evaluated with Oil 
Red-O. E) WT and T1R2 KO eMSCs were either maintained in calf serum media (D0) or 
treated with induction media containing DI for 30 min in the absence (-) or presence (+) 
of 4.5 mM saccharin. Lysates were then collected for immunoblotting. F) WT and T1R2 
KO eMSCs were starved for 2 hrs in HBSS and treated for 30 min with increasing 
concentrations of saccharin (0.02-4.5 mM) before collecting lysates for immunoblotting.  
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Figure 2.9. Artificial sweeteners suppress lipolysis. 
A) Following 1 or 4 hr saccharin treatment, 3T3-L1 adipocytes were flash frozen and 
intracellular metabolites were evaluated on a LC-MS platform by the University of 
Michigan Molecular Phenotyping Core. Metscape software was used for pathway 
visualization and interpretation. Hierarchal clustering shows metabolites that vary with 
time and/or saccharin treatment, with red being more abundant. B) LC-MS quantification 
of palmitate following 1 or 4 hr treatment with vehicle or saccharin in 3T3-L1 cells as 
described in A. C) Glucose uptake was measured in 3T3-L1 adipocytes as described in 
Methods. Significant differences (P-value <0.05) between 0 and 4 nM insulin denoted #. 
D) 3T3-L1 adipocytes were serum starved for two hours in HBSS before treatment with 
4.5 mM sacc, 4.5 mM mannitol, or 10 µM of adenylate cyclase activator forskolin (Fsk). 
Glycerol content of the media was assayed at the indicated time points. E) NEFA (µM) 
was measured from assay media under same conditions as D. F) Glycerol content of 
assay media was measured following 1 hr treatment with sacc, AceK or sucralose at 
0.45 and 4.5 mM. G) Epididylmal white adipose tissue (eWAT) explants were collected 
from wild-type mice 20 min following injection of saccharin. Glycerol content of the media 
was then measured following 4 hr incubation with vehicle, fsk, or saccharin. Significant 
differences from vehicle treatment (P-values <0.05, <0.01, or ,<0.005) are denoted *, **, 
or *** respectively.  Data are expressed as mean plus S.D. Significance was determined 
using Student’s t-test. 
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Figure 2.10. T1R2/T1R3 are not required for suppression of lipolysis by saccharin. 
A) T1R3 and B) T1R2 KO eMSC adipocytes were treated with sacc, Fsk, or both for 4 
hrs before measuring glycerol accumulation in media. C) Human adipocytes were 
starved in serum-free media for 2 hr and pre-treated with 1.25 mM lactisole for 1 hr 
before a 2 hr saccharin treatment. Glycerol content was then assayed in media. D) 3T3-
L1 adipocytes were treated for one hour with saccharin, forskolin, or both. Glycerol 
concentration in the media was measured (upper panel) before collectiong protein 
lysates from treated and control cells. Lysates were then probed for phosphorylated 
hormone sensitive lipase (pHSL) by Western blotting (lower panel). E) 3T3-L1 
adipocytes were serum starved for two hours and pre-treated with LY294002 for one 
hour before a 2 hr saccharin treatment. Glycerol was then measured in assay media. F) 
3T3-L1 adipocytes were serum-starved for 2 hrs, then treated for 45 min with Fsk or 
saccharin. cAMP concentration was then quantified by ELISA. Significant differences (P-
values <0.05, <0.01, or ,<0.005) are denoted *, **, or *** respectively.  Data are 
expressed as mean plus S.D. Significance was determined using Student’s t-test.  
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Chapter Three 
 

Metabolic Phenotyping of Sweet Taste Receptor Knockout Mice 

 
Abstract 
 While functional expression of sweet taste receptors (T1R2 and T1R3) 

has been reported in many metabolic tissues, including the gut, pancreas, and 

adipose tissue, adipose tissue phenotypes of T1R2 and T1R3 KO mice have not 

been reported. Here we provide data to demonstrate that both T1R2 and T1R3 

KO mice have reduced adiposity and smaller adipocytes when on an obesogenic 

diet. However, this is in the absence of any other noted metabolic dysfunction; 

KO animals show no indication of altered glucose or insulin tolerance. T1R2 KO 

mice also show no differences in food intake, oxygen consumption, or activity. 

We observed that while taste receptor KO did not affect adipocyte number in 

peripheral adipose depots, the number of bone marrow adipocytes is significantly 

reduced in T1R2 KO animals. Finally, we present data demonstrating that taste 

receptor KO animals have increased cortical and trabecular bone mass. This 

report identifies novel metabolic functions for sweet taste receptors in the 

regulation of adipose and bone biology in vivo.  

 
Introduction 
 Sweet taste perception by the tongue is mediated by the G protein-

coupled receptors T1R2 and T1R3 (Nelson et al.; Zhao et al., 2003). These 

receptors are reported to function as an obligate heterodimer to provide input on 

the caloric and macronutrient content of ingested food. However, sweet taste 

receptors have been identified in an increasing number of extra-gustatory tissues 
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(Elliott et al.; Merigo et al.; Ren et al., 2009), often regulating metabolic 

processes (Jang et al., 2007; Kokrashvili et al., 2009; Kyriazis et al., 2012; Mace 

et al., 2007; Margolskee et al., 2007; Nakagawa et al., 2009). Previous reports 

have shown that mice lacking gustducin, a mediator of taste receptor signaling, 

have reduced GLP-1 and insulin secretion. This is reportedly on account of the 

loss of sweet taste receptor activity in GLP-1-secreting enteroendocrine cells in 

the gut (Jang et al., 2007). In pancreatic β cells, sweet taste receptors act to 

augment glucose (Nakagawa et al., 2009) or fructose-induced (Kyriazis et al., 

2012) insulin secretion. 

 

 More recent data suggests that in addition to contributing to insulin and 

incretin secretion (Kokrashvili et al., 2009; Kyriazis et al., 2012), sweet taste 

receptors may also have metabolic roles in adipose tissue. T1R2 and T1R3 

expression has been reported in 3T3-L1 cells (Fig 2.2; Masubuchi et al., 2013), 

with the receptors reportedly mediating inhibition of adipogenesis by artificial 

sweeteners. However, this observation runs counter to our own observations (Fig 

2.3) and the paradigm of sweet taste receptors acting as glucose sensors to 

drive anabolic processes, as had been described in the gut and pancreas. An 

additional study has shown that T1R3 KO animals are resistant to sucrose-

induced obesity and have smaller fat depots on a high-sucrose diet (Glendinning 

et al. 2012), consistent with a role for sweet taste receptors in facilitating adipose 

tissue expansion. Despite this contradictory evidence for the role of sweet taste 

receptors in adipose tissue and the known metabolic functions for these 

receptors in other tissues, evaluation of adipose tissue phenotypes in T1R2 and 

T1R3 KO mice has not been performed.  

 

 In this report, we investigate whether lack of T1R2 or T1R3 affects 

metabolic homeostasis by characterizing responses of T1R2 and T1R3 KO mice 

to a Western diet. We demonstrate that both KO genotypes show a reduction in 

adiposity and adipocyte size following this dietary intervention. Female, but not 

male, T1R3 KO animals maintain reduced adiposity on a standard chow diet. 
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Despite the impaired adipose tissue expansion in taste receptor KO mice, we 

detected no changes in glucose tolerance, insulin sensitivity, food intake, or 

oxygen consumption. However, we unexpectedly observed that taste receptor 

KO reduces adipocyte number in the bone marrow compartment, and increases 

cortical and trabecular bone mass. These data represent the first demonstration 

of adipose tissue and bone phenotypes in sweet taste receptor-deficient animals, 

thereby providing valuable insight into the functions of sweet taste receptors in 

vivo.  

