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Abstract 

Motor vehicle crashes were estimated to be the eleventh leading cause of death in 

United States in 2009. The percentage of fatal crashes in which driver distraction was a 

causal factor increased from 10% in 2005 to 16% in 2009, and this was particularly likely 

for systems with visual-manual driver interfaces, such as infotainment systems. Using a 

speech interface to operate infotainment systems while driving can potentially reduce 

driver distraction. Unfortunately, evaluations of driver interfaces are typically conducted 

after the hardware and software are developed, which is often too late to make changes.  

An alternative approach is to model driver task performance when using speech 

interfaces and to use the model to predict system performance early in design when 

changes are easier to make. The purposes of this research are to understand how drivers 

interact with current in-vehicle speech interfaces and based on that knowledge, develop 

and validate a simulation model of how drivers interact with speech interfaces to aid 

speech-interface development. Specifically, this model will predict user task performance 

(task completion times and errors) when drivers interact with in-vehicle speech-

controlled interfaces to complete destination entry and music selection tasks. 

To develop the simulation model, a preliminary survey and a driving simulator 

experiment were conducted to identify how these tasks are carried out and the values for 

the process parameters. First, using a survey, frequency data for tasks and methods, (e.g., 

how often destinations are selected using street addresses vs. point of interest), and the 



 xix

content in user-generated databases (e.g., prior destination lists, play lists, etc.) were 

collected to assure that real tasks and constraints are considered in the simulation model. 

Next, a driving simulator experiment involving 48 subjects interacting with an existing 

in-vehicle speech interface was conducted to understand how drivers perform destination 

entry and music selection and to determine the time drivers need to construct utterances 

(and their distributions), the types of errors drivers make (and their probability), and the 

probability of various correction strategies are used for each type of error. Half of these 

data were used to create the simulation model structure and provide the model parameters 

for entering destinations and selecting music using speech. Finally, the simulation model 

was validated for these two tasks using the second half of the data from the previous 

experiment. 

This research provides a model (both structure and content) for use with existing 

simulation software packages to predict user task performance with speech interfaces in 

motor vehicles.  Use of this model supports the design of safer and easier to use speech 

interfaces in vehicles that can minimize eyes-off-road time and should reduce crash risk, 

and thereby protect public health.  This model can be exercised to examine alternative 

speech interface configurations months before a physical interfaces is available for user 

testing when changes are easier to make, which saves time, reduces cost, and improves 

the quality of the interface produced. 

 



 1

 CHAPTER 1

Introduction 

1.1 Research Background 

In recent years, MP3 players, navigation systems, and other systems have been 

introduced into motor vehicles. The number and types of these systems, as well as their 

use, is expected to grow considerably. Most of those systems have visual-manual 

interfaces that require drivers to look away from the road to operate them, which could 

lead to distraction-related crashes. One potential way to reduce distraction and the 

associated crash risk is to use speech interfaces instead of visual-manual interfaces. The 

major weakness of the state of art is that the usability of speech interfaces is assessed 

experimentally by having real users try them, and collecting task time and error data. 

Often that process occurs late in design, when the design of the interfaces is complete, so 

such tests may have little impact on what is produced. An alternative developmental 

approach to testing is to model driver performance, in the case of using a speech 

interface, and to use the model to predict system performance early in design. 

Accordingly, the major goal of this research is to develop a simulation model of driver 

use of two in-vehicle applications – destination entry and music selection. 
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1.2 Rationale  

Motor vehicle crashes were estimated to be the eleventh leading cause of death in the 

United States in 2009 [1]. According to the Fatality Analysis Reporting System, there 

were 30,797 motor vehicle crashes resulting in 33,808 deaths in 2009 [2]. Fatal crashes in 

which driver distraction was a major cause increased from 10% in 2005 to 16% in 2009 

[2]. Distracting tasks such as adjusting radio, cassette, CD, using/dialing cellular phone, 

and adjusting vehicle/climate controls accounted for 19% of distraction-related crashes 

[3]. Over time, frequent distracting tasks have changed from CD and cassette use to MP3 

player use and various tasks associated with navigation systems, as well as other recently 

introduced systems.  The use of all of these newer systems is expected to grow 

considerably. To operate systems with visual-manual interfaces, drivers must look away 

from the road, which could lead to distraction-related crashes. Research has shown that 

the chance of crashes increases when the eyes-off-road duration is greater than 2 seconds 

[4]. To reduce driver distraction, the National Highway Traffic Safety Administration 

(NHTSA) of the U.S. Department of Transportation (DOT) posted proposed visual-

manual driver-distraction guidelines for in-vehicle electronic devices for public comment 

on February 15, 2012 to encourage manufactures to develop “less distracting” in-vehicle 

electronic devices 

(http://www.nhtsa.gov/About+NHTSA/Press+Releases/2012/U.S.+Department+of+Trans

portation+Proposes+'Distraction'+Guidelines+for+Automakers, retrieved May 15, 2012).  

Revised guidelines were released on April 23, 2013 

(http://www.nhtsa.gov/staticfiles/nti/distracted_driving/pdf/distracted_guidelines-

FR_04232013.pdf. Retrieved April 23, 2013).  
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Using a speech interface instead of a visual-manual interface for in-vehicle tasks 

is one potential way to reduce crash risk. Research has shown that using speech interfaces 

resulted in better driving performance, fewer and briefer off-road glances, and less 

workload than the visual-manual interfaces [5-13]. Although using a speech interface can 

reduce eyes-off-road time, speech interfaces still impose a cognitive demand, which can 

also interfere with the primary driving task. Lee et al showed that drivers’ reaction time 

increased by 180 ms while a complex speech-controlled e-mail system was used when 

compared with a simple system[14]. They also reported that subjective workload ratings 

and probe questions also introduced a significant cognitive load, which was highest for 

the complex e-mail system. To assess usability of speech interfaces experimentally 

involves having real users try them, and collecting task time and error data, evaluations 

that often occur late in design [5-13, 15, 16]. In fact, such evaluations often occur when 

the design of the interfaces is complete, so such tests may have little impact on what is 

produced, a major weakness of the state of art.  

An alternative approach is to model driver task performance while using a speech 

interface, and to use the model to predict system performance early in design. Because 

task times and probabilities are not strictly deterministic, but vary from instance to 

instance and driver to driver, it is appropriate to model system performance using Monte-

Carlo simulation methods. 

A Monte-Carlo simulation can be represented as a flow diagram or a task 

network, often with tasks looping back (as when a system asks a person to repeat what 

they said, over and over). Tasks have duration distributions (normal, exponential, etc.), 

and there are rules or probabilities to determine which task is next. A flow chart for a 
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hypothetical simulation model is shown in Figure 1-1. Beginning at the first task in the 

model, values are randomly selected from the time distribution and following the rules 

for that task which determine the time so far and the next task. The process is repeated 

until an ending task is reached, which provides the total duration and path for a single 

pass. This, in turn, is repeated to develop a time distribution for the task network. 

Because speech interfaces often have task sequences that involve looping back, 

deterministic computations of total task time are very difficult, if not impossible to 

compute.  For example, a user could say something that the system may or may not 

understand.  In some instances, the user may need to repeat the utterance several times 

before what they say is understood, and they may change what they say and how they say 

it to aid recognition.  (Machine: “Please say a state.” User: “Michigan.” M: “Do not 

understand. Please say a state.”  U: “Michigan.” M: “Do not understand. Please say a 

state.”  U: “Mee-she-gan.”  M: “Please say a city.” …) 

 
Figure 1-1. A Hypothetic Flow Chart for Driver and Speech Interface Interaction 
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1.3 Research Objectives   

The goal of this research is to understand the interaction of drivers and an existing 

speech interface and to provide a model structure (the tasks users perform and their 

sequence for various error contingencies) and data (either distributions of task time or 

predictions of them from various task variables, as well as estimates of error 

probabilities) for use with existing discrete-event simulation software packages to predict 

user task performance with speech interfaces in motor vehicles. This supports the design 

of safer and easier to use speech interfaces in vehicles that can minimize how long and 

how often drivers look away from the road.  That, in turn, should reduce crash risk and 

thereby protect public health.  

This effort was undertaken in three distinct phases:  

1. Conduct a preliminary survey to determine task frequencies, and the information 

in user-generated databases (e.g., prior destination lists, play lists, etc.) to assure 

that real tasks and constraints are considered in the model. 

2. Conduct a driving simulator experiment examining existing in-vehicle speech 

interfaces to understand how drivers perform destination entry and music 

selection and to determine the time drivers need to construct utterances (and their 

distributions), the types of errors drivers make and their probabilities, and the 

probability of various correction strategies are used for each error. These data will 

help determine the model structure and parameter values. 

3. Develop and validate a simulation model to predict the user performance with a 

speech interface for destination entry and music selection tasks. 
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1.4 Thesis Outline 

Based on the above research objectives, this thesis is comprised of five subsequent 

chapters. The outline is summarized as follows: 

Chapter 2 - Review of Related Studies: This chapter reviews previous human factors 

research, and linguistics terms and principles related to this thesis research.  

Chapter 3 – Survey of Navigation Systems and MP3 Players Use by Typical Drivers 

and Auto Experts: This chapter provides data on how and for what purposes drivers use 

navigation devices and MP3 players. These data are used to identify test conditions for 

the next experiment, as well as relevant variables and parameters for the simulation 

model to be built. 

 Chapter 4 – Destination Entry and Music Selection Using Speech in a Driving 

Simulator: This chapter provides data on the time drivers need to construct utterances 

(and their distributions), the types of errors that drivers make and their probability, and 

the probability of various correction strategies used, data used to construct a simulation 

model of driver use of speech interfaces. 

Chapter 5 – Development of a Simulation Model to Predict Driver Task Performance 

Using Speech While Driving for Destination Entry and Music Selection Tasks: This 

chapter describes the construction and validation of a simulation model to predict the 

driver task performance with a speech interface for destination entry and music selection. 

Chapter 6 – Discussion, Conclusions and Future Work: The final chapter summarizes 

the impact of this research and discusses future research directions. 
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 CHAPTER 2

Review of Related Studies 

In this chapter, previous studies, and linguistics terms and principles related to this 

thesis research are reviewed. The studies give insight into the motivations and 

applications of this research, as well as reviewing contemporary technologies. After 

reviewing these studies, the author summarizes and describes how to address these 

problems based on this thesis work.  The major content of this chapter is reproduced from 

the author’s previously published paper: “Development and Evaluation of Automotive 

Speech Interfaces: Useful Information from the Human Factors and Related Literature,” 

published in the International Journal of Vehicular Technology, 2013 [17].  

2.1 Examples of Automotive Speech  

In the U.S., current speech interfaces include Ford SYNC, Chrysler UConnect, GM 

MyLink, Hyundai Genesis, Toyota navigation with EntuneTM, and others.  The 

commonly supported applications are navigation (e.g., entering destination, following 

route guidance, and receiving traffic information) and music (selecting, playing, and 

pausing songs on MP3 players, AM/FM/XM radios), as well as those related to cellular 
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phones (answering and placing calls, searching contact lists, and various tasks associated 

with text messages). 

These systems were developed based on ideas from a number of predecessor systems 

(Tables 2-1 and 2-2). Notice that the core functions were navigation, music selection, and 

cellular phone support, and that many of them started out as either university or 

collaborative research projects involving several partners. In several cases, the result was 

either a product or ideas that later led to products. Of them, probably SYNC has 

received the most attention.  

The best-known nonautomotive natural speech interface is Siri, released by Apple in 

October 2011. Siri can help users make a phone call, find a business and get directions, 

schedule reminders and meetings, search the web, and perform other tasks supported by 

built-in apps on the Apple iPhone 4S and iPhone 5.  

Similarly, Google’s Voice Actions supports voice search on Android phones 

(http://www.google.com/mobile/voice-actions/, retrieved May 14, 2012). This application 

supports sending text messages and email, writing notes, calling businesses and contacts, 

listening to music, getting directions, viewing a map, viewing websites, and searching 

webpages. Both Siri and Voice Actions require off-board processing, which is not the 

case for most in-vehicle speech interfaces.  
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Table 2-1. Examples of Well-Known Automotive Speech Interfaces and Applications They Support 

System Research/
Product 

Navigation Restaurant 
finder 

Music  
selection 

Audio  

+ CD 

Car 
info

Traffic 
info 

Cellular 
phone  

Text  
message

CHAT [18], [19] Research X X X      

CU Move [20] Research X     X   

Ford Model U [21] Research X  X  X  X  

Linguatronic [22] Product X  X  X  X  

SENECA [9] Research X   X   X  

SYNC [23] Product X  X  X  X X 

VOIC [24] Research X  X  X X   

Volkswagen [16] Product X      X  
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Table 2-2. Origins of Some Well-Known Automotive Speech Applications 
System Full Name Developed by 

CHAT 
Conversational Helper for Automotive 
Tasks 

Center for the Study of Language and Information at Stanford University, 
Research and Technology Center at Bosch, Electronics Research Lab at 
Volkswagen of America, and Speech Technology and Research Lab at 
SRI International. [18], [19] 

CU Move Colorado University Move University of Colorado speech group in 1999. [20] 

Ford Model U  Ford. [21] 

Linguatronic  
DaimlerChrysler Research and Technology in Ulm, Germany and TEMIC 
in 1996. [22] 

SENECA 
Speech control modules for 
Entertainment, Navigation, and 
communication Equipment in CArs 

EU-project involving DaimlerChrysler, TEMIC Research and Department 
of Information Technology, University of Ulm. [9] 

SYNC  Ford in collaboration with Microsoft and Nuance. [23] 

VOIC Virtual Intelligent Co-Driver 
European project funded by five different partners: Robert Bosch GmbH, 
DaimlerChrysler AG, ITCirst, the University of Southern Denmark, and 
Phonetic Topographics N.V. [24] 

Volkswagen  Volkswagen. [16] 
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2.2 Speech Interface Use 

Real-world data on the use of speech applications in motor vehicles is extremely 

limited. One could assume that anyone who drives is a candidate user, but one could 

speculate that the most technically savvy are the most likely users. 

How often these interfaces are used for various tasks is largely unknown. The authors 

do not know of any published studies on the frequency of use of automotive speech 

interfaces by average drivers, though they probably exist. 

The most relevant information available is a study by Lo et al. [25] concerning 

navigation-system use, which primarily concerned visual-manual interfaces. In this study, 

30 ordinary drivers and 11 auto experts (mostly engineers employed by Nissan) 

completed a survey and allowed the authors to download data from their personal 

navigation systems. Data was collected regarding the purpose of trips (business was most 

common) and the driver’s familiarity with the destination. Interestingly, navigation 

systems were used to drive to familiar destinations. Within these two groups, use of 

speech interfaces was quite limited, with only two of the ordinary drivers and two of the 

auto experts using speech interfaces. The article also contains considerable detail on the 

method of address entry (street address being used about half of the time followed by 

point of interest (POI)) and other information useful in developing evaluations of 

navigation systems. 

Also relevant is the Winter et al. [26] data on typical utterance patterns for speech 

interfaces, what drivers would naturally say if unconstrained. Included in that paper is 

information on the number and types of words in utterances, the frequency of specific 
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words, and other information needed to recognize driver utterances for radio tuning, 

music selection, phone dialing, and POI and street-address entry. Takeda et al. [27] 

presents related research on in-vehicle corpora, which may be a useful resource to 

address on who, when, and how often drivers used the speech interfaces.  

2.3 Key Research Findings on the User Performance 

Comparisons of Using Speech Interfaces vs. Visual-Manual 

Interfaces.  

There have been a number of studies on this topic. Readers interested in the research 

should read Barón and Green [28] and then read more recent studies. 

Using Barón and Green [28] as a starting point, studies of the effects of speech 

interfaces on driving are summarized in four tables. Table 2-3 summarizes bench-top 

studies of various in-vehicle speech interfaces. Notice that the value of the statistics 

varied quite widely between speech interfaces, mainly because the tasks examined were 

quite different. As an example for CU-Communicator [29], the task required the subject 

to reserve a one-way or round-trip flight within or outside the United States with a phone 

call. Performing this task involved many turns between users and machines (total 38 

turns) and the task took almost 4.5 minutes to complete. Within speech interfaces, task-

completion time varied from task to task depending upon the task complexity [24], [16]. 

Table 2-4, which concerns driving performance, shows that the use of speech 

interfaces as opposed to visual-manual interfaces led to better lane keeping (e.g., small 

standard deviation of lane position). 
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Table 2-3. Speech Interface Performance Statistics from Selected Bench-Top Studies 

System CHAT [19] CHAT [18] CU Communicator 
[29] 

CU Move 
[20] 

SENECA [9] VOIC [24] Volkswagen 
[16]  

Tasks 1. NAV 

2. Restaurant 
Finder 
(RF) 

1. MP3 

2. Restaurant 
Finder (RF)  

1. Phone for travel 
plan 

1. NAV 1. NAV 

2. Phone Dialing 

3. Address Book 

1. NAV 

2. Current time 

3.Tourism 

4. Fuel 

5. Car Manual 

6. Hotel 
Reservation 

7. Traffic 
Information 

1. NAV 

2. Map 
Control 

3. Phone 

Completion Time (s)   260.3  Mean: 63 1. 73 

2. 15 

3. 146 

4. 78 

5. 57 

6. 180 

7. 53 

    

Completion Rate 98% MP3: 98% 

RF: 94% 

73.6%  Mean: 79%   

Turns1 2.31 RF: 4.11 User: 19 

Machine: 19 

    

Word Recognition 
Accuracy2 (%) 

NAV: 85.5% 

RF: 85% 

MP3: 90% 

RF: 85% 

     

Word Error Rate (%)   26% 30-65%    
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User Satisfaction 
Rating3 

1.98 MP3: 2.24 

RF: 2.04 

     

Notes:   1. Turn is defined as one user utterance to the system during a dialog exchange between the user and the system while 
attempting to perform the task. 

 
2. Word Recognition Accuracy (WA) 

  WA = 100 (1 – (Ws + Wi + Wd) / W ) % 
  W: Total number of words in reference 
  Ws: number of reference words that were substituted in output 
  Wi: Number of reference words that were inserted in output 
  Wd: Number of reference words that were deleted in output 
 

3. User Satisfaction Rating: 1 = strong agreement; 5 =strong disagreement
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Table 2-4.  Driving Performance Statistics from Selected Studies (S: speech; M: manual, K: Keyboard) 

Study Method Lane Keeping Brake 
Reaction Time

Peripheral Detection Time Following Distance 

Carter & Graham [5] Simulator S < M S < M   

Forlines et al. [6] Simulator S < M No diff.   

Garay-Vega et al. [30] Simulator No diff.    

Gärtner et al. [31] On road S < M    

Itoh et al. [7] Simulator S < M No diff.   

Maciej & Vollrath [8] Simulator S < M    

McCallum et al. [13] Simulator No diff. No diff.   

Minker et al. [9] On road S < M    

Ranney et al. [10] On road   S < M (0.8 vs. 0.87 s)  

Shutko et al. [11] Simulator S < M  S < M (Except incoming call)  

Tsimhoni et al. [32] Simulator S < K   S < K (88 vs. 167m) 

Villing & Larsson [33] On road     
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Table 2-5 shows that task completion times for speech interfaces were sometimes less 

than for visual-manual interfaces and sometimes greater, even though people speak faster 

than they can key-in responses. This difference is due to the inability of the speech 

interface to correctly recognize what the driver says, requiring utterances to be repeated.  

Speech recognition accuracy has been an important factor that affects the task 

performance. Kun et al. [34] reported that low recognition accuracy (44%) can lead to 

greater steering angle variance. Gellatly et al. [35] reported that driving performance 

(peak lateral acceleration, peak longitudinal acceleration) was not statistically affected 

until the 60% recognition accuracy level was reached. Gellatly et al. [35] also showed 

that the task completion time was also affected when the speech recognition accuracy 

was lower than 90%. Although speech recognition accuracy was found to affect driving 

and task performance, no research has been reported on drivers’ responses to errors, how 

long drivers need to take to correct errors, or what strategies drivers use to correct errors. 

Understanding how users interact with the spoken dialogue systems can help designers 

improve system performance and make drivers feel more comfortable using speech 

interfaces. 

Table 2-6 shows that when using speech interfaces while driving, as opposed to 

visual-manual interfaces, subjective workload was less, fewer glances were required, and 

glance durations were shorter. 

In general, driving performance while using speech interfaces is generally better than 

when using visual-manual interfaces. That is, speech interfaces are less distracting. 
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Table 2-5. Task Performance Statistics from Selected Studies (S: speech; M: manual) 

Study Task Completion Time Speech Recognizer Rate Task Completion Rate 

Carter & Graham [5] S > M 92.7%  

Forlines et al. [6] S < M (18.0 vs. 25.2 s)   

Garay-Vega et al. [30] S (dialog-based) > M 

S (query-based) < M 

  

Gärtner et al. [31] S > M 

Simple: 24.6 vs. 12.8 s 

Complex: 74.4 vs. 58.7 s 

79.4% (recognition error rate: 
20.6%) 

 

Minker et al. [9] S < M (63 vs. 84 sec)  S < M (79 vs. 90 %) 

Ranney et al. [10] No difference   

Shutko et al. [11] S < M (Except dialing phone)   

Villing & Larsson [33] S > M   
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Table 2-6. Subjective Rating and Driving Behavior Statistics from Selected Studies (S: speech; M: manual) 

Study Subjective Rating Driving Behavior - Glances 

Workload  Preference Glance Duration Number of Glances 

Carter & Graham [5] S < M    

Faerber et al. [36]  S is preferred Radio or CD control: 

M: 1 s; S: 1/3 s 

Using phone: M: 1 s 

Radio or CD control: 

M: 3; S: 1.1  

Using phone: M: 12; S: 0 

Garay-Vega et al. [30] S (query-based) < M  S < M  

Gärtner et al. [31] No difference   Simple task: no difference. 

Complex tasks: S < M  

Itoh et al. [7] S < M  S < M  

Maciej & Vollrath [8]   S < M  

McCallum et al. [13] S < M    

Minker et al. [9]  S is preferred   

Shutko et al. [11]   S < M (Except receiving 
an incoming call) 
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2.4 Key Design Standards and References, Design Principles, 

and Results from Research 

2.4.1 Relevant Design and Evaluation Standards 

For speech interfaces, the classic design guidelines are Schumacher et al. [37], and 

the one set that is not very well known, but extremely useful, is the Intuity Guidelines 

[38]. Najjar et al. [39] described user-interface design guidelines for speech recognition 

applications. Hua and Ng [40] also proposed guidelines on in-vehicle speech interfaces 

based on a case study. 

Several technical standards address the topic of the evaluation of speech system 

performance. These standards, such as ISO 9921: 2003 (Ergonomics – Assessment of 

speech communication) [41], ISO 19358: 2002 (Ergonomics – Construction and 

application of tests for speech technology) [42], ISO/IEC 2382-29: 1999 (Artificial 

intelligence – Speech recognition and synthesis) [43], and ISO 8253-3: 2012 (Acoustics – 

Audiometric tests methods –Part 3: Speech Audiometry) [44], focus on the evaluation of 

the whole system and its components. However, no usability standards related to speech 

interfaces have emerged other than ISO/TR 16982:2002 (Ergonomics of human-system 

interaction – Usability methods supporting human-centered design) [45]. 

From its title (Road vehicles — Ergonomic aspects of transport information and 

control systems — Specifications for in-vehicle auditory presentation), one would think 

that ISO 15006:2011 [46] is relevant.  In fact, ISO 15006 concerns nonspoken warnings. 
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There are standards in development.  SAE J2988, Voice User Interface Principles and 

Guidelines [47], contains 19 high-level principles (e.g., principle 17: “Audible lists 

should be limited in length and content so as not to overwhelm the user’s short-term 

memory.”). Unfortunately, no quantitative specifications are provided. The draft mixes 

definitions and guidance in multiple sections making the document difficult to use, does 

not support guidance with references, and in fact, has no references. 

The National Highway Traffic Safety Administration (NHTSA) of the U.S. 

Department of Transportation posted proposed visual-manual driver-distraction 

guidelines for in-vehicle electronic devices for public comment on February 15, 2012 

(http://www.nhtsa.gov/About+NHTSA/Press+Releases/2012/U.S.+Department+of+Trans

portation+Proposes+'Distraction'+Guidelines+for+Automakers, retrieved May 15, 2012), 

and “final” guidelines appeared this week 

(http://www.nhtsa.gov/staticfiles/nti/distracted_driving/pdf/distracted_guidelines-

FR_04232013.pdf, retrieved April 23, 2012). NHTSA has plans to issue guidelines for 

speech interfaces.  

The distraction focus group of the International Telecommunication Union (FG-

Distraction - ITU) is interested in speech interfaces and may eventually issue documents 

on this topic, but what and when is unknown. In addition, various ITU documents that 

concern speech-quality assessment may be relevant, though they were intended for 

telephone applications. ITU-P.800 (Methods for subjective determination of transmission 

quality) and related documents are of particular interest. See http://www.itu.int/rec/T-

REC-P/e. 
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2.4.2 Key Linguistic Principles 

The linguistic literature provides a framework for describing the interaction, the kinds 

of errors that occur, and how they could be corrected. Four topics are touched upon here. 

Turn and Turn-taking. When can the user speak?  When does the user expect the 

system to speak?  Taking a turn refers to an uninterrupted speech sequence. Thus, the 

back and forth dialog between a person and a device is turn-taking, and the number of 

turns is a key measure of an interface’s usability, with fewer turns indicating a better 

interface. In general, overlapping turns, where both parties speak at the same time, 

account for less than 5% of the turns that occur while talking [48]. The amount of time 

between turns is quite small, generally less than a few hundred milliseconds. Given the 

time required to plan an utterance, planning starts before the previous speaker finishes the 

utterance. 

One of the important differences between human-human and human-machine 

interactions is that humans often provide nonverbal feedback that indicates whether they 

understand what is said (e.g., head nodding), which facilitates interaction and control of 

turn taking. Most speech interfaces do not have the ability to process or provide this type 

of feedback. 

A related point is that most human-human interactions accept interruptions (also 

known as barge-in), which makes interactions more efficient and alters turn taking. Many 

speech interfaces support barge-in, which sometimes requires the users to press the voice-

activation button. However, less than 10% of subjects (unpublished data from the author) 

knew and used this function. 
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Utterance Types (Speech Acts). Speech acts refer to the kinds of utterances made 

and their effect [49]. According to Akmajian et al. [50], there are four categories of 

speech acts: 

 Utterance acts include uttering sounds, syllables, words, phrases, and sentences from 

a language including filler words (“umm”).  

 Illocutionary acts include asking, promising, answering, and reporting. Most of what 

is said in a typical conversation is this type of act. 

 Perlocutionary acts are utterances that produce an effect on the listener, such as 

inspiration, persuasion, etc. 

 Propositional acts are acts in which the speaker refers to or predicts something. 

Searle [51] classifies speech acts into five categories: 

 Assertives commit the speaker to address something (suggesting, swearing, and 

concluding). 

 Directives get the listener to do something (asking, ordering, inviting). 

 Commissives commit the speaker to some future course of action (promising, 

planning). 

 Expressives express the psychological state of the speaker (thanking, apologizing, 

welcoming). 

Declarations bring a different state to either speaker or listener (such as “You are 

fired.”) 

Intent and Common Understanding (Conversational Implicatures and Grounding) 

Sometimes speakers can communicate more than is uttered.  Grice [52] proposed that 

conversations are governed by the cooperative principle, which means that speakers make 
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conversational contributions at each turn to achieve the purpose or direction of a 

conversation.  He proposed four high levels conversational maxims that may be thought 

of as usability principles (Table 2-7). 

 

Table 2-7. Grice’s Conversational Maxims with Examples  

Maxim Example Guidance 

Maxim of 
Quantity: be 
informative. 

 

a. Machine: Please say the 
street name. 

User: 2901 Baxter Road 
(2901 is the house 
number) 

b. Make your contribution of 
information as is required, i.e., 
for the current purpose of the 
conversation. 

c. Do not make your contribution 
more informative than is 
required. 

Maxim of 
Quality: make 
your contribution 
one that is true: 

d. U: “Toledo Zoo, 
Michigan” (but Toledo is 
in Ohio) 

e. Do not say what you believe to 
be false. 

f. Do not say that for which you 
lack evidence. 

Maxim of 
Relevance: be 
relevant. 

 

a. U: “I want to go to ‘Best 
Buy’” and the system 
responds with all Best 
Buy stores, including 
those hundreds of miles 
away, not just the local 
ones. 

 

Maxim of 
Manner: be 
perspicuous 

 

g. M: Please say set as 
destination, dial or back. 

U: Dial. O no Don’t dial, 
Back (User wants to say 
“back”) 

h. M: Please say the POI 
category. 

U: Let’s see. Recreation 

i. Avoid obscurity of expression 

j. Avoid unnecessary ambiguity 

k. Be brief (avoid unnecessary 
prolixity) 

l. Be orderly. 
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Errors Skantze [53] provides one of the better-known schemes for classifying 

errors (Table 2-8). Notice that Skantze does so from the perspective of a device 

presenting an utterance and then processing a response from a user. 

Table 2-8. Examples of Errors in Different Modules of Speech-Controlled Interfaces 
(Adapted from Sakntze [53]) 

Modules Possible sources of errors 

Speech detection Truncated utterances, artifacts such as noise and side 
talk; Barge-in problems 

Speech recognition Insertions, deletions, substitutions 

Language processing/parsing Concept failure, Speech act tagging 

Dialogue manager Error in reference resolution, error in plan 
recognition 

Response generation Ambiguous references, too much information 
presented at once, TTS quality, audio quality 

 

Véronis [54] presents a more detailed error-classification scheme that considers 

device and user errors, as well as the linguistic level (lexical, syntactic, semantic). Table 

9 is an enhanced version of that scheme. Competence, one of the characteristics in his 

scheme, is the knowledge the user has of his or her language, whereas performance is the 

actual use of the language in real-life situations [55]. Competence errors result from the 

failure to abide by linguistic rules or from a lack of knowledge of those rules (“the 

information from users is not in the database”), whereas performance errors are made 

despite knowledge of rules (“the interface does not hear users’ input correctly”). 
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Table 2-9. Enhanced Version of Véronis [54] Error-Classification Scheme 

 System User 

 Performance Competence Performance Competence 

 

Lexical 
level 

(word) 

Letter substitution 

Letter insertion 

Letter deletion 

Word missing 
in dictionary 

Missing 
inflection rule 

Letter substitution 

Letter insertion 

Letter deletion 

Letter transposition 

Syllabic error 

Slips of tongue 

Non-word or 
completely garbled 
word 

Syntactic 
level 

(sentence 
structure) 

 Missing rule Word substitution 

Word insertion 

Word deletion 

Word transposition 

Construction error 

Semantic 
level 

(meaning) 

 Incomplete or 
contradictory 
knowledge 
representation 

Unexpected 
situation 

 Conceptual error 
include: 

Incomplete or 
contradictory 
knowledge 
representation 

 

Pragmatic error 

Dialogue law 
violation 

 

As an example, a POI category requested by the user that was not in the database 

would be a semantic competence error. Problems in spelling a word would be a lexical 

performance error. Inserting an extra word in a sequence (“iPod iPod play …”) would be 

a lexical performance error. 

A well-designed speech interface should help avoid errors, and when they occur, 

facilitate correction. Strategies to correct errors include repeating and rephrasing the 

utterances, spelling out words, contradicting a system response, correcting using a 

different modality (e.g., manual entry instead of speech), and restarting, among others [56] 

[57] [58] [59]. 
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Knowing how often these strategies occur suggests what needs to be supported by the 

interface. The SENECA project ([9], [31]) revealed that the most frequent errors for 

destination entry tasks were spelling problems of various types, entering or choosing the 

wrong street, and using wrong commands. For phone dialing tasks, the most frequent 

errors were stops within digit sequences. In general, most of the user errors were 

vocabulary errors (partly spelling errors), dialogue flow errors, and PTA (push to active) 

errors, i.e. missing or inappropriate PTA activation. 

Lo, Walls, and Green [60] reported that construction and relationship errors were 

16% and 37%, respectively. Construction errors occur when subjects repeat words, forget 

to say command words (a violation of grounding), or forget to say any other words that 

were given. Relationship errors occur when subjects make incorrect matches between the 

given words and song title, album name and/or artist name. Relationship errors were 

common because subjects were not familiar with the given songs/albums/artists.  

2.5 Performance Assessment and Measurement of Speech 

Interfaces 

2.5.1 Methods Used to Measure User Performance 

Given the lack of models to predict user performance with speech interfaces, the 

evaluation of the safety and usability (usability testing) of those interfaces has become 

even more important. Evaluations may either be performed only with the system itself 

(on a bench top) or with the system integrated into a motor vehicle (or a simulator cab) 

while driving. 
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The most commonly used method to evaluate in-vehicle speech interfaces is the 

Wizard of Oz method ([18], [19], [24], [29], [61], [62], [63]), sometimes implemented 

using Suede [64]. In a Wizard of Oz experiment, subjects believe that they are interacting 

with a computer system, not a person simulating one. The “wizard” (experimenter), who 

is remote from the subject, observes the subject’s actions, and simulates the system’s 

responses in real-time. To simulate a speech-recognition application, the wizard would 

type what users say, or in a text-to-speech system, they read the text output, often in a 

machine-like voice. Usually, it is much easier to tell a person how to emulate a machine 

than to write the software to tell a computer to do it. The Wizard of Oz method allows for 

the rapid simulation of speech interfaces and the collection of data from users interacting 

with a speech interface, allowing for multiple iterations of an interface to be tested and 

redesigned.  

2.5.2 Factors to Be Measured for User Performance 

Dybkjær has written several papers on speech interface evaluation, the most thorough 

of which is Dybkjær, Bersen, and Minker [65]. That paper identified a number of 

variables that could be measured (Table 2-10), in part because there are many attributes 

to consider. 
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Table 2-10. Variables Used for Evaluating Entire Systems or System Modules 

Module Variables 

Whole system 
Task completion time, task completion rate, transaction 
success, number of interaction problems, query density, 
concept efficiency 

Speech recognition Word and sentence error rate, vocabulary coverage, perplexity 

Speech synthesizer 
User perception, speech intelligibility, pleasantness, 
naturalness 

Language 
understanding 

Lexical coverage, grammar coverage, real-time performance. 
concept accuracy, concept error rate 

 

Walker, Kamm, and Litman [66] proposed a framework of usability evaluation of 

spoken dialogue systems, known as PARADISE (PARAdigm for DIalogue System 

Evaluation). (See [67] for criticisms.) Equations were developed to predict dialog 

efficiency (which depends on mean elapsed time and the mean number of user moves), 

dialog quality costs (which depends on the number of missing responses, the number of 

errors, and many other factors, and task success, measured by the Kappa coefficient and 

defined below). 

 = (P(A) – P(E)) / (1 – P(E))     (2.1) 

Where: 

P(A) = proportion of times that the actual set of dialogues agree with scenario keys 

P(E) = proportion of times that the dialogues and the keys are expected to agree by 

chance. 

In terms of performance while driving, there is no standard or common method for 

evaluating speech interfaces, with evidence from bench-top, simulator, and on-road 

experiments being used. There are two important points to keep in mind when conducting 

such evaluations. First, in simulator and on-road experiments, the performance on the 
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secondary speech interface task depends on the demand of the primary driving task.  

However, the demand or workload of that task is rarely quantified [68], [69]. Second, 

there is great inconsistency in how secondary-task performance measures are defined, if 

they are defined at all, making the comparison of evaluations quite difficult [70]. (See [71] 

for more information.) Using the definitions in SAE Recommended Practice J2944 [72] 

is recommended. 

2.6 Summary 

The issues discussed in this article are probably just a few of those that should be 

considered in a systematic approach to the design and development of speech interfaces. 

As automotive speech interfaces move close to production, the safety and usability of 

those interfaces are usually assessed in a driving simulator, and sometimes on the road.  

The linguistics literature provides a long list of potential measures of the speech interface 

that could be used, with task time being the most important. Driving-performance 

measures, such as standard deviation of lane position, gap variability, and so forth, are 

measured as eyes-off-road time. These studies often have two key weaknesses: (1) The 

demand/workload of the primary task is not quantified, yet performance on the secondary 

speech task can depend on primary task demand, and (2) measures and statistics 

describing primary task performance are not defined. A solution to the first problem is to 

use equations being developed by the second author to quantify primary task workload. 

The solution to the second problem is to use the measures and statistics in SAE 

Recommended Practice J2944 [72] and refer to it. 
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Driver distraction is and continues to be a major concern. Some view speech 

interfaces as a distraction-reducing alternative to visual-manual interfaces. Unfortunately, 

at this point, actual use by drivers and data on that use is almost zero. There is some 

information on how to test speech interfaces, but technical standards cover only a limited 

number of aspects. 

There is very little to support design other than guidelines. For most engineered 

systems, developers use equations and models to predict system and user performance, 

with testing serving as verification of the design. For speech interfaces, those models do 

not exist. This research will provide some guidelines needed to create those models.  
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 CHAPTER 3

Survey of Navigation Systems and MP3 Players Use by 

Typical Drivers and Auto Experts 

The major content of this chapter is reproduced from the previously published paper: 

“Where Do People Drive? Navigation System Use by Typical Drivers and Auto Experts” 

in Journal of Navigation, 2011 [25] .  

3.1 Background 

Infotainment devices are widely used by drivers and have been the subject of 

considerable recent research ([73], [74], [75], [76]). The visual-manual tasks associated 

with operating many of these devices require drivers to look away from the road for some 

time and crash risk is known to increase with eyes-off-road time ([5], [32], [12], [7], [6, 

9]). One potential way to reduce crash risk is to use speech-controlled interfaces instead 

of visual-manual interfaces.  

In the past decade, many projects focused on either the development of speech-

controlled interfaces or the comparison of performance of speech-controlled interfaces 

with visual-manual interfaces ([10], [23], [18], [19], [24]). Common applications include 

navigation, music selection and cellular phone use. Although system developers claim 



 32

these systems are “human-centered,” there is limited research, especially for speech-

controlled interfaces, on what users want to do or how these systems are actually used. 

A human-centered navigation system should support travel to the most common 

destinations. One important source of information about these destinations is the National 

Household Travel Survey (NHTS), a U.S. Department of Transportation (DOT) National 

Highway Traffic Safety Administration funded periodic study of personal travel in the 

United States [77]. Similar studies have been conducted in other countries (e.g., United 

Kingdom, Denmark) [78]. Common trip purposes in these surveys included 

“shopping/errands,” “go to school,” and “medical/dental services,” which could be used 

to define the point of interest (POI) categories for navigation systems. However, 

estimating the real use of navigation systems from these surveys may be speculative, as 

one would suspect navigation systems to be used to provide guidance to unfamiliar 

destinations, not all destinations, and these surveys do not address how destinations are 

entered into navigation systems. Furthermore, designers, in the absence of information, 

tend to think of users as being like themselves and, thus, in some instances, may design 

the systems for themselves. Therefore, data comparing the travel patterns of vehicle 

designers with the general public is needed. 

This information is particularly important for assessing the compliance of navigation 

systems with existing design guidelines, in particular AAM guideline 2.1a [79] and SAE 

Recommended Practice J2364 [80]. These guidelines require that destination retrieval 

times not exceed specific maxima. However, designers often must compromise to meet 

these criteria: the goal is to facilitate the use of the most commonly used methods, for 

which at this point there are no published statistics. Furthermore, most navigation 
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systems provide lists of recently visited destinations and saved favorites, from which 

users can search. Since there are no published data on the use or content of these lists, 

populating them requires guesswork, making safety and usability tests potentially 

unrealistic.  

