
Reducing End-User Burden

in Everyday Data Organization

by

Li Qian

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2013

Doctoral Committee:

Professor Hosagrahar V. Jagadish, Co-Chair
Assistant Professor Michael J. Cafarella, Co-Chair
Assistant Professor Eytan Adar
Assistant Professor Kristen R. LeFevre
Assistant Professor Qiaozhu Mei

© Li Qian 2013

All Rights Reserved

To all the beloved.

ii

ACKNOWLEDGEMENTS

It has been a long journey. I could not have completed it without the incred-

ibly helpful guidance from my dear advisor, Professor H. V. Jagadish. His com-

prehensive knowledge of conducting great research, insightful vision towards

real-life problems, profound wisdom in advising his students and extremely

kind personality together make a lifetime treasure to me. It has been a true

privilege to be his student.

I would also like to sincerely thank my dissertation committee, Professor

H. V. Jagadish, Professor Michael J. Cafarella, Professor Kristen R. LeFevre,

Professor Eytan Adar and Professor Qiaozhu Mei, for all their time and effort

to help improve and refine my thesis. This dissertation would not be possible

without their careful reviews and valuable comments.

I am fortunate to have had two summer internships at IBM Almaden Re-

search Center. I would like to thank Lucian Popa, Mauricio A Hernandez and

Bogdan Alexe for being my great mentors and introducing me to the frontier

of industrial research and development. I would also like to thank Anna Wu,

Boduo Li, Congle Zhang, Di pan, Flo Wfi Rian, Hailiang Huang, Kun Hu, Liping

Peng, Mengdie Hu, Mengmeng Liu, Ming Ji, Mu Qiao, Teng Zhou, Wei Ning,

Xiao Zhang, Xide Lin, Yinan Li, Yuanyuan Tian, Yunyao Li, Zhuowei Bao and

Ziyang Liu, for sharing the passionate and memorable summer time with me.

iii

It has been an honor to be part of the University of Michigan Database

Group. I would like to thank my colleagues, Alex Roper, Allie Mazzia, Anna

Shaverdian, Bin Liu, Chun-Hung Hsiao, Dan Fabbri, Dolan Antenucci, Fei Li,

Fernando Farfan, Glenn Tarcea, Jing Zhang, Lujun Fang, Magesh Jayapandian,

Manish Singh, Matthew Burgess, Michael Anderson, Rajesh Bejugam and Zhe

Chen, for all the support and joy you have brought to me over these years.

I am lucky to have a wonderful group of friends in our CSE department and

the lovely city of Ann Arbor. Thank you Bangxi Hu, Caoxie Zhang, Fangjian Jin,

Fangshuo Zhao, Feng Qian, Gang Su, Hong Li, Huilin Chen, Huizhong Tan, Jie

Yu, Jing Zhang, Jinjing Yang, Jiying Zheng, Junxian Huang, Ken Ling, Lingfeng

Gao, Lisha Li, Mengyun Liu, Qiang Xu, Shuyi Li, Wen Chen, Xin Hu, Yang-

bing Lou, Yanqin Cui, Yi Li, Ying Yu, Yinying Zhang, Yudong Gao, Yunjing Xu,

Yuxiang Xie, Zhaoguang Wang, Zheyu Dong, Zhiyun Qian, Zhongni Tang and

Zhoutong Fu for sharing your memory with me during this long journey. Thank

my roommate Zhe Zhao, for correcting my unhealthy life style and introducing

me to the wonderful world of Kendo. Thank you Watanabi Sensi and Joe Sen-

si, for teaching me Kendo and training me to be both mentally and physically

stronger. Thank my old friends, Fan Ye, Linying He, Luping Shen, Mi Luo, Song

He, Ting Shen, Yu Chen, Zheda Chen and Zhengyu Tu for taking care of the

long friendship with me. Thank my unbelievably sweet kitties, Mayhem and

Mischief, for not grabbing my mouse during my work.

And above all, I would like to thank my parents, to whom I have owned too

much. Thank you for all your love, care, understanding, support and blessings.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Motivation . 2
1.1.1 Data Schema Design for End-Users 2
1.1.2 User-Friendly Data Migration . 4
1.1.3 User-Friendly Data Filtering . 5
1.1.4 Incremental Data Collection Maintenance 6

1.2 Contributions and Dissertation Outline . 6

II. CRIUS: User-Friendly Database Design . 10

2.1 Introduction . 11
2.1.1 Motivation . 11
2.1.2 Challenges . 14
2.1.3 Contributions . 16

2.2 CRIUS Design . 17
2.2.1 Interface Design . 17
2.2.2 Operator Design . 19

2.3 Span Table Algebra . 22
2.3.1 Basics . 23
2.3.2 Schema Update Operators . 24
2.3.3 Data Manipulation Operators . 28
2.3.4 Expressive Power Analysis . 28
2.3.5 Proofs . 29

2.4 Integrity-Based Guidance . 32
2.4.1 Inducing Initial FDs . 34
2.4.2 Maintaining FDs on Value Update 36
2.4.3 Extending IFDI to Nested FDs . 38
2.4.4 Maintaining NFDs on Schema Evolution 38

2.5 Relational Database Back-End . 39
2.5.1 Vertical Partitioning . 39

v

2.5.2 Upward and Downward Mappings 40
2.6 Downward Mapping . 40

2.6.1 Mapping IMPORT . 41
2.6.2 Mapping other operators . 43

2.7 Evaluation . 44
2.7.1 User Study on Schema Operations 44
2.7.2 User Study on Integrity-Based Guidance 47
2.7.3 Performance of IFDI . 49
2.7.4 Performance of Vertical Storage . 52

2.8 Conclusions . 55

III. MWeaver: Sample-Driven Schema Mapping 57

3.1 Introduction . 58
3.2 System Overview . 65
3.3 Sample Search . 67

3.3.1 Problem Formalization . 67
3.3.2 The Challenge and The Opportunity 69
3.3.3 Our Solution . 70
3.3.4 Definitions . 71
3.3.5 TPW Algorithm . 75
3.3.6 Soundness and Completeness . 81

3.4 TPW Algorithms . 82
3.4.1 Find Sample Occurrences . 82
3.4.2 Pairwise Mapping Path Generation 82
3.4.3 Pairwise Tuple path Creation . 84
3.4.4 Complete Tuple Path Construction 85

3.5 Proofs . 85
3.5.1 Soundness . 86
3.5.2 Completeness . 88

3.6 Sample Pruning . 89
3.7 Evaluation . 90

3.7.1 Implementation and Environment 92
3.7.2 Usability . 92
3.7.3 Performance . 97

3.8 Conclusions . 99

IV. Example-Driven Selection Condition Specification 102

4.1 Introduction . 103
4.2 Problem Formalization . 107
4.3 R-unit Representation . 111
4.4 Birthing a Representation . 116

4.4.1 Candidate Generation . 116
4.4.2 R-unit Covering . 119
4.4.3 Smart R-Cover Algorithm . 126
4.4.4 Optimized R-unit Covering . 127

4.5 R-unit Algebra . 127
4.5.1 R-unit Algebra Operators . 129
4.5.2 Expressive Power Analysis . 133

4.6 Evaluation . 135

vi

4.6.1 Birthing with Simulate Tasks . 136
4.6.2 Birthing with Synthetic Data . 139

4.7 Conclusions . 141

V. Incremental Information Integration . 142

5.1 Introduction . 143
5.2 Preliminaries . 150

5.2.1 Constructing Entities . 150
5.2.2 Fusing Additional Entities . 152

5.3 Problem Formalization . 153
5.4 A NAIVE Approach . 155
5.5 Chase and De-reference . 159

5.5.1 Chase . 159
5.5.2 De-reference . 161

5.6 Incremental Integration . 164
5.7 Optimizing De-Reference . 167

5.7.1 Reference Summary . 169
5.7.2 De-reference With Reference Summary 171
5.7.3 Maintain Reference Summary . 173

5.8 Evaluation . 175
5.8.1 Integration in Incremental Stages 176
5.8.2 Integration with Incremental Data 178

5.9 Conclusions and Future Work . 180

VI. Related Work . 182

6.1 Database Usability . 182
6.2 Personal Information Management . 182
6.3 End-User Programming . 183
6.4 Schema Design . 184
6.5 Schema Evolution . 184
6.6 Nested Relations . 185
6.7 Direct Manipulation . 185
6.8 Graph Specification on RDBMS . 186
6.9 Schema Matching and Mapping . 186
6.10Schema Mapping Design using Examples 187
6.11Debugging Schema Mappings using Examples 187
6.12Automatic Schema Matching . 188
6.13Interactive Information Integration . 188
6.14Query by Example . 189
6.15Database Keyword Search . 189
6.16HIL: A High-Level Integration Language . 190
6.17Pointer Navigation . 190
6.18Incremental View Maintenance and View Adaptation 191

VII. Conclusions . 193

BIBLIOGRAPHY .195

vii

LIST OF FIGURES

Figure

2.1 Example Address Books . 12

2.2 Screenshot of CRIUS . 18

2.3 Screenshot of Schema Evolution in CRIUS . 18

2.4 Address Book With Multiple Levels . 20

2.5 Address Book Schema Evolution . 24

2.6 Categorizing an Address Book . 26

2.7 The Set Attribute Lattice of Table 2.2 in Example II.17, and its evolution (as
depicted by the arrows) in Example II.18 . 35

2.8 Vertical Partitioning Example . 40

2.9 Time defining a schema with CRIUS vs. SSMS. 45

2.10 Time specifying an attribute transportation with CRIUS v.s. Nested Algebra GUI. 47

2.11 Time for data entry tasks, with guidance on and off 49

2.12 Number of key strokes and mouse clicks for data entry tasks, with and without
guidance . 50

2.13 Average time generating new FDs using naive approach and IFDI. 51

2.14 Average number of partition rows accessed when generating new FDs using
naive approach and IFDI. 52

2.15 Average time transporting an attribute in CRIUS vs. naive storage, for different
database scale . 54

2.16 Average data display time in CRIUS vs. the naive storage, for different database
scale . 55

3.1 A Comparison between the Match-Driven Approach and the Sample-Driven Ap-
proach . 59

viii

3.2 An Example Schema Mapping with The Question Mark Indicating a Join Path
Ambiguity. 61

3.3 A Screenshot of IBM InfoSphere Data Architect 63

3.4 A Screenshot of MWeaver. Left: The Input Spreadsheet. Right: The Expanded
List of Candidate Mappings. 63

3.5 The Source Schema and the Target Relation with Samples 68

3.6 The Schema Graph of the Running Example . 72

3.7 One Desired Mapping Path for the Running Example 73

3.8 One Tuple Path Supporting the Desired Mapping 75

3.9 The Tuple Path Weaving Algorithm TPW . 76

3.10 The overall time, keystrokes and mouse clicks for completing the mapping task
on Yahoo Movies and IMDb. D1 and D2 are database experts. N1-N8 are non-
technical users. 91

3.11 Task Schema Mappings: (a) Yahoo Movies, (b) IMDb. 93

3.12 Average Number of Candidate Mappings w.r.t. the Number of Simulated Sam-
ples. J: number of joins in each mapping. m: the target schema size. 96

3.13 Average Number of Tuple Paths Generated at Each Level in TPW. J: number of
joins in each mapping. m: the target schema size. 101

4.1 An Example Disjunct Relation (and an R-unit) . 112

4.2 An R-unit Representation . 114

4.3 An R-lattice in the Running Example . 118

4.4 A Example for R-unit Redundancy . 125

4.5 Examples of R-unit Algebra . 130

4.6 The average operation distance and execution time for birthing the initial condi-
tions with various sample size. 138

4.7 The overall execution time for birthing on a relation with five columns and vary-
ing row number. 140

4.8 The overall execution time for birthing on a relation with one thousand columns
and varying column number. 141

5.1 SEC Scenario: Alternative Integration Strategies . 145

ix

5.2 An Example Reference Summary . 171

5.3 Integration Times in SEC Integration Stages . 178

5.4 Integration Times in the Basic SEC Integration Stage, with Incremental Input Data . . . 179

x

LIST OF TABLES

Table

2.1 Span Table Operators . 23

2.2 Student Records . 34

3.1 The Average Number of Samples to Generate the Goal Mapping. 95

3.2 The Average Response Time for Searching and Pruning. 97

3.3 The Average Search Time for TPW and the Naive Algorithm. 98

3.4 Comparison between TPW and the Naive Algorithm. (MP=Mapping Path, T-
P=Tuple Path) . 99

5.1 Summary of SEC Integration Stage . 177

xi

ABSTRACT

Reducing End-User Burden in Everyday Data Organization

by
Li Qian

Chair: Hosagrahar V. Jagadish

As digital data permeates every aspect of our daily life, end-users find it

appealing to organize their everyday data electronically. In fact, end-users

are already used to managing their personal data such as contact books and

calendars in electronic devices. Meanwhile, the desire for organizing more

information into the computer is expanding for a broader group of users. For

example, a scientist may need to regularly manage a substantial amount of

science data on his desktop. Similarly, an online market investigator’s daily

task may be to collect data from various websites, in order to build a universal

data repository for later analysis.

However, to organize such everyday data is challenging for these end-users.

This is primarily because, end-users have limited knowledge about data schema,

while a good schema is key to data management tasks such as database de-

sign, data transformation and data integration. While the user is struggling

with schema in these tasks, various cognitive and operational burdens emerge.

xii

First of all, when designing her data collection, the user has the burden to ab-

stract her mental model of her real-life data into a reasonable database schema

design. Moreover, when incorporating external data sources (such as new web-

sites containing relevant data of interest), there is a burden to understand the

external data semantics as well as a burden to transform the data from those

sources into the user’s own data repository. Meanwhile, if the user wants to

filter the data, she has the burden to understand and specify the selection con-

dition. Finally, when existing sources are updated or additional sources are

added, there is a burden to understand these updates and fuse them into her

existing data collection.

This dissertation introduces various approaches to help the end-user re-

duce these burdens in organizing their everyday data. To ease the birthing

pain of creating new databases, the dissertation proposes a system with direct

manipulation interface and user-friendly operators for the end-user to easily

design and evolve her data schema. To facilitate incorporation of external da-

ta sources, a sample-driven schema mapping approach is introduced so that

the user can freely provide sample instances in her collection and the system

will automatically deduce the desired schema mapping from the external data

sources to her own repository. In a similar flavor, we propose an approach to

facilitate the user in specifying selection conditions via example data points

she wants to select. Finally, to help the user incorporate source data updates

into her own collection, the dissertation proposes a technique to automatically

update the integrated data according to external source change, by conducting

efficient incremental information integration.

xiii

CHAPTER I

Introduction

With booming information technology nowadays, digital data are permeat-

ing every aspect of our daily life. As a result, end-users are increasingly ex-

periencing the necessity of electronically storing, managing and maintaining

their personal data. Indeed, end-users are already accustomed to managing

their personal data such as contact books and calendars in their electronic

devices. Meanwhile, the desire for organizing more information into the com-

puter is expanding. For instance, a scientist may need to regularly manage a

great amount of science data on his desktop. Similarly, a web market inves-

tigator’s may desire to collect data from various websites to build a universal

data repository in her daily work.

While end-users are willing to electronically organize a large amount of ev-

eryday data, to do this is nontrivial for them. The bottleneck comes large-

ly from the fact that, end-users are lacking the expertise to deal with da-

ta schema, which is key to the state-of-the-art data management tasks such

as database design, data transformation and data integration. Indeed, deal-

ing with schema in these tasks poses several significant challenges to these

1

2

non-technical people. First of all, to mentally structure one’s everyday data

is already difficult for an end-user, let along to abstract this structure to a

reasonable database schema design. Second, in the presence of the need of

incorporating external data sources into existing data collection, the end-user

has to transform the external data into a format that is consistent with the ex-

isting collection, by either manually copying and pasting data or establishing

complicated schema mappings. Meanwhile, if the user wants to filter the data,

she has the burden to abstract and specify the selection condition. Finally, as

existing sources are updated and additional sources are added, the end-user

has to incrementally update her data collection in order to reflect the changes

on the source side. All these tasks introduce a great amount of cognitive and

operational burdens for the end-users who have little technical expertise.

1.1 Motivation

1.1.1 Data Schema Design for End-Users

As our daily lives are being increasingly digitalized, non-technical people

are discovering the necessity of storing, managing, accessing, and manipulat-

ing electronic data. In effect, we are seeing the masses, who lack technical

expertise, managing personal data without help from any consultants or DBAs.

Where the users’ data collection is a single list, such as a contact book

with a list of contacts, most users have no difficulty with the structure. In

fact, spreadsheets are still the most common data management application in

this case and offer abundant usability. However, a list may not be a universal

natural solution. Imagine, one of your friends purchased a new house in a

3

different address. Do you add a new column “second address” just for that

friend, or concatenate the new address with the old one in the same cell?

In fact, while the list provides a flat schema, the user’s mental data model

may be hierarchical. For instance, one user may like the design of a contact

book, where all the information are grouped by person identity. On the other

hand, another user may favor an address book, where personal information are

grouped by address so that the same family appear under one single address.

In these cases, spreadsheets become unsuitable and the users have to specify

their own ad-hoc data structure by other means.

This kind of challenge is not only for end-user with their simple data col-

lection, but may also arise from more technical scenarios. Nowadays a lot of

scientists have their science data digitalized. However, they are lacking the

expertise to organize these data in a professional way. For instance, the biolo-

gists using a molecule database may wish to transfer several protein properties

from the protein relation to the protein interaction relation for easy later anal-

ysis. But even a task as simple as this bottlenecks most biologists who do not

know how to design and evolve database schema.

Although there are many data management applications specialized for spe-

cific tasks and designed with appropriate schemas for a large class of users,

there will always be users who are not completely satisfied with what they can

get out of the box and desire something more. Even users who are initially

satisfied with an application may wish to enhance or customize it as their re-

quirements change. Indeed, the end-users need to flexibly create and evolve

data schema in an ad-hoc manner with a minimal burden placed on them. This

4

is extremely challenging for them given that they are not trained to abstract

their mental data model into a reasonable schema, with both performance and

extensibility implications.

1.1.2 User-Friendly Data Migration

Sometimes, rather than manually accumulate one’s data, an end-user would

like to leverage existing data sources. For instance, an online market investi-

gator may need to combine data from various online data sources to generate

her own integrated repository. However, those external data sources may not

be structured in the same way as the user expects to organize her own collec-

tion. Consequently, the user has to map the data transform external sources to

her expected integrated format.

A naive approach would be to copy and paste data manually from the ex-

ternal sources to the target collection. Obviously this is too effort-consuming

to be practical even for a few hundred data entries. Alternatively, one can

employ the well-studied schema mapping technique [14, 61, 63] to establish

the data transformation. However, the semantic and structural complexity of

a schema mapping is the major barrier to its user-friendly applications under

such circumstances.

Although a handful of mapping design systems have been developed, most

of these systems are based on a match-driven methodology. This requires the

user to have prior knowledge of both the source and target schemas as well

as in-depth mapping semantics, which renders it inappropriate for end-user

oriented schema mapping tasks. To facilitate the end-user to easily migrate

5

external data into her collection, it is desirable to have a new approach which

minimizes the cognitive and operational burden on the user side.

1.1.3 User-Friendly Data Filtering

When the user is either creating a view of his data or transforming the data

from one schema to another, it is highly likely that the user is not interested in

all pieces of data. For example, the online market investigator may only be in-

terested in several product categories within certain time windows. However,

the selection logic may be complicated in itself such that the end-user is not

able to directly specify it in formal languages, even if she precisely knows the

selection logic.

Although the user may specify the selection criteria via a traditional forms-

based interface, the interface may not be sufficient in cases where the com-

plexity of the selection logic the user desires exceeds the expressive power of

such an interface. On the other hand, without the aid from an abstract selec-

tion logic, the user would have to manually select all desired data points, which

is impractical if such data points are many. For instance, suppose the online

market investigator is trying to monitor the price of all electronic devices after

year 2010 and smart phones after 2012. The state-of-the-art forms-based inter-

face would fall in short since they typically do not support disjunction. On the

other hand, there may be thousands of such devices and smart phones, which

the user is unlikely to be able to manually label. To enable the end-users to

easily specify such kind of selection conditions, we need a selection framework

which offers sufficient expressiveness and facilitates complex selection logic

6

specification with as little manual burden as possible.

1.1.4 Incremental Data Collection Maintenance

After external data sources have been integrated, the user has a need to

maintain her collection in the face of external source changes. For example, for

the online market investigator, if the price information from a certain source

website is changed, this update should be promptly reflected in the user’s own

collection. Moreover, if she want to integrate relative price information from a

new website, the user has to seamlessly fuse these additional information into

her existing data repository.

In both cases, there is a need to regenerate the integrated data. Naively,

the user could re-execute the integration from everything again from scratch.

However, that may not only place a heavy operational burden on the user, but

also be extremely inefficient, given that the the incremental existing source

change or the new source data may be relatively small in size. Moreover, this

approach is not an option if the previous source data or the previous integra-

tion logic are no longer available. As a result, an incremental approach for

integrating the new input into the existing output is in need.

1.2 Contributions and Dissertation Outline

In order to help end-users abstract their mental data model into a reason-

able database schema design, this dissertation introduces a concept of “organ-

ic schema design”, in which the end-users create and refine the structure of

their data collection in a natural and casual style. During an organic schema

design process, the end-users may freely explore the schema design space with

7

just a little effort and stop at any schema when they are satisfied with the cur-

rent design.

To enable such organic evolution, this dissertation introduces a next-generation

spreadsheet interface, namely “Span Table”, to gather possibly complicated

everyday information into an integrated hierarchical view. On top of this span

table is a carefully designed algebra, which abstracts common schema evolu-

tion procedures into primitive operators. Moreover, these operators are im-

plemented with direct manipulation that only involves simple point-and-clicks

that imply intuitive semantics.

In the presence of organic evolution, the data collection may be subject

to de-normalization. Consequently, user data entry may invoke unnecessary

repetition or harm data integrity. We propose a data entry guidance method,

which auto-completes duplicated values and reacts to possible input errors by

incrementally maintaining a set of functional dependencies.

This dissertation folds these ideas into a novel system called CRIUS. The

detailed design of CRIUS and its evaluation can be found in Chapter II.

To render schema mapping democratic, this dissertation proposes a sample-

driven approach that enables relatively unsophisticated end-users to easily

construct their own data repository from external sources. Using this ap-

proach, an end-user may freely provide sample instances in her target data

collection, and the system will automatically elicit the mappings that transfor-

m the source database into the partially-defined target. As the user provides

more and more information, the system returns increasingly better estimates

of the desired mapping.

8

To implement the sample-driven approach, the thesis starts from a single flat

target table, and restricts the mapping family to be project-join SQL queries.

Under these initial assumptions, the thesis develops an efficient sample search

algorithm and shows that it can obtain provably correct results at interactive

speeds. Based on this algorithm, the thesis prototypes a sample-driven map-

ping system, MWeaver, which allows the average user to perform a practical

mapping task in about 1/5th the time needed for the traditional match-driven

tools. Chapter III presents a detailed description of the design, implementation

and evaluation of MWeaver.

While constructing selection logic from scratch and manually labeling all

desired data points are both hard, a small set of user-input examples at the be-

ginning of the specification procedure could produce a selection criteria close

enough to what the user desires. From there it is much easier for the user to

refine the selection logic and derive the desired selection logic.

Based on this observation, in this thesis we propose an approach named

example-driven selection condition specification. The approach works in two

phases. During the first phase, when the user is not confidant about direct-

ly specifying the selection condition from scratch, we ask the user to provide

some example data points she wants to see in the output. Based on these exam-

ples, we automatically derive an initial selection condition which will select the

user-input examples in additional to other data points the user likely desires.

Although the initial selection condition we derived may be close to the user-

desired selection condition, it is not guaranteed to be an exact match. While

providing more examples may provide better estimate of the desired selection

9

condition, the convergence is not guaranteed and the user may be burdened

to exhaustively provide examples. As a result, we propose a second phase,

during which the user may revise an expressive representation of the selection

condition via an algebra consisting of direct manipulation operators. This work

will be discussed in Chapter IV.

In order to enable user-friendly incremental information integration, we pro-

pose a two-phase scheme for information integration, and introduce an effi-

cient incremental integration approach based on this two-phase scheme. The

highlight of our approach is, as long as the intermediate integration results are

maintained, future incremental integration can be executed purely from previ-

ous intermediate results and the incremental new data. Even if the previous

input data is no longer available or the previous integration logic is missing,

we are still able to generate the same results as re-executing everything from

scratch, and with a greatly improved performance. This work will be described

in Chapter V.

CHAPTER II

CRIUS: User-Friendly Database Design

Non-technical users increasingly find it necessary to add structures to their

data. This gives rise to the need for database design. However, traditional

database design is deliberate and heavy-weight, requiring technical expertise

that everyday users may not possess. For this reason, we propose that non-

technical users who manage their everyday data should be able to create and

refine data structures in an ad-hoc way over time, thereby “organically" grow-

ing their schemas. For this purpose, we develop a spreadsheet-like direct ma-

nipulation interface. We show how integrity constraints can still provide value,

even in this scenario of frequent schema and data modifications. We also devel-

op a back-end database implementation to support this interface, with a design

that permits schema changes at a low cost.

We have folded these ideas into a system, called CRIUS, which supports a

nested data model and a graphical user interface. From the user’s perspective,

the chief advantages of CRIUS are its support for simple schema definition and

modification through an intuitive drag-and-drop interface, as well as its guid-

ance towards user data entry based on incrementally updated data integrity.

10

11

We have evaluated CRIUS by means of user studies and performance studies.

The user studies indicate that 1) CRIUS makes it much easier for users to de-

sign a database, as compared to state-of-the-art GUI database design tools, and

2) CRIUS makes user data entry more efficient and less error-prone. The per-

formance experiments show that 1) the incremental integrity update in CRIUS

is very efficient, making the data entry guidance applicable and 2) the back-end

database implementation in CRIUS significantly improves the performance of

schema update tasks, without a significant impact on other operations.

2.1 Introduction

2.1.1 Motivation

As digital data permeates into our daily lives, non-technical people are in-

creasingly discovering the necessity of storing, managing, accessing, and ma-

nipulating electronic data. In effect, we are seeing the masses, who lack tech-

nical expertise, managing personal and business data, without help from any

consultants or DBAs. For example, many scientists have a great amount of

science data digitalized. Similarly, an online market investigator may have

collected product information from various websites for later analysis.

Where the data is a single list, most users have no difficulty with the struc-

ture. But even with slightly more complex structures, there frequently are

choices to be made, with both performance and extensibility implications. In

fact, the need for schema specification is a major barrier to database use.

Due to their simplicity, spreadsheets are still the most common data man-

agement application used by people without technical training. By design,

12

Name City Address
Orlando Erie 2251 Elliot

Keith Erie 3207 Grady
(a) Simple Spreadsheet

City Name [Address]
Address

Erie Orlando 2251 Elliot
Erie Keith 3207 Grady

7943 Walnut
(b) Structured Spreadsheet

Figure 2.1: Example Address Books

spreadsheets implement an extremely simple data model, consisting of a single

flat table, with rows and columns. However, due to the increasing complexity

of personal and small-business data, users often find it necessary to augment

this basic data model with additional ad-hoc structure. Implicitly, these users

are defining schemas for their data.

Example II.1. Consider the basic task of maintaining a personal address book.

In the simplest case, this can be done using the basic data model of spread-

sheets, as shown in Figure 2.1(a). However, it is easy to imagine situations in

which the user will require more structure in order to manage her data. For

example, suppose that the contact named Keith purchases a second home. In

this case, the user is likely to capture this by defining some ad-hoc structure,

for example as shown in Figure 2.1(b).

The above example illustrates the challenge of allowing non-technical users

to define and evolve their schemas. One might argue that most data manage-

ment applications will be designed by professionals, who will construct appro-

priate schemas for a large class of users. Indeed, this may be sufficient in some

scenarios. However, there will always be users who are not completely satis-

fied with what they can get out of the box and desire something more. Even

users who are initially satisfied with an application may wish to enhance or cus-

13

tomize it as their requirements change. For instance, after the user has made

some international friends, she may wish to record the nationality for each of

her contacts. Ideally, the database should respond gracefully to changes like

this, in a way that places minimal burden on the user.

In this chapter, we study the issue of user-defined structure in data. How

can an end user, beginning with a simple spreadsheet, such as an address

book with just names and phone numbers, extend this “database" to include

more attributes and structure? This sort of organic “schema evolution" may

happen because of an intrinsic need to capture some additional information

(e.g., nationalities). It will also take place when the user comes upon the need

to represent some information that does not quite fit the current structure.

For example, when the user realizes that some of her contacts are married

couples, she may decide that it makes more sense to store one address per

family, rather than one address per person.

Traditional database design is deliberate – there is extensive gathering of

requirements, careful analysis, and methodical step-by-step design, all per-

formed by highly trained personnel. In contrast, the database “design” in our

scenario is organic – it is not carefully considered, and it is expected to be mod-

ified as new data reveals weaknesses in the current design or exposes assump-

tions that are now violated. If schema modification is possible at a reasonable

cost, this sort of organic schema growth is not a problem – rather it becomes

the desired style of design. But to accomplish this, schema modification must

be rendered easy and cheap.

Based on our experience, a spreadsheet-like nested-table may naturally sup-

14

port such organic schema growth for non-technical users. Observe, for exam-

ple, the propensity of non-technical users to define complex spreadsheets (e.g.,

using Microsoft Excel), rather than migrating their data to relational databas-

es, even those that are designed for personal and small-business use (e.g.,

Microsoft Access). We believe the reason for this is that a typical relational

database is too discrete for end-users to manipulate conveniently. Users have

to understand table schemas separately and learn the inter-table relationships.

In contrast, having the information of interest folded into a single spreadsheet-

like structure makes it much easier to comprehend.

While the users may enjoy the freedom of organically growing their schema,

we have to be aware that user-defined schemas are subject to denormalization.

Consequently, users have to explicitly deal with duplicated data entries, which

may easily produce errors violating integrity constraints. In this chapter, we al-

so study how to provide usable guidance towards data entry in such a freestyle

environment, by efficiently managing integrity constraints.

2.1.2 Challenges

In summary, our goal is to support organic schema creation and modification

using a natural spreadsheet-like interface, while ensuring efficient and effec-

tive data entry on this organic schema. To accomplish this, there are multiple

challenges to be addressed:

• Schema Update Specification: Specifying a schema update as in Exam-

ple II.1 is challenging with existing tools. For example, using conventional

spreadsheet software, it is impossible to arrive at a hierarchical schema such

15

as the one in Figure 2.1(b). Alternatively, using a relational DBMS, one has

to manually split the table and set up the cross-table relationships. This is

not easy for end-users, even with support from GUI tools. Instead, we would

like to support schema creation and modification via a direct manipulation

(“point-and-click”) interface.

• Data Migration: Once a new schema is specified, there is still a critical

task of migrating existing data to the new schema. If the schema is simply

augmented, this migration may be easy. However, if the schema structure is

changed (e.g, from allowing one address per contact to multiple addresses),

then one has to introduce a complex mapping in order to “fit” the existing

data into the new schema. Even if spreadsheet software supporting hier-

archical schema is provided, the user still has to manually copy data in a

cell-by-cell manner to perform such mappings. This process is both time-

consuming and error-prone.

• Data Entry: As a result of the denormalization due to organic schema growth,

data entry may become inefficient and error-prone. One may use integrity

constraints to assist in data entry. However, since users cannot understand

complex integrity constraints, and constraints are also subject to user up-

date, this cannot be done in a naive way. It other words, we have to con-

struct a positive feedback loop between data entry and constraint update in

the usability context, with a practical response time.

• Schema evolution Performance: Schema evolution is usually a heavy-

weight operation in traditional systems. IT organizations allow days to exe-

cute schema evolutions, since they plan them carefully in advance. However,

16

everyday users require a swift feedback when updating schema as their plan-

s are immediate and casual. Thus, we need to develop techniques to support

quick schema evolution without giving up other desirable features.

2.1.3 Contributions

The primary contribution of this work is the design of a novel system called

CRIUS. From the user’s perspective, the main benefit of CRIUS lies in the

user-friendly interface, which allows non-technical users to create and modify

the schemas associated with their data in an organic way. Rather than requir-

ing users to adjust data to the new schema in a cell-by-cell manner, we have

designed the UI so that each schema update requires only a single drag-and-

drop with the mouse. The details of this interface, addressing the specification

challenge, can be found in Section 2.2.1. The design of direct manipulation

operators on the interface, addressing the migration challenge, is covered in

Section 4.5.