 
Results 
 

T1R3 KO mice have reduced adiposity on Western Diet.  
We hypothesized that sweet taste receptors would serve as mediators of 

‘positive’ nutrient signals derived from binding taste receptor ligands in adipose 

tissue.  We therefore anticipated that mice lacking sweet taste receptors might be 

deficient in adipogenesis or anabolic pathways such as glucose uptake and 

lipogenesis, and that this might lead to metabolic dysfunction. To assess effects 

of sweet taste receptor KO on adipose tissue, we subjected WT and T1R3 KO 

mice to a Western diet challenge for 24 weeks (41% kcal fat, 43% kcal protein, 

15% kcal protein, high sucrose and high cholesterol). At the end of this 

treatment, body weight was identical between genotypes (Fig 3.1A). However, 

when the body composition of these animals was evaluated, we observed that 

T1R3 KO animals had reduced fat mass and increased lean mass as percent of 

body weight (Fig 3.1B). Absolute fat mass was also reduced, though absolute 

lean mass was unchanged (Fig 3.1C).  

 

To further characterize differences in adiposity in T1R3 KO animals, we 

measured the weight of individual fat depots (Fig 3.1D). However, we observed 

no differences in the weights of inguinal, epididymal, or perirenal fat depots. 

There was also no change in liver or BAT (brown adipose tissue) weight. This 

disparity between whole body adiposity and fat depot mass could be due to 
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greater differences in fat depots that were not isolated; accumulation of lipid 

outside of adipose tissue depots; or it could result from the amalgamation of 

small changes within individual fat pads that are not grossly apparent. The trend 

towards reduced mass in all KO tissues suggests that the latter might be the 

case. Taken together, these data are supportive of a role for taste receptors in 

regulating adiposity in vivo.  

 

T1R3 KO mice have fewer large adipocytes but equal adipocyte number on 
Western Diet.  

Reduced adiposity in T1R3 KO animals could be due to decreased 

adipocyte number, decreased adipocyte size, or both. To determine if T1R3 was 

affecting hyperplasia or hypertrophy we measured the areas of adipocytes in 

epididiymal fat of WT and KO mice. We found that the T1R3 KO animals had a 

shift towards smaller adipocytes (Fig 3.2A), such that the proportion of large 

adipocytes was significantly reduced (Fig 3.2B). To further explore this 

observation and estimate relative adipocyte numbers between genotypes, we 

correlated average adipocyte volume with fat depot weight for each animal. 

There was no difference between slopes in this correlation analysis (Fig 3.2C), 

suggesting each genotype had similar numbers of adipocytes per gram fat depot 

between genotypes. We then estimated the total number of adipocytes in the 

epididymal fat pad by dividing fat pad weight by average adipocyte weight, as 

has been previously described (Hirsch and Batchelor, 1976; Nestel et al., 1969; 

Pasarica et al., 2009). This analysis also suggests that there was no significant 

change in adipocyte number between genotypes (WT= 7,020,000, S.D. 

1,803,301; T1R3 KO= 7,470,000, S.D. 2,270,000). These data indicate that while 

T1R3 KO animals have no deficiency in adipogenesis in peripheral fat depots, 

they do maintain smaller adipocytes. This phenotype could be a cause or a 

consequence of metabolic disturbances elsewhere. 
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T1R3 KO mice have no changes in glucose sensitivity.  
Given the smaller adipocytes present with T1R3 KO, we hypothesized that 

these animals might have elevated rates of lipolysis. To test this, we measured 

plasma NEFA concentrations in WT and T1R3 KO animals (Fig 3.3A). However, 

we observed no alterations in circulating NEFA between genotypes. We next 

hypothesized that the reduced adiposity in T1R3 KO animals might lead to 

reduced leptin secretion. However as with NEFA, we observed no differences 

between genotypes (Fig 3.3B). We next investigated whether sweet taste 

receptor KO animals were glucose intolerant, as this might be a consequence of 

impaired adipose tissue expansion. To assess this, we performed intraperitoneal 

glucose tolerance tests (GTTs) on male and female T1R3 KO mice. Firstly, we 

observed that in male T1R3 KO mice there was no significant difference in blood 

glucose at any time point following glucose injection, suggesting that these 

animals are not acutely deficient in glucose clearance (Fig 3.3C, left panel). 

However, the area under of the curve (AUC) of GTTs from T1R3 KO animals was 

significantly greater (Fig 3.3C, right panel), suggesting that male T1R3 KO mice 

may be mildly glucose intolerant. However, fasting glucose was not different 

between genotypes (Fig 3.3C, left panel). In female mice, we observed no 

differences in individual time points or AUC of the GTT time course, and fasting 

glucose also did not differ between females (Fig 3.3D). To further investigate the 

possible impairment of glucose tolerance in male KO animals, we performed an 

intraperitoneal insulin tolerance test (ITT). However, these animals showed no 

difference in this measure of insulin sensitivity at either individual time points or in 

total AUC (Fig 3.3E). These data suggest that while T1R3 expression may be a 

regulator of adipocyte size and adiposity, this phenotype does not result in 

glucose intolerance or clear metabolic impairments.  

 

T1R3 KO mice have sexually dimorphic reductions in adiposity on chow 
diet.  

The above observations indicate that T1R3 KO mice fed a Western diet 

have reduced adiposity and smaller adipocytes. However, we were unsure if a 
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Western diet challenge was necessary to drive this phenotype, or if it would also 

be observed under non-obesogenic conditions. To answer this question, we 

maintained WT and T1R3 KO mice on a chow diet into adulthood (~12 weeks), 

after which body weight and body composition were periodically measured. 

Using this strategy, we observed no difference in body weight (Fig 3.4A, left 

panel), fat mass (Fig 3.4A, middle panel), or lean mass (Fig 3.4A, right panel) in 

male mice throughout 18 weeks of monitoring. Upon removing and weighing 

adipose depots and other tissues from male mice, we noted that the gonadal fat 

depot and liver were significantly lighter (Fig 3.4B, left panel), although these 

differences were no longer apparent when tissue weights were normalized to 

body weights (right panel). However, when we evaluated female mice from the 

same cohort, we observed a much stronger phenotype. Female animals had 

reduced body weight from adulthood and throughout the 18 weeks of monitoring 

(Fig 3.4A, left panel). In addition, female mice had significantly reduced fat mass 

(Fig 3.4A, middle panel) and lean mass (Fig 3.4A, right panel). This contrasts 

with the increased lean mass of males fed a Western diet (Fig 3.1B). Adipose 

depots were also significantly lighter in females (Fig 3.4B, left panel). Unlike in 

males, tissue weight reductions were not entirely negated after normalizing to 

body weight (Fig 3.4B, right panel), as gonadal and inguinal depots remained 

significantly lighter. These data suggest that while T1R3 KO may contribute to 

regulation of adiposity on a chow diet, this regulation is only pronounced in 

female mice.  