The use of radio, cassette, and CD ranked second among major causes of crashes 

involving distracted driving [3]. Nowadays, MP3 players is much more popular and 

widely use than the CDs and cassettes. However, less attention has been made on how the 

drivers use the MP3 players and how often various MP3 player features are used. Also, 

there are no specific guidelines concerning the design of in-vehicle music selection 

systems. 

The purpose of this study was to provide the data on how and for which tasks drivers 

use navigation devices and MP3 players. The following hypotheses were examined.  

1. Drivers use their navigation system only for when they go to unfamiliar 

destinations. This seems reasonable, as the purpose of these systems is to 

help drivers get to places where they do not know how to get there. 

2. There is no difference of the trip purpose based on the POI categories 

when drivers used their own navigation systems.  

3. There are no differences in how frequently various entry methods used 

and destination types are reportedly selected and they are actually used 

(based upon transcribed data from in-vehicle devices).  

4. There is no difference of the POI categories the records saved as drivers’ 

favorites in their navigation devices.  
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5. Between auto experts and typical drivers, there is no difference on the 

numbers of songs, artists, and albums they have stored on their electronic 

music player. 

6. There is no difference of the methods used to search a specific song by the 

drivers between the auto experts and typical drivers. 

 

Finally, these data will be used to identify test conditions for the next experiments, 

and as well as relevant variables and parameters for the simulation model to be built.  

3.2 Methods and Materials 

3.2.1 Subjects and Their Navigation Systems and MP3 Players    

Thirty licensed drivers (16 F, 14 M; 28 ± 10 years) from southeast Michigan (typical 

drivers) who regularly use their navigation systems while driving were recruited via 

newspaper advertisements, web advertisements, and an email sent to students, faculty, 

and staff at the University of Michigan, friends of the authors, and members of the 

community. This sample was chosen largely for the convenience of accessing subjects 

and their vehicles. More than half (17/30) of the subjects in the group of typical drivers 

were students from a wide variety of academic disciplines. Only six of the thirty subjects 

were engineers (five engineering students and one mechanical engineer). Twenty-three of 

the thirty typical drivers were native English speakers. A second group of eleven licensed 

drivers (1F, 10 M; 39 ± 10 years) who regularly use their navigation systems while 

driving was recruited from the Nissan Technical Center in Farmington Hills, Michigan 
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(auto experts). Most of the auto experts were engineers (mechanical, electrical, and 

project engineers). Ten of the eleven auto experts were native English speakers. All 

navigation systems set for English. It was expected that they would be different from 

typical drivers and they were selected to reinforce the principle that auto designers should 

not design for themselves, as they are different from typical drivers, the customers. 

The typical drivers drove vehicles from a wide range of manufacturers, with Toyota 

(7/30) and Ford (6/30) being most common. Vehicles were typically of the 2003 and 

2004 model years. All auto experts drove Nissan vehicles (most commonly of the 2007 

and 2008 model years), reflecting an employee benefit. Data were collected in 2009. 

Typical drivers predominately used portable aftermarket navigation systems made by 

Garmin (n=14), Tom Tom (n=5), and other manufacturers (n=7), but some used various 

types of built-in navigation systems (n=4) as well. For the auto experts, ten of the eleven 

subjects used Nissan built-in navigation systems, and one subject used a portable Garmin 

unit. The mean years of owning their current navigation devices were 3 ± 1.5 years for 

typical drivers and 2 ± 0.5 years for auto experts. 

Omitting one Nissan employee who reported that she drove more than 128,000 

miles/year, the typical drivers reported a mean of 10,900 miles/year, whereas the mean 

was 14,000 miles annually for the auto experts. To provide some context, the most recent 

population survey data indicated a mean annual mileage of about 14,000 miles in the 

United States [77], but only 3,500 miles in the United Kingdom [81], where public 

transportation is more readily available and gasoline is more expensive. Thus, the typical 

driver sample here drove somewhat fewer miles than in another larger survey, but the 

auto experts were quite close to the U.S. survey’s mean.  
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3.2.2 Questionnaire  

A seven-page questionnaire was designed to collect biographic information about the 

subjects as well as information on their navigation systems and MP3 players. This paper 

reports results for navigation systems. There were eight questions concerning 

biographical information, such as name, age, vehicle driven, miles driven per year, as 

well as information on the frequency of various types of trips. Using a modification of Hu 

and Reuscher’s scheme [77], trips were categorized as business, vacation, religious, 

shopping, or school. There were seven questions concerning each subject’s navigation 

system, such as the manufacturer, familiarity with each destination, percent and time 

using speech/manual input, the frequency of use of various destination entry methods, 

and error correction strategies for speech entries. Subject’s familiarity with recently 

visited destinations was categorized as “Capable of getting to location without navigation 

directions (familiar),” “Capable of getting to location with some navigation directions 

(somewhat familiar),” and “Incapable of getting to location without navigation directions 

(unfamiliar).”  Error correction strategies modified from Bourguet’s scheme were 

categorized as “repeat exactly the same words,” “rephrase or say it in different words,” 

“spell the words out,” and “correct by entering in the words manually.” [56] There were 

eleven questions concerning each subject’s MP3 players, such as the manufacturer, 

number of features in the MP3 players (such as songs, playlists, etc.), percent and time 

using speech/manual input, the frequency of use of MP3 players to various destinations, 

the frequency of use of various music selection methods, frequency of changing features 

while driving more than 30 minutes, and error correction strategies for speech entries. 
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3.2.3 Procedure 

The typical drivers brought their vehicles and navigation systems to the University of 

Michigan Transportation Research Institute (UMTRI) in Ann Arbor, Michigan. They 

were given an overview of the study and signed the consent form that had been approved 

by the University of Michigan Health and Behavioral Sciences Institutional Review 

Board (IRB). Next, the previously described questionnaire was completed. While 

subjects answered the questions, the investigator transcribed and photographed the 

information stored in the subjects’ navigation systems, including the content of their 

“Favorite” lists (destinations they entered and saved) and “History” lists (recent 

destinations selected). If there were more than nine records saved in their navigation 

system from either list, only the nine most recent trips and favorites from each list were 

transcribed for each subject due to time constraints. After the subjects finished the 

questionnaire, they were asked to confirm the trip purpose and entry method for the 

destinations stored on their “Favorite” and “History” lists. Finally, the typical drivers 

were paid $20 for their participation in this 40-minute survey. 

At Nissan, a recruiting message, a consent form, and the questionnaire were 

distributed via email. A Nissan coordinator arranged for auto experts to participate, with 

interviews conducted at the Nissan Technical Center in Farmington Hills, Michigan. 

During the interviews, investigators checked to see that subjects answered all the 

previously disseminated questions, and then transcribed and photographed information 

identifying what was stored in each subject’s navigation system. Other procedures were 

similar to the procedures for typical drivers. Since the auto experts were surveyed during 
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business hours, they were not paid for their participation. The study required 

approximately 30 minutes per subject.  

3.3 Results and Discussions 

3.3.1 Number of Trips per Year 

The total number of trips per year from the U.S. survey, 1388 trips/year/person [77], 

was three times more than reported here for both groups (369 trips/year/driver for typical 

drivers, and 409 trips/year/driver for auto experts), but both groups were almost the same 

as reported in the United Kingdom at 410 trips/year/driver [81]. It could be that the 

number of trips in the U.S. survey included all modes of transportation (private vehicle, 

public transit, walking, and others). Furthermore, the U.S. survey included 36 categories 

of trip purposes [77], but only five categories of trip purposes were used in the present 

survey. For example, the trip purpose “Medical/Dental Service” was not available to 

subjects in this study but was included in U.S. survey. Finally, the number of trips was 

estimated, and not obtained from a trip diary, which would have been more accurate. 

3.3.2 Purpose and Distances of the Trips  

Each of the navigation systems and surveys used a different scheme for coding trip 

purpose and points of interest (POI). To ensure a sufficient number of responses for each 

POI/trip purpose category and to aid in consolidating the categories, POIs were classified 

using Garmin’s scheme, which had the fewest number of categories. The investigators 
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also included two more categories: friends’ and relatives’ houses, since they accounted 

for 15% and 4%, respectively, of the trips that subjects visited. 

Figure 3-1(a) compares the distribution of miles driven by trip purposes from this 

survey with the U.K. [81] and U.S. [77] data. In the U.S. study, the results were the 

percentage of the annual miles travelled by people, not just by drivers. The distribution of 

miles driven by trip purpose for typical drivers is similar to the distribution from the U.K. 

study, except for school trips. This is not surprising, as 57% of the typical drivers were 

students. However, the auto experts in this study traveled relatively more miles for 

business trips and relatively fewer miles for vacation and leisure trips than those reported 

in the U.S. and U.K. studies, possibly because studies in the United States and United 

Kingdom included retired (age > 65) and younger (age < 16) subjects. Retired and young 

people are usually not engaged in business, and both groups have more time for vacation 

and leisure travel. Another possibility was that “vacation and leisure” are commonly 

thought of as having a longer duration, but subjects in this study did not count the one-

day or two-day short trips to a recreation center, a friend’s house, etc., as “vacation and 

leisure”. 
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(a) 

 
(b) 

Figure 3-1. Comparison of (a) Percent of Miles Driven per Year and (b) Percent of Trips 
Driven Per Year for Both Groups and Other Studies. 

 

Comparing the absolute number of trips, auto experts (409 trips/year/driver) drove 

more trips than typical drivers (369 trips/year/driver), which is consistent with having 

driven more miles.  Further, their trip purpose distributions were quite different (Figure 
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3-1(b)). Auto experts drove more trips for business and shopping, whereas driving to 

school was common for typical drivers. Again, it is not surprising that there were fewer 

business trips and more school trips for typical drivers, as most of the study subjects were 

students. There is a large difference (28% vs. 64%) in the percentage of business trips 

between typical drivers and auto experts, but there is not much difference in the 

percentage of miles driven for business trips (48% vs. 64%). This might suggest that the 

average distance driven for one business trip is longer for typical drivers than the distance 

driven by auto experts. 

The patterns of the trip purposes of each group were different from the studies in the 

United States and United Kingdom (Figure 3-1(b)). These differences are probably 

related to differences in the populations surveyed. 

3.3.3 Necessity of Navigation Devices Use for Each Trip  

When subjects used their navigation systems while driving, 61% (183/299) of the 

trips for typical drivers and 89% (212/239) of the trips for auto experts reported that they 

were familiar with the desired destinations; 21% (63/299) of the trips for typical drivers 

and 7% (16/239) of the trips for auto experts reported that they were somewhat familiar 

with the desired destinations; and only 18% (53/299) of the trips for typical drivers and 

5% (11/239) of the trips for auto experts reported that they were unfamiliar with the 

desired destinations. Why drivers used their navigation systems for previously known 

destinations is unknown. 
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Figure 3-2. Reported Use of Navigation Assistance as a Function of Trip Purposes. 

 

For the familiar destinations, the common purposes were “School” (36%) and 

“Business” (36%) for typical drivers, and “Business” (58%) for auto experts. For the 

category of “somewhat familiar with the destinations,” the most common purpose was 

“Shopping” for both typical drivers (40%) and auto experts (69%). For unfamiliar 

destinations, there were no significant differences in the percentage for the purposes of 

“Business” (30%), School” (26%), and “Shopping” (30%) for typical drivers. For auto 

experts, “Vacation” (55%) and “Business” (45%) were the most common purposes. 

When auto experts used navigation systems, they did not report any trips for “School” 
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and “Religious” purposes, for neither somewhat familiar nor unfamiliar destinations. In 

general, the results indicated that subjects from both groups still used navigation systems 

even when they were familiar with the destinations. 

3.3.4 Reported Frequency and Task Completion Time of Manual and 

Speech Interfaces Use to Enter Destinations  

Only two of the thirty typical drivers (8%), and two of the eleven auto experts (18%) 

reported that they had used speech interfaces to enter destinations. The estimated mean 

time to complete a destination entry task using the speech interface was 15 s for typical 

drivers and 158 s for auto experts (Table 3-1). Note that only two in each group reported 

using speech and so the data are limited. 

Table 3-1. Reported Mean Time to Complete a Destination Entry Task Using Speech and 
Manual Inputs. 

 
Interface 

Typical Drivers Auto Experts 
N Time (seconds) N Time (seconds) 

Mean ± S.D.  Range Mean ± S.D. Range 
Speech 2 15 ± 0 15 2 158 ± 202 15 - 300 
Manual 30 121 ± 130 10 - 600 11 73 ± 44 8 - 150 

26* 78 ± 49* 10 – 180*    
*: Without outlier 

The estimated mean time to complete a destination entry task using the manual input 

was 121 ± 130 s for typical drivers and 73 ± 44 s for auto experts (Table 3-1). When the 

four outliers in the typical drivers were removed (an outlier is defined as any observation 

outside of the range: [Lower quartile – 1.5 (quartile difference), Upper quartile + 1.5 

(quartile difference)], [82]), the estimated mean time to complete a destination entry task 

using the manual input was 78 ± 49 s. There were no outliers among the auto experts. 

There was no statistically significant difference between the two groups (t (39) = -1.20, 
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p=0.24, with outlier; t (35) = -0.34, p = 0.74, without outlier) in the estimated mean time to 

complete a destination entry task using manual input.  

The estimated destination entry task time distributions among typical drivers using 

manual input were quite different with outliers (lognormal distribution) than without 

outliers (exponential distribution). The estimated task times were normally distributed for 

the auto experts. When the outliers were removed from the data for typical drivers, the 

cumulative probability distributions were similar for both groups (Figure 3-3).   

The estimated self-reported mean times to complete a destination entry task using the 

manual input for both groups were less than the measured times from other studies ([12], 

[31], [83]). When the outliers were removed from the data, the reported mean time to 

manually complete a destination entry task was a few seconds longer than the mean time 

from the Manstetten et al. study (73.2 s) [84]. The ranges of the time to manually 

complete a destination entry task were almost the same to those reported by Walls (24.7 s 

to 179 s) [83].  

 
Cumulative Probability w/ Outlier 

 
Cumulative Probability w/o Outlier 

Figure 3-3. Cumulative Probability of Time Estimated to Complete a Destination Entry 
Task Using Manual Input from Both Groups. 

Auto Experts 

Typical Drivers

Auto Experts Typical Drivers
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3.3.5 Reported Methods Used to Enter Destinations by Trip Purpose  

“History” (30%), “Street Address” (27%) and “POI” (26%) were the common 

methods reported by typical drivers to enter destinations for all purposes of trips. Auto 

experts reported that “Street Address” (48%) and “History” (24%) were common 

methods for destination entry for all purposes of trips. Figure 3-4 provides more detailed 

information on the method used by trip purpose. For business trips, the most popular 

method used by typical drivers was “History” and “Favorite,” which accounted for a total 

of 60%. When typical drivers went shopping, the “POI” method was used almost half of 

the time, whereas auto experts preferred the “Street Address” method (62%). When going 

to school, typical drivers overwhelmingly searched the destination by “History” (69%). 

Auto experts did not report any school trips. Comparing the methods used for destination 

entry tasks, “Intersection” was the method both groups were least likely to use. As the 

reported numbers of trips for vacation and religious purposes were small, no conclusions 

could be drawn from the methods used. 
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Figure 3-4. Reported Frequency of Destination Entry Method Use by Trip Purpose for 
Both Groups. 

 

3.3.6 Reported Correction Strategies on Speech Entry Error Occurred  

Fifty-seven percent of the time, typical drivers reported that they corrected a speech 

entry error by repeating exactly the same words, and thirty-seven percent of the time they 

used manual input to correct it (Table 3-2). On the other hand, sixty-three percent of the 

time auto experts corrected the error by entering the words manually. No subjects 

reported spelling the words out to correct an error. There are no empiric data to verify 

these claims, and there were only two subjects in each group that reported using this 

method. 
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Table 3-2. Mean Percentage (Ranges) of Error Correction Methods Using Speech. 
Error Correction Method Typical Drivers Auto experts 

Repeat exactly the same words 57 ± 31 % (30 - 90 %) 18 ± 28 % (0 - 50 %) 
Manual input 37 ± 23 % (10 - 50%) 63 ± 23 % (50 - 90 %) 
Rephrase or say it in different 
words 

7 ± 12% (0 - 20 %) 18 ± 28 % (0 - 50 %) 

Spell the words out 0 % 0 % 

3.3.7 Frequency of Destinations That Drivers Actually Visited Recently 

Using Navigation Devices  

There were 270 records transcribed from typical drivers and 91 records from auto 

experts. All subjects in the typical drivers group and nine of the eleven (82%) subjects in 

the auto experts group had more than nine records on the “History” lists in their 

navigation devices, so the data shown were from a self-selected data set, using only the 

first nine records in each device. As shown in Figure 3-5, “Shopping” and “Friends’ 

Houses” were the top two ranked destinations for typical drivers (17%). On the other 

hand, “Shopping,” “Community,” (which includes “School/University,” “Place of 

Worship,” Bank/ATM,” “Library”), “Food,” and “Others” were the top-ranked 

destinations for the auto experts. The high frequency for visiting “Friends’ Houses” and 

“Relatives’ Houses” is an important finding, because many destination entry studies use 

common entries, such as “POI” for restaurants or intersections for business offices to 

evaluate their navigation systems ([10], [18], [19], [24]). However, these data suggest the 

trials used for address entry task should include residential locations (friends’ houses and 

relatives’ houses), and furthermore, because these locations are for friends and family, 

they will be subject-specific. 
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Figure 3-5. Frequency of POI Categories Visited for Both Groups. 

3.3.8 Methods Drivers Actually Used to Enter Destinations   

Table 3-3 compares reported methods with actual methods used by subjects to enter 

destinations. Keep in mind that destinations derived from the device history were only for 

trips in which destinations were entered, while the method estimated from the survey was 

for all trips. The most frequently used method to search for a destination was by “Street 

Address” for both groups, 43% for typical drivers and 55% for auto experts. The actual 

result for “Street Address” conflicted somewhat with the result from the survey for the 

typical drivers. “History” was only used once (0.3%) based on information retrieved from 

their devices. However, searching for a destination from “History” was the most 

frequently used method (30%) reported by typical drivers. Similarly, auto experts did not 

Typical Drivers 

Auto Experts 
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use the “History” method at all based on data retrieved from their devices, but it 

accounted for 24% of total use reported by auto experts. The results from actual use also 

contradict the results from the survey for both groups. "Favorite" was cited as the second 

most preferred method used by auto experts, but there was a substantial difference with 

the survey results, 20% vs. 3%, respectively. One possible explanation for the difference 

is that the method recorded in the device history is for part of the trips in which 

destinations are recently entered, but the method estimated from the survey is for all trips. 

Table 3-3. Destination Entry Methods Recorded from Personal Devices Compared to 
Survey Results. 

Entry Method Typical Drivers (%) Auto Experts (%) 
Actual  

(when navi 
used) 

Reported in 
Survey 

(all trips) 

Actual  
(when navi 

used) 

Reported in 
Survey 

(all trips) 
Street Address 43 27 55 48 
POI 35 26 18 16 
Favorite 17 13 20 3 
Intersection 3 3 2 8 
City 1  0  
Default Emergency 0.3  0  
History 0.3 30 0 24
Map 0  2  
Near Different City 0  2  
Near Route 0  1  
Total 100%  

(270 trips) 
100% 100%  

(91trips) 
100% 

 

Table 3-4 shows how destination types were distributed among the top three 

destination entry methods (“Street Address,” “Favorite,” and “POI”) from subjects’ 

devices. For typical drivers using the “Street Address” method, the most common 

destination was “Friends’ Houses” (31% of street address entries). There was no 

significant difference of destination on POI categories for auto experts using the “Street 

Address” method.  
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Table 3-4. Frequency of POI Categories by Top 3 Destination Entry Methods Used. 
Entry Method POI Category Typical Drivers (%) Auto Experts (%)

 
 
 
 
 
 

Street 
Address 

Friends’ Houses 31 14 
Community 12 18 
Other 12 12 
Recreation 8 10 
Home 6 0 
Hospital 6 8 
Shopping 6 14 
Relatives’ Houses 4 8 
Attraction 4 0 
Food 3 10 
Auto Service 3 0 
Transit 2 0 
Lodging 1 4 
Entertainment 0 2 

Total Number 100% (115) 100% (50) 
 
 
 
 
 
 
 

Favorite 
 

Home 19 50 
Friends’ Houses 17 0 
Shopping 17 0 
Community 6 0 
Food 6 0 
Recreation 6 0 
Transit 6 6 
Other 6 22 
Hospital 4 6 
Relatives’ Houses 4 6 
Attraction 2 0 
Entertainment 2 0 
Fuel 2 0 
Parking 0 6 
Missing 0 6 

Total Number 100% (47) 100% (18) 
 
 
 
 
 
 

POI 

Shopping 31 25 
Food 16 25 
Fuel 11 0 
Attraction 11 6 
Community 8 13 
Lodging 6 0 
Recreation 4 19 
Auto Service 4 6 
Hospital 3 0 
Transit 3 6 
Entertainment 1 0 
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Entry Method POI Category Typical Drivers (%) Auto Experts (%)
Parking 1 0 

Total Number 100% (95) 100% (16) 
 

 “Shopping” and “Food” were the dominant destinations for both driver categories 

when using the “POI” entry method. Searching for “Recreation” (16%) was the third 

ranked most common destination when auto experts used the “POI” entry method. The 

most notable difference between driver categories was for destinations entered using the 

“Favorite” entry method: typical drivers used this method for “Home” (19%), “Friends’ 

Houses” (17%), and “Shopping” (17%) with equal frequency, while auto experts used 

this method for “Home,” but not at all for “Friends’ Houses” and “Shopping.” The 

relatively high frequency of visiting “Friends’ Houses” or going “Home” as being 

destinations has not been identified previously in the literature. Since these residential 

locations are for social purposes, there may be an opportunity to aid drivers in selecting 

destinations by linking navigation systems to social networking sites, such as Facebook. 

 

3.3.9 Frequency of Point of Interest (POI) Categories That Subjects 

Saved in “Favorite” Lists in Their Navigation Systems  

Overall, there were 156 (5.2 records per subject) records for typical drivers and 39 

(3.5 records per subject) records for auto experts on the “Favorite“ lists saved in their 

navigation devices. Thirty-seven percent (11/30) of the typical drivers and eighteen 

percent (2/11) of the auto experts had more than nine records on their “Favorite” lists. 

Figure 3-6 shows the frequency of POI categories for these records. “Friends’ Houses,” 

“Home,” “Shopping,” and “Community” were the four top-ranked categories on the 
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“Favorite” lists of typical drivers. “Home” and “Other” were the most frequent categories 

on the “Favorite” lists of auto experts. These results confirmed that “Home” was the most 

common category for subjects when using their “Favorite” lists as the method to enter a 

destination. 

Figure 3-6. Frequency of POI Categories That Subjects Saved As Favorite in Their 
Navigation Devices. 

3.3.10 Numbers of Each Feature in Subjects’ MP3 Players  

Table 3-5 shows the means, standard deviations, and ranges for the features, such as 

songs, artists, albums, playlists, and etc. on subjects’ MP3 players. Distributions of songs, 

artists, and albums for both groups are shown in Figure 3-7. There were six outliers from 

typical drivers and two outliers from auto experts on the number of “Songs” which were 

not included in the calculation. The mean of number of songs were 420 for typical drivers 

and 1,200 for auto experts, statistically significantly different (t(43) = 3.37, p = 0.0016). 

Features on videos and podcasts are relatively new, and the numbers for each category 

were small compared to music. Salvucci et al. conducted an experiment on iPod 

Auto Experts
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distraction [15]. In their study, the number of artists, podcasts, and videos were 99, 5, 5, 

respectively. Only the numbers of podcast in the MP3 player were similar to our results 

and the numbers of artists wert 40 less. The variation of numbers in each feature makes 

the comparison of results difficult. 

Table 3-5. Mean Number of Features on Subject’s MP 3 Players 
Category Features Typical Drivers Auto experts 

Mean (Range) N Mean (Range) N 
 
 
 
 
Music 

Songs* 419 (52 - 982)  24 1193 (50 – 3800) 21 
Albums 151 (0 - 637) 27 114 (0 - 420) 20 
Artists 142 (0 - 584) 26 138 (0 - 413) 23 
Genres 19 (0 - 54) 27 17 (0 - 63) 20 
Composers 18 (0 - 138) 26 23 (0 - 136) 19 
Cover Flow 15 (0 - 200) 30 5 (0 - 100) 23 
Playlists 3 (0 - 11) 28 5 (0 - 18) 20 
Compilations* 1 (0 - 10) 25 4 (0 - 20) 21 
Audiobooks 0.6 (0 - 10) 30 1.4 (0 - 10) 23 

 
 
Videos 

Music Videos 0.6 (0 - 14) 30 1.3 (0 - 22) 23 
TV Shows 0.2 (0 - 4) 30 0.9 (0 - 10) 23 
Movies 0.1 (0 - 2) 30 0.7 (0 - 5) 23 
Video Playlists 0 30 0.1 (0 - 1) 23 
Rentals 0  30 0.04 (0 - 1) 23 

Podcasts Podcasts 4 (0 - 97) 30 9 (0 - 64) 23 
*: Statistically significant difference, p<0.05 

The distributions of songs that subjects owned for both groups followed lognormal 

distributions. The number of songs owned by the subjects for both groups in this survey 

is roughly 45 % fewer than the number from another study conducted by Lo. et al. [60]. 

However, the number of artists owned by typical drivers is two times more than the 

number from Lo, Walls, and Green’s study [60]. There is no significant difference for the 

number of albums and genres owned by subject in both groups from this study and from 

the Lo, Walls, and Green’s study [60]. 
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(a) Typical Drivers (b) Auto Experts 
Figure 3-7. Distribution of Number of Songs, Artists, and Albums that Subjects Own in 

Their MP3 Players from Both Groups (Without Outlier). 

3.3.11 Reported Frequency of Using MP3 Players While Driving  

Figure 3-8 and Table 3-6 show the average number of times per week for all features 

that subjects listened to while driving. On average, typical drivers listened to music about 

five times per week while driving and auto experts listened about seven times per week. 

Subjects seldom listened to audiobooks, podcasts, and watched videos while driving. The 

top two types of trips were “ Business” and “School” for typical drivers and “Business” 

and “Shopping” for auto experts. 
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Figure 3-8. Number of Times per Week That Subjects Listened to Music While Driving 

 

Table 3-6. Number per Week That Subjects Listened to Audiobooks, Videos, and 
Podcasts While Driving 

Type of Trip Audiobooks Videos Podcasts 
Typical 
Drivers 

Auto 
Experts 

Typical 
Drivers 

Auto 
Experts 

Typical 
Drivers 

Auto 
Experts 

Vacation 0.5 ± 2.6 0.0 ± 0.2 0 0.0±0.01 0.1 ± 0.5 0.01 ± 
0.04 

Business 0 0.3 ± 0.9 0 0 0.1 ± 0.4 0.5 ± 1.1 
School 0 0 ± 0.2 0 0.1 ± 0.6 0 ± 0.01 0.1 ± 0.6 
Shopping 0 0 0 0 0.02 ± 0.09 0 ± 0.02 
Religious 0 0 0 0 0 0 
Total 0.5 ± 2.6 0.3 ± 0.9 0 0.1 ± 0.6 0.2 ± 0.6 0.5 ± 1.2 
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3.3.12 Interfaces Reported Used to Operate MP3 Players While Driving  

Only one subject from the group of typical drivers operated his MP3 player using 

speech; others operated their MP3 players manually. However, it is surprising that most 

vehicles driven by auto experts did have a speech-controlled interface as standard 

equipment for music selection, but subjects did not use this function.   

3.3.13 Reported Frequency of Changing the MP3 Player Features While 

Driving More Than 30 Minutes  

When subjects listened to music while driving more than 30 minutes, data shows that 

subjects reportedly changed music 4 times per trip for typical drivers and 3.2 times for 

auto experts (Table 3-7). There is no statistically significant difference (t(52)= -0.80, p > 

0.42) between the two values.  For other features (audiobook, video, and podcast), the 

means were small because these features are relatively new. Also, there was no 

significant difference between the number of changes from this survey and the number 

reported by Lo, Walls, and Green [60]. 
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Table 3-7. Mean of Changes of Features on MP3 Players When Driving More Than 30 
Minutes 

Formats Number of Changes: Mean ± S.D. (Range)	
Typical Drivers Auto Experts	 Lo [60]

 
 
 
Music 

3.6 ± 3.5 (0-10; 29) 2.8 ± 2.9 (0-10) 5

 

 

Audiobooks 0 (0) 0.1 ± 0.4 (0-2) N/A 
Videos 0 (0) 0.3 ± 1.2 (0-6) N/A 
Podcasts 0.1 ± 0.4 (0-2)  0.4 ± 1.1 (0-4) N/A 

 

3.3.14 Reported Frequency of Methods Used to Change the Music, 

Videos, or Podcasts  

Figure 3-9 shows the results reported by the subjects on methods they used to search 

for other music. The three top-ranked methods were “Songs”, “Artists”, and “Playlists” 

for both typical drivers and auto experts. The only difference for these two groups was a 

reversal of the top two ranks. The results from this study were also the same as the survey 

and experimental results reported by Lo, et al. [60]. However, the results were not 

comparable with Salvucci et al. as they used “Artist” as the only method to search a 

specific song while assessing the iPod distraction [15]. 

When subjects want to watch movies, typical drivers searched using “Music Videos” 

and auto experts searched using “Music Videos” and “TV shows.” However, readers 

should keep in mind that watching movies is prohibited while driving, so the reported 

number was small. 
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Figure 3-9. Mean Percent of Searching Methods for Music 

 

Table 3-8. Mean Percent of Searching Methods for Videos 

Method 
Percent (Mean ± S.D.) 

Typical Drivers Auto Experts 
Music Videos 6.7 ± 25.4 4.3 ± 20 
Movies 1.7 ± 9.1 0 
Rentals 1.7 ± 9.1 0 
TV Shows 0 4.0 ± 19.4 
 

3.3.15 Correction Strategies When Error Occurred Using Speech 

Interfaces  

Only one typical driver reported that he used the speech interface to correct the errors 

while operating his MP3 player. Ninety-five percent of the time he repeated exactly the 

same words to correct the error and only five percent of the time he correct the error 

using manual selection. Other subjects from both groups did not use speech to control 

their MP3 players. 
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3.3.16 Frequency of Updating MP3 Players  

Both typical drivers and auto experts usually connected their MP3 players once or 

twice per week to update music (Table 3-9). 

Table 3-9. Number of Times Per Week to Update the Features on MP3 Players 
Group Number of Times Per Week to Update The Features  

(Mean ± S.D.) 
Music Audiobooks Videos Podcasts 

Typical Drivers 0.9 ± 1.1 0.01 ± 0.05 0.00 ± 0.02 0.19 ± 0.57 
Auto Experts 2.0 ± 4.5 0.04 ± 0.13 0.17 ± 0.50 0.62 ± 1.27 

   

3.4 Conclusions 

To design and evaluate in-vehicle navigation systems and travel information systems, 

one needs to know where real drivers typically go, a topic examined in this thesis. In fact, 

the authors do not know of any other current data on destination entry frequency or 

methods for contemporary navigation systems. The mean annual distance driven for 

subjects from both groups in this study were similar to the U.S. population, although 

students were overrepresented in the typical driver group. The comparison of the typical 

drivers to the general population likely means that there is a shift in the distribution of 

trip purposes from business to education, and given the comparatively lower income 

levels, vacation travel by car was more likely. Additional data would be needed to 

evaluate other major subsets of the U.S. population, such as retirees and others who are 

not auto experts. 

Visiting “Friends’ Houses” (19%), “Home” (17%), “Shopping” (15%), and 

“Community” (13%) were the four top-ranked POI categories on the “Favorite” lists for 
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typical drivers. “Home” (33%) was the most frequent POI category on the “Favorite” lists 

for auto experts. This also confirmed that “Home” was the most common POI category 

for subjects using the “Favorite” method for destination entry. The high frequency of 

visiting “Friends’ Houses” as a destination hints at the idea of linking social networking 

sites to navigation databases with the intent of reducing the effort to select a friend’s 

house as a destination, because the information would be more readily available. 

The frequency data provide not only useful guidance for design, but data for 

assessment as well. For example, when checking compliance with AAM and SAE 

guidelines, the retrieval of destinations from guidance history and favorites lists should 

be assessed, and they need to be populated with subject specific data including their own 

home, local shopping, and addresses for their friends. In addition, these data emphasize 

the importance of POI lists, from which information is notoriously difficult to retrieve 

because of the uncertainty about which category contains the information desired by each 

driver. 

The mean numbers of songs and albums on each subject’s MP3 player varied 

considerably. However, in studies of searching these devices, it is important to keep that 

number consistent across subjects, so the results from individual subjects can be 

compared.  The most frequent methods used to search a specific song reported by 

subjects were by song title, artist name and playlists. Thus, it is important that designers 

attach priority to making these methods easy to use for music selection systems. 

Good design of a user interface, be it for a navigation system in a vehicle, a travel 

information system on a desktop computer, or a system for any other purpose, requires 

data on who will use the system and the tasks to be accomplished by those users. In this 



 62

case, the critical information is where people want to go and how they enter that 

information. The present investigation provides important data that addresses these 

questions. 

   



 

 63

 CHAPTER 4

Destination Entry and Music Selection Using Speech  

in a Driving Simulator 

 

4.1 Background 

As was noted previously, time-consuming and error-prone in-vehicle tasks can 

distract drivers and degrade driving performance.  This is particularly true for visual-

manual interfaces, and is believed to be less of an issue for speech interfaces [5, 6, 8, 9, 

11, 12].  For example, Tsimhoni et al. found that the task completion time decreased 82% 

for drivers entering an address using a word-based speech interface as opposed to using a 

touch-screen keyboard [12]. Also, Maciej and Vollrath found that speech interfaces on 

destination entry, phone dialing, and music selection tasks resulted in better driving 

performance, less gaze duration, and less distraction on subjective rating as opposed to 

manual input [8]. 

There are several studies that have specifically examined destination entry and music 

selection systems either on road or in simulator, the systems of interest here [5, 6, 8, 9, 

11, 12, 15, 30]. In general, task performance, driving performance, driving behavior, and 
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subjective rating on workload and preference are four major categories commonly used 

by researchers and summarized in [17, 28]. The results from these studies showed that 

driving performance was better and subject workload ratings were lower for destination 

tasks and music selection tasks when performed using speech interfaces than visual-

manual interfaces [5, 6, 8, 9, 11, 12, 15, 30].  

To assess the effects of operating navigation and music selection systems (secondary 

tasks) on driving performance, the ISO lane change test [44], vehicle following task [12], 

and peripheral detection tasks (PDT, [85]) are most commonly used. For example, 

Shutko et al. reported vehicle following tasks coupled with PDT were used to assess the 

driving performance, and the variables were lateral control and longitudinal control [11]. 

Also, Salvucci et al. used vehicle following tasks to assess iPod use with the variables of 

lateral deviation, and speed effect [15]. On the other hand, Maciej and Vollrath used lane 

change tasks to evaluate the use of speech interface vs. manual interface on driving 

performance [8]. To compare the results from these researchers is difficult due to lack of 

consistent standardized tasks and definitions of the variables used to assess the driving 

performance. There were some inconsistencies in the task completion times associated 

with the use of navigation and music selection tasks [17, 28].  

To have a meaningful conversation, grounding, turn-taking [86], and Conversational 

Maxims [52] should be obeyed. Although using speech interfaces to find the address or 

play music is human-machine interaction, these human-human conversation principles 

can be applied to speech interactions. Utterances that violate the linguistics principles can 

result in errors. Errors can be made by either the machine or by subjects when subjects 

interact with the in-vehicle speech-controlled infotainment systems. Véronis [54] 
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proposed a typology of errors for natural language dialogue systems, which also can be 

applied to partially explain the errors occurring in the interaction of human and 

command-based speech interfaces. Bourguet proposed a taxonomy of error-handling 

strategies for multi-modal human-computer interface [56]. From that taxonomy, lists of 

possible strategies that users will use are repeat, rephrase, spell out, etc.  

Notice that missing from the literature are detailed analyses of driver use of speech 

interfaces, in particular, predictions of task times. Also missing from these studies is any 

examination of the types and frequencies of errors in performing in-vehicle tasks, 

something to be explored in depth here. That information is needed if speech interfaces 

are to be redesigned to reduce errors. 

A final and major concern with the literature is the focus on evaluations of completed 

systems, rather than predictions of speech system performance before the system is fully 

developed. Those predictions could be made based on simulations. However, the 

construction of those simulations requires the understanding of interaction of drivers and 

a speech interface and detailed predictions of each step of driver use of an interface. The 

data necessary for that purpose was collected in this experiment. 

The purpose of this experiment is to answer following the hypotheses: 

1. Hypothesis: There were no variables or distributions used to predict the 

drivers thinking and utterance time of any commands and phrases. (How long 

do drivers need to think of and utter commands and phrases?) 

2. Hypothesis: There were no variables or distributions used to predict the 

speech interface’s processing and prompt time of any commands and phrases. 
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(How long does the speech interface need to process those commands or 

phrases by drivers and prompt the feedback?) 

3. Hypothesis: The error type of barge-in and time-out occurs most of the time. 

(What are the types of errors that drivers make, and how often do they occur?) 

4. Hypothesis: Most of the time, subjects will re-try the same method. (For each 

system response to an error, what is the driver’s correction strategy?) 

5. Hypothesis: Driving workload will not affect the drivers’ task performance 

(How is performance of the speech task affected by the level of driving task 

workload?) 

4.2 Method 

4.2.1 Subjects 

A total of 48 licensed drivers from southeast Michigan participated in this study. 

These subjects were equally distributed in each age (young (30): 23  4; middle (40-50): 

47  3; and old (60): 68  4) and gender (male and female) group. All subjects had 

normal or corrected-to-normal visual acuity and hearing.  

 

4.2.2 Experiment Design 

In this experiment, subjects performed destination entry tasks in three different 

conditions (while parked; while driving in low workload scenarios; and while driving in 

high workload scenarios). Each subject performed each destination entry task four times, 
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and the order was counterbalanced across subjects. The two different driving workload 

scenarios were counterbalanced across subjects as well (Table 4-1). 

Table 4-1. Counterbalanced Task Orders for Subjects in Each Age-Gender Group for 
Destination Entry Task 

Subject 1 Subject 2 Subject 3 Subject 4 

Condition 
Block 
- Trial 

Condition 
Block 
- Trial 

Condition 
Bloc
k - 
Trial 

Condition 
Block 
- Trial 

Parked A - 1 Parked A - 2 Parked A - 3 Parked A - 4 
Driving in low 
workload 

B - 1 
Driving in 
high workload 

C - 2 
Driving in low 
workload 

B - 3 
Driving in 
high workload 

C - 4 

Driving in 
high workload 

C - 1 
Driving in 
low workload 

B - 2 
Driving in 
high workload 

C - 3 
Driving in 
low workload 

B - 4 

 

4.2.3 Driving Simulator  

The experiment was conducted in the third-generation University of Michigan 

Transportation Research Institute (UMTRI) driving simulator. This fixed-base simulator 

consists of a full-size cab, 11 computers, 6 video projectors (4 used in this study), 

7 cameras (2 used in this study to record the driver’s face and the central console), audio 

equipment, and other items. The simulator software (Vection and HyperDrive Authoring 

Suite, version 1.6.2) generated scene graphics, processed steering wheel, throttle, and 

brake inputs, provided steering wheel torque feedback, and saved the data. The raw data 

in the driving simulator was collected in 60 Hz, including subject’s vehicle data (e.g. 

throttle and brake position, steering wheel angle, speed, longitudinal and lateral position) 

and traffic data (e.g. speed, position of other vehicles).  