To address the data entry challenge, we have designed a data entry guid-

ance feature, which auto-completes duplicated values and reacts to possible

input errors based on functional dependencies (FDs). To make this feature

practical, one has to break the performance bottleneck of repeatedly inducing

FDs using traditional algorithms. Thus, we propose the first incremental algo-

rithm for FD induction. How CRIUS assists data entry by FDs, and how these

FDs are incrementally computed are discussed in Section 2.4.

CRIUS uses a relational database as a natural back-end. Ideally, the storage

format should support efficient schema evolution, which has not conventionally

17

been a priority in relational databases. For this reason, we suggest a storage

format whereby nested relational tables are recursively, vertically partitioned

into flat relations. These implementation issues, as discussed in Section 2.5,

address the challenges of data migration and performance.

Finally, in Section 5.8, we describe the evaluation of our prototype system.

Through user studies, we have found that schema development is much easier

in CRIUS than using a GUI tool provided by Microsoft SQL Server Management

Studio 2008. The study also shows that the integrity-based guidance feature

does reduce typing effort and input errors. Our experiments demonstrate that

our incremental FD induction algorithm is much faster than traditional ap-

proaches, and the schema modification and data reconstruction performance

of CRIUS are reasonable.

2.2 CRIUS Design

2.2.1 Interface Design

The presentation layer of our system is based on a next-generation spread-

sheet, as described in the introduction. Information from multiple related “ta-

bles” is combined to present a cohesive nested representation, as shown in

Figure 2.2.

Conventional spreadsheets are not designed to handle complex schemas. If

a user wants to add more structure to her data, this must be done in an ad-hoc

way. Worse, spreadsheets only support cell-by-cell data modifications. As a

result, if the user wishes to modify her schema, this is a complex and error-

prone process that often consists of cell-, row-, and column- level copy and

18

paste operations.

Figure 2.2: Screenshot of CRIUS

(a) Importing StateName (b) Floating Person

Figure 2.3: Screenshot of Schema Evolution in CRIUS

In contrast, the CRIUS user interface supports easy schema creation and

modification through a simple drag-and-drop interface, as shown in Figure 2.2.

The shaded region at the top of the screen is the schema header, and the

region below it displays the data body. The user can modify the schema by

simply dragging a cell in the schema header using the mouse. For example,

Figure 2.3(a) shows a screenshot of a user dragging an attribute StateName

inward, and making it part of the sub-relation Address. (We refer to this oper-

ation as an IMPORT.) Conversely, the user can EXPORT StateName back to the

19

StateProvince relation in a similar way.

The user can also create new sub-relations by dragging attributes up and

down. Figure 2.3(b) shows an example where Person is dragged up to insert

a new intermediate level with only itself. Similarly, one can also drag it down,

nesting it to a new sub-relation. (We refer to these operations as FLOAT and

SINK, respectively.)

2.2.2 Operator Design

We refer to an instance of the spreadsheet in CRIUS as a span table. The

UI allows users to restructure the span table schema using drag-and-drop di-

rect manipulations (e.g., IMPORT, EXPORT, FLOAT, and SINK, as described

above), and to augment/diminish schema using point-and-clicks (adding/drop-

ping columns). It also supports data manipulation operations (inserting/delet-

ing tuples, updating cells). Collectively, we will refer to this set of operators as

the span table algebra. (A brief introduction to the span table operators can be

found in Appendix 2.3.) In this section, we introduce our key schema update

operators in the span table algebra, and compare the expressive power of the

algebra to the nested relational algebra.

IMPORT and EXPORT

Example II.2. Suppose the user has an address book span table as shown

in Figure 2.4(a), and wishes to associate Zipcode with Address rather than C-

ity. The CRIUS UI enables the user to do this by simply pressing the mouse

on Zipcode , and dragging it onto [Address]. The system then needs to exe-

cute the schema update and transform the nested relation to the one shown

20

[Person]
City Zipcode Name [Address]

Address

Detroit 48205 Peter 1023 Westwood Ave
Erie 48109 Orlando 2251 Elliot Avenue
Erie 48105 Keith 3207 S Grady Way

7943 Walnut Ave
(a) Address Book Before Evolution

[Person]
City Name [Address]

Zipcode Address

Detroit Peter 48205 1023 Westwood Ave
Orlando 48109 2251 Elliot Avenue

Erie Keith 48105 3207 S Grady Way
48105 7943 Walnut Ave

(b) Address Book After Evolution

Figure 2.4: Address Book With Multiple Levels

in 2.4(b). Readers familiar with nested relational algebra may consider an im-

plementation consisting of a series of nest and unnest: 1) unnest [Person], 2)

unnest [Address], 3) nest Zipcode, Name and Address, and 4) nest Zipcode

and Address. However, this would introduce a large amount of unnecessary

computation moving data from unrelated columns (e.g., Name and Address).

Moreover, this series of operations does not semantically conform to the user’s

intention of the simple drag-and-drop manipulation.

To overcome the problems with the traditional nested algebra in our sce-

nario, we introduce two new schema modification operators, namely IMPORT

and EXPORT. We set up some notation and then define the basic IMPORT and

EXPORT operators.

A nested relation N has schema expression S(N) and schema tree Tree(N).

S(N) is the flattened version of Tree(N) by a postorder traversal. For example,

S(N) for Fig. 2.4(a) is {City, Zipcode, {Name, {Address}}}. t[X] is a tuple

projection, where t is a nested relational tuple and X is a list of attributes.
⊔

21

is the relation union operation used in [87].

The IMPORT operator imports an atomic attribute into a nested relation.

Intuitively, it pushes down the atomic attribute to become a “child” of a sibling

group.

Definition II.3 (Basic Import Operator). Given a nested relation N with S(N) =

{AXP{Q}}, where A denotes a list of atomic attributes, X denotes a list of

relation-valued attributes, P denotes an atomic attribute being transported

and {Q} denotes the target relation-valued attribute, which consists of a list

of both atomic and relation-valued attributes, IMPORTP,{Q}(N) = N ′, where

S(N ′) = {AX{P,Q}} and N ′ is the set of all t′ for which there exists t ∈ N , such

that:

(1) t′[A] = t[A]

(2) ∀X in list X, t′[X] =
⊔
{t′′[X]|t′′ ∈ N ∧ t′′[A] = t[A]}

(3) t′[{P,Q}] = {t′′|∃t′′′ ∈ N, s.t. t′′[P] = t′′′[P] ∧ t′′[Q] ∈ t′′′[{Q}] ∧ t′′[A] = t′′′[A]}

According to this definition, the manipulation in Example II.2 can be execut-

ed in two imports: 1) IMPORTZipcode,{Name,{Address}} and 2) IMPORTZipcode,{Address}.

The EXPORT operator is the inverse of IMPORT. It raises an atomic attribute

from a deeper nested level to a shallower nested level and naturally maps

existing data to the new schema.

Definition II.4 (Basic Export Operator). Given a nested relation N with S(N) =

{AX{P,Q}}, where A denotes a list of atomic attributes, X denotes a list of

relation-valued attributes, and {P,Q}} denotes the source relation from which

the atomic attribute P will be extracted and inserted into the target relation

22

S(N), EXPORTP (N) = N ′, where S(N ′) = {AXP{Q}} and N ′ is the set of all

t′ for which there exists t ∈ N , such that:

(1) t′[A] = t[A]

(2) t′[X] = t[X]

(3) ∃t′′ ∈ t[{P,Q}]s.t.t′[P] = t′′[P]

(4) t′[{Q}] = {t′′[Q]|t′′ ∈ t[{P,Q}] ∧ t′′[P] = t′[P]}

For instance, executing EXPORTZipcode twice will bring the span table in 2.4(b)

back to the span table in 2.4(a).

In practice, our algebra extends IMPORT/EXPORT to span multiple schema

levels, which allows the user to import Zipcode from the root to Address in one

step. The algebra also includes schema update operators to create new sub-

relations (SINK/FLOAT) together with other data manipulation operators. We

will detail the span table algebra in the following section.

2.3 Span Table Algebra

In this section, we define the operators in the span table algebra. An infor-

mal description is in Table 2.1. The span table algebra differs from the nested

relational algebra in the following aspects. First, each span table operator is

naturally and directly supported by the UI, while the nested algebra is hard

to be implemented using direct manipulation. Second, the nested algebra is

designed mainly for structural query, while the span table algebra aims to per-

form schema evolution. For instance, columns can be added/dropped in the

span table algebra, but not in the nested algebra. Finally, data is static under

23

the nested algebra, but can be updated using span table operators. Such up-

date is non-trivial since it may change the table structure and affect further

schema evolution.

Operators Description
Import(A) Move A inward into a descendant-relation.
Export(A) Move A outward into an ancestor-relation.
Sink(A) Push A to create a new leaf relation.
Float(A) Lift A to create a new intermediate relation.

Add/Drop(A) Add/drop attribute A.
Insert/Remove/Update(T) Insert/remove/update a tuple T.

Table 2.1: Span Table Operators

2.3.1 Basics

We will assume the reader is familiar with the basic concepts of nested re-

lational algebra (e.g., nest and unnest) [26, 87, 97, 88]. In CRIUS, we chose to

adopt partitioned normal form (PNF) [87], which asserts functional dependen-

cies from the set of all the atomic attributes at each schema level, since it is

consistent with our need to preserve data integrity. We also adopt the schema

tree described in [97]. To summarize, each node in the schema tree represents

either an atomic attribute or a relation-valued attribute in the corresponding

nested relation. An edge from one node to another indicates that the parent

node contains the attribute represented by the child node. For example, the

schema updating process in Figures 2.4(a) and 2.4(b) can be expressed by a

schema tree evolution shown in Figure 2.5. We also define the schema level of

a certain relation to be the depth of its corresponding node in the schema tree,

with zero for the root.

24

Zipcode

Address

City

Root

[Person]

Name

[Address]

Zipcode Address

City

Root

[Person]

Name

[Address]

Figure 2.5: Address Book Schema Evolution

2.3.2 Schema Update Operators

The span table algebra has four schema restructuring operators: IMPORT,

EXPORT, SINK, and FLOAT. Each operator not only updates the schema but

also maps existing data to the updated schema.

• IMPORT: The basic IMPORT, as defined in Section 4.5, can only take place

at the root of a schema tree and can only push attributes down to a schema

level that is exactly one level deeper. These limitations must be lifted if

we are to support drag-and-drop driven organic schema modification. In

the following, we upgrade the basic IMPORT so that it is able to reach an

arbitrarily deep schema level starting from anywhere in the schema tree.

We denote the parent of a given attribute Q by Parent(Q). Parent(Root)

is null. We denote the ancestor and descendent of Q by Ancestor(Q) and

Descendent(Q), respectively. Both Ancestor(Root) and Descendent(Leaf) are

nulls. If T ∈ Descendent(L), we define Path(L, T) to be the ordered list of

schema nodes from L to T, excluding L and including T. Then, the full IMPORT

can be defined as below.

Definition II.5 (Import Operator). AssumeN is a nest-ed relation with schema

tree Tree(N). Let L = {A,X, P} and T be the schema nodes in Tree(N) such

25

that T ∈ Descendent(L) and T is relation-valued, then IMPORTP |L,T (N) =

N ′, wh-ere S(N ′) differs from S(N) by removing P from L and inserting it to

T . Also, N ′ is the result relation of the following operations: for each Q on

Path(L, T) following the order, on each sub relation with schema Parent(Q)

in N , execute IMPORTP,Q.

In practice, by observing some transitive features of the upgraded IMPORT

sequence, we can avoid repeated copying and merging, and thereby imple-

ment it cheaply compared to a literal implementation of Definition II.5.

• EXPORT: The basic EXPORT has been defined in Section 4.5. Now we

extend it to its full version similar to IMPORT. Due to space, we omit the full

definition and illustrate IMPORT and EXPORT by the following example.

Example II.6. Consider an address book in Figure 2.6(a). The user may call

EXPORT on State1 to augment categorizing information by state name. The

resulting relation is pictured in Figure 2.6(b), with the value of “Keith” dupli-

cated. Finally, the user may decide to categorize data only by State. So she

calls IMPORT on Name2, resulting in the final address book in Figure 2.6(c),

with the two “MI”s merged.

• SINK: IMPORT and EXPORT serve to transport atomic attributes across d-

ifferent levels of the schema tree. However, they do not create new schema

levels, as is normally done by NEST in traditional nested algebra. A tra-

ditional NEST operator combines multiple attributes into a nested relation.

This is difficult to do in a single drag-and-drop. A multi-step operation, with
1EXPORTState|{State,Address},Name
2IMPORTName|{Name,State,{Address}},{Address}

26

Name [Address]
State Address

Orlando MI 2251 Elliot Avenue
Keith MI 3207 S Grady Way

OH 7943 Walnut Ave
(a) Categorized by Name

Name State [Address]
Address

Orlando MI 2251 Elliot Avenue
Keith MI 3207 S Grady Way
Keith OH 7943 Walnut Ave

(b) Categorized by Name and State

State [Address]
Name Address

MI Orlando 2251 Elliot Avenue
Keith 3207 S Grady Way

OH Keith 7943 Walnut Ave
(c) Categorized by State

Figure 2.6: Categorizing an Address Book

selecting attributes first and then nesting and moving them, is much less

user-friendly. To solve this problem, we restrict the NEST operator to a s-

ingle attribute, and name it SINK to distinguish it from NEST. SINK is also

defined from the basic version.

Definition II.7 (Basic Sink Operator). Given a nested relation N with S(N) =

{AXP}, where A and X have the same meaning as before, and P denotes

the atomic attribute to be nested, SINKP (N) = N ′, where S(N ′) = {AX{P}}

and N ′ is the set of all t′ for which there exists t ∈ N , such that:

(1) t′[A] = t[A]

(2) t′[X] =
⊔
{t′′[X]|t′′ ∈ N ∧ t′′[A] = t[A]}

(3) t′[{P}] = {t′′[P]|t′′ ∈ N ∧ t′′[A] = t[A]}

Definition II.8 (Sink Operator). Assume N is a nested relation with schema

tree Tree(N). Let L = {A,X, P} be a certain schema node in Tree(N),

then SINKP |L(N) = N ′, where S(N ′) differs from S(N) by replacing L with

{A,X, {P}}. Also, N ′ is the result relation after executing SINKP on all sub

relations with schema L within N .

27

• FLOAT: Theoretically, IMPORT, EXPORT and SINK form an orthogonal and

complete (with respect to NEST and UNNEST in nested relational algebra)

set of operators. However, in some cases, the users may wish to create

a new schema level by sinking most of the attributes on the current level.

For the sake of usability, we propose another operator, namely FLOAT, to

complement SINK. FLOAT relatively lifts an atomic attribute up by sinking

all its siblings by one level.

Definition II.9 (Basic Float Operator). Given a nested relation N with S(N) =

{PQ}, where Q is a set of attributes, and P denotes the atomic attribute to

be floated, FLOATP (N) = N ′, where S(N ′) = {P{Q}} and N ′ is the set of all

t′ for which there exists t ∈ N , such that:

(1) t′[P] = t[P]

(2) t′[{Q}] = {t′′[Q]|t′′ ∈ N ∧ t′′[P] = t[P]}

Definition II.10 (Float Operator). AssumeN is a nested relation with schema

tree Tree(N). Let L = {A,X, P} be a certain schema node in Tree(N), then

FLOATP |L(N) = N ′, where S(N ′) differs from S(N) by replacing L with

{P,X, {A}}. Also, N ′ is the result relation after executing FLOATP on all

sub relations with schema L within N .

Note that FLOAT and SINK can be applied at any nesting level but move the

affected attribute by only one level. We do not extend to multi-level as we

did for IMPORT and EXPORT because multi-level FLOAT/SINK can result in

an intermediate sub relation with no atomic child, which violates PNF.

28

In addition to the four schema restructuring operators, the algebra also

includes operators to augment/diminish schema, such as adding/dropping/per-

muting columns. All these operators are restricted to a single schema level

and behave identically to their flat versions. In the interest of space, we skip

their formal definitions.

2.3.3 Data Manipulation Operators

Besides the schema update operators, three data manipulation operators,

namely INSERT/DELETE/UPDATE, are also provided with the algebra. These

are consistent with their traditional semantics except that i) all of them are

extended to the nested scenario so that manipulating data at arbitrary schema

level becomes feasible, and ii) insertion and deletion trivially guarantee foreign

key constraints in a cascading manner.

2.3.4 Expressive Power Analysis

Though nested relational algebra does not naturally lend itself to supporting

a direct manipulation interface, we show that the span table algebra and nest-

ed relational algebra are actually equivalent in expressive power given a fixed

set of universal attribute (recall that nested relational algebra cannot add/drop

attributes). To do this, all we have to show is that NEST and UNNEST can

both be expressed using the span table algebra, and vice versa. For simplicity,

we will restrict IMPORT and EXPORT to their basic versions in lemmas II.14

and II.15. The general case follows directly by induction.

The IMPORT and EXPORT operators can be expressed in terms of NEST

and UNNEST, as given by the following two lemmas. The SINK and FLOAT

29

operators are just restricted versions of NEST.

Lemma II.11. LetN be a relation with S(N) = {AXP{Q}}, then IMPORTP,{Q}(N) =

NESTP,{Q} · UNNEST{Q}(N).

Lemma II.12. LetN be a relation with S(N) = {AX{P,Q}}, then EXPORTP (N) =

NEST{Q} · UNNESTP,{Q}(N).

Also, we have the following theorem.

Theorem II.13. Any NEST or UNNEST can be expressed as a sequence of

span-algebra schema update operations.

Thus, we have not sacrificed expressiveness for usability; anything that can

be expressed using nested relational algebra can also be captured using the

direct manipulations supported by CRIUS. The proofs of the lemmas and the

theorem can be found in the following section.

2.3.5 Proofs

Lemma II.14. Let N be a nested relation with S(N) = {AXP{Q}}, then

IMPORTP,{Q}(N) = NESTP,{Q} · UNNEST{Q}(N).

Proof. LetN be a nested relation with S(N) = {AXP{Q}}, N ′ = UNNEST{Q}(N)

and N ′′ = NESTP,{Q}(N
′). According to definition,

UNNEST{Q}(N) = {t′|∃tt′ ∈ N s.t. t′[A] = tt′ [A]

∧ t′[P] = tt′ [P] ∧ t′[X] = tt′ [X] ∧ t′[Q] ∈ tt′ [{Q}]} (2.1)

where tt′ is the tuple in N with the same values at A ∪ P as t′ (and is thus

30

unique).

NESTP,{Q}(N
′) = {t′′|∃t′ ∈ N ′ s.t. t′′[A] = t′[A]

∧ t′′[X] =
⊔
{t′[X]|t′[A] = t′′[A]}

∧ t′′[{P,Q}] = {t′[P,Q]|t′[A] = t′′[A]}} (2.2)

Since for each t′ ∈ N ′, we have a tt′ ∈ N , ∃t′ ∈ N ′ always implies ∃tt′ ∈ N .

Furthermore, according to the first line in equation (1), t′[A] = tt′ [A]. Thus,

the first line in equation (2) can be translated to ∃tt′ ∈ N s.t. t′′[A] = tt′ [A].

Moreover, we define EV ,W to be the set of t′ which map to the same tt′, with

t′[A] = V ∧ t′[P] = W . Then, {t′|t′[A] = t′′[A]} can be classified into a group

of Et′′[A],W , each of which corresponds to a tt′ ∈ N with tt′ [P] = W . We

denote this group by Rt′′[A]. Now we can rewrite
⊔
{t′[X]|t′[A] = t′′[A]} as⊔

Rt′′[A]
{
⊔
{t′[X]|t′ ∈ Et′′[A],t′′[P]}}. According to (1), t′[X] are the same as long

as their values at A and P are the same, which is the same as that of their

corresponding tt′. Thus,
⊔
{t′[X]|t′ ∈ Et′′[A],t′′[P]} = tt′ [X]. So the second line in

(2) can be translated to t′′[X] =
⊔

Rt′′[A]
{tt′ [X]} =

⊔
{tt′ [X]|tt′ [A] = t′′[A]}. Simi-

larly, {t′[P,Q]|t′[A] = t′′[A]} =
⋃

Rt′′[A]
{t′[P,Q]|t′ ∈ Et′′[A],t′′[P]}. According to (1),

t′[P] = tt′ [P] and t′[Q] ∈ tt′ [{Q}] for tt′ corresponding to each Et′′[A],t′′[P]. So,⋃
Rt′′[A]

{t′[P,Q]|t′ ∈ Et′′[A],t′′[P]} =
⋃

Rt′′[A]
{t′[P,Q]|t′[P] = tt′ [P] ∧ t′[Q] ∈ tt′ [{Q}]}.

In other words, the third line in (3) can be translated to t′′[{P,Q}] = {t′|∃t′′′ ∈

N, s.t. t′[P] = t′′′[P] ∧ t′[Q] ∈ t′′′[{Q}] ∧ t′[A] = t′′′[A]}. In all, by substituting (1)

31

into (2), we obtain the following equation:

NESTP,{Q} · UNNEST{Q}(N)

= {t′′|∃tt′ ∈ N s.t. t′′[A] = tt′ [A]

∧ t′′[X] =
⊔
{tt′ [X]|tt′ [A] = t′′[A]}

∧ t′′[{P,Q}] = {t′|∃t′′′ ∈ N, s.t. t′[P] = t′′′[P]

∧ t′[Q] ∈ t′′′[{Q}] ∧ t′[A] = t′′′[A]}} (2.3)

Which is identical to the definition of IMPORT.

Lemma II.15. Let N be a nested relation with S(N) = {AX{P,Q}}, then

EXPORTP (N) = NEST{Q} · UNNESTP,{Q}(N).

The proof is similar to the proof of Lemma II.14.

Theorem II.16. Any NEST or UNNEST can be expressed as a sequence of

span-algebra schema update operations.

Proof. Let N be a nested relation with schema S(N) = {Q, {A1, A2, ...,

An}}, and denote Gi = Ai, Ai+1, ...An, then according to Lemma II.15:

UNNEST{A1,A2,...,An}(N) = UNNESTGn·

NESTGn · UNNESTGn−1 · ... ·NESTG3·

UNNESTG2 ·NESTG2 · UNNESTG1(N)

= EXPORTAn · EXPORTAn−1 · ...

· EXPORTA2 · EXPORTA1(N) (2.4)

32

Similarly, for NEST, suppose the nested relation being operated on is N with

schema S(N) = {Q,A1, A2, ..., An}, using the same notation for G, we have:

NESTA1,A2,...,An(N) =

NESTG1 · UNNESTG2 · ... ·NESTGn−2·

UNNESTGn−1 ·NESTGn−1 · UNNESTGn(N) · SINKGn(N)

= IMPORTA1 · IMPORTA2 · ...

· IMPORTAn−2 · IMPORTAn−1(N) · SINKAn(N) (2.5)

2.4 Integrity-Based Guidance

Unlike conventional databases where data is carefully normalized according

to integrity constraints at design time, in our environment, non-technical users

are not able to normalize their data. This increases the user burden to enter

duplicated data, as well as the risk of erroneous data entry. To address this

problem, CRIUS provides an important set of features that we call integrity-

based guidance. The basic idea is to induce from the data and maintain a set

of “soft” functional dependencies.

These “soft” FDs are then used in two ways to assist in data entry. The first

is inductive completion, which auto-completes the determined attribute (the

righthand side) of an FD according to existing data. For instance, suppose we

have inferred the FD Name → Grade in Table 2.2. If the user were to enter a

new row for Peter, CRIUS would automatically suggest a grade A. In addition,

CRIUS uses these FDs for error prevention, by warning about possible data

33

entry errors. Following the above example, suppose the user has updated Leo’s

grade in row 3 from A to B. CRIUS will prompt the user that the update may

be a mistake since it violates the inferred FDs. The user may decide whether

to undo it or not. In case the user commits the update, CRIUS further asks the

user if he wants to: (i) also update the other Leo’s grade in row 4 to preserve

the FD or (ii) force the update. Option (ii) indicates that the previously induced

FD Name→ Grade is an artifact of the database instance and must be updated.

Since user updates may continuously invalidate induced FDs in our envi-

ronment, we need to frequently update them. While there is a large body of

literature on FD induction [51, 67, 79, 102], past solutions are too expensive to

be adopted in our scenario where the need to update FD is frequent. To reduce

performance cost, CRIUS instead incrementally maintains these FDs.

The incremental maintenance can be challenging. For example, if an FD

(e.g., Name→ Grade in Table 2.2) has been invalidated by a user update (e.g.,

the grade in tuple 2 from A to B), it is not enough to remove that FD from the

minimal set, since one or more weaker FDs (e.g., Name,Course→ Grade) may

still hold. These weaker FDs would not have been previously recorded in the

minimal set because they were dominated by the now violated FD. Similarly,

after a certain update, an FD may be dominated by some stronger FDs, and

become no longer minimal.

In this chapter, we develop the IFDI (Incremental FD Induction) algorithm.

To the best of our knowledge, this is the first algorithm to induce FDs incremen-

tally upon value updates. The algorithm works by maintaining an in-memory

lattice which contains all the information for FD induction, and incrementally

34

ID Name Course Grade
1 Peter Math A
2 Peter Physics A
3 Leo Math B
4 Leo Physics B
5 Jack Math A

Table 2.2: Student Records

updating part of the lattice. The algorithm differs from existing FD induction

algorithms in three ways: 1) Unlike traditional algorithms which fetch data

from the database, IFDI only accesses the database once. Subsequent up-

dates can be efficiently processed using the in-memory lattice; 2) IFDI needs

to access at most half of the lattice nodes; 3) On average, IFDI only needs to

update a very small portion of each lattice node. In this section, we describe

the initialization and maintenance phases of the IFDI algorithm separately. In

Section 5.8, we show that the cost of IFDI is significantly smaller than naive

approaches.

We also briefly describe how we extend IFDI to the nested scenarios and

prove that all the nested FDs are preserved under schema evolution when

an appropriate representation is chosen and transformed. Our user study in

Section 5.8 shows that the guidance feature based on these induced nested

FDs does improve usability.

2.4.1 Inducing Initial FDs

Before the incremental maintenance, we first construct a set of important

data structures and induce the initial set of FDs.

For flat relations, there is a body of literature on minimal FD induction [51,

67, 79]. As a starting point, we adopt the ideas of attribute partition and at-

35

tribute lattice introduced in [51]. An attribute partition on a set of attributes

X, denoted by ΠX , is a set of partition groups, where each group contains all

the tuples sharing the same values at X. For instance, in Table 2.2, Π{Name} =

Π{Name,Grade} = {{1, 2}, {3, 4}, {5}}. An FDX → Y holds iff ΠX = ΠX∪Y [51, 102].

(For instance, Name → Grade holds since Π{Name} = Π{Name,Grade}.) We strip

partitions by omitting partition groups of size one for simplicity (For instance,

Π{Name} = {{1, 2}, {3, 4}}). An attribute lattice is a lattice in which each n-

ode corresponds to an attribute set and each edge represents a possible FD.

An edge goes from node X to node Y iff Y contains X and exactly one more

attribute. The attribute lattice for Table 2.2 is shown in Figure 4.3. (For sim-

plicity, hereafter we abbreviate Name by N, Course by C and Grade by G.) The

following example demonstrates the initialization phase of the algorithm.

NCG

NC NG CG

CN G{{1,2},{3,4}}

{{1,3,5}, {2,4}}
{{1,2,5},{3,4}}

{}
{{1,5}}

{}

{{1,5},{2,3,4}}

{{1,5},{2,4}}

{{1,2},{3,4}}

{{3,4}}

{}

{Peter:{1,2},Leo{3,4},Jack:{5}} {Math:{1,3,5},Physics{2,4}} {A:{1,2,5},B:{3,4}}

{A:{1,5},B:{2,3,4}}

Name Course Grade

Figure 2.7: The Set Attribute Lattice of Table 2.2 in Example II.17, and its evolution (as depict-
ed by the arrows) in Example II.18

36

Example II.17. The algorithm reads the metadata and generates the stripped

partitions for each single attribute. The stripped partitions are then fed into

the first level of the lattice (shown at the top in Figure 4.3). The algorithm

processes the lattice in a top-down manner level by level, generating the child

partition by taking the product [51] of any two parent partitions (For instance.

ΠC · ΠG = ΠCG). The algorithm outputs an FD if its parent and child partitions

are identical. For Table 2.2, only two FDs are discovered: Name→ Grade (the

dash and dot line) and Name,Course → Grade (the solid line). However, since

the latter is dominated by the former, it is pruned by the algorithm.

2.4.2 Maintaining FDs on Value Update

Once the lattice and the partitions for each node are constructed, the main-

tenance phase of IFDI is performed for each value update. IFDI checks for

FD updates by traversing the lattice and comparing the partitions, in the same

way as the existing algorithms. However, IFDI effectively reduces the cost of

updating partitions and the number of lattice nodes that must be visited.

Efficient Partition Update: The partition product operation in the traditional

FD induction algorithm is a performance bottleneck since it executes a linear

scan on the partition, whose size is proportional to the number of tuples in the

relation. However, when updating a partition in the incremental case, one does

not need to visit most partition groups that are irrelevant to the updated cell.

Example II.18. After the Grade of Peter in row 2 in Table 2.2 is updated from

A to B, the lattice evolves as shown in Figure 4.3. One may use the traditional

algorithm to compute the new ΠCG from ΠC and the new ΠG: for each group

37

in ΠG, assign each tuple in it to the groups in ΠC and then collect them group-

wise as the new groups of ΠCG. Specifically, for {1, 5} in the new ΠG, 1 and

5 are assigned to the same group {1, 3, 5} of ΠC . This group thus generates

only one new group in ΠCG: {1, 5}. However, for {2, 3, 4} in ΠG, 3 is assigned

to the first group in ΠC , while 2,4 are assigned to the second. Thus this group

generates two new groups: {3} and {2, 4}. Collectively, the new ΠCG becomes

{1, 5}, {2, 4} (with {3} stripped).

IFDI handles the update of ΠCG in an incremental way. Instead of updating

every group in ΠCG, IFDI only focuses on two groups: the group to which tuple

2 previously belonged, and the group to which it will belong after the update.

IFDI removes the updated tuple from the old group and adds it into the new

group, with the other groups unchanged. In the example, {2} is a singleton

in the old ΠCG, so there is no need for removal. When assigning tuple 2 to its

new group, IFDI first retrieves the group containing 2 from ΠC ({2,4} in this

case), and then scans the group for any other tuple that has the same value

on the updated attribute as the modified cell (tuple 4 is returned here since

{2, 4} is in ΠC and tuple 4 also has a grade of B). IFDI then retrieves the group

containing tuple 4 from ΠCG (the stripped singleton {4}) and adds tuple 2 to

that group (forming a new group {2, 4}). Note that we have finished updating

ΠCG without even touching group {1, 5} or {3} in the old ΠCG.

Because IFDI maintains indexes for each partition and its groups, group

retrieval, insertion and removal cost constant time. The major cost comes

from scanning one group until a value-matched tuple is found. In the worst

case, this may be as large as the size of the group. However, we prove that for

38

many common cases, the cost is proportional to the number of distinct values

in each column and exponential to the number of columns.

Less Lattice Traversal: Another advantage of IFDI is that it only walks through

the lattice nodes that contain the modified attribute. This is because the other

nodes must be unchanged after the update. For instance, in Figure 4.3, IFDI

only visits the nodes within the ellipse, which saves half of the cost.

2.4.3 Extending IFDI to Nested FDs

In the nested scenario, [102] designed the first system for efficient discov-

ery of XML FDs by extending the algorithm proposed in [51, 67, 79]. In CRIUS,

we seamlessly integrate the flat-case IFDI with the discoverXFD algorithm

from [102] and propose the incremental nested FD induction algorithm. The

algorithm works recursively from the leaves to the root of the schema tree (see

Appendix 2.3.1) and builds NFDs from potential flat FDs. It is implemented in

CRIUS and studied empirically in Section 5.8.

2.4.4 Maintaining NFDs on Schema Evolution

Schema evolution may also affect Nested FDs: as the nested structure

changes, certain FDs may be invalidated or satisfied. Unlike value update,

the representation of NFDs largely affects its transformation on schema evolu-

tion. [46] proposed a NFD representation which can be either global or local.

We prove that: 1) each local NFD can be represented as an equivalent global

NFD and 2) each NFD is preserved on schema evolution, after a trivial trans-

formation. Detailed proofs are omitted due to space.

39

2.5 Relational Database Back-End

Storage management has been so carefully engineered for relational databas-

es that a flat relational storage manager is a natural back-end for a system such

as CRIUS. [31] has suggested a possibility to store nested relations using flat

tables, but a practical storage plan is left open. There is also excellent relat-

ed work on storing XML in relational databases, such as [89, 41]. However,

such work has traditionally focused on query performance, and has not placed

a high priority on the cost of schema evolution.