 

T1R2 KO mice have reduced adiposity on Western Diet.  
We continued our investigation of sweet taste receptor functions in 

adipose tissue by examining the adiposity of T1R2 KO mice under Western diet 

challenge. As T1R2 and T1R3 are reported to heterodimerize to form a fully 

functional taste receptor, we anticipated that T1R2 KO animals should mirror the 

phenotypes of T1R3. We therefore placed adult T1R2 KO animals on Western 

diet and evaluated their body composition throughout a time course of diet-

induced obesity. At the initiation of the experiment, T1R2 KO animals were 
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heavier than wild type controls. However, after 14 weeks of Western diet feeding 

there was no significant difference in body weight (Fig 3.5A). After 5 weeks of 

feeding, fat mass was reduced in T1R2 KO both as percent of body weight (Fig 

3.5B) or in absolute mass (Fig 3.5C), which persisted for the remainder of the 

experiment. Likewise, lean mass was also increased (Fig 3.5D,E). Examining 

individual fat depots to further characterize loss of adiposity, we observed that 

like T1R3, several adipose depots were significantly lighter following Western 

diet feeding (Fig 3.5F). As we predicted, these data are consistent with 

observations in T1R3 KO animals and a model of T1R2 and T1R3 regulating 

adiposity. 

 

T1R2 KO mice have smaller adipocytes but equal adipocyte numbers. 
 As the reduced adiposity in T1R2 KO mice mirrored that of T1R3 KO 

animals, we investigated whether adipocyte size was similarly altered between 

genotypes. We performed frequency analysis of adipocyte size in WT and T1R2 

KO epidididymal fat depots, and observed a shift towards smaller adipocytes (Fig 

3.6A), as observed in T1R3 KO animals. Indeed, T1R2 KO animals had a 

significantly greater proportion of small adipocytes and a significantly lower 

proportion of large adipocytes (Fig 3.6B). Finally, we again estimated relative 

adipocyte number between genotypes by correlating average adipocyte volume 

with fat depot weight (Fig 3.6C). As observed T1R3 KO animals, there was no 

difference between slopes in these correlations, suggesting an equal number of 

adipocytes per gram of adipose tissue. We further estimated adipocyte number in 

the epididymal fat depot by the same method used in T1R3 adipocytes. We 

calculated 6,850,000 (S.D 1,170,000) adipocytes in the WT fat depot, and 

6,370,000 (S.D. 1,020,000) in T1R2 KO depot. This effect, like that in T1R3 KO 

animals, was not significant. However, the phenocopying of adipocyte size 

between genotypes supports a role for a heterodimeric T1R2/T1R3 sweet taste 

receptor in regulating adipose tissue biology. 

 
T1R2 KO mice have no changes in glucose sensitivity.  
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As T1R2 KO mice also had reduced adiposity, we evaluated energy 

balance in these animals to determine if they had altered lipid utilization or 

increased activity might contribute to this effect. However, after utilizing 

Comprehensive Animal Monitoring System (CLAMS) cages, we observed no 

differences in RQ (Fig 3.7A), total activity (Fig 3.7B), or oxygen consumption 

(data not shown). Food intake was also not different (Fig 3.7C). We next 

evaluated glucose homeostasis in T1R2 KO animals and observed that, like 

T1R3 KO mice, there was no difference in random-fed glucose (Fig 3.7D) or 

glucose tolerance (Fig 3.7E). Lastly, we measured circulating NEFA 

concentrations, as reduced adipocyte size could reflect increased lipolytic rates. 

However as with T1R3 KO, T1R2 KOs showed no difference in serum NEFA (Fig 

3.7F).  

 

The reduced-adiposity phenotype of T1R2 KO animals has low penetrance.  
Our first cohort of T1R2 KO mice showed reduced adiposity relative to WT 

animals (Fig 3.5). We aimed to further verify this phenotype by repeating 

Western diet feeding in additional T1R2 KO animals. However, we failed to 

observe any changes in adiposity in three subsequent cohorts of T1R2 KO 

animals (data not shown). These data may indicate that T1R2 effects on 

adiposity are very subtle and easily overwhelmed by animal variation. This is 

supported by a trend towards smaller fat pads in several KO cohorts. Further 

experiments will be necessary to determine the reproducibility of this observation.   

 

T1R2 KO mice have fewer bone marrow adipocytes.  
Both T1R2 and T1R3 KO results in reduced adiposity and smaller 

adipocytes in peripheral adipose tissue depots. However, these are not the only 

metabolically important adipocyte populations; bone marrow adipocytes are 

emerging as an increasingly important regulator of metabolism (Lecka-Czernik; 

Shockley et al., 2009). We therefore examined adipocyte populations in the bone 

marrow cavity of T1R2 KO mice by osmium tetraoxide staining (Fretz et al.; 

Pasarica et al., 2009). Interestingly, µCT scans of osmium-stained tibiae showed 
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a reduction in the number of bone marrow adipocytes in KO animals (Fig 3.8A). 

Quantification of this staining confirmed that adipose tissue volume in bone 

marrow of medial tibiae was significantly reduced in T1R2 KO animals (Fig 3.8B). 

This was further verified by histological analysis, in which fewer bone marrow 

adipocytes were apparent in osmium-stained sections of T1R2 KO tibias (Fig 

3.8C). These observations suggest that lack of T1R2 may block adipogenesis in 

the bone marrow microenvironment.  

 
T1R3 KO animals trend towards fewer bone marrow adipocytes.  

To comprehensively assess the contribution of taste receptors to 

adipocyte number in the bone marrow compartment, we also quantified bone 

marrow adipocytes in T1R3 KO animals (Fig 3.9A). Here we observed that while 

there is a trend towards reduced numbers of adipocytes in the media tibia 

(P=0.17), this effect is not significant. These results suggest that while T1R2 may 

be essential for adipogenesis in the bone marrow compartment, this necessity 

might not be maintained with T1R3.  

 
T1R2 KO animals have increased trabecular bone.  

Our data indicate that loss of T1R2 and T1R3 in the bone marrow cavity 

may inhibit adipogenesis. As osteogenesis and adipogenesis are known to be 

reciprocally regulated (Akune et al., 2004; Kawai and Rosen) we evaluated the 

bone mass of these animals to determine if osteogenesis was also stimulated. 

We performed µCT scans of WT and T1R2 KO mouse tibiae to assess the 

quantity and architecture of cortical and trabecular bone. We observed that T1R2 

KO animals on Western diet had increased trabecular area (Fig 3.10A) and 

increased trabecular bone mineral content (BMC, Fig 3.10B). This combination 

results in very little change in trabecular bone mineral density (BMD, Fig 3.10C), 

as greater BMC is diffused over the larger trabecular area. Alterations in cortical 

bone were more modest; we observed an increase in cortical area (Fig 3.10D), 

but no change in cortical BMC (Fig 3.10E) or BMD (Fig 3.10F). These results 
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suggest that T1R2 activation may have a role in blocking osteogenesis, 

consistent with a pro-adipogenic role in the bone marrow cavity. 
 