Figure 4-1 shows the partial simulator cab, forward scene, and front-right screen in 

this experiment. When using 6 projectors (5 forward channels and a rear channel), the 

simulator had a forward field of view of 200 degrees and a rear field of view of 
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40 degrees. In this study, with 4 projectors (3 forward channels and a rear channel), the 

forward field of view was 120 degrees.  Each channel was 1024 x 768 and updated at 60 

Hz. Depending on where the subject sat after adjusting the seat, the forward screen was 

16 to 17 ft (4.9 to 5.2 m) from the driver’s eyes. 

 
Figure 4-1. Part of Simulator Cab, and Front Screen. 

The simulator was controlled from an enclosure behind and to the left of the cab. The 

enclosure contained 4 quad-split video monitors that show the output of every camera 

and computer in the mockup. There was a display that shows the quad-split combination 

being recorded, as well as 3 sets of keyboards and LCD monitors for the driving 

simulator computers, and to control the instrument panel and warning and scenario 

control software (Figure 4-2). Also in the enclosure was a 19-inch rack containing audio 

and video equipment (audio mixers, video patch panel and switchers, distribution 

amplifiers, DVD recorder (used to record a quad split image of the driver), the quad 
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splitter, etc.) and 2 separate racks for the instrument panel and touch-screen computers, 

the simulator host computers, and the 6 simulator image generators (4 used). 

 
Figure 4-2. Simulator Operator’s Workstation 

The vehicle cab consisted of the A-to-B pillar section of a 1985 Chrysler Laser with a 

custom-made hood and back end mounted on casters for easy access. Mounted in the 

mockup were operating foot controls, a torque motor connected to the steering wheel (to 

provide steering force feedback), an LCD projector under the hood (to show the 

speedometer-tachometer cluster), a 10-speaker sound system (for auditory warnings), a 

haptic seat, a sub-bass sound system (to provide vertical vibration), and a 5-speaker 

surround system (to provide simulated background road noise). The 10-speaker sound 

system was from a 2002 Nissan Altima and was installed in the A-pillars, lower door 

panels, and behind each of the two front seats. The stock amplifier (from the 2002 Nissan 

Altima) drove the speakers. The speedometer-tachometer display was controlled by a 
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Macintosh computer running REALBasic and looked similar to those in an early 1990s 

Honda Accord.  

The instrument panel and center console computers ran the Mac OS, the user 

interface to the simulator ran Windows, and the simulators ran Linux. Figure 4-3 shows a 

close-up of the cab interior. A unique feature of the simulator is the computer-generated, 

back-projected speedometer-tachometer cluster. 

 
Figure 4-3. Navigation and Information Setting for the Experiment 

4.2.4 Driving Scenarios  

Subjects were asked to drive at 65 mph in the center lane. Passing the lead vehicle 

and changing lanes were not allowed. Otherwise, subjects were requested to drive 

normally. Two driving workload scenarios - low (workload = 2) and high (workload = 

7.5) were determined using the equations from Schweitzer & Green (2007), described as 

follows. In those scenarios, the gap to the lead vehicle, the number of vehicles near 

subjects, and lead vehicle acceleration varied.  
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Mean Workload Rating = 8.86 – 3*(LogMeanRange125) + 0.47*(MeanTrafficCount) 

           (4.1) 

Where 

LogMeanRange125: Logarithm mean distance (m) to the same-lane lead vehicles 

over 30 s intervals. If no lead vehicle, mean distance  = 

125 m. 

MeanTrafficCount: Mean number of vehicles detected (15 degree field of view) 

over 30 s intervals. 

4.2.5 Navigation and MP3 Player 

There were three systems that could potentially have been selected for this 

experiment. These systems are Ford SYNC, Nissan speech system, and Hyundai-Kia 

Genesis system, as implemented in mid-2012. All three systems for navigation support 

the commonly used methods to enter address, such as Home, Street Address, Address 

Book, Previous Destination and Point of Interest (POI). However, the systems differ in 

many ways, and each system has its own unique structure, predetermined commands, and 

terms. For example, the number of pages that listed all commands used to enter the 

address was five for the Hyundai Genesis system, but only one for the Ford SYNC and 

Nissan system. The Nissan system uses Places, instead of POI, and the number of items 

listed on the screen is five per one page. The Hyundai Genesis lists all possible 

destinations from 1 to around 40 pages with 6 items per page. The Ford SYNC system 

normally requires the state and/or city information to be entered first, and then users 

choose the POI category. However, users can skip the step of city and state name and 
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select the POI category first. The same procedures can be applied to street address entry 

for the Ford SYNC system. However, there is no such flexibility in the Nissan and 

Hyundai Genesis systems. The Nissan system even requires users to enter state name 

every time while using the street address method. For the history feature, the Nissan 

system again only provides five of the most recent records used by the user. The other 

two systems can provide as many records as had been entered until users delete them.  

For music selection systems with speech interfaces, the Hyundai Genesis and Nissan 

system can only support simple control of a MP3 player, such as play all, play track (not 

a specific one), and play next/previous. On the other hand, the Ford SYNC systems can 

support more functions to control a driver’s MP3 player. For example, users can select a 

specific song, artist, and album. After the author and his adviser spent three months 

attempting to borrow a portable in-vehicle speech interface without success, an 

alternative interface was selected for music selection tasks - an iPhone 4S without the Siri 

application. The system allows users to find a specific album and artist, but not a specific 

song. When users need to select a specific song, they can either select the album or artist. 

Users needed to say next track several times if there are more songs stored in the same 

album, or by the same artist until the specific song is played.  

There were also difficulties in obtaining the most popular navigation systems with 

speech interfaces. Unfortunately, the manufacturers were not willing to provide them and 

in particular, in a portable form that could be installed in the UMTRI driving simulator.  

Fortunately, Mobis, the parts supplier for Hyundai, was willing to provide a system that 

could be temporarily installed in the simulator (Figure 4-3).  
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4.2.6 Destination Entry Tasks  

As mentioned in the design session, subjects performed each destination entry task 

four times in each block (Table 4-2). Each trial included four pieces of information: 

destination name, street name and house number, city name, and state name (Figure 4-4). 

Among the four trials in each block, three trials were with correct information; one of 

them was related to subjects’ personal information (residential address), and the others 

were selected by the experimenter based on the results from the survey study. In the 

incorrect information trial, an adjacent, incorrect city was given. First, subjects were 

requested to use the incorrect information to start the destination entry task even if he/she 

knew the city was incorrect. The goal of this particular trial was to collect the strategies 

that subjects used to correct errors. Also, there was one trial on each block with the 

information related to each subject (residential address). The purpose of this trial was to 

get the information that a subject would use to enter the destination, such as “Street 

Address,” “Previous Destination,” “Address Book,” or “Destination Home.” The order of 

the trials in each block was random. 

Table 4-2. Destination Entry Task in Each Block.  
 Block A Block B Block C 

Destination 
address w/ correct 
information 

Subject’s Home 
Subject’s 
Friend’s/Relative’s 
Home 

Subject’s 
Friend’s/Relative’s 
Home 

Shopping 
Center/Mall 

Shopping 
Center/Mall 

Shopping 
Center/Mall 

Hospital Church Recreation 
Destination 
address w/ 
incorrect 
information 

Restaurant University Attraction 
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Figure 4-4. Information of Display for the Subject on Destination Entry Task 

4.2.7 Music Selection Tasks  

Similar to trials in the destination entry task, young and middle-aged subjects 

performed five trials in each condition - while the vehicle was parked, while driving in 

low-workload scenarios, and while driving in high-workload scenarios. Experimenters 

assumed that all subjects should be familiar with the songs in their own MP3 players, so 

information provided in these trials was always correct. Each block included three trials 

with complete information (song title, artist name, and album name), one trial for a 

specific album, and one trial for a specific artist (five trials total). The purpose of the 

three trials with complete information was to determine the method that each subject used 

to find a specific song. The five trials were randomized and then counterbalanced.  

4.2.8 Performance Measures  

To compare the driving performance of subjects during different workload scenarios 

and tasks conditions, eleven variables were examined. The brief definition of these 
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variables is adapted from the SAE Recommended Practice J2944 [72] and shown in 

Table 4-3. Please see SAE Recommended Practice J2944 for the exact definition. 

Table 4-3. The Brief Definition of Variables Used to Measure the Driving Performance 
(SAE Recommended Practice J2944 for the Exact Definition) 

Performance measurement Brief Definition 

Task Completion Time (s) 

The duration from when the experimenter finished 
saying “Next” and until the end of the prompt “Please 
proceed to the highlighted route and then the route 
guidance will start” prompted by machine. 

Turns 

The number of utterance sequences involving the 
machine, the user, or more commonly both, needed to 
exchange the information after the subject presses the 
voice-activation button. 
The “total turns” of a trial is the number of  “machine 
turns” plus the number of “user turns.” 

Mean Speed 
The mean speed averaged across the duration of a 
specific trial. 

Speed Variation 
The standard deviation of the speed from 65 mph 
across the duration of a specific trial. 

Speed Difference 
The maximum speed minus the minimum speed 
within the time period of a specific trial. 

Maximum Speed 
The largest speed within the time period of a specific 
trial. 

Mean Time to Collision 
(TTC) 

The mean time to collide with a lead vehicle in the 
travel path if the speed of vehicles were maintained 
with the gap at this moment. 

Minimum Time to Collision 
The minimum time to collide with a lead vehicle in 
the travel path if the speed of vehicles were 
maintained with the gap at this moment. 

Mean Lateral Lane Position 
The current vehicle position deviates from the center 
of lane. 

Standard Deviation of Lateral 
Lane Position (SDLP) 

The standard deviation of the current lane position 
deviates from the center of lane. 

Mean Time-to-Lane-Crossing 
(TLC) 

The time to reach the lane marking assuming the 
current heading angle and speed. 

Minimum Time-to-Lane-
Crossing (TLC) 

The minimum time to reach the lane marking 
assuming the current heading angle and speed. 
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4.2.9 Procedure 

The experiment was conducted in the UMTRI driving simulator. When recruited over 

the phone, subjects were told about the purpose of this experiment. Questions related to 

motion sickness were also asked to screen out susceptible subjects. Also obtained were 

three pieces of information concerning the subject’s home address, and the home address 

of two friends or relatives.  This information was entered into the navigation device in 

advance to save time. When subjects arrived at UMTRI, the experimenter greeted them 

and explained the purpose of this study again, as well as the procedure.  Subjects then 

signed the consent form and completed a biographical form, which was used to collect 

some information about the subject, such as their age, years of driving, and driving 

habits. Vision and hearing tests were then administered to ensure that subjects could see 

and hear without any problems. If a subject had previous experience using a navigation 

device and/or MP3 player, questions related to each device were also asked.  

The experimenter then gave a general overview of the driving simulator, pointing to 

the cameras that were used to record the performance during the experiment. The subject 

sat in the cab and adjusted the seat to the position that they felt comfortable, fastened the 

seatbelt, and also adjusted the mirrors. A practice driving session to check for motion 

discomfort and achieve stable driving performance lasted about five minutes. Next, the 

subject practiced using the navigation device with the speech interface. To begin, the 

experimenter described the structure of the navigation unit and the commands to be used 

later. Then the subject entered destinations using the following methods in this order – 

“Street Address,” Point of Interest (POI),” Address Book” (created by the experimenter 

in advance), and “Previous Destinations.” There were two practice trials for each method. 
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For the last two practice trials, the given state name was incorrect. This was to present 

subjects with a sense of what would happen when they entered incorrect information.  

After 10 practice trials, when the subject was ready, the experiment started with 

destination entry tasks while the vehicle was parked. Subsequently, the subject performed 

the destination entry tasks while driving in low- and high-workload scenarios in a 

counterbalanced order. For the elderly subjects, a post-test questionnaire about their 

destination histories was completed. Because it took more than two hours for elderly 

subjects to complete the destination entry task, the music selection tasks were not 

included; it would have made the experiment excessively long for this group. 

Furthermore, most of the elderly subjects did not own and use MP3 players, so they 

would have had to learn to use one, an activity for which there was no time. For young 

and middle-age subjects, music selection tasks were included in the experiment, and the 

task orders were similar to the destination entry tasks – practice block, select music while 

vehicle parked, select music while driving in low-workload scenarios, and select music 

while driving in high-workload scenarios.  See Table 4-4. 
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Table 4-4. Time Allocation of the Driving Simulator Experiment 

# Tasks Comment 
Duration 

(min) 

1 Introduction 

Greet subjects, sign consent, biographical 
forms, complete vision & hearing tests, 
answer questions about previous experience 
using navigations systems and MP3 players, 
walk to the simulator, and introduce the 
simulator 

30 

2  Practice Driving 

Practice driving for five minutes to get used 
to the driving simulator and screen out those 
subjects who might be susceptible to motion 
sickness 

5 

3 
Practice trials 
for navigation 

10 tasks for subjects to get used to the 
interfaces and process 

30-45 

4 
Block1 (while 
vehicle parked) 

Test block. Four tasks for each block  10-15 

5 

Block2 (while 
driving in low 
workload 
scenarios) 

Test block. The experimenter needed one 
minute to load the test scenario and activate 
the simulator. Wait one more minutes after 
subject reached the desired speed (65 mph), 
to begin collecting baseline-driving data. 
There were four tasks for each block. 

10-15 

6 

Block3 (while 
driving in high 
workload 
scenarios) 

Test block. The experimenter needed one 
minute to load and activate the simulator. 
They waited one more minute after subject 
reached the desired speed (65 mph), to 
collect baseline-driving data. There were 
four tasks per block. 

10-15 

7 

Practice trials 
for music 
selection using 
iPhone 4 

There were six tasks for subjects to get used 
to the interfaces and process 

10 

8 
Block1 (while 
vehicle parked) 

Test block. There were five tasks for each 
block  

5 

9 

Block2 (while 
driving in low 
workload 
scenarios) 

Test block. The experimenter needed one 
minute to load and activate the simulator. 
They waited one more minute after subject 
reached the desired speed (65 mph) to begin 
collecting baseline driving data. There were 
five tasks for each block. 

5 

10 

Block3 (while 
driving in high 
workload 
scenarios) 

Test block. The experimenter needed one 
minute to load and activate the simulator. 
They waited one more minute after subject 
reached the desired speed (65 mph), to begin 
collecting baseline driving data. There were 

5 
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five tasks for each block. 

11 Post test 
The experimenter asked some questions 
concerning the subjects’ history of visiting 
the destination just entered. 

5 

Total 130-150 

4.2.10 Data Reduction 

All prompts for subjects and machine interaction for both the destination entry and 

music selection tasks were recorded and analyzed using the ExpStudio Audio Editor 

software. Examples of audio files and definitions are shown in Figure 4-5 and Table 4-5. 

All the prompts and time stamps were transcribed and corrected by a team of seven 

research assistants.  This took many, many months, and all of their data was double 

checked, and in some cases, triple checked for accuracy. 
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a) Vehicle Parked	

	
b) While Driving	

c) Detailed Sound Wave	
Figure 4-5. Audio Example of the Interaction Between Subject and the Speech Interface: 
Utterances for the Music Selection Task and an Explanation of the Segments Examined.  

 

Table 4-5. Example of the Utterances for Music Selection Task and Associated Time 
Intervals 

Area of 
Interest 

Description 

Example 

Experimenter: Next 
Subject: Play Artist +Sean Paul 
iPhone: “Ding Ding” “Playing Songs by + Sean Paul”, music playing 
Subject: Next Track 
iPhone: “Ding Ding”, music playing 
 

1 
Thinking and Response Time: The duration that subjects used to think about 
the query before saying it. It was the elapsed time between the end of the 
experiment saying “next” and the beginning of the utterance of the word. 

2 
Duration of the subject’s utterance, including command words, pause, and 
the specific information 

3 
Duration of the pause after the subject’s utterance and the beginning of 
chime from machine. 
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4 Duration of the sound from machine. 

5 
Duration of the pause after the chime from machine and the prompt of 
feedback from machine. 

6 Duration of the prompt from machine’s feedback. 
7 Duration of the machine processing time to find and play the specific song. 

8 
Thinking and Response Time_2: the duration that the subject needed to 
determine the music played was correct or not. 

9 
Duration of the utterance for the subject to say the command words Next 
Track. 

10 
Duration of the pause after the subject’s utterance and the beginning of the 
chime from machine. 

11 Duration of the chime from the machine 

12 
Duration of the machine processing time to find and play next song from the 
same album or by the same artist. 

13 Task Completion Time: Duration of the entire task from 1 to 12. 
 

4.3 Results and Discussions 

4.3.1 Destination Entry Task 

A. Task Completion Rate, Task Completion Time, and Detailed Time Associated 

with Each Utterance 

Task Completion Percentages 

There were 576 trials performed by the 48 subjects in the destination entry task. Eight 

trials were incomplete (subjects balked), and the resulting task completion percentage 

was therefore 98.6% (Table 4-6). Among the 568 completed trials, there were 12 trials 

(2.1%; 12/568) that the subjects finished, but the location was incorrect, though they 

thought the final result was correct. Therefore, there were 556 trials that ended with the 

correct destination entered. Furthermore, 52% (300/576) of the trials were completed 

without any errors, neither from subjects nor from the speech interface. When the given 

information was correct, the task completion percentage (destination entry was correct at 
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the end of the trial) was greater than the task completion rate when the information given 

was incorrect, 99 % (427/432) vs. 90% (130/144).  

 

Table 4-6. Frequency of Task Completion for Destination Entry Task 

Information 
Complete 
/ Give-up 

Incorrect Final Correct Final 

Incorrect First 
Correct 

First 
Incorrect 

First 
Correct 

First 
Incorrect 

information 
Complete 8 0 81 49 
Give-up 6 1 0 0 

Correct 
information 

Complete 4 0 176 251 
Give-up 1 0 0 0 

 

However, there was still one trial, after four tries, in which the subject gave up, even 

though the information given was correct. She gave up because she said the prompt either 

too early (barge-in) or too late (time out) while driving. Therefore, the machine could not 

pick up the correct input and either provided incorrect feedback, or repeatedly asked for 

the desired information. For the trial in which the information given was incorrect, all six 

trials in which the subjects gave up occurred while driving, either in the low (4 trials) or 

high (2 trials) workload condition (Table 4-7). When the information given was correct, 

four trials were completed with an incorrect destination entered. For three of the four 

trials, subjects correctly entered the street name, but failed to enter the house number and 

start guidance. Two of the errors occurred because the subjects provided information in 

an invalid format.  (Subjects said four thousand to enter the house number, but the system 

could only understand “four zero zero zero.”) 
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Table 4-7. Frequency of Task Completion for Destination Entry Task by Scenarios 
 Incorrect Final Correct Final 

Driving 
Condition 

Scenario 
Task 

Completion 
Incorrect 

First 
Correct 

First 
Incorrect 

First 
Correct 

First 
P

ar
ke

d 
1* 

Recreation 
Complete 4 0 23 20 
Give up 1 0 0 0 

2 
Shopping 

Complete 2 0 19 27 
Give up 0 0 0 0 

3  
Home 

Complete 0 0 24 24 
Give up 0 0 0 0 

4  
Hospital 

Complete 1 0 21 26 
Give up 0 0 0 0 

L
ow

 W
or

kl
oa

d 

5  
Home 

Complete 0 0 15 33 
Give up 0 0 0 0 

6*  
University 

Complete 3 0 26 15 
Give up 3 1 0 0 

7 
Shopping 

Complete 0 0 22 25 
Give up 1 0 0 0 

8  
Church 

Complete 0 0 15 33 
Give up 0 0 0 0 

H
ig

h 
W

or
kl

oa
d 

9 
Recreation 

Complete 0 0 16 32 
Give up 0 0 0 0 

10* 
Attraction 

Complete 0 0 32 14 
Give up 2 0 0 0 

11  
Home 

Complete 0 0 20 28 
Give up 0 0 0 0 

12 
Shopping 

Complete 1 0 24 23 
Give up 0 0 0 0 

*: Given information were incorrect 

 

Task Completion Time 

The mean task completion time of the trials that the subjects completed for the 

destination entry task was 123.47 ± 83.78 s.  Of those trials with incorrect information in 

which the subjects gave up, the mean time was 322.64 ± 28.53 s (Table 4-8). For those 

trials that the subjects entered the final destination correctly, the mean task completion 

time when given incorrect information was almost double the task completion time when 

given correct information, for both correct and incorrect entries on the first attempt. 
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Furthermore, the mean task completion time for those trials without any errors was 76.65 

± 15.38 s, which was almost five times larger than the SAE 15-second rule, which is 

intended for visual-manual interfaces [80]. Although the interface tested was a speech 

interface, there were instances where subjects need to refer to a display screen to make a 

selection, so the interface test was not a purely speech interface. When errors occurred 

during the first attempt, the mean task completion time was almost twice as much (135 s 

vs. 76.7 s) compared with the time of trials without any errors. When the information 

given was correct and no errors occurred, age and driving conditions significantly 

affected the task completion time (F(2, 232) = 7.63, p = 0.001 for age and F(2, 232) = 6.512, 

p=0.002). The interaction of age and gender also affected the task completion time (F(2, 

232) = 5.473, p = 0.005). Post hoc test results revealed that the task completion time for 

young drivers was 7 s and 8 s less than the time for middle-aged and elderly subjects 

(p<0.001 and 0.001 with the Bonferroni adjustment). The task completion time while the 

vehicle was parked (81.5 s) was 6 s and 7 s longer than the task completion time while 

driving in low (75.5 s) and high (74.6 s) workload conditions (p < 0.001 and 0.001 with 

Bonferroni adjustment). There was no difference in the task completion time between the 

two driving workload conditions. Learning effects may explain the difference as subjects 

always performed the destination entry tasks while the vehicle was parked and the two 

driving conditions were counterbalanced. 

Table 4-8. Mean and Standard Deviation of Task Completion Time for Destination Entry 
Task (in seconds) 

Information 
Complete / 
Give-up 

Incorrect Final Correct Final 

Incorrect First 
Correct 

First 
Incorrect First 

Correct 
First 

Incorrect 
information 

Complete 
138.85 ± 

70.07 
0 

233.27 ± 
111.95 

132.90 ± 
24.88 

Give-up 322.64 ± 493.23   
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128.53 

Correct 
information 

Complete 
183.80 ± 
131.53 

 
135.00 ± 

84.12 
76.65 ± 
15.38 

Give-up 195.52    
 

Table 4-9 shows the mean task completion time by scenarios for the various driving 

conditions.  

Table 4-9. Mean Task Completion Time by Scenarios 
 Incorrect Final Correct Final 

Driving 
Condition 

Scenario 
Task 

Completion 
Incorrect 

First 
Correct 

First 
Incorrect 

First 
Correct 

First 

P
ar

ke
d 

1* 
Recreation 

Complete 148.52  277.31 145.6 
Give up     

2  
Shopping 

Complete 91.82  109.00 81.66 
Give up     

3  
Home 

Complete   149.76 82.89 
Give up     

4  
Hospital 

Complete 180.77  136.50 78.96 
Give up     

L
ow

 W
or

kl
oa

d 

5  
Home 

Complete   114.29 68.51 
Give up     

6 * 
University 

Complete 122.74  225.73 132.90 
Give up 347.77 493.23   

7 
Shopping 

Complete   153.55 82.70 
Give up 195.52    

8  
Church 

Complete   112.95 79.03 
Give up     

H
ig

h 
W

or
kl

oa
d 

9 
Recreation 

Complete   120.9 76.02 
Give up     

10* 
Attraction 

Complete   207.73 114.75 
Give up 284.93    

11  
Home 

Complete   138.58 65.32 
Give up     

12 
Shopping 

Complete 370.79  155.69 78.06 
Give up     

*: Given information were incorrect 
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Thinking and Response Time 

The sum of these two times is the duration from the end of the “next” from the 

experiment’s utterance to the beginning of machine’s prompt. Thinking and response 

times were significantly affected by age and gender. The mean thinking and response 

time for elderly drivers was 1.9 s, which was significantly longer than the thinking time 

for young and middle-age drivers (F(2, 522) = 18.733, p < 0.001). There also was a main 

effect of gender on the thinking and response time, F(1, 445) = 11.477, p < 0.001. Men took 

1 s longer to think of and respond to the information than women. No significant 

difference was found due to the main effect of driving conditions, correctness of given 

information, or information relevant to the subject.  

To provide the data needed to build the simulation, half of the data was used to 

generate the distribution and its parameters. When subjects needed to enter a residential 

address, the thinking and response times were fitted by a lognormal distribution with the 

parameters of  and  equal to 1.48 s and 0.57 s (n = 72). On the other hand, the thinking 

and response times were fitted by a lognormal distribution with the parameters of  and  

equal to 1.31 s and 0.61 s (n = 214), when the address that subjects entered was not a 

residential address. 

 

Time to Utter the Commands by Subjects 

Subjects needed to utter a variety of commands to advance to the next step. For 

example, to enter the street address, subjects need to say the command Find Address. To 

retrieve the saved information in the address book, subjects needed to say the command 

Destination by Address Book. When subjects thought they were ready to find the 
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requested destination, they said Start Guidance. The time to utter these commands was 

significantly affected by the age (F(2, 1061) = 12.020, p < 0.001). Post hoc tests revealed the 

mean time for elderly subjects to utter a command takes 0.12 s and 0.09 s greater than the 

time required by young and middle-age subjects (p < 0.001 and 0.008 with Bonferroni 

adjustment).  

Using a stepwise regression, the time required to say a command can be predicted as 

follows (R2 = 0.374, F(3, 1075) = 214.283, p < 0.001). 

CMD Utterance Time = 0.136 + 0.133 * NSyllable + 0.082 * Age + 0.094 * NWord  

           (4.2) 

Where: 

NSyllable: Numbers of syllables of the commands that subjects uttered. 

Age: The age group of subjects. Young subjects = 0. Middle-age subjects = 1. Elderly 

subjects = 2. 

NWord: Number of words of the commands that subjects uttered. 

 

Time to Think of and Utter the State Name by Subjects 

The default setting for the state (e.g., Michigan) for the current destination is the state 

from the previous destination. If the state name is the same as previously used, drivers 

did not need to say the command – Change State. 

On the other hand, subjects needed to think of and then provide state information if 

the information provided by the experimenter was different from the default state setting. 

The time to think of the state name was not affected by the variables of age, gender, 

driving conditions, and information relevant to the residential address, or their 
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interactions. Using stepwise regression, the time to think of a state name can be predicted 

by age. However, the value of R-square was 0.078 (F(1, 64) = 5.356, p = 0.024), which was 

too low to be meaningful. The time to think of the state name while driving was fit by a 

lognormal distribution with the parameters of  and  equal to -0.5 and 0.49 (n = 35, 

p = 0.139). 

Age and gender significantly affected the time for subjects to utter the state name, F(2, 

62) = 7.310, p = 0.002 and F(1, 62) = 11.574, p = 0.001, respectively . Using a stepwise 

regression, utterance times to enter the state name can be predicted using the equation 

shown below (R2 = 0.405, F(3, 58) = 13.161, p < 0.001).  

State Utterance Time =  -0.212 + 0.242 * NSyllable + 0.098 * Age – 0.104 * Gender  

           (4.3) 

Where: 

NSyllable: Numbers of syllables of the state name that subjects uttered. 

Age: The age group of subjects. Young subjects = 0. Middle-age subjects = 1. Elderly 

subjects = 2. 

Gender: The gender group of subjects. Female = 0. Male = 1. 

 

The mean time for middle-aged and elderly subjects was 0.1 s and 0.2 s greater to 

utter the state name than the time for the young drivers. Also the time for female drivers 

to utter the state name is 0.1 s longer than the time needed by male drivers. 

 

Time to Think of and Utter the City Name by Subjects 
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Usually, the first information that subjects needed to provide was city name when 

subjects used the street address method, in which case the state was same as the default 

state. Subjects again needed to think of the city name before uttering it when the machine 

asked for the city information. Neither the age, gender, driving workload, information 

relevant to residential address nor their interactions, affected the time for subjects to think 

of the city name. The time for subjects to think of the city name was fit by a normal 

distribution, with a mean and standard deviation of 0.91 s and 0.78 s, respectively 

(n = 351). 

The time to utter the city name was significantly affected by the age (F(2, 302) = 4.718, 

p = 0.01). A post hoc test revealed that the time to utter the city name by elderly subjects 

was 0.17 s and 0.14 s longer than the time needed by the young and middle-age drivers, 

respectively. 

Using a stepwise regression, utterance times to enter the city name can be predicted 

as follows (R2 = 0.432, F(3, 301) = 75.544, p < 0.001). 

City Utterance Time =  -0.103 + 0.172 * NSyllable + 0.089 * Age + 0.149 * NWord  

           (4.4) 

Where: 

NSyllable: Numbers of syllables of the city name that subjects uttered. 

Age: The age group of subjects. Young subjects = 0. Middle-aged subjects = 1. 

Elderly subjects = 2. 

NWord: Number of words of the city name that subjects uttered. 

 

Time to Think of and Utter the Street Name by Subjects 
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Even though the experimenter emphasized during the practice and before the 

experimental trials that the subjects needed to utter all the information provided by the 

experimenter, 14.8% of the time (42/284) subjects only uttered the street name without 

saying the suffix (“road,” “street,” “avenue,” and etc.), which resulted in the incorrect 

feedback from the system or multiple feedback messages.  Thus, subjects needed to 

perform an extra step to select the correct destination. Also, 12.9% of the time (21/163) 

subjects did not say the direction (east, west, south, and north), which also resulted in the 

incorrect feedback or multiple feedback messages that led subjects to perform an extra 

step to select the correct information. Both of these two cases can result in greater times 

to complete the task. 

The time to think of the street name by the subjects was affected by age (F(2, 291) = 

4.609, p = 0.011) and information relevant to personal address (F(1, 291) = 3.788, p = 0.41). 

Post Hoc tests revealed that the mean time to think of the street name for young subjects 

was 0.26 s and 0.29 s less than the time for middle-aged and elderly drivers. When 

subjects entered the street name of a friends’ or relative’s address (residential address), 

the time to think of the street name was 0.2 s less than the time when subjects tried to 

enter the non-residential address. Age can be used to predict the time to think of the street 

name using stepwise regression (R2 = 0.025, F(1, 329) = 8.431, p = 0.004). Again, the R-

square was small. The time to think of the street name while driving was fit by a 

lognormal distribution with the parameters of  and  equal to 0.03 and 0.58 (n = 260, p 

= 0.150). 

The time to utter the street name was significantly affected by the age and the 

residential address, F(2, 284) = 3.788, p = 0.024 and F(1, 284) = 11.56, p = 0.001, 
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respectively. When subjects uttered the street name of a friend or relative, it took 0.3 s 

less than the time needed to utter the non-residential address. A post hoc test revealed that 

the time to utter the street name by elderly subjects was 0.27 s and 0.19 s greater than the 

time needed by the young and middle-age drivers, respectively. 

Using stepwise regression, the utterance times for street names can be predicted using 

the following equation (R2 = 0.601, F(3, 283) = 140.298, p < 0.001). Again, the time to utter 

the street name increased as age increased and women took more time to say street names 

than men. 

Street Utterance Time = 0.041 + 0.459 * NWord + 0.188 * Age - 0.103 * Gender  

           (4.5) 

Where: 

NWord: Number of words of the street name that subjects uttered. 

Age: The age group of subjects. Young subjects = 0. Middle-age subjects = 1. Elderly 

subjects = 2. 

Gender: The gender group of subjects. Female = 0. Male = 1. 

 

Time to Think of and Utter the House Number by Subjects 

There were many ways in which subjects chose to utter house numbers. For example, 

subjects can say “four zero zero zero” or “four thousand” when the number is 4000. 

Subjects may say “seventeen seventeen,” instead of “one seven one seven” when the 

number is 1717. Also, subjects could say “seven thirty,” instead of “seven three zero” 

when the number was 730. However, the system could only recognize the utterance when 

subjects said the number one digit at a time.  Thus, the system did not recognize “four 
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thousand,” “seven thirty,” or “seventeen eighteen,” which are commonly spoken 

combinations. This occurred in 8 % of trials during the experiment. 

The time to think of a house number was affected by the main effect of age (F(2, 227) = 

4.508, p = 0.012) and whether the information given was correct (F(1, 227) = 7.353, p = 

0.007).  The time needed by young subjects to think of the house number was 0.4 s less 

than the time needed by elderly subjects, based on a post hoc test with a Bonferroni 

adjustment. There were no statistically significant differences between the times for 

elderly and middle-age subjects or young and middle-age subjects. Although the house 

numbers given to subjects were always correct, thinking about whether the information 

given was correct affected the time to think of the house number. When given an 

incorrect city name, the time to think of the house number was 0.3 s longer than when the 

information given was correct. Using a stepwise regression, information correctness and 

age can be used to predict the time to think of the house number (R2 = 0.087, F(2, 270) = 

12.908, p < 0.001). Using the distribution fitting method, the inverse of thinking time for 

their house number (1/T) fit a Weibull distribution (n=271, p = 0.25) with parameters of 

α and β equal to 1.31 and 2.42. 

The time to utter the house number was significantly affected by the age and 

information relevant to the private address, F(2, 240) = 8.095, p < 0.000 and F(1, 284) = 

11.272, p = 0.001, respectively. When subjects uttered the residential (friends’ or 

relative’s) address, it took 0.36 s less than the time needed to utter the non-residential 

address. A post hoc test revealed that the time to utter the street name by elderly subjects 

was 0.46 s and 0.39 s longer than the time needed by the young and middle-age drivers, 

respectively. 
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Using a stepwise regression, utterance times to enter the house number can be 

predicted using the following equation (R2 = 0.527, F(4, 239) = 65.486, p < 0.001).  

House Number Utterance Time = -0.805 + 0.681 * NWord + 0.201 * Age – 0.143 * 

Workload - 0.197 * Gender    (4.6) 

Where: 

NWord: Number of words of the house number that subjects uttered. 

Age: The age group of subjects. Young subjects = 0. Middle-age subjects = 1. Elderly 

subjects = 2. 

Workload: Driving workload. Low workload = 0. High workload = 1. 

Gender: The gender group of subjects. Female = 0. Male = 1. 

 

Again, the time to utter the house number increased as a subject’s age increased, and 

women took longer to say the street name than men. However, subjects spoke more 

quickly when driving than when not driving. 

 

Time to Spell the State, City, and Street Name by Subjects 

During the process of entering the destination, subjects might spell the state, city, or 

state name as an alternative method to providing the necessary information or to correct 

the information when the previously provided information was incorrect. When the 

subjects spelled the word(s), the mean number of characters was 7.9 ± 2.3 characters, 

corresponding to one (73.2%) or two (26.8%) words. Fitting the data discretely, the 

number of characters that subjects spelled followed Poisson distribution with parameter 

(λ) of 7.91 (n = 56, p = 0.76).  
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When subject spelled the state, city or street name, the utterance time was not 

significantly affected by age, gender, driving workload, or information relevant to the 

residential address. Results from stepwise regression revealed that the number of 

characters and the number of the words predict the utterance time (R2 = 0.704, F(2, 55) = 

62.973, p < 0.001). 

Spelling Time = -1.826 + 0.635 * NCharacter + 1.09 * NWord   (4.7) 

Where: 

NCharacter: Number of characters that subject spelled. 

NWord: Number of words that subjects spelled. 

 

Time for Barge-In by subjects 

When subjects provided any information or uttered any commands before the speech 

interface signal (usually a beep), or without pressing the ASR button to interrupt the 

system, this is defined as User Barge-in. Most in-vehicle speech systems cannot 

recognize and process barge-in utterances, and therefore, present incorrect feedback as 

the system captures either none or some of the utterance. There were 53 occurrences of 

barge-in in this experiment, on average just over two per subject. The barge-in time was 

not significantly affected by age, gender, driving workload, and information relevant to 

personal related address. In fact, there were no variables that predicted the time of subject 

barge-ins. That barge-in time was normally distributed with the parameters of μ and σ 

equaling to 0.19 s and 0.11 s (n = 53, p = 0.2291). 

 

Time for Time-Out by Subjects 
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When the system asks for information, subjects need to utter the information within a 

specific time, the time-out duration. If subjects did not say anything within this period, 

the system either repeats the previous prompt to ask for information, or deactivates the 

ASR function. Time-out also occurred when subjects start to provide the information 

within the normal time window, but continue beyond the time window, and the system 

cannot capture the entire user utterance. There were 76 time-outs in this experiment. The 

time-out duration was not affected by age, gender, driving workload, or information 

relevant to residential address. The time out duration was normally distributed with the 

parameters of μ and σ equal to 7.12 s and 1.8 s (n = 78, p = 0.0829). 

 

Time for Various Prompts Uttered by the Machine 

Unlike the speech system for music selection, the prompts by the speech interface and 

subjects are much more complex for the destination entry tasks. However, the time 

needed for the machine to say the same prompt should be always the same, but the 

duration varied with the content, depending upon the state, city, street name, and house 

number combinations. Most of the prompts that the speech interface uttered are shown in 

Table 4-10.  

Table 4-10. The Prompts and Their Corresponding Duration by the Machine 
Prompts Time Pause Beep Total 

Duration 
Command Please 0.922 0.315 0.08 1.317
You can say, for example, destination help or say help at 
anytime 

4.094 0.342 0.08 4.516

Destination help. Command Please 1.97 0.346 0.08 2.396
For example, say find nearest POI or say help at any time 3.867 0.351 0.08 4.298
Find Address. The city please 2.587 0.336 0.08 3.003
Please enter the state name 1.277 0.332 0.08 1.689
Sorry. Please enter the state name 2.442 0.327 0.08 2.849
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Please select the respective line or start spelling 2.803 0.359 0.08 3.242
Please spell the name 1.05 0.323 0.08 1.453
Spell the name in blocks of letters or enter your 
destination again with change state or enter city 

5.133 0.329 0.08 5.542

The city please 0.851 0.332 0.08 1.263
Sorry. The city please 1.996 0.344 0.08 2.420
What is the street 0.869 0.317 0.08 1.266
Sorry. What is the street 2.024 0.313 0.08 2.417
And house number or if you don't know that, please say 
show map or start guidance 

4.798 0.304 0.08 5.182

Sorry. Your choice is not available at this point. 2.465 0.836 0.08 3.381
Show map or start guidance 1.492 0.338 0.08 1.910
Say show map, start guidance or say help at any time 3.298 0.333 0.08 3.711
Show Map 0.528   
Start Guidance 0.931 0.342 0.142 1.415
Click 0.142   
Please proceed to the highlighted route and then the route 
guidance will start 

3.996   

Select previous destination. Line please. 2.598 0.322 0.08 3.000
For example say line two, next page, help, repeat, or back 4.152 0.328 0.08 4.560
Go Home 0.492 0.358 0.08 0.930
Please select a POI category 1.899 0.317 0.08 2.296
Please Select a POI sub-category. 2.192 0.302 0.08 2.574
Line Please 0.714 0.327 0.08 1.121
Please select user name 1.348 0.306 0.08 1.734
For example, say a user name like user one or next page, 
help or back  

4.97 0.361 0.08 5.411

User one. Line please. 2.375 0.329 0.08 2.784
There is no database 1.301   
Please say Line and the line number. For example Line 
two 

3.053 0.314 0.08 3.447

Sorry. I can't understand the command. Please say again 
or say help. 

3.448 0.359 0.08 3.887

Note: The total duration = prompt time + pause time + beep time, as appropriate. 

 

Using a stepwise regression, machine prompt times to say a command or provide 

information can be predicted using the following equation (R2 = 0.901, F(1, 32) = 280.719, 

p < 0.001). 

M-CMD Time = 0.347 + 0.284 * NWord      (4.8) 
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Where: 

NWord: Number of words that a speech system uttered. 