We extend column store [93, 42] ideas to nested relations and develop a

recursive vertical partitioning approach, which eliminates the need to ever

use ALTER TABLE when performing schema updates, delivering low-overhead

schema evolution. We implemented this on a row-major RDBMS, because col-

umn store requires considerable customization on hierarchical structuring. We

observe in our experiments that the storage format efficiently supports other

tasks (e.g., data display) that are common in our spreadsheet-like environment.

2.5.1 Vertical Partitioning

We represent a nested relation as a recursively vertically partitioned rela-

tional database. The vertical partitioning is standard. The recursion is the

result of the nesting – additional tables are required to link nested tuples with

their corresponding nesting tuples. For example, Figure 2.8 shows a nested

relation, and its decomposition, where table (b) links the IDs of nested and

nesting tuples. We also maintain a structure table to record how the decom-

posed relations are structured to represent the nested relation.

40

Figure 2.8: Vertical Partitioning Example

2.5.2 Upward and Downward Mappings

Using the vertically partitioned storage format, we further define a mapping

from the relational database to span tables (the upward mapping) and another

mapping of opposite direction (the downward mapping). The upward mapping

statically maps the relational database to a span table, according to the de-

composition described above, while the downward mapping dynamically maps

each span table operator to a sequence of manipulations on the underlying

relational database. More details can be found in Appendix 2.6.

2.6 Downward Mapping

We describe the downward mapping for IMPORT with a few key points here.

Other mappings are similar.

41

2.6.1 Mapping IMPORT

A multi-level IMPORT can be evaluated in two stages: (1) transporting

source column with value naively duplicated and (2) the merge operation,

which corresponds to
⊔

operator in PNF. The first stage is making the schema

change, and the second stage is adjusting the data to this changed schema.

Let Source denote the source attribute, and Target denote the target rela-

tion. According to the tree structure, we can obtain a unique ordered path

from P (Source) to Target. Let the relations on this path, excluding P (Source),

be {R1, R2...Rn}. Also, for any attribute A, denote its corresponding flat table

with Flat(A). Suppose S(Flat(Source)) = {ID,AS}. Then, the first stage can

be formalized by:

Flat(Source)← ΠID,AS
(ρY (Flat(Source)) ./Y.ID=Z.PID

ρZ(PID,ID)(ΠLi.P ID,Ln.CID

(./Li.CID=Li+1.P ID

{Li = Flat(Ri), Li+1 = Flat(Ri+1) : i = 1..n− 1}))) (2.6)

This formula finds the tuple relationship by joining all the linking tables

from source parent to target. It then joins the result with the original source

column, which is a value table, achieving the goal for replicating AS according

to tuple ID correspondence.

Also, the structure table has to be updated. However, the update is extreme-

ly simple in that we only need to update the parent relation of the source at-

42

tribute to the target relation, and do the obvious bookkeeping on the auxiliary

information.

For the second stage, a merge is applied recursively, on each relation merg-

ing all tuples whose set of atomic attributes at this schema level are the same.

This involves three steps: updating atomic values, updating the parent link

table, and updating the link tables for all relation-valued children.

We first define the ungrouped table, which is a join of parent link table and

all atomic value tables at current level. Suppose the set of atomic attributes in

current level are {R1, R2, ...Rn}, with S(Flat(Ri)) = {ID,Ai}. Also suppose the

parent relation of current level is Parent, then:

ungrouped(Parent)←

ΠPID,CID,A1,A2,...,An(ρY Flat(Parent)

(./Y.CID=Vi.ID {Vi = Flat(Ri)})) (2.7)

After merge, the corresponding table would be:

grouped(Parent)←

ungrouped(Parent) group by {PID,A1, A2, ..., An} (2.8)

If the size of ungrouped and grouped table is the same, than there is no

need to merge. Otherwise:

Flat(Ri) ← ΠCID,Ai
(grouped(Parent)) (2.9)

43

For i = 1..n, and:

Flat(Parent) ← ΠPID,CID(grouped(Parent)) (2.10)

The link tables of child relation-valued attributes are updated in a similar

manner. The merge stage is done by following this procedure recursively. The

recursion will never exceed the target relation since schema elements below

that relation are untouched.

In general, the whole structure of the flat database needs very few changes,

since most of the structural updating is reflected by the structure table. Fur-

ther, no “ALTER TABLE” command is required, which avoids the high cost of

traditional schema updates.

2.6.2 Mapping other operators

The EXPORT works quite similarly to IMPORT in terms of specifying tuple

relationship by joining linking tables, except no merge is required. FLOAT and

SINK also work in a similar manner, with much simpler procedures required.

For other schema update operators, Adding/Dropping columns requires only

creating/dropping flat tables corresponding to the attributes and insertion/dele-

tion of tuples in the structure table. Permutation is trivially exchanging at-

tribute IDs in the structure table.

Data manipulation operations are much simpler. INSERT and DELETE up-

date the corresponding value tables and link tables. UPDATE is similar to

INSERT except an additional merge is required for preserving PNF.

44

2.7 Evaluation

Our experiments are designed to answer four main questions:

1. How usable is the drag-and-drop interface in CRIUS, compared to state-

of-the-art GUI schema design tools?

2. How usable is the integrity-based guidance?

3. How efficient is the incremental FD induction algorithm, compared to tra-

ditional FD induction approaches?

4. What are the performance implications of the storage representation, for

common tasks (schema modification and data display)? How does the

vertically-decomposed format compare to a standard relational storage

format?

2.7.1 User Study on Schema Operations

Our first set of experiments measured the usability of schema manipulation

in CRIUS. We recruited eight volunteers with no data-base background, and

two database experts for comparison. All subjects are aged from 18 to 25, and

have a Bachelor’s Degree. As a baseline, we compared CRIUS to Microsoft

SQL Server Management Studio 2008 (SSMS), which is representative of the

state-of-the-art GUI-based relational database design. In the first experiment,

we asked the users to define three relations: 1) a Person relation with two

attributes: FirstName and LastName, 2) an Email relation with one attribute

Email. and 3) a Phone relation with one attribute Phone. We also required the

users to structure the database hierarchically so that each person may have

multiple emails and phones. We taught the users how to do this in both CRIUS

45

and SSMS. In CRIUS, we taught them to use the Span Table operators to create

the structure. In SSMS, we taught them to specify foreign key references from

both Email and Phone to Person, by creating ID columns and dragging links

between them to indicate foreign key references using the database diagram

UI in SSMS.

We asked the same group of subjects to accomplish this task using both

CRIUS and SSMS, and recorded the time to define the schema with both tools.

We randomized the order of which system is used first, in order to counterbal-

ance the learning effect.

The times shown in Figure 2.9 (D for database expert, N for non-technical

users). Results demonstrate that design using CRIUS was about three times

faster.3 While the first experiment tested the performance of users construct-

Figure 2.9: Time defining a schema with CRIUS vs. SSMS.

3Using the Mann-Whitney test (a standard test of statistical significance), this difference is significant with p-value
< 0.0002.

46

ing a schema from scratch, we also conducted a second experiment, which

asked users to modify an existing schema by moving an attribute.

Specifically, we used a more complex schema from MiMI [56]. We focused

on two relations: the Gene relation and the Interaction relation. Gene records

individual gene information. It consists of five attributes: gene_id, symbol,

type, taxid, and description. Interaction stores the basic information describing

how two genes which interact with each other, including nine attributes: int_id,

gid1, symbol1, type1, taxid1, gid2, symbol2, type2, and taxid2. gid1 and gid2

are foreign keys referencing gene_id. We nested Interaction inside Gene by

gene_id to bring them into a single spreadsheet. We asked the users to move

one attribute (Description) from Gene to Interaction, which was a practical need

from current MiMI users.

To accomplish the move using CRIUS, users only need to specify an IMPORT

by a drag-and-drop. However, this task proved difficult in SSMS because, while

users could construct a new schema using the GUI tool, migrating data from

the old schema to the new one required them to write SQL. As a result, none

of the non-technical users were able to complete the task using SSMS. In con-

trast, all users were able to complete the task within seconds using CRIUS.

Finally, to gain further insight into the usability of CRIUS, we asked the same

users to perform the same schema update task using CRIUS and a strawman

system that we constructed. The strawman implements a very similar drag-

and-drop GUI interface to CRIUS; however, unlike CRIUS’s span table algebra,

it implements drag-and-drop manipulations that are direct implementations of

nested relational algebra operators.

47

Figure 2.10: Time specifying an attribute transportation with CRIUS v.s. Nested Algebra GUI.

Figure 2.10 compares the user performance for this task.4 All the users

were able to accomplish the task almost thrice faster using CRIUS than using

the system with a nested algebra interface.5 This difference supports the intu-

ition that the span table operators supported in CRIUS are more natural direct

manipulations for users than nested algebra operators, even though the two

are equivalent in expressive power within the schema restructuring domain.

2.7.2 User Study on Integrity-Based Guidance

Our second user study measured how much the users may benefit from the

integrity-based guidance offered by CRIUS. Again, we recruited eight non-

technical volunteers and two computer experts. The subjects were asked to

complete three tasks on an address book in CRIUS twice, once with the guid-
4Since we reduced the database size to fit the user study, the query execution time is negligible compared to the

user operation time.
5This is statistically significant with p-value < 0.0002.

48

ance feature on and the other off. Their tasks were: 1) insert a new contact

and his address into the address book, 2) update the cell phone number of one

contact and 3) update the address of one contact to the address of another

contact. For each subject, we measured the time for each task, and the overall

count of key strokes and mouse clicks.

For this user study, we designed an address book with schemaName, {Address,

Zipcode,HomePhone, CellPhone}. It contained three contacts and six address-

es, and induced these FDs: Name → CellPhone, HomePhone → Zipcode,

Address → HomePhone, HomePhone → Address and Address → Zipcode. A

brief tutorial on how to use CRIUS was given to each subject prior to the study.

We started timing after the subject was clear about each task and ready to ex-

ecute it. In order to counterbalance the learning effect, the guidance feature

was turned on first for half of the studies, and turned off first for the other half.

All subjects finished all of the tasks. From the time shown in Figure 2.11,

we observe a significant improvement with the guidance feature on. 6 This

demonstrates that CRIUS successfully leverages integrity constraints to save

data entry time and improves usability.

We also recorded the number of key strokes and mouse clicks, since they

may serve as strong evidence of input errors. The numbers are shown in Fig-

ure 2.12. Although detailed intermediate errors were hard to report, these

numbers show that users made many fewer errors with integrity-based guid-

ance. 7 In other words, this supports that CRIUS improves usability by pre-

venting input errors.
6According to the Mann-Whitney test, the p-values are 0.0002, 0.0209 and 0.001 for the three tasks, respectively.
7Key strokes has a p-value of 0.0002 and mouse clicks has 0.0019.

49

Figure 2.11: Time for data entry tasks, with guidance on and off

2.7.3 Performance of IFDI

To evaluate the effectiveness of our incremental FD induction algorithm,

we conducted experiments to compare the performance for both the naive ap-

proach (which recalculates the FDs for each update) and the IFDI algorithm, in

a simulated incremental update environment. We measured the average time

for both approaches to generate a new set of FDs upon simulated updates in

simulated tables, by varying the number of columns and rows.

We first fixed the number of columns to five and recorded the time at each

row size. The result is shown in Figure 2.13(a). While the performance of the

naive approach is linear in the number of rows, the cost for IFDI was extremely

50

Figure 2.12: Number of key strokes and mouse clicks for data entry tasks, with and without
guidance

small and nearly constant. This is because for each lattice node, the traditional

algorithm reconstructed each partition by doing a partition product, which

involves a linear scan on the input partitions. In contrast, IFDI only updates

existing partitions and touches rows with the same values as the updated tuple.

Our second experiment fixed the number of rows to ten thousand and mea-

sured the average time for various number of columns. The result is shown in

Figure 2.13(b). While the costs for both approaches increase exponentially, the

IFDI is more than three orders of magnitude faster. Again, the improvement in

performance is due in large part to an tremendous decrease in partition rows

accessed by the incremental algorithm, as shown in Figure 2.14. For example,

for five columns and ten thousand rows, the incremental algorithm accessed

an average of 42.9 partition rows for each update, while the naive approach

accessed an average of 257196.9 partition rows.

51

(a) a five-column table with varying row size

(b) a ten-thousand-row table with varying column size

Figure 2.13: Average time generating new FDs using naive approach and IFDI.

For both experiments, we simulated the table to have one near-FD (50% of

the rows satisfied the FD) from the first column to the second. All the data

(except in the determined column) was randomly generated from a value pool

of size ten. Each cell update changed an FD-violating row to a FD-satisfying

row by updating its second column. We repeated the experiment by varying

the number of rows and columns. Time in both tests were averaged upon ten

tables and one hundred updates for each table.

52

(a) a five-column table with varying row size

(b) a ten-thousand-row table with varying column size

Figure 2.14: Average number of partition rows accessed when generating new FDs using naive
approach and IFDI.

2.7.4 Performance of Vertical Storage

Our last set of experiments compared the performance of the vertically-

partitioned storage in CRIUS with a naive approach, which stores tables con-

tiguously using a row-major layout. Recall that in designing the storage system

we had two main goals: (1) efficient schema evolution, and (2) efficient data

display.

53

Schema Update Performance

Our first experiment measured the time for the same schema update task

in 2.7.1, on both a naive storage and the vertical partitioned storage in CRIUS.

Specifically, we set up two versions of the MiMI: The first (Naive) stores the

two relations just as they are stored in MiMi, with gene_id and int_id as the

primary keys. The second (CRIUS) partitions the two relations in a per-column

manner similar to that depicted in Figure 2.8, with a primary key ID column

associated with each column table. In both cases, only a clustered index on

the primary key is constructed for each relation. Our experiment repeatedly

moved the description attribute between the Gene and Interaction relations in

each database.

The result is shown in Figure 2.15. As expected, the vertically partitioned

storage offered much faster schema modifications than the naive approach,

particularly for large databases. This is because for each ALTER TABLE com-

mand, the naive method must restructure an entire relation, which greatly de-

graded performance. In contrast, CRIUS only manipulated the column tables

involved in the move.

Data Display Performance

In addition to schema update, our vertically partitioned storage also sup-

ports other common tasks such as data display. To show this, our last exper-

iment measured the time for loading data and constructing a span table from

both the native storage and CRIUS storage. Specifically, we focused on a query

to retrieve the gene_id, symbol, type, and taxid of all the genes that interac-

54

Figure 2.15: Average time transporting an attribute in CRIUS vs. naive storage, for different
database scale

t with a given gene whose symbol matches a random pattern. We executed

this query on both the naive and CRIUS databases. The results are shown in

Figure 2.16.

The time cost increased linearly with the number of attributes projected in

CRIUS, but remained constant for the naive storage. This is because in CRIUS,

the number of required joins grows linearly with the number of columns select-

ed. At the same time, while data display queries are more efficient using the

naive storage format, the difference between the naive and CRIUS is not huge,

despite the additional joins required by CRIUS. This supports that CRIUS is

able to improve the performance of schema modification tasks, without losing

much efficiency on the data display task.

55

Figure 2.16: Average data display time in CRIUS vs. the naive storage, for different database
scale

2.8 Conclusions

In this chapter, we described the design and implementation of CRIUS, a

system that allows non-technical users to develop and evolve schemas for their

data, within the familiar context of a spread-sheet-style interface and data mod-

el. In support of the friendly drag-and-drop user interface, we developed a

novel span table algebra that is equivalent in expressive power to the nested

algebra.

User operations on a spreadsheet are usually error-prone. Integrity con-

straints, such as functional dependencies can save user input and protect the

data from mistakes. However, incremental FD induction is non-trivial when

the database is modified frequently. In this chapter, we introduced the first al-

56

gorithm for incrementally updating the set of induced FDs upon value update

and schema evolution. CRIUS uses these FDs to recommend auto-completions

for updates and to warn the user about potential data entry errors.

While the data model exposed to CRIUS users is a nested span table, the

underlying storage model may be different. Because of its pervasiveness, we

elected to store our span tables as flat relations in a relational database sys-

tem. While past work has considered storing nested tables in flat relations, the

mapping is only treated as a simulation to establish theoretical results. In con-

trast, CRIUS requires materialization of such a mapping to support efficient

query processing and efficient schema evolution. For these reasons, we im-

plemented a recursively vertically decomposed storage format. We also show

how span table algebra operators can be mapped to SQL operations on the

relational database.

Finally, we evaluated the CRIUS implementation via both user studies and

performance experiments. The user study showed that the drag-and-drop

schema modification meets our primary goal of making schema evolution easy

to specify, and our integrity-based guidance feature effectively reduces data

entry effort and input errors. The performance results indicated that the our

incremental FD induction algorithm is much faster compared to the tradition-

al approaches, and the vertical decomposition storage format is considerably

more efficient than past techniques for schema evolution, while query process-

ing performance remains reasonable.

CHAPTER III

MWeaver: Sample-Driven Schema Mapping

End-users increasingly find the need to perform light-weight, customized

schema mapping. State-of-the-art tools provide powerful functions to generate

schema mappings, but they usually require an in-depth understanding of the

semantics of multiple schemas and their correspondences, and are thus not

suitable for users who are technically unsophisticated or when a large number

of mappings must be performed.

We propose a system for sample-driven schema mapping. It automatically

constructs schema mappings, in real time, from user-input sample target in-

stances. Because the user does not have to provide any explicit attribute-level

match information, she is isolated from the possibly complex structure and se-

mantics of both the source schemas and the mappings. In addition, the user

never has to master any operations specific to schema mappings: she simply

types data values into a spreadsheet-style interface. As a result, the user can

construct mappings with a much lower cognitive burden.

In this chapter we present MWeaver, a prototype sample-driven schema

mapping system. It employs novel algorithms that enable the system to obtain

57

58

desired mapping results while meeting interactive response performance re-

quirements. We show the results of a user study that compares MWeaver with

two state-of-the-art mapping tools across several mapping tasks, both real and

synthetic. These suggest that the MWeaver system enables users to perform

practical mapping tasks in about 1/5th the time needed by the state-of-the-art

tools.

3.1 Introduction

A schema mapping transforms a source database instance into an instance

that obeys a target schema. It has long been one of the most important, yet dif-

ficult, problems in the areas of data exchange and data integration [14, 61, 63].

Traditional database applications in E-business, data warehousing and seman-

tic query processing have required good schema mappings among heteroge-

neous schemas. Moreover, as the amount of structured Web-based information

explodes (e.g., Wikipedia, Freebase, Google BigTable, etc.), users are direct-

ly exposed to the task of combining, structuring and re-purposing informa-

tion [24]. Doing so inevitably requires schema mapping to be democratic: non-

technical users should be able to cook their data with their own flavor, even

if they cannot master the “professional kitchenware” designed for database

experts.

Due to the importance of the schema mapping problem, a handful of map-

ping design systems have been developed. These systems include InfoSphere

Data Architect (from Clio [84]), BizTalk Mapper [2], Altova MapForce [1], and

Stylus Studio [3]. All of these systems are based on the same general method-

59

Director MyMovieInfo

role name

director Movie

title producer

User manually refines correspondences.

Movie join Writer on … join Person on…

Movie join Director on … join Person on…

User manually refines mapping structure.

name director producer

Avatar James Cameron Lightstorm Co.

Harry Potter David Yates

Tim Burton

MyMovieInfo

User types sample instances in the target table.

Requires precise
knowledge of both
the source and the
target schema and

comprehensive
interpretation of the

schema mapping.

Requires only
knowledge of the
target schema and

a few sample
instances.

M
atch-D

riven
Sam

ple-D
riven

Figure 3.1: A Comparison between the Match-Driven Approach and the Sample-Driven Ap-
proach

ology that was first proposed in Clio [84]. The methodology consists of two

phases. In the first matching phase, a set of correspondences between source

and target schema elements is solicited from the user, with possible aid from

automated techniques that find similar attribute pairs [72, 68, 60, 33, 69, 32,

36, 78, 35]. During the second mapping phase, the set of matches yields an

executable transformation from the source schema to the target schema.

Unfortunately, this traditional match-driven model is unsuitable for many

modern schema mapping tasks. The user must either build attribute-level

matches from scratch, or else painstakingly double-check an automatically-

generated set of matches. An implicit assumption made by these systems is

that the user has detailed knowledge of both the source and target schemas.

60

For traditional schema mapping tasks that involve a sophisticated adminis-

trator and a single high-value target database, this assumption makes sense.

But modern mapping scenarios feature relatively unsophisticated users and a

multiplicity of tasks: a DBA may only map two HR databases together when

a corporate acquisition takes place, whereas a Web advertising analyst may

need to combine schemas of different data-sets multiple times a day. For these

less-technical users who perform a large number of mappings, the laborious

match-driven process can be a heavy burden.

A Sample-Driven Approach In this chapter, we propose a sample-driven ap-

proach that enables relatively unsophisticated end-users, not DBAs, to easily

construct their own data. The key idea behind our approach is to allow the user

to implicitly specify schema mappings by providing sample data of the target

database. Behind the scenes, the system automatically elicits the mappings

that transform the source database into this partially-described target. After

the user has provided enough information, the system can determine a single

best mapping. The process is iterative. As the user types more information

from the target database, the system provides increasingly better estimates of

the correct mapping. Figure 3.1 depicts a high-level comparison between the

traditional match-driven approach and the sample-driven approach.

Our sample-driven approach reduces the user’s cognitive burden in two

ways. First, the user no longer needs to explicitly understand the source

database schema or the mapping. She simply types in sample instances un-

til the system converges to a single proposal. Second, the operations that the

user performs are common and require no special training: she simply types in

61

data as in a spreadsheet. In contrast, current tools are applications designed

for trained DBAs, and require users to decide whether individual attribute-level

matches are correct. The following example provides some intuition about how

the sample-driven approach works.

Movie
PK mid
 title

Person
PK pid
 name

Director
FK2 pid
FK1 mid

Writer
FK2 pid
FK1 mid

MyMovieInfo
 Name
 Director

M
ap to

Source Schema
Target Schema

Correspondence

Correspondence

Figure 3.2: An Example Schema Mapping with The Question Mark Indicating a Join Path Am-
biguity.

Example III.1. A user is exploring the Yahoo Movies database, and wishes to

store the movie title as Name and the director name as Director in a target

MyMovieInfo, as shown1 in Figure 3.2.

A typical match-driven system proposes attribute correspondences to the

users, as shown in Figure 3.3. The user needs to either pick out each correct

correspondence from multiple candidates, or scan the source schema for the

correct correspondence if it is not proposed; both situations require a compre-

hensive knowledge of the schemas.

In a sample-driven approach, the user freely provides sample instances for

the target Director field. For each director name she provides, the system au-

tomatically searches the source database to find all attributes that contain the

name. For example, if a user enters Ed Wood, the system may find the value in

both Person.name and Movie.title. As the user enters more names, the set of
1We only show a subset of the source schema due to space. The solid arrows represent foreign key constraints.

62

attributes eventually converges to a single attribute Person.name, indicating

that the user has implicitly specified the correspondence from MyMovieInfo.Director

to Person.name.

Even if a match-driven system perfectly generates all the attribute-level cor-

respondences, it may has to deal with multiple possible mappings. In this ex-

ample, imagine the system matches MyMovie-Info.Name to Movie.title, and

MyMovieInfo.Director to Person.name. There are still two possible ways to

construct the mapping2: one by joining Movie and Person via Director, the

other by joining via Writer. (See Figure 3.2.) Current match-driven systems

usually pick only one mapping, which may not be the desired one [9]. Even

if the system presents both candidate mappings to the user, she still has to

manually select the desired join via Director.

In contrast, the sample-driven approach also considers data-level informa-

tion to help find the correct mapping. For example, if the user enters (Harry Potter,

David Yates) in the target, the system will know that the join must NOT be via

Writer, as the source indicates that the writer of Harry Potter is J. K. Rowling.

Of course, the user must be familiar with the target schema in order to

provide samples. While traditional database schemas can be quite complex,

expert DBAs are likely to know the data well enough to give useful samples.

Non-traditional users may not be familiar with database schemas in general.

But as the trend for light-weight, Web-based information integration increases,

our computationally unsophisticated users are likely to be well-informed about

the target database they want to build. In either case, it is reasonable to
2We only consider joins via foreign key constraints.

63

Figure 3.3: A Screenshot of IBM InfoSphere Data Architect

believe that the sample-driven approach will be suitable for a large group of

mapping scenarios.

In this chapter, we design and prototype a sample-driven mapping system,

MWeaver, which facilitates schema mapping tasks for end-users. We also

conduct a detailed user study that compares users’ behavior with MWeaver

and with state-of-the-art mapping tools. We show that by reducing the cogni-

tive burden for the user, and providing a familiar spreadsheet-style interface,

MWeaver allows the average user to perform a practical mapping task in about

1/5th the time needed for the traditional match-driven approach.

Figure 3.4: A Screenshot of MWeaver. Left: The Input Spreadsheet. Right: The Expanded List
of Candidate Mappings.

64

Technical Challenges MWeaver renders schema mapping easier from the us-

er’s perspective, but actually building the runtime system presents two sub-

stantial technical challenges. First, it must obtain the desired mapping using

just the user-provided samples. Doing so can entail locating each piece of sam-

ple throughout the source database, and then deriving all possible mappings

that those pieces together suggest. Second, these mappings must be computed

quickly enough that the user can obtain “interactive-speed” feedback, allow-

ing her to review the current system status before continuing to provide more

samples or stopping if the system has generated the desired mapping.

Our Contributions Our work makes the following contributions:

• We propose a sample-driven approach to facilitate schema mapping tasks for

end-users, and present a prototype system, MWeaver.

• We develop an efficient sample search algorithm and show that it can obtain

provably correct results at interactive speeds.

• We present the results of a detailed user study that demonstrates, among

other things, that a typical MWeaver user can obtain schema mappings in

1/5th of the time required by state-of-the-art mapping tools.

This chapter is organized as follows. We first provide an overview of MWeaver

in Section 3.2. The sample search algorithm is described in Section 3.3. Sec-

tion 3.6 describes how we iterative prune the candidate mappings. In Sec-

tion 5.8, we present user studies that demonstrate the usability of our system,

as well as performance experiments that demonstrate the efficiency of our al-

gorithm. Finally, we conclude in Section 3.8.

65

3.2 System Overview

In this chapter, we propose MWeaver, a sample-driven schema mapping

tool that constructs schema mappings based on user-input sample instances.

By assuming the user-input samples are approximately present3 in a source

database instance that we have access to, the major advantage of MWeaver is

that it isolates the user from the possible complexity of such a source database

and its schema. MWeaver takes as input the source instance and a partial-

ly filled spreadsheet, and produces as output the schema mappings that map

the source to a target containing that spreadsheet. We assume the schema

mappings are Project-Join queries over relational database. While selection,

aggregation and user-defined functions would largely strengthen the expres-

sive power of the mappings, we do not study them in this work because they

may produce information loss that is non-recoverable on the target side.

Since we do not expect end-users to be able to specify foreign key con-

straints [54], we assume in this chapter that the target schema comprises one

or more table “views”, each of which has joined all the information the user

wants to see at one time. Since these views are independent, they can be con-

structed one at a time. Without loss of generality, we can assume the target

schema is a single table.

User Interface: The primary UI component of MWeaver is a spreadsheet that

conforms to the target schema. We call it the Input Spreadsheet . On the left

of Fig 3.4 shows an input spreadsheet in which the user is filling data. The user

may adjust the input spreadsheet by adding/dropping/renaming columns to
3We will detail this notion of “approximation” in Section 3.3.1

66

meet her mental model of the target. The bar directly under the logo provides

information about the current mapping generation status. By default it only

displays the number of mappings currently found. If the user wishes to know

more about the mappings, she may expand the information bar by clicking the

“plus” on the right. This will trigger a Mapping List , which visualizes each

mapping with details.

In the mapping list, each mapping is visualized as an undirected tree. Each

node in the tree is labeled with the source relation involved in the mapping,

together with the correspondences between the target columns and the source

attributes. Each edge in the tree represents how these source relations are

joined in the mapping.

User Input: After the structure of the input spreadsheet is fixed, the user can

input data in any cell in the spreadsheet. Formally, a user input is Input(i, j, c),

which updates the content of the cell on the i-th row and the j-th column of the

input spreadsheet to c. We call the content in each non-empty cell of the input

spreadsheet a sample. We do not consider empty cells.

Interaction Model: The system interacts with the user by maintaining a set of

mappings upon each user input. We call such mappings candidate mappings.

The interaction starts with the user filling out the first row of the input spread-

sheet. We require the first row to be fully populated in order to establish a

general impression of the complete desired mapping. After this, MWeaver con-

structs the initial set of candidate mappings from the samples in the first row.

Formally, we name this process Sample Search .

Afterwards, the user may continue to provide sample instances in any cel-

67

l below the first row. Whenever one cell is updated, MWeaver uses all the

samples (i.e., non-empty cells) from that row to prune the set of candidate

mappings. We call this process Sample Pruning. Finally, the interaction

terminates when there is only one mapping left. As long as the user input cor-

rectly reflects her knowledge and her knowledge is consistent with the source

database, the remaining mapping must be the desired mapping. In other word-

s, as the number of candidate mappings decreases, the average mapping qual-

ity increases w.r.t. the number of user-input sample. This finally produces

a single best mapping which meets the user requirement. We will elaborate

on the sample search and pruning techniques in Section 3.3 and Section 3.6,

respectively.

3.3 Sample Search

3.3.1 Problem Formalization

We consider a source database DS with schema SS that has n relations

R1, ..., Rn and a target database with target schema ST comprising a single

target relation R. A schema mapping M is a project-join query that maps

SS to ST . For each Ri, i ∈ [n]4, we denote its schema by S(Ri) and its instance

by I(Ri). S(Ri) is the set of all the attributes in Ri. Similarly, R has a schema

S(R) = {A1, ..., Am}, where m is the size of the target and Aj (j ∈ [m]) repre-

sents the j-th attribute in R. t[A] stands for the projection of tuple t on attribute

A.

The user types in samples in the input spreadsheet under the target schema.

Each sample E is a string. We denote the first row of samples by tE = (E1, ..., Em),

4Throughout the chapter, we denote {1..n} by [n].

68

and call it a sample tuple. Our goal of sample search is to find all the schema

mappings that transform the source database to a target “containing” the sam-

ple tuple.

Because the user-input may not have an exact match in the source, as we

use them to generate the schema mappings, we forgive inaccurate samples by

allowing them to be “noisily contained” by some database instance. Formally,

we define this “noisily contain” relationship by a binary operator �, which re-

turns a boolean value based on the desired error model. Having this operator,

we say t[A] contains sample E iff t[A] � E. Similarly, we say t contains E iff

∃A s.t. t[A] � E. Furthermore, given tE = (E1, ..., Em), we say t contains tE, iff

∀i ∈ [m], t[Ai] � Ei. Finally, we say a target database DT contains tE iff ∃t ∈ DT

s.t. t contains tE. Having this concept of containment, we define sample search

as follows.

Definition III.2 (Sample Search). Given a source database DS and a sample

tuple tE = (E1, ..., Em), sample search finds all schema mappings5 M such that

M(DS) contains tE. Each such mapping is called a valid schema mapping.

movie
mid
title…

person
pid
name…

company
cid
name…

direct
mid
pid

write
mid
pid

produce
mid
cid

name director producer location
Avatar James Cameron Lightstorm Co. New Zealand

MyMovieInfo

location
lid
loc…

filmedin
mid
lid

SS

ST

Figure 3.5: The Source Schema and the Target Relation with Samples

5We restrict the search space with certain constraints that we will detail in Section 3.3.4

69

Example III.3 (The Running Example). Let DS be part of the Yahoo Movie

Database with its schema SS partially shown in Figure 3.5. Let ST has R =

MyMovieInfo with S(R) = {name,director,producer, location}, where name

indicates the movie title, director represents the name of the movie director,

producer identifies the company which produces the movie and location speci-

fies the filming location. Suppose the user enters a sample tuple (Avatar, James

Cameron, Lightstorm Co., New Zealand). The sample search aims to find all the

schema mappings that produce a target database that contains the sample tu-

ple. We will use this as a running example throughout this section.

3.3.2 The Challenge and The Opportunity

Intuitively, one way to solve the sample search problem is to model the whole

source database as a graph with each tuple represented by a vertex and each

foreign key reference by an edge. Then the problem is equivalent to finding all

the subgraphs such that each user-input sample is contained by a vertex of the

subgraph. However, the fan-out of vertices in such a graph can be very large

(e.g., a director may have directed dozens of movies, and one movie genre may

even contain thousands of movies). As a result, searching such a graph may be

very inefficient [20].