T1R3 KO animals have increased cortical and trabecular bone.  
To determine if T1R2 KO effects on bone formation were conserved with 

T1R3, we independently evaluated bone mass in femurs of T1R3 KO mice on 

Western Diet for 24 weeks. We observed several significant differences within 

cortical bone (Fig 3.11A). Cortical area (Fig 3.11A, left panel) and cortical BMC 

(Fig 3.11A, middle panel) were both increased, with cortical BMD (Fig 3.11A, 

right panel) unchanged. This increase in cortical bone was reflected in the larger 

inner and outer cortical perimeter in T1R3 KO mice (Fig 3.11B, left and middle 

panel), and a larger marrow area (Fig 3.11B, right panel).  T1R3 KO also 

produced pronounced changes in trabecular bone. Trabecular BMD and tissue 

mineral density (TMD) were both increased (Fig 3.11C, right and middle panels), 

as was the thickness of individual trabeculae (Fig 3.11C, right panel). These 

data, taken together with increased bone mass in T1R2 KO animals, suggest that 

sweet taste receptors may have a previously uncharacterized role in the 

development or maintenance of both adipose tissue and bone. 

 

Discussion 
  In this chapter, we present results demonstrating reduced adiposity 

and smaller adipocytes in T1R3 and T1R2 KO animals on Western diet. In 

accordance with a previously published report (Geraedts et al., 2012), we 

observed no effect on intraperitoneal glucose tolerance with either T1R2 or T1R3 

KO. We also observed no differences in any other measured metabolic 

parameters, including circulating NEFA or random-fed glucose. Surprisingly, we 

also observed that T1R2 and T1R3 KO mice have increased bone mass; to our 

knowledge, this is also the first report of sweet taste receptors having a role in 

bone or bone marrow biology.  
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While our in vitro studies have thus far failed to identify a specific function 

for sweet taste receptors in 3T3-L1 cells or eMSCs (Chapter Two), the presence 

of an adipose tissue phenotype in T1R2 and T1R3 KO animals suggests that 

these receptors may be involved in adipose biology in vivo. While the mechanism 

for reduced adiposity and smaller adipocytes remains unclear, we can speculate 

on the driving forces behind this phenotype. Smaller adipocytes are unlikely to be 

driven by alterations in lipolysis, as lipolytic effects observed in vitro are 

independent of sweet taste receptor activity (Fig 2.10). Its also unlikely that 

lighter pads are due to failures in adipogenesis, as adipocyte number in 

epididymal fat depots was similar between genotypes. In the absence of changes 

in food intake and activity, these results allow speculation that sweet taste 

receptors could have a role in lipid utilization, adipocyte expansion, or hormone 

secretion that results in reduced adiposity. However, in the absence of adipose 

tissue-specific sweet taste receptor knockout animals, it remains possible that 

sweet taste receptors impact adipose biology by acting in other tissues, such as 

the gut or pancreas. 

 

Reciprocal regulation of bone mass and bone marrow adipocytes is 

perhaps the most surprising finding of this study. While we cannot interpret the 

loss of bone marrow adipocytes in T1R2 KO animals as a failure of adipogenesis 

per se, the concurrent increase in bone mass suggests taste receptor 

involvement in an osteogenesis-adipogenesis development axis. Further studies 

will be necessary to delineate taste receptor expression profiles in osteoblasts 

and osteoclasts, and to evaluate the effects of sweet taste receptor agonism on 

bone development. An additional surprising finding is sexual dimorphism of T1R3 

effects on adiposity on a chow diet. The factors that might make female mice 

more susceptible to the effects of taste receptor deficiency are unknown, but 

estrogens or other sex hormones may play an uncharacterized role in taste 

receptor metabolism.  
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 While there have been some reports of metabolic phenotypes in taste 

receptor KO animals, these studies have primarily been performed to 

characterize sweet taste receptor activity in the gut and pancreas. In such 

studies, T1R3 KO mice have impaired glucose tolerance in response to oral, but 

not intraperitoneal glucose tolerance tests (Geraedts et al., 2012). This result 

emphasizes taste receptor-stimulated GLP-1 secretion in the gut, rather than 

taste receptor-stimulated insulin secretion in the pancreas, as a primary driver of 

glucose homeostasis. However, an independent report shows that T1R2 

expression is necessary for fructose-, but not glucose-stimulated insulin secretion 

from the pancreas (Kyriazis et al., 2012). Taken together, these results suggest 

that the sweet taste receptors of the gut and pancreas may have differential 

impacts on glucose homeostasis when presented with different diets. A similar 

paradigm may affect adipose tissue, in which the availability of an endogenous 

ligand may affect receptor activation and our interpretation of the role of sweet 

taste receptors.  

 

Interestingly, there is also evidence that sweet taste receptors in the gut, 

like those in tongue, might function as homodimers. Geraedts et al noted that 

T1R3 KO mice have impaired glucose tolerance in an oral GTT, but T1R2 KO 

had no effect. This study, among others, suggests that T1R3 may be capable of 

binding sweeteners in the absence of T1R2 (Nie et al., 2005), or be able to 

compensate for the absence of T1R2. In the context of this study, it appears that 

both T1R2 and T1R3 may contribute to adiposity in vivo. However, it is possible 

that the less penetrant T1R2 affects on adiposity imply a solely T1R3-dependent 

mechanism. Further studies will be necessary to clarify possible independent 

roles for sweet taste receptors in vivo. 

 

 

Materials and Methods 
 

Animal Care and Maintenance 
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T1R2 and T1R3 KO animals were obtained from Björn Tyrberg (Sanford-

Burnham Medical Research Institute, Lake Nona, FL), and originally developed 

by (Zhao et al., 2003) (Charles Zuker; Columbia University, NY). Mice had been 

backcrossed to 95-99% congenicity with C57BL/6J and were then further 

backcrossed up to four generations. Leprdb/db were obtained from The Jackson 

Laboratory (Bar Harbor, ME). Mice were maintained on either a normal chow diet 

(5001, LabDiet, PMI Nutrition International, St. Louis MO) or Western Diet 

(D12079B, Research Diets, New Brunswick NJ) as indicated. All mice were 

housed on a 12-hour light/12-hour dark cycle in the Unit for Laboratory Animal 

Medicine (ULAM) at the University of Michigan, with free access to food and 

water. Procedures for this work were approved by the Committee on the Use and 

Care of Animals at the University of Michigan, with daily care of animals 

overseen by the unit for laboratory animal medicine (PRO0001369). 

 

Animal Measurements 

Blood glucose levels were measured on an automated blood glucose reader 

(Accu-Check, Roche Diagnostics, Indianapolis, IN). Body fat, lean mass, and free 

fluid were measured in conscious animals using an NMR analyzer (Minispec 

LF9011, Brucker Optics, Billerica MA) in the phenotyping core of the Nutrition 

Obesity Research Center at the University of Michigan. Oxygen consumption 

(VO2), carbon dioxide production (VCO2), spontaneous motor activity and food 

intake were measured using the Oxymax Comprehensive Lab Animal Monitoring 

System (CLAMS, Columbus Instruments; Columbus OH), an integrated open-

circuit calorimeter equipped with an optical beam activity-monitoring device.  The 

measurements were carried out continuously for 72 h. During this time, animals 

were provided free access to food and water through the equipped feeding and 

drinking devices located inside the chamber. Respiratory quotient (RQ) was 

calculated as VCO2 / VO2.   