 

After each speech interface prompt, there is a pause and then a beep to signal the 

subjects that the system is ready to capture speech. All the durations were assumed fixed 

during the data reduction so that detailed time stamps for other utterances and pauses in 

between could be determined. 

 

Time to Process and Prompt the State Name by the Machine 

After the subject’s utterance, the ASR device processes the user’s input, and then 

provides feedback to the subject. The machine processing time was not affected by 

subjects’ age, gender, or driving workload. However, when the system correctly 

recognized the desired state name that the user had uttered (31% from the empirical data), 

the processing time of state name was 0.86 s less than when the system provided multiple 

choices for state name and required the subject to choose one of them (F(1, 37) = 220.151, 

p < 0.001). Using a stepwise regression, the machine processing time of state name can 

be predicted using the following equation (R2 = 0.863, F(1, 56) = 352.6, p < 0.001). 

M-State Processing Time = 2.185 + 0.89 * MultipleChoice   (4.9) 

Where: 

MultipleChoice: The speech system provides multiple choices of possible state. No = 

0. Yes = 1. 
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Using a stepwise regression, prompt times to provide feedback for the state name to 

subjects can be predicted using the following equation (R2 = 0.713, F(2, 50) = 59.672, p < 

0.001). 

M-State Prompt Time = 0.117 + 0.163 * NSyllable + 0.117 * NWord   (4.10) 

Where: 

NSyllable: Number of syllables of the state name that a speech system prompted. 

NWord: Number of words of the state name that a speech system prompted. 

 

Time to Process and Prompt the City Name by the Machine 

Similar to the state name, the system needs to process the user utterances for the city 

name and provide feedback to the subject. There were no main effects of age, gender, and 

driving conditions on the machine processing time of city name. Again, there were two 

results after machine processing of the information. One result was that the machine 

correctly recognized the city name uttered by the subjects, in which the probability was 

12.7 % and the mean processing time was 2.25 s. Another result was that the machine 

provided multiple choices after processing the information, and subjects needed to take 

one more step to choose the correct city. The processing time was 3.19 s. The processing 

time of city name for these two results were statistically significant difference (F(1, 269) = 

543.623, p < 0.001). Using a stepwise regression, the machine processing time of city 

name can be predicted using the following equation (R2 = 0.744, F(1, 290) = 844.8, p < 

0.001). 

M-City Processing Time = 2.241 + 0.95 * MultipleChoice   (4.11) 

Where: 
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MultipleChoice: The speech system provides multiple choices of possible city. No = 

0. Yes = 1. 

Using a stepwise regression, the machine utterance times for feedback for the city 

name can be predicted using the following equation (R2 = 0.342, F(1, 40) = 20.264, p < 

0.001). 

M-City Prompt Time = 0.211 + 0.212 * NSyllable     (4.12) 

Where: 

NSyllable: Number of syllables of the city name that a speech system prompted. 

 

Time to Process and Prompt the Street Name by the Machine 

Again, the system needs to process the user utterances of street name and provide 

feedback to the subject. There were no main effects of age, gender, and driving 

conditions on the machine processing time of street name. The mean processing time for 

the street name was 0.76 s less when the street name was correctly recognized by the 

system than when the machine provided multiple choices of feedback and the subjects 

needed to choose the correct one (F(1, 266) = 669.68, p < 0.001). Using a stepwise 

regression, the machine processing time of street name can be predicted using the 

following equation (R2 = 0.789, F(1, 288) = 1078, p < 0.001). 

M-City Processing Time = 2.772 + 0.782 * MultipleChoice   (4.13) 

Where: 

MultipleChoice: The speech system provides multiple choices of possible street. No = 

0. Yes = 1. 
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Using a stepwise regression, machine utterance time to provide feedback for the street 

name to the subjects can be predict using the following equation (R2 = 0.514, F(1, 19) = 

19.067, p < 0.001). 

M-Street Prompt Time = 0.448 + 0.194 * NSyllable     (4.14) 

Where: 

NSyllable: Number of syllables of the street name that a speech system prompted. 

 

Time to Process and Prompt the House Number by the Machine 

Empirical data from the 24 subjects revealed that the machine processing time of 

house number uttered by the subjects was fitted by a Weibull distribution with the 

parameters of scale (), shape (), and threshold () equal to 0.37, 2.44, and 2.71 (n = 

251, p = 0.25), respectively.  

Using a stepwise regression, prompt time to provide feedback for the house number 

to the subjects can be predicted using the following equation (R2 = 0.686, F(1, 19) = 

39.344, p < 0.001). From the equation, the result reveals that the time for machine to utter 

the house number was 0.55 s per word. 

M-House Number Prompt Time = 0.169 + 0.553 * NWord    (4.15) 

Where: 

NSyllable: Number of words of the house number that a speech system prompted. 

 

Time to Process the Route by the Machine 

The final step of the destination entry task was to wait for the navigation system to 

process the entered information and find the route to the requested destination. After the 



 

 101

system found the route, the system prompts Please proceed to the highlighted route and 

then the route guidance will start to conclude the destination entry tasks. The route 

processing time was significantly affected by whether the state of the requested 

destination is Michigan (F(1, 256) = 277.204, p < 0.001). The out-of-state processing time 

was 8 s greater than the processing time for an in-state destination. Using stepwise 

regression, the time for the system to process the route information can be predicted 

using the following equation (R2 = 0.520, F(1, 19) = 39.344, p < 0.001). 

M-Route Processing Time = 3.182 + 7.936 * Out_State     (4.16) 

Where: 

Out_State: The state entered by the subject was Michigan or not. Yes = 0. No = 1. 

 

As a first cut, rough rule of thumb, the utterance time for subjects and the system can 

be estimated approximately 0.2 s per syllable and 0.5 s per word. According to the results 

from John’s study [87], the estimated duration for a customer to say a syllable in an 

unpracticed sentence was 0.17 s, which is only 0.03 s different (30 ms) from the results 

here, a very small difference. 

The subtasks for subjects to think of state, city, street, and house number can be 

divided into five elements: (1) silence signaling the end of the machine’s turn, (2) moving 

the eyes to the information display screen, (3) complex visual signal (information 

display), (4) cognitive verification (determine the correct one), and (5) cognition 

initiation of response (utter the correct one). In the John’s research, the corresponding 

durations were (1) 0.6 s, (2) 0.18 s, (3) 0.29 s, (4) 0.05 s, and (5) 0.05 s. Adding these 

durations together, the estimated time for subjects to complete the subtask tasks on state, 
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city, street, and house number was 1.17 s. The observed mean times for thinking of state, 

city, street, and house number from this study were 0.89, 0.91, 1.19, and 1.11 s, 

respectively. The results from both studies are close, especially for thinking of the street 

and house number. 

 

B. Number of Turns to Complete the Destination Entry Tasks. 

Table 4-11 shows the mean number of turns to complete a destination entry task 

based on the correctness of the information given and whether the subjects completed the 

task, as well as the number of turns needed by the subjects and the navigation system. 

Overall, to complete a destination entry task correctly required 20 ± 10 turns when the 

information given was correct. On the other hand, the total turns were almost twice (37 ± 

16) for those trials where incorrect information was given. For most trials, the machine 

required 2 more turns than the subjects needed to complete the destination task. This is 

not surprising given that the navigation system used in this experiment was system-

initiated interface and that (1) the machine asks for the information first and (2) the 

navigation system also needs one more prompt to inform the subjects that the route 

guidance has started.  

Table 4-11 Total Turns Needed to Complete Destination Entry Task on the Correctness 
of Information Given (Machine Turn; Subject Turn) 

Information 
Complete 
/ Give-up 

Incorrect Final Correct Final 
Incorrect First Correct First Incorrect First Correct First 

Incorrect 
information 

Complete 23 ± 10 (12; 11)  37 ± 16 (19; 18) 27 ± 9 (15; 13)
Give-up 57 ± 29 (27; 30) 102 (49; 53)   

Correct 
information 

Complete 34 ± 23 (16; 19)  26 ± 13 (13; 12) 15 ± 2 (9; 7) 
Give-up 33 (18; 15)    
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Table 4-12 shows the total turns needed by navigation system and subject to complete 

destination entry tasks partitioned by scenario and driving condition. There were main 

effects of total number of turns on the error occurrence when subjects entered residential 

address (home, friend’s / relative’s address), F(1, 110) = 52.157, p < 0.001. When errors 

occurred, either due to subjects or the machine, the total number of turns needed to 

complete the destination task was 10 more turns than for those trials without errors. There 

was a marginal significant difference (F(2, 110) = 2.819, p = 0.064) of driving conditions on 

the total number of turns. This occurred because the subjects’ home address was not 

stored in the address book (Scenario 3). Instead, the navigation system had an alternative 

way to store the home address (go home). Surprisingly, no subjects used the method “go 

home” to perform the destination entry task while the vehicle was parked. When subjects 

tried to enter the home address using the “address book” method, there were no such 

records, and subjects changed the entry method to either “street address“ or “previous 

destination.” On the other hand, subjects (32%) could use the “address book” method to 

enter a friend’s or relative’s address while driving (Scenario 7 and 11) and this method 

required three fewer turns than when subjects used the “street address” method to enter a 

friend’s or relative’s house (when no errors occurred). 

Table 4-12. Frequency of Total Task Turns for Destination Entry Task by Scenarios 
 Incorrect Final Correct Final 

Driving 
Condition 

Scenario 
Task 

Completion 
Incorrect 

First 
Correct 

First 
Incorrect 

First 
Correct 

First 

P
ar

ke
d 

1* 
Recreation 

Complete 24  39  
Give up 49    

2 
Shopping 

Complete 18  21 16 
Give up     

3  
Home 

Complete   26 17 
Give up     

4  Complete 35  26 17 
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Hospital Give up     

L
ow

 W
or

kl
oa

d 

5  
Home 

Complete   22 14 
Give up     

6 * 
University 

Complete 23  38 28 
Give up 56 102   

7 
Shopping 

Complete   29 15 
Give up 33    

8  
Church 

Complete   22 16 
Give up     

H
ig

h 
W

or
kl

oa
d 

9 
Recreation 

Complete   23 15 
Give up     

10* 
Attraction 

Complete   36 27 
Give up 63    

11  
Home 

Complete   27 13 
Give up     

12 
Shopping 

Complete 66  30 16 
Give up     

Note: * - Trials with incorrect information 

Subjects also performed the tasks of entering shopping address under several different 

driving conditions.  When no errors occurred, the variables of gender, age, and driving 

conditions did not significantly affect the total turns required to complete this destination 

entry task. On the other hand, subjects and the navigation system required 10 more turns 

to complete the destination task for shopping centers when errors occurred or when 

subjects switched entry methods than the total turns required without any errors (F(1, 104) = 

21.77, p < 0.001).  

 

C. Destination Entry Method Difference 

On average, subjects needed to perform 1.7 ± 1.1 attempts to complete the destination 

entry tasks, with 1.3 ± 0.8 and 2.7 ± 1.4 attempts when given correct and incorrect 

information, respectively. Among those 576 trials, the most frequent method used by 

subjects was “street address” (507), followed by “address book” (39), “POI” (30), and 

“previous destinations” (10), respectively (Table 4-13). The method used for the first 



 

 105

attempt could represent how subjects would find destinations when they used their own 

navigation system. When entering the personal address (Table 4-14), the percentage for 

elderly subjects using “address book” as the first attempted entry method was only 6% 

(3/48 trials). On the other hand, the probability of using “address book” to enter the 

personal address for young subjects was 54%, especially in both driving conditions. The 

reason for the difference in entry method for a residential address is that young subjects 

may use the navigation system more frequently. Another reason may be that it is difficult 

for elderly subjects to remember these methods, as some of the commands of methods are 

not listed on the first page. There were three pages of commands relating to all possible 

destination entry methods after subjects say “Destination Help.” 

 



 

 106

Table 4-13. Pooled-Frequency of Method Used by Subjects at the First Attempt for Destination Entry Task (*: w/ error 
information) 

Scenario Address Address Book POI Previous Destination
Final 

Incorrect 
Final Correct Final Correct Final Incorrect Final Correct Final Correct 

First 
Incorrect 

First 
Incorrect 

First 
Correct 

First 
Incorrect 

First 
Correct 

First 
Incorrect 

First 
Correct 

First 
Incorrect 

First 
Correct 

First 
Incorrect

First 
Correct 

Home 0 39 58 13 26 0 0 1 0 6 1 
Shopping 4 58 73 0 0 0 0 17 1 1 0 
Recreation* 6 53 31 0 0 0 0 15 1 0 0 
Hospital 0 17 26 0 0 1 0 22 0 2 0 
University* 5 35 1 0 0 1 1 5 0 0 0 
Church 0 11 33 0 0 0 0 4 0 0 0 
Attraction* 2 42 3 0 0 0 0 1 0 0 0 

Subtotal 17 265 225 13 26 2 1 25 2 9 1 

Note: * - Trials with incorrect information 

 

Table 4-14. Frequency of Method Used by Subjects at the First Attempt for Entering Personal Home Address 
Age  Driving Conditions Address Address Book POI Previous Destination 

Young 
Parked 9 5 1 1 
Low Workload 5 11 0 0 
High Workload 5 10 0 1 

Middle-Age 
Parked 14 2 0 0 
Low Workload 13 3 0 0 
High Workload 9 5 0 2 

Old 
Parked 15 1 0 0 
Low Workload 13 2 0 1 
High Workload 14 0 0 2 

 Subtotal 97 39 1 7 
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Although the “POI” entry method was ranked third in terms of what subjects used to 

enter a destination on the first attempt, this occurred on when a subject tried to find a 

destination for shopping, recreation, and hospital, whose probabilities (using “POI” entry 

method) were 13%, 16%, and 46%, respectively. However, the probability of using 

“POI” as an entry method for destinations such as universities, churches, and attractions 

was relative low and the reason is unknown. 

After the first attempt, 40% of the trials ended with incorrect results. When errors 

occurred or when the subjects could not find the requested destination on the first 

attempt, subjects needed to correct the error and sometimes changed the entry method. 

Table 4-15 shows the frequency of methods that subject used for the second attempt to 

enter destinations. Clearly, “street address” was the preferred method when errors 

occurred (88%). 

 

Table 4-15. Frequency of Method Used by Subjects on the Second Attempt for 
Destination Entry Task While the Result from the First Attempt Was Incorrect 

First Entry 
Method 

Second Entry Method 

Address 
Address 

Book 
POI 

Previous 
Destination 

Show 
Map 

Previous 
Start Point

Address 174 3 8 1 2 0 
Address 
Book 

9 2 0 0 0 0 

POI 18 1 8 1 0 0 
Previous 
Destination 

2 2 0 0 0 1 

Total 203 8 16 2 2 1 
 

After the second attempt, for 96% of those 232 trials, subjects still could not correctly 

find the requested destinations (Table 4-16). Again, “street address” was still the most 

frequently method used to re-attempt to enter a destination. 
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Table 4-16. Frequency of Method Used by Subjects on the Third Attempt for Destination 
Entry Task While the Result from the Second Attempt Was Incorrect 

Second Entry 
Method 

Third Entry Method 

Address 
Address 

Book 
POI 

Previous 
Destination 

Show Map 

Address 46 2 3 5 2 
Address 
Book 

4 1 0 0 0 

POI 1 0 0 0 0 
Previous 
Destination 

1 0 0 0 0 

Previous 
Start Point 

1 0 0 0 0 

Show Map 2 0 0 0 0 
Total 55 3 3 5 2 

 

The maximum number of destination entry attempts was 10. The frequency of each 

method used for each attempt is an important aspect of simulation model to be developed. 

 

D. Errors and User Correction Strategies 

There are two sources of errors when subjects interact with a speech-controlled 

navigation system to enter the destination – machine and human. The mechanism or 

reasons behind why the machine cannot recognize a user’s prompt is beyond the scope of 

this research. However, the frequency of different types of machine errors and how 

subjects corrected these errors are provided.  

There are three categories of human errors that occurred when subjects entered 

destinations: (1) information relevance, (2) system commands and entry method 

relevance, and (3) subject’s knowledge of the related navigation. Véronis’ proposed 

typology of error and Grice’s conversation maxims may be applied to partially explain 

the listed types of errors that occurred in this study (Table 4-17). This list is not mutually 

exclusive.  
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Table 4-17 Categories of Human Errors and Examples Based on the Command–Based In-
Vehicle Navigation System. 

Category Error Type Example Linguistic Principle 

In
fo

rm
at

io
n 

R
el

ev
an

t 
Time out  Maxim of quantity 
Barge-in  Turn-Taking 
Stammer the prompt / 

command 
Dixboro North Dixboro Road Word insertion 

Provide incorrect information City was Ann Arbor, not Ypsilanti Maxim of quality 
Provide incomplete 

information 
South Beyer Road, not Beyer Word deletion 

Provide invalid information 
No POI sub-category named 
“College” 

Maxim of quality 

Provide invalid format of 
information 

four zero zero zero, not four 
thousand 

Word substitution 

Forgot to change the state 
name 

State was Ohio from previous 
trial, but the state was Michigan 
for the current trial 

Maxim of quality 

Pick the wrong choice 
Street name was S. Beyer Road, 
not N. Beyer road 

Maxim of quality 

Miss the correct information 
Correct choice was shown on the 
list, but did not select 

 

Ask experimenter for 
confirmation 

“ Is it in Ann Arbor?” Maxim of Relevance 

Say unnecessary words Umm North Dixboro Road Word insertion 
Murmur “Don’t know what to do” Maxim of Relevance 
Fail to find the correct 

information 
Did not enter the house number 
and start route guidance 

 

C
om

m
an

d 
an

d 
E

nt
ry

 M
et

ho
d 

R
el

ev
an

t 

Cannot find the information 
by specific method 

Use “Previous Destination” as 
entry method. After several steps 
and cannot find the information, 
the user change the method using 
“Street Address” 

 

Change Entry method 
Select “Find nearest POI” as the 
entry method, then say “Cancel” 

 

Cannot determine the entry 
method  

After going through the lists for 
all method, the user failed to pick 
the one and restart the trial. 

Maxim of Manner 

Forget to say command word LINE three, not three Word deletion 
Say incorrect command Find Nearest POI, not Nearest POI Word deletion 

Say invalid command 
Find Address, instead of Find 
Destination 

Word substitution 

S
ub

je
ct

’s
 

K
no

w
le

dg
e 

R
el

ev
an

t 

Did not know the system 
reach the first step of the 
entry method 

“Please enter the state name” was 
the first prompt when users 
entered the destination using 
“Street Address”. The user tried to 
say “Go Back” to change the 
information 

 

Did not know the ASR 
function has been 
deactivated 

After saying “Show Map”, the 
ASR function automatically 
deactivated. The user tried to say 
“Go Back” to change the 
information 

 

Give-up   
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For human errors relevant to the information provided by subjects, most of the error 

types violated the Grice’s conversational maxims, especially for the “Maxim of Quality.” 

When subjects forgot to change the state name, the information for city name is incorrect. 

An alternative way to explain this is that the system and subjects were not on a common 

ground. When subjects provide only incomplete information, such as “Beyer” to “South 

Beyer Road,” one can argue that the error was due to “word deletion.” Another way to 

explain such an error is that the type of error violates the Maxim of Quantity. 

Human error types relevant to system command words can be easily explained as 

word deletion or substitution. 

 

Frequency of errors 

There were 1,088 errors distributed among 323 trials (56% of total 576 trials), 

averaging 3.4 errors/trial. Excluding those trials in which incorrect information was 

intentionally given, there were 487 errors in 183 trials (42% of the 432 trials with correct 

information). The mean number of errors dropped to 2.7 errors/trial. Table 4-18 presents 

descriptive statistics of the errors for each scenario. The number of errors was 

significantly affected by the age, driving conditions, and the correctness of information 

given (Table 4-19). The number of errors for elderly subjects was 1.3 times greater than 

the young and middle-age subjects when entering the destination, with means of 3.5, 2.2, 

and 2.2 times per trial, respectively (F(2, 540) = 11.832, p < 0.001). When subjects 

performed a destination entry task while driving in high- and low-workload conditions, 

the mean of total errors was 1.0 and 0.8 times greater than the number of total errors that 
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occurred while the vehicle was parked, with values of 3.0, 2.8, 2.0 times per trial, 

respectively (F(2, 540) = 6.007, p = 0.003).  Thus, overall, driving did not lead to more 

errors with the speech interface, and if anything, the number of errors was the same or 

fewer. 

Table 4-18. Descriptive Statistics of Errors by Scenarios 
Scenario Number of Trials Sum Mean ± Std. Dev. Range (Min. – Max.) 

1. Recreation* 48 151 3.1 ± 2.5 1 - 14 
2. Shopping 20 28 1.4 ± 0.6 1 - 3 
3. Home 24 46 1.9 ± 1.2 1 – 5 
4. Hospital 22 60 2.7 ± 2.4 1 – 11 
5. Home 15 35 2.3 ± 1.7 1 – 7 
6. University* 48 227 4.7 ± 4.9 1 – 23 
7. Shopping 24 88 3.7 ± 4.6 1 – 21 
8. Church 15 28 1.9 ± 1.0 1 – 4 
9. Recreation 16 36 2.2 ± 2.5 1 – 9 
10. Attraction* 46 223 4.8 ± 3.6 1 – 14 
11. Home 21 71 3.4 ± 2.9 1 – 10 
12. Shopping 26 95 3.7 ± 3.0 1 – 12 
Total 325 1088 3.4 ± 3.3 1 – 23 
Note: * - Trials with incorrect information 

Table 4-19. ANOVA of Total Number of Errors Occurred by Age, Gender, Driving 
Conditions, and Information Correctness for Destination Entry Task 
Source df F p-value 

Age (A) 2 12.136 < 0.001*
Gender (G) 1 0.545 0.461 
Driving (D) 2 6.054 0.003*
Information Correctness (I) 1 147.464 < 0.001*
A * G 2 3.843 0.022*
A * D 4 1.171 0.323 
A * I 2 2.959 0.053 
G * D 2 0.741 0.477 
G * I 1 0.000 0.985 
D * I 2 2.997 0.051 
A * G * D 4 0.889 0.470 
A * G * I 2 3.012 0.050* 
A * D * I 4 3.791 0.005* 
G * D * I 2 2.269 0.104 
A * G * D * I 4 0.884 0.473 
Error 540   
Note: * - Statistically significant, p < 0.05 
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When given an incorrect city name, the mean number of errors that occurred was 3 

times greater than the number of errors that occurred when subjects performed the 

destination entry tasks with correct information, with values of 4.1 and 1.1 errors per 

trial, respectively (F(1, 540) = 148.12, p < 0.001). 

Table 4-20 shows that a total of 89 machine errors occurred among the 63 trials from 

29 subjects with a mean of 1.4 times per trial and range of 1 to 7. The ASR error rate was 

11% (58/576). Age, driving conditions and information correctness affected the mean 

number of machine-caused errors. The mean number of machine errors that occurred 

when elderly subjects entered the destination task was 1.1 times greater than the young 

and middle-age subjects (F(2, 540) = 4.746, p = 0.009). The mean number of machine errors 

that occurred when subjects entered the destination task with incorrect information was 

1.1 times greater than the mean of errors with correct information (F(1, 540) = 15.506, 

p<0.001). When driving in high-workload conditions, machine errors increased 0.17 

times than no driving (p = 0.007 with Bonferroni adjustment). There was no difference in 

mean number of machine errors between the high- and low-workload conditions. 

Table 4-20. Descriptive Statistics of Machine Errors by Driving Conditions and Scenarios 

Driving Scenarios 
Number 
of Trials 

Sum of 
Errors 

Mean ±  
Std. Dev. 

Min. – Max.

Parked Recreation* 7 10 1.4 ± 0.8 1 – 3 
 Shopping 1 1 1 1 
 Home 1 1 1 1 
 Hospital 3 3 1 1 
Low Workload Home 3 4 1.3 ± 0.6 1 – 2 
 University* 12 16 1.3 ± 0.5 1 – 2 
 Shopping 5 5 1 1 
 Church 2 2 1 1  
High Workload Recreation 2 2 1 1 
 Attraction* 13 18 1.4 ± 0.8 1 – 3 
 Home 6 19 3.2 ± 2.4 1 – 7 
 Shopping 8 8 1 1  
Note: * - Trials with incorrect information 
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Most errors that occurred on destination entry tasks were human errors. There were 

999 human errors occurred among 317 trials), averaging 3.2 errors/trial. Table 4-21 

shows the frequency of errors that occurred at different scenarios with driving conditions. 

Apparently, there was not one scenario that ended without any errors occurring. 

Obviously, most of the human errors occurred among those trials with incorrect 

information given, accounting for 56% of the total human errors.  

Table 4-21. Descriptive Statistics of Human Errors by Driving Conditions and Scenarios 

Driving Scenarios 
Number of 

Trials 
Sum of 
Errors 

Mean ±  
Std. Dev. 

Min. – Max. 

Parked 
Recreation
* 

48 141 2.9 ± 2.2 1 – 11 

 Shopping 20 27 1.4 ± 0.6 1 – 3 
 Home 24 45 1.9 ± 1.2 1 – 5 
 Hospital 21 57 2.7 ± 2.2 1 – 10 
Low Workload Home 14 31 2.2 ± 1.7 1 – 7 
 University* 48 211 4.4 ± 4.6 1 – 23 
 Shopping 23 83 3.6 ± 4.5 1 – 20 
 Church 14 26 1.9 ± 0.9 1 - 4 
High Workload Recreation 14 34 2.4 ± 2.7 1 – 9 
 Attraction* 44 205 4.5 ± 3.4 1 – 14 
 Home 21 52 2.5 ± 1.6 1 – 7 
 Shopping 24 87 3.6 ± 2.8 1 – 11 
Note: * - Trials with incorrect information 

 

The number of errors that occurred was significantly affected by age, driving 

conditions, and information correctness (Table 4-22). The mean of human errors that 

occurred among elderly subjects was 1.2 times greater than that of the young and middle-

age subjects when entering the destinations, with trial means of 3.2, 2.1, and 2.1 times, 

respectively (F(2, 540) = 10.707, p < 0.001). When subjects entered the destinations while 

the vehicle was parked, the mean number of human errors was 0.8 times that of the mean 
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number of human errors that occurred while driving in either low- or high-workload 

conditions (F(2, 540) = 5.166, p = 0.006). Again, the mean number of human errors was 2.8 

times greater when subjects entered the destination given incorrect information than 

when given correct information (F(1, 540) = 148.957, p < 0.001). 

Table 4-22. ANOVA of Total Number of Errors Occurred by Age, Gender, Driving 
Conditions, and Information Correctness for Destination Entry Task 

Source df F p-value 
Age (A) 2 10.707 < 0.001*
Gender (G) 1 0.32 0.572 
Driving (D) 2 5.166 0.006*
Information Correctness (I) 1 148.957 < 0.001*
A * G 2 2.655 0.071 
A * D 4 0.893 0.468 
A * I 2 2.779 0.063 
G * D 2 1.468 0.231 
G * I 1 0.001 0.976 
D * I 2 3.161 0.043* 
A * G * D 4 0.741 0.565 
A * G * I 2 2.213 0.110 
A * D * I 4 2.239 0.012* 
G * D * I 2 3.009 0.050* 
A * G * D * I 4 0.646 0.630 
Error 540   

Note: * - Statistically significant, p < 0.05 

Types of Errors and Type of Correction Strategies 

Table 4-23 shows the frequency of six types of machine errors and user’s correction 

strategies. “Machine cannot recognize the user’s prompt” and “Machine misrecognized 

the users prompt” were the two major categories and accounted for 66% of the machine 

errors.  Eighty-three percent of the machine errors occurred when the subject entered the 

destination while driving. When the error “Machine cannot recognize the user’s prompt” 

error occurred, subjects repeated the prompt or repeated the prompt slower to correct the 

errors in greater than 50% of the instances. The error of “machine misrecognized the 
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user’s prompt” is defined as: the speech interface provides incorrect feedback when the 

user’s input is correct.  

Table 4-23 Frequency of Machine Error by Type and User Correction Strategies for 
Destination Entry Task 

Error Type Example User Correction Strategy Frequency 

Cannot recognize the 
user’s prompt (36) 

S: Six one zero zero. 
M: Sorry and house 

number or if you 
don’t know that, 
please say show 
map or start 
guidance.” 

Repeat the prompt 
Repeat the prompt slower 
Spell the word 
Spell the word slower 
Rephrase the prompt 
Say “Next Page”  
Say “Enter City”  
Say “Go Back/Back” 
Provide requested information 
Deactivate the ASR and restart 

the trail 
Ask the experimenter for 

information 

14 
5 
2 
1 
2 
3 
1 
2 
4 
1 
 

1 
 

Misrecognize the user’s 
prompt (23) 

S: Two zero two 
eight. 
M: Two zero two 
THREE 

Repeat the prompt 
Spell the word 
Spell the word slower 
Say “Next Page”  
Say “Go Back/Back” 
Provide requested information 
Deactivate the ASR and restart 

the trail 
Change the entry method 

1 
5 
1 
5 
5 
2 
2 
 

1 

Cannot find the 
matching information 
from the database 
(10) 

M: There is no 
database 

Change the entry method 
Restart the trail 
Spell the word 
Repeat the prompt 
Say “Go Back/Back” 
Provide incorrect information 

2 
2 
2 
1 
1 
1 

Deactivate the ASR 
function (15) 

 Reactivate the ASR 15 

Machine failure (4)  
Reactivate the ASR 
Use manual input 

3 
1 

No response (1)  Repeat the prompt 1 
 

Table 4-24 to Table 4-26 shows the frequency of the human errors that occurred 

relevant to three categories, as well as the frequency of error correction strategies used by 

the subjects. As the navigation system used in this experiment was a command-based 
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interface, this restricted the strategies subjects could use to correct the errors. The 

information subjects can provide should exactly follow the requests or guidance provided 

by the system. The two types of errors, time-out and barge-in, accounted for one-third of 

human errors, and the correction strategy repeat the prompt / repeat the prompt slower 

was the most common method used to correct an error (45%). 

Another major type of human error relevant to the information provided occurred 

when subjects provided incorrect information (26%). In this experiment, three of the 

trials involved providing incorrect information, (which some subjects did not realize was 

incorrect), that the experimenter requested to use for the first attempt. These trials were 

included to determine how subjects found the destination when some of the information 

was incorrect. The most frequently used strategy by subjects to correct this type of error 

was to say the command go back / back.  

Table 4-24. Types and Frequency of Human Errors Relevant to Information Provided and 
User Correction Strategies for Destination Entry Task 

Error Type User Correction Strategy Frequency 

Time out (218) 

Repeat the prompt /slower 
Provide requested information 
Say “Go back /Back” 
Say “Enter City” 
Say “Change State/City” 
Say “Next Page” 
Say “Show Map” 
Say “Help” 
Say “Start Guidance” 
Spell the word 
Rephrase the prompt 
Reactivate the ASR 
Cancel and restart the trial 
Ask the experiment for information 
Cancel and give up 
Time out again 

68 
59 
21 
7 
5 
6 
1 

10 
1 
5 
1 

13 
1 
1 
4 

15 

Barge-in (121) 

Repeat the prompt /slower 
Provide the requested information 
Spell the word 
Say “Go back /Back” 

86 
10 
6 
4 
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Say “Enter City” 
Say “Next Page” 
Say “Help” 
Say “Start Guidance” 
Rephrase the prompt 
Reactivate the ASR 
Cancel and restart the trial 
Time out 

2 
4 
2 
1 
1 
2 
1 
2 

Stammer the prompt or command (38) 

Provide requested information 
Repeat the prompt /slower 
Say “Go Back” 
Say “Enter City” 
Say “Next Page” 
Say “Start Guidance” 
Spell the word 
Reactivate the ASR 
Time out 
(Machine corrected errors) 

10 
9 
6 
1 
1 
1 
1 
5 
2 
2 

Provide incorrect information (264) 

Say “Go Back/Back/Correct” 
Say “Change State/City/Street” 
Say “Next Page” 
Say “Start Guidance” 
Say “Enter City” 
Say “Help” 
Spell the word 
Provide requested information 
Repeat the prompt 
Rephrase the prompt 
Say “Show Map” to restart 
Cancel and restart the trial 
Say “Destination Help” to restart 
Reactivate the ASR 
Murmur 
Time out 
(Machine corrected errors) 

109 
23 
16 
14 
7 
1 

23 
17 
13 
1 
7 
7 
2 
4 
3 

16 
1 

Provide incomplete information (71) 

Spell the word 
Provide requested information 
Say “Go Back” 
Say “Next Page” 
Say “Enter City” 
Repeat the prompt 
Rephrase 
Cancel and restart the trial 

22 
21 
11 
9 
1 
5 
1 
1 

Provide invalid information (28) 

Say “Go Back/Back” 
Say “Enter City” 
Say “Help” 
Say “Next Page” 
Provide requested information 
Repeat the prompt 
Spell the word 

10 
2 
2 
1 
5 
2 
1 
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Say “Show Map” to restart 
Cancel and restart the trial 
Reactivate the ASR 
Give up 

1 
2 
1 
1 

Provide invalid format of information (75) 

Rephrase 
Repeat the prompt 
Spell the word/slower 
Provide requested information 
Say “Go Back” 
Say “Enter City” 
Say “Next Page” 
Say “Change State” 
Say “Help” 
Say “Start Guidance” 
Reactivate the ASR 
Time out 

27 
13 
8 
3 

11 
3 
3 
1 
1 
1 
3 
1 

Forgot to change the state name (10) 

Say “Go Back” 
Say “ Change State” 
Repeat the prompt 
Spell the word 

5 
3 
1 
1 

Pick the wrong choice (1) Say “Go Back” 1 
Miss the correct information (1) Spell the word 1 
Ask experimenter for confirmation (1) Repeat the prompt 1 

Say unnecessary words (6) 
Repeat the prompt 
Spell the word 
Reactivate the ASR 

3 
2 
1 

Murmur (4) 
Say “Go Back” 
Say “Show Map” and restart 
Repeat the prompt 

2 
1 
1 

Fail to find the correct information (10) Restart the trial 2 
 

The error type of providing incomplete information commonly occurred when the 

system asked for a street name. As described earlier, 14.8 % of the time subjects would 

not say the suffix, and 12.9 % of the time subjects did not say the direction. As it is 

common for people not to provide the suffix and direction, the interface designers should 

keep this in mind when designing speech interfaces for destination entry.  

Table 4-25 shows the human errors related to the entry methods used to enter the 

destinations and commands accepted by the system. Some 42% of the time the error 

“cannot find the information by specific method” occurred when subjects entered the 



 

 119

destination using “Find nearest POI” as the entry method. The system listed possible 

results based on the distance from the default location, which was Farmington Hills, 

Michigan. If the requested destination was not close to the default location, subjects 

needed to repeat the command “next page” several times to find the destination. Also, 

how well subjects knew the POI categories and subcategories affected their acceptance to 

use this method. For example, the subcategory of “higher education” was listed under the 

category of “community.” When subjects tried to find the destination of “Washtenaw 

Community College,” errors occurred when subject uttered “college” as the subcategory 

of POI. All of the errors resulted in subjects changing the entry method.  

Table 4-25. Types and Frequency of Human Errors Relevant to Entry Method and 
System Commands and User Correction Strategies for Destination Entry Task 

Error Type User Correction Strategy Frequency 

Cannot find the information by specific 
method (33) 

Change entry method 
Give up 

32 
1 

Change Entry method (3)  3 

Cannot determine the entry method (3) 
Say “Go Back” 
Cancel and restart the trial  

2 
1 

Forget to say command word (8) 

Say “Go Back” 
Say “Enter City” 
Spell the word 
Provide requested information 
Time out 

3 
2 
1 
1 
1 

Say incorrect command (55) 

Provide requested information 
Say “Go Back” 
Say “Next Page” 
Reactivate ASR 
Time out 
(Machine corrected errors) 

10 
3 
1 
1 
1 

39 

Say invalid command (25) 

Say “Go Back/Back” 
Say correct command 
Say “Help” 
Provide requested information 
Repeat the prompt 
Spell the word 
Cancel and restart the trial 
Reactivate ASR 
(Machine corrected errors) 

9 
2 
2 
2 
1 
1 
3 
1 
4 
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When subjects were not familiar with the structures and predefined command of the 

navigation system, errors occurred frequently (Table 4-25 and 26). When the list or lists 

of machine feedback were shown on the screen and the subject was requested to choose 

the correct one, subjects might say “one,” instead of “LINE one” which caused the 

machine to present another list or lists. Also the command word Go Back is invalid when 

the system asks for state name while using find address as the entry method. Subjects 

may not understand and repeat the command again. 

Table 4-26. Frequency of Other Types of Human Errors and User Correction Strategies 
for Destination Entry Task 

Error Type User Correction Strategy Frequency 

Did not know the system reach the first step 
of the entry method (13) 

Provide requested information 
Repeat the prompt 
Restart the trial 
Say invalid command 
Time out 

9 
1 
1 
1 
1 

Did not know the ASR function has been 
deactivated (3) 

Restart the trial 3 

Give-up (8)   
 

E. Driving Performance 

Ten common measures of driving performance were examined -- mean speed, speed 

difference (maximum speed – minimum speed), maximum speed, variation of speed, 

mean TTC, minimum TTC, mean lane position, standard deviation of lateral position 

(SDLP), mean and minimum time to lane crossing (TLC). As was described earlier, the 

48 subjects were divided into two groups. The data from one group was used to build the 

simulation model to predict the task performance and the data from another group was 

used to validate the model. To verify that the two groups are similar, their driving 

performance was compared. 
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Difference of Driving Performance Between the Model-Build and Validation Groups 

A nonparametric two-independent test (Wilcoxon Rank Sum Test) was used to 

compare 10 driving performance variables with the 10 tasks for the two groups: model-

build and model-validation groups. There were no statistically significant differences 

between these two groups (p > 0.05). Thus, one can assume that the subjects of these two 

groups were from the same population. 

 

Driving Performance - Mean Speed 

To identify the factors that significantly affect the driving performance of mean 

speed, a repeated-measure ANOVA was run with the independent variable of age (three 

age groups) and gender (male and female) as between-subject factors, and workload (low 

and high), and tasks (no secondary + four destination entry tasks) as within-subject 

factors. Data from one older subject was dropped because he stopped the vehicle during 

the experiment, as he could not maintain a safe gap during the high workload condition. 

Table 4-27 shows the repeated measures ANOVA, a 3 (age) X 2 (gender) X 2 (workload) 

X 5 (tasks) mixed design. The effects of age, gender and their interaction were not 

significant. However, the effect of mean speed on workload and tasks were significant, as 

well as the interaction of workload and tasks.  

Table 4-27. ANOVA of Mean Speed for the Effect of Age, Gender, Workload, and Tasks  
Effect Source F d.f. p-value 

Between-Subject 

Age (A) 1.756 2 0.786 
Gender (G) 1.154 1 0.692 
A * G 2.584 2 0.702 
Error 41  

Within-Subjects 

Workload (W) 49.089 1 <0.001* 
W * G 0.008 1 0.929 
W * A 2.883 2 0.067 
W * G * A 1.206 2 0.310 
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Error (W) 41  
Tasks (T) 7.512 4 <0.001* 
T * G 0.587 4 0.672 
T * A  1.568 8 0.138 
T * G * A 0.392 8 0.924 
Error (T) 164  
W * T 6.665 4 <0.001* 
W * T * G 0.465 4 0.761 
W * T * A 0.572 8 0.799 
W * T * G * A 0.225 8 0.986 
Error (W * T) 164  

Note: * - Statistically significant, p < 0.05 

 
Figure 4-6. Mean Speed on Different Workload and Secondary Task Combinations 

 

There was no statistically significant difference between the two workload conditions 

in which subjects drove (paired t (-.811, 46) = 0.421) and did not perform a destination entry 

task. However, the mean speed while driving low-workload scenarios was statistically 

significantly higher than the mean speed while driving high workload scenarios when 

performing the destination entry tasks, including giving both correct and incorrect 
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information (Figure 4-6). It also can be seen that there were no statistical differences in 

the mean speed among the five different task conditions while driving in low workload 

tasks. However, the mean speed was significantly less when subjects performed any 

destination tasks than versus no task in the high-workload scenarios. This confirms that 

argument in Oslund et al. (2005) that visual distraction leads to decreased travel speed 

[88]. Control theory would suggest that the driver reduces speed in order to gain time to 

complete the tracking control loop.   