An alternative approach is to first generate a group of mappings that will

possibly yield a target database that contains the sample tuple, and then ex-

ecute each of the mappings on the source database to see if it is actually a

valid mapping. Such “lucky” mappings could be constructed by joining sample-

containing relations in the source database via various foreign key relation-

70

ships. Unfortunately, the number of such “lucky” mappings grows exponential-

ly with respect to both the number of joins allowed and the size of the target.

Because a “lucky” mapping has to be executed before one knows whether its

result contains the sample tuple, this approach may require exponential round-

s of database accesses. This can be verified in similar database keyword search

scenarios [50, 5].

In fact, the sample search problem is NP-hard, because it essentially deals

with the problem of searching a graph for all sub-graphs that satisfy certain

properties [59]. However, the definition of sample search implies that, if a

mapping is invalid, then any mapping that structurally contains it must be

invalid. This inspires us to construct valid mappings from smaller ones to

larger ones. Since generating smaller valid mappings is relatively cheap, as

long as we can efficiently build larger valid mappings on top of the smaller

ones, we can potentially meet practical interactive requirement.

3.3.3 Our Solution

In this chapter, we propose a tuple path weaving algorithm TPW to solve

the sample search problem. We first create schema mappings for each pair of

samples (pairwise mappings), and then check their validity within the limit of

acceptable noise. The execution returns a set of pairwise tuple paths, which

are essentially instance-level support for the mappings. A mapping is valid iff

such supporting set is non-empty. After that, we “weave” these pairwise tuple

paths purely in memory to generate larger and larger paths, which finally cover

all the samples. Lastly, we extract the valid mappings from these “complete”

71

tuple paths and return them with ranking.

Informally, TPW functions in the following five major steps.

1. Find sample occurrences in the source database.

2. For each pair of sample occurrences, generate pairwise mapping paths

by searching their possible connections in the source schema.

3. For each pairwise mapping, create a set of pairwise tuple paths. Do

so by translating the mapping into an approximate search query6, then

executing it in the source database. This will produce all pairwise tuple

paths that support the mapping. Mappings with no support will be pruned.

4. From these pairwise paths, build all complete tuple paths in a bottom-up

manner.

5. Rank mappings extracted from the complete tuple paths.

By pruning invalid mappings in an earlier stage, TPW avoids exponential

rounds of database accesses. Moreover, since instance-level exploration is

done in step 2, there is no overhead from traversing the database with a po-

tentially large tuple fan-out. Finally, it is reasonable to expect “weaving” to be

efficient, because as tuple paths grow larger, their number decreases dramati-

cally, which we have verified by experiments and will describe in Section 3.7.3.

3.3.4 Definitions

Before we dive into a detailed description of TPW, we need some definitions.

Hereafter, for any graph or tree structure g, we use V (g) to denote all its

6We use standard full-text search techniques for such approximate search in our implementation.

72

vertices, E(g) to denote all its edges, and T (g) to denote all its terminal vertices

(vertices of degree one).

Schema Graph To create pairwise mappings, we need to search for possible

join paths between the sample-containing relations. This requires modeling

the source schema as a graph. Because a “null” value can not contain any

samples, we only consider inner join here. Since inner join is symmetric, we

omit the direction of the foreign key to primary key relationship hereafter.

Definition III.4 (Schema Graph). The schema graph G is an undirected graph

that defines relation joinability according to the foreign key to primary key

relationships in SS. It has a vertex Ri for each relation Ri ∈ SS and an edge

(Ri, Rj) for each foreign key to primary key relationship from Ri to Rj in SS.

write

direct

produce company

filmed-in location
movie person

Figure 3.6: The Schema Graph of the Running Example

Figure 3.6 shows the schema graph of Example 1.

Relation Path Each possible join path among the sample-containing relations

specifies a unique mapping structure. We extract this structure by a path of

relations.

Definition III.5 (Relation Path). A relation path p is an undirected tree such

that: (1) ∀u ∈ V (p), u has a corresponding relation Ru ∈ V (G) and (2) ∀(u, v) ∈

E(p), (Ru, Rv) ∈ E(G).

Note that the same relation can appear multiple times in a relation path, as

73

long as the second condition is satisfied. This potentially means the size of the

relation tree is not upper bounded by the size of the schema graph.

Mapping Path Having the join structure defined, a mapping also needs to

specify which attributes in which relations are projected to the target rela-

tion. We capture this information by a projection map, which maps a subset

of the target attributes to attributes belonging to vertices on the relation path.

Intuitively, each terminal vertex must have at least one projection, or it is re-

dundant. Recall that the target relation has size m, we have the following

definition.

Definition III.6 (Mapping Path). Given a relation path p, let N be a subset of

[m] and A(p) =
⋃

u∈V (p) S(Ru). A mapping path is p augmented with a projection

map pm : N → A(p), such that ∀v ∈ T (p), ∃i ∈ N and a ∈ S(Rv), s.t. pm(i) = a.

The definition says that a mapping path is essentially a relation path whose

terminal vertices have some attributes projected to the target. Attributes in

non-terminal vertices may also be projected.

direct
produce company

filmed-in location
movie person

name title
name

loc
1 2 3 4

Avatar James Cameron Lightstorm Co. New Zealand

Figure 3.7: One Desired Mapping Path for the Running Example

A mapping path is equivalent to a schema mapping in that it can be trans-

lated to a SQL query that maps the source database to the target relation. The

projection can be fully determined from the projection map while the joining

74

of relations is implied by the structure of the relation path. Hereafter, we use

mapping path and schema mapping interchangeably.

Informally, we say a mapping path is valid iff the corresponding schema

mapping is valid. A mapping path can be partial , when N is a proper subset

of [m]. We define the size of the mapping path to be the size of N . Specifically,

we call a mapping path with size two a pairwise mapping path and a mapping

path with size m a complete mapping path . Our goal mapping paths must

be complete. Figure 3.7 exhibits a complete mapping path that is one of the

possible answers to the running example.7

Since the size of a relation path is unbounded by the schema, the corre-

sponding schema mapping size is also unbounded. This may lead to an infinite

number of mappings, most of which make little practical sense. We will re-

strict the family of mappings we explore by a join number constraint, which is

detailed in Section 3.3.5.

Tuple Path In general, a mapping path may or may not be valid. Because

a mapping path is merely a schema-level object, and does not guarantee the

samples can be connected in the source database instance following its path.

Indeed, a mapping path is valid iff there is a corresponding instance-level sup-

port. Such a support should comprise source database tuples that connect

samples via the mapping path. The formal definition of such a support is given

below.

Definition III.7 (Tuple Path). A tuple path r is an instantiated mapping path

such that: (1) for each vertex u ∈ V (r), there is an associated tuple tu ∈ I(Ru)

7We also show the sample tuple for clarity.

75

and (2) for each (u, v) ∈ E(r), tu and tv are directly connected in the source

database by the foreign key to primary key relationship between Ru and Rv.

pid mid
p1 m2

mid cid
m2 c3

mid lid
m2 l4

direct person movie
produce

filmed-in

compan
y

location
pid name
p1 …

mid title
m2 …

cid name
c3 …

lid loc
l4 …

1 2 3 4
Avatar James Cameron Lightstorm Co. New Zealand

Figure 3.8: One Tuple Path Supporting the Desired Mapping

We define the size of a tuple path in the same way we did for a mapping

path. We call a tuple path with size two a pairwise tuple path and one with

size m a complete tuple path . Figure 3.8 depicts a complete tuple path that

instantiates the mapping path in Figure 3.7.8

One mapping path may be instantiated to any number of tuple paths. For-

mally, we say a mapping path is valid iff it can be instantiated to at least one

tuple path. And our goal of sample search is to find those valid complete map-

ping paths.

3.3.5 TPW Algorithm

In this section, we elaborate the five steps (see Section 3.3.3) of the TPW

algorithm. Details can be found in Appendix 3.4.
8We present only the primary keys, foreign keys and the projected attributes due to space.

76

0.97

0.84

1 2 3 4

Avatar James Cameron Lightstorm Co. New Zealand

G
enerate P

airw
ise

M
apping P

aths
Find S

am
ple

O
ccurrences

C
reate P

airw
ise

Tuple P
aths

B
uild C

om
plete

Tuple P
aths

person movie direct

name 1 2 1-2
1-3

1-4

1 2

…

L(1)

…

weave onto

p3

p5

r1

r2

r3

r4

r5

p1

R
ank

R
esults

… … … …

…

P
M

P
M

P

TP
M

p2

p4

r1

r3

r6

movie.title

movie.logline

person.name

family.family

company
.name

movie
.produced_in

location.loc …
…

…
L(2) L(3) L(4)

…

title

person movie write

name 1 2 title

person movie produce

name 1 3 title

produce movie

role 1 3 title

location movie filmed-in

loc 1 4 title

movie:t1 direct:t2 person:t3

title name

1 2

movie:t1 write:t4 person:t3

title name

1 3

movie:t1 produce:t5 company:t6

title name

1 3

movie:t7 produce:t8

title role

1 4

movie:t1 filmedin:t9 location:t10

title loc

1-2
1-3

1-4

2

movie:t1 direct:t2 person:t3

title name

3

movie:t1 produce:t5 company:t6

title name

1

movie:t1
direct:t2 person:t3

title
name

produce:t5 company:t6

name 1 2 3

… … … …

Figure 3.9: The Tuple Path Weaving Algorithm TPW

Find Sample Occurrences

A mapping path can be arbitrary. However, if a source attribute does not

contain any samples, the mapping path that projects that attribute can not be

77

valid. Therefore, we first narrow our search space by focusing only on the

source attributes that contain at least one sample. Formally, we construct a

location map L, where L(i) (i ∈ [m]) is the set of all the source attributes

containing Ei.

Example III.8. In the running example, we first search for sample Avatar.

We have L(1) = {movie.title,movie.logline}, because these are all the at-

tributes that contain Avatar. Similarly, L(2) = {person.name, family.family}

since they contain James Cameron. A more complete L is shown in Figure 3.9.

Pairwise Mapping Path Generation

Next, we generate all the pairwise mapping paths from schema graph G and

location map L. The size of such pairwise mapping paths can be arbitrarily

large, because the number of joins in these mapping paths is unbounded by

the source schema [50]. Fortunately, we realize in practice, the mappings that

project two attributes from two relations that are joined via many intermediate

relations who have no attribute projected are very rare. Therefore, we set

up a threshold value PMNJ (Pairwise Maximal Number of Joins) to restrict

the family of mapping paths we explore. Specifically, we say a mapping path

satisfies the PMNJ constraint iff the largest number of joins between each

pair of projected attributes on the path is no larger than PMNJ . And we only

aim to generate the mapping paths that satisfy the PMNJ constraints. In this

running example, we will set PMNJ = 2, since it is enough to generate the

complete mappings of interest.

The pairwise mapping paths are generated as follows. First, for each j ∈ [m]

78

and each attribute Aj ∈ L(j), we issue a breadth-first search from the vertex Rj

that contains Aj in the schema graph G with depth limited by PMNJ . When-

ever we encounter a vertex Rk that contains Ak ∈ L(k) with k > j, we construct

a relation path backward from Rk to Rj and augment it with a projection map

built from Aj and Ak. The created pairwise mapping paths are stored in a

pairwise mapping path map PMPM with key (j, k).

Example III.9. In the running example, we first generate the pairwise map-

ping path linking Avatar and James Cameron. We start by picking movie.title

from L(1), person.name from L(2) and searching for the relation paths be-

tween them. By a breadth-first search from movie in G, we reach Person via

two paths: movie-direct-person and movie-write-person. We augment them

with projection information from the two attributes and respectively obtain the

mapping paths p1 and p2, and store them in PMPM with key (1, 2), as shown

in Figure 3.9.

Pairwise Tuple Path Creation

Once all the pairwise mapping paths are generated, we produce tuple path-

s that instantiate them. To do this, we retrieve each pairwise mapping from

PMPM , translate it into an approximate search query with the keywords con-

straints derived from the samples and execute it. If the result set is empty, we

prune the corresponding pairwise mapping because any larger mapping con-

taining it must be invalid. Otherwise, we construct a pairwise tuple path from

each returned tuple, associate it with the corresponding mapping and store it

in a pairwise tuple path map PTPM . Since foreign-key connection is normal-

79

ly sparse in real-life datasets, we expect these tuple paths to fit in memory.

Subsequent operations can also be completed in memory, because the num-

ber of the tuple paths decreases dramatically w.r.t. its size, as we will see in

Section 3.7.3.

Example III.10. In Figure 3.9, suppose the source tuple t1 contains Avatar,

t3 contains James Cameron and t2 links t1 and t3 by foreign keys. Because

these tuples successfully support mapping path p1, we create a tuple path r1

from them, associate it with p1 and store it in PTPM with key (1, 2). r2 - r5

are created similarly.

Complete Tuple Path Construction

Since all the necessary information for constructing the complete mapping

paths is stored in the pairwise tuple paths, we can then perform the “weaving”

in memory. “Weaving” essentially merges a pairwise tuple path onto an exist-

ing base tuple path to produce a new larger tuple path. We use the word

“weave” to describe the process of traversing the pairwise tuple path from one

end to the other and gradually merging its vertices onto the base tuple path.

The “weaving” terminates once a vertex fails to merge.

If all vertices on the pairwise tuple path can be successfully merged onto

the base tuple path, the latter will preserve its structure. Otherwise, the “un-

woven” part of the the pairwise tuple path will enrich the structure of the base

tuple path by adding a “tail” to it. Either way, the cost of “weaving” is upper-

bounded by the size of the pairwise tuple path, which is in turn bounded by

PMNJ .

80

Since various larger tuple paths may share smaller sub-paths, we “weave”

the tuple paths in a bottom-up manner. Specifically, we organize tuple paths

by levels. Level n contains all the tuple paths of size n, n ∈ {2..m}. For each

n from 2 to m − 1, for each base tuple path in level n, we “weave” a pairwise

tuple path onto it to create a tuple path in level n+ 1. This terminates when all

the complete tuple paths are “woven” and stored in level m.

The following example illustrates how the “weaving” works. A detailed de-

scription can be found in Algorithm 6 in Appendix 3.4.

Example III.11. We start by constructing tuple paths of size three from a base

tuple path of size two, say, r1 in Figure 3.9. Then, we enumerate all the possi-

ble pairwise tuple paths that may be woven onto r1. Those are pairwise tuple

paths whose projection map has exactly one key in common with that of r1.

For instance, it is possible to weave r3 or r4 onto r1 since their keys intersect

on key 1.

Next, we attempt to merge the two paths by fusing the two vertices pointed

by the common key in both paths. If the tuples associated with the two ver-

tices are identical, the two vertices are fused and the two paths are merged

successfully. Otherwise, the merge fails and returns no new path. Here, r1

and r3 successfully merge by fusing the first vertex (since they agree on tuple

t1). However, r1 and r4 fail to merge (because r4 has tuple t7).

Finally, we issue a synchronized search from the fused vertex along the pair-

wise tuple path to be woven. For each following vertex v on the path, we search

in the base tuple path for the next adjacent vertex u such that tu = tv. If such

a vertex does not exist, we stop and return the current tuple path. Otherwise

81

we fuse u and v and proceed to the next vertex. This continues until the whole

pairwise tuple path is traversed. In this example, there is no vertex which is

adjacent to movie:t1 in r1 and has a tuple t5 as in r3. So the process termi-

nates and the new tuple path r6 is returned.

After all tuple paths of size three are generated, we begin to construct tuple

paths of size four (the complete tuple paths) from those ones with size three.

It is straightforward that r5 can be woven onto r6, producing the complete

tuple path shown in Figure 3.8. Another complete tuple path is constructed by

weaving r3 and r5 onto r2.

Ranking

We extract all the complete mapping paths from the complete tuple paths

and rank them before returning them to the user. For each complete tuple

path, we define its score to be a weighted sum of two scores: a matching score

which indicates how well the samples match the actual data in the tuple, and

a complexity score which is the number of joins in the tuple path. The score

of a complete mapping path is the average score of all its corresponding tuple

paths.

3.3.6 Soundness and Completeness

The TPW algorithm is sound and complete in that every complete tuple path

generated corresponds to a valid schema mapping, and every valid schema

mapping satisfying the PMNJ constraint is discovered by the algorithm. The

soundness is straightforward. The completeness is because, for any valid

schema mapping that generates a tuple t containing the sample tuple, we can

82

always construct the corresponding complete tuple path from the source tu-

ples that contribute to t, which are completely recorded when generating the

pairwise tuple paths. The proof can be found in Appendix 3.5.

3.4 TPW Algorithms

3.4.1 Find Sample Occurrences

Given a sample tuple and a source database, Algorithm 1 locates in the

source all the occurrences of each sample in that tuple by scanning all the

source attributes (loops at line 3 and 5). Whenever a source attribute contains

a sample (line 6), it is registered to the corresponding location map (line 7

and 11). The check on line 6 is done by a standard full-text search on an

individual column which has a pre-computed inverted-index. Line 7 and 11 nest

the location map by relation so we can easily generate relation path hereafter.

Algorithm 1 LocateSample

Require: A sample tuple (E1, ..., Em), source database DS with schema SS

Ensure: A location map L = {L1, ..., Lm}
1: Initialize L
2: for i ∈ {1..m} do
3: for relation Ri ∈ DS do
4: LRi ← ∅
5: for attribute A ∈ Ri do
6: if ∃t ∈ Ri s.t. t[A] � Ei then
7: LRi ← LRi ∪ {A}
8: end if
9: end for

10: if LRi 6= ∅ then
11: Li(R

i)← LRi

12: end if
13: end for
14: end for

3.4.2 Pairwise Mapping Path Generation

Algorithm 2 constructs all the pairwise mapping paths that satisfy the PMNJ

constraint by issuing a breadth-first search on the schema graph G. To perform

83

the breadth-first search, we define a structure relation node, which has three

properties: relation which points to the corresponding relation in the source

database, dist which records the number of joins from this node to the origin

and parent which stores the previous node during the search. We also define

Path Vertex, which composes a relation path. It has a property relation which

stores the corresponding relation, and neighbor which stores all its neighbors.

A relation path maintains a lookup table to manage vertex membership. Also,

we compute a map in advance to prepare for mapping path creation.

We first construct relation paths from the schema graph G and the location

map L, as described in Algorithm 2. For each sample Ei (line 2) and each

relation Ri that contains it (line 3), we issue a breadth-first search from the re-

lation by calling Grow() (See Algorithm 3). Grow() returns every relation path

whose length is no larger than PMNJ and connects Ri with another relation

Rj containing Ej (j > i). Finally we construct all the pairwise mapping paths

by appending registered attributes to each returned relation path by invoking

Create() (See Algorithm 4).

Algorithm 2 GeneratePairwiseMapingPath
Require: The location map L, the schema graph G
Ensure: PMPM , a map from (i,j) to a set of pairwise mapping paths, where i, j ∈ {1..m} ∧ i < j
1: Initialize PMPM
2: for i ∈ {1..m} do
3: for relation Ri ∈ Keys(Li) do
4: Initialize relation node r
5: r.relation← Ri

6: r.dist← 0
7: r.parent← null
8: rs = Grow(L, r, i, G, PMNJ)
9: Create(rs, PMPM)

10: end for
11: end for

84

Algorithm 3 Grow
Require: The location map L, a relation node r containing Ei, the index i, the schema graph G, the

maximal number of joins PMNJ
Ensure: All the relation paths from r to s within PMNJ joins, where s is a relation node containing Ej

and j > i
1: Initialize a relation path set rs
2: Initialize a queue of relation node Q
3: Q.push(r)
4: while Q is not empty do
5: c← Q.pop()
6: for j ∈ {i+ 1..m} do
7: if c ∈ Keys(Lj) then
8: Create relation path p backward from j to i.
9: rs.add(p)

10: end if
11: end for
12: if c.dist < PMNJ then
13: for R′ that is adjacent to c.relation in G do
14: Initialize relation node n
15: n.relation← R′

16: n.dist← c.dist+ 1
17: n.parent← c
18: Q.push(n)
19: end for
20: end if
21: end while

3.4.3 Pairwise Tuple path Creation

For each pairwise mapping path in PMPM(i, j), we then search for all the

pairwise tuple paths that instantiate it, and store them in PTPM(i, j). This

is done by the following steps. (1) We translate the mapping path into a SQL

query, with the join conditions defined by the path structure. (2) For each

relation on the mapping path, we project all of its primary keys. (3) We expand

the query by full-text search constraints derived from the sample tuple. (4)

We execute the full-text search query. (5) For each tuple in the result set: (i)

for each relation on the mapping path, we generate a universal tuple id for

the provenance tuple in that relation from the schema of that relation and the

values of all the projected primary keys. (ii) We collect such tuple ids for all

the relations on the mapping path, align them in the same structure as in the

85

Algorithm 4 Create
Require: A relation path set rs, the pairwise mapping path map PMPM
Ensure: PMPM
1: for r ∈ rs do
2: Let i, j ∈ DOM(r.pm) and i < j
3: for ai ∈ Rr.pm(i) do
4: for aj ∈ Rr.pm(j) do
5: Initialize a mapping path p from r
6: Append ai to p.pm(i)
7: Append aj to p.pm(j)
8: PMPM(i, j)← p
9: end for

10: end for
11: end for

mapping path and store them in PTPM .

3.4.4 Complete Tuple Path Construction

After all the pairwise tuple paths are generated, we no longer need to ac-

cess the database since the tuple paths contain complete information to derive

the candidate mappings. Specifically, we compute the complete valid mapping

paths by “weaving” the tuple paths in a bottom-up manner, as described in Al-

gorithm 5. At each level (line 3), we retrieve all the tuple paths generated from

the previous level (line 4) and try to weave each pairwise tuple path onto these

base tuple paths (line 5-18). The weaving is described in Algorithm 6, which

simultaneously traversed two tuple paths (line 11, 12), compare corresponding

vertices by checking the identities of the tuples associated with them (line 13)

and update path structure on successful merges (line 14-16).

3.5 Proofs

Here we prove that the tuple path weaving TPW algorithm that solves the

sample search problem is sound and complete.

86

Algorithm 5 GenerateCompleteTuplePath
Require: The pairwise tuple path map PTPM , the size of the target schema m
Ensure: The complete tuple path map CTPM
1: Initialize tuple path set pl, npl
2: pl← PTPM
3: for i ∈ {2..m} do
4: for tp ∈ pl do
5: for ptp ∈ PTPM do
6: Initialize a set ck
7: ck ← DOM(tp.pm) ∩DOM(ptp.pm)
8: if ck.size = 1 then
9: Let k be the only element in ck

10: Initialize new tuple path ntp, nptp
11: ntp← tp
12: nptp← ptp
13: ntp←Weave(ntp, nptp, k)
14: if ntp 6= null then
15: npl.add(ntp)
16: end if
17: end if
18: end for
19: end for
20: pl← npl
21: end for
22: CTPM ← pl

3.5.1 Soundness

Theorem III.12 (Soundness). Any valid complete mapping path generated by

TPW corresponds to a valid schema mapping.

We first give some definitions.

Definition III.13 (Valid Schema Mapping). Given a sample tuple (E1, ..., Em),

we say a schema mapping M is valid on N ⊆ [m] iff ∃t ∈ M(DS) s.t. ∀i ∈

N, t[Ai] � Ei.

Definition III.14 (Tuple Path Projection). Given a tuple path p with projection

map pm, its projection tp is a tuple such that ∀i ∈ DOM(pm), tp[i] = tua [a],

where a = pm(i) and ua is the vertex containing a in p.

Definition III.15 (Valid Tuple Path). Given a sample tuple (E1, ..., Em) and a

tuple path p with projection map pm, p is valid iff ∀i ∈ DOM(pm), tp[i] � Ei.

87

Algorithm 6 Weave
Require: A tuple path tp of size n, A pairwise tuple path ptp
Ensure: A tuple path ntp of size n+ 1
1: Initialize a set visited for visited path vertex
2: u← tp.map(k)
3: v ← ptp.map(k)
4: if u.tuple_id 6= v.tuple_id then
5: ntp← null
6: return
7: end if
8: visited.add(u)
9: ptp.lookup.remove(v)

10: while ptp.lookup is not empty do
11: Let v′ be the next vertex of v in ptp
12: for u′ ∈ u.neighbor ∧ u′ /∈ visited do
13: if u′.tuple_id 6= v′.tuple_id then
14: u.neighbor.add(v′) . Update path structure
15: v′.neighbor.remove(v)
16: v.neighbor.add(u)
17: return
18: end if
19: u← u′

20: v ← v′

21: visited.add(u)
22: ptp.lookup.rmove(v)
23: end for
24: end while

Hereafter, given a mapping path or tuple path p, we call the schema mapping

translated from it its corresponding schema mapping and denote it by Mp.

Securely, if a tuple path p is valid, then Mp must be valid on DOM(p.pm) since

tp exists in Mp(DS) and ∀i ∈ DOM(p.pm), tp[Ai] � Ei.

Then, we have the following lemma.

Lemma III.16. Let p be a tuple path of size n, q be a pairwise tuple path and

DOM(p.pm) ∩ DOM(q.pm) = {k}. Let r = Weave(p, q, k) and assume r 6= null.

If p is valid and q is valid, then r is also valid.

The proof to Lemma III.16 is straightforward. According to Algorithm 6,

since r 6= null, p and q must have been successfully merged. Thus tr = tp ∪ tq

and ∀i ∈ DOM(r.pm), tr[Ai] � Ei.

Finally, we give the proof to Theorem III.12.

88

Soundness. According to the definition, a mapping path is valid iff there is at

least one tuple path that instantiates it. So it is equivalent to prove that any

valid complete tuple path generated by TPW corresponds to a valid schema

mapping. Since we generate pairwise tuple paths by executing full-text search

queries in the source database, every pairwise tuple path p must be valid. Also,

according to Lemma III.16, if each tuple path or size n is valid, then each tuple

path of size n + 1 must also be valid. According to mathematical induction,

every complete tuple path must be valid. For each complete tuple path p, Mp

defines the corresponding valid schema mapping.

3.5.2 Completeness

Theorem III.17 (Completeness). Any valid schema mapping whose corre-

sponding mapping path satisfies the PMNJ constraint must be discovered by

TPW.

Hereafter, we assume every mapping path satisfies the PMNJ constraint for

simplicity. We first have the following lemma.

Lemma III.18. If all the valid tuple paths of size n are discovered by TPW,

then all the valid tuple paths of size n+ 1 must also be discovered.

Proof. Suppose we have a valid tuple path r of size n + 1. We decompose it

into two parts as the following. First we choose any of its terminal vertex, say

u. According to Definition III.6, there must be a map index associated with it.

We denote that index by i. Then we traverse r from u until we meet the first

vertex v which has an attribute projected by another map index j. We split

r on v together with its map split on j into two tuple paths: a pairwise tuple

89

path p connecting u and v, and a tuple path q of size n containing the rest of

r including v. Because r is valid, it is straightforward that p and q are both

valid. According to the procedure we generate the pairwise tuple paths, each

valid pairwise tuple path must be discovered by TPW. So p must be discovered.

According to the hypothesis, q must also be discovered. Let r′ = Weave(q, p, j).

Since TPW is deterministic, we must have r′ = r. In other words, r must also

be discovered.

This leads to the proof to Theorem III.17.

Completeness. Because a schema mapping is valid iff there exists a corre-

sponding valid tuple path, the proof is equivalent to: TPW is able to discover

any valid tuple path. According to the procedure we generate the pairwise tu-

ple paths, all the valid pairwise tuple paths must be discovered. According to

Lemma III.18 and mathematical induction, all the complete valid tuple paths

must also be discovered.

3.6 Sample Pruning

After the initial set of valid candidate mappings is generated, the user may

continue to enter additional samples to prune the candidate set. We call this

process sample pruning. Given that our sample search returns a limited num-

ber of candidate mappings, the pruning can be processed in a straightforward

manner as follows.

Pruning by Attribute Suppose the user enters a new sample Ei in column i on

another row in the input spreadsheet. We record all the source attributes that

90

contain Ei. Any mapping path that does not map i to any of these attributes is

then discarded.

Pruning by Mapping Structure After the user enters a new sample Ei in

column i, whenever there is more than one sample on the same row, we execute

an approximate search query for each candidate mapping with the keywords

constraints derived from these samples. We discard a mapping if the search

returns zero result.

Example III.19. In the running example, suppose the user continues to enter

Big Fish on the first column of the second row, and we find that the attribute

Movie.logline does not contain Big Fish. As a result, any mapping that maps

the first column to Movie.logline will be discarded. Similarly, if the user con-

tinues to enter Tim Burton on the second column of the second row, we will

issue a search query with Big Fish and Tim Burton on each candidate map-

ping. Any mapping that joins Movie and Person via Writer will be discarded,

because the writer of Big Fish is not Tim Burton and, as a result, the query will

return empty set.

3.7 Evaluation

The critical test for our sample-driven mapping tool is whether it truly ren-

ders schema mapping tasks feasible for end-users. In this section we demon-

strate a positive result in two ways. First, we show that our sample-driven tool

reduces user effort for completing the mapping task when compared to both

a standard match-driven system and a state-of-the-art QBE-like mapping tool.

Specifically, we present a user study that compares the usability of the three

91

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(a) Overall Time for Yahoo Movies

0

100

200

300

400

500

600

700

800
tim

e
(s

)
MWeaver
Eirene
InfoSphere

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(b) Overall Keystrokes for Yahoo Movies

0

50

100

150

200

250

300

#
ke

ys
tro

ke
s

MWeaver
Eirene
InfoSphere

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(c) Overall Mouse Clicks for Yahoo Movies

0

50

100

150

200

250

#
m

ou
se

cl
ic

ks

MWeaver
Eirene
InfoSphere

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(d) Overall Time for IMDb

0

100

200

300

400

500

600

700

800

900

tim
e

(s
)

MWeaver
Eirene
InfoSphere

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(e) Overall Keystrokes for IMDb

0

50

100

150

200

250

#
ke

ys
tro

ke
s

MWeaver
Eirene
InfoSphere

D1 D2 N1 N2 N3 N4 N5 N6 N7 N8
(f) Overall Mouse Clicks for IMDb

0

50

100

150

200

250

#
m

ou
se

cl
ic

ks

MWeaver
Eirene
InfoSphere

Figure 3.10: The overall time, keystrokes and mouse clicks for completing the mapping task
on Yahoo Movies and IMDb. D1 and D2 are database experts. N1-N8 are non-
technical users.

tools and show that our sample-driven tool enables an average user to com-

plete a schema mapping task in just 1/5-1/4th the overall time required by the

other tools. Second, we show, with a synthetic mapping task workload, that

the sample-driven approach is able to find the goal mapping with just about

two rows of samples.

The sample search described in Section 3.3.1 is intuitively expensive since

the search space is the whole source database instance. However, it relies on

fast cooperation between the user and the system, so any serious computation-

al delay could render the tool unusable. We conduct a performance experiment

and show that the Tuple Path Weaving algorithm, TPW, is efficient enough to

underpin our sample-driven tool. Indeed, we show that TPW is able to find

the candidate mappings in seconds, in a 500MB sized database. In contrast,

a naive approach constructed in a traditional keyword search manner yields

runtime up to hundreds of seconds, far more than a user of a sample-driven

92

tool is likely to tolerate.

3.7.1 Implementation and Environment

Our implementation of a sample-driven tool, MWeaver, has a UI written in

HTML and javascript that communicates via AJAX to a backend engine written

in Java Servlet. We use two datasets in our experiments: Yahoo Movies and

IMDb. The Yahoo Movies dataset is 500MB in size and contains 43 relations

and 131 attributes. The IMDb dataset is 2GB in size and contains 19 relations

and 57 attributes. Both datasets are stored in MYSQL 5.

We use the full-text search engine in MySQL to implement the approximate

search query. We set PMNJ to two, which is sufficient for our goal mappings.

All the experiments were run on a desktop machine with an Intel Core i7 860

@ 2.80GHz and 8GB RAM.

3.7.2 Usability

We compare the usability of MWeaver against two tools. The first is IBM In-

foSphere Data Architect (Version: 7.5.3.0), which is a commercialized version

of the Clio project, and serves as a typical representative of the state-of-the-

art match-driven tools. The second tool, Eirene [10], is a schema mapping

tool recently developed by Alexe, et al. to help users design schema mappings

through a QBE-like interface. We design the following user study scenario to

be simple so that it can be carried out with non-technical subjects.