 

Adipocyte Size Quantification 
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To begin analyzing the adipose tissue, 100-500 mg of epididymal white adipose 

tissue (eWAT) acquired during murine necropsy was weighed, placed into a 2.5 

mL tube and covered with 4% formalin for a minimum of 3 days. 48 hours prior to 

paraffin fixation samples were removed from formalin and placed into 70% 

ethanol. A Leica 2155 rotary paraffin microtome was subsequently used to face-

off to the apex of the fixed tissue following which a minimum of five 5 µm sections 

were made at 100 µm intervals across the entire sample. Slides were then 

placed in a 60°C oven for 1 hour to initiate deparaffinization, stained using Gills’ 

hematoxylin and eosin and mounted with a xylene based mounting media for a 

minimum of 24 hours prior to image acquisition. Using a Zeiss inverted confocal 

microscope 1-5 representative photos of each section were taken at 40X 

objective in black and white using an AxioCAM MrC. To quantify the area of the 

individual adipocytes a semi-automated custom image analysis was developed 

using MetaMorph Microscopy Automation and Image Analysis software. A 

description of the program is as follows. Based on the magnification, each image 

was first calibrated to a distance of 0.6812 µm pixel -1. Adipocyte cell membranes 

were enhanced by 3 pixels through erosion filtration to improve the cell 

boundaries.  Histological images were segmented by an inclusive threshold 

filtration (200 low and 255 high) creating a binary mask and converting the image 

to a 1-bit configuration. Any adipocytes with visible lacerations to the membranes 

were closed manually prior to continuing with the automated area quantification. 

To quantify the adipocyte areas, images were analyzed and adipocytes 

highlighted if they met the following four criteria; 1.The adipocyte contained an 

area between 500-15000 µm2, 2. The adipocyte had a shape factor of 0.35-1 (a 

shape factor of 0 indicating a straight line and 1 a perfect circle), 3. The 

adipocyte had an equivalent sphere surface area between 5000-1000000 µm2, 4. 

The adipocyte did not border the image frame. 70% of tissue adipocytes met 

these criteria and were picked up automatically while 10% of remaining 

adipocytes that met the aforementioned criteria, were not picked up by the 

automated program but were none-the-less incorporated in the analysis 

manually. To visualize the adipocytes more clearly and provide traceability for 
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their respective quantified areas, each adipocyte was subsequently labeled with 

a unique number. The unique adipocyte number and their respective area could 

then be exported for statistical analysis. To analyze the data ,adipocyte areas 

from each tissue were grouped and distributed according to their areas into bins 

representing 500 µm2 increments.  

 

Glucose Tolerance 

Mice were fasted for 16 hours with free access to water. Each mouse was then 

weighed and glucose measured from tail blood with Accu-Chek Aviva 

Glucometer (Roche).  After obtaining baseline glucose measurements, each 

mouse was then injected intraperitoneally with a sterile solution of D-glucose at 

1mg/kg.  Blood glucose measurements were then taken from tail bleeds for each 

animal at 15, 30, 60, 90 and 120 minutes.  

 

Insulin Tolerance 

Mice were fasted for 6 hours with free access to water. Each mouse was then 

weighed and glucose measured from tail blood with Accu-Chek Aviva 

Glucometer (Roche).  After obtaining baseline glucose measurements, each 

mouse was then injected intraperitoneally with a sterile solution of insulin at 

0.75U/kg.  Blood glucose measurements were then taken from tail bleeds for 

each animal at 15, 30, 60, 90 and 120 minutes.  

 

Food Intake 

Food dispensed into animal cages was initially weighed, and subsequently 

reweighed every 7 days for 5 weeks. Wasted food was also measured by sifting 

animal bedding and was deducted from consumed food weights.  

 

Osmium Staining 

BM adipocytes were labeled with osmium tetroxide as follows: first, bones were 

decalcified for 14 days in 14% EDTA, pH7.4; second, wash bones for 3 x 10 min 

in Sorensen’s Phosphate buffer, pH 7.4, or in PBS; third, stain bones in 1% 
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osmium tetroxide for 24 h; fourth, wash bones for 3 x 4-6 h in Sorensen’s 

Phosphate buffer, pH 7.4; fifth, re-scan bones with µCT, as described above; 

sixth, identify the tibia/fibula junction; seventh, determine the number of slices 

between the tibia/fibula junction and the growth plate in the same bone prior to 

decalcification, and then subtract this number to identify the growth plate on the 

osmium scan; eighth, use a threshold of 400 to quantify the marrow fat (exclude 

any fat in attached tissues) between the growth plate and tibia/fibula junction on 

the osmium-stained bone. Decalcification, osmium staining and wash steps were 

done at room temperature. 

 

 

µCT Scanning 

Mouse specimens were embedded in 1% agarose and scanned using a microCT 

system (µCT100 Scanco Medical, Bassersdorf, Switzerland). Agarose-embedded 

femoral heads of rabbits were placed in a 48 mm diameter tube prior to scanning 

the femoral neck using the following settings: voxel size 36 µm, 70 kVp, 114 µA, 

0.5 mm AL filter, and integration time 500 ms. Trabeculae were analyzed by 

contouring the inner trabecular compartment using the manufacturer’s software 

(Analysis #15: trabecular, threshold 220), starting 20 slices away from the growth 

plate and contouring every 10 slices for a total of 30 slices. Agarose-embedded 

mouse bones were placed in a 19 mm diameter tube prior to scanning the length 

of the bones using the following settings: voxel size 12 µm, medium resolution, 

70 kVp, 114 µA, 0.5 mm AL filter, and integration time 500 ms. Density 

measurements were calibrated to the manufacturer's hydroxyapatite phantom. 

Analysis was performed using the manufacturer’s evaluation software. Mouse 

cortical bone was analyzed with a threshold of 280, as follows: 1, the growth 

plates and tibia/fibula junction were identified and the distance in slices between 

the two calculated; 2, 70% of this distance was calculated and added to the 

growth plate landmark; 3, contour at this slice; 4, contour 30 slices up from this 

initial slice; 4, iterate between these two contours using an outer value of 0 and 

an inner value of 280, using the stop button to stop. Mouse trabeculae were 
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analyzed using a threshold of 180, as follows: 1, identify the growth plate and go 

down five slices; 2, draw an internal outline every 10 slices for 50 slices; 3, back-

calculate using an outer value of 272 and an inner value of 0. The total volume of 

mouse bones was determined by contouring around the entire bone between the 

growth plate and tibula/fibula junction, and then calculating the bone volume and 