 

Driving Performance - Speed Difference 

Table 4-28 shows a repeated measure ANOVA for speed difference (speed drop), a 3 

(age) X 2 (gender) X 2 (workload) X 5 (tasks) mixed design. The effects of age, gender 

and their interaction were not statistically significant. However, the effect of speed 

difference on workload and tasks were significant difference, as well as the interaction of 

workload and tasks.  

Table 4-28. ANOVA of Speed Difference for the Effect of Age, Gender, Workload, and 
Tasks 

Effect Source F d.f. p-value 

Between-Subject 

Age (A) 1.435 2 0.250 
Gender (G) 0.295 1 0.590 
A * G 2.239 2 0.119 
Error 41  

Within-Subjects 

Workload (W) 93.283 1 <0.001* 
W * G 0.903 1 0.347 
W * A 0.917 2 0.408 
W * G * A 0.759 2 0.475 
Error (W) 41  
Tasks (T) 30.562 4 <0.001* 
T * G 0.735 4 0.569 
T * A  1.100 8 0.366 
T * G * A 1.028 8 0.417 
Error (T) 164  
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W * T 3.127 4 <0.001* 
W * T * G 1.487 4 0.208 
W * T * A 0.274 8 0.974 
W * T * G * A 0..508 8 0.849 
Error (W * T) 164  

Note: * - Statistically significant, p < 0.05 

There were no statistically significant differences in speed difference when subjects 

drove in the two different workload conditions (paired t (-.976, 46) = 0.334) with no 

destination entry task. However, the speed differences while driving low-workload 

scenarios were statistically significantly less than the speed difference while driving high 

workload scenarios when performing the destination entry tasks, including for both the 

correct and incorrect information conditions. 

For low-workload scenarios (Figure 4-7), the speed difference was two times greater 

when subjects performed destination entry task with incorrect information than the value 

for no secondary task (0.93 m/s vs. 1.96 m/s, p < 0.05). There were no significant 

differences when the information was correct while driving in the low-workload 

scenarios.   
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Figure 4-7. Speed Difference on Different Workload and Secondary Task Combinations 

 

While driving in the high-workload scenarios, the speed difference when performing 

destination entry tasks was at least three times greater than the speed difference for 

driving only (p < 0.05).  

While driving in both the low- and high-workload scenarios, the speed difference was 

statistically significantly greater for incorrect information than the value of correct 

information for the personal trial and POI 2 trial (p < 0.05). There was no difference 

when comparing the speed difference for correct information of the shopping task with 

incorrect information.  

 

Driving Performance  - Maximum Speed 

A repeated-measure ANOVA of the maximum speed -- a 3 (Age) X 2 (Gender) X 2 

(Workload) X 5 (Tasks) design -- is shown in Table 4-29. There were no statistically 
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significant main effects of the age, gender, workload, or tasks. There were also no 

statistically significant differences due to the interaction of age with gender, workload or 

tasks. However, there was a statistically significant interaction of tasks and age on 

maximum speed (F(8, 164) = 2.366, p = 0.02).  

Table 4-29. ANOVA of Maximum Speed for the Effect of Age, Gender, Workload, and 
Tasks 

Effect Source F d.f. p-value 

Between-Subject 

Age (A) 0.170 2 0.845 
Gender (G) 0.011 1 0.918 
A * G 1.570 2 0.220 
Error 41  

Within-Subjects 

Workload (W) 0.000 1 0.996 
W * G 0.168 1 0.684 
W * A 1.362 2 0.267 
W * G * A 0.282 2 0.756 
Error (W) 41  
Tasks (T) 2.085 4 0.085 
T * G 0.543 4 0.704 
T * A  2.366 8 0.020* 
T * G * A 1.439 8 0.184 
Error (T) 164  
W * T 0.472 4 0.756 
W * T * G 0.237 4 0.917 
W * T * A 0.633 8 0.749 
W * T * G * A 0.286 8 0.970 
Error (W * T) 164  

Note: * - Statistically significant, p < 0.05 

Figure 4-8 shows the interaction between age and tasks on maximum speed. For 

elderly subjects, the value of maximum speed was greater when only driving than when 

they performed destination tasks with driving. Apparently for young subjects, the 

maximum speed when performing a destination entry task with incorrect information 

while driving was significantly greater than the maximum speed when performing 

destination entry task with correct information while driving or driving only.  
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Figure 4-8. Maximum Speed on Different Age and Task Combinations 

 

There were no statistically significant differences in maximum speed when subjects 

drove in the two different workload conditions with no destination entry task. Also, the 

maximum speed while driving low-workload scenarios was not statistically significant 

from the high-workload scenarios while performing the destination entry tasks. 

 

Driving Performance - Speed Variation 

A repeated measure ANOVA of speed variation -- a 3 (Age) X 2 (Gender) X 2 

(Workload) X 5 (Tasks) design -- is shown in Table 4-30. There were no main effects of 

the gender or age, or the age and gender interaction. The main effects of workload (F (1, 

41) =77.999, p < 0.001) and tasks (F (4, 164) = 24.859, p < 0.001) on speed variation were 

statistically significant. The interaction of workload and tasks on the speed variation was 

also statistically significant (F (4, 164) = 10.665, p < 0.001). 



 

 128

Table 4-30. ANOVA of Speed variation for the Effect of Age, Gender, Workload, and 
Tasks 

Effect Source F d.f. p-value 

Between-Subject 

Age (A) 2.349 2 0.108 
Gender (G) 0.206 1 0.652 
A * G 2.388 2 0.104 
Error 41  

Within-Subjects 

Workload (W) 77.999 1 <0.001* 
W * G 0.791 1 0.379 
W * A 0.786 2 0.463 
W * G * A 0.775 2 0.467 
Error (W) 41  
Tasks (T) 24.859 4 <0.001* 
T * G 0.739 4 0.567 
T * A  0.723 8 0.671 
T * G * A 0.974 8 0.458 
Error (T) 164  
W * T 10.665 4 <0.001* 
W * T * G 1.693 4 0.154 
W * T * A 0.067 8 1.000 
W * T * G * A 0.672 8 0.715 
Error (W * T) 164  

Note: * - Statistically significant, p < 0.05 

There were no statistically significant differences of speed variation when subjects 

drove in the two different workload conditions (paired t (-.682, 46) = 0.499) with no 

destination entry task. However, the speed variation while driving the low-workload 

scenarios were statistically significantly less than the speed variation while driving the 

high-workload scenarios while entering destinations, for both correct or incorrect 

information. While subjects drove in the low-workload scenarios, the speed variation 

when performing destination entry task with incorrect information was statistically 

greater than the speed variation of driving only (0.28 vs. 0.544, p < 0.05). There was no 

difference in speed variation between the three destination entry tasks with correct 

information and driving only condition. On the other hand, the speed variation was at 

least 2.5 times greater when subjects performed any destination entry tasks while driving 
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in the high-workload scenarios than speed variation of driving only without performing 

destination entry tasks (Figure 4-9). 

 
Figure 4-9. Speed Variation on Different Workload and Task Combinations 

 

 Driving Performance - Mean of Time-to-Collision (TTC) 

A repeated measure ANOVA of the mean time-to-collision (TTC) with 3 (age) X 2 

(gender) X 2 (workload) X 5 (tasks) is shown in Table 4-31. There were no gender and 

age effects on the mean TTC and also no effect of the gender and age interaction. The 

mean TTC while driving in the low workload scenarios was greater than the mean TTC 

while driving in high workload (F (1, 41) = 10800.567, p < 0.001). This is reasonable as the 

lead vehicle was designed to be closer to the subject vehicle in high workload scenarios. 

Tasks also affected the mean TTC (F (4, 164) =3.605, p = 0.008). However, there was an 

interaction between the workload and tasks (F (4, 164) = 73.305, p < 0.001), Figure 4-10. 

The mean TTC for driving only was significantly less than the mean TTC when subjects 
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performed destination entry tasks while driving in low workload scenarios (0.4 s less, 

p < 0.05). On the other hand, the mean TTC for driving only was significantly higher 

than the mean TTC when subjects performed destination entry tasks while driving in high 

workload scenarios (0.3 s more, p < 0.05). Without performing destination entry task, the 

mean TTC when subjects drove in the low workload scenarios was statistically 

significantly greater than the mean time of time to collision when subjects drove in the 

high workload scenarios (paired-t(46) = 44.000, p < 0.001).  

Also, the mean TTC while driving low workload scenarios was statistically 

significantly greater than the TTC while driving the high workload scenarios when 

performing the destination entry tasks, for both the correct and incorrect information 

conditions. 

Table 4-31. ANOVA of Mean Time-to-Collision (TTC) for the Effect of Age, Gender, 
Workload, and Tasks 

Effect Source F d.f. p-value 

Between-Subject 

Age (A) 2.646 2 0.083 
Gender (G) 0.048 1 0.828 
A * G 0.021 2 0.979 
Error 41  

Within-Subjects 

Workload (W) 10800.567 1 <0.001* 
W * G 0.003 1 0.958 
W * A 1.474 2 0.241 
W * G * A 1.875 2 0.166 
Error (W) 41  
Tasks (T) 3.605 4 0.008* 
T * G 0.339 4 0.852 
T * A  1.102 8 0.364 
T * G * A 0.555 8 0.814 
Error (T) 164  
W * T 73.305 4 <0.001* 
W * T * G 0.970 4 0.425 
W * T * A 0.663 8 0.723 
W * T * G * A 0.591 8 0.785 
Error (W * T) 164  

Note: * - Statistically significant, p < 0.05 



 

 131

 
Figure 4-10. Mean of Time-to-Collision on Different Workload and Task Combinations 

 
Driving Performance - Minimum of Time-to-Collision (TTC) 

A repeated measure ANOVA of the minimum time-to-collision (TTC) with 3 (age) X 

2 (gender) X 2 (workload) X 5 (tasks) is shown in Table 4-32. There were no gender and 

age effects on the minimum TTC and also no effect of the gender and age interaction. 

The minimum TTC while driving in low workload scenarios was greater than the mean 

TTC while driving in high workload (F (1, 41) = 20168.916, p < 0.001). Again, this is 

because the lead vehicle was designed to be closer to the subject vehicle in high workload 

scenarios. Tasks also affected the mean TTC (F (4, 164) =12.613, p < 0.001). However, 

there was interaction between the workload and tasks (F (4, 164) = 317.251, p < 0.001), 

Figure 4-11. 
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Table 4-32. ANOVA of Minimum Time-to-Collision (TTC) for the Effect of Age, 
Gender, Workload, and Tasks 

Effect Source F d.f. p-value 

Between-Subject 

Age (A) 0.355 2 0.703 
Gender (G) 0.006 1 0.939 
A * G 0.421 2 0.660 
Error 41  

Within-Subjects 

Workload (W) 20168.916 1 <0.001* 
W * G 0.220 1 0.642 
W * A 7.382 2 0.002* 
W * G * A 2.818 2 0.071 
Error (W) 41  
Tasks (T) 12.613 4 <0.001* 
T * G 0.755 4 0.556 
T * A  1.261 8 0.267 
T * G * A 2.210 8 0.029* 
Error (T) 164  
W * T 317.251 4 <0.001* 
W * T * G 1.361 4 0.250 
W * T * A 1.093 8 0.370 
W * T * G * A 1.183 8 0.312 
Error (W * T) 164  

Note: * - Statistically significant, p < 0.05 

 
Figure 4-11. Minimum of Time-to-Collision on Different Workload and Task 

Combinations 
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Without performing destination entry tasks, the minimum time of time to collision 

when subjects drove in low workload scenarios was significantly longer than the 

minimum time of time to collision when subjects drove in high workload scenarios 

(paired-t(46) = 30.809, p < 0.001). Also, the minimum time of time to collision while 

driving low workload scenarios were significantly longer than the minimum time of time 

to collision while driving high workload scenarios when performing the destination entry 

tasks, including giving both correct and incorrect information. 

 
Figure 4-12. Minimum of Time-to-Collision on Different Workload and Age 

Combinations 

 

There was also an interaction of workload and age on minimum TTC (F (2, 41) = 7.382, 

p = 0.002). Elderly subjects maintained longer TTCs while driving in the low workload 

scenarios, but the minimum TTC was shortest while driving in the high workload 

scenarios when compared with middle-aged and young subjects (Figure 4-12). 
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Driving Performance - Mean Lateral Lane Position 

The positive value of lateral lane position means that subjects drove the vehicle 

towards the right hand side of the lane. A repeated-measure ANOVA of the mean of the 

lateral lane position was computed (Table 4-33). There were no age or gender effects on 

the mean of lateral lane position or an interaction of age and gender. Workload had a 

major effect on the mean of lateral lane position (F (1, 41) =8.428, p = 0.006).  

Table 4-33. ANOVA of Mean of Lateral Lane Position for the Effect of Age, Gender, 
Workload, and Tasks 

Effect Source F d.f. p-vlaue 

Between-Subject 

Age (A) 2.195 2 0.124 
Gender (G) 0.104 1 0.749 
A * G 0.579 2 0.565 
Error 41  

Within-Subjects 

Workload (W) 8.428 1 0.006* 
W * G 0.004 1 0.952 
W * A 0.038 2 0.963 
W * G * A 2.242 2 0.119 
Error (W) 41  
Tasks (T) 0.218 4 0.928 
T * G 1.067 4 0.374 
T * A  0.693 8 0.697 
T * G * A 0.323 8 0.957 
Error (T) 164  
W * T 2.948 4 0.022* 
W * T * G 0.271 4 0.896 
W * T * A 1.585 8 0.133 
W * T * G * A 1.063 8 0.392 
Error (W * T) 164  

Note: * - Statistically significant, p < 0.05 

While driving in the low-workload scenarios, subjects drove toward the right 

compared with driving in the high-workload scenarios which was toward the left (paired-

t(46) = 2.748, p = 0.009), except the condition when entering personal destination (Figure 

4-13).  Also, there was a marginal difference of the mean lane deviation to the right when 

subjects drove in the low workload scenarios than the mean lane deviation when subject 
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drove in the high workload scenario when performing the destination entry task with 

incorrect information (paired-t(46) = 1.845, p = 0.071). There was a significance 

difference of the mean deviation to the right while subjects drove in the low-workload 

scenarios than the mean lane deviation while subjects drove in the high-workload 

scenario when performing the destination entry task using the POI method for shopping 

(paired-t(46) = 3.837, p < 0.001). There was no difference while driving in the low and 

high workload scenarios when entering a destination with their relatives’/friends’ address 

or a community POI. 

 
Figure 4-13. Mean of Lateral Lane Position on Different Workload and Task 

Combinations 

 

Driving Performance - Standard Deviation of Lateral Lane Position (SDLP)  

Some researchers use the standard deviation of lane position (SDLP) to represent the 

variation of the lateral position deviated from the center of lane, an indicator of how well 

the driver is controlling the vehicle [11]. 
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A repeated-measure ANOVA of the standard deviation of lateral lane position was 

computed (Table 4-34). There were no statistically significant effects of age or gender 

effects nor an interaction of age and gender. The effects of Workload (F (1, 41) =27.605, 

p<0.001) and Tasks (F (4, 164) =22.932, p < 0.001) were highly significant (Figure 4-14). 

Also significant was the interaction of workload and tasks. 

Table 4-34. ANOVA of Standard Deviation of Lane Position for the Effect of Age, 
Gender, Workload, and Tasks 

Effect Source F d.f. p-value 

Between-Subject 

Age (A) 2.807 2 0.072 
Gender (G) 0.206 1 0.652 
A * G 0.591 2 0.559 
Error 41  

Within-Subjects 

Workload (W) 27.605 1 <0.001* 
W * G 1.551 1 0.220 
W * A 0.220 2 0.803 
W * G * A 0.189 2 0.829 
Error (W) 41  
Tasks (T) 22.932 4 <0.001* 
T * G 1.586 4 0.180 
T * A  2.562 8 0.012* 
T * G * A 1.313 8 0.241 
Error (T) 164  
W * T 0.621 4 0.648 
W * T * G 0.685 4 0.603 
W * T * A 1.470 8 0.172 
W * T * G * A 0.828 8 0.579 
Error (W * T) 164  

Note: * - Statistically significant, p < 0.05 
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Figure 4-14. Standard Deviation of Lane Position on Different Workload and Task 

Combinations 

Without performing destination entry task, the value of SDLP when subjects drove in 

the low workload scenarios was statistically significantly greater than when subjects 

drove in the high workload scenarios (paired-t(46) = 2.514, p = 0.014). The SDLP was 

statistically significantly less for subjects only driving when compared with the SDLP for 

conditions in which subjects performed destination entry tasks in both the low and high 

workload scenarios. Also, there was statistically significantly larger SDLP when subjects 

drove in the low workload scenarios than the standard deviation of lane position from the 

center of lane while subject drove in the high workload scenario when performing the 

destination entry task with incorrect information (paired-t(46) = 3.417, p = 0.001) . There 

was significantly larger SDLP when subjects drove in the low workload scenarios than 

the SDLP while subjects drove in the high workload scenario when performing the 

destination entry task with POI of shopping (paired-t(46) = 2.384, p = 0.021) and POI 2 
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(paired t(46) = 3.226, p = 0.002). There was no difference while driving in low and high 

workload scenarios when entering destination with their relatives’/friends’ address. 

The interaction of age and tasks was significant (F (8, 164) =2.562, p = 0.012, Figure 4-

15. When driving only, the middle-age subjects had better vehicle control (smaller SDLP) 

when compared with the young subjects. However, when performing destination entry 

tasks while driving, the value of SDLP was greater for middle-aged subjects than for 

young subjects. All of these effects were not statistically significant. The value of SDLP 

was significant greater for elderly subjects entering a shopping address when compared 

with the value of SDLP for young subjects entering a shopping address while driving 

(0.284 m vs. 0.190 m, p < 0.05). 

 
Figure 4-15. Stand Deviation of Lane Position on Different Workload and Age 

Combinations 
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Driving Performance - Mean of Time-to-Lane-Crossing (TLC) 

A repeated measure ANOVA of mean time-to-lane-crossing (TLC) with 3 (age) X 2 

(gender) X 2 (workload) X 5 (tasks) is shown in Table 4-35. There were no significant of 

gender and age effects or their interaction. There was marginal effect of the mean TLC on 

workload (F (1, 41) = 3.268, p = 0.077). Tasks (F (4, 164) = 29.267, p < 0.001) and the 

interaction of workload and tasks (F (4, 164) =3.186, p = 0.015) were statistically 

significant. The mean TLC while driving only was statistically significantly greater than 

the mean TLC when subjects performed destination entry tasks while driving in the high 

workload condition. 

Table 4-35. ANOVA of Mean of Time-to-Lane-Crossing (TLC) for the Effect of Age, 
Gender, Workload, and Tasks 

Effect Source F d.f. p-value 

Between-Subject 

Age (A) 2.429 2 0.101 
Gender (G) 0.283 1 0.598 
A * G 0.631 2 0.537 
Error 41  

Within-Subjects 

Workload (W) 3.286 1 0.077 
W * G 0.267 1 0.608 
W * A 0.559 2 0.576 
W * G * A 0.175 2 0.840 
Error (W) 41  
Tasks (T) 29.267 4 <0.001* 
T * G 0.821 4 0.514 
T * A  0.504 8 0.852 
T * G * A 0.623 8 0.757 
Error (T) 164  
W * T 3.186 4 0.015* 
W * T * G 1.099 4 0.359 
W * T * A 0.821 8 0.585 
W * T * G * A 1.364 8 0.216 
Error (W * T) 164  

Note: * - Statistically significant, p < 0.05 

The mean TLC when subjects drove in the low workload scenarios was statistically 

significantly less than for the high workload scenarios (paired-t(46) = -2.969, p = 0.005) 
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without performing destination entry task (Figure4-16). However, there was no 

statistically significant difference of the mean TLC when subjects drove in the low 

workload scenarios than the mean TLC when subjects drove in the high workload 

scenarios while performing any destination entry tasks. 

 
Figure 4-16. Mean TLC on Different Workload and Task Combinations 

 

Driving Performance - Minimum Time-to-Lane-Crossing (TLC) 

TLC was positive when approaching the right edge of the lane and negative when 

approaching the left edge of the lane. A repeated measure ANOVA of minimum TLC 

was computed (Table 4-36). There were no significant effects of age and gender effects 

on the mean of minimum TLC nor an interaction of age and gender. Tasks had a 

significant effect on the minimum TLC (F (1, 41) = 26.296, p < 0.001, Figure 4-17). 
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Table 4-36. ANOVA of Minimum of Time-to-Lane-Crossing (TLC) for the Effect of 
Age, Gender, Workload, and Tasks 

Effect Source F d.f. p 

Between-Subject 

Age (A) 2.815 2 0.072 
Gender (G) 0.1.039 1	 0.314
A * G	 0.945 2	 0.397
Error 41  

Within-Subjects 

Workload (W) 3.771 1 0.059 
W * G 0.381 1 0.540 
W * A 0.767 2 0.471 
W * G * A 0.041 2 0.960 
Error (W) 41  
Tasks (T) 26.296 4 <0.001* 
T * G 2.021 4 0.094 
T * A  1.418 8 0.192 
T * G * A 1.971 8 0.053 
Error (T) 164  
W * T 0.523 4 0.719 
W * T * G 2.626 4 0.037* 
W * T * A 2.428 8 0.017* 
W * T * G * A 1.661 8 0.112 
Error (W * T) 164  

Note: * - Statistically significant, p < 0.05 

 
Figure 4-17. Minimum TTC on Different Workload and Task Combinations 
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The minimum of time-to-lane crossing (TLC) when subjects drove in the low-

workload scenarios was not statistically significantly different from the minimum TLC 

when subjects drove in the high-workload scenarios (paired t(-1.018, 46) = 0.314) without 

performing a destination entry task. Also, there was no statistically significant difference 

of minimum TLC while subjects drove in the low workload scenarios than the minimum 

TLC while subjects drove in the high workload scenarios when performing any 

destination entry tasks. 

Table 4-37 summarizes the results on the driving performance when subjects 

performed the destination entry task. Surprisingly, age and gender did not have any 

significant effects on driving performance for all measures.  However, different driving 

workload did affect the driving performance when entering an address.  

Table 4-37. Effect of Statistical Significant Difference (p < 0.05) on the Driving 
Performance Measurement  

 
Age 
(A) 

Gender 
(G) 

Workload 
(W) 

Task 
(T) 

W * T W * A T * A 

Mean Speed   X X X   
Speed Difference   X X X   
Max. Speed       X 
Speed Variation   X X X   
Mean TTC   X X X X  
Min TTC   X X X X  
Mean Lateral Lane 
Position 

  X  X   

SDLP   X X   X 
Mean TLC    X X   
Min TLC        
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4.3.2 Music Selection 

A. Task Completion Rate, Task Completion Time, and Detailed Time Associated 

with Each Utterance 

Task Completion frequencies 

There were a total of 480 trials performed by the 32 subjects in the music selection 

task with an equal number in each age (young and middle-age) and gender group. 

Subjects completed 99.0% of the trials (Table 4-38), giving up (balking) on just five 

trials. Among the 475 completed trials, there were 6 trials (1.3%; 6/475) that subjects 

thought they had finished correctly, but in fact, were incorrect. Therefore, there were 469 

trials that ended with the correct music being selected. Furthermore, there were 84% 

(392/469) that the subjects completed the music selection tasks without any errors, 

neither from subjects nor from the MP3 player.  

Table 4-38. Frequency of Task Completion for Music Selection Task at Different Driving 
Conditions 

Driving Information Given Complete 
/ Give-up

Incorrect Final Correct Final 
Incorrect First Incorrect First Correct First 

Parked 

Artist 
Complete 0 6 26 
Give-up 0 0 0 

Album 
Complete 0 1 31 
Give-up 0 0 0 

Song/Artist/Album 
Complete 0 19 75 
Give-up 2 0 0 

Low 
Workload 

Artist 
Complete 0 2 30 
Give-up 0 0 0 

Album 
Complete 0 2 30 
Give-up 0 0 0 

Song/Artist/Album 
Complete 2 28 65 
Give-up 1 0 0 

High 
Workload 

Artist 
Complete 0 1 31 
Give-up 0 0 0 

Album 
Complete 1 1 30 
Give-up 0 0 0 

Song/Artist/Album 
Complete 3 17 74 
Give-up 2 0 0 
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Sub-Total 11 (2.3%) 77 (16.0%) 392 (81.7%) 
 

Task Completion Time 

The mean task completion time for all trials for the music selection task was 24.71 ± 

18.52 s (n = 475). For trials that ended with the correct music selection, and there was at 

least one error in the process: the mean task completion time was 51.11 ± 24.97 s, which 

was 2.6 times longer than the mean task completion time for those trials without any 

errors (19.44 ± 11.08 s). The task completion time for error-free trials was longer than the 

15-second rule (SAE J2364, 2004) allows [80].  

As shown in Table 4-39, there were significant differences due to age, driving 

conditions, and information given, but not gender.  The task completion time to select 

music for young drivers was 7.2 s, which was significantly shorter than the time for 

middle-age drivers (19.5 s vs. 26.7 s; F(1, 445) = 22.45, p < 0.001). There was also a main 

effect of driving condition on task completion time, F(2, 445) = 4.262, p=0.015 (Table 4-

40). Post hoc tests showed that the task completion time while driving in the low 

workload condition (26.2 s) was significantly greater than the time while the vehicle was 

parked (22.1 s, p = 0.035) or while driving in the high workload condition (21.0 s, 

p=0.005). Task completion times for when subjects were given a specific artist or album 

(one piece of information) to select a specific song were statistically significantly less 

than the time when given 3 pieces of information (song title, artist name, and album 

name) and subjects selected a specific song (14.8 s vs. 31.4 s F(1, 445) = 118.82, p < 0.001). 

Table 4-40 also shows that the task completion time when selecting a specific song was 

almost twice as long as the task completion time when selecting an artist or album during 

any driving conditions when no errors occurred. 
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Table 4-39. ANOVA of Task Completion Time on the Effect of Age, Gender, Driving 
Conditions, and Number of Information Given 

Source df F p-value 
Age (A) 1 22.452 <0.001* 
Gender (G) 1 0.091 0.763 
Driving (D) 2 4.262 0.015* 
Numb of Information Given (I) 1 118.823 <0.001* 
A * G 1 0.434 0.510 
A * D 2 0.827 0.438 
A * I 1 2.493 0.115 
G * D 2 0.162 0.850 
G * I 1 1.043 0.308 
D * I 2 1.845 0.159 
A * G * D 2 0.414 0.661 
A * G * I 1 0.248 0.619 
A * D * I 2 0.139 0.870 
G * D * I 2 0.029 0.972 
A * G * D * I 2 0.491 0.612 
Error 445   
Note: * - Statistically significant, p < 0.05 

Table 4-40. Task Completion Time for Music Selection Task at Different Driving 
Conditions (in seconds) 

Driving Information Given Complete / 
Give-up 

Incorrect Final Correct Final 

Incorrect First Incorrect First 
Correct 

First 

Parked 

Artist 
Complete  30.25±18.61 12.70±2.33 
Give-up    

Album 
Complete  60.61 12.8±3.26 
Give-up    

Song/Artist/Album
Complete  50.82±27.72 23.71±10.47
Give-up 36.62±33.43   

Low 
Workload 

Artist 
Complete  50.19±19.04 13.22±1.78 
Give-up    

Album 
Complete  65.16±19.16 12.92±3.07 
Give-up    

Song/Artist/Album
Complete 29.84±23.72 59.01±24.80 26.84±13.93
Give-up 89.73   

High 
Workload 

Artist 
Complete  29.18 13.20±3.18 
Give-up    

Album 
Complete 16.22 26.46 12.86±3.16 
Give-up    

Song/Artist/Album
Complete 35.63±28.43 46.43±22.62 24.20±12.79
Give-up 18.78±7.56   
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Thinking and Response Time 

Thinking and Response Times were significantly affected by age and gender.  Among 

the 469 trials completed for selecting the correct music, the mean thinking time for 

middle-age drivers was 1.8 s significantly longer than the thinking time for young drivers 

(8.8 s vs. 7.0 s; F(1 445) = 43.986, p < 0.001). There also was a main effect of gender on the 

thinking time, F(1, 445) = 6.409, p = 0.012 (Table 4-41). Male drivers needed 0.67 s more 

time to perform the music selection task than female drivers. Driving workload 

conditions played a marginal effect on the thinking time (F(2, 445) = 2.682, p = 0.070). Post 

hoc tests showed that the thinking time while driving in the high-workload condition 

(8.22 s) was significantly greater than the time while the vehicle was parked (7.50 s, 

p=0.040 with Bonferroni adjustment). There was no statistically significant difference in 

thinking time while driving in the low-workload condition compared with while the 

vehicle was parked.  

Table 4-41. ANOVA of Thinking and Response Time for the Effect of Age, Gender, 
Driving, and Number of Information Items Given 

Source df F p-value 
Age (A) 1 43.986 <0.001* 
Gender (G) 1 6.409 0.012* 
Driving (D) 2 2.862 0.07 
Numb of Information Given (I) 1 1.395 0.238 
A * G 1 1.034 0.310 
A * D 2 0.643 0.526 
A * I 1 0.121 00.728 
G * D 2 0.185 0.831 
G * I 1 0.276 0.600 
D * I 2 1.394 0.249 
A * G * D 2 0.458 0.633 
A * G * I 1 0.833 0.326 
A * D * I 2 1.063 0.346 
G * D * I 2 0.944 0.390 
A * G * D * I 2 0.154 0.858 
Error 445   
Note: * - Statistically significant, p < 0.05 
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To generate useful data for next step, building the simulation model for music 

selection, distributions for thinking time were determined. As the system is used while 

driving, the data collected in this experiment while the vehicle was parked were 

excluded. Further, the data were split in half for the subjects in each age and gender 

group, with half being used to create the model and the other half of the subjects to 

validate the model (as described in the following chapter). After taking natural logarithm 

transformation, the thinking times for both young and middle-age groups both appeared 

normally distributed, but having different means and standard deviations (Figure 4-18). 

Stepwise regression reveals that age is a significant variable to predict the thinking and 

response time (R2 = 0.1, F(1, 159) = 17.468, p < 0.001). 

Thinking and Response Time = 5.323 + 2.131 * Age     (4.17) 

Where: 

Age: The age group of subjects. Young subjects = 0. Middle-age subjects = 1.  

 

LogNormal Distribution (n=80) 
(,) = (0.68, 0.09) 

Goodness-of-fit test:  p > 0.08 
 

a) Young-age Driver 

LogNormal Distribution (n=80) 
(,) = (0.77, 0.18) 

Goodness-of-fit test:  p > 0.05 
 

b) Middle-age Driver 
Figure 4-18 Distribution Fitting of Thinking Time (lnT) and its Parameters. a) Young-age 

Drivers b) Middle-age Drivers 
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Time to Utter Command Words and the Desired Music Name 

There are three valid commands for subjects to utter to perform music selection tasks 

using iPhone 4S -- “Play Album + album name,” “Play Artist + artist name,” and “Play 

songs by + artist name.” The commands are still valid when the subjects do not say 

“Play” or say “Find/Finding” instead of “Play.” For example, subjects can say either 

“Artist Michael Jackson” or “Find(ing) artist Michael Jackson” and the system can 

recognize and play the correct music. However, the speech interface would not accept 

“Play song + song title” which will be confusing to people used to selecting music by 

song title. 

Using a stepwise regression, utterance times to select the music while driving were 

predicted using the following statistically significant equation (R2 = 0.4, F(4, 181) = 30.223, 

p < 0.001). 

Utterance Time (s) = 0.342 + 0.137 * Syllable + 0.165 * Word – 0.221 * Workload  

+ 0.146 * Age      (4.18) 

Where: 

NSyllable: Number of syllables of the artist name or album name that subjects uttered. 

NWord: Number of words of the artist name or album name that subjects uttered. 

Workload: Driving workload. Low workload = 0. High workload = 1. 

Age: The age group of subjects. Young subjects = 0. Middle-age subjects = 1.  

 

The observed time to say a syllable was about 0.03 s greater than the value reported 

by John [87]. 
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ASR Processing Time 

After the subjects’ utterance, the ASR system needs time to recognize the users input 

and perform the search. Presumably, the gender, age, whether the information provided is 

correct or not should affect the ASR processing time. A stepwise regression identifies 

significant effects of the information provide correctly and age (R2 = 0.124, F(2, 268) = 

18.991, p < 0.001). 

ASR Processing Time (s) = 1.711 – 0.49 * InfoCorrect – 0.079 * Age   (4.19) 

Where: 

InfoCorrect: The information provided by the subjects. Correct = 1. Incorrect = 0. 

 

When the information provided is correct, the recognition time is 0.49 s less than the 

time when the information is incorrect.  

 

Machine Feedback and Music Playing  

Various machine function times—such as chimes, machine feedback utterance time, 

the time between the chime and machine feedback prompt time, and music play time 

were determined by analyzing the audio file recorded when the author using the interface 

in a quiet environment with limited background noise. The machine feedback starts with 

a chime, whose duration is fixed (0.4 s).  

The duration between the end of chime and the beginning of machine prompt from 

the empirical data (n=27) follows normal distribution with parameters of (,) = (0.267, 

0.024), p > 0.686 (Figure 4-19 a)).  
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Normal Distribution (n=27) 
(,) = (0.267, 0.024) 

Goodness-of-fit test:  p > 0.686 
 

a) Time between machine feedback  
and music playing 

LogNormal Distribution (n=98) 
(,) = (1.863, 0.551) 

Goodness-of-fit test:  p > 0.07 
 

b) Thinking time 2 

Normal Distribution (n=105) 
(,) = (0.690, 0.148) 

Goodness-of-fit test:  p > 0.262 
 

c) Time to say next track 

 
Weibull Distribution (n=95) 

(,) = (0.690, 0.148) 
Goodness-of-fit test:  p > 0. 262 

 
d) Machine processing time 2 

Figure 4-19. Distributions Fitting from the Data for Half the Subject 

 

The machine feedback prompt time is the time starting with the beginning of machine 

prompt, and ending with last word of the prompt. For example, machine will provide the 

feedback by prompting “Playing Songs by Michael Jackson” or “Playing album History 

Continue” when the subjects say “Play Artist (or songs by) Michael Jackson” or “Playing 

album History Continue.” Again, individual, driving, or task differences should not affect 

this machine feedback. The results from stepwise regression show that machine utterance 
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time was predicted using the number of syllables of the prompt and the number of pauses 

(R2 = 0.678, F(2, 25) = 26.324, p < 0.001), approximately one-tenth of a second per syllable 

and per word. 

Machine Feedback Prompt Time (s) = 0.559 + 0.091 * NSyllable + 0.084 * NWord 

           (4.20) 

Where: 

NSyllable: Number of syllables of the artist name or album name that a system 

prompted. 

NWord: Number of words of the artist name or album name that a system prompted. 

 

When the speech interface provides feedback, subjects immediately recognize 

whether the speech interface will play the correct selection. Therefore, there is no need to 

wait for the music to play to confirm their selection and the task completion time will not 

include the duration between the end of machine’s feedback and when the music begins 

to play. On the other hand, when the subjects try to select a specific song, it is not always 

the case that the music playing is the music they selected after the first attempt. They 

need to wait for the music to play to confirm whether it is the music requested by the 

experimenter. Therefore, the task completion time should include the duration between 

the end of speech interface’s feedback and the beginning of music playing. Also, the 

duration is song-specific, depending on the MP3 file saved in the database. For example, 

it always takes 7.6 s to play the first song when searching the songs performing by Sugar 

Ray or 2.6 s to play the first song when searching the songs performing by Sean Paul. 
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As described in the previous paragraph, the first song played by the MP3 player is 

sometimes not the target song. Sometimes, subjects need to listen to a song to determine 

if it is the target song and press the ASR button to activate the speech system if it is not 

the target song, which is defined as Thinking Time 2. Using the data collected while 

driving, no variables, such as age, gender, or information given, were found to 

significantly predict the thinking time 2. However, those times were fit by a LogNormal 

distribution with parameters of (,) = (1.863, 0.551), p > 0.07 (Figure 4-20 b)). 

Subjects had the option of saying the command “Next Track” when the playing song 

was not the target song and may say it several times to find the correct song. They also 

may change the selection method. Using the data while driving, the time to say next track 

was predicted using age (young vs. middle-age) and gender (R2 = 0.227, F(2, 69) = 26.324, 

p < 0.001). The stepwise regression is 

NextTrack Time (s) = 0.429 + 0.131 * Age + 0.092 * Gender   (4.21) 

Where: 

Age: The age group of subjects. Young subjects = 0. Middle-age subjects = 1. 

Gender: The gender group of subjects. Female = 0. Female = 1. 

 

This time was normally distributed with parameters of (,) = (0.690, 0.148), p > 

0.262 (Figure 4-19 c)). 

After the subjects said the command “next track,” the speech interface ASR needs 

time to process the prompt and provide feedback (chime) to the subjects. The time from 

the empirical data (n=95) followed a Weibull distribution with a threshold. The 

distribution parameters are (,) = (0.690, 0.148), p > 0.262 (Figure 4-19 d)). 
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Again, the time for the machine to play the chime is fixed and the value is 0.4 s. The 

time for the MP3 player to play the music is song specific. 

The number of songs in each album, or by the same artist, depends on the number of 

songs stored in a personal MP3 player. This also affects the number of times to say the 

command “Next Track” to find the correct song. Regression analysis did not identify any 

significant predictors for this time. The mean to say the command “Next Track” were 

1.55 ± 0.83 and 1.56 ± 0.84 for selecting a specific song using “Play Album” (n = 29) and 

“Play Artist” (n = 32), respectively. 

 

B. Turns to Complete the Music Selection Tasks 

Table 4-42 shows the total number of turns to complete a music selection task based 

on the information given and different driving conditions, as well as the number of turns 

needed by subjects and the MP3 player. Overall, to complete a music selection task 

required 3.3 ± 2.3 turns, which subjects needed to say the prompt 1.7± 2.3 times and the 

MP3 players needed to provide feedback 1.6 ± 1.1 times. Apparently, the total number of 

turns needed to select a specific song (given three pieces of information) was greater than 

the total number of turns needed to select a specific artist or album on all driving 

conditions. 

Table 4-42. Total Turns Needed to Complete Music Selection Task at Different Driving 
Conditions (Machine Turn; Subject Turn) 

Driving Information Given Complete / 
Give-up 

Incorrect Final Correct Final 
Incorrect First Incorrect First Correct First 

Parked 

Artist 
Complete  3±1(2, 2) 2 (1, 1) 
Give-up    

Album 
Complete  8 (4, 4) 2 (1, 1) 
Give-up    

Song/Artist/Album 
Complete  7±4 (4, 3) 3±2 (2, 2) 
Give-up 6±5 (2, 4)   
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Low 
Workload 

Artist 
Complete  6±3 (3, 3) 2 (1, 1) 
Give-up    

Album 
Complete  5±1 (3, 3) 2 (1, 1) 
Give-up    

Song/Artist/Album 
Complete 3±1 (2, 2) 7±3 (3, 4) 3±2 (2, 2) 
Give-up 8 (3, 5)   

High 
Workload 

Artist 
Complete  4 (2, 2) 2 (1, 1) 
Give-up    

Album 
Complete 2 (1, 1) 4 (2, 2) 2 (1, 1) 
Give-up    

Song/Artist/Album 
Complete 4±3 (2, 2) 6±2 (3, 3) 3±1 (2, 2) 
Give-up 2 (1, 1)   

 

For those 469 trials correctly selecting the music, there were no main effects of age, 

gender, driving conditions, or the interactions on the total turns to complete the task. 