Suppose a user is browsing her favorite movies on the Yahoo Movies/IMDb

website, and finds two pages of particular interests: the movie information

page, which lists various properties of a movie, and the personal information

93

page, which displays the biography of the contributors (e.g., the writers and

the actors). However, the user finds these pages overwhelming since they

contain every piece of related information spanning from a one-hundred-line

movie description to an actor’s achievements in forty years. In fact, all she

wants is just a small subset of all these messy attributes.

Assume the user is only interested in the release date, the production com-

pany and the director of the movie, we formalize the mapping task as follows.

The source schema SS includes the complete Yahoo Movies/IMDb Database

schema, and the target schema ST contains only one relation comprising the

following attributes: Movie: the title of the movie, ReleaseDate: the release

date of the movie, ProductionCompany: the company which produces the

movie and Director: the director of the movie. The user is asked to develop a

schema mapping that transforms the data under SS to the new database with

schema ST , for both Yahoo Movies and IMDb. The goal mappings are depicted

by mapping paths in Figure 3.11.

company movie produce
title name

direct person
release_date

Movie ReleaseDate ProductionCompany Director

movie movie_
companies

title

cast_info person

Movie ReleaseDate ProductionCompany Director

movie_info

company_
name

(a) Mapping from Yahoo Movies

(b) Mapping from IMDb

name

name

name

release_date

Figure 3.11: Task Schema Mappings: (a) Yahoo Movies, (b) IMDb.

We recruited eight non-technical subjects and two database experts for com-

94

parison. All of them were asked to complete the schema mapping task using

MWeaver, IBM InfoSphere Data Architect and Eirene9. We recorded the over-

all time, keystrokes and mouse clicks to complete the task for each user with

each tool, on both datasets. Because the latter two tools require substantial

knowledge about the source schema, we provided complete technical support

when the users were using these two tools. The results are shown in Fig-

ure 3.10. There was no substantial performance difference between database

experts and end-users, or Yahoo Movies and IMDb datasets.

The results demonstrate that, on average, creating the mapping with MWeaver

only needs 1/5 the overall time that required by IBM InfoSphere Data Archi-

tect, and 1/4 the overall time required by Eirene10. This difference is partly

explained by the reduction in number of keystrokes and mouse clicks. The rest

is attributed to the (not directly measurable) cognitive burden on the user in

reasoning with unfamiliar source schema in the other tools.

While Eirene also asks the users to enter examples as in traditional QBE

systems to design the mapping, MWeaver saves around half of the keystrokes

required by Eirene. This is because MWeaver requires only target sample en-

try aided by auto-completion, while Eirene requires the user to fully specify

the examples under both related source and target schema. Finally, MWeaver

only needs 1/5 mouse clicks required by the other two tools, since the UI of

MWeaver is simply a spreadsheet, which the users may naturally navigate

through using traditional spreadsheet hot keys.

At the end of the user study, we asked each user how much she was satisfied
9We randomized the order to counterbalance the learning effect.

10All the above differences are statistically significant with p-values < 0.0002 according to the Mann-Whitney test.

95

with each tool and recorded a satisfaction score scaled from one (very dissatis-

fied) to five (very satisfied). MWeaver has an average score of 4.7, InfoSphere

2.7 and Eirene 3.45.

We also found that MWeaver only requires a few user-input samples to de-

rive the goal mapping. However, the scale of the user study prevented us from

collecting statistically significant data. Therefore, we focused on the Yahoo

Movies dataset and constructed a synthetic mapping task workload containing

tasks similar to the one used in the user study. Specifically, we defined three

sets of task mappings. All the mappings in the same task set share the same

relation path. The relation path has two, three and four joins for the three task

sets. Each set contains four mappings, which vary in the target schema size

from three to six.

For each mapping in each task set, we simulated user-input by repeatedly

randomly sampling instances from a synthetic target database and fed them

into MWeaver until the mapping is discovered. Each task was repeated for

one hundred times and the average number of samples required is shown in

Table 3.1. Recall that one row in the target has m samples, the results show

that it only takes the user approximately two rows of samples to obtain the

goal mapping.

Size of ST (m) 3 4 5 6

Task Set 1 7.24 9.35 10.80 14.98
Task Set 2 5.08 8.50 11.55 16.18
Task Set 3 6.97 9.27 11.71 13.67

Table 3.1: The Average Number of Samples to Generate the Goal Mapping.

Finally, for each of the three task sets, we examined the number of candidate

96

Figure 3.12: Average Number of Candidate Mappings w.r.t. the Number of Simulated Samples.
J: number of joins in each mapping. m: the target schema size.

97

mappings (valid complete mapping paths) as the number of user-input samples

increased. From the results shown in Figure 3.12, we observe that the number

of candidate mappings drops dramatically as the number of user-input samples

increases. Although in the worst case, the system may need about 8m samples

to discover the goal mapping, the average is only about 2m, where m is the

target schema size.

3.7.3 Performance

We conducted performance experiments with the same set-up introduced

above to demonstrate that TPW is efficient enough to meet interactive require-

ments.

We first measured the average response time for both searching and pruning

to provide an overall sense of our system performance. The results shown in

Table 3.2 demonstrates that MWeaver is able to respond to a user-input sample

within 1s for searching and 50ms for pruning. In practice, the computation for

the previous input is largely paralleled with the next user data entry so that

the absolute waiting time observed by the user is very small.

Task Set Size of ST 3 4 5 6

1
Searching (ms) 534.35 655.03 639.49 577.25
Pruning (ms) 34.27 24.46 35.13 58.54

2
Searching (ms) 177.98 363.32 407.69 450.91
Pruning (ms) 27.23 40.63 58.24 62.20

3
Searching (ms) 305.89 442.78 761.69 817.38
Pruning (ms) 32.53 24.46 40.24 51.58

Table 3.2: The Average Response Time for Searching and Pruning.

Next, we demonstrate that TPW is much more efficient compared to the

naive approach derived directly from the schema-based keyword search tech-

98

niques [50, 5]. To do so, we developed a naive algorithm which enumerated

all the complete mapping paths (no matter valid or not) in the same way as

the equivalent “candidate networks” are generated in [50], and validated them

by executing an approximate search query translated from each of them. We

performed both algorithms on the same workload described above. Table 3.3

shows the average overall time to complete the sample search for both algo-

rithms. While TPW completed the search within 5 seconds on average, the time

required by the naive algorithm grew dramatically. The naive algorithm failed

beyond size 5 because the enumerated mapping paths exhausted the memory.

Task Set Size of ST 3 4 5 6

1
TPW (ms) 3735.48 3775.22 3008.52 3695.28
Naive (ms) 35891.43 734319.25 – –

2
TPW (ms) 578.47 1354.05 2043.77 2804.33
Naive (ms) 1273.62 41976.94 – –

3
TPW (ms) 1044.49 1674.66 3885.44 4727.86
Naive (ms) 11644.93 388723.31 – –

Table 3.3: The Average Search Time for TPW and the Naive Algorithm.

From this experiment, we also see that, even if the sample search problem

is NP-hard, TPW is typically able to solve it in near-linear time. The intuition

behind this huge improvement is that, invalid mapping paths are pruned away

much earlier when smaller tuple paths are being processed in MWeaver. To

offer a clearer insight into the performance experiment, we measured the total

number of tuple paths (with various size) processed in TPW and the number

of potentially valid complete mapping paths generated by the naive algorithm.

Both numbers are compared with the exact number of valid mapping paths

given a sample tuple. The result is shown in Table 3.4. Although the number

of tuple path processed in our approach increased near-exponentially, it was

99

still many fewer than the number of complete mapping paths that were gener-

ated and needed to be validated by the naive algorithm. In addition, the tuple

paths were quickly processed in memory in TPW. In contrast, in the naive algo-

rithm, the complete mapping paths had to be validated via expensive database

accesses. This explains the performance difference observed in Table 3.3.

Task Set Size of ST 3 4 5 6

1
Valid MP 2.67 5.05 4.52 6.00
TP Woven 15.46 207.40 719.67 3403.20
Naive MP 964.38 163634.45 – –

2
Valid MP 2.69 2.55 6.61 6.16
TP Woven 5.66 39.6 530.16 2008.39
Naive MP 35.31 967.25 – –

3
Valid MP 2.19 3.45 4.53 6.85
TP Woven 4.38 72.69 640.49 4149.37
Naive MP 318.36 10582.93 – –

Table 3.4: Comparison between TPW and the Naive Algorithm. (MP=Mapping Path, TP=Tuple
Path)

Our final experiment examined the average total number of tuple path-

s generated at each level in the TPW algorithm. The results are shown in

Figure 3.13. We observed that the number of valid tuple paths decreases dra-

matically as the algorithm approached the full size of the target schema. This

is because in a real-life dataset, the distributions of samples in different source

attributes are relatively independent, making specific combinations unlikely as

the size of the combination increases.

3.8 Conclusions

In this chapter, we have proposed a sample-driven schema mapping ap-

proach to facilitate the data integration tasks for end-users. While it is hard for

end-users to understand the precise semantics of schemas and mappings, pro-

100

viding sample instances is much easier for them; we exploit this to design and

prototype MWeaver, our sample-driven schema mapping tool, which renders

the schema mapping tasks for end-users much more feasible.

We have studied the sample search problem in such a sample-driven ap-

proach, and proposed an algorithm to efficiently generate candidate mappings

from user-input samples. Through user studies and simulated experiments on

real-world datasets, we have demonstrated that MWeaver is more usable than

existing schema mapping tools and our solution to the sample search problem

is efficient enough to meet interactive requirements.

Our approach relies on the user-input to be roughly present in the source

instance. In case the user-input is totally irrelevant to the source, it will in-

validate previously generated correct mappings. We are studying on how to

provide features that will automatically suggest relevant data and warn the

user about irrelevant one. In this chapter, we primarily dealt with samples of

string values. If the source contains many numerical attributes, a numerical

sample may be contained by multiple source attributes, which will in turn de-

grade system performance. Also, since the number of tuple paths may grow

rapidly w.r.t. the source database size, it is desirable to provide some insights

into the scalability of our approach. Finally, we currently only support map-

pings in the form of project-join queries, which is a subset of GAV mappings.

It would be interesting to study how to extend our approach to LAV and GLAV

mappings. We plan to address these issues in the future work.

101

(a)

(b)

(c)

Figure 3.13: Average Number of Tuple Paths Generated at Each Level in TPW. J: number of
joins in each mapping. m: the target schema size.

CHAPTER IV

Example-Driven Selection Condition Specification

In chapter III, we introduced a user-friendly sample-driven approach to d-

educe the desired schema mappings. However, we only supported mappings

in the form of project-join queries. While these assumptions may be sufficient

for simple user cases, they may not hold for general real-life scenarios. For

instance, a natural requirement for an online market investigator would be to

select several categories of products from certain time windows. Similar se-

lection requirements may arise in various tasks spanning from database view

creation, query construction to schema mapping.

While to directly specify the selection criteria is hard to end-users, they have

no problem providing some examples of what they wish to select. Based on this

intuition, we propose an approach to derive selection conditions via user-input

examples. On the other hand, examples provide limited information which may

not lead to the exact selection condition desired by the user. As a result, we

further augment our approach for the user to easily revise the example-driven

selection conditions.

In this chapter, we formalize the problem of example-driven selection con-

102

103

dition specification and fold the above ideas into a two-phase solution. In the

first phase, we automatically derive an initial selection condition according to a

few user-input examples. In the second phase, we direct the user to an expres-

sive representation of the initial condition, on which the user is free to revise

the condition via an algebra consisting of direct manipulation operators. We

show via a simulated user study and synthetic experiments that, we are able

to derive high-quality initial selection conditions from just a few user-input ex-

amples, and our algorithms are efficient and scalable.

4.1 Introduction

In chapter III, we introduced a user-friendly sample-driven approach to d-

educe the desired schema mappings. As a starting point, we assumed the

target is a single flat relation and the mapping is in the form of a project-join

SQL query. While these assumptions may be sufficient for simple user cas-

es, they may not hold for general real-life scenarios. For instance, a natural

requirement for an online market investigator would be to select several cat-

egories of products from certain time windows. Similarly, when integrating

multiple protein datasets, a biologist would like to select only the proteins re-

lated to certain pathways. These kind of selection requirements may come

from not only schema mapping tasks, but also tasks of database view creation

and query construction.

To offer user-friendly selection in these scenarios is a non-trivial problem,

since the selection logic may be complicated in itself such that the end-user is

not able to directly specify it in formal languages, even if she precisely knows

104

the selection logic. This is illustrated by the following simplified user case.

Example 1. Imagine an end-user, Jane, who wishes to buy a used car. She

has an access to an used car database, but is not interested in every car in

the repository. Say she wants to find all the new cars no earlier than 2010

with a sedan body style. Also, because she is a big fan of Japanese cars, she

would like to consider older Japanese cars too. Say the selection she has in

mind is “sedan no earlier than 2010 or Japanese sedan no earlier than 2005”.

Of course, a DBA is able to express this condition in formal boolean logic:

BodyStyle = Sedan∧ (Y ear ≥ 2010∨Country = Japan∧ Y ear ≥ 2005). However,

the end-user is unlikely to be able to make this precise expression.

Although the user may specify the selection criteria via a traditional forms-

based interface, the interface may not be sufficient in cases where the com-

plexity of the desired selection logic exceeds the expressive power of such an

interface. For instance, suppose Jane has access to some kind of forms-based

query interface on top of the user-car dataset. If the form has a dropdown list

for “Year no Earlier Than” and another dropdown list for “Body Style”, she has

no trouble specifying “sedan no earlier than 2010”. But, what if there is no

corresponding filter for “Body Style” (as in car.com)? Does Jane just give up

the selection criteria on boy style? Also, how to specify the disjunction of gen-

eral sedan and Japanese sedan? Traditional forms-based interface falls short

under such scenarios.

On the other hand, without the aid from an abstract selection logic, the us-

er would have to manually select all desired data points, which is impractical

if such data points are many. For example, there may be thousands of used

105

cars which satisfy Jane’s selection condition, but she is unable to manually la-

bel them all. To enable the end-users to easily specify such kind of selection

conditions, we need a selection framework which offers sufficient expressive-

ness and facilitates complex selection logic specification with as little manual

burden as possible.

Example-Driven Selection Condition Specification. While the end-users

are unable to expand the expressiveness of a given forms-based interface or di-

rectly spell out the selection condition in formal logic, she is most likely able

to provide examples of what she wants to select. Even if the user is at the very

beginning phase of specifying the selection condition and has difficulty spec-

ifying the condition from scratch, she may have no problem providing some

first-impression examples. By using these examples, we could derive an initial

estimate of the user-desired selection condition.

For instance, in the running example, even if Jane is not able to write the

selection condition in formal boolean logic on the first spot, she would be

able to provide examples such as “Ford Focus 2010” and/or “Honda Accord

2005”. From these examples we could generate an initial estimate of the user-

desired condition, such as “Ford cars newer than 2010 or Honda cars newer

than 2005”.

However, although the initial estimate may be close to the desired condi-

tion, it may not be an exact match. While an intuitive solution would be to

allow the user to continue with more examples to refine the current estimate,

we note that our estimate does not necessarily converge to the user-desired

condition with respect to the number of user-input examples. For instance,

106

even if the user have exhaustively entered every car in the dataset that is ei-

ther a sedan newer than 2010 or a Japanese sedan newer than 2005, our best

estimate may be “any sedan newer than 2005”, which is still more general than

the user-desired condition. Consequently, we further introduce an expressive

representation of the selection condition, on which the user may easily refine

the initial estimate via an algebra consisting of direct manipulation operators.

We fold these ideas into an approach named example-driven selection con-

dition specification. The approach works in two phases. During the first phase,

when the user is not confidant about directly specifying the selection condition

from scratch, we ask the user to provide some example data points she wants

to see in the output. Based on these examples, we automatically derive an ini-

tial selection condition which will select the user-input examples in additional

to other data points the user likely desires. During the second phase, the user

is free to revise the initial condition via an expressive representation using a

direct manipulation algebra until she reaches the desired condition.

Contributions and Chapter Outline. We summarize the main contributions

of this chapter as follows:

• We formalize the problem of selection condition specification under the

example-driven scenario, with fair expressiveness assumptions.

• We introduce a representation model to visualize each valid solution to the

specification problem by a set of manipulatable example groups, which we

call R-units.

• We give an algorithm for automatically deriving an initial representation of

107

the selection condition based on the user-input examples.

• We design and implement a direct-manipulation algebra based on the rep-

resentation, and prove it to be sound and complete.

• We demonstrate that we are able to derive high-quality initial selection con-

ditions from a few user-input examples from a simulated user study, and

show that our algorithms are efficient and scalable.

The rest of this chapter is organized as follows. We formalize the example-

driven selection condition specification problem in Section 4.2. Section 4.3

introduces our representation mechanism, which represent each valid solution

to the specification problem as a set of example groups. In Section 4.4, we

describe our algorithms to give birth to an initial representation based on user-

input examples. Section 4.5 introduces our direct-manipulation algebra, using

which the user can easily customize the selection condition by modifying each

example group in the representation. We present our experimental results in

Section 4.6 before concluding this chapter in Section 4.7.

4.2 Problem Formalization

Before introducing our representation, we first formalize the example-driven

selection condition specification problem. Literally, the problem means to

derive a user specification of selection conditions from user-input examples.

However, in order to formalize the problem, we have to first define the family

of conditions that we allow the user to specify.

This is not a straightforward task. On one hand, the family of selection con-

ditions should be expressive enough. Otherwise, the user could simply fulfill

108

the task via forms-based interfaces or explicitly write them down in formal log-

ic. On the other hand, our choice of the condition family should not be too

expressive, in such a way that would overwhelm the user in the specification

process. In this chapter, we consider it essential for the selection condition to

be in the form of column-value comparison expressions (e.g., Make = Honda)

and any sequences of conjunctions or disjunctions of such expressions. We do

not consider conditions containing column-column comparison, sub-queries or

user-defined functions, because these are both semantically hard to compre-

hend and practically hard to specify for an end-user. As a starting point, we

also assume no negation.

Furthermore, we assume every column is categoric rather than numeric. To

make this assumption practical, we can always categorize numeric values into

a set of categories with reasonable granularity. For instance, in the used car

scenario, we can group every five years into one category, so we have time in-

tervals such as [2000− 2005), [2005− 2010) and [2010−Present). When the user

enters a value for the year, we can implicitly match it to the corresponding cat-

egory without ambiguity. Having this categoric assumption, we further assume

that each column-value comparison expression in our selection condition is an

equality predicate. This is because, greater than (>), less than (<), greater

than or equal to (≥) and less than or equal to (≤) can be rewritten (approx-

imately, according the categorization granularity) in the form of disjunction

of such equality predicates. For instance, Y ear > 2005 can be rewritten as

Y ear = [2005− 2010) ∨ Y ear = [2010− Present).

Given these assumptions, we define a normal form for our selection condi-

109

tion family.

Definition 1 (Relational Disjunctive Normal Form (RDNF)). Given a relational schema S =

(A1, A2, ..., AN), where Ai is an attribute, a relational disjunctive normal form

(or RDNF for short), is a disjunction of conjunctive clauses, each of which has

the form P1 ∧ P2 ∧ ... ∧ PN , where Pi = True|(Ai = Vi), i = 1..N , and Vi is some

value in the domain of Ai. We call each such conjunctive clause a relational

conjunction (RC), and say it has a predicate on Ai, if Pi = (Ai = Vi). We denote

the relational disjunctive normal form and the relation conjunction by RDNFS

and RCS, respectively, and say they have schema S.

We note that, any selection condition in relational disjunctive normal form is

expressive enough in the sense that, any sequence of conjunctions or disjunc-

tions of column-value equality predicates can be expressed in RDNF.

Theorem 4.2.1 (RDNF Expressiveness). Let a predicate P = True|(Ai = VP), i =

1..N . Let a sentence be recursively defined as S = P|(S1 ∧ S2)|(S1 ∨ S2). Any S

can be expressed in the relational disjunctive normal form.

Proof: We prove it by mathematical induction. Given a sentence S, we define

its order to be the number of ∧ or ∨ in it, and denote it by O(S). The base

case is trivial, where O(S) = 0 (or S = P). For the inductive step, where

O(S) = n, n > 0, we pick the ∧ or ∨ of the highest precedence, and split the

sentence into S1 and S2. According to the definition, O(S1) + O(S2) = n − 1.

Since ∀S,O(S) ≥ 0, we must have 0 ≤ O(S1),O(S2) ≤ n − 1. According to the

inductive hypothesis, S1 and S2 can be expressed in RDNF.

Let S1 = Q1 ∨ Q1 ∨ ... ∨ QK , where Q = Pi
1 ∧ Pi

2 ∧ ... ∧ Pi
N , i = 1..K. Let

110

S2 = Q′1 ∨ Q′1 ∨ ... ∨ Q′M , where Q′ = P′j1 ∧ P′j2 ∧ ... ∧ P′jN , j = 1..M . If S is

split on ∨, the inductive step is trivially proved by expressing S as Q1 ∨ Q1 ∨

... ∨ QK ∨ Q′1 ∨ Q′1 ∨ ... ∨ Q′M . If S is split on ∧, according to the distribution

rule, S =
∨

i=1..K,j=1..M Qi ∧ Q′j =
∨

i=1..K,j=1..M

∧
l=1..N Pi

l ∧ P′jl . Let P′′ = Pi
l ∧ P′jl .

If Pi
l = P′jl = True, P′′ = True. If only Pi

l = True, P′′ = P′jl , and vice versa.

Otherwise, Pi
l = (Al = V) and P′jl = (Al = V′). If V = V′, P′′ = Pi

l = P′jl . If

V 6= V′, P′′ = False, thus Qi ∧ Q′j = False and can be omitted. In any case,

S is still in RDNF. According to induction, S of any order can be expressed in

RDNF.

Given a selection condition C in RDNFS and a tuple t with schema S, we can

view C as a boolean function and use it to evaluate t. We denote the evaluation

by C(t). We say t satisfies C if and only if C(t) = True. Similarly, given a

relation R with schema S, we say R satisfies C, or C is valid on R, if and only

if ∀t ∈ R, C(t) = True. Based on this, the selection operation can be defined

as: σC(R) , {t|t ∈ R ∧ C(t)}. Obviously, σC(R) = R, if R satisfies C. Having

these notions, we define our problem as follows.

Definition 2 (Example-Driven Selection Condition Specification). Given a relation R which consists

of user-input example tuples and has schema S, the example-driven selection

condition specification problem is to specify a selection condition C in RDNFS,

which is valid on R.

Note that, the problem can be further divided into two subproblems. The

first is to find a selection condition that is valid on the user-input examples, and

the second is to specify such a selection condition. These two subproblems are

twisted in such a way that, because there may be multiple valid selection con-

111

ditions, the specification is also responsible to pick the desired one. However,

only the user knows the ground truth. The best we can do is to find all the

candidate valid conditions given the current set of user-input examples, and

provide a reasonable mechanism for the user to browse through these can-

didates and choose the one she wants. In the following section, we describe

how we represent each valid selection condition in conjunction with the user-

input examples, and how we enable the user to navigate through various valid

conditions.

4.3 R-unit Representation

Given a relation R of user-input examples and a selection condition C in

RDNFS(R) (not necessarily valid on R), here we describe how we represent C

with the examples.

Since C is in RDNF, we can decompose it as C =
∨M

i=1 Ci, where Ci is in

the form of a relational conjunction
∧N

j=1 Pi
j, and Pi

j = True|(Aj = Vi
j). If we

apply both sides of the first equation in a selection operation on R, we have

σC(R) = σ∨M
i=1 Ci

(R) =
⋃M

i=1 σCi
(R). This suggests that, we can represent a

condition C by a set of relations, each of which corresponds to the result of

applying a selection with condition Ci on R. We call each such result a disjunct

relation and denote it by Ri.

While Ri provides an intuition of the corresponding Ci by presenting to the

user the example tuples that satisfy Ci, it does not necessarily determine Ci.

This is because, first, any generalization of Ci must be satisfied by Ri. It is also

possible that the artifact of the user-input R makes Ri satisfy a more strict

112

version of Ci, just by chance.

Example 2 (Disjunct Relation). Suppose C1 = (Make = Honda)1, the corre-

sponding R1 is shown in Figure 4.1. We see that, the two example tuples are

not enough to determine C1. For instance, if we loosen C1 to C′1 = True,

R1 trivially satisfies C′1. On the other hand, even if we strengthen C1 to

C′′1 = (Make = Honda ∧ Y ear = [2005, 2010)), R1 still satisfies C′′1, since the

example tuples happen to agree on the attribute Y ear.

Make* Model Year

Honda Accord [2005-2010)

Honda Civic [2005-2010)

Make Model Year*

Honda Civic [2010-Present)

Ford Focus [2010-Present)

Make* Model* Year

Honda Accord [2005-2010)

Make* Model* Year

Honda Civic [2010-Present)

Make Model Year

Honda Accord [2005-2010)

Honda Civic [2010-Present)

Ford Focus [2010-Present)

R

R1

R2

Figure 4.1: An Example Disjunct Relation (and an R-unit)

To resolve this ambiguity, we augment each disjunct relation with a boolean

tuple of the same schema. The tuple has a value True on attribute Aj, if and

only if the corresponding Pj in Ci is an equality predicate (not True). We call

the augmented disjunct relation an R-unit, and give the formal definition as

follows.

Definition 3 (R-unit). Given a relation R of user-input example tuples and a

selection condition Ci in RC, where Ci =
∧N

j=1 Pi
j and Pi

j = True|(Aj = Vi
j),

an R-unit is a disjunct relation Ri augmented with a boolean tuple ti, where

Ri = σCi
(R) and ti[Aj] = True iff Pi

j = (Aj = Vi
j). We denote the R-unit by R∗i .

In practice, we represent the boolean tuple by associating a flag with each

attribute in the r-unit’s schema. For example, in Figure 4.1, we append a star

beside Make in the table header to denote that the boolean tuple is True on
1Hereafter we omit Ps that are True, if the context is clear.

113

that attribute (or, in other words, the attribute is associated with a non-trivial

predicate).

Given an R-unit R∗i = (Ri, ti), it uniquely determines a selection condition Ci

in RC. To construct Ci from Ri is straightforward. For j = 1..N , if ti[Aj] = False,

Pi
j = True. Otherwise, Pi

j = (Aj = Vi
j), where Vi

j = ti[Aj], t ∈ Ri. (t can

be any tuple from Ri, since all tuples must agree on the value of attribute Aj

according to the definition.) On the other direction, it is straightforward that

Ci uniquely determines R∗i given R. Hereafter, we use RCi
to denote the R-

unit corresponding to a given Ci in RC. We use Pr(RCi
) to denote the set of all

attributes on which ti is true.

Now we can use a set of of R-units to represent the overall selection con-

dition C. Intuitively, for each Ci, we represent it with a corresponding R-units

R∗i . When we display the set of R-units in a whole to the user, the union of

these R-units represents the disjunction of Ci, which is C.

Example 3 (The R-unit Representation). Suppose we have user-input example

tuples as shown in R in Figure 4.2, and the desired selection condition is C =

(Make = Honda)∨ (Y ear = [2010− Present)), an R-unit representation is shown

in the bottom solid box in Figure 4.2. Note that the Civic tuple appears in both

R-units. This is essential since it implies that the tuple is selected not only

because it is a Honda car, but also because its made after 2010. In other words,

we cannot remove the tuple from either R-unit.

Although each R-unit precisely represents a selection condition in RC, not

any combination of the R-units form a “good” overall representation. Here we

propose several properties that a good representation should satisfy.

114

Make* Model Year

Honda Accord [2005-2010)

Honda Civic [2010-Present)

Make Model Year*

Honda Civic [2010-Present)

Ford Focus [2010-Present)

Make Model Year

Honda Accord [2005-2010)

Honda Civic [2010-Present)

Ford Focus [2010-Present)

R

R1

R2

R
-u

n
it

 R
e

p
re

se
n

ta
ti

o
n

In

p
u

t
R

e
la

ti
o

n

Make* Model* Year

Honda Civic [2010-Present)

R3

Figure 4.2: An R-unit Representation

First of all, the R-unit representation must be complete, in a sense that each

user-input example tuple in R must appear in at least one R-unit R∗i . Since an

R-unit cannot contain tuples not existing in R, the completeness is equivalent

to say R =
⋃M

i=1 Ri.

Second, the R-unit representation must be non-redundant. There are two

notions of redundancy here. First, a R-unit R∗i may be redundant in a given set

of R-units, if each example tuple in R∗i is covered by some other R-unit in the

set. For instance, if we add a new R-unit R∗3 in the representation in Example 3,

as shown in the dashed box in Figure 4.2, it is obvious that R∗3 is redundant,

because any tuple in it is already covered by R∗1 or R∗2.

115

The redundancy may occur not only at relation level, but also at attribute

level, due to data dependencies. Consider, a functional dependency (or FD for

short) from Model to Make. Because the value of Model uniquely determines

the value of Make, a selection condition of form Model = V1 ∧ Make = V2

makes little sense. In other words, the predicate Make = V2 is redundant

in this case. Reflected in the representation, we can always turn off the flag

associated with the determined attribute in the corresponding R-unit, without

changing the content in the R-unit.

In an example-driven scenario, we should not assume an end-user to com-

prehend, recognize and resolve such redundancies in the logic level. Instead,

we should automatically avoid these redundancies in the representation for the

user. We also note that, we do not try to make an R-unit representation mini-

mal. This is because a cost function would be completely user-specific in the

example-driven scenario. Rather than “guess” what the optimal representation

is, we would like to invite the user to explore and define her best choice.

We say a R-unit representation is well-formed, if it is complete and non-

redundant. It is straightforward that a well-formed R-unit representation u-

niquely specifies a valid selection condition on R. In this chapter, our goal is

to provide the user with a well-formed R-unit representation, which the user

is free to modify. To do this, we have two challenges: 1) How do we derive an

initial well-formed representation, given a set of user-input examples? and 2)

How do we allow the user to manipulate this representation, while guarantee-

ing it is well-formed?

In Section 4.4, we formalize the representation birthing problem and give

116

an algorithm to derive the initial R-unit representation. In Section 4.5, we

propose an R-unit algebra, with which the user may navigate through various

well-formed R-unit representation.

4.4 Birthing a Representation

Here we study the problem of giving birth to an initial R-unit representation,

given a relation R of user-input example tuples. We first note that, the set of all

possible R-units in the representation is finite given R is finite. This is because,

given an attribute Aj, it can only take a finite set of distinct values given R.

Consequently, Ci (in RC) can only have finite variations, which map to a finite

set of RCi
. We name all these R-unites candidate R-units, and denote the set

of such R-units by D. Formally, the representation birthing problem can be

defined as the following.

Definition 4 (R-unit Representation Birthing Problem). Given a relation R of

user-input example tuples, the R-unit representation birthing problem is to

find a non-redundant set of candidate R-units B ⊆ D, such that
⋃

R∗∈B R∗ = R.

We can further divide the representation birthing problem into two subprob-

lems: 1) how to generate the complete set of candidate R-units D and 2) how

to select a subset of the candidate set, which can cover R. In this section, we

first describe our solutions to these two subproblems. We then introduce an

optimization which does not require the generation of all the candidate R-units.

4.4.1 Candidate Generation

Here we examine the problem of generating all the candidate R-units in D.

We first give a more formal definition of the complete candidate R-units set D.

117

To do this, we adopt the idea of attribute partition introduced in the literature

of minimal FD induction [51]. Specifically, given a set of attributes X, we can

group tuples in R which have identical values on each A ∈ X. This results in

an attribute partition of R, which we denote as PX . We note that, any R-unit

RCi
with Pr(RCi

) = X can only have some partition group in PX as its disjunct

relation.

For simplicity, hereafter we refer these R-units, their disjunct relations and

the corresponding partition groups interchangeably (since X uniquely deter-

mines the boolean tuple for each RCi
). We call PX an R-unit partition, and

denote PX = {Ri
X
}, i = 1..LX , where each Ri

X
is both an R-unit and a partition

group. As a special case, P∅ = {R}. Obviously, D =
⋃

X∈P(S(R))\∅PX , where

P stands for powerset and ∅ is removed from the powerset to omit the trivial

case of covering with R.

Given the user-input example relation R, to generate all the candidate R-

units is an expensive task, because we have to partition R on each non-empty

subset of SR, where we have 2N − 1 such subsets. Fortunately, instead of com-

puting PX from scratch, Y. Huhtala et al. [51] suggests an efficient way of

computing PX by taking a partition product of PX\A and PA. Having this oper-

ation, we can construct partitions from those on small set of attributes to those

on larger set of attributes. To do this, we first borrow the concept of attribute

lattice from [51], and define an important data structure we call R-lattice.