total volume using a threshold of 220. 
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Figure 3.1. Male T1R3 KO mice have reduced adiposity on Western Diet. 
A) Body weight in WT (n=7) and T1R3 KO (n=8) animals after 24 weeks of Western Diet 
feeing. Data are expressed as mean plus S.D. Fat mass and lean mass as percent of 
body weight B) or in absolute mass C) measured by NMR in WT (n=7) and T1R3 KO 
(n=8) animals after 24 weeks Western Diet. Data are expressed as mean plus S.D. D) 
Mass of inguinal, epididymal, or perirenal fat pads, liver, and brown adipose tissue (BAT) 
following 24 weeks of Western Diet feeding. Data are expressed as mean plus S.D. 
Significance was determined using Student’s t-test. P-values <0.05 are indicated with #.  
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Figure 3.2 T1R3 KO mice have fewer large adipocytes but equal adipocyte number 
on Western Diet 
A) Adipocyte size frequency distribution in WT and T1R3 KO mice on Western Diet 
shows a shift towards smaller adipocytes in T1R3 KO animals. B) T1R3 KO animals 
show a decreased frequency of large adipocytes, defined as having a surface area 
greater than 7500 µm2, relative to WT animals following Western Diet feeding. 
Significance was determined using Student’s t-test. P-values <0.05 are indicated with # 
in male mice. Data are expressed as mean plus S.D. C) Epididymal fat pad weight was 
correlated with average adipocyte volume of WT and T1R3 KO mice to estimate number 
of adipocytes per gram adipose tissue.  
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Figure 3.3 T1R3 KO mice have no changes in glucose sensitivity. 
A) Non-esterified fatty acids measured from serum of WT (n=6) and T1R3 KO (n=9) 
mice. NEFA, non-esterified fatty acid. Data are expressed as mean plus S.D. B) Leptin 
measured from serum of male WT (n=7) and T1R3 KO (n=8) mice on Western Diet for 
24 weeks. Data are expressed as mean plus S.D. C) Intraperitoneal glucose tolerance 
test (left panel) in male WT (n=6) and T1R3 KO (n=9) mice on Western diet for 24 
weeks. Quantification of area under the curve (right panel). Data are expressed as mean 
plus S.D. D) Intraperitoneal glucose tolerance test (left panel) in female WT (n=8) and 
T1R3 KO (n=6) mice on Western diet for 24 weeks. Quantification of area under the 
curve (right panel). Data are expressed as mean plus S.D. E) Intraperitoneal insulin 
tolerance test (left panel) in male WT and T1R3 KO mice from C. Quantification of area 
under the curve (right panel). Data are expressed as mean plus S.D.Significance was 
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determined using Student’s t-test. P-values <0.01 are indicated with ##.  

 
Figure 3.4 T1R3 KO mice have sexually dimorphic reductions in adiposity on chow 
diet. 
A) Body weight (left panel), fat mass (middle panel), and lean mass (right panel) of male 
and female WT and T1R3 KO mice on chow diet were monitored for 18 weeks, starting 
at ~12 weeks of age. Male WT n=9, male KO n=9, female WT n=10, female KO n=9. B) 
Final body and tissue weights in grams (left panel) or as percent of body weight (left 
panel) of WT and T1R3 KO mice on Chow diet. Significance was determined using 
Student’s t-test. P-values <0.05 are indicated with * in female mice and # in male mice. 
Data are expressed as mean plus S.D. 
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Figure 3.5 T1R2 KO mice have reduced adiposity on Western Diet 
A) Body weight in WT(n=9) and T1R2 KO (n=9) mice on Western Diet for 14 weeks. B) 
Fat as percent of body weight or C) as mass in WT and T1R2 KO mice on Western diet 
for 14 weeks. D) Lean mass as percent of body weight or E) as mass in WT and T1R2 
KO animals on Western diet for 14 weeks. F) Adipose depot and liver weights following 
Western diet feeding. Data are expressed as mean and S.D. Significance was 
determined using Student’s t-test. P-values <0.05 are indicated with #. 



 97 

 
Figure 3.6 T1R2 KO mice have smaller adipocytes but equal adipocyte numbers. 
A)  Adipocyte size frequency distribution in WT and T1R2 KO mice on Western Diet 
shows a greater prevalence of smaller adipocytes in T1R2 KO animals. B) T1R2 KO 
animals show a decreased frequency of large adipocytes, defined as having a surface 
area greater than 7000 µm2, and in increased frequency of small adipocytes, defined as 
having a surface area smaller than 7000 µm2. Significance was determined using 
Student’s t-test. P-values <0.05 are indicated with # in male mice. Data are expressed 
as mean plus S.D. C) Epididymal fat pad weight was correlated with average adipocyte 
volume of WT and T1R3 KO mice to estimate number of adipocytes per gram adipose 
tissue.  
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Figure 3.7. T1R2 KO mice have no changes in glucose sensitivity. 
A) RQ and B) total activity were measured in WT (n=9) and T1R2 KO (n=9) male mice in 
Comprehensive Laboratory Animal Monitoring System (CLAMS) cages after 3 weeks on 
Western Diet. C) Food intake in T1R2 KO animals on Western Diet measured over 5 
weeks. Data are expressed as mean plus S.D. D) Random fed glucose from WT and 
T1R2 KO animals following 3 weeks on Western Diet. Males n=11,9, females n=9,10. 
Data are expressed as mean plus S.D. E) Intraperitoneal glucose tolerance in WT (n=9) 
and T1R2 KO (n=9) male mice following 20 weeks on Western Diet. Data are expressed 
as mean plus S.D. Significance was determined using Student’s t-test. F) Non-esterified 
fatty acids measured from serum of WT (n=9) and T1R2 KO (n=9) male mice following 
18 weeks on Western Diet. Data are expressed as mean plus S.D. 

6:
00

P
M

12
:0

0A
M

6:
00

A
M

12
:0

0P
M

6:
00

P
M

12
:0

0A
M

6:
00

A
M

12
:0

0P
M

6:
00

P
M

12
:0

0A
M

6:
00

A
M

12
:0

0P
M

3
:0
0
P
M

0.65

0.70

0.75

0.80

0.85

0.90
T1R2 WT

T1R2 KO

6:
00

P
M

12
:0

0A
M

6:
00

A
M

12
:0

0P
M

6:
00

P
M

12
:0

0A
M

6:
00

A
M

12
:0

0P
M

6:
00

P
M

12
:0

0A
M

6:
00

A
M

12
:0

0P
M

0

2000

4000

6000
T1R2 WT

T1R2 KO

T
o

ta
l
A

c
ti
v
it
y

(c
o

u
n

ts
/h

r)

Daily Cumulative
0
1
2
3
4
5

80

100

120

140

WT Male

T1R2 KO Male

WT Female

T1R2 KO Female

g
ra

m
s

W
T M

al
e

T1R
2 

K
O
 M

al
e

W
T F

em
al

e

T1R
2 

K
O
 F

em
al

e

0

50

100

150

200

G
lu

c
o

s
e

(m
g

/d
L

)

0 30 60 90 120 150
0

100

200

300

400 WT T1R2 KO

Time (min)

G
lu

c
o

s
e

(m
g

/d
L

)

A

C

B

D

E

WT T1R2 KO
0

200

400

600

800

1000

N
E

F
A

(
M

)