Selecting specific music requires two more turns to complete the task than selecting for a 

specific artist or album (F(2, 412) = 11.667, p < 0.001). There was no difference in the total 

turns required to select a specific artist versus the total turns to select a specific album. 

When errors occurred during the first attempt of a music selection task, 3.3 more turns 

were required to complete the task (F(1, 412) = 42.73, p < 0.001). 

 

C. Music Selection Method 

The method used to select music by the subjects is shown in Table 4-43. When given 

the artist name only and requesting subjects to find the specific artist, subjects used the 

command “Play Artist” 99% of the time to select the specific artist. However, the 

command “Play Songs by” is a valid command that only occurred once when given the 

artist name. On the other hand, subjects started with the command “Play Artist” twice 

when the given the album name and the machine feedback was incorrect.  
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Table 4-43. Frequency of Method Used by Subjects on the First Attempt by Information 
Given and Driving Conditions 

Information 
Given	 Driving	

First Selection Method	

Play album Play artist	 Play songs by 
artist name	 Song	

Album	
Parked	 31 1   
Low Workload 31 1   
High Workload 32    

Artist	
Parked	  31 1	  
Low Workload  32   
High Workload  32   

Song/Album
/Artist 

Parked 42 45 6 3 
Low Workload 38 47 4 7 
High Workload 50 40 4 2 

 

Of the most interest were the 288 trials with all information given. Although the 

experimenter already informed the subjects that “Play Song + song title” was not a valid 

method to select a specific song, this method still occurred in 12 trials (4%) in all driving 

conditions. The probability using the commands “Play Album” and using “Play Artist” 

were similar, 45.1% and 45.8%, respectively. The percentages of the methods will be 

used to build simulation model to predict the drivers’ performance on task completion 

time in the next chapter. 

When the subject failed to select the correct music, 37% of the time subjects used the 

same method to perform the task on the next attempt (Table 4-44). For those trials which 

“Play Album” was the first attempt, 42% of the time subjects switched to the “Play 

Artist” method. For those trials that the method of  “Play Artist” was the initial attempt, 

59% of the time subjects switched to the “Play Album” method. 

Table 4-44. Frequency of Method Used by Subjects on the Second Attempt for the Music 
Selection Task While the Result from the First Attempt Was Incorrect 

First Selection Method 
Second Selection Method 

Play album Play artist Play song 
Play album 7 5 0 
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Play artist  20 14 0 
Play songs by artist name 4 0 0 
Play song 3 7 2 

Total 34 26 2 
 

Subjects completed 83.9% (52/62) of the music selection tasks after the second 

attempt. There were still 10 trials that ended without selecting the correct music (Table 4-

45). When the subject failed to select the correct music, 30% of the time subjects would 

use the same method to perform the task again, and all trials occurred when the subjects 

used the command “play artist” for the previous attempt. 

Table 4-45. Frequency of Method Used by Subjects on the Third Attempt for the Music 
Selection Task While the Result from the Second Attempt Was Incorrect 

Second 
Selection 
Method 

Third Selection Method 

Play album Play artist Play songs by artist name Play song 

Play album 0 1 1 0 
Play artist  2 3 0 1 
Play song 1 1 0 0 

Total 3 5 1 1 
 

Subjects completed 80% (8/10) of the music selection tasks after the third attempt. 

All trials ended with selection of the correct music (Table 4-46). When the subject failed 

to select the correct music, there was a 50% chance that the subjects would use the same 

method to perform the task on the next attempt. After four attempts to select the music, 

all subjects completed the music selection tasks. 

Table 4-46. Frequency of Method Used by Subjects on the Fourth Attempt for the Music 
Selection Task While the Result from the Third Attempt Was Incorrect 

Third Selection Method 
Fourth Selection Method 

Play album Play artist 
Play album 1 0 
Play song 0 1 

Total 1 1 
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D. Errors and Correction Strategies 

Frequency of Error 

Although the information given was always correct, and the specific relationships 

between the information and the artist name, album name, or song title were presented on 

the screen, there were 97 trials (20%) with at least one error occurring among the total of 

480 trials. For example, the presented information on the screen was “Album: Life for 

Rent,” and subjects immediately recognized that they were requested to select the album 

Life for Rent and play the music. Overall, the total numbers of errors that occurred either 

from subjects or from the MP3 player was 154, with mean and standard deviation of 1.6 

and 0.9, respectively (Table 4-47). The total number of errors that occurred was 

significantly affected by the age group and the number of information items given (Table 

4-48). The mean of total errors that occurred among middle-age subjects was 0.3 times 

greater than the young subjects when selecting a music, 0.4 and 0.1 times, respectively 

(F(1, 456) = 21.016, p < 0.001). When the subjects were requested to select a specific song 

(given three pieces of information), the mean of total errors was 0.3 times greater than the 

mean of total error when the subjects were requested to select a specific album or artist, 

0.4 and 0.1 times, respectively (F(1, 456) = 21.966, p < 0.001).  

Table 4-47. Descriptive Statistics of Total Errors by Driving Conditions and Information 
Given 

Driving Information Given 
Number of 
Subjects 

Sum of 
Errors 

Mean ± Std. Dev. 
Min. – 
Max. 

Parked 

Album 1 3 3 3 
Artist 6 7 1.2 ± 0.4 1 – 2 
Song/Album/Artist 14 31 2.2 ± 1.4 1 – 6 
Song/Album/Artist 4 6 1.5 ± 0.6 1 – 2 
Song/Album/Artist 6 6 1.0 1 

Low 
Workload 

Album 3 4 1.3 ± 0.6 1 – 2 
Artist 2 5 2.5 ± 0.7 2 – 3 
Song/Album/Artist 12 20 1.7 ± 1.1 1 – 4 
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Song/Album/Artist 7 10 1.4 ± 0.8 1 – 3 
Song/Album/Artist 14 26 1.9 ± 0.8 1 – 3 

High 
Workload 

Album 3 4 1.3 ± 0.6 1 – 2 
Artist 2 2 1.0 1 
Song/Album/Artist 8 9 1.1 ± 0.4 1 – 2 
Song/Album/Artist 8 9 1.1 ± 0.4 1 – 2 
Song/Album/Artist 7 12 1.7 ± 1.0 1 – 3 

Total  97 154 1.6 ± 0.9 1 – 6 
 

Table 4-48. ANOVA of Total Number of Errors Occurred by Age, Gender, Driving 
Conditions, and Number of Information Given 

Source df F p-value 
Age (A) 1 21.016 <0.001* 
Gender (G) 1 0.032 0.858 
Driving (D) 2 1.867 0.156 
Numb of Information Given (I) 1 21.966 <0.001* 
A * G 1 0.998 0.318 
A * D 2 0.611 0.543 
A * I 1 2.771 0.097 
G * D 2 0.520 0.595 
G * I 1 0.111 0.739 
D * I 2 0.946 0.389 
A * G * D 2 0.336 0.714 
A * G * I 1 0.289 0.591 
A * D * I 2 0.052 0.950 
G * D * I 2 0.103 0.902 
A * G * D * I 2 0.124 0.883 
Error 456   
Note: * - Statistically significant, p < 0.05 

Table 4-49 shows that a total of 9 machine errors occurred among the 8 trials with a 

mean of 1.1 times. The ASR error rate was 1.7% (8/480), which was low. The error 

occurred only once when a subject attempted to select a specific album while the vehicle 

was parked. Although the data shows that errors occurred when subjects selected music 

while driving, there was no statistically significant difference. 
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Table 4-49. Descriptive Statistics of Machine Errors by Driving Conditions and 
Information Given 

Driving Information Given 
Number of 
Subjects 

Sum of 
Errors 

Mean ± Std. Dev. Min. – Max. 

Parked 

Album 1 1 1 1 
Artist     
Song/Album/Artist     
Song/Album/Artist     
Song/Album/Artist     

Low 
Workload 

Album     
Artist     
Song/Album/Artist     
Song/Album/Artist 1 2 2 2 
Song/Album/Artist 2 2 1 1  

High 
Workload 

Album     
Artist     
Song/Album/Artist     
Song/Album/Artist 3 3 1 1  
Song/Album/Artist 1 1 1 1  

Total  8 9 1.1 ± 0.4 1 – 2 
 

Apparently, 94% (145/154) of the errors occurred from 27 subjects. The number of 

errors that occurred was significantly affected by the age group and the number of 

information items given (Table 4-50 and Table 4-51). The mean of total errors that 

occurred among middle-age subjects was 0.3 times greater than that of the young subjects 

when selecting a music, 0.1 and 0.4 times, respectively (F(1, 456) = 21.468, p < 0.001). 

When the subjects were requested to select a specific song (given three pieces of 

information), the mean of total errors was 0.3 times greater than the mean of total error 

when the subjects were requested to select a specific album or artist, 0.4 and 0.1 times, 

respectively (F(1, 456) = 20.029, p < 0.001). 
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Table 4-50. Descriptive Statistics of Human Errors by Driving Conditions and 
Information Given 

Driving Information Given 
Number 
of Trials 

Sum of 
Errors 

Mean ± Std. Dev. 
Min. – 
Max. 

Parked 

Album 1 2 2 2 
Artist 6 7 1.2 ± 0.4 1 – 2 
Song/Album/Artist 14 31 2.2 ± 1.4 1 – 6 
Song/Album/Artist 4 6 1.5 ± 0.6 1 – 2 
Song/Album/Artist 6 6 1.0 1 

Low 
Workload 

Album 3 4 1.3 ± 0.6 1 – 2 
Artist 2 5 2.5 ± 0.7 2 – 3 
Song/Album/Artist 12 20 1.7 ± 1.1 1 – 4 
Song/Album/Artist 7 8 1.1 ± 0.4 1 – 2 
Song/Album/Artist 12 24 1.9 ± 1.0 1 – 3 

High 
Workload 

Album 3 4 1.3 ± 0.6 1 – 2 
Artist 2 2 1.0 1 
Song/Album/Artist 8 9 1.1 ± 0.4 1 – 2 
Song/Album/Artist 5 6 1.1 ± 0.4 1 – 2 
Song/Album/Artist 7 11 1.6 ± 1.0 1 – 3 

Total  92 145 1.6 ± 0.9 1 – 6 
 

Table 4-51. ANOVA of Number of Human Errors Occurred by Age, Gender, Driving 
Conditions, and Number of Information Given 

Source df F p-value 
Age (A) 1 10.756 <0.001* 
Gender (G) 1 0.001 0.958 
Driving (D) 2 1.023 0.131 
Numb of Information Given (I) 1 10.035 <0.001* 
A * G 1 0.272 0.461 
A * D 2 0.282 0.570 
A * I 1 1.606 0.074 
G * D 2 0.205 0.665 
G * I 1 0.001 0.958 
D * I 2 0.486 0.380 
A * G * D 2 0.192 0.682 
A * G * I 1 0.089 0.674 
A * D * I 2 0.044 0.916 
G * D * I 2 0.067 0.875 
A * G * D * I 2 0.051 0.959 
Error 456   
Note: * - Statistically significant, p < 0.05 
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Error Type and User Correction Strategy 

Table 4-52 shows the frequency of two types of machine errors– “cannot recognize 

the user’s prompt” or “misrecognized the user’s prompt.” The error of “speech interface 

misrecognized the user’s prompt” is defined as the speech interface provides incorrect 

feedback when the user’s input is correct. All 7 errors occurred when the subjects 

performed the music selection tasks while driving. Subjects repeated the utterance or 

repeated the utterance slower to correct the errors were more than 50% of the time. The 

error “cannot recognize the user’s utterance,” occurred one time when the subject said the 

command “next track” and another time was when the subject said “play album Lost and 

Found.” Both of the cases resulted in the incorrect feedback from the machine and 

subjects repeated the utterance to correct the errors. 

Table 4-52. Frequency of Machine Error by Type and User Correction Strategies for the 
Music Selection Task 

Error Type 
(Frequency) 

Example User Correction Strategy Frequency 

Misrecognized 
the user’s 
utterance (7) 

S: Play album This 
Way. 
M: Playing album Life 
for Rent 

Repeat the utterance 
Repeat the utterance slower 
Change the pronunciation 
Change the selection method 
Did not notice the error and say the 

command word “next track” 

2 
2 
1 
1 
1 
 

Cannot recognize 
the user’s 
utterance (2) 

S: Next Track. 
Machine response was 
playing the same song 
from previous attempt. 

Repeat the utterance 2 

 

Human errors related to information provided by the subjects and user correction 

strategies are shown in Table 4-53. The errors related to information provided by subjects 

account for 51% (74/145) of the total human errors. Subject uttered the information 

before the time that the MP3 player could accept and process the signal (barge-in), which 

resulted in error feedback from machine. Sixty-one percent of the errors (14/23) occurred 
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while driving, and 87% of the time (20/23) subjects repeated the prompt to correct the 

error. Another category of error was when a subject either said the utterance too late or 

did not provide information (time out). Fifty-six percent (10/18) of the errors occurred 

while driving, and half of the time that subjects repeat the utterance to correct the errors. 

Another common mistake made by the subject was when they did not press the button to 

activate the ASR before saying the utterance and, surprisingly, this kind of error occurred 

in 74% of the trials (10/14) when selecting the music was the primary task (no driving). 

The subjects stammered (play play uh album) when saying the information 12 times, and 

67% of those trials occurred while driving. Subjects still used the same method and 

provided the information to correct the errors. 

Table 4-53. Types and Frequency of Human Errors Relevant to Information Provided and 
User Correction Strategy for the Music Selection Task 

Error Type 
(Frequency) 

Example User Correction Strategy Frequency

Barge-in (23)  

Repeat the prompt 
Change selection method 
Rephrase the prompt 
No response 

20 
1 
1 
1 

Time out (18)  

Use the same selection method 
and repeat the prompt 

Provide correct information 
Say invalid command (go back) 

to correct 
Repeat the prompt 
Change selection method to 

Artist 
Use the same selection method 

and provide correct 
information 

9 
 

3 
2 
2 
 

1 
 

1 
 
 

Did not press the 
button to activate the 
ASR (14) 

 

User press the button to activate 
the ASR 

Repeat the prompt but still did 
not press the button to 
activate the ASR 

13 
 

1 
 
 

Stammered the 
prompt or command 
(12) 

“Play Play uh Album” 

Use the same selection method 
and provide incorrect 
information 

Use the same selection method 

3 
 
 

2 
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and provide correct 
information 

(Machine correct the error 
automatically and provide 
the correct information) 

 
 

7 

Provided incorrect 
information (4) 

“Play artist Sean 
Paul,” instead of 
“Play artist “Sean 
Pen” 

Use the same selection method 
and provide correct 
information 

(Machine correct the error 
automatically 1and provide 
the correct information) 

1 
 
 

3 

Provided incomplete 
information (2) 

“Play album Still Not 
Getting Any,” instead 
of “Not Getting Any” 

Change the selection method to 
Artist 

(Machine correct the error 
automatically 1and provide 
the correct information) 

1 
 

1 
 

Repeated the prompt 
when the machine 
still searched (1) 

 
(Machine recognize the prompt 

and provide correct 
feedback) 

1 

 

The frequency of different types of human errors relevant to each selection method 

and command and subjects’ correction strategies is shown in Table 4-54. The errors relate 

to selection method and command accounts 39% (57/145) of the total human errors. 

Although there were no mistakes made by the subjects and machine for those 23 trials 

where subject changed the selection method, it was still counted as an error.  Most of the 

time, the scenarios occurred when the subject used artist as the method to select the music 

and learned that there were too many songs by the same artist in the database. Therefore, 

they changed the selection method to album.  

Table 4-54. Frequency of Types of Human Errors Relevant to Selection Method and 
Command and User Correction Strategy for Music Selection Task 

Error Type 
(Frequency) 

Example User Correction Strategy Frequency 

Changed selection 
method (23) 

 

Change selection method from 
artist to album 

Change selection method from 
album to artist 

20 
 

3 
 

Used invalid 
selection method 
(15) 

“Play song Can You 
Do the Work” 

Change selection method to artist 
Change selection method to album 
Repeat the prompt (use the same 

9 
4 
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method) 2 

Forgot to say 
command word (8) 

“Play artist Juliana 
Theory,” instead of 
“Play Juliana Theory” 

Say the command word 
Repeat the prompt  
Repeat the prompt slower 
Change selection method 
(Machine correct the error 

automatically and provide the 
correct information) 

4 
1 
1 
1 
1 
 
 

Said invalid 
format of 
command (4) 

“Play songs by Sean 
Paul,” instead of “Play 
songs by Artist Sean 
Paul” 

Change selection method 
Say the correct format of 

command 

3 
1 

Used wrong 
command (4) 

Play album Lost and 
Found,” instead of 
“Play artist List and 
Found” 

Repeat the prompt 
Say the correct command word 

2 
2 

Said invalid 
command (3) 

“Previous Track,” 
instead of “Go Back” 

Change selection method 
Use the same method and repeat 

the prompt 

2 
1 
 

 

Also, there were 15 trials (6 subjects - 1 young, 5 middle-age; 4 males, 2 females) in 

which subjects directly used song title to select music. Eleven of those 15 trials, involving 

using the song title, occurred while driving. Subjects often used the wrong command. For 

example, the information displayed was “Album: Lost and Found” and the subject say 

“Play Artist Lost and Found.”  

There were 14 errors relevant to the subject’s knowledge (Table 4-55). Eleven of 

those 14 errors occurred when the subjects ended up with selecting the wrong music, and 

9 out the 11 trials occurred while driving. Also 10 of the 11 trials ended with selecting 

incorrect music were when the subjects requested to select a specific song. To ensure the 

MP3 player was playing the correct song, subjects can listen to the music playing if they 

were familiar with the specific song, or they can look at the screen and check the 

information provided by the MP3 player. However, the MP3 player was placed in the 

center of steering wheel and that was not the same location of the manufacturer’s built-in 

system. This may affect the driving performance if drivers needed to look down to check 
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the information. Also the fonts used for feedback shown on the MP3’s screen were small 

and this too could affect the driving performance. Therefore, the subjects assumed the 

music played by the MP3 player was correct.  

Table 4-55. Frequency of Other Types of Human Errors and User Correction Strategy for 
the Music Selection Task 

Error Type (Frequency) User Correction Strategy	 Frequency
Select incorrect music (11)	  11
Did not know how to go back to playing 
music screen when the iPhone screen change 
to home screen (2)	

Ask the experimenter for help	 2	

Switched to manual selection (1)  1 

4.4 Conclusions 

To develop a simulation model to predict driving performance while using in-vehicle 

speech-controlled destination entry and music selection systems, one needs to know step 

by step how subjects would enter a destination or select music, the precise duration of 

each step, the type and frequency of each error, and the correction strategy for each error, 

all topics examined in this experiment. The task completion rate in this study was 97% 

for destination entry tasks and 99% for music selection tasks, respectively. The task 

completion time for those trials without any errors was 77 s for destination entry tasks 

and 19 s for music selection tasks. When errors occurred, the mean task completion time 

significantly increased at least 1.7 times. 

Entering an address using a command-based speech system is a complex task and 

involves at least 15 turns for both subjects and a system to complete the task without any 

errors. When errors occurred, the total number of turns to complete the destination entry 

task almost doubled.  
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More specifically, the goal of this chapter is to address five questions.  The first two 

questions were: 

1. How long do drivers need to think of and utter commands and phrases? 

2. How long does it take to say those commands or phrases? 

The detailed steps and the equations or distributions used to predict the thinking and 

utterance times are described in the Table 4-56.  The predictive parameters, if any, and 

the distribution that fit best, if there were no predictive parameters, varied between 

subtasks. For single word responses, utterance time was usually predicted by the number 

of syllables to be uttered. For multiple word responses, the number of words was a 

predictor. As a first cut, rough rule of thumb, allowing for approximately 0.5 s per word 

and 0.2 s per syllable seems reasonable. 

Table 4-56. Subtask Time Predictions for the Destination Entry Task While Driving 
Subtask Predicted Equations or Distribution (times in seconds) 

S: Thinking and processing time  
Address related to personal: T = Lognormal (1.48, 0.57) 
Address not related to personal: T = Lognormal (1.31, 0.61) 

S: Command utterance time 
S_CMD T = 0.136 + 0.133*NSyllable + 0.082*Age + 

0.094*NWord 

S: Think and utter the state name 
S_Think_State T = Lognormal (-0.5, 0.49) 
S_State T = - 0.212 + 0.242*NSyllable + 0.098*Age – 

0.140*Gender  

S: Think and utter the city name 
S_Think_City T = Normal (0.91, 0.78) 
S_City T = -0.103 + 0.172*NSyllable + 0.089* Age + 

0.149*NWord 

S: Think and utter the street name 
S_Think_Street T = Lognormal (0.03, 0.58) 
S_Street T = 0.041 + 0.459*NWord + 0.188*Age – 0.103*Gender 

S: Think and utter the house 
number 

S_Think_House 1/T = Weibull (1.31, 2.42) 
S_House T = -0.805 + 0.681*NWord + 0.201*Age – 

0.143*Workload – 0.197*Gender 

S: Spell the word 
Mean number of characters = Poisson (7.91) 
S_Spell T = -1.826 + 0.635*NCharacter + 1.09*NWord 

S: Barge-in Barge-in T = Normal (0.19, 0.11) 
S: Time out Time-Out T = Normal (7.12, 1.8) 
M: Command prompt time M_CMD T = 0.347 + 0.284*NWord 
M: Process and prompt the state 

name 
M_Proc_State T = 2.185 + 0.89*MultipleChoice 
M_State T = 0.117 + 0.163*NSyllable + 0.117*NWord 

M: Process and prompt the city 
name 

M_Proc_City T = 2.241 + 0.95*MultipleChoice 
M_City T = 0.211+ 0.212*NSyllable 

M: Process and prompt the street 
name 

M_Proc_Street T = 2.772 + 0.782*MultipleChoice 
M_Street T = 0.448+ 0.194*NSyllable 
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M: Process and prompt the house 
number 

M_Proc_HouseNum T = Weibull (0.37, 2.44, 2.71) 
M_HouseNum T = 0.169+ 0.553*NWord 

M: Route Processing time M_Route Processing time T = 3.182 + 7.936 * Out_State 

 

On the other hand, selecting music using speech was much easier than entering a 

destination and required only four total turns for both subjects and a system to complete 

the task without any errors. When errors occurred, the total turns to complete the music 

selection task almost doubled. The detailed steps and the equations or distributions used 

to predict the thinking and utterance times are shown in Table 4-57.  As with the 

destination entry task, the predictive parameters were again number of syllables, number 

of words, and gender, but the combination that provided the best predictions, if there was 

one at all, varied with the subtask. 

Table 4-57. Subtask Time Predictions for the Music Selection Task while Driving 
Subtask Predicted Equations or Distribution (times in seconds) 

S: Thinking and processing time  S_Think T = 5.323 + 2.131*Age 
S: Command and information 

utterance time 
S_Utt T = 0.341 + 0.137*NSyllable + 0.165*Word - 

0.221*Workload + 0.146*Age 
S: Thinking_2 S_Think_2 T = Lognormal (1.863, 0.551) 
S: Next Track S_NextTrack T = 0.429 + 0.131*Age + 0.092*Gender  
S: Number to of time say next 

track 
For Play Album: 1.55  0.83 
For Play Artist: 1.56  0.84 

M: Process 1 M_Proc1 T = 1.711 – 0.49*Correct_MS – 0.079*Age 

M: Feedback and music playing 

Chime T = 0.4 s 
Pause T = Normal (0.267, 0.024) 
M_Utt T = 0.559 + 0.091* NSyllable + 0.084 * NWord 
Music playing is song specific 

M: Process 2 
M_Proc2 T = Weibull (0.69, 0.148) 
Chime T = 0.4 s 
Music playing is song specific 

 

With regard to errors, there were two questions to address: 

1. What are the types of errors that drivers make, and how often do they occur? 

2. For each system response to an error, what is the driver’s correction strategy? 
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Using street address (88%) at the first attempt to enter the address was the most 

frequent method for destination entry tasks, followed by address book (7%). When errors 

occurred, subjects preferred to use the street address method to correct the error. For 

music selection task, the probability of using album or artist to select a specific song was 

similar, 45.1 % and 45.8%. However, for 4% of the trials, subjects tried to use song title 

to select the specific song, which is not accepted by the iPhone 4S. When subjects failed 

to select the correct music on the first attempt, 37% of the time subjects used the same 

method for the second attempt. There was a 42% chance that subjects would switch from 

play album to play artist. When subjects used play artist on the first attempt, 59% of the 

time subjects switched to play album method. 

Errors can be categorized into three groups: (1) information relevant, (2) system 

commands and entry method relevant, and (3) subjects’ knowledge related to the system. 

Grice’s conversation maxims and the error typology proposed by the Veronis [54], as 

well as the turn-taking and common grounding, can partially explain the errors that 

occurred during the experiment.  

There were 1,088 errors distributed among 323 trials for the destination entry task. 

When given incorrect information, the mean number of errors was 3 times greater than 

the number of errors that occurred with correct information. Time-out and barge-in 

account for one-third of the human errors and the correction strategy repeat the 

prompt/repeat the prompt slower was the command method most used to correct the 

errors. 

Although the music selection task was relatively easier to do than the destination 

entry task, 154 errors occurred. Barge-in and time out were still the two major errors for 
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the music selection task. Repeat the prompt was the most frequently used method by 

subjects to correct these two types of errors.  

Finally, with regard to driving performance, there was one question to address: 

How is performance of the speech task affected by the level of driving task workload? 

Entering destinations while driving significantly affected the drivers’ performance for 

7 of the 10 commonly used driving performance measures.  

Driving workload affected the destination entry tasks when the given information was 

correct and no errors occurred. Task completion time while the vehicle was parked was 

6 s and 7 s greater than the time while driving in the low and high workload conditions, 

and because of learning (as they occurred after the parked condition). Task completion 

time while driving is expected to be greater than while parked. There was no difference in 

task completion time during the low- and high-workload conditions. As was shown in 

Table 4-55, driving workload did not significantly affect thinking and utterance times. 

Driving workload, however, did affect task performance in the music selection tasks. 

The task completion time for subjects driving in the low-workload condition was greater 

than when the vehicle was parked or while driving in the high-workload condition. If 

anything, one would expected task completion time to increase with workload.   

Good design of a user interface in a vehicle could potentially minimize the driver 

distraction as indicated by these measures. To predict speech performance before the 

system is developed or revised rather than evaluation of a completed system costs less 

time and money. The present study provides important data that can be used to build a 

simulation model to predict the speech interface performance, a topic addressed in the 

next chapter. 
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 CHAPTER 5

A Simulation Model to Predict the User Task 

Completion Time and Errors  

 

5.1 Introduction 

Simulation is the representation of a real world or artificial process over time [89, 90]. 

Simulations can be physical, where information is presented in real time with which a 

person interacts with, such as driving simulators, flight simulators, patient and surgical 

simulators, or nuclear power plant simulators [91-94]. Those simulators are used to train 

operators, often for situations that are risky, or on systems that are more expensive than 

the simulation to operate, or to collect data on how people function when using such 

devices.  When people think of simulation, this is the use of simulation that often comes 

to mind and it was this type of simulation that was utilized in the research described in 

chapter 4.  

Simulations can also be purely computational, such as those used to model financial 

systems, the weather, the spread of disease, and disaster preparedness, though there may 

be a visual interface for users such as the JACK biomechanical model [95-99]. See also 



 

 171

[100-102]. The underlying mathematics can be either discrete or continuous [103, 104]. 

An autopilot is a good example of continuous control. Discrete control involves a series 

of events, such as having a person to do a task, that has well defined start and end times, 

but may take time to complete. The simulation in this chapter is discrete control. 

Within the human performance literature, which served as a basis for this chapter, 

there is a long tradition for using computational simulation to address problems [105, 

106]. Computational simulation has been the most successful for complex problems, in 

particular where there are many tasks for the user or users to perform and the task 

durations are not a single value, but have distributions. Usually, each task can lead to one 

or more following tasks and which task follows is probabilistic. 

An example of this kind of problem of interest to the U.S. Army is how many soldiers 

are needed to man a tank and how crew size affects the time to fire.  In tank warfare, 

usually only the tank that fires first survives. A typical scenario involves a tank driving 

down a road (what the Army technically calls a road march) with the hatches open and 

the crew’s heads outside the tank searching for the enemy [107].  

Within the human factors domain, discrete event simulation models have been used 

very effectively to predict the performance of complex military systems [108, 109]. 

Historically, the human factors community uses either MicroSaint (more recently 

MicroSaint Sharp) or IMPRINT for those simulations, primary because MicroSaint and 

IMPRINT have features that are particularly useful for human performance simulation 

[110-112].  MicroSaint Sharp is a product of Micro Analysis and Design, now a 

subsidiary of Alion Science and Technologies.  MicroSaint Sharp costs several thousand 

dollars per copy.  IMPRINT, developed for the Army, is free to those in the U.S., and is 
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used by the Army and for Army-funded projects.  There are, however, many other 

alternative applications, with Promodel, Witness, Simula, Arena, and for historical 

reasons GPSS (http://en.wikipedia.org/wiki/List_of_discrete_event_simulation_software) 

being the best known candidates[113]. 

The tasks of using an in-vehicle infotainment system to enter destinations and select 

songs have many of the same fundamental elements as the tank problem. Figure 5-1 

shows the example of entering a street address as a destination. The first subtask of which 

is to enter the name of the state. After the system asks for the state name, the driver could 

respond by saying “Michigan.” The car might recognize the entry as Minnesota (so the 

driver needs to correct the car), correctly identify Michigan (so they go to next task, 

saying a city name), or fail to detect the speech and ask the driver to say again (so they 

say “Michigan” again).  

In the network, the performance of each subtask (e.g. completion times, path 

followed) is by rules for the subnetwork programmed by the simulation developer, 

including conditions, probabilities, and constraints) The complicating factor in many 

simulations is that task sequences can loop back and repeat, in this example, to repeat an 

unrecognized utterance or correct an error. 
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Figure 5-1.  The task network for entering a state using speech 

 

To predict system performance, data are needed on the probability of each branch in 

the network and the time distribution for each utterance (along with delays to recognize 

what is said, not shown), all for real drivers doing real tasks. Also needed are data on how 

drivers deal with errors. All of this information was collected in the prior chapter. 

The purpose of this research was to provide a model structure (the tasks users perform 

and their sequence for various error contingencies) and data (either distributions of task 

time or prediction of them from various tasks variables, as well as estimates of error 

probabilities) for use with existing simulation software packages to predict user 

performance with speech interfaces in motor vehicles. 
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5.2 Method and Assumption 

5.2.1 Assumptions 

1. The survey data provides reasonable estimates on the frequency of destinations 

selected and the methods used to select them.  The survey also provides related 

information for songs. 

2. In real driving, the entry methods used and their frequency for destinations and 

songs will be the same as those in the driving simulator experiment. 

3. The destination entry method selected depends upon if the destination is a 

residential or non-residential address. 

The results from the simulator study showed that the destination entry method for 

residential address (home, friend’s/relative’s address) was different from the entry 

method of non-residential address. Clearly, the frequency using the method Destination 

by Address Book for residential address was greater than the frequency of non-residential 

address (0). Also, the POI method will not be used to select a residential address.  

4. The model is driven by the number of attempts to enter the destination. 

The number of attempts is defined as the number of times when the subjects change 

the entry method from the current method used to other selection method or the subjects 

use the command go back to reach the top level of the current entry method with the 

options of selecting other entry method or using the same method. As the speech 

interface used in previous experiment was a command-based navigation system, the cases 

will be too complicated to categorize if the definition of each attempt was based on the 

number of times that correction commands are uttered, such as go back or correct.  
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5. The probability of a method selected is independent of the selection for the 

previous attempt. 

Similar to the reason for previous assumption, creating a simulation model that 

included conditional probabilities was beyond the scope of this initial effort. 

6. Subjects will give up (balk) after five attempts. 

The assumption refers to the number of attempts after changing the entry method. 

Although balking only occurred for five trials and only for some tasks and methods, the 

mean number of attempts before balking was five times. Although this is based upon 

limited data, it is the best (and only) available data.  

7. The task completion frequency for each attempt for each method can be estimated 

from the results of the simulator experiment. 

To represent the system used in the simulator experiment, the task completion 

frequency for each attempt of method was based on the results from the previous 

experiment.  

8. The subtask time can be estimated from the results of the simulator experiment. 

The estimated durations uttering the commands or phrases for subjects and systems 

were based on the results from the simulator study shown in Table 4-55 for navigation 

and Table 4-56 for music selection. 

9. The probability of subtasks will occur is same as to those in the simulator 

experiment. 

The probability of each sequential network was estimated based on the results from 

the simulator study.   
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10. The probability of each type of error occurs will be the same as those in the 

simulator experiment. 

The probability error of human error occurrence was calculated by dividing the 

number of total human errors to the total turns from the subjects (3255) in the simulator 

studies and shown in Table 5-1. Also among the types of errors, user timeout and barge-

in should occur for each subject’s utterance after the system asks the information or 

command. Also, not all the types of errors will be in the simulation, to avoid any overly 

complicated subnetworks. In particular, rare errors (p < 0.005) will be ignored. 

 

Table 5-1. Probability of Human Error Occurrences for Destination Entry Tasks Resulted 
Form the Simulator Study. 

Category Error Type Frequency Probability 

In
fo

rm
at

io
n 

R
el

ev
an

t 

Time out 218 0.0670 
Barge-in 121 0.0372 
Stammer the prompt / command 38 0.0117 
Provide incorrect information 264 0.0811 
Provide incomplete information 71 0.0218 
Provide invalid information 28 0.0086 
Provide invalid format of information 75 0.0230 
Forgot to change the state name 10 0.0031 
Pick the wrong choice 1 0.0003 
Miss the correct information 1 0.0003 
Ask experimenter for confirmation 1 0.0003 
Say unnecessary words 6 0.0018 
Murmur 4 0.0012 
Fail to find the correct information 10 0.0031 

C
om

m
an

d 
an

d 
E

nt
ry

 M
et

ho
d 

R
el

ev
an

t 

Cannot find the information by specific method 33 0.0009 
Change Entry method 3 0.0009 
Cannot determine the entry method  3 0.0025 
Forget to say command word 8 0.0025 
Say incorrect command 55 0.0169 
Say invalid command 25 0.0077 

S
ub

je
ct

’s
 

K
no

w
le

dg
e 

R
el

ev
an

t Did not know the system reach the first step of 
the entry method 

13 0.0040 

Did not know the ASR function has been 
deactivated 

3 0.0009 

Give-up 8 0.0025 
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Table 5-2 shows the probability of each type of human error for music selection tasks 

over the total of 401 turns. Unlike the navigation system, the probability that subjects said 

invalid commands was low. However, the model still includes some types of errors as the 

subnetwork is relative simple and easier to build. 

Table 5-2. Probability of Human Error Occurrences for Music Selection Tasks Resulted 
form the Simulator Study 

Error Type (Frequency) Frequency Probability 
Changed selection method  23 0.0573 
Used invalid selection method 15 0.0374 
Forgot to say command word 8 0.0200 
Said invalid format of command 4 0.0100 
Used wrong command 4 0.0100 
Said invalid command 3 0.0075 
 

5.2.2 Software  

The software – IMPRINT (The IMproved Performance Research INtegration Tool) 

readily accessible to UMTRI Driver Interface Group, was used to build the simulation. 

The advantage of using this software is that physical and cognitive workload estimated 

for drivers can be obtained from the results. Therefore, information can be used in the 

evaluation of the driver performance when operating the navigation and music selection 

systems. On the other hand, the software requires that each task needs to be described in 

considerable detail, a very time consuming activity. The amount of detail required is 

much greater than available for traditional task analysis. 
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5.2.3 Model Creation 

To create a discrete event simulation in IMPRINT, one first creates a high level flow 

chart of the tasks to be performed in the IMPRINT Pro graphical editor.  For example, for 

music selection, this involves creating start and end nodes, and graphics to represent each 

of the three alternative subtasks (artist, album, song).  As a reminder, these represent 

three different methods to find a song. 

Next, for each task/subtask, one creates a more detailed description, in IMPRINT 

jargon, a subnetwork.  So for example, to find a song by finding an album, one would 

create a step-by-step description of how that occurs, graphically representing each step as 

a node.  One might think of this as being akin to writing a subroutine, which often calls 

other subroutines.  This hierarchical structure makes the model easier to understand.   

At some point, one needs to populate the model.  For each node in the network, one 

needs to identify the conditions that cause it to begin and end/its duration.  This is done 

using scripts written in C++.  In addition, one needs to specify successive nodes, if there 

are any.  If there are, then the completion of a node can cause the simulation to end, or 

lead several following tasks to start all at the same time, or one of several tasks, where 

each task has a probability. 

After the model is populated, one runs it a number of times to build up data on 

network completion times and the probability various paths are taken.  Those data are 

then examined to determine what does not make sense, and the simulation is revised and 

re-run.  For example, if several tasks with similar probabilities were following a task, but 

the same following task occurred over hundreds of runs, one would suspect a 

programming error.  The kinds of programming errors that commonly occur, mismatched 
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or misplaced parentheses, missing semicolons, misspelled variable names, etc., all occur 

here. 

After one has confidence in the model, then one may run it several hundred times to 

obtain the desired statistical distributions.  Keep in mind that each run uses a different 

random seed to generate the outcome, and that it takes many runs to develop statistically 

representative results.  Depending on the complexity of the discrete event simulations, a 

single run can take anywhere from milliseconds to a few seconds, and for huge models 

much longer.  However, IMPRINT has a feature where the analyst sets the number of 

runs, so requesting 100 runs is just a matter of typing 100 in an entry box. 

5.2.4 Validation 

In the driving simulator study, there were 48 subjects recruited with equal number in 

age (3) and gender (2) groups. The data from half of subjects (24) was analyzed to obtain 

to build the simulation. The data from another half of the subjects (24) was used to 

validate the model by comparing the tasks completion time and error frequency. 

5.3 Results and Discussion 

5.3.1 Model for Navigation System 

1. Overall Structure of the navigation systems.  

The network diagrams are shown in Figure 5-2 to 5-8, the detail description of each 

subtask and node is in Appendix A. As described in the assumptions, the top level of the 

destination entry model was divided into two categories of the addresses – residential or 
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non-residential address. The probability used in this simulation was based on the 

probability of trials in the simulator experiment, which the probability was 0.25 for 

residential address and 0.75 for non-residential address  

 

 
Figure 5-2. Top Level of the Simulation for Destination Entry Tasks. 

 

2. The second level of the model is driven by the method used for destination entry 

task. The flow for residential and non-residential addresses is shown in Figures 5-

3 and 5-4. 

Subnetworks are presented in two blocks – one that counts the number of attempts 

using each method only. The second is that each particular method is independent to the 

previous attempt. The model using conditional probabilities was beyond the scope and is 

not implemented in this version of the model. As described earlier, the maximum number 

of attempts in this model is limited to five times. After the fifth attempt without success, 

the subjects will balk.  

The methods used by subjects are address book, street address, and previous 

destination for the residential address and street address, previous destination, and point 

of interest for non-residential address. No network was built for the address book method 

for non-residential address because no subjects used this method in the driving simulator 
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experiment. In the future, the users can add the link and change the probability of each 

subnetwork to simulate the use of the address book method for the non-residential 

addresses. 