Definition 5 (R-lattice). Given a relation R of user-input example tuples, an R-

lattice is a lattice L on SR = (A1, A2, ..., AN). For each subset X of SR, there is

a corresponding lattice node PX , which is an R-unit partition of R on X. Given

118

X, for any A ∈ SR\X, there is an edge from PX to PX∪A. We group lattice

nodes into levels, and denote them by Li, i = 0..N , where Li = {PX |
∣∣X∣∣ = i}.

ID Make Model Year

1 Honda Accord [2005-2010)

2 Honda Civic [2005-2010)

3 Honda Civic [2010-Present)

4 Ford Focus [2010-Present)

5 Ford Fusion [2010-Present)

/

O Y M

MOY

MO MY OY

{1},{2},{3},{4},{5}

{1},{2},{3},{4},{5}

{1,2,3,4,5}

{1,2,3},{4,5} {1},{2,3},{4},{5}

{1},{2,3},{4},{5}
{1,2},{3},{4,5}

{1,2},{3,4,5}

R

L

M: Make
O: Model
Y: Year

Figure 4.3: An R-lattice in the Running Example

For instance, Figure 4.3 shows a user-input relation R and its correspond-

ing R-lattice L, with each of its nodes labeled with the corresponding set of

attributes and appended with the corresponding R-unit partition (presented as

comma-separated sets of tuple IDs).

We say PX is a parent of PY , and PY is a child of PX , if there is an edge

in the lattice from PX to PY (e.g., in Figure 4.3, PM
2 is a parent of PMY).

These definitions naturally extend to ancestor and descendant. Specifically,

given a set of partitions Q = {PX}, we say PY is a pure descendant of Q, if

Y ⊂
⋃
{X|PX ∈ Q} (e.g., PMY is a pure descendant of {PM ,PY }, while PMO or

2For simplicity, we abbreviate P{Make} by PM , P{Model} by PO , P{Make,Y ear} by PMY , so on and so forth.

119

PMOY is not).

Given an R-lattice, we can generate the complete set of candidate R-units D

by traversing the lattice in a top-down manner. At L1, we partition R on each

single attribute, and add all the R-units in these partitions to D. At Li, i = 2..N ,

for each PX in Li, we choose any A ∈ X, and compute PX by taking the

partition product of PX\A and PA, where PX\A is already computed at Li−1

and PA at L1. We collect all the R-units from the computed product and add

them to D. Upon completion, D must contain the complete set of candidate

R-units (e.g., all sets of tuple IDs shown in the lattice in Figure 4.3).

4.4.2 R-unit Covering

Having the set of all candidate R-units generated, we have to choose a non-

redundant subset of the full candidate R-unit set to cover R. This problem is

very similar to the set covering problem. In fact, we could directly apply a

traditional set covering algorithm to solve the R-unit covering problem. Since

the set covering problem is known to be NP-hard, it is usually solved by a

greedy algorithm. Here we start with the same greedy algorithm as a naive

solution to out R-unit covering problem.

The naive greedy algorithm in our scenario works as follows. We start by

marking all the example tuples in R as uncovered. At each greedy search

step, we iterate over all the candidate R-units in D, and choose the “best” R-

unit that covers the most uncovered example tuples. The tuples covered by

the best choice are marked as covered at the end of each step. We repeat the

process until all example tuples in R are covered, and return the set of selected

120

R-units.

While the naive greedy algorithm is simple and intuitive, we note that, it

may be unsuitable for our R-unit covering problem, because of the following

reasons. First, the naive algorithm may be very inefficient, because the size

of the candidate pool can be very large (exponential to the size of R). On the

other hand, not all of these candidate R-units need to be considered for the

best choice at each step. Moreover, the naive algorithm does not guarantee

the result R-units in the cover to be non-redundant. We now describe our

algorithm, Smart R-cover, which improves the efficiency and guarantees the

result cover to be non-redundant.

Search Space Reduction

Although the number of all candidate R-units can be potentially large, not

all of them need to be considered during the covering process. In fact, when

we search for the R-unit that covers the most uncovered tuples, most likely we

will find the “best” R-unit from L1, instead of the deeper part of the lattice.

This is because, intuitively, R-unit partitions at the deeper part of the lattice

are in general finer than those at a higher level. Consequently, R-units at the

deeper part of the lattice tend to cover less example tuples. This suggests a

possibility to reduce our search space for such best R-units. To illustrate this

kind of search space reduction, we first give a formal definition of such best

R-units.

Definition 6 (Best Choice). During any step in the covering process, given a

set of R-units T, we say an R-unit R∗ is the best choice in T, if R∗ ∈ T and R∗

121

covers the most uncovered example tuples among the R-units in T.

Note that, we may have multiple best choices in a given set, if they cover

the same number of uncovered tuples. These best choices may from the same

partition, or different partitions. We will discuss how we choose a single R-unit

from the set of best choices shortly. Given the notion of best choices, we have

the following theorem.

Theorem 4.4.1 (Best Choice). At any step in the covering process, let E be

the set of best choices in
⋃
{PX |PX ∈ L1}, and Y =

⋃
{X|PX ∈ L1 ∧ ∃R∗ ∈

E, s.t.R∗ ∈ PX}. Let E′ be the set of best choices in D, we have E′ ⊇ E and

E′\E can only contain R-units in PZ , where Z ⊆ Y and
∣∣Z∣∣ > 1.

Theorem 4.4.1 makes two statements. First, the local best choices in L1 of

the lattice must be a subset of the global best choices in D. Second, if there are

more global best choices, they must be from the pure descendant partitions of

the the set of first-level partitions where the local best choices come from.

As a special case, where the best choices at L1 are from only one partition,

we have the following corollary of Theorem 4.4.1.

Corollary 4.4.1 (Best Choice). At any step in the covering process, let E be the

set of best choices in
⋃
{PX |PX ∈ L1}. If ∃P ∈ L1, s.t.E ⊆ P, E must also be

the set of best choices in D.

Corollary 4.4.1 says, if all the local best choices at L1 of the lattice belong

to the the same partition, they must also be the complete set of global best

choices.

Theorem 4.4.1 and Corollary 4.4.1 suggests a much more efficient way to

122

search for the best choices for our greedy algorithm. At each step during the

covering process, we can start by searching the local best choices at L1 of the

lattice. These local best choices must be part of the global best choices. If all

these best choices appear in the same partition, they must be the only global

best choices, and we just pick one from them. Otherwise, say the best choices

appear in several partitions, we only need to check those pure descendants of

these first-level partitions for additional global best choices, and choose one

from the union of these additional best choices and the local best choices.

So far we have discussed how to efficiently find the set of global best choic-

es, but have been silent about how to pick a unique R-unit from these best

choices. Since all the best choices cover the same amount of uncovered tu-

ples, we based our preference on the number of tuples they cover that are

already covered by previous selected R-units (i.e., the overlapping with the ex-

isting coverage). Intuitively, we prefer the best choice with a less overlapping,

because the corresponding selection condition is more selective, and the result

covering is less likely to be redundant. Moreover, given two best choices with

the same amount of overlapping, preference will be given to the one at the

deeper level of the lattice, since the corresponding selection condition is more

specific.

Example 4 (Efficient R-unit Covering with Best Choices). Suppose we have a user-input

example relation R as shown in the top part in Figure 4.3, here we illustrate

how we search for the best choices. We start by searching for the best choices

in L1, and get two of them: {1, 2, 3} from PM and {3, 4, 5} from PY . Since

they are from two different partitions, it is possible that we have more best

123

choices in the pure descendant (PMY in this case) of these two partitions. We

examine PMY and find no more best choices, so the two local bet choices are

also global. Since this is the first step, both R-units have no overlapping with

the existing coverage. Thus we randomly pick one form them, say {1, 2, 3}, as

the first covering R-unit.

Now the remaining set of tuples to be covered are {4, 5}. We repeat the

greedy search step and find two best choices in L1: {4, 5} from PM and {3, 4, 5}

from PY . Again, we dive into the pure descendant PMY to check for more

best choices. In this time, we find one more global best choice {4, 5} from

PMY . {3, 4, 5} overlaps with the existing coverage by one tuple, so we omit

it. Between {4, 5} from PM and {4, 5} from PMY , we choose the latter since

the corresponding selection condition is more specific. Now all tuples in R

are covered and our process terminates. We highlight the columns on which

the select R-units have predicates with different color for different R-units in

Figure 4.3.

Avoiding Redundancies

In the previous section, we investigate an efficient R-unit covering algorith-

m based on traditional greedy set covering. However, the cover of R-units

generated by our algorithm is not guaranteed to be non-redundant. Here we

describe how we further improve our algorithm to guarantee the result R-unit

cover to be non-redundant.

As we have discussed in Section 4.3, there are two notions of redundancies:

redundancies in the attribute (predicate) level and redundancies in the relation

124

(R-unit) level. We start with the first kind of redundancies.

FD Redundancy The redundancies in the attribute level attributes to data

dependencies. In this chapter, we focus on functional dependencies (FDs).

For instance, in our running example we have a FD Model → Make. Given

this FD, an R-unit R(Make=Honda∧Model=Accord) makes little sense, since we know

Accord is always made by Honda. As a result, the predicate Make = Honda is

redundant in this case. We can always remove it and replace the above R-unit

with R(Model=Accord).

In fact, if we interpret this in our lattice vocabulary, we realize that, if we

have a FD X → A, then for any Y ⊇ X, PY = PY ∪A. In other words, each R-unit

in PY ∪A is redundant, because we can replace it with an R-unit in PY which has

the same coverage and no predicate on A. Consequently, we can remove the

whole PY ∪A from the lattice before our covering procedure, without affecting

the rest part of our algorithm. For example, since we have Model →Make, we

can safely remove PMO and PMOY from the lattice in Figure 4.3 (presented in

circles with dashed outline).

As a special case, if X is a key, we have X → A for any A in S(R)\X. As a

result, for any X ⊂ Y ⊆ S(R), we can safely remove PY from the lattice at the

beginning of our algorithm.

R-unit Redundancy The second type of redundancy occurs at the R-unit level.

To recall, given the R-unit cover set B, we say an R-unit from B is redundant,

if each of its tuples are covered by some other R-units in B. We say the set B is

redundant, if it contains at least one redundant R-unit. The following example

125

demonstrates how our algorithm generates a redundant R-unit cover set.

ID A B

1 a1 b1

2 a1 b2

3 a1 b3

4 a1 b4

5 a2 b1

6 a3 b1

7 a4 b2

8 a5 b2

9 a6 b3

10 a7 b3

11 a8 b4

12 a9 b4

R1: R_(A=a1)
R2: R_(B=b1)
R3: R_(B=b2)
R4: R_(B=b3)
R5: R_(B=b4)

M1 M2 M3 M4 M5

1 2 2 2 2

1 1 2 2 2

1 1 1 2 2

1 1 1 1 2

0 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 1

R Coverage Map

Selected R-Units

Figure 4.4: A Example for R-unit Redundancy

Example 5. Consider a relation R as shown in the left part of Figure 4.4. Ac-

cording to our algorithm, the unique best choice at step one is RA=a1 (which

covers 4 tuples). We select it as R1. In the subsequent steps, RB=bi
, i = 1..4

are equally good, so we pick one at a time, and denote them as R2 − R5. We

see that, even if R1 is redundant (since it is covered by R2 − R5), it was still

selected at first, because it was the only global best choice at that time.

In order to eliminate such redundancies, we maintain a data structure called

cover map, which is shown in the middle part of Figure 4.4. Intuitively, it

records how many times a tuple in R is covered by R-units in the cover set B.

At any time, for any R-unit in B, if all of its tuples are covered at least twice

according to the cover map, we remove it from B and update the cover map

accordingly.

Given a cover map M and a tuple t ∈ R, we use M(t) to denote the cor-

responding value in M for that tuple t. For a set of tuples R′, we define

126

M(R′) , {M(t)|t ∈ R′}. We note, when we are going to add a new R-unit

R∗ to B at the end of each step, only the subset of R∗ that overlaps existing

coverage will possibly make an existing R-unit cover redundant. Specifically,

we only need to check M(R∗ ∩
⋃

B). Only when there is a switch from 1 to 2

in that part of the map, there can be a new redundant R-unit.

This leads to our algorithm as follows. At the end of each step, we iterate

each entry in M(R∗ ∩
⋃

B), and increase them by one. If M(t) = 2 (after the

increment), we retrieve the R-unit R′ in B that covers this tuple. If {t|M(t) =

1, t ∈ R′} = ∅, we remove R′ from B and decrease each entry in M(R′) by one.

4.4.3 Smart R-Cover Algorithm

Here we describe our algorithm for the representation birthing problem,

which is shown in Algorithm 7.

Our algorithm takes as input the user-input relation R, and the set of func-

tional dependencies FD. We first populate the full lattice, by adopting a top-

down approach using partition product introduced in [51] (line 2). We then

prune all the lattice nodes whose R-units must be FD-redundant (line 3). We

continue with the R-unit covering procedure.

We first initialize the cover set B and the cover map M (line 4-5), and di-

rectly use R to record the set of uncovered tuples. While R is non-empty, we

repeat the following greedy search step. We first find the set of best choices

in the first-level partition that cover m uncovered tuples (line 8), and record

their corresponding set of attributes (set of single column in this case) in S1

(line 9). We randomly pick one of the best choices as the current best choice

127

(line 10). We then check if there are any additional best choices down in the

lattice (line 11- 24). At each deeper level, we only consider partitions all of

whose parents have best choices (line 15). We collect all the best choices in

these partitions (line 16) and pick the one with the least overlapping (line 23).

At the end of each step, we prune redundant R-units in B (line 25- 36), as we

describe before. Finally, we update the cover set B (line 37) and the set of

uncovered tuples R (line 38).

4.4.4 Optimized R-unit Covering

While smart R-cover saves computation by scanning much fewer lattice par-

titions, it still suffers from the cost of populating the full lattice. According

to Theorem 4.4.1, we need to check the deeper lattice only in the presence of

ties, which has a small probability. Intuitively, we can just scan the first level

of the lattice for the best choices. Only when we have ties, we dynamically

create the partition product of these tie R-units and check if the result quali-

fies for an extra best choice. By doing this, we only need to populate the first

level of the lattice in the lattice population step. We apply this optimization to

Smart R-cover and obtain the Optimized R-cover algorithm. We will gain a

performance insight into these algorithms in Section 4.6.2.

4.5 R-unit Algebra

So far we have discussed how to give birth to an initial R-unit representation

to the user. However, there is no guarantee that the selection condition implied

by this initial representation is exactly the user-desired one. In this section,

we describe how do we allow the user to easily explore the space of R-unit

128

Algorithm 7 Representation Birthing
1: procedure Birth(R, FD)
2: L← PopulateLattice(R)
3: L← PruneByFD(L, FD)
4: M← InitCoverMap(R)
5: B← ∅ . initialize cover set
6: while R 6= ∅ do
7: m← maxR∗∈

⋃
L1
|R∗ ∩R| . find local best choices

8: E1 ← {R∗|R∗ ∈
⋃

L1 ∧ |R∗ ∩R| = m}
9: S1 ← {X|X = Pr(R∗),R∗ ∈ E1}

10: R′ ← RandomPick(E1)
11: for i = 2.. |S1| do . search for more best choices
12: Ei ← ∅
13: Si ← ∅
14: for PX ∈ Li do
15: if ∀A ∈ X,X\A ∈ Si−1 then
16: T← {R∗|R∗ ∈ PX ∧ |R

∗ ∩R| = m}
17: if T 6= ∅ then
18: Ei ← Ei ∪T
19: Si ← Si ∪X
20: end if
21: end if
22: end for
23: R′ ← arg minR∗∈Ei

|R∗\R|
24: end for
25: for t ∈ R′ do . eliminate redundancy
26: M(t) + +
27: if t ∈ R∗\R ∧M(t) = 2 then
28: R′′ ← R∗|R∗ ∈ B ∧ t ∈ R′′

29: if {t|t ∈ R′′ ∧M(t) = 1} = ∅ then
30: B← B\{R′′}
31: for t ∈ R′′ do
32: M(t)−−
33: end for
34: end if
35: end if
36: end for
37: B← B ∪ {R′} . update cover set
38: R← R\R′ . update uncovered tuples
39: end while
40: return B

41: end procedure

129

representation, in order to arrive at the the representation with the desired

selection condition specification.

In this chapter, we propose a set of direct manipulation operators imple-

mented with point-and-clicks or drag-and-drops for the user to easily navigate

through the representation space. Collectively, we call it R-unit Algebra.

4.5.1 R-unit Algebra Operators

Our R-unit algebra consists of following operators: Add, Remove, Lock, Unlock

and Merge, where Lock, Unlock and Merge restructure the R-unit representation

of a given R, while Add and Remove also augment or diminish the scope of R.

We describe each of them as follows.

Lock In Example 2, we see that how a disjunct relation can imply multiple

conditions in a relational conjunction (RC) form. If the two tuples in Example 2

are all the user input, this disjunct relation can mean four selection conditions:

(1) none, (2) Make = Honda, (3) Y ear = [2005, 2010) or (4) Make = Honda ∧

Y ear = [2005, 2010). Say, at some stage, we represent the second condition by

a corresponding R-unit to the user, as shown in Figure 4.1. Now, what if the

actual user-desired condition is the fourth one?

In the representation of an R-unit R∗ with a predicate tuple t, we say a col-

umn A is locked, if and only if t[A] = True. The intuition is, whenever A is

locked, it means we have a predicate on that attribute. Consequently, all the

tuples in R∗ must have the same value on A. For instance, in Figure 4.1, Make

is locked, meaning that we have a predicate Make = Honda in the condition

corresponding to this R-unit. If the user actually requires an additional pred-

130

Make* Model Year

Honda Accord [2005-2010)

Honda Civic [2010-Present)

Make Model* Year*

Ford Focus [2010-Present)

Make* Model Year*

Honda Accord [2005-2010)

Make* Model Year*

Honda Civic [2010-Present)

Make* Model Year*

Honda Accord [2005-2010)

Make* Model Year*

Honda Civic [2010-Present)

Make* Model Year*

Honda Accord [2005-2010)

Make Model Year*

Honda Civic [2010-Present)

Ford Focus [2010-Present)

R1: Lock(Year)

Add(R3)

R1

R1

R2

R1

R2

R3

or R2: Unlock(Make)
or R3: Unlock(Model)

Make Model* Year*

Honda Accord [2005-2010)

Make Model Year*

Honda Civic [2010-Present)

Ford Focus [2010-Present)

R1

R2

R1

R2

R1: Lock(Model)

Merge(R2,R3)

Figure 4.5: Examples of R-unit Algebra

131

icate on Y ear, she can just lock the Y ear attribute. In practice, she can just

click the corresponding cell in the table header to toggle the status of Y ear

from unlocked to locked. The new predicate Y ear = [2005, 2010) will be auto-

matically derived from the existing values in R∗ and appended to the current

condition.

Note that, the values on the attribute to be locked may not be the same. For

instance, suppose we have different values under Y ear (as shown in the first

R-unit in Figure 4.5). In this case, since the R-unit can no longer satisfy the

new predicate, it will be split into two smaller disjoint R-units, as shown in the

second representation in Figure 4.5. We notice, the result R-units of the split

may be redundant. In order to maintain the representation to be well-formed,

we have to check each such R-unit using the same technique we have discussed

in Section 4.4.2, and remove it from the representation if it is redundant.

Add/Remove We allow the user to directly add example tuples in our R-unit

representation. Specifically, the user can either add a new tuple in an existing

R-unit, or create a new R-unit containing only the new tuple. If the new tuple

is added to an existing R-unit, values under the locked attributes will be copied

from other tuples to the new tuple, which serves as both a validness guarantee

and a way to save user efforts. If the new tuple is added as a new R-unit, we try

to make this new R-unit as specific as possible by locking as many attributes as

we can. For instance, in Figure 4.5, we add a R-unit containing a single new tu-

ple for Ford Focus as R3. Due to the FD from Model to Make, we automatically

lock Model and Y ear for the user. Add will not cause any redundancy.

We also allow the user to directly remove tuples from any R-units in the

132

representation. If the tuple to be removed is the only one in the R-unit, we

delete the R-unit accordingly. We do not lock any additional attribute even if

all the tuples in the R-unit have the same value on that attribute after the tuple

removal, for the same reason we have described in Example 2. However, we

do take care of redundancies here, because the R-unit may be redundant after

the tuple removal.

Unlock Unlock is the reverse of Lock. By unlocking an attribute in an R-unit,

we mean to remove the corresponding predicate from the selection condition

represented by the R-unit. Unlock can be issued using point-and-clicks similar

to Lock. In fact, all the user has to do is to click the corresponding cell in

the table header, and the semantics will be clear according to the current lock

status of that attribute. If it is previously locked, the click means to unlock it,

and vice versa.

According to Definition 3, Unlock may expand the R-unit to include tuples

from other R-units. For instance, in Figure 4.5, if we unlock Make in R2 in

the third representation, R2 will expand to the R2 in the fourth representation,

where it absorbs old R3. As a result, the old R3 is redundant and need to be

removed from the representation.

Similarly, we can achieve the same result by unlocking Model in R3. Indeed,

both of these two operations results in a merge of R2 and R3 in the third

representation, which we describe as follows.

Merge Merge helps the user to directly combine two R-units, which implies the

generation of a selection condition (in RC) that is more general than the one

133

represented by both R-units. In practice, this operation can be easily speci-

fied by a drag-and-drop gesture: the user may drag one R-unit and drop it on

another R-unit to specify such a merge.

If we merge R1 and R2, we discard all locks except the common locks on

Pr(R1)∩Pr(R2). Furthermore, for each attribute A on which we have a common

lock, we retain it only when tuples from R1 and R2 have the same value on A.

For instance, by merging R2 and R3 in the third representation, only the lock

on Y ear is preserved.

Again, Merge may cause other R-units to be redundant since it may largely

generalize the corresponding selection condition. We have to check the redun-

dancy of other R-units and prune the redundant ones accordingly.

4.5.2 Expressive Power Analysis

Although our R-unit algebra is very simple, here we show that the algebra

is very expressive, in a sense that it is sound and complete on the space of

all well-formed R-unit representation given R (i.e, we do not consider Add or

Remove, since they will alter the scope of R).

Soundness The soundness says, given a well-formed R-unit representation,

after applying any restructuring operator in the R-unit algebra, the result

representation is still well-formed. The proof is straightforward. Recall the

definition in Section 4.3, a well-formed R-unit representation is complete and

non-redundant. Thus we only need to prove, the result of applying any restruc-

turing operator in the R-unit algebra on a well-formed R-unit representation is

still complete and non-redundant.

134

For Lock, the split of the old R-unit does not change the coverage, so com-

pleteness is guaranteed. For Unlock and Merge, the result R-unit can only con-

tain more tuples than the operand R-unit(s), so the result representation must

also be complete. Since we explicitly prune possible redundancy during the

execution of each operator, the non-redundancy is also guaranteed.

Completeness The completeness says, given any pair of well-formed R-unit

representation, one as the start point and the other as the end point, there is

at least one sequence of the restructuring operators from the algebra, which

can transform the start point representation to the end point. Here we show

that, this can be done with only Lock and Unlock.

To construct the sequence of operators, we separate the transformation

into two phases. In the first phase, we transform the start point to a fully-

partitioned representation, where each R-unit only contains a single tuple and

has locks on all the attributes (we omit FDs here for simplicity). In the sec-

ond phase, we transform the fully-partitioned representation to the end point.

To construct the operator sequence for the first phase is straightforward. We

only need to lock every unlocked attribute in every R-unit in the start point

representation. We thus focus on the second phase in the following.

Given the end point representation, we first trim each R-unit in it. Specifi-

cally, given any R-unit, we preserve the tuples in it that is only covered by this

R-unit (i.e., where M(t) = 1), and trim the other tuples. Since the end point

representation is non-redundant, the trimmed R-units must be non-empty. For

each trimmed R-unit, we randomly pick one tuple we call the seed. Obviously,

such seeds must appear in the fully-partitioned representation.

135

Here is how we construct the sequence of operators for the second phase.

Given the fully-partitioned representation, we first allocate those R-units which

contain the set of seeds from the end point representation. We call these R-

units seed R-units. We can then grow each of these seed R-unit to the cor-

responding R-unit that contains the seed in the end point representation. In

fact, if the corresponding R-unit in the end point has locks on the attribute set

X, we just need to unlock each attribute in S(R)\X in the seed R-unit. The

composition of the operations from both phases completes the proof.

As a final remark, the operator sequence constructed in the above proof is

tediously long. In practice, the actual sequence a user specifies could be much

shorter. Although it would be interesting to examine an optimal sequence here,

the problem is beyond the scope of this chapter.

4.6 Evaluation

The critical question to our two-phase solution of example-driven selection

condition specification is that, whether some initial examples would be able to

generate an initial selection condition that is close enough to the ground truth.

In this section, we demonstrate a positive result from a simulated user study.

Moreover, in order to gain a performance insight into our R-cover algorithm,

we conduct a synthetic experiment and show that, our algorithm is much more

efficient compared with the naive algorithm described in Section 4.4.2, and

effectively eliminates redundancies.

We use two datasets in our experiments: Yahoo Movies and IMDb. The

Yahoo Movies dataset is 500MB in size and contains 43 relations and 131 at-

136

tributes. The IMDb dataset is 2GB in size and contains 19 relations and 57

attributes. Both datasets are stored in MYSQL 5. All the experiments were run

on a desktop machine with an Intel Core i7 860 @ 2.80GHz and 8GB RAM.

4.6.1 Birthing with Simulate Tasks

In this section, we show that, given a ground truth selection condition, and

just a few examples from the result of the ground truth selection, we are able

to derive an initial selection condition that is close enough to the ground truth.

Specifically, we design the ground truth to be three simple selection conditions

shown as follows:

T1 Title = “Harry Potter” ∨Director = “Mike Newell”

T2 Title = “Harry Potter”

∨(Director = “Mike Newell” ∧Genre = “Action”)

T3 (Title = “Harry Potter” ∧Director = “David Yates”)

∨(Director = “Mike Newell” ∧Genre = “Action”)

Note that, we deliberately design some overlap between the disjunct rela-

tions in each task to make them non-trivial. The complexity of these tasks are

monotonically increased.

For each of the three ground truth, we simulate the user input as follows.

First, we create a database view of all the attributes involved in these tasks

(a view with attributes Title, Director and Genre) by joining and projecting

corresponding relations and attributes in the underlying movie database. After

this, we apply the ground truth selection condition on the view to generate a

user-input candidate set U. We then simulate the user input by randomly

137

sampling a number of tuples from U, where we vary the number from one to

the full size of U.

For each simulated user input, we feed it to our birthing algorithm, retrieve

the output selection condition and compare it with the ground truth. In order

to measure the difference, we introduce a metric we name operation distance.

Intuitively, it stands for the minimal number of R-unit algebra operations (Lock-

/Unlock) needed to refine the initial output condition to the ground truth. For

instance, if the output is identical to the ground truth, the distance is zero. If

the output is T1 but the ground truth is T2, the distance is one since the user

needs to further lock an attribute Genre in the second disjunct relation in T1.

For each task and each sample size from one to the size of U, we randomly

sample U for one hundred times and use the sample to generate the initial

condition. The average operation distance between these conditions and the

ground truth condition is shown in the top of Figure 4.6. As can be seen from

the figure, the distance drops dramatically as more simulated input are pro-

vided. On average, the user only needs about one extra operation to derive

the desired condition after providing five examples. For task one and two,

our birthing algorithm almost directly infer the desired condition with more

than ten examples. Notice that, however, task three does not converge to the

ground truth even with complete input. This is because, “Mike Newell” also

directs “Harry Potter” which has a Genre of “Action”. Thus the R-unit with

Title = “Harry Potter” is always a better choice than the first R-unit in T3 ac-

cording to our greedy heuristics. We are exploring this problem and planning

to refine our algorithm using selectivity information in the future work.

138

0 5 10 15 20 25
Number of Example Tuple

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
pe

ra
tio

n
D

is
ta

nc
e Simulate Task 1

Simulate Task 2
Simulate Task 3

0 10 20 30 40 50 60 70
Number of Example Tuple

5

10

15

20

25

30

Ti
m

e
(m

s)

Simulate Task 1
Simulate Task 2
Simulate Task 3

Figure 4.6: The average operation distance and execution time for birthing the initial condi-
tions with various sample size.

139

The execution time for birthing with simulated input is shown in the bottom

of Figure 4.6. Since the set of simulate task set is relatively selective, the sam-

ple size is small and our algorithm is able to achieve near-linear performance.

All experiments are completed within 100ms, which is sufficient for practical

human computer interaction.

4.6.2 Birthing with Synthetic Data

The previous experiments are all based on domain-specific data and tasks

with limited input size. In order to obtain a general performance insight in-

to our R-cover algorithm, we further experiment it with a synthetic dataset.

Specifically, we generate the input relation with a set of numeric tuples. For

each attribute in each tuple, we randomly pick a number from an integer pool.

As a starting point, we set the pool size to be the rounded square root of the

total number of tuples. We run Optimized R-cover, Smart R-cover and the naive

covering algorithms on this synthetic dataset, and compare the total execution

time.

We start by fixing the number of column to be five and varying the row size

from 10i, 2 × 10i to 5 × 10i, i = 2..4. As can be seen from Figure 4.7, both our

algorithms are almost one order of magnitude faster than the naive algorithm.

This is because instead of traversing the whole lattice, most of the time (if

no ties are present) our algorithms only need to traverse the first level of the

lattice. In addition, on average, Optimized R-cover is around 30% faster than

Smart R-cover, due to the fact that the former only needs to populate the first

level of the lattice, while the latter has to compute all partitions throughout

140

the lattice.

102 2 · 102 5 · 102 103 2 · 103 5 · 103 104 2 · 104 5 · 104

Number of Rows

100

101

102

103

104

105

106

Ti
m

e
(m

s)
Naive
Smart R-cover
Optimized R-cover

Figure 4.7: The overall execution time for birthing on a relation with five columns and varying
row number.

Since the column number is fixed at five in the previous experiment, the save

on lattice population is not clearly seen. In order to magnify the performance

difference between the optimized R-cover and the smart R-cover, we further

fix the row number at one thousand (with a corresponding pool size of 32) and

vary the column size from one to ten. The result is shown in Figure 4.8. As

expected, while the one-order-of-magnitude difference remains between the

naive algorithm and Smart R-cover, the difference between Optimized R-cover

and Smart R-cover increases exponentially with respect to the column number.

This is because given a column number c, Smart R-cover needs to populate 2c

lattice nodes, while Optimized R-cover only needs to populate c nodes on the

first level.

141

1 2 3 4 5 6 7 8 9 10
Number of Columns

100

101

102

103

104

105

Ti
m

e
(m

s)

Naive
Smart R-cover
Optimized R-cover

Figure 4.8: The overall execution time for birthing on a relation with one thousand columns
and varying column number.

4.7 Conclusions

In this chapter we studied how to make it easy for end-users to specify s-

election conditions. We started by formalizing the example-driven selection

condition specification problem, with a general assumption of the family of

conditions to be specified. We then proposed a two-phase solution based on a

representation of such selection conditions. In the birthing phase, we automat-

ically derive an initial representation of the estimated user-desired condition.

During the refining phase, we designed an algebra for the user to easily modify

the initial representation until she reaches the desired selection condition.

We folded these ideas into a prototype system, and evaluated via a simulated

user study and synthetic experiments. Our results show that, our system is

able to generate high-quality initial estimates of the desired condition, and our

algorithms for deriving the initial estimates are efficient and scalable.

CHAPTER V

Incremental Information Integration

While information integration could itself be hard to end-users, as we have

seen in chapter III, it becomes even more challenging when the end-user has to

maintain it. Specifically, when either new increments of source data are avail-

able for processing, or when new data sources become available with their

own integration rules, there is a need to regenerate the integrated data, in an

incremental way, by exploiting only the data that is new, and only the new inte-

gration rules (in the case of new data sources). This is important because the

end-users would otherwise need to reintegrate everything again from scratch,

which places a heavy operational burden on them.

In this chapter we present an incremental integration framework for com-

plex nested data that applies to both new source data and new integration

rules. Our method utilizes HIL [48], a recent declarative integration language.

A salient feature of HIL, which makes it appealing for incremental integration,

is that it logically decomposes a complex integration task into simple rules

that are based on indexes. We give a method for the incremental evaluation

of such rules that consists of two phases: (1) an incremental chase with the

142

143

new rules and data, to create a flat, index-based representation of the target

data, followed by (2) a de-reference procedure that traverses all the indexes to

construct the desired nested representation of the target data. We study which

data structures should be maintained to facilitate incremental integration, and

give a novel de-reference algorithm that is based on generating queries with

joins. We evaluate the resulting method on a real-world financial integration

scenario based on SEC filings, and show significant performance benefits.