R
Q

F



 99 

 
Figure 3.8. T1R2 KO mice have fewer bone marrow adipocytes. 
A) Adult WT (left panel) and T1R2 KO (right panel) mice were placed on Western Diet 
for 14 wks, and bone marrow adipocytes were stained with osmium tetraoxide before 
µCT scanning. Representative µCT shown, WT n=9, T1R2 KO n=9. B) Quantification of 
osmium tetraoxide staining in tibia marrow adipose tissue from male WT and T1R2 KO 
mice on Western Diet for 14 weeks. Data are expressed as mean plus S.D. C) 
Representative osmium tetraoxide histology of bone marrow adipocytes in the proximal 
tibia. WT left panel, T1R2 KO right panel. Significance was determined using Student’s t-
test. P-values <0.05 are indicated with #, P-values <0.01 are indicated with ##. 
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Figure 3.9. T1R3 KO animals trend towards fewer bone marrow adipocytes. 
A) Bone marrow adipocytes from WT (n=7) and T1R3 KO (n=8) males on Western Diet 
for 24 weeks were quantified by manually counting adipocytes in stained femoral 
sections. Significance was determined using Student’s t-test. Data are expressed as 
mean plus S.D. 
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Figure 3.10. T1R2 KO animals have increased trabecular bone. 
WT (n=9) and T1R2 KO (n=9) male mice were placed on Western Diet for 14 weeks, as 
in Fig 3.5. Cortical (A,B,C) and trabecular (D,E,F) parameters were evaluated by µCT for 
the tibia. Significance was determined using Student’s t-test. P-values <0.05 are 
indicated with #, P-values <0.01 are indicated with ##, and P-values <0.005 are indicated 
with ###. Data are expressed as mean plus S.D. 
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Figure 3.11. T1R3 KO animals have increased cortical and trabecular bone. 
WT (n=7) and T1R3 KO (n=8) mice were placed on Western Diet for 24 weeks, as in Fig 
2. Cortical (A,B) and trabecular (C) parameters were evaluated in the femur by µCT. 
Significance was determined using Student’s t-test. P-values <0.05 are indicated with #, 
P-values <0.01 are indicated with ##, and P-values <0.005 are indicated with ###. Data 
are expressed as mean plus S.D. 
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Chapter Four 

Future Directions for Sweetener and Taste Receptor Biology 

 

Summary 
 At the initiation of this thesis work, we hypothesized that sweet taste 

receptors functioned as nutrient sensors by sensing carbohydrate in adipose 

tissue. This receptor activation would serve as a positive nutrient signal to 

stimulate adipogenesis in preadipocytes and anabolic processes in adipocytes 

(Fig 1.4). This hypothesis was based on the known metabolic roles for sweet 

taste receptors in other non-gustatory tissues (Jang et al., 2007; Kyriazis et al., 

2012) and microarray data indicating that chemosensory receptors were 

expressed in adipose tissue (Fig 2.1). We tested this hypothesis by treating 

adipocytes and adipocyte precursor cells with sweet taste receptor agonists to 

observe effects of receptor activation. Using this approach, we observed that 

saccharin or AceK treatment enhances adipogenesis in several model systems 

(Fig 2.3) and suppresses lipolysis in adipocytes (Fig 2.9). However, these effects 

were not dependent on expression of sweet taste receptors T1R2 or T1R3 (Fig 

2.8 and 2.10). This observation suggests that sweeteners have metabolic input in 

the absence of a known receptor, and leaves the actual function of sweet taste 

receptors in adipose tissue an open question. 

  

Concurrent with these in vitro studies, we also evaluated T1R2 and T1R3 

KO mice for adipose tissue phenotypes, anticipating that KO animals would have 

failures in adipogenesis or anabolic processes that might result in metabolic 

dysfunction. We observed that both T1R2 and T1R3 KO mice have reduced 

adiposity (Fig 3.1 and 3.5) and smaller adipocytes (Fig 3.2 and 3.6) on a Western 
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diet, but have equal numbers of adipocytes and are metabolically normal by all 

tested parameters. These results suggest that while sweet taste receptor 

expression may play a role in regulating peripheral adipose expansion in vivo, 

this effect is not strong enough to robustly impact metabolic homeostasis. 

However, the loss of bone marrow adipocytes with T1R2 KO and increased bone 

mass in both T1R2 and T1R3 animals suggests that these receptors may play a 

more complex role in an adipogenesis-osteogenesis development axis.  

 

While the above work represents the characterization of a novel role for 

sweet taste receptors and artificial sweeteners in adipose tissue and bone 

biology, it also engenders numerous questions for further study of chemosensory 

receptors in metabolic systems.  
 
How are artificial sweetener effects mediated in the absence of taste 
receptors? Perhaps the most pressing question engendered by the present 

study is the mechanism by which saccharin and AceK mediate effects on 

adipogenesis and lipolysis in the absence of T1R2 or T1R3. In preadipocytes, 

saccharin treatment stimulates phosphorylation of Akt, which has never been 

reported in sweet taste receptor signal transduction. Sweetener treatment in this 

system also fails to generate calcium transients characteristic of sweet taste 

receptor signaling. These data, taken together with the observation that T1R2 

and T1R3 expression are not necessary for any downstream effects of saccharin 

treatment, suggests that an independent receptor and signaling pathway are 

utilized for sweetener actions on adipocyte precursors.  

  

Since the initiation of this study, Masubuchi et al have reported that T1R2 

and T1R3 are expressed in 3T3-L1 cells (Masubuchi et al., 2013). This group 

shows constitutively low expression of T1R2 and a 90-fold increase in T1R3 

expression throughout adipogenesis. In their model, saccharin and sucralose 

inhibit adipogenesis while stimulating cAMP accumulation, with no mention of 

calcium signaling. They show that while T1R3 expression is necessary in 
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HEK293 cells to drive sweetener-stimulated increases in cAMP concentrations, 

the addition of T1R2 blocks the T1R3 response. This would imply that T1R2 acts 

as an antagonist in this context, in contrast to numerous studies (Jiang et al., 

2005; Nelson et al., 2001; Xu et al., 2004). They conclude that T1R3 acts as 

homodimer in 3T3-L1 cells because T1R2 expression is very low and T1R3 

knockdown blocks saccharin-inhibited adipogenesis.   

 

This study presents similarities and disparities with our own work that can 

hopefully be resolved with further experimentation. While we agree on a non-

canonical model of taste perception, our results suggest that sweetener activity is 

independent of both T1R2 and T1R3, in contrast to their T1R3-dependent model. 

However, this group did not test for saccharin effects on adipogenesis in the 

absence of T1R2, which would add support to their T1R3 homodimer model. In 

addition, we show an enhancement of adipogenesis with saccharin treatment, 

while they report an inhibition. Although we have not identified any 

methodological differences that might cause such disparities, even after direct 

contact with the authors, repetition of these experiments in independent labs will 

hopefully clarify this issue. Though it seems most likely that divergent reagents 

and/or methods are the root cause of opposing phenotypes with sweetener 

treatment, the role of sweet taste receptors in adipogenesis is testable by 

independent means.  

 

Homodimerization models suggest that both T1R2 and T1R3 are capable 

of independently binding ligand. Thus it is possible that saccharin might activate 

T1R2 in T1R3 KO cells and vice versa. Double T1R2;T1R3 KO cells would 

alleviate this confounding possibility. While our preliminary data indicates that 

saccharin robustly enhances adipogenesis in double KO eMSCs (data not 

shown), further experiments are necessary to better characterize this 

observation. A more direct assessment of saccharin binding in single and double 

KO eMSCs can also be performed by STD NMR, with quantification of receptor 

Kd values (Assadi-Porter et al., 2008). Using this technique to quantify saccharin 
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bound to membranes of eMSCs from a panel of genotypes, the capacity for 

homodimer binding can be directly measured. Additionally, NMR analysis of 

T1R2;T1R3 double KO eMSCs will quantitatively address whether any other 

receptors are present in these cells capable of binding saccharin.  

  

What is the function of sweet taste receptors in adipose tissue in vivo? Is 
there an endogenous ligand for receptor activation?  