When successfully completing the task, simulation goes to the end node, ending a 

run. When the attempt failed to find the destination, the flow goes to the try-count node to 

determine the flow to the next run and repeats again until either the task succeeds or 

balks. 

 
Figure 5-3. Sub Network for Residential Address 
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Figure 5-4. Subnetwork for Non-Residential Address 

 

Subnetwork for Destination Entry Method – Street Address 

All methods begin with the system asking for the command to determine which entry 

method subjects can use. Figure 5-5 shows the detailed net sub network using street 

address. After selecting the method, system requests the city information, in which case 

the state name is assumed to be the state name used from previous destination entry 

attempt. If subjects cannot remember the predetermined state, and did not change the 

state, errors can occur. Sometimes subjects choose to enter the state name to avoid errors. 

The next step is entering the city name. With some probability, the system can 

correctly identify subject’s utterance and provide direct feedback. Otherwise, depending 

on what the subject uttered and what was understood, the system can provide one of 

several alternative feedback messages that provide options to the subject from which they 
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must select. These extra steps increase the number of turns required in completing the 

task.  

Next, the street information is entered. The simulator experiment showed that 

subjects may only provide partial information, in particular, forgetting to say the street 

suffix (e.g., Road) or the directional prefix (e.g., North) with road name. This increases 

the error probability and can result in several extra turns to complete the entry tasks. 

However, the only format that the system can recognize is if subjects say the house 

number digit-by-digit (one five zero zero). This is different from the way that people 

normally say house numbers (fifteen hundred). Using entry methods other than digit-by-

digit results in errors. 

 

Subnetwork for Destination Entry Method – Previous Destination 

The subnetwork is shown in Figure 5-6. The subtasks include uttering commands, 

selecting the desired number from the lists, and starting guidance, relatively easy to do 

with the street address method. 

 

Subnetwork for Destination Entry Method – Address Book 

Similar to the method of previous destination, the subtasks for using address book 

include uttering commands (including the pre-determined word – destination by address 

book), selecting the pre-saved name lists, choosing the desired number form the lists, and 

starting guidance (Figure 5-7). 
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Figure 5-5. Subnetwork for Street Address 



 

 185

 
Figure 5-6. Subnetwork for Previous Destination 
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Figure 5-7. Subnetwork for Destination by Address Book 
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Figure 5-8. Subnetwork for Point of Interest 
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Subnetwork for Destination Entry Method – Point of Interest 

The last method includes in the model is using Point of Interest and the subtasks 

include uttering commands (including the pre-determined word – find nearest POI), 

selecting the POI categories, and sub categories, and then choosing the desired number 

from the lists and starting guidance (Figure 5-8). The most difficult part for subjects is the 

subjects must have the knowledge on the relationship between the desired destination and 

the category and sub-category. For example, there is no category or subcategory titled 

“university.” To select a university as POI, one must first select “Community” for main 

POI category, and then “Higher Education.” 

 

3. Variables and parameters sued to constructed the model 

The variables used to construct the model are listed in Table 5-3. All the probabilities 

were based on the resulted from the simulation studies. For example, the probability of 

residential and nor residential address were calculated by counting the number of in- and 

out-state entries that occurred in scenario 3, 5, and 11 in simulator experiment. Also, the 

probabilities of the task success frequency were calculated by counting the number of 

trials with each entry method ending with correctly finding the destination and divided by 

the number of the total trials by each method. 
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Table 5-3. Variables for Simulation Model for the Destination Entry Task while Driving 
Variables Predicted Equations or Distribution (times in seconds) 

Probability of residential and non-
residential address 

Residential address: 0.25; Non-residential address: 0.75 

Probability of entry method used 
by each attempt 

 

Probability of each subtasks   
Error probability of each error 

type 
 

S: Thinking and processing time  
Address related to personal: T = Lognormal (1.48, 0.57) 
Address not related to personal: T = Lognormal (1.31, 0.61) 

S: Command utterance time S_CMD T = 0.136 + 0.133*NSyllable + 0.082*Age + 0.094*NWord 

S: Think and utter the state name 
S_Think_State T = Lognormal (-0.5, 0.49) 
S_State T = -0.212 + 0.242*NSyllable + 0.098*Age – 0.140*Gender  

S: Think and utter the city name 
S_Think_City T = Normal (0.91, 0.78) 
S_City T = -0.103 + 0.172*NSyllable + 0.089* Age + 0.149*NWord 

S: Think and utter the street name 
S_Think_Street T = Lognormal (0.03, 0.58) 
S_Street T = 0.041 + 0.459*NWord + 0.188*Age – 0.103*Gender 

S: Think and utter the house 
number 

S_Think_House 1/T = Weibull (1.31, 2.42) 
S_House T = -0.805 + 0.681*NWord + 0.201*Age – 

0.143*Workload – 0.197*Gender 

S: Spell the word 
Mean number of characters = Poisson (7.91) 
S_Spell T = -1.826 + 0.635*NCharacter + 1.09*NWord 

S: Barge-in Barge-in T = Normal (0.19, 0.11) 
S: Time out Time-Out T = Normal (7.12, 1.8) 
M: Command prompt time M_CMD T = 0.347 + 0.284*NWord 
M: Process and prompt the state 

name 
M_Proc_State T = 2.185 + 0.89*MultipleChoice 
M_State T = 0.117 + 0.163*NSyllable + 0.117*NWord 

M: Process and prompt the city 
name 

M_Proc_City T = 2.241 + 0.95*MultipleChoice 
M_City T = 0.211+ 0.212*NSyllable 

M: Process and prompt the street 
name 

M_Proc_Street T = 2.772 + 0.782*MultipleChoice 
M_Street T = 0.448+ 0.194*NSyllable 

M: Process and prompt the house 
number 

M_Proc_HouseNum T = Weibull (0.37, 2.44, 2.71) 
M_HouseNum T = 0.169+ 0.553*NWord 

M: Route Processing time M_Route Processing time T = 3.182 + 7.936 * Out_State 

 

5.3.2 Model for Music Selection Tasks 

A simulation model was developed to predict the time for drivers to select music 

while driving.  Three methods were explored: finding the song directly, using the artist, 

or using the album name to find the songs (Figure 5-9). Keep in mind that a task is 

defined as a goal and a method to achieve that goal.  As these three methods are different, 

they are also three different types of tasks be predicted - searching for a specific album or 
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for a specific artist, and searching for a specific song. A detailed explanation follows of 

each of the three subtasks. 

 
Figure 5-9.  Overview of Finding a Song 

 

Searching for a specific album 

The subtask to search for a specific album includes 1) the driver learns the album 

name and activates the system, 2) the driver utters the command (play album) and the 

album name, 3) the system processes the information provided by a driver, and 4) the 

system provides the feedback (Figure 5-10).  If errors occur, subjects needed to repeat the 

process to search again.   

 
Figure 5-10.  Overview of Model to Find a Specific Album 

 

Searching for a specific artist 

To search for a specific artist, the sequence is mostly the same, but the user utters 

“play artist” and the artist name (Figure 5-11).  
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Figure 5-11.  Overview of Model to Find a Specific Artist 

 

Searching a specific song 

The model to search for a song (Figure 5-12) is much more complex than searching 

for an artist or an album. In this task, subjects could only use the method of searching for 

an album/artist to narrow down the candidate song.  Searching for a song directly is not 

supported due to a device limitation (iPhone 4s). Subjects may use more than one method 

when they failed using any one.  Based on the data collected and shown in Chapter 4, 

subjects’ speech entries could be categorized to these six cases. 

1. Enter song name directly, try 1-3 times, and fail with errors as a result. 

2. Enter song name directly, try 1-3 times, fail, enter artist name, change to next 

track if needed, succeed and finish this task. 

3. Enter song name directly, try 1-3 times, fail, enter artist name, enter song name, 

fail again, enter song name, succeed and finish this task (this case was for only 

one subject). 

4. Enter album name, change to next track if needed, succeed and finish this task, 

enter artist name, change to next track if needed, succeed and finish this task 
 

Therefore, when subjects searched for a song by entering album/artist name in the 

beginning, they would not fail and may change the method. However, they could fail if 

they used the song title directly to search for it. 



 

 192

 

 Table 5-4 shows the parameters for this task based on the results described in chapter 

4.  These variables include the probability of the searching method, task completion 

frequency, and duration of each subtask (Table 5-4). 

 

Table 5-4. Variables for Simulation Model for the Music Selection Task while Driving 
Subtask Predicted Equations or Distribution (times in seconds) 

Probability of searching method Selection song - Song: 8.33%, Artist: 46.88%, and Artist: 44.79%  
Task completion frequency for 

each attempt 
 

S: Thinking and processing time  S_Think T = 5.323 + 2.131*Age 
S: Command and information 

utterance time 
S_Utt T = 0.341 + 0.137 * NSyllable + 0.165 * Word - 0.221 * 

Workload + 0.146*Age 
S: Thinking_2 S_Think_2 T = Lognormal (1.863, 0.551) 
S: Next Track S_NextTrack T = 0.429 + 0.131*Age + 0.092*Gender  

S: Number to say next track 
For Play Album: 1.55  0.83 
For Play Artist: 1.56  0.84 

M: Process 1 M_Proc1 T = 1.711 – 0.49*Correct_MS – 0.079*Age 

M: Feedback and music playing 

Chime T = 0.4 s 
Pause T = Normal (0.267, 0.024) 
M_Utt T = 0.559 + 0.091* NSyllable + 0.084 * NWord 
Music playing is song specific 

M: Process 2 
M_Proc2 T = Weibull (0.69, 0.148) 
Chime T = 0.4 s 
Music playing is song specific 
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Figure 5-12. Overview of Model to Find a Specific Song 
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5.4 Simulation Validation 

5.4.1 Destination Entry Tasks 

Based on ten runs of 2000 repetitions each, the mean predicted task completion time 

was 99.04  1.08s (Figure 5-13). The predicted task completion time from the simulation 

model was 24 s less than the mean task completion time (123.84  78.07 s) resulting from 

the simulator experiment, t(289, 0.05) = 5.376, p < 0.001), a difference of 24%. However, the 

variability of task completion time in the simulation was much less than that of the data 

from the experiment. 

 

 
Figure 5-13. Mean and Standard Errors of the Task Completion Time of Destination 

Entry Task from the Experiment and Simulation. 
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The difference may be because the probability of each error type was calculated using 

the total human turns, instead of the turns relevant to each piece of unique information 

requested by the system. For example, the type of the invalid information should only 

occurred in the event when the system ask for the house number, or the event that system 

ask for city name only and subjects said city and state name together.  Therefore, the 

probability for each type of error may be far less than the error occurrence resulted from 

the simulator study. Readjusting the probability for each type of error occurrence should 

improve the model. 

Another reason for the experiment-simulation difference was that the four trials in 

which the drivers gave up were also included in the analysis. The tasks completion times 

from those four trials were quite large (133.91 s, 388.36 s, 195.52 s, and 482.6 s), 

increasing the mean and standard error from the experiment. Also, there were two trials 

in which the drivers tried more than 5 times to enter the destinations without giving up. 

The times for these two trials were also quite large (492.95 s and 464.45 s), again 

increasing the experimental estimated of the mean and standard error. Excluding those 

six trials, the mean task completion time from the simulator experiment was 118.82  

67.65 s, reducing the mean total time difference between the experiment and the 

simulation to 16 %. 

Also the mean probability of each type of human errors used in the model is shown in 

Table 5-5. The only error estimate for which there was close agreement was the incorrect 

command error probability. The mean probability of the subject barge-in was predicted to 

occurrence was 0.36, which was almost triple than the results from simulator study. 
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Therefore, readjusting the error probability is necessary to reduce the difference between 

the simulation prediction and results from the experiment.  

Table  5-5. Comparison Mean of Total Error Predicted from Simulation Model with the 
Task Completion from Simulator Experiment Validation Group. 

 Barge-in Time Out 
Incomplete 

information 

Incorrect 

Command 

Model 0.355 0.517 0.014 0.046 

Simulator Study 0.122 0.212 0.073 0.044 

 

5.4.2 Music Selection Tasks 

After ten runs with 2500 repetitions per run, the mean predicted task completion time 

was 19.41 s. The task completion times to search for a specific album, a specific artist, 

and a specific song were 11.76, 12.13, and 24.35 s, respectively (Table 5-6, Figure 5-14, 

and 5-15). The pooled mean task completion time of selecting music resulted from the 

validation group in simulator experiment was 24.25 s, which is significantly greater than 

the predicted time by simulation model (t(159, 0.05) = 3.218, p = 0.002). 

Table 5-6. Comparison of Task Completion Time (s) Predicted from Simulation Model 
with the Task Completion from Simulator Experiment Validation Group. 

 Pooled Album Artist Song 

Model 19.41  0.08 11.76  0.11 12.13  0.06 24.35  0.14 

Experiment 24.25  18.49 14.71  8.33 14.99  12.09 30.11  19.43 
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Figure 5-14. Mean and Standard Errors of the Task Completion Time of Music Selection 

Task from the Experiment and Simulation. 

 

 
Figure 5-15. Mean and Standard Errors of the Task Completion Time of Music Selection 

Sub-Task from the Experiment and Simulation. 
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Although selecting a specific album or artist is an easy task, especially for less error-

prone speech systems, which took two turns to complete the task, there was a 20% 

difference in the task completion time between the model prediction and the simulator 

experiment results. There was also a 20% difference in the task completion time between 

the model prediction and the simulator results while selecting a specific song. The reason 

for the difference is that the subtask time was not included in the model as the duration 

between the speech interface’s feedback and the MP3 player starts to play the music is 

song specific. From the results in simulator study, this specific duration were ranged from 

1 s to 11s. Also, when drivers want to listen to a specific song, the time for MP3 player to 

search for and begin to play the song should not distract the driver. Therefore, it is 

reasonable to not include the duration of this subtask into the model   

Table 5-7 and Figure 5-16 shows the mean of the total errors, human errors, and 

machine errors from the simulation model and from simulator experiment. The results 

show that there was no difference of total errors between the model and simulator 

experiment, with only 0.1 time difference ((t(161, 0.05) = -0.881, p = 0.379). Also, there was 

no difference of human errors between the model prediction and simulator experiment 

(t(161, 0.05) = -0.326, p = 0.002). However, the predicted machine error from the model was 

2.5 times greater than the number of the simulation model (t(159, 0.05) = -2.242, p = 0.026). 

The disagreement could be because the probability of a machine error resulting from the 

model-built group in simulator experiment was greater than the validation group, which 

resulted in a greater frequency than the model. 
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Table 5-7. Comparison of Total Errors, Human Errors, and Machine Errors Predicted 
from Model with the Errors from Experiment 

 Total Human Error Machine Error 

Model 0.36  0.01 0.31  0.01 0.05 

Experiment 0.31  0.74 0.29  0.71 0.02  0.18 

 

 
Figure 5-16. Mean and Standard Errors of the number of Errors by Error Types for Music 

Selection Task from the Experiment and Simulation. 

 

5.5 Conclusion 

The goal of this study was to provide a model structure (the tasks users perform and 

their sequence for various error contingencies) and data (either distributions of task time 

or prediction of them from various tasks variables, as well as estimates of error 
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probabilities) for use with existing simulation software packages to predict user task 

performance with speech interfaces in motor vehicles. 

For destination entry tasks, there was a 24% difference in the task completion time 

compared with the results in the simulator experiment (99 s vs. 123 s). The major reason 

for the difference has to do with the probability of each type of human error calculated in 

the simulator study.  Adjustments to those error probabilities should lead to simulation 

task time estimates that more closely approximate the experimental data. 

For music selection, there was a 20% difference of the task completion time 

comparing with the results in the simulator experiment. The major reason was that the 

time for the MP3 player to play the song was not included in the simulation. Total errors 

and human errors from the model agreed with the results from the experiment. However, 

the machine errors predicted by the model were greater than those from experiment, 

which required adjustment. The duration of subtasks as well as the frequency of selection 

method, task completion frequency, and number of times required to say next track are 

the variables used to construct the model. The task completion time and number of errors  

can be predicted by this model and were validated by the results from simulator 

experiment. 

The U.S. DOT has just released revised design and assessment guidelines to help 

minimize in-vehicle distractions. Those guidelines concern visual-manual interfaces.  As 

was pointed out in Chapter 1, using a speech interface may potentially decrease the eyes-

off-road time, and research has demonstrated that increasing the duration of eyes-off-road 

time will increase the crash risk. However, as was noted earlier, even speech interfaces 

can have a visual display. To design a safe and easy to use speech interface, the results 
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from this research provide pioneering data, equations, and a discrete event simulation 

model that can predict task times and errors when using speech interfaces.  Using the 

information in this dissertation, the usability team can easily predict the task performance 

of a speech interface well before a first physical prototype is available, saving time, 

reducing development cost, and most importantly, enhancing the safety of the motoring 

public. 
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 CHAPTER 6

Discussion, Conclusions, and Future Work 

 

The goal of this research was to understand the interaction between the drivers and a 

speech interface and to provide a model structure (the tasks users perform and their 

sequence for various error contingencies) and data (either distributions of task time or 

predictions of them from various tasks variables, as well as estimates of error 

probabilities) for use with existing simulation software packages to predict user task 

performance with speech interfaces in motor vehicles.  The research necessary to 

accomplish that goal has been described and the model has been completed. Associated 

with each of the activities of this dissertation have been conclusions, summarized here. 

6.1 Summary of Findings 

6.1.1 Review of Human Factors Related Literature for Automotive 

Speech Interfaces 

1. There have been a number of research and development efforts to produce speech 

interfaces for motor vehicles, especially passenger cars. 
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2. Real world data on speech interface use is extremely limited, with the most 

important study being Winter’s research on typical utterance patterns (stereotypes) [26]. 

3. As summarized in Barón and Green [28], along with the review in this 

dissertation of more recent studies, speech interfaces can have many advantages over 

visual-manual interfaces, with the most common finding (eight studies out of ten in 

which it was examined), that speech interfaces lead to better lane keeping.  Also found, 

are improved peripheral detection time, and shorter brake reaction times, but these 

findings are based on one or two studies. 

4. In terms of task performance, whether speech interfaces take more or less time 

than visual-manual interfaces varies with the study and the speech interface.  In recently 

completed UMTRI studies, the issues are whether subjects know what to say, the quality 

of the speech recognizer, and the match between the subject’s understanding of when the 

system listens and when it actually listens.   

5. Finally, in terms of distraction related measures, speech interfaces led to fewer 

off-road glances. 

6. There are a number of SAE, ISO, and ITU standards that relate to speech 

interfaces.  However, the most significant standard, which is of concern to all automotive 

manufacturers and suppliers, are the U.S. DOT visual-manual guidelines, which specify 

test procedures for in-vehicle interfaces involving human subjects.  The “final” guidelines 

were released on April 23, 2013. 

7. Speech interfaces should be guided by principles from linguistics, over which 

there are many.  Probably the most useful are Grice’s Conversational Maxims [52]. 
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8. The speech literature also provides many ways to classify errors, with the most 

important distinctions being between lexical, syntactic, and semantic levels. 

9. Of the various ideas about how speech interfaces should be evaluated, the most 

significant comes from the PARADISE project [114].  The key idea is that there are 

multiple aspects to an evaluation, and they may need to be considered separately. 

 

6.1.2 Method Used by Drivers to Enter the Destination for Navigation 

and Music Selection for MP3 Players 

The purpose of the study described in Chapter 3 was to investigate for what purposes 

and how drivers used navigation devices and MP3 players. Thirty licensed drivers (16 F, 

14 M; 28 ± 10 years) from southeast Michigan (typical drivers) and eleven licensed 

drivers (1 F, 10 M; 39 ± 10 years) from the Nissan Technical Center in Farmington Hills, 

Michigan (auto experts) were recruited. 

1. Unexpectedly, subjects predominantly reported they used navigation systems to 

reach familiar destinations (typical drivers: 61%; auto experts: 89%).  

2. History was self-reported to be a very common entry method (typical drivers: 

30%; auto experts: 24%), which conflicted with data retrieved from navigation systems 

(both groups: <1%).  

3. Visiting “Friends’ Houses” (19%), “Home” (17%), “Shopping” (15%), and 

“Community” (13%) were the four top-ranked POI categories on the Favorite lists for 

typical drivers. “Home” (33%) was the most frequent POI category on the Favorite lists 

for auto experts.  
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4. Based on the history list, common trip purposes included Shopping and Visiting 

Friends’ Houses.  

5. The mean numbers of songs on their MP3 players were 420 for typical drivers and 

1,200 for auto experts.  

6. Of most interest are the three top-ranked methods the subjects used to search 

music, including "Song title," "Artist Name," and "Playlists."  

The results of this work provide the test scenarios for the next experiments, and as 

well as relevant variables and parameters for the simulation model to be built.  .    

6.1.3 Driver Interaction with Navigation and Music Selection System 

Using Speech in a Driving Simulator  

The purpose of the experiment described in Chapter 4 was to investigate how drivers 

interact with a speech interface for navigation and music selection. Specifically, the focus 

was on the duration of the subtasks for each system as well as the frequency of errors and 

error correction strategies.  

1. The task completion frequency in this study was 97% for destination entry tasks 

and 99% for music selection tasks, respectively. The task completion time for those trials 

without any errors was 77 s for destination entry tasks and 19 s for music selection tasks.  

2. The detailed steps and the equations or distributions used to predict the thinking 

and utterance times are described in the Table 4-55. For destination entry tasks, allowing 

approximately 0.5 s per word and 0.2 s per syllable for each utterance seems reasonable. 

As with the destination entry task, the predictive parameters for music selection 

utterances were again number of syllables, number of words, and gender, but the 
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combination that provided the best predictions, if there was one at all, varied with the 

subtask.  

3. For the first attempt, the most frequent method to enter an address was the street 

address method (88), followed by the address book method (7%). When errors occurred, 

subjects preferred to use the street address method to correct the error.  

4. There were 1,088 errors distributed among three groups: (1) information relevant, 

(2) system commands and entry method relevant, and (3) subjects’ knowledge related to 

the system for destination entry tasks. Time-out and barge-in accounted one-third of the 

human errors. The correction strategy that repeating the utterance/repeating the utterance 

slower was the most common method used to correct the errors. For music selection task, 

154 errors occurred. Barge-in and time out were also the two major errors for the music 

selection task. Repeat the utterance was the most frequently used method by the subjects 

to correct these two types of errors. Driving workload affected the destination entry tasks 

when the information given was correct and no errors occurred. The task completion time 

while the vehicle was parked was 6 s and 7 s longer than the time while driving in low 

and high workload conditions and the difference may be due to learning effects. This was 

not expected. 

6.1.4 Simulation Development and Validation 

The purpose of this research was to provide a model structure and data for use with an 

existing discrete-event simulation software package (IMPRINT) to predict drivers’ task 

performance with speech interfaces in motor vehicles. 
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For destination entry tasks, there was a 20% difference in the task completion time 

compared with the results in simulator experiment (99 s vs. 123 s). The major reason for 

the difference has to do with how the probability of each type of human error was 

calculated from the simulator experiment results. Adjustments to those error probabilities 

should lead to simulation task time estimates that more closely approximate the 

experimental data.  

For music selection, the predicted model agreed with the results from the simulator 

study for both task completion time and errors. The duration of subtasks, as well as the 

frequency of selection method, task completion frequency, and number of times required 

to say next track, are the variables used to construct the model. The task completion time 

and number of errors can be predicted using this model and was validated by the results 

from the simulator experiment. 

6.2 Discussion of the Findings  

6.2.1 Entry Method for Destination Entry and Music Selection Tasks  

Results from the survey study showed that street address (46%), POI (31%), and 

favorites/address book (18%) was the most frequently used method to enter the 

destination (Table 3-3). Although results from the simulator study agreed the three 

methods were ranked top three, there was major disagreement on the frequency of the use 

of each method, street address (88%), POI (5%), and favorites/address book (7%). There 

are several reasons to explain this difference. First, the subjects who participated in the 

simulator experiment may not have been familiar with the speech interface (only 8% of 
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subjects had experience using speech) and did not know some of the information had 

been pre-saved in the database, although subjects should learn this pre-saved information 

during the practice trials. Therefore, using street address to enter the destination at the 

first attempt was the easiest way to complete the task. Second, subjects may not 

remember the specific commands for the system, especially elderly subjects. Third, the 

command to use address book as entry method (Destination by Address Book) was listed 

on the second page of the three-page command lists. For convenience, subjects may not 

say "Next Page" to advance the command lists, which increases the total number of turns 

required to complete the task.  

Detailed information on entry methods emerged from this research. From the survey, 

Going home/visiting friends or relatives was the most frequent destination recorded in the 

history lists. Sixty-three percent of the destination entries involved the street address 

method, 33% involved the favorites/address book method and 1% of the time drivers 

used the history/previous destination method. From the simulator experiment, there were 

three trials related to subject's home and relatives/friends home address. The percentages 

using street address, favorites/address book, history/previous destination methods for the 

first attempt were 67%, 28%, and 5%, respectively. The results from both experiments 

were close. However, none of the subjects used Go Home as the entry method during the 

simulator experiment, which is not what manufacturers/designers or the author expected. 

Again, this may be because subjects may have had limited experience with speech 

interfaces and were not familiar with the structure of the system.  

When the destination was for shopping, there was a major disagreement between the 

survey and simulator experiment results. From the survey, the frequency of methods used 
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recorded from subjects was POI (55%) and street address (37%). However, in the 

simulator study POI served as the entry method 6% of the time whereas street address 

accounted 94%. The reason for these differences is unknown. 

The three most commonly used methods reported by subjects in the survey for music 

selection were song title, artist name and playlists. Due to a limitation of the device used 

in the simulator experiment, using song title or playlists to select a specific song was not 

available using speech. Therefore, no comparison can be made. 

6.2.2 Trials with Incorrect Information   

Providing incorrect information (the wrong city) was intended to simulate the 

situation where drivers were not familiar with the geographic area in which they were 

travelling and misunderstood the location of destination, which was the most difficult 

part of this experiment. Of particular interest was how drivers corrected these errors. This 

resulted in subjects giving up during the experiment in 7 of the 144 trials. Of those 

completed trials, street address was still the most frequent entry method subjects used to 

attempt the correction. Subjects saying "Go Back" to previous step to correct the 

information occurred 50% of the time, and "Change City /Enter City" 2.1% of the time.   

See Table 6-1. 

Table 6-1. Frequency of Method Used by Subjects at the Second Attempt for Destination 
Entry Task While the Given Information was Incorrect 

First Entry 
Method 

Second Entry Method 

Address POI  
Address 

Book 
Show Map 

Proceed without 
Entering House Number 

Address 119  6 2 2 4 
POI 8 3 0 0 0 

Total 127 9 2 2 4 
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6.2.3 Subtasks and Prediction Estimate  

Using command-based speech interface for destination entry task requires at least 15 

total turns to complete the task without any errors. Tables 4-55 and 4-56 show the 

predicted equations or distributions with their parameters for each subtask for destination 

entry and music selection tasks. Although only commands of up to four words were 

examined, the estimated utterance time for one syllable was 0.2 s, which was close to the 

estimated time of 0.17 s from John's study [87], estimated from customer speech over the 

phone. Further, the results showed elderly subjects required more time than young and 

middle-aged subjects. 

The time for subjects to think of the state, city, and house number followed similar 

distributions (Table 4-55). When these subtasks divided to elements, the times predicted 

from John's study were close to the mean time from the simulator experiment. 

Barge-in was a major source of human errors. The time that subjects say commands 

or phrases before the system can accept the signal followed a normal distribution with a 

mean of 0.19 s. Although true for human-human conversation, machines cannot track 

back to earlier parts of the conversation and continue the dialogue. Also, naïve subjects 

did not realize they could press the voice button again to interrupt the system’s prompt 

and say a command or phrase.    

6.2.4 Errors and Correction Strategies  

The error types proposed in this study were not mutually exclusive. For example, the 

error that subject did not enter the house number digit by digit can be treated as an 

information relevant error or subject lack of knowledge error. Conversation maxims and 
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Veronis' typology of errors for nature language dialogue may explain part of the types of 

errors [52, 54].  

A major source of human errors for the street name subtask was subjects failed to 

provide street suffixes (e.g., road) and /or direction of the road name (e.g., north). This 

type of error suggests that the design of a speech interface may violate the Grice’s 

conversation maxims for human-to-human conversation. This type of error can result in 

multiple feedback messages from the system or incorrect information, both of which 

require subjects to take extra turns to complete the subtask and increase the task 

completion time. The more frequent correction strategies were spelling the word (31%) 

when the machine feedback was incorrect or providing requested information (selecting 

the correct information from the lists; 30%) when the correct information was on the lists.  

Drivers may say numbers in many ways, such as one eight hundred for 1800, four 

thousand for 4000, or seventeen seventeen for 1717. However, the speech interface used 

in the simulator experiment cannot accept all of these variations, only digit by digit. 

Thus, the design of this system did not conform to expected human behavior. Although 

from a designer standpoint this design may reduce the chance of a recognition error 

occurring, it resulted in the increase of human error in this study. Also, subjects may 

think the given information was incorrect and change the city information, resulting in 

the increased task completion time. The major correction strategies used by subjects were 

rephrase (36%), repeat the utterance (17%), and say the command go back to rephrase the 

utterance (15%).  
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6.2.5 Simulation Predictions 

The difference in the task completion time predicted by the simulation model for 

destination entry task model was 20% from the time resulted in the simulator study. The 

estimated duration for a subject to utter a syllable was close to the results in prior 

research. The major reason for the difference has to do with the probability of each type 

of human error calculated in simulator experiment. There were only three types of 

common human errors that occurred - barge-in, time out, and stammer the phrases or 

commands. The remaining types of errors were unique to subtasks. For example, subjects 

provided invalid format of information only occurred when the system asked for the 

house number, or when the system asked for only the city name, but subjects said both 

the city and state name. Some command-related errors, such as destination by address 

book, or previous destination should not occur when the system asks for city, state, street, 

and house number. Therefore, the probability used to construct the model may not reflect 

the true values in the simulator study. 

Also, it was assumed that the probability of a method was selected for each attempt 

was not affected by the method selected for the previous attempt. This assumption may 

conflict with the simulator experiment results. There were too many conditional 

probabilities to consider beyond the scope of this dissertation. Furthermore, there is a 

concern that using conditional probabilities would make the simulation model too 

complicated and too system-specific.  

Another issue that may affect the results was the address book method was not in the 

model for the non-residential address. The result was conflicted with the survey study 

that the address book method was ranked third as the method used to enter destination. In 
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the simulator experiment, non-residential addresses of trials were not saved to the 

favorite lists. Whether this factor affects the simulation model is unknown. 

The model for music selection predicts the task completion time quite well. The 

model did not include the duration between the speech interface’s feedback and when a 

MP3 player starts to play the music. The duration is song specific. The more steps 

subjects need to perform, the higher number of errors may occur. Also, searching the 

specific song using song title is not feasible by the device used in this study. This also 

conflicts with the results in the survey study that using song title to select music was the 

most frequently used method by subjects. 

However, one should be careful that the model may not predict performance with 

some currently manufactured systems. On the plus side, systems such as Ford SYNC, 

requires drivers to provide the information step by step, a method similar to the 

navigation system. 

6.2.6 Task Completion Time from the Simulator Experiment and Model 

Prediction 

From the simulator experiment and model prediction, the task completion times for 

destination entry task were 77 s (without any error) and 99 s (w/ or w/o errors). 

Comparing with the SAE Recommended Practice J2364, the task completion time from 

the simulator experiment and model prediction is five times greater than the guideline. 

However, the readers should keep in mind that SAE J2364 is intended for visual-manual 

interfaces, not for speech interfaces. Also, the driver’s eyes require looking at the visual-
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manual interface when operating these systems. Research has shown that the probability 

of a crash increases when the eyes-off-road duration is greater than 2 seconds [4].  

On the other hand, the driver can keep their eyes on the road with occasional glances 

at the system screen when operating the speech interface. Interesting, even though the 

navigation interfaces utilized speech, there were instances where drivers need to glance at 

a display to make selection (by line number). Table 4-10 shows the duration of each 

commands or phrases prompted by the speech system. Interestingly, machine prompts 

consumed almost two-thirds of the total task completion time for destination entry tasks. 

For example, entering a destination outside the current state using the street address 

method required at least 12 turns and about 48 s when there were no errors, excluding the 

machine processing time. Therefore, focusing on the absolute task completion time may 

not be appropriate as the total duration for driver’s input is far less.  

The long task completion time for the destination entry task may discourage drivers 

from using a speech interface for this task. Designers should focus on how to reduce the 

number of turns to complete the destination entry tasks and the machine prompt time.  

6.3 Comments on this Research 

6.3.1 Strengths 

1. This research was based on the methods commonly used to select destinations and 

select songs. 

2. The song database was created based on what drivers actually have. 
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3. The experiment to examine driver use of speech interfaces was conducted in a 

reasonably contemporary driving simulator and workload was varied.  This allows for 

careful experimental control of the test conditions. 

4. The utterance timing was extremely reliable. Data from analysts was double- and 

triple- checked. 

5. The speech interface used in the simulator experiment was a real system 

6. The model structure, task times, and task errors were based on data from real 

drivers in the simulation experiment.  

7. The model not only considers correct entries, but also how drivers deal with 

errors, both of their own making and due to system imperfections. 

8. The model predicts the task completion time for music selection as well as the 

destination entry tasks.  

6.3.2 Weaknesses 

1. Only the navigation system from Mobis/Hyundai was examined. Although the 

model structure for other systems may differ, predicted times for some subtasks still can 

be used. 

2. Learning played an important role in the simulator experiment, with the 

performance measure changing as a function of practice and driving conditions. More 

practice trials are needed. 

3. The research was conducted in a driving simulator, where conditions were well 

controlled, not on a real road where there are more variations. 
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6.4 Recommendations for Future Work 

6.4.1 Explore Drivers with the Experience in Using Speech Interfaces. 

Subjects recruited for survey and simulator studies were convenience samples. 

Subjects were recruited on a first come first serve basis until the target number was 

reached for each age-gender group. This approach is typically used for human factors 

studies. However, only 8% of these subjects recruited for both studies had experience 

with using the speech interface of a navigation system. Had there been significant 

funding to recruit and pay subjects, a more experienced group of subjects could have 

been recruited. The simulation model built based on the results from these two 

experiments is most appropriate for drivers who are naïve to speech interfaces. Also, 

naïve drivers may not have the knowledge on the structure of the speech system as well 

or the pre-determined commands results, which may alter the frequency of each type of 

error.  Studies with more experienced speech interface users will hopefully enable a 

better understanding of the human-speech system interactions.  

6.4.2 Investigate The Possibility of Developing Keystroke-Level Like 

Models from Empirical Data for Command-Based Speech Interface.  

The sum of the times for the subtasks for subjects to think of the state, city, and house 

number from the simulator experiment were close to the data from John [87]. Future 

investigations should consider other subtasks and they should be included in the 

simulation model to broaden the tasks covered. These data should be incorporated into a 

future draft of SAE Recommended Practice J2365. 
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6.4.3 Expand The Simulation Model Built for One Typical Command-

Based Speech System to General Command-Based Interface.  

As the auto manufacturers were unwilling to provide a speech system for these 

experiments, this simulation model is limited to represent the Mobis/Hyundai system for 

navigation and iPhone with Siri application for music selection. Although, the method to 

find a specific song by song title was included, the probability to successfully select the 

correct song was 0, which is not true in the Ford SYNC system. Exploring other in-

vehicle speech systems will allow modeling tasks for other automotive products. 

6.4.4 Explore The Systems to Natural Language Speech System.   

Without any errors, taking 15 total turns with mean time of 77 s to complete a 

destination entry task is long and may not always be acceptable by drivers. Although 

command based speech interfaces in motor vehicles will be in production for some time 

in the future, future generation systems will use natural language speech.  They have the 

potential to further reduce the task completion time. The variables and equations 

provided in this research coupling an experiment on how drivers interact with the natural 

language system can be used for simulation to predict the driver performance. 
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6.4.5 Conduct an On Road Experiment to Validate the Predicted 

Subtasks Time from The Simulator Study. 

As suggested earlier, an on the road experiment is a logical next step. It is unknown 

who will fund it or when, but such an experiment could cost $200,000 to $300,000 

assuming an instrumented test vehicle is available and a manufacturer is willing to 

provide a speech interface. Given this cost, the most likely sponsor is NSF, not an auto 

manufacturer or supplier.   

Also, a surprising challenge is obtaining a speech interface. The auto manufacturers 

were not willing to provide a speech interface for this dissertation, but Mobis, a supplier, 

was in part because of the extraordinarily good relations the University has with Mobis. 

This challenge was a combination of the manufacturers not having an established effort 

to evaluate speech interfaces outside their organization, a lack of standalone systems that 

were available, and a concern that the research would find problems with their systems 

and publicize the problems. The argument of getting hundreds of thousands of dollars of 

research for free was not sufficiently compelling. 

6.4.6 Validate The Error Categories, Type of Errors and Correction 

Strategies. 

It is hard to classify the type of error and correction strategies. For example, subjects 

may say the command go back and then repeat the same information. Should this be 

counted in using the command go back or repeat as correction method? Is there any 

linguistics theory or principle that can classify this situation due to a system limitation? 
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6.4.7 Revise The Probability of Types of Human Error Calculation.  

Although there was 20% difference between the predicted task completion time and 

the simulator experiment results, the probability of human error should be revised to 

provide more precise predictions. As a consequence, the variables used in the simulation 

construction will be more useful to the designers. 

6.4.8 Analyze The Workload Prediction Function Offered by IMPRINT. 

To provide more information to the designers or usability evaluation professionals, 

the predictive model with the workload prediction function may show the peak workload 

when drivers are involved in performing a secondary task. By focusing on the worst cases 

for each subtask, the ease of use of the interface can be improved and distraction 

minimized.  

6.4.9 Develop More Efficient Methods to Reduce Speech Data 

The duration of each utterance and each response time was determined by listening to 

each interaction, looking at the intensity waveform on the screen, and manually 

determining when each utterance began an ended.  This process required a virtual army 

of data analysts (or at least a squad) and took a significant amount of time to complete. 

Computer tools to do this more quickly and economically are desired.  Aside from 

funding and equipment, this is the major roadblock to future research. 
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6.5 Conclusions 

In this research, the methods frequently used by drivers for destination entry and 

music selection tasks, the most frequently visited POI categories, records saved as their 

favorites in their navigation devices, the interactions between the drivers and the interface 

for destination entry and music selection tasks, the equations and distributions with their 

parameters to predict the driver’s utterance and the machine’s prompt, the types of errors 

with the probability of occurrence from the driver and the system, correction strategies 

with their probability used by drivers, and the models to predicted driver’s task 

performance for the destination entry and music selection tasks have been identified and 

developed. Some of the results have been published in peer-reviewed journal articles [17, 

25]. Other results will be published to peer-reviewed journal articles as well. These 

articles should assist automotive manufacturers and suppliers in understanding the key 

findings in this research and applying to both improvements in existing systems and 

designs of new systems. 

The simulation models for destination entry and music selection tasks proposed in 

this research were developed using the software package (IMPRINT), which is restricted 

to those researchers who work for the U.S. military or who have contracts and/or projects 

with the U.S. military. It may not ne the best choice for the automotive industry. As 

mentioned earlier, these models require modifications (to improve the error probability 

estimates) and further validation (on the road) to improve the predictions of task 

performance. After those enhancements, the model could be implemented in other 

popular or easy accessed simulation applications used by academics or industry, such as 

ProModel (used by Industrial and Operations Engineering at the University of Michigan) 
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or Micro Saint SHARP (commercial package) and posted on the website at the University 

of Michigan Transportation Research Institute Driver Interface Group.  