5.1 Introduction

Information integration has long been an important problem in the industry

and, also, has received substantial attention from the research community. In-

tegration usually involves heterogeneous sets of structured and unstructured

data items that must be cleansed, normalized, linked and mapped into a set

of target entities. There are now large public data sources that are constantly

updated with new data and that can be combined with other external or in-

ternal (enterprise) data sources. For instance, it is not uncommon these days

to see projects or start-ups integrating data extracted from blogs and micro-

blogs (e.g., Twitter), from public data sources such as the U.S. Census or the

U.S. Securities and Exchange Commission (SEC), or from knowledge bases like

Wikipedia, DBLP, or IMDb. The end-goal of most of these efforts is to provide

integrated data that can be used for subsequent data analysis.

A well-known challenge occurs when either new increments of source data

(over the same source schema) become available, or when entirely new data

sources (with new schemas) must be added into the incremental process. In

144

the latter case, new integration rules must be written to account for the new

type of data. Furthermore, the target schema itself may need to be adjust-

ed to accomodate possibly new attributes. In both cases, there is a need to

regenerate the integrated data, in an incremental way, without re-evaluating

everything from scratch. This is important for efficiency reasons but also in

cases where the previous source data or the previous integration rules are no

longer available.

In this chapter we present a declarative incremental integration framework

for complex nested data that makes use of HIL [48], a recent declarative lan-

guage for entity integration. HIL expresses the integration logic as rules that

transform source “raw” records into target “entities”. An important feature of

HIL, which makes it particularly appealing for incremental integration, is the

ability to logically decompose a complex integration task into simple rules that

are based on indexes. Consequently, subsequent information integration steps

will often be directed to only a few indexes (the ones that are relevant to the

new increments of data). Furthermore, HIL has other appealing properties,

such as type inference and record polymorphism [83], which in turn enables

to automatically refine the target schema in response to the new integration

rules.

Our incremental integration framework applies seamlessly to new incre-

ments of data and to additions to the integration logic. At one extreme of the

spectrum, we cover what is called incremental view maintenance [25], which

creates a new version of the target in response to changes in the input data

(without any changes in the logic itself). At the other end of spectrum, we

145

cover what is known as view adaptation [44], which creates a new version of

the target in response to changes in the integration logic itself (without any

changes in the source data).

To illustrate how our framework works, we present a simplified version of

a real integration flow in the financial domain based on SEC filings. The com-

plete version of this scenario will be used later for experimental evaluation.

IRP

cik

name

company

title

reportingDate

isOfficer

isDirector

Person

cik

name

emp: Set [
 company
 positions: Set [
 title
 earliest_date
 latest_date
]
]

JobChange

docID

span

name

apptDate

appointedAs

PeopleLink

cik

docID

span

Batch:
Stage1 + Stage2

Person

cik

name

emp: Set [
 company
 positions: Set [
 title
 earliest_date
 latest_date
]
]

①②③➀➁➂

①②③➀➁➂

①②③➀➁➂

Logic 1

①

L
o

g
ic

 1

②

Logic 2

R
e

u
s
e

③

Stage 1

Stage 2

Logic 2

Figure 5.1: SEC Scenario: Alternative Integration Strategies

Example 6. Public financial institutions and individuals connected to these in-

stitutions are required to file periodic reports with the US SEC agency, dis-

closing financial results of companies, information about directors and board

members of those companies, as well as their stock transactions and holdings.

These fiilings represent a rich set of sources of information that form the basis

146

for subsequent integration and data analysis [23].

We divide our example into two stages, as shown in Figure 5.1. The first

involves a (non-incremental) mapping from one of the SEC sources (IRP, which

stands for insider reports for people) into a target Person entity type. We repre-

sent the set of integration rules that specifies this transformation as Logic 1.

We will give details later about how this logic is expressed in HIL. The role of

Logic 1 is to create, for each person, a nested representation of all the infor-

mation known about that person from all the insider reports. This information

includes the SEC id (called cik), the name, as well as more complex structures

such as the list of employment records with all the known companies for which

the person worked, with all the positions held within each company, and with

an understanding of the time-span for each position (based on all the records

in IRP).

The second stage corresponds to adding a new data source (JobChange, con-

taining historical records mentioning when a person was appointed into a po-

sition or left a company) into the integration flow. The goal here will be to

integrate the new information into the existing Person entity data in an incre-

mental fashion. The new information may result in additional companies in the

employment history, or additional positions, or perhaps changes in the earliest

or latest date for a position, as more is learned from the new data source. One

additional complication in this scenario is that the JobChange records are extract-

ed from text documents and do not include the actual cik of a person. Thus, to

link a JobChange record to a known Person entity, we assume a separate entity res-

olution step that produces a set PeopleLink of links between JobChange and Person.

147

The fields docID and span, in this example, form an identifier for each JobChange

record. We represent the set of rules to map the new information from JobChange

(and PeopleLink) into Person as Logic 2 (to be shown later as well).

The default strategy to combine the data from the two sources is to take

the union of Logic 1 and Logic 2 and evaluate it as if it were a single set of

rules on top of both IRP and JobChange. This strategy (shown with number 2 in

the figure) is also the standard strategy that is supported by the HIL compiler

[48]. Without going into details of HIL compilation, the advantage is that the

compiler has access to all the rules and all the data, and hence it can stage

appropriately all the transformation steps as well as the fusion that needs to

be done across the two types of data. The disadvantage of this strategy is that

it pretty much re-executes all the integration steps for IRP and Logic 1.

The more challenging strategy (shown with number 3 in the figure) is to

avoid touching both the previous source data IRP and the previous rules Logic

1, which may not even be available anymore, and to create a new Person entity

data based only on Logic 2 and the new data source, while reusing the result of

previous integration for Person. An important condition that one must require is

that the incremental strategy must be equivalent (in terms of the final result)

to the non-incremental strategy.

The goal of this chapter, as suggested by the above example, is to develop

the algorithms that allow for the incremental integration strategy, along with

any auxilliary data structures that may need to be maintained in order to sup-

port this incremental strategy. Towards this goal, we develop an incremental

evaluation strategy that is based on two phases: chase and de-reference.

148

The chase phase takes as input a set of integration rules and a data set, and

generates a flat representation of the target data that uses index references

to encode the hierarchical structure of the data. The chase makes essential

use of HIL indexes, and is similar in spirit to the chase with second-order tgds

in [39], which uses symbolic Skolem terms rather than index references. For

our example, chasing with the integration rules of Logic 1 will generate flat

Person records where the emp component is represented, lazily, by a reference

to an index (Employment) that is populated separately by other rules. The ad-

vantage is that the population of Person is decorrelated from the population

of the Employment index. Furthermore, indexes are amenable for incremental

evaluation, since a new chase stage with new integration rules or new source

data will incrementally add into the relevant indexes. One of the key ideas of

our approach is to materialize the flat result of the chase (containing “frozen"

index references) as a data structure that can be reused and incrementally

maintained.

The de-reference phase can then be used to transform the flat result of

the chase into the desired nested target data. While a naive implementation

of de-reference would walk the flat data structure and recursively “inline" all

index references with the actual values stored at the indexes, we show that a

more efficient alternative can be obtained by using an additional data structure

that can also be incrementally maintained. This data structure, which we call

reference summary graph (or reference summary), encodes all the possible

types of references that may appear in a record. It enables us to develop an

optimized de-reference algorithm that is based on generating a non-recursive

149

set of queries with join operations. Even though the de-reference procedure

itself is non-incremental, the efficiency of the generated queries allows us to

achieve good overall performance.

Contributions and Chapter Outline. We summarize the main contributions

of this chapter as follows:

• We describe a declarative incremental integration framework for nested da-

ta, which is based on simple integration rules that make use of indexes.

• Our incremental integration framework applies seamlessly to both new in-

crements in the data and additions to the integration logic.

• We give an integration strategy that is based on two phases: chase and

de-reference. The chase is incremental and produces flat, index-based rep-

resentations of the target data that can be incrementally maintained.

• We give an optimized de-reference method by generating efficient, non-

recursive, queries with join. The method is based on an auxilliary reference

summary graph that can also be incrementally maintained.

• We evaluate our method, experimentally, on a financial integration scenario

based on SEC filings. We show that as new types of data, and new types of

rules are added to the integration process, the incremental recomputation

of the target entities achieves significant performance benefit.

The rest of the chapter is organized as follows. Section 5.2 briefly introduces

HIL and describes the integration logic for Example 6. We formalize the incre-

mental integration problem in Section 5.3 and describe a naïve solution based

on deep-union of nested data in Section 5.4. We develop the chase and de-

150

reference solution in Sections 5.5 and 5.6, and give our optimized de-reference

method in Section 5.7. We present our experimental results in Section 5.8 and

conclude in Section 5.9.

5.2 Preliminaries

We now describe the declarative framework provided by HIL, the language

we use in this chapter. The main ingredients of HIL are: (1) entity types, which

define the logical objects that users create and manipulate, and (2) declarative

rules that transform entities. Entity types are represented in HIL’s data model

as nested-sets of values and records. A special form of entity types are indexes,

which allow grouping of sets of values under a key value and facilitate the

generation and maintenance of nested entities. We will now use parts of the

example in Figure 5.1 to illustrate how each of these HIL ingredients are used

to express an integration flow.

5.2.1 Constructing Entities

We start by illustrating how we transform IRP to Person (Logic1 in Figure 5.1).

First, we declare some of the relevant entity types:

IRP: set [cik: int, name: string, ?];
Person: set [cik: ?, name: ?, emp: set ?, ?];
Employment: fmap [cik: int]

to set [company: string, positions: set ?];
Positions: fmap[cik:int, company:string]

to set [title:string, earliest_date: ?];
PositionInfo: fmap[cik:int, company:string, title:string]

to set [date: ?];

The data model of HIL allows for sets and records that can be arbitrarily nest-

ed. In the above, IRP and Person are both sets of records, whose types are only

partially specified and will be inferred with more rules. Employment is declared

151

to be an index (or finite map) that associates each key, in this case a record

with a single cik value, to a set of record values containing the company name

of the employer and a set of positions with that employer. Intuitively, this index

will be used to associate the employment information of each Person identified

by a cik. Positions and PositionInfo provide finer-grained information regarding the

person’s employment history, such as the titles the person has had in a specific

company, or the dates that the person is known to have a given title in a given

company.

To create Person, we use the following HIL rule:

rule m1: insert into Person
select [cik: i.cik, name: i.name

emp: Employment![cik: i.cik]]
from IRP i;

The semantics of the rule is one of containment. For every record in IRP, we

require the existence of a Person entity with corresponding cik and name values.

The emp field, however, is specified via an index look-up operation Employment![cik:

i.cik], that is, emp will be assigned the value returned by probing the index Employ-

ment on the cik value. The population of the Employment index is specified using

separate HIL rules such as:

rule m2: insert into Employment![cik: i.cik]
select [company: i.company,

positions: Positions![cik: i.cik, company: i.company]]
from IRP i where i.isOfficer = true;

Here, for each IRP record, we construct an index entry on each unique cik value.

Since there might be more than one record in IRP with the same cik, each index

entry will be a set of records computed from each group of IRP records with

the same cik. In effect, this rule incorporates a group by operation on IRP. Note

that the rule populates the nested positions set using a look-up into a separate

152

Positions index. Following the same pattern as with Employment, the Positions index

is defined in a separate rule m3 that groups IRP records by cik and company. Simi-

larly, another rule m4 groups IRP records by an additional title field to populate

PositionInfo. We note that HIL also allows UDFs (user-defined functions) in the

rules. For instance, in order to populate the earliest_date in Positions, m3 applies

an aggregation function minDate on the index look-up value from PositionInfo.

rule m3 :insert into Positions![cik: i.cik, company: i.company]
select [title: normTitle(i.title),

earliest_date:
minDate(PosInfo![cik: i.cik,

company: i.company,
title: normTitle(i.title)])]

from IRP i where i.isOfficer = true;

rule m4: insert into PosInfo![cik: i.cik, company: i.company,
title: normTitle(i.title)]

select [date: i.reportingDate]
from IRP i where i.isOfficer = true;

Indexes are a key construct in HIL entity integration flows. They allow to

decorrelate a complex nested mapping into several smaller rules, where each

rule is focused on a particular aspect of a complex entity (e.g., employment

but not positions). The HIL compiler figures out the necessary lowere-level

operations such as group-by, union, duplicate removal, and nesting of data,

which ultimately assemble the complex entities. The type of logical decorre-

lation that HIL allows is key to declarative incremental integration, because it

will offer an opportunity to incrementally enrich information at various levels

in the entity hierarchy without affecting the rest of the target data.

5.2.2 Fusing Additional Entities

The next step in the entity integration flow in Figure 5.1 illustrates how to

add JobChange and PeopleLink into the existing flow. JobChange records will not add

153

new Person entities. Instead, each matched JobChange record (via PeopleLink) may

result in the addition of new records to the employment list of a Person entity,

or in the positions list. Two HIL rules specify how to add such records into the

Employment and Positions indexes:
rule m5: insert into Employment![cik: l.cik]

select [company: j.company,
positions: Positions![cik: l.cik, company: j.company]]

from JobChange j, PeopleLink l
where j.docid = l.docid and j.span = l.span
and isOfficer (j.appointedAs) = true;

rule m6: insert into Positions![cik:l.cik, company: j.company]
select [title: normTitle(j.appointedAs)]
from JobChange j, PeopleLink l
where j.docid = l.docid and j.span = l.span
and isOfficer(j.appointedAs) = true;

When multiple rules populate the same target entity, as in the case of rules m5

and m2, the resulting entity will contain a union of the results of those rules.

When the entities are indexes, as in this case, we union all the keys as well

as the sets of records stored under each key. We note that no new target data

structures (entities or indexes) are necessary. The new rules simply insert new

data into the same indexes declared by the initial mapping phase. This same

pattern will typically apply when fusing any new data source. The incremental

evaluation of such rules will be our focus in the rest of the chapter.

5.3 Problem Formalization

Our integration logic is specified in a HIL script using entity declarations

and entity population rules, as we just described in Section 5.2. We denote a

HIL script as H. Let I and O denote the input and output entity data, respec-

tively. Let PH be an integration process derived from H. When that process

takes as input a set of entities I and produces O, we write PH(I) = O.

154

Definition 7 (Declarative Incremental Integration). Given input entity data I,

let H be an integration script such that PH(I) = O. Given an additional input

∆I, possibly on a different schema than I, and an additional script ∆H that

applies on ∆I, the declarative incremental integration problem is to find an

integration process P′, such that P′∆H(O,∆I) = PH∪∆H(I + ∆I).1

Thus, the incremental integration process P′ has access to the new rules

∆H, the new input data ∆I and the result O of the previous integration (with

H and I). We do not assume that we have access to H or I. This is important,

since it makes the incremental integration process completely independent of

the original integration in terms of both the input data, and the rules that were

applied originally. Also, note that the above definition covers the incremental

view maintenance scenario, when the source data changes but the rules and

the source schema remain fixed. In such case, we set ∆H to be the same as H.

The equality condition at the end of the definition is a natural correctness

condition which states that the result of the incremental process P′ must be

the same as applying the non-incremental process P on the union of I and ∆I,

based on the union of the rules in H and ∆H.

One can interpret the definition in the context of our running example.

Stage one in the example corresponds to PH(I) = O, where H is the set {m1-m4}

of HIL rules, I is an IRP dataset and O is the first version of Person. In stage two,

we have an additional script ∆H given by the set {m5, m6} of HIL rules, and new

input data ∆I for JobChange and PeopleLink. Rather than executing PH∪∆H(I + ∆I)

to obtain the second version O′ of Person, we would like to find an incremental
1We use the plus sign to denote, in an intuitive way, the union of all the facts in the two datasets.

155

method P′ such that P′∆H(O,∆I) evaluates to the same O′.

Given an integration script H, we assume in the above definition that PH is

some deterministic procedure that implements H. A concrete choice for PH

is the result of compiling H to lower-level code, which can then be executed

on a specific run-time engine. In the current implementation of HIL [48], H is

compiled to a Jaql [19] script, which in turn runs on Hadoop. In this chapter,

we will use a more general, two-phased semantics for H that is based on chase

and de-reference (Section 5.5). Correspondingly, we will devise a method P′

that is the incremental version of the two-phased semantics.

5.4 A NAIVE Approach

The critical question in the incremental integration problem is, given a ∆H

and a ∆I, how do we reuse O to generate O′. In this section, we start by

analyzing a naïve answer, which later elicits our improved solution.

A natural idea is to apply ∆H directly on ∆I, and then “merge” the result

with O. Formally, we write this as:

O′ = P′∆H(O + ∆I) , O + P∆H(∆I) (5.1)

In Equation 5.1, we use the second plus sign to represent the “merge” pro-

cess. However, the semantics of this operation are not trivial because of the

data contains nested sets of records. We illustrate the complexity of this merge

with the following example.

Example 7 (Naïve Approach). To illustrate the “merge” operation, we continue

with our running example, and focus on a specific person (a person with a

156

specific cik) from the Person entity generated in the first stage. We denote this

person by p and display it inside the Person entity as a JSON object below:

1 Person:[
2 p: {"cik": 555,
3 "name": "Bob Smith",
4 "emp": [{ "company": "Nest Bank",
5 "positions": [
6 { "title": "CEO",
7 "earliest_date": 2008-12-31 }] }]
8 }...]

Suppose we have new information regarding this specific person from JobChange,

as shown below:2

1 JobChange:[
2 j1: { "cik": 555, "name": "Bob Smith", "company": "Nest Bank", "appointedAs": "CEO", "

apptDate": 2004-12-31}
3 j2: { "cik": 555, "name": "Bob Smith", "company": "Nest Bank", "appointedAs": "CFO", "

apptDate": 2002-12-31}
4 j3: { "cik": 555, "name": "Bob Smith", "company": "Save Bank", "appointedAs": "CFO", "

apptDate": 1998-12-31}
5 ...]

By applying P∆H(·) on JobChange, we obtain ∆Person, which contains the incre-

mental part (δp) of the person:

1 ∆Person:[
2 δp:{"cik": 555,
3 "name": "Bob Smith",
4 "emp": [{ "company": "Nest Bank",
5 "positions": [
6 { "title": "CFO",
7 "earliest_date": 2002-12-31 },
8 { "title": "CEO",
9 "earliest_date": 2004-12-31 }]},

10 { "company": "Save Bank",
11 "positions": [
12 { "title": "CFO",
13 "earliest_date": 1998-12-31 }]}]
14 }...]

Now we merge δp in ∆Person with p in Person. A natural way of doing this, which

relies on recursively merging the set-valued attributes of any two records with

the same atomic-valued attributes, yields a new person p’ in Person’:
2For simplicity, we have joined PeopleLink into JobChange to associate cik with JobChange entries.

157

1 Person’[
2 p’ :{"cik": 555,
3 "name": "Bob Smith",
4 "emp": [{ "company": "Nest Bank",
5 "positions": [
6 { "title": "CFO",
7 "earliest_date": 2002-12-31 },
8 { "title": "CEO",
9 "earliest_date": 2004-12-31 }]},

10 { "company": "Save Bank",
11 "positions": [
12 { "title": "CFO",
13 "earliest_date": 1998-12-31 }]}]
14 }...]

Note that this “merge” operation is non-trivial. This is primarily because

such a “merge” occurs at each level of the entity. Specifically, since j3 contains

employment history from a new company ("Save Bank"), corresponding employ-

ment information has to be added to the "emp" set in p (line 10-13 in p’). More-

over, because j2 reveals that this person was once appointed as the CFO in Nest

Bank, the positions set inside emp in p has to be enriched accordingly (line 6-7 in

p’). Finally, for the same company Nest Bank and same position CEO, we need to

merge the entry in positions of p (line 6-7) with that of δp (line 8-9), and update

the earliest_date to 2004-12-31 in p’ (line 9). This update is challenging, because

it applies the incremental semantics (a binary min) of the aggregation function

minDate. In case the function is holistic, the update will simply fail.

In summary, to perform such a “merge”, we need to traverse the structure

of p and δp simultaneously (starting from emp in this case). If δp contains a new

entry (entry with a new set of values for the atomic fields defined in the rules,

such as company:"Save Bank"), we add it to the corresponding set in p. Otherwise,

the entries from δp and p contain the same set of values for those atomic fields

(company:"Nest Bank"), thus we recursively perform the “merge” for any index-

158

lookup attributes (Positions in this case). Moreover, atomic values reduced by

aggregate functions have to be merged according to the incremental semantics

of such functions. In essence, this is a recursive union procedure. To distin-

guish it from traditional union on flat sets, we term it deep-union and denote

it by].

We note that deep-union has been used in various contexts related to merg-

ing of nested data (e.g., [22]). It is also related to the partitioned-normal for-

m [4] that requires that the atomic-valued attributes in a set of records func-

tionally determines the set-valued attributes, at any level.

With deep union, we can rewrite Equation 5.1 as:

O′ = P′∆H(O + ∆I) , O] P∆H(∆I) (5.2)

Given that our output entity O is materialized, this kind of deep-union is

extremely inefficient. This is because one has to drill into the hierarchical

structure in O and append or update deeply nested data. Moreover, merging

O and P∆H(∆I) with deep-union does not necessarily produce the same result

as applying PH∪∆H on I + ∆I. This is because HIL allows for a finer-grained

merging of nested data based on indexes. For example, even if the name in δp is

different (possibly due to data inconsistencies), as long as δp has the same cik,

HIL requires it to be merged with p, since the employment field only depends

on cik. Finally, if information is previously aggregated, deep-union needs to

incrementally update these aggregated values, which can be extremely chal-

lenging. These observations motivate us to explore a different incremental

159

integration strategy.

5.5 Chase and De-reference

One reason incremental integration is challenging is that, once the nesting

structure of the output entities is fully materialized, it becomes hard to reuse

its content for subsequent integration stages. This leads us to the following

question: is there a way to generate partial integration results that have a rel-

atively simple structure and can be easily assembled to produce the complete

output? If so, subsequent integration stages may benefit from this by reusing

these simple partial results instead of the fully nested output. In this section,

we first propose a method for generating such simpler partial results, and then

describe the way to assemble them.

5.5.1 Chase

We borrow the spirit of decorrelation and decomposition of rules from HIL

into our incremental evaluation strategy. To be more specific, given an input I

and a set of HIL rules H, we apply each HIL rule in H independently on I to

generate a partial flat output, so that the atomic attributes in the select clause

of the rule are populated with actual data from I, while the index-referring at-

tributes are encoded with corresponding index references. We call this process

chase since it has some similarity to the well-know chase operation (particu-

larly the chase with second-order tgds [39]). Formally, we call this process

chase I with H, and denote it by CH(I). The following example illustrates how

chase works.

Example 8 (Chase). Without loss of generality, we illustrate how one can chase

160

the specific person in example 7, by focusing on its relevant entry in IRP:

1 IRP:[
2 i: { "cik": 555, "name": "Bob Smith", "company": "Nest Bank", "title": "CEO", "

reportingDate": 2004-12-31}
3 ...]

We first chase IRP with m1, and obtain a flat version of Person. To do so, for

each entry (e.g., i), we project its atomic attributes selected in m1 (e.g., cik and

name), while populating the nested set (e.g., emp) with an index reference, which

is a record consisting of the name of the referred index and a lookup key. We

denote the chase result by Personc and show it below. Note that the reference in

emp (highlighted by REF) says the actual content of emp can be found in an index

Employmentc with the key {"cik":555}.

1 Personc:[
2 p1: { "cik": 555,
3 "name": "Bob Smith",
4 REF: "emp": { "index": "Employmentc",
5 "key": {"cik": 555} } }...]

Employmentc can be obtained in a similar manner by chasing IRP using m2. Since

Employment is an index itself, the chase result is a set of key-value pair. The key

is the index lookup key to its set-valued entry, and each element in the value

set is populated in the same way as before:

1 Employmentc:[
2 e1: {"key": {"cik": 555},
3 "values": [{
4 "company": "Nest Bank",
5 REF: "positions":{ "index": "Positionsc",
6 "key": {"cik": 555,
7 "company": "Nest Bank"}
8 } }] }...]

We continue to chase IRP using m3, and obtain Positionsc. Since we have em-

ployed UDFs for aggregation, the name of such UDFs (e.g., function) must be

provided as well:3

3Hereafter, we omit similar references with dots due to space.

161

1 Positionsc:[
2 po1: { "key": { "cik": 555,
3 "company": "Nest Bank" },
4 "values": [{
5 "title": "CEO",
6 REF: "earliest_date": {
7 "index": "PositionInfoc",
8 "key": { "cik": 555,
9 "company": "Nest Bank",

10 "title": "CEO" },
11 "function": "minDate" } }] }...]

Finally, we chase IRP with m4 in the same way, and produce PositionInfoc. We

omit the detail due to space.

So far we have chased IRP using m1-m4 into a series of partial integration

results:

CH(IRP) = {Personc,Employmentc,Positionsc,PositionInfoc} (5.3)

We emphasize that, in contrast to the fully nested integration result, these

chase results are flat data structures. That is, for each entry in the top-level

entity and in the value set of each index in the chase results, only atomic values

and index references are recorded. Future integration stages can benefit from

this fact, and will utilize these flat structures as partial results instead of using

a fully nested structure, as we will explain in Section 5.6.

5.5.2 De-reference

Chase produces partial results that are de-correlated from each other by

index references. In contrast, one can chase the pointers (or references) and

inline them with the corresponding values to construct the complete result.

We name this process de-reference. For example, if a Personc has a reference

to an index Employment, then de-referencing means, first making sure that al-

162

l the entries in Employment are de-referenced (recursively), then replacing the

reference inside the Personc with the value that is obtained by looking up the

de-referenced entry in Employment with the given key. If needed, we must also

apply the function that may be encoded with the reference.

Note that it is possible for different entries in Personc to refer to different

indexes. For instance, suppose we have another rule m1’, which is identical to

m1 except that it uses a new index Employment1 to populate Person. In this case,

there also exist records in Personc that refer to Employment1 from the emp field.

Then de-referencing will use the (de-referenced) value from Employment1 (not

Employment).

Example 9 (De-reference). Here we de-reference the chase results from Exam-

ple 8. We start from the deepest level of the recursion, where we de-reference

Positionsc with PositionInfoc. According to the reference in the earliest_date field in

Positionsc, we look up for the corresponding entry in PositionInfoc, with the key con-

sisting of three attributes (cik, company and title). The retrieved entry is a set of

dates. Since we have a UDF minDate here, we further apply this function to the

set of dates, and use the result to replace the value of earliest_date in Positionsc.

We continue to de-reference Employmentc with the de-referenced Positionsc. For

the positions field in Employmentc, we use its key to look for the corresponding en-

try in Positionsc. Since no function is presented, we directly replace the positions

field in Employmentc with the retrieved value (the set of positions). Finally, we

proceed with Personc in a similar manner.

By denoting the de-reference procedure by D, the above process can be

written as:

D(Personc,Employmentc,Positionsc,PositionInfoc) = Person (5.4)

163

While conceptually simple, the actual execution of such a de-reference pro-

cedure can be highly inefficient (esp. with a recursive implementation). In Sec-

tion 5.7, we describe a non-recursive implementation of de-reference. There

we will describe how we abstract the de-reference logic into a data structure

(namely reference summary), which is stored together with CH(I) and can be

compiled into a set of optimized queries using join operations. We also show

how the reference summary can be maintained in an incremental scenario,

with significant performance benefits.

To end this section, we summarize the chase and de-reference procedure

with the following equation:

D(CH(I)) = PH(I) = O (5.5)

Equation 5.5 suggests, first, a more systematic way to perform integration

tasks. That is, we can always chase the input using individual HIL rules, pro-

duce partial and flat results that encode the result via index references, and

then de-reference the chase results to construct the final output. Secondly,

and of particular importance for incremental integration, the partial results

that result after chasing have the advantage that they can be more easily and

efficiently merged with new data resulting from new rules or new source da-

ta. Taking advantage of this, we outline our incremental solution in the next

section.

164

5.6 Incremental Integration

We now resume our discussion on the declarative incremental integration

problem. To recall, given an additional input ∆I and an additional integration

script ∆H, our baseline procedure integrates everything from scratch:

O′ = PH∪∆H(I + ∆I) (5.6)

Given the previous definitions of chase and de-reference, we can decompose

this procedure into the two phases:

O′ = D(CH∪∆H(I + ∆I)) (5.7)

Since our chase is distributive (a property which we will explain shortly), we

can rewrite Equation 5.7 as:

O′ = D(CH(I) + C∆H(∆I)) (5.8)

Notice that here CH(I) represents the result of chase over the previous in-

put, which we assume is now materialized and can be reused. Equation 5.8

suggests that we can incrementally compute O′ by computing CH(I), the chase

with the new logic over the new data increment, followed by a “merge” be-

tween the two chase results. Since computing CH(I) follows the same chase

procedure we discussed in Section refsec:chase, we concentrate here on the

“merge” semantics.

165

Since the results of our chase are flat, the semantics of merge are almost

the same as the usual set union. When merging top-level entities such as

Personc, merge behaves exactly as a set union. When entities are indexes (e.g.,

Employmentc), the semantics is a little richer: for each key, we union the associat-

ed values from both indexes (each is a set of entries). The resulting set is then

associated to the same key.

Example 10 (Merge Chase Results). We now illustrate the merge using our

running example. We first compute C∆H(∆I), where ∆I is the JobChange includ-

ing j1-j3 described in Example 7. By chasing this JobChange with m6, we generate

∆Positionsc:

1 ∆Positionsc:[
2 δpo1: { "key": { "cik": 555,
3 "company": "Nest Bank" },
4 "values": [{
5 "title": "CEO",
6 REF: "earliest_date": {
7 "index": "PositionInfoc",
8 "key": { "cik": 555,
9 "company": "Nest Bank",

10 "title": "CEO" },
11 "function": "minDate" } },
12 { "title": "CFO",
13 REF: "earliest_date": {...} }] }
14 δpo2: { "key": { "cik": 555,
15 "company": "Save Bank" },
16 "values": [{
17 "title": "CFO",
18 REF: "earliest_date": {...} }] }...]

We then merge ∆Positionsc with Positionsc (see Example 8). For each key, we

retrieve the values sets from both indexes, union them and associate the result

with the same key. For example, for the key {"cik":555, "company":"Nest Bank"},

since the values in po1 is a proper subset of the values in δpo1, the result is identical

to that in δpo1.

Similarly, chasing JobChange with m5 produces ∆Employmentc:

166

1 ∆Employmentc:[
2 δe1:{"key": {"cik": 555},
3 "values": [{
4 "company": "Nest Bank",
5 REF: "positions":
6 { "index": "Positionsc",
7 "key": {"cik": 555,
8 "company": "Nest Bank"} } },
9 { "company": "Save Bank",

10 REF: "positions": {...} }] }...]

Since for the key {"cik":555}, the values in e1 is a proper subset of that in

δe1, merging Employmentc with ∆Employmentc results in a Employment’c that is equal to

∆Employmentc. Since ∆H does not modify Person or PositionInfo, Personc and PositionInfoc

remain the same after the merge.

We call this merge operation c-union and denote in the rest of the chapter

as t. Although simple, the semantics of c-union is important to our incremental

solution with chase and de-reference, because it guarantees the distributivity

of our chase operation. That is, chasing I + ∆I produces the same result as

taking a c-union of the results of chasing I and ∆I independently. Formally, we

express this as:

CH∪∆H(I + ∆I) = CH∪∆H(I) t CH∪∆H(∆I) (5.9)

Furthermore, because I is independent of ∆H and ∆I is independent of H, we

have:

CH∪∆H(I + ∆I) = CH(I) t C∆H(∆I) (5.10)

By substituting equation 5.10 into Equation 5.7, we obtain:.

167

O′ = D(CH(I) t C∆H(∆I)) (5.11)

Equation 5.11 completes our definition of the incremental chase and de-reference

solution.

After doing the the c-union between the old and new chase results, we de-

reference the results. Recall, however, that the naïve de-reference procedure

can be highly inefficient. We now describe an optimized de-reference algorithm

based on efficient join queries.

5.7 Optimizing De-Reference

In order to optimize the de-reference procedure, we translate it into a list

of optimized non-recursive queries. We first give an intuition about what these

queries look like.