In vitro, we have not observed any effects of sweetener treatment that 

were dependent on receptor expression. However, our in vivo results indicate 

that sweet taste receptor KO mice have reduced adiposity and adipocyte size. 

However, these receptors are also expressed in non-adipose tissues, and global 

receptor deletion in our mice makes a mechanistic interpretation of these 

observations more difficult. While we can hypothesize that the reduced adiposity 

and adipocyte size in KO animals supports a role for sweet taste receptors in 

regulating adipose tissue expansion or lipid utilization, a tissue-specific KO will 

be necessary to address these issues. A tissue-specific KO model may also 

uncover additional, specific roles for sweet taste receptors in adipose tissue in 

vivo that are obscured in a global KO model.    

 

While T1R2 and T1R3 activity was stimulated in vitro with artificial 

sweeteners, these compounds are not predicted to circulate at high enough 

concentrations under normal dietary conditions to activate receptors in vivo; 

activation of sweet taste receptors on the tongue generally requires low 

millimolar concentrations of saccharin or ~100 mM of natural sugars, which are 

well above those generally circulating (Nelson et al., 2001; Piche et al., 2004; 

Sweatman et al., 1981). If sweet taste receptors are to be activated in vivo, this 

may necessitate the existence of additional, uncharacterized ligands present 

endogenously that can regulate their activity. Glucose has been shown to drive 

T1R2 and T1R3 activation in vivo in the gut, where local concentrations of sugars 

in the lumen can be much higher than those circulating (Ferraris et al., 1990; 

Olsen and Ingelfinger, 1968). In the pancreas, fructose has been shown to 
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stimulate insulin secretion at low millimolar concentrations in a T1R2-dependent 

manner, but only in the presence of adequate concentrations of glucose. This 

suggests a more complex synergy model for physiological ligand binding in this 

context (Kyriazis et al., 2012).  

 

Candidate metabolites to activate adipose tissue sweet taste receptors in 

vivo also include glucose and fructose, though these sugars would presumably 

need to be circulating in higher concentrations or subject to ligand ‘synergy’ as 

seen in the pancreas. It is also possible that in adipose tissue, the presence of 

glycosylated surface proteins might provide a ‘sticky’ local environment that traps 

circulating sugars and raises local concentrations. Alternatively, some proteins 

have also been reported to activate sweet taste receptors (Assadi-Porter et al., 

2005; Bohak and Li, 1976), and the amino acids glycine, alanine, and serine are 

mildly sweet (Schiffman et al., 1981). Whether dietary or synthesized and 

secreted, protein activation could also be the driving force for sweet taste 

receptor activation in adipose tissue.  

 
Do sweet taste receptors play a role in bone biology? 
 We have reported that sweet taste receptor KO mice have increased bone 

mass. This result was unexpected, as we know of no reports of sweet taste 

receptor expression or activity in bone. This observation could be further 

explored by examination in vitro; osteogenesis can be compared between WT 

and taste receptor KO animals in bone marrow stromal cells, and in the presence 

or absence of artificial sweeteners. If the expected decreases in mineralization 

occur in response to sweetener treatment, these can then be evaluated for 

dependence on receptor expression using KO models. Observing repetition of 

KO effects in an in vitro system would add credence to the specificity of in vivo 

effects. A bone-specific KO of T1R2 and T1R3 would also further clarify whether 

increases in bone mass are secondary to increased lean mass or reflect 

endogenous sweet taste receptor activity in bone. 
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Are other chemosensory receptors functional in adipose tissue? 
 Our microarray results indicate that numerous chemosensory receptors, 

including olfactory, volmeronasal, and taste receptors, are expressed in adipose 

tissue. However, very few of these receptors have been investigated for 

physiological roles in adipose tissue. However, preliminary experiments suggest 

that some may be worth exploring. 

 

T1R1 

The umami taste receptor, a heterodimer of T1R1 and T1R3, is sensitive 

to L-amino acids and generates a ‘savory’ sensation from protein-rich food. Like 

sweet taste receptors, T1R1 is also expressed in non-gustatory systems (Daly et 

al.; Meyer et al.). The inherent amino acid-sensing capacity of T1R1 has led 

some groups to speculate that this receptor might also function as a nutrient 

sensor. Indeed, T1R1 was recently reported as a regulator of mTORC activity 

and autophagy in muscle (Wauson et al.). Interestingly, we have also observed 

that T1R1 is expressed in 3T3-L1 cells and eMSCs (Adam Bree, unpublished). 

Similar to sweet taste receptors, treatment of preadipocytes with amino acid 

stimulates Akt phosphorylation, but in a T1R3-dependent manner. This data 

supports a model for umami receptors acting as nutrient sensors in 

preadipocytes. Direct studies of umami receptor activity on adipogenesis are 

hampered by the relative dearth of non-metabolized receptor agonists; however, 

at least one such agonist has been synthesized (Zhang et al., 2008) that may 

allow investigation of effects of umami receptor activation on adipogenesis. Such 

a sensor could have role in autophagy as described in muscle, or in protein and 

hormone synthesis or secretion. 

 

T2Rs 

Bitter taste receptors were also detected in adipose tissue by our 

microarray, and have been shown to be active in the gut and trachea (Jeon et al., 

2008; Shah et al., 2009). In these systems, bitter taste receptors are sensitive to 

potentially toxic compounds. However, bitter taste receptor polymorphisms have 
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also been associated with perturbed glucose and insulin homeostasis (Dotson et 

al., 2008). Additionally, treatment with the malarial drug and bitter tastant quinine 

causes hypoglycemia (Jones et al., 1986), though this side effect likely has 

complex causes (Gribble et al., 2000; Singh et al., 1998). Three biter taste 

receptors were identified in adipose tissue by microarray (Fig 2.1), and all have 

been detected in 3T3-L1 cells by qPCR. While the pharmacology of these 

particular receptors is unknown, we have observed that treatment with the 

agonist quinine results in enhanced adipogenesis (data not shown). Further 

studies will be necessary to determine if this is a direct effect of taste receptor 

activity.  

  

 Olfactory receptors 

 Functional expression of olfactory receptors outside of the olfactory bulb 

has been a lofty but elusive goal of many sensory scientists. Most groups have 

described co-expression of known olfactory signaling components in the tissue of 

interest in lieu of demonstrated receptor activation (Itakura et al., 2006; Pluznick 

et al., 2009). However, the incredibly broad structural diversity of olfactory 

receptor ligands makes these receptors a perennial candidate for nutrient 

sensing studies. The majority of the chemosensory receptors detected in adipose 

tissue by microarray were olfactory receptors (Fig 2.1). We detected ~22 

olfactory receptors in 3T3-L1 cells by qPCR, and have screened ~20 odorants for 

effects on adipogenesis; most compounds had no effect (data not shown). 

However, the complex pharmacology of olfactory receptors does not preclude the 

possibility that the correct agonist(s) for the receptors present were not used, or 

our in vitro conditions were not suited for detecting receptor activation. High- 

throughput screening may be a better method to address the question of 

olfactory receptor function in adipose tissue, perhaps combined with knockdown 

of canonical olfactory signaling components. While whether olfactory receptor 

function is involved in adipose biology is one of the most difficult questions 

presented here to definitely answer, but it could prove a fascinating and 

pharmacologically useful area of study.  
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