 

  



 

 222

APPENDIX A 

Details Explanation and Code for Simulation 

 

This table provides task time for the task networks of destination entry tasks from 

Figure 5-2 to Figure 5-8. 

Table A-1. Task Description and Task Time of the Model for Destination Entry Task 
Task Description Task Time 

0 Model START Determine the path to residential 
or non-residential addresses. 

 

1 Residential A function that contains sub-
networks of tasks to enter the 
residential address. 

 

2 Non-Residential A function that contains sub-
networks of tasks to enter the 
non-residential address. 

 

1_5 Residential _Try_Count Determine the number of 
attempts. 

 

1_6 Personal_Method_Count_1 Determine the entry method for 
the first attempt for a residential 
address. 

 

1_7 Personal_Method_Count_2 Determine the entry method for 
the second attempt for a 
residential address. 

 

1_8 Personal_Method_Count_3 Determine the entry method for 
the third attempt for a residential 
address. 

 

1_9 Personal_Method_Count_4 Determine the entry method for 
the fourth attempt for a 
residential address. 

 

1_10 Personal_Method_Count_5 Determine the entry method for 
the fifth attempt for a residential 
address. 

 

1_11 Personal_Method_Count_6 Subjects give up the task and 
end the simulation. 

 

1_2 Street Address A function that contains sub-
networks of tasks using the 
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Street Address method 
1_3 Address Book A function that contains sub-

networks of tasks using the 
Address Book method 

 

1_4 Previous Destination A function that contains sub-
networks of tasks using the 
Previous Destination method 

 

1_2_1 M_CMD The system asks for commands 
from the user. M: Command 
Please. 

T = 0.347 + 0.284*NWord + 
Pause + Beep 

1_2_2 U_DestHelp The user utters the command for 
destination. U: Destination Help. 

Time out. T = Normal (7.12, 1.8) 
Normal Utterance. T = 0.136 + 
0.133*NSyllable + 0.082*Age + 
0.094*NWord 

1_2_19 M_DestHpCMD The system confirms the user’s 
utterance and asks for 
commands of entry method. M: 
Destination help. Command 
please. 

T = 0.347 + 0.284*NWord + 
Pause + Beep 

1_2_33 M_Resp_U_Timeout The system provides examples 
to the user. M: For example, say 
find nearest POI or say help at 
any time. 

T = 0.347 + 0.284*NWord + 
Pause + Beep 

1_2_20 U_FindAdd The user utters a command for 
the street address method. U: 
Find address. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_2_21 M_CityInfo The system confirms the user’s 
utterance and asks for the city 
name. M: Find Address. The 
city please. 

T = 0.347 + 0.284*NWord + 
Pause + Beep 

1_2_22 U_CMD_ChangeState The user says the command 
Change State when the 
destination is not same as the 
default state. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_2_18 M_StateInfo The system asks for the state 
name. M: Please enter the state 
name. 

T = 0.347 + 0.284*NWord + 
Pause + Beep 

1_2_23 U_StateName The user thinks of and utters the 
state name. 

T = Lognormal (-0.5, 0.49) - 
0.212 + 0.242*NSyllable + 
0.098*Age – 0.140*Gender 

1_2_24 M_State_MultiChoice The system provides several 
possible states and asks the user 
to choose the correct one. M: 
Please select the respective line 
or start spelling. 

T = 2.185 + 
0.89*MultipleChoice + 0.347 + 
0.284*NWord + Pause + Beep 

1_2_25 U_SelectState The user selects the correct state 
name. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_2_2 M_FirmState_CityInfo The system confirms the state 
name and asks for the city name. 
M: XXX. The city please. 

T = 2.185 + (0.117 + 
0.163*NSyllable + 
0.117*NWord) 

1_2_3 U_CityName The user thinks of and utters the 
city name. 

T = (Normal (0.91, 0.78)) + (- 
0.103 + 0.172*NSyllable + 
0.089* Age + 0.149*NWord) 

1_2_4 M_City_MultiChoice The system provides several 
possible cities and asks the user 
to choose the correct one. M: 

T = (2.241 + 0.95*MultiChoice) 
+ (0.211+ 0.212*NSyllable) + 
Pause + Beep 
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Please select the respective line 
or start spelling. 

1_2_5 U_SelectCity The user selects the correct city 
name 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_2_32 ForgotState_Dummy The user forgets to change state 
and goes back to the node of 
uttering the command Change 
State.  

 

1_2_29 U_City_Goback The user says the command Go 
Back/Correct to correct the error 
and reenters the city name 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_2_6 M_FirmCity_StreetInfo The system processes and 
confirms the city name, and asks 
for the street name. M: XXX. 
The street please. 

T = (2.441) + (0.448 + 
0.194*NSyllable + 
0.117*NWord) + (0.347 + 
0.284*NWord) + Pause + Beep 

1_2_7 U_StreetName The user thinks of and utters the 
street name. 

T = (Lognormal (0.03, 0.58)) + 
(0.041 + 0.459*NWord + 
0.188*Age – 0.103*Gender) 

1_2_8 M_Street_MultiChoice The system processes and 
provides several possible streets 
and asks the user to choose the 
correct one. M: Please select the 
respective line or start spelling. 

T = (2.772 + 
0.782*MultipleChoice) + 
(0.448+ 0.194*NSyllable) + 
Pause + Beep 

1_2_9 U_SelectStreet The user selects the correct 
street name. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_2_30 U_Street_Goback The user says the command Go 
Back/Correct to correct the error 
and reenter the street name. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_2_31 M_Street_EnterStreet The system asks the user to 
enter the street name. M: Sorry, 
what is the street? 

T = 0.347 + 0.284*NWord + 
Pause + Beep 

1_2_10 
M_ConfirmStreet_HouseInfo 

The system processes and 
confirms the street name and 
asks for house number. M: 
XXX. And house number or if 
you don’t know that, please say 
show map or start guidance. 

T = 2.772 + (0.448 + 
0.194*NSyllable + 0.3 + 0.347 + 
0.284*NWord) + Pause + Beep 

1_2_11 U_HouseNumb The user thinks of and utters the 
house number. 

T = (1/ Weibull (1.31, 2.42)) + (-
0.805 + 0.681*NWord + 
0.201*Age – 0.143*Workload – 
0.197*Gender) 

1_2_13 
M_FirmHouse_MapGuide 

The system processes and 
confirms house number and asks 
for choice of show map or start 
guidance. M: XXX. Show map 
or start guidance. 

T = (Weibull (0.37, 2.44)) + 
(0.169 + 0.533*NWord + 0.3 + 
0.347 + 0.284*NWord) + Pause 
+ Beep 

1_2_27 U_HouseN_Goback The user says the command Go 
Back/Correct to correct the error 
of the house number. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_2_28 M_AndHouseN The system processes and asks 
the user to enter the house 
number again. M: And house 
number or if you don’t know 
that, please say show map or 
start guidance. 

T = (0.169 + 0.533*NWord) + 
0.3 + (0.347 + 0.284*NWord) + 
Pause + Beep 

1_2_14 U_CMD_Guide The user utters the command. U: T = 0.136 + 0.133*NSyllable + 
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Start guidance. 0.082*Age + 0.094*NWord 
1_2_15 M_StartGuidance The system confirms the user’s 

utterance. M: Start guidance. 
T = (0.347 + 0.284*NWord) + 
Pause + Chime 

1_2_15 M_Guide_TimeoutBarge The system provides guidance 
when the user barges in or times 
out. M: Say show map, start 
guidance, or say help at any 
time. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_2_16 M_ProcRoute The system processes the route 
guidance. 

T = 3.182 + 7.936*Out_State 

1_2_17 M_RouteGuidance The system provides the route 
guidance. M: Please proceed to 
the highlighted route and then 
the route guidance will start. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_2_999 End End the simulation of the Street 
Address method and determine 
the next step. 

 

1_3_1 M_CMD The system asks for commands 
from the user. M: Command 
Please. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_3_2 U_DestHelp The user utters the command for 
the destination. U: Destination 
Help. 

Time out. T = Normal (7.12, 1.8) 
Normal Utterance. T = 0.136 + 
0.133*NSyllable + 0.082*Age + 
0.094*NWord 

1_3_3 M_DestHpCMD The system confirms the user’s 
utterance and asks for a 
command for the entry method. 
M: Destination help. Command 
please. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_3_19 M_IncorrectFeedback The system misrecognizes the 
user’s prompt and provides 
incorrect feedback. M: Find 
nearest Korean restaurant, line 
please. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_3_18 M_CMD_Example The system provides guidance 
when the user barges in or times 
out. M: You can say, for 
example, destination help or say 
help at any time. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_3_20 U_CMD_GoBack The user utters the command Go 
Back to renter the command.  

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_3_5 U_NextPage The user utters the command 
Next Page to find the command 
for address book method.  

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_3_18 M_Proc_NtPg The system processes and 
advances to next page. 

T = 0.142 + Beep 

1_3_5 U_AddressBook The user utters the command 
Destination by Address Book for 
the address book method.  

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_3_7 M_SelectUser The system processes and asks 
the user to select the pre-saved 
records. 

T = 0.4 + (0.347 + 
0.284*NWord) + Pause + Beep 

1_3_16 
M_AddressBook_Example 

The system provides guidance 
when the user barges in or times 
out. M: For example, say find 
nearest POI or say help at any 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 
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time. 
1_3_8 U_UserSelect The user selects the list of pre-

saved lists of users’ names.  
T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_3_9 M_SelectLine The system confirms and asks 
the user to select the pre-saved 
records. M: User X. Line please. 

T = 2.41 + (0.347 + 
0.284*NWord) + Pause + Beep 

1_3_10 U_LineSelect The user selects the list of pre-
saved records of destination.  

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_3_9 M_MapGuidance The system confirms and asks 
for a choice of show map or start 
guidance. M: XXX. Show map 
or start guidance.. 

T = 2.818 + (0.347 + 
0.284*NWord) + Pause + (0.347 
+ 0.284*NWord) + Pause + 
Beep 

1_3_12 U_StartGuide The user utters the command. U: 
Start guidance. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_3_13 M_StartGuidance The system confirms the user’s 
utterance. M: Start guidance. 

T = (0.347 + 0.284*NWord) + 
Pause + Chime 

1_3_17 M_Guide_TimeoutBarge The system provides guidance 
when the user barges in or times 
out. M: Say show map, start 
guidance, or say help at any 
time. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_3_14 M_ProcRoute The system processes the route 
guidance. 

T = 3.182 + 7.936*Out_State 

1_3_15 M_RouteGuidance The system provides the route 
guidance. M: Please proceed to 
the highlighted route and then 
the route guidance will start. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_3_999 End End the simulation of the 
Address Book method and 
determine the next step. 

 

1_4_1 M_CMD The system asks for commands 
from the user. M: Command 
Please. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_4_2 U_DestHelp The user utters the command for 
destination. U: Destination Help. 

Time out. T = Normal (7.12, 1.8) 
Normal Utterance. T = 0.136 + 
0.133*NSyllable + 0.082*Age + 
0.094*NWord 

1_4_3 M_DestHpCMD The system confirms the user’s 
utterance and asks for a 
command of entry method. M: 
Destination help. Command 
please. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_4_3 M_Resp_U_Timeout The system responds when the 
user times out. M: You can say, 
for example, destination help or 
say help at any time. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_4_5 U_PrevDest The user utters the command 
Previous Destination for the 
previous destination method.  

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_4_19 U_Error_Dummy Determine the user’s error types 
and the system’s responses.  

 

1_4_20 M_PrevDest_Example The system responds when the 
user times out. M: For example, 
say find nearest POI or say help 
at any time. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_4_21 M_DeactivateASR The system deactivates the ASR T = Normal (10.01, 0.5) 
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and the user reactivates the 
ASR. 

1_4_6 M_PrevDest_Line The system processes and asks 
the user to select the requested 
destination on the lists. 

T = 0.313 + (0.347 + 
0.284*NWord) + Pause + Beep 

1_4_7 U_NextPage The user utters the command 
next page to search for the 
requested destionation on the 
lists. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_4_8 M_PrevDes_Example The system responds when the 
user times out. M: For example, 
say line two, next page, help, 
repeat, or back. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_4_9 M_Proc_NtPg The system processes and 
advances to next page. 

T = 0.142 + Beep 

1_4_10 U_PrevDest_Select The user selects the requested 
destination on the lists. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_4_11 M_CMDMapGuidance The system confirms and asks 
for a choice of show map or start 
guidance. M: XXX. Show map 
or start guidance.. 

T = 2.818 + (0.347 + 
0.284*NWord) + Pause + (0.347 
+ 0.284*NWord) + Pause + 
Beep 

1_4_12 U_StartGuide The user utters the command. U: 
Start guidance. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

1_4_13 M_StartGuidance The system confirms the user’s 
utterance. M: Start guidance. 

T = (0.347 + 0.284*NWord) + 
Pause + Chime 

1_4_16 M_Guide_TimeoutBarge The system provides guidance 
when the user barges in or times 
out. M: Say show map, start 
guidance, or say help at any 
time. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_4_14 M_ProcRoute The system processes the route 
guidance. 

T = 3.182 + 7.936*Out_State 

1_4_15 M_RouteGuidance The system provides the route 
guidance. M: Please proceed to 
the highlighted route and then 
the route guidance will start. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

1_4_999 End End the simulation of the 
Previous Destination method 
and determine the next step. 

 

2_1_1 M_CMD The system asks for a command 
from the user. M: Command 
Please. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

2_1_2 U_DestHelp The user utters the command for 
the destination. U: Destination 
Help. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

2_1_3 M_DestHpCMD The system confirms the user’s 
utterance and asks for 
commands for the entry method. 
M: Destination help. Command 
please. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

2_1_4 U_CMD_POI The user utters the command for 
the POI method. U: Find nearest 
POI. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

2_1_5 M_CMDPOICat The system confirms the user’s 
utterance and asks for the POI 
category. M: Please select a POI 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 
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category. 
2_1_6 U_POICat The user utters the POI 

category. 
T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

2_1_7 M_CMDPOISubCat The system confirms the user’s 
utterance and asks for the POI 
subcategory. M: XXX. Please 
select a POI subcategory. 

T = 2.826 + (0.347 + 
0.284*NWord) + Pause + Beep 

2_1_12 U_NtPg_POISubCat The user utters the command 
Next Page to search for the 
requested destination on the POI 
subcategory. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

2_1_13 
M_Proc_NtPg_POISubCat 

The system processes the user’s 
utterance and advances to next 
pages of the POI subcategory. 

T = Normal (7.12, 1.8) 

2_1_14 U_CMD_GoBack The user utters the command Go 
Back to search for the requested 
destination on the POI 
subcategory. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

2_1_21 U_CMD_Cancel The user utters the command 
Cancel to restart the trial. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

2_1_6 U_POISubCat The user utters the POI 
subcategory. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

2_1_9 M_CMDLine The system confirms the user’s 
utterance and asks the user for 
the choice of POI subcategory. 
M: XXX. Line please. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

2_1_10 U_NtPg_Choice The user utters the command 
Next Page to search for the 
requested destination. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

2_1_11 M_ProcNtPg_Choice The system processes the user’s 
utterance and advances to next 
page. 

T = 0.142 + Beep 

2_1_10 U_LineNumb The user selects the requested 
destination. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

2_1_16 M_MapGuidance The system confirms and asks 
for a choice of showing map or 
starting guidance. M: XXX. 
Show map or start guidance.. 

T = 2.818 + (0.347 + 
0.284*NWord) + Pause + (0.347 
+ 0.284*NWord) + Pause + 
Beep 

2_1_17 U_CMD_Guide The user utters the command. U: 
Start guidance. 

T = 0.136 + 0.133*NSyllable + 
0.082*Age + 0.094*NWord 

2_1_18 M_StartGuidance The system confirms the user’s 
utterance. M: Start guidance. 

T = (0.347 + 0.284*NWord) + 
Pause + Chime 

2_1_23 M_Guide_TimeoutBarge The system provides guidance 
when the user barges in or times 
out. M: Say show map, start 
guidance, or say help at any 
time. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

2_1_19 M_ProcRoute The system processes the route 
guidance. 

T = 3.182 + 7.936*Out_State 

2_1_20 M_RouteGuidance The system provides the route 
guidance. M: Please proceed to 
the highlighted route and then 
the route guidance will start. 

T = (0.347 + 0.284*NWord) + 
Pause + Beep 

2_1_999 End End the simulation of the POI 
method and determine the next 
step. 
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The table provides transition probabilities for the task networks of destination entry 

tasks from Figure 5-2 to Figure 5-8. 

Table A-2. The Transition of Probabilities of Task Sequences for Destination Entry Tasks. 
Task Proceeding Task Following Task Probability 

0 Model STRAT  1_1 Residential 0.2500 
  1_2 Non-Residential 0.7500 
1_5 Residential_Try_Count 1_0 START 1_6 

Personal_Method_Count_1 
1st attempt 

  1_7 
Personal_Method_Count_2 

2nd attempt 

  1_8 
Personal_Method_Count_3 

3rd attempt 

  1_9 
Personal_Method_Count_4 

4th attempt 

  1_10 
Personal_Method_Count_5 

5th attempt 

  1_11 
Personal_Method_Count_6 

6th attempt 

1_6 
Personal_Method_Count_1 

1_5 
Residential_Try_Count 

1_2 Street Address 0.6250 

  1_3 Address Book 0.3056 
  1_4 Previous Destination 0.0694 
1_7 
Personal_Method_Count_2 

1_5 
Residential_Try_Count 

1_2 Street Address 0.2941 

  1_4 Previous Destination 0.7059 
1_8 
Personal_Method_Count_3 

1_5 
Residential_Try_Count 

1_2 Street Address 0.6000 

  1_3 Address Book 0.1000 
  1_4 Previous Destination 0.3000 
1_9 
Personal_Method_Count_4 

1_5 
Residential_Try_Count 

1_2 Street Address 0.5000 

  1_3 Address Book 0.5000 
1_10 
Personal_Method_Count_5 

1_5 
Residential_Try_Count 

1_2 Street Address 1.0000 

1_11 
Personal_Method_Count_6 

1_5 
Residential_Try_Count 

1_999 End 1.0000 

1_2_1 M_CMD 1_2_0 START 1_2_12 U_DestHelp 0.1035 
  1_2_20 U_FindAdd 0.8965 
1_2_12 U_DestHelp 1_2_1 M_CMD   
 1_2_33 

M_Resp_U_Timeout 
  

  1_2_19 M_DestHpCMD 0.9261 
  1_2_33 M_Resp_U_Timeout 0.0769 
1_2_21 M_CityInfo 1_2_20 U_FindAdd 1_2_3 U_CityName 0.8393 
  1_2_22 

U_CMD_ChangeState 
0.1607 

1_2_23 U_StateName 1_2_18 M_StateInfo 1_2_24 
M_State_MultiChoice 

0.6900 

  1_2_2 
M_FirmState_CityInfo 

0.3100 
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1_2_3 U_CityName 1_2_21 M_CityInfo   
 1_2_2 

M_FirmState_CityInfo 
  

  1_2_4 M_City_MultiChoice 0.8730 
  1_2_6 

M_FirmCity_StreetInfo 
0.1270 

1_2_4 
M_City_MultiChoice 

1_2_3 U_CityName 1_2_32 ForgotState_Dummy 0.0050 

  1_2_29_U_City_Goback 0.1000 
  1_2_5 U_SelectCity 0.8950 
1_2_29_U_City_Goback 1_2_4 

M_City_MultiChoice 
  

 1_2_6 

M_FirmCity_StreetInfo 

  

  1_2_3 U_CityName  
1_2_6 
M_FirmCity_StreetInfo 

1_2_3 U_CityName   

 1_2_5 U_SelectCity   
  1_2_29_U_City_Goback 0.1000 
  1_2_7 U_StreetName 0.9000 
1_2_7 U_StreetName 1_2_6 

M_FirmCity_StreetInfo 
  

 1_2_31 M_EnterStreet   
  1_2_8 

M_Street_MultiChoice 
0.6531 

  1_2_10 
M_ConfirmStreet_HouseInfo 

0.3469 

1_2_8 
M_Street_MultiChoice 

1_2_7 U_StreetName 1_2_9 U_SelectStreet 0.9000 

  1_2_30 U_Street_Goback 0.1000 
1_2_10 
M_ConfirmStreet_HouseIn
fo 

1_2_7 U_StreetName   

 1_2_9 U_SelectStreet   
  1_2_11 U_HouseNumb  
1_2_11 U_HouseNumb 1_2_10 

M_ConfirmStreet_HouseIn
fo 

  

 1_2_28 M_AndHouseN   
  1_2_13 

M_FirmHouse_MapGuide 
 

1_2_13 
M_FirmHouse_MapGuide 

1_2_11 U_HouseNumb 1_2_27 U_HouseN_GoBack 0.1300 

  1_2_14 U_CMD_Guide 0.8700 
1_2_14 U_CMD_Guide 1_2_13 

M_FirmHouse_MapGuide 
  

 1_2_26 
M_Guide_TimeoutBarge 

  

  1_2_26 
M_Guide_TimeoutBarge 

0.1600 

  1_2_15 M_StartGuide 0.8400 
1_2_999 END 1_2_17 M_RouteGuidance 1_5 Residential_Try_Count N=1, p = 

0.2273 
N=2, p = 



 

 231

0.4000 
  1_999 END N=1, p = 

0.7727 
N=2, p = 
0.6000 
N=3, p = 1 
N=4, p = 1 
N=5, P = 1 

1_3_1 M_CMD 1_3_0 START 1_3_2 U_DestHelp 0.6774 
  1_3_4 U_AddressBook 0.3226 
1_3_2 U_DestHelp 1_3_1 M_CMD   
 1_3_18 M_CMD_Example   
  1_3_18 M_CMD_Example 0.0476 
  1_3_19 

M_IncorrectFeedback 
0.0952 

  1_3_3 M_DestHpCMD 0.8572 
1_3_4 U_AddressBook 1_3_1 M_CMD   
 1_3_20 U_CMD_Goback   
 1_3_6 M_Proc_NtPg   
 1_3_16 

M_AddressBook_Example 

  

  1_3_7 M_SelectUser 0.9642 
  1_3_16 

M_AddressBook_Example 
0.0358 

1_3_12 U_StartGuide 1_3_11 M_MapGuidance   
 1_3_17 

M_Guide_TimeoutBargein 
  

  1_3_13 M_StartGuidance 0.9284 
  1_3_17 

M_Guide_TimeoutBargein 
0.0716 

1_3_999 1_3_15 M_RouteGuidance 1_5 Residential_Try_Count N=1, p = 
0.2273 
N=2, p = 
0.4000 

  1_999 END N=1, p = 
0.7727 
N=2, p = 
0.6000 
N=3, p = 1 
N=4, p = 1 
N=5, P = 1 

1_4_1 M_CMD 1_4_0 START   
 1_4_17 M_DeactivateASR   
  1_4_2 U_DestHelp 0.8462 
  1_4_5 U_PrevDest 0.1538 
1_4_2 U_DestHelp 1_4_1 M_CMD   
 1_4_18 M_CMD_Example   
  1_4_18 M_Resp_U_Timeout 0.0769 
  1_4_3 M_DestHpCMD 0.9231 
1_4_5 U_PrevDest 1_4_1 M_CMD   
 1_4_3 M_DestHpCMD   
 1_4_20 

M_PrevDest_Example 
  

  1_4_6 M_PrevDest_Line 0.8571 
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  1_4_19 U_Error_Dummy 0.1429 
1_4_19 U_Error_Dummy 1_4_5 U_PrevDest 1_4_20 

M_PrevDest_Example 

0.5000 

  1_4_17 M_DeactivateASR 0.5000 
1_4_6 M_PrevDest_Line 1_4_5 U_PrevDest 1_4_7 U_NextPage 0.9200 
  1_4_8 M_PrevDes_Example 0.0800 
1_4_7 U_NextPage 1_4_6 M_PrevDest_Line   
 1_4_8 

M_PrevDes_Example 
  

  1_4_8 M_PrevDes_Example 0.0800 
  1_4_9 M_Proc_NtPg 0.9200 
1_4_9 M_Proc_NtPg 1_4_7 U_NextPage 1_4_10 U_PrevDest_Select  
  1_4_7 U_NextPage  
1_4_12 U_StartGuide 1_4_13 M_MapGuidance   
 1_4_16 

M_Guide_TimeoutBargein 
  

  1_4_13 M_StartGuidance 0.7143 
  1_4_16 

M_Guide_TimeoutBargein 
0.2857 

1_4_999 1_4_15 M_RouteGuidance 1_5 Residential_Try_Count N=1, p = 
0.2000 
 

  1_999 END N=1, p = 
0.8000 
N=2, p = 1 
N=3, p = 1 
N=4, p = 1 
N=5, P = 1 

2_4 
NonResidential_Try_Count 

2_1 START 2_5 Public_Method_Count_1 1st attempt 

  2_6 Public_Method_Count_2 2nd attempt 
  2_7 Public_Method_Count_3 3rd attempt 
  2_8 Public_Method_Count_4 4th attempt 
  2_9 Public_Method_Count_5 5th attempt 
  2_10 

Public_Method_Count_6 
6th attempt 

2_5 
Public_Method_Count_1 

2_4 
NonResidential_Try_Coun
t 

2_1 Point of Interest 0.0636 

  2_2 Street Address 0.9338 
  2_17 Previous Destination 0.0026 
2_6 
Public_Method_Count_23 

2_4 
NonResidential_Try_Coun
t 

2_1 Point of Interest 0.1429 

  2_2 Street Address 0.8214 
  2_17 Previous Destination 0.0357 
2_7 
Public_Method_Count_3 

2_4 
NonResidential_Try_Coun
t 

2_1 Point of Interest 0.2857 

  2_2 Street Address 0.5714 
  2_17 Previous Destination 0.1429 
2_8 
Public_Method_Count_4 

2_4 
NonResidential_Try_Coun
t 

1_2 Street Address 1.0000 
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2_9 
Public_Method_Count_5 

2_4 
NonResidential_Try_Coun
t 

2_2 Street Address 1.0000 

2_10 
Public_Method_Count_6 

2_4 
NonResidential_Try_Coun
t 

2_999 End 1.0000 

2_1_1 M_CMD 2_1_0 START 2_1_2 U_DestHelp 0.0714 
  2_1_4 U_CMD_POI 0.8572 
  2_1_22 U_CMDPOICat 0.0714 
2_1_4 U_CMD_POI 2_1_1 M_CMD   
 2_1_3 M_DestHpCMD   
  2_1_5 M_CMD_POICat  
2_1_7 M_CMDPOISubCat 2_1_22 U_CMDPOICat   
 2_1_6 U_POICat   
 2_1_14 U_CMD_GoBack   
  2_1_12 U_NtPg_POISubCat 0.5000 
  2_1_8 U_POISubCat 0.5000 
2_1_12 
U_NtPg_POISubCat 

2_1_13 
M_Proc_NtPg_POISubVat 

  

 2_1_7 M_CMDPOISubCat   
  2_1_13 

M_Proc_NtPg_POISubVat 
 

2_1_13 
M_Proc_NtPg_POISubVat 

2_1_12 
U_NtPg_POISubCat 

2_1_12 U_NtPg_POISubCat 0.0600 

  2_1_8 U_POISubCat 0.9000 
  2_1_14 U_CMD_GoBack 0.0300 
  2_1_21 U_CMD_Cancel 0.0100 
2_1_14 U_CMD_GoBack 2_1_13 

M_Proc_NtPg_POISubVat 
2_1_7 M_CMDPOISubCat  

2_1_21 U_CMD_Cancel 2_1_13 
M_Proc_NtPg_POISubVat 

2_1_999 END  

2_1_8 U_POISubCat 2_1_7 M_CMDPOISubCat   
 2_1_13 

M_Proc_NtPg_POISubVat 
  

  2_1_9 M_CMDLine  
2_1_9 M_CMDLine 2_1_8 U_POISubCat 2_1_10 U_NtPg_Choice 0.9500 
  2_1_15 U_LineNumb 0.0500 
2_1_10 U_NtPg_Choice 2_1_9 M_CMDLine   
 2_1_11 ProcNtPg_Choice   
  2_1_11 ProcNtPg_Choice  
2_1_11 ProcNtPg_Choice 2_1_10 U_NtPg_Choice 2_1_10 U_NtPg_Choice 0.1000 
  2_1_15 U_LineNumb 0.9000 
2_1_15 U_LineNumb 2_1_9 M_CMDLine   
 2_1_11 ProcNtPg_Choice   
  2_1_16 M_MapGuide  
2_1_17 U_CMD_Guide 2_1_16 M_MapGuide   
 2_1_23 

M_Guide_TimeoutBarge 
  

  2_1_23 
M_Guide_TimeoutBarge 

0.1600 

  2_1_18 M_StartGuide 0.8400 
2_1_23 
M_Guide_TimeoutBarge 

2_1_17 U_CMD_Guide 2_1_17 U_CMD_Guide  

2_1_999 END 2_1_21 U_CMD_Cancel   
 1_4_15 M_RouteGuidance   
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  2_4 Residential_Try_Count N=1, p = 
0.7778 
N=2, p = 
0.7500 
N=3, 
p=0.7500 

  2_999 END N=1, p = 
0.2222 
N=2, p = 
0.2500 
N=3, p = 
0.2500 
N=4, p = 1 
N=5, P = 1 

 

The table provides task time for the task networks for music selection tasks from 

Figure 5-9 to Figure 5-12. 

Table A-3. Task Description and Task Time of the Model for Music Selection Task 
Task Description Task Time 

0 Model START Determine the path of the 
subtask. 

 

1 FindAlbum A function that contains sub-
networks of tasks to search for a 
specific album. 

 

2 FindArtist A function that contains sub-
networks of tasks to search for a 
specific artist. 

 

3 FindSongt A function that contains sub-
networks of tasks to search for a 
specific song. 

 

1_1 Alb_S_TnkUtt_T The user thinks of and utters the 
information to search for a 
specific album. 

Think time 
1st attempt T = 5.323 + 
2.131*Age  
else T = Lognormal (1.863, 
0.551) 
Utterance Time 
T = 0.341 + 0.137 * NSyllable + 
0.165 * Word - 0.221 * 
Workload + 0.146*Age 

1_4 Alb_M_Prompt_T The system processes and 
provides the feedback to the 
user. 

Process time 
T = 1.711 – 0.49*Correct_MS – 
0.079*Age 
Utterance Time 
T = Chime + Pause + (0.559 + 
0.091* NSyllable + 0.084 * 
NWord) 

2_1 Art_S_TnkUtt_T The user thinks of and utters a 
request to search for a specific 
artist. 

Think time 
1st attempt T = 5.323 + 
2.131*Age  
else T = Lognormal (1.863, 
0.551) 
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Utterance Time 
T = 0.341 + 0.137 * NSyllable + 
0.165 * Word - 0.221 * 
Workload + 0.146*Age 

2_4 Alb_M_Prompt_T The system processes and 
provides the feedback to the 
user. 

Process time 
T = 1.711 – 0.49*Correct_MS – 
0.079*Age 
Utterance Time 
T = Chime + Pause + (0.559 + 
0.091* NSyllable + 0.084 * 
NWord) 

3_0 START Determine the music selection 
method. 

 

3_1 SAlb_S_Thinking_T The user chooses the Album 
method to search a specific 
song. 

1st attempt T = 5.323 + 
2.131*Age  
else T = Lognormal (1.863, 
0.551) 

3_7 SAlb_S_Prompt_T The user utters the command 
and album name. 

T = 0.341 + 0.137 * NSyllable + 
0.165 * Word - 0.221 * 
Workload + 0.146*Age 

3_9 SAlb_M_ProcUtt_T The system processes the user’s 
utterance, provides the feedback 
to the user, and plays the music. 

Process time 
T = 1.711 – 0.49*Correct_MS – 
0.079*Age 
Utterance Time 
T = Chime + Pause + (0.559 + 
0.091* NSyllable + 0.084 * 
NWord) 

3_14 SAlb_M_Next_Proc The number of times that the 
user needs to say the command 
next track and machine 
processes the user’s utterance 
until finding the requested song. 

Think time 
T = Lognormal (1.863, 0.551) 
User Utterance Time 
T = 0.341 + 0.137 * NSyllable + 
0.165 * Word - 0.221 * 
Workload + 0.146*Age 
Machine Process time 
T = Weibull (0.69, 0.15) 

3_2 SArt_S_Thinking_T The user chooses the Artist 
method to search a song. 

1st attempt T = 5.323 + 
2.131*Age  
else T = Lognormal (1.863, 
0.551) 
 

3_11 SAlb_S_Prompt_T The user utters the command 
and artist name. 

T = 0.341 + 0.137 * NSyllable + 
0.165 * Word - 0.221 * 
Workload + 0.146*Age 

3_13 SAlb_M_ProcUtt_T The system processes the user’s 
utterance, provides the feedback 
to the user, and plays the music. 

Process time 
T = 1.711 – 0.49*Correct_MS – 
0.079*Age 
Utterance Time 
T = Chime + Pause + (0.559 + 
0.091* NSyllable + 0.084 * 
NWord) 

3_16 SAlb_M_Next_Proc The number of times that the 
user needs to say the command 
next track and machine 
processes the user’s utterance 
until finding the requested song 

Think time 
T = Lognormal (1.863, 0.551) 
User Utterance Time 
T = 0.341 + 0.137 * NSyllable + 
0.165 * Word - 0.221 * 
Workload + 0.146*Age 
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Machine Process time 
T = Weibull (0.69, 0.15) 

3_3 SSong_S_TnkUtt_T The user thinks of and utters the 
command phrase and song title 
to search for a specific song 
using the Song method. 

Think time 
1st attempt T = 5.323 + 
2.131*Age  
else T = Lognormal (1.863, 
0.551) 
Utterance Time 
T = 0.341 + 0.137 * NSyllable + 
0.165 * Word - 0.221 * 
Workload + 0.146*Age  

3_6 SSong_M_ProcUtt_T The system processes the user’s 
utterance and provides the 
feedback to the user. 

Process time 
T = 1.711 – 0.49*Correct_MS – 
0.079*Age 
Utterance Time 
T = Chime + Pause + (0.559 + 
0.091* NSyllable + 0.084 * 
NWord) 

3_17 SSong_Try 1 The 1st attempt that the user 
searches a specific song using 
the Song method. 

 

3_18 SSong_Try 2 The 2nd attempt that the user 
searches a specific song using 
the Song method. 

 

3_19 SSong_Try 3 The 3rd attempt that the user 
searches a specific song using 
the Song method. 

 

3_20 Song_Dummy The dummy node the user 
chooses the Song method to 
search a specific song. 

 

3_21 Art_Dummy The dummy node the user 
chooses the Artist method to 
search a specific song. 

 

3_22 Alb_Dummy The dummy node the user 
chooses the Album method to 
search a specific song. 

 

 

The table provides transition probabilities for the task networks of music selection 

tasks from Figure 5-9 to Figure 5-12. 

Table A-4. The Transition of Probabilities of Task Sequences for Music Selection Tasks 
Task Proceeding Task Following Task Probability 

0 Model STRAT  1FindAlbum 0.2 
  2 FindArtist 0.2 
  3 FindSong 0.6 
1_1 Alb_S_TnkUtt_T 1_0 START   
 1_4 Alb_M_Prompt_T   
  1_4 Alb_M_Prompt_T  
1_4 Alb_M_Prompt_T 1_1 Alb_S_TnkUtt_T 1_1 Alb_S_TnkUtt_T 1st attempt, p = 

0.1500 
2nd attempt, p = 
0.5000 
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  1_999 END 1st attempt, p = 
0.8500 
2nd attempt, p = 
0.500 
3rd attempt, p = 
1.000 

2_1 Art_S_TnkUtt_T 2_0 START   
 2_4 Art_M_Prompt_T   
  2_4 Alb_M_Prompt_T  
2_4 Art_M_Prompt_T 2_1 Art_S_TnkUtt_T 2_1 Art_S_TnkUtt_T 1st attempt, p = 

0.1200 
2nd attempt, p = 
0.500 

  2_999 END 1st attempt, p = 
0.8800 
2nd attempt, p = 
0.500 
3rd attempt, p = 
1.000 

3_0 START 0 Model START 3_1 SAlb_S_Thinking_T 0.4479 
  3_2 SArt_S_Thinking_T 0.4688 
  3_3 SSong_S_TnkUtt_T 0.0833 
3_1 SAlb_S_Thinking_T 3_0 START   
 3_9 SAlb_M_ProcUtt_T   
 3_14 

SAlb_M_Next_Proc 
  

 3_22 Alb_Dummy   
 3_13 

SAlb_M_ProcUtt_T 
  

 3_16 
SAlb_M_Next_Proc 

  

  3_7 SAlb_S_Prompt_T  
3_9 SAlb_M_ProcUtt_T 3_7 SAlb_S_Prompt_T 3_1 SAlb_S_Thinking_T Tactical path 
  3_14 

SAlb_M_Next_Proc 
Tactical path 

  3_2 SArt_S_Thinking_T Tactical path 
  3_999 END Tactical path 
3_14 
SAlb_M_Next_Proc 

3_9 SAlb_M_ProcUtt_T 3_14 
SAlb_M_Next_Proc 

Tactical path 

  3_1 SAlb_S_Thinking_T Tactical path 
  3_999 END Tactical path 
3_2 SArt_S_Thinking_T 3_0 START   
 3_9 SAlb_M_ProcUtt_T   
 3_13 

SAlb_M_ProcUtt_T 
  

 3_16 
SAlb_M_Next_Proc 

  

 3_21 Art_Dummy   
  3_11 SAlb_S_Prompt_T  
3_13 
SAlb_M_ProcUtt_T 

3_11 SAlb_S_Prompt_T 3_16 
SAlb_M_Next_Proc 

Tactical path 

  3_2 SArt_S_Thinking_T Tactical path 
  3_1 SAlb_S_Thinking_T Tactical path 
  3_999 END Tactical path 
3_16 3_13 3_16 Tactical path 
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SAlb_M_Next_Proc SAlb_M_ProcUtt_T SAlb_M_Next_Proc 
  3_2 SArt_S_Thinking_T Tactical path 
  3_1 SAlb_S_Thinking_T Tactical path 
  3_3 SSong_S_TnkUtt_T Tactical path 
  3_999 END Tactical path 
3_3 SSong_S_TnkUtt_T 3_0 START   
 3_16 

SAlb_M_Next_Proc 
  

 3_20 Song_Dummy   
  3_6 

SSong_M_ProcUtt_T 
1.0000 

3_6 
SSong_M_ProcUtt_T 

3_3 SSong_S_TnkUtt_T 3_17 SSong_Try 1 1st attempt 

  3_18 SSong_Try 2 2nd attempt 
  3_19 SSong_Try 3 3rd attempt 
3_17 SSong_Try 1 3_6 

SSong_M_ProcUtt_T 
3_20 Song_Dummy 0.2000 

  3_21 Art_Dummy 0.6000 
  3_22 Alb_Dummy 0.2000 
3_18 SSong_Try 2 3_6 

SSong_M_ProcUtt_T 
3_21 Art_Dummy 0.5000 

  3_22 Alb_Dummy 0.5000 
3_19 SSong_Try 3 3_6 

SSong_M_ProcUtt_T 
3_21 Art_Dummy 1.0000 

3_20 Song_Dummy 3_17 SSong_Try 1 3_3 SSong_S_TnkUtt_T 1.0000 
3_21 Art_Dummy 3_17 SSong_Try 1   
 3_18 SSong_Try 2   
 3_19 SSong_Try 3   
  3_2 SArt_S_Thinking_T 1.0000 
3_22 Alb_Dummy 3_17 SSong_Try 1   
 3_18 SSong_Try 2   
  3_1 SAlb_S_Thinking_T 1.0000 
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