Example 11 (De-Reference with Optimized Queries). We now show how to express the

de-reference task in Example 9 as a sequence of optimized queries. We choose

a bottom-up approach to avoid any recursion. We omitted PositionInfoc in Exam-

ple 9 and, thus, we start here by de-referencing Employmentc with an already

de-referenced Positionsc.

Intuitively, the de-reference process approximates a join operation, where

we join Employmentc with Positionsc by matching the key in the positions field of

Employmentc with the top-level key in Positionsc. We then project the values set from

Positionsc to the positions field in Employmentc, with the other fields of Employmentc

intact.

168

However, we note that, the key we use in the join condition from Employmentc

is embedded in the values field, which contains a set of entries. As a result,

we have to “flatten” Employmentc before joining it with Positionsc. Here “flatten”

means, for each entry in Employmentc, we natural join the values set with the

top-level key and replace the entry with the result set. Since the semantics of

such a “flatten” operation is similar to the Unnest operator in traditional nested

relational algebra [?, 80, 75], we borrow the same notation here and denote

the flatten process as:

Employmentc ← Unnestkey(Employmentc) (5.12)

We then specify the join query as follows:

Employmentc ← Employmentc on Positionsc

|Employmentc.positions.key = Positionsc.key (5.13)

After this, we have to recover the original nested structure for Employmentc,

by “re-grouping” the entries under the same key. Similarly, we borrow the Nest

operator from nested relational algebra and write this process as:

Employmentc ← Nestkey(Employmentc) (5.14)

This completes the de-reference process for Employmentc. We then move up to

Personc and de-reference it with the de-referenced Employmentc. Since Personc is the

top-level entity with a flat structure, we no longer need to unnest and nest it.

169

We only need the following join query:

Personc ← Personc on Employmentc

|Personc.emp.key = Employmentc.key (5.15)

We also note, these join queries can be easily extended to handle UDFs,

regardless of the property of these functions (whether aggregative, whether

holistic, etc.). Given a UDF, we simply apply it on the values set joined from the

referred index before projecting it to the output.

Example 11 depicts the types of non-recursive join queries that efficiently

inline all index references. To derive these queries, it is necessary to maintain

some information on the kind of references inside each entity. We store this

information in a data structure called reference summary and note that we

only need this structure at compile time.

5.7.1 Reference Summary

A reference summary is a graph of the reference relationships in a decom-

posed nested entity. We start by defining its nodes and edges.

Definition 8 (Entity Node). An entity node N is an object with a name and a set

of attributes A. We denote the name by N.name and the set by N.attrs, where

N.attrs = {A1, A2, ..., AMN
}. We refer to an attribute Ai by N.attrs.Ai.

Given an integration script H, each HIL rule naturally translates into an

entity node. For instance, we create an entity node Nm1 for m1 and assign it

the name Person and the attribute set {name, cik, emp}. Similarly, Nm2 has name

Employment and attribute set {company, companyCik, positions}. We denote the set of

170

all entity nodes by U.

Definition 9 (Super Node). A super node S is an object with a name S.name, a flag

S.isIndex and a set of entity nodes S.nodes. The flag is true iff the correspond-

ing entity is an index, and S.nodes = {N|N ∈ U ∧N.name = S.name}

Super nodes are important to capture the fact that several integration rules

may use different indexes to populate the same entity. For example, m1 and m1’

(see Section 5.5.2) both populate Person but with different employment indexes.

If we denote the super node for Person by SPerson, then we have SPerson.nodes =

{Nm1,Nm1′}. We denote the set of super nodes derived from H by V. Given a

super node S, we use Sc to refer to the chase result corresponding to the entity

with S.name.

Definition 10 (Reference Edge). A reference edge E is a directed edge pointing

from a super node S to an attribute A in attrs of some entity node N, and

annotated with a function name. We denote the super node by E.from, the

attribute by E.to and the function by E.func.

Reference edges reflect how the entities refer to each other. For instance,

if we denote the super node of Employment by SEmployment, m1 implies a reference

edge E1, pointing from SEmployment to Nm1.attrs.emp. Since no UDF is applied

here, E1.func = null. We denote the set of all edges by W. Given an edge E

and a super node S, we write E→ S, if ∃N ∈ S.node, s.t. E.to ∈ N.attrs.

Definition 11 (Reference Summary). A reference summary K is a triple (U,V,W).

Figure 5.2 depicts an example reference summary corresponding to our run-

ning example, where structures with solid line represent the de-reference logic

implied by m1-m4, and the ones with dashed line come from additional rules (m1’,

171

cik name emp Nm1:

SPerson

Nm1’: cik name emp

company positions Nm2:

SEmployment

title earliest_date Nm3:

SPositions

date Nm4:

SPositionInfo

Nm2’:

SEmployment1

company positions minDate()

S: Super Nodes
N: Entity Nodes
Dashed: Additional Structures

…

I

I

I

I

I: isIndex == true

Figure 5.2: An Example Reference Summary

m2’, etc.). Note that in SPerson, we have two entity nodes, Nm1 and Nm1′. While

the emp attribute in Nm1 is pointed by SEmployment, the emp in Nm1′ is pointed by

SEmployment1. This reflects the fact that the same field emp in Person is populated

by different indexes, and indicates, during de-referencing, how to inline the

correct index to construct the fully nested output.

5.7.2 De-reference With Reference Summary

Given a reference summary, we can compile it to a sequence of optimized

queries by first traversing its super nodes, and then de-referencing the en-

tity represented by each node. In principle, the de-reference result is order-

independent because the chase results are de-correlated from each other. How-

ever, we note that a top-down manner can be computationally expensive (as

the recursive implementation), since the deeper in the summary it goes, the

deeper in the entity structure where de-reference occurs. Thus we choose a

bottom-up traverse order.

Intuitively, the generation of a traverse order on a reference summary graph

172

is similar to a topological sort on a DAG. Thus here we present it by reusing a

topological sort. To do this, we first construct a new edge set WT ← {(S1,S2)|S1,S2 ∈

V ∧ ∃E ∈ Ws.t.E.from = S1 ∧ E → S2}. We can then employ any stan-

dard topological sort algorithm to generate an order of super nodes follow-

ing the directions in the newly defined edge set. We denote this process by:

L← TraverseOrder(K) , TopologicalSort(V,WT).

We now process the super node S from L in order. For each S, we invoke

the procedure in Algorithm 8.

Algorithm 8 De-reference Entity Node
1: procedure De-reference(S)
2: P ← empty entity . Initialize
3: for N ∈ S.nodes do . Iterate over entity nodes
4: Q← Sc . Retrieve the chase result
5: if S.isIndex then . If index, flatten it
6: Q←Unnest(Q,value)
7: end if
8: for E ∈ {E|E ∈W ∧E.to ∈ N.attrs} do
9: T← E.from

10: A← E.to
11: R = Tc . Get the referenced entity
12: Q← Q on R|Q.value.A.key = R.key, E.func . Join
13: end for
14: if S.isIndex then . If index, re-group it
15: Q←Nest(Q,key)
16: end if
17: P ← P tQ . C-Union results
18: end for
19: Sc ← P . Update the chase result

20: end procedure

Given a super node S, Algorithm 8 iterates over the entity nodes under S

(line 3). For each entity node N and each reference inside N (line 8), we re-

trieve the referenced chase result (already de-referenced according to travers-

ing order) and join it into the referring attribute (line 12). The function, if

presented, will be applied during the join. Since join only works on flat struc-

ture, if S is an index, we unnest it before the join and nest it after the join

173

(line 6, 15). Finally, we c-union the de-reference results from each entity node

(line 17) and update the chase result (line 19).

5.7.3 Maintain Reference Summary

In an incremental scenario, as the de-reference logic is being enriched, the

summary is also subject to evolution. Instead of computing the new summary

from scratch, it is preferable to incrementally maintain the old summary. For-

mally, if we denote the incremental part of the summary by ∆K and the new

summary by K′, our goal is to find a way to merge K with ∆K to produce K′.

Example 12 (Merge Reference Summaries). Suppose in a following incremen-

tal stage, we absorb a new data set which includes information about the com-

pany boards the person has been on. Thus we have a new index Board, together

with a new rule m7, which is identical to m1 except for that it adds a new at-

tribute board to Person and populates it with an index look-up in Board with cik.

We first generate ∆K, which contains the corresponding super nodes and

entity nodes for Board and Person, together with new reference edges indicated

by m7. We then merge ∆K onto K by traversing ∆K using the order described

before. For Board, since it is new, the corresponding super node and entity

node, together with relevant edges are directly copied from ∆K to K. For

Person, however, because it exists before, we have to merge the old super node

SPerson with the new one S′Person. We start by merging the entity nodes. Since

the new entity node Nm7 from S′Person contains a new attribute board, we have

to expand the old entity node Nm1 accordingly. After this, we merge the two

nodes with relative edges updated.

174

We note here, not every new entity node can be merged with an old one.

For instance, if H contains m1’, Nm1′ cannot be merged with Nm7, since m1’ pop-

ulates emp with a different index (Employment1). In contrast, Nm1 can be merged

with Nm7, since the attributes and referenced indexes from both nodes are i-

dentical except for the new board. Formally, we say Nm1 is contained in Nm7

given W and ∆W, or Nm1 � Nm7|W,∆W. Given this notion of containment,

we describe our merge in Algorithm 9.

Algorithm 9 Merge Reference Summary
1: procedure MergeSummary(K,∆K)
2: L← TraverseOrder(∆K) . Sort new nodes
3: while ¬L.isEmpty() do
4: S′ ← L.head()
5: S← S|S ∈ V ∧ S.name = S′.name . Find match
6: if S = null then . Add super node
7: V← V ∪ {S′}, U← U ∪ {S′.nodes}
8: W←W ∪ {E|E ∈∆W ∧E→ S′}
9: else . Merge super node

10: R← {E|E ∈W ∧E.from = S}
11: for E ∈ R do . Update outgoing edges
12: E.from← S′

13: end for
14: for N ∈ S.nodes do . Update entity nodes
15: N′ ← N′|N′ ∈ S′.nodes ∧N � N′|W,∆W
16: if N′ = null then . Expand old entity node
17: S.nodes← S.nodes\{N}
18: N← Expand(N)
19: S′.nodes← S′.nodes ∪ {N}
20: else . Merge entity nodes
21: R← {E|E ∈W ∧E.to ∈ N.attrs}
22: for E ∈ R do
23: A← E.to, E.to← N′.attrs.A
24: end for
25: U← U\{N}, U← U ∪ {N′}
26: end if
27: end for
28: V← V\{S}, V← V ∪ {S′} . Move node
29: W←W ∪ {E|E ∈∆W ∧E→ S′} . Add edges
30: end if
31: end while

32: end procedure

We first retrieve the super nodes from ∆K according to the order described

before (line 2). For each node S′, we check if there exists a node S in K

representing the same entity (line 5). If no, we add this super node, its member

175

entity nodes together with its relevant edges to K (line 7-8). Otherwise, we

update the structure as follows.

We merge S and S′ by moving relevant structure from S to S′. For inter-

node structure, for each edge pointing from S, we change their source to S′

(line 10-12). For any edge that points to some entity node in S′, we add them

to K (line 29). For intra-node structure, for each entity node N in S we check

if there is any entity node N′ in S′ that contains N (line 15). If no, we expand

N and move it to S′ (line 17-19). Otherwise, we re-link relative edges so that

edges originally pointing to N now point to N′ (line 21-24). Finally, we add the

updated S′ and related structure to K (line 28-29). We proceed the rest nodes

in the same way.

5.8 Evaluation

We now describe how we evaluated our chase and de-reference approach

using the complete SEC financial integration scenario. Specifically, we com-

pared our chase and de-reference approach to the non-incremental approach

in two scenarios. First, a “view adaptation” scenario where new types of da-

ta arrive and the integration logic changes. Then, a “view update” scenario

where only new increments of the existing input entities arrive and need to

be integrated into the existing target entities. All experiments were run on an

IBM System x3550 with 2 CPUs (4 cores each) and 32 GB main memory. In

all cases, the rules were expressed in HIL and compiled down into Jaql [19]

scripts.

176

5.8.1 Integration in Incremental Stages

In this experiment, we divide the incremental integration into five stages

(Table 5.1). The first stage is the initial mapping from Person into IRP. The speci-

fication of this stage largely follows our description in Section 5.2, but includes

additional rules and entities to produce an extra board field in Person, as well as

rules to handle its provenance and temporal aggregation. The input IRP consist-

s of 297, 358 records, extracted from all documents with insider transactions of

executives in the finance industry from 2005 to 2010. This input produced

32, 816 Person records.

In the subsequent stages, we incrementally add new data sources and new

rules to incorporate the sources into Person. Since entity resolution is not our

focus, we assume all links resolving the new sources to Person are already com-

puted. For stage two, JobChange data was incorporated using 5 new rules that

updated both Employment and Board. In stage three, a Committee data source was

added using 3 more rules that updated 2 existing entities and added a new

Committees entity containing information about the committees the person has

been involved on each company. Stage four enriched Person with biographies

from Bio. The biography information is split for officers and non-officers, and

fused into the bios field in Board and Employment respectively. Finally, in stage five,

we improved Person with an additional source Signatures, which are records ex-

tracted from a special signature section of a certain type of input documents,

and provides additional information about key people and their employment. A

summary of these integration stages is shown in Table 5.1.

177

Data # # # # Updated # New
Stage Source Records Attrs Rules Entities Entities

1 IRP 297, 358 9 6 0 0
2 JobChange 1, 077 7 5 5 0
3 Committee 63, 297 10 3 2 1
4 Bios 23, 195 9 5 3 2
5 Signatures 319, 154 11 5 5 0

Table 5.1: Summary of SEC Integration Stage

For each integration stage, we compared the execution time for three inte-

gration approaches (Figure 5.3). First, we measured the total execution time

for the baseline integration process (the left-most bar for each stage in Fig-

ure 5.3), which compiled the whole integration logic into executable scripts

and ran everything from scratch (see PH in Section 5.3). Second, we evaluated

our non-incremental chase and de-reference approach. That is, we chased all

the input with the whole integration logic upon the current stage, and then

de-referenced the chase results (Equation 5.7). We measured the execution

time for both the chase and de-reference procedures (the second bar for each

stage in Figure 5.3) . Finally, we used our incremental chase on the new data,

merged the results with previous chase results, and then de-referenced the re-

sults (Equation 5.11). We measured the total time for chase and merge, and the

total time for de-reference. (This is represented by the last bar in Figure 5.3.

Notice that, this bar is missing in stage 1 since there is no previous data to

merge.)

We observed a significant reduction in total time with our incremental chase

and de-reference approach, compared with the baseline approach and the non-

incremental chase and de-reference approach. Specifically, the total execution

time for the incremental chase and de-reference approach is only 23%− 36%

178

S1 S2 S3 S4 S5
0

50

100

150

200

250

300

Ti
m

e
(s

)

Baseline
Non-incremental Chase
Non-incremental De-reference
Incremental Chase and Merge
Incremental De-reference

Figure 5.3: Integration Times in SEC Integration Stages

of the total time for the baseline approach. The difference is due to the fact

that our incremental approach only computes the chase for the new data and

merges the results to the existing data. This can be clearly seen if we com-

pare the bars of the non-incremental approach with those of the incremental

approach. Notice that most of the time in the non-incremental approach is

spent doing the chase. In fact, the de-reference stage time is same for both the

non-incremental and incremental cases. Both need to put together the same

chase results into the nested structure, the main difference here being that in

the incremental case, a large portion of those chase results were computed in

the previous stage.

5.8.2 Integration with Incremental Data

In this section we study the behavior of our incremental integration ap-

proach when the integration logic is fixed and only increments of new data for

the existing entities arrive. In this study we only used the six rules that popu-

late Person from IRP. To simulate the arrival of incremental data, we partitioned

the IRP records into two equal parts. We use the first half of IRP as the initial

179

input from which we computed an initial version of Person. The second half of

IRP records are subdivided into ten equal pieces, each of which is used as a new

increment of IRP data that must be merged to the existing Person. We simulated

the arrival of new data of increasingly bigger increments as follows. First we

measures the time to merge one of the small segments into the Person computed

with 50% of the data (i.e., the overall data is 55% of the original IRP). We then

measured the time to merge two of the small segments into the same Person (i.e.,

overall 60% of the original data). We repeated this with the rest of the smaller

increments until our last run in which the increment of data is 50% of IRP. We

measured the same set of times as before, except that we further separated the

chase and merge times for the incremental approach. The results are shown

in Figure 5.4, with the x-axis indicating the overall amount of IRP integrated at

each incremental step.

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
IRP Data Percentage

0

20

40

60

80

100

120

140

Ti
m

e
(s

)

Baseline
Non-incremental Chase
Non-incremental De-reference

Incremental Chase
Incremental Merge
Incremental De-reference

Figure 5.4: Integration Times in the Basic SEC Integration Stage, with Incremental Input Data

Our incremental chase and de-reference approach significantly reduces the

overall integration time (32% on average). Furthermore, the baseline time

180

and all chase times increase steadily as the integrated data size increases,

while the de-reference times and the merge time remains virtually constant.

This indicates that the de-reference and merge processes are relatively data-

insensitive. For the incremental case, at first, the overhead of merge and de-

reference is relatively large (74% of the total integration time). But as the

chase time increases, this overhead becomes less significant (38% of total time

at the end).

We also observe that the incremental chase time is proportional to the in-

cremental input size. Notice that the incremental chase time for the last run

is virtually identical to the chase time of the first run. Both these chase opera-

tions used different halves of the IRP data.

5.9 Conclusions and Future Work

In this chapter, we studied the incremental information integration prob-

lem towards user-friendly information integration. We started by formalizing

the declarative incremental integration problem and proposed a chase and

de-reference mechanism for a non-incremental declarative integration. We

then extended this mechanism to the incremental scenario, by maintaining

and reusing previous chase results. We further optimized the de-reference

procedure by proposing a reference summary graph. We also developed novel

algorithms for deriving and maintaining these reference summaries.

Our chase and de-reference approach is not the only possible strategy for

implementing incremental information integration flow. In our approach, much

of the incremental processing is done in the chase step and de-reference oper-

181

ates on the previous chase results and the new ones. We are currently working

on an alternative algorithm that reuses part of the existing nested target struc-

ture directly during the de-reference phase. Through out this chapter we have

assumed that the underlying file system has no update semantics (e.g., HDFS).

To create the target entities (e.g., Person), de-reference currently materializes

the entire target entity. There are file systems that do support updates and,

furthermore, support indexing of data (e.g., HBASE). A goal of this project is

to compile HIL programs into such systems without the need to change the

program logic. In such file systems, the chase phase will update indexes in-

place and the de-reference strategy could decide to update only the affected

parts of the target entities.

CHAPTER VI

Related Work

6.1 Database Usability

The general idea of making databases systems more usable was introduced

by Jagadish et al. [54]. This keynote paper studied the reasons for poor acces-

sibility of state-of-the-art database systems and proposed a presentation data

model based on direct manipulation with a schema later approach.

6.2 Personal Information Management

Personal information management, or PIM, is intended to support individual

users to order their daily lives through the acquisition, organization, mainte-

nance, retrieval and sharing of information [58, 96]. The phrase was first used

in the 1980s [62] studying psychological issues involved in the automation of

information management. However, the spectrum of PIM spans from cognitive

psychology and science, human-computer interaction to data, information and

knowledge management. While PIM has drawn increasing attention in the cog-

nitive science and HCI community, to the best of our knowledge, the database

field has limited contribution to this general problem.

An important assumption made by PIM is, nowadays personal information is

182

183

often scattered and isolated in separate applications and devices, with various

formats not directly usable. This raises the request to integrate information

from various distributed collections with suitable mapping and filtering ap-

plied. X. Dong et al. [34] built a prototype PIM system from a data management

point of view by creating a mediated logical view of all personal information.

However, they focus on the information search and the schema and mappings

are fixed. We believe the end-user should have complete freedom to design

and evolve both the integrated view and the underlying mappings. As a result,

we investigate user-friendly approaches for the user to design the integration,

mapping and filtering by themselves.

6.3 End-User Programming

In the HCI community, there has been a great deal of past work in end-user

programming, or EUP [57, 100]. Among them, Cypher [30] and Lieberman [66]

describe a number of programming-by-demonstration and programming-by-

example systems. In general, this dissertation shares the same spirit with

EUP as enabling the end-user to implicitly program a data management script

with a user-friendly interface. However, EUP focuses on an easy derivation of

the scripts which can be repeated used in future applications. On the other

sides, this dissertation struggles on the generation of a democratic data man-

agement scheme for the end-user. Rather than trying to enable end-users to

easily derive a reusable data manipulation script, we are more devoted to al-

lowing the end-users to freely restructure, reposition, integrate and filter their

own data, so that they can understand the essence of the data they have and

184

make maximum use out of it.

6.4 Schema Design

Database schema design has been studied extensively [16, 45, 21]. There

is a great deal of work on defining a good schema, both from the perspective

of capturing real-life requirements (e.g., normalization) and supporting effi-

cient queries. However, such schema design has typically been considered

a heavyweight, one-time operation, which is done by a technically sophisti-

cated database expert based on careful requirements analysis and planning.

When considering schema design for end-users, the challenge has shifted to

enabling non-technical people to give birth to a reasonably defined database

schema [54].

6.5 Schema Evolution

Schema evolution is a well studied area. There is a great amount of ear-

lier work on schema evolution in object-oriented databases [13, 64]. Recent-

ly, there arises an interest on schema evolution in web information system-

s [27, 76, 28, 29], with a focus on systemizing schema changes, optimizing

query rewriting and automating database migration. The idea of proposing

a language of schema modification operators to concisely express complex

schema changes inspires the algebra design in CRIUS, where the end-user

may leverage a set of simple yet expressive schema evolution operators to ac-

complish complicated evolution tasks using direct manipulation.

185

6.6 Nested Relations

Nested relations introduce a hierarchical semantics and suggest a natural

presentation to integrate data and schema in a way that is easily perceivable

to end-users. The theoretical foundation of CRIUS is built on top of nested

relations and their normal forms, which have been studied extensively [87, 80,

75, 26, 86, 82, 87, 97, 38, 88]. Although state-of-the-art database systems have

very limited native support for hierarchical data storage, [31] has suggested a

possibility for expressing nested structures with flat relations by treating the

mapping as a simulation procedure.

6.7 Direct Manipulation

While the database community have been focusing on advanced system ca-

pability for a long time, our neighbors in the human computer interaction com-

munity have examined how to bridge the gap between user capabilities and

computer functionalities. In particular, they have developed direct manipula-

tion, which is considered to be one of the most popular user-friendly paradigm-

s [52, 91].

Direct manipulation techniques are employed thought the systems in this

thesis. Each operator in the span table algebra introduced in CRIUS is de-

signed as a direct manipulation using mouse point-and-clicks or drag-and-

drops. Mweaver implements a direct manipulation interface in which current

mapping generation status is displayed immediately after each user data entry.

186

6.8 Graph Specification on RDBMS

Polaris [92] features an interface for exploration of multi-dimensional databas-

es, by extending the Pivot Table interface to directly generate a rich and ex-

pressive set of graphical displays on top of relational databases. A succinct

visual specification is developed for describing such table-based graphical dis-

plays and interpreted as a sequence of relational database operations.

This inspires our work of abstracting a hierarchical data presentation and

proposing an user-friendly algebra on top of relational databases. However,

while their work focuses on displaying statistical data analysis in a flexible way

on top of a static database, our work enables schema evolution in an intuitive

manner as the underlying database is dynamically modified.

6.9 Schema Matching and Mapping

Research into schema matching and mapping make up an enormous body

of work, as described in a recent text [17]. State-of-the-art schema match-

ing approaches can be roughly classified into three categories. Schema-based

techniques perform matching by examining metadata, such as in Clio [84] and

Similarity Flooding [72]. Instance-based approaches determine the similarity

between schema elements from the similarity of the characteristics of their in-

stances [68, 60]. Many systems utilize a combination of these two techniques,

such as LSD [33], Cupid [69], COMA [32]. Usage-based methods improve

matching quality by exploiting usage information, such as query logs [36] and

search clicklogs [78].

187

6.10 Schema Mapping Design using Examples

Data examples have been an important part of the schema mapping litera-

ture. Alexe, et al. recently developed Eirene, a system for interactive design

and refinement of schema mappings using data examples, by GLAV fitting gen-

eration [10]. Eirene offers abundant flexibility in that it derives the mappings

as long as the source and the target schema, as well as a few paired exam-

ples under both schemas are provided. However, consequently, the user has to

understand both schemas in order to fill in valid data examples and explicitly

specify join paths by linking related tables using data with the same value. This

may result in some user burden, especially in the presence of a complex source

schema and long join paths in the mapping. In contrast, MWeaver assumes the

existence of a complete source database instance, to which the user-input sam-

ples belong. As a result, the user does not need to know the source schema or

to specify the join paths, because the system can use the source instance as a

knowledge base to automatically derive the mappings.

6.11 Debugging Schema Mappings using Examples

Yan, et al. attempted to choose tuples that best exemplify a mapping [101].

Alexe, et al. systematically investigated the capabilities and limitations of data

examples in explaining and understanding schema mappings, especially in us-

ing universal examples to characterize mappings defined by s-t tgds [9]. How-

ever, these are done in an “explanatory” phase after the mapping has been

generated.

SPIDER [8] and MUSE [7] are designed to refine a partially-correct mapping

188

generated by a more traditional tool. They first generate candidate mappings

using a match-driven mapping tool, and then ask the user to debug them by

examining user-proposed examples. In contrast, MWeaver asks users to simply

enter data items, and to trust that the system will find the correct mapping.

6.12 Automatic Schema Matching

Drumm et al. designed QuickMig for automatic schema matching for data

migration [35]. It asks a user to manually create target instances in the source

and then apples standard instance-based matching algorithms on these sample

instances to determine the matching. However, these sample instances are

only used to generate schema element correspondences rather than mapping

structure.

6.13 Interactive Information Integration

Recently, there has been a trend toward leveraging user feedback to im-

prove the quality of an information integration task. Talukdar et al. [95, 94]

developed system Q to assist the user in creating integration queries. In sys-

tem Q, integration is defined as a union of queries weighted by relevance. The

system shows the query result to the user, who in turn provides feedback to the

system by judging whether a result tuple is relevant. In MWeaver, the system

notifies the user about the current mapping generation status, and the user

provides feedback in the form of additional sample instances.

Recent work [53] proposes a smart copy and paste (SCP) model and ar-

chitecture for seamlessly combining design-time and run-time aspects of data

189

integration. The desired schema mappings are generalized from user actions

of copies and pastes with continuous interactions between the user and the

system. The idea of such design-time and run-time combination is reflected in

both CRIUS and MWeaver, where the user experiments schema evolution or

schema mapping in a step by step manner with instant system feedback. While

SCP deals with data integration among multiple datasets, CRIUS is focusing

on integrating schema update and data manipulation inside a single database.

MWeaver enables schema mapping deduction in a more generalized setting

where the explicit source-to-target correspondence implied by the copy-and-

paste is not available in a sample-driven context.

6.14 Query by Example

Query-by-Example (QBE) [103] is a well-known work that employs example

data to assist in query generation. The user constructs a query with QBE by

providing example tuples under both the database schema and the result view.

Examples with same value suggest how the relations are joined and which

attributes are projected. While the user can supply fake data in QBE, the input

to MWeaver must be samples from the database instance. As a result, the user

has to manually specify join paths by simulated IDs in QBE, while MWeaver is

able to automatically derive the join paths from sample values.

6.15 Database Keyword Search

MWeaver has a strong relationship to database keyword search techniques,

which have been extensively studied in the literature [20, 5, 50]. However,

190

database keyword search focuses on querying tuples that may be related to

the keywords; in contrast, MWeaver focuses on determining the exact mapping

that produces a target database containing the samples.

6.16 HIL: A High-Level Integration Language

The incremental integration framework introduced in this dissertation build-

s upon the HIL language [48] for declarative entity integration. While the ma-

jor difference in this dissertation is in providing incremental evaluation capa-

bilities, another difference is that we establish a stand-alone two-phase seman-

tics for evaluation of integration rules that is based on chase and de-reference.

We also give a novel and efficient algorithm for de-referencing of nested data

that is based on generating queries with join operations.

6.17 Pointer Navigation

De-referencing is related, to some extent, to the notion of pointer naviga-

tion in object-oriented databases, where various papers (e.g., [90]) studied the

benefits of replacing pointer-based joins into value-based joins. However, our

de-referencing applies to an entire data set (the target), with arbitrarily many

levels of nesting and unbounded number of references. As a consequence,

our algorithm needs to use an auxiliary data structure to keep track of all the

possible reference types that may appear in a record at a given level in the

hierarchy.

191

6.18 Incremental View Maintenance and View Adaptation

Incremental view maintenance [25, 77] deals with methods for efficiently

updating materialized views when the source data is updated. View adaptation

[44, 74] is a variant of view maintenance that investigates methods of keeping

the data in a materialized view up-to-date in response to changes in the view

definition itself. First, we note that incremental integration method includes

both types of techniques as special cases, since our incremental evaluation s-

trategy applies to changes in the source data alone, the integration rules alone,

and in both source data and integration rules, which is our main use case and

corresponds to adding new data sources into the integration process. At the

same time, we note below a few other specific differences with respect to both

incremental view maintenance and view adaptation.

Incremental view maintenance for data integration is the focus in [43],

which gives self-maintainability conditions for outer-join views, namely condi-

tions under which an outer-join view can be re-materialized by using the view

itself and the changes only to the source databases. The paper restricts itself

to a single target relation, while the changes to the database are single-tuple

inserts, updates or deletes. In contrast, our target schema consists of an arbi-

trarily complex set of entities with inter-dependencies, and the changes to the

source data are given as a new increment of arbitrary size. As for view adapta-

tion, the work in [44] considers how to reevaluate a SQL query in response to

incremental changes to the query, such as adding or removing a filter, adding

a join with a relation, changing a grouping condition, etc. The view adapta-

192

tion algorithm makes essential use of the fact that the previous version of the

query is known. In contrast, we allow for new integration logic to be added

that is completely independent of the previous rules. In turn, this requires the

development of new types of incremental techniques.

CHAPTER VII

Conclusions

This dissertation studies various approaches towards enabling end-users to

easily structure, integrate, filter and maintain their every-day data. To help

the user structure their data, this thesis proposes a Span Table interface and

algebra for the user to easily create and modify the data schema in an intuitive

way. Since integrity constraints become flexible and vulnerable in such an

environment with casual schema design, the thesis also studies how to guide

user data-entry to ensure a healthy set of integrity constraints. The thesis folds

these ideas into a system called CRIUS, and demonstrates its usability by both

performance experiments and user studies.

To facilitate the user to integrate information to their own data repository,

this dissertation proposes a sample-driven approach to automatically derive

schema mapping from user-input sample target data. This frees the end-users

from the burden of understanding complex source schema and the burden of

specifying intricate mapping structure placed by state-of-the-art schema map-

ping tools. This thesis presents a prototype system MWeaver, which imple-

ments the idea on top of an efficient mapping weaving algorithm. It is shown

193

194

via user study that the system is much more user-friendly than the state-of-the-

art mapping tools. This thesis also demonstrates that the weaving algorithm is

very efficient via performance experiments.

In order to enable the end-users to easily filter their data, this dissertation

proposes an approach to automatically derive the selection condition by user-

input examples that the user wants to select. Since these examples may not

determine the desired condition, this thesis also introduces an expressive rep-

resentation of the selection condition together with an algebra of direct manip-

ulation operators for the user to refine the initial selection condition derived

from examples. The dissertation shows that this approach is able to derive

high-quality initial conditions from just a few examples via a simulated user s-

tudy, and our algorithm for deriving such initial conditions is very efficient and

scalable.

Finally, this dissertation studies the problem of reducing user burden in the

face of incremental information integration. When new data comes in existing

data sources, or new data with new schema are incorporated, instead of asking

the user to re-perform the integration task from scratch, this thesis proposes

a new approach which incrementally updates the previous integration result

using only the new data and new mapping logic. This thesis also develop-

s innovative algorithms to implement such incremental integration approach.

According to evaluation on real-world data, this thesis shows significant per-

formance benefits of the incremental integration approach.

BIBLIOGRAPHY

195

196

BIBLIOGRAPHY

[1] Altova mapforce. http://www.altova.com/mapforce.html.

[2] Microsoft biztalk server. http://www.microsoft.com/biztalk/en/us/.

[3] Stylus studio. http://www.stylusstudio.com/.

[4] Serge Abiteboul and Nicole Bidoit. Non First Normal Form Relations: An Algebra Al-
lowing Data Restructuring. JCSS, 33(3):361–393, 1986.

[5] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-based search
over relational databases. In ICDE, page 5, 2002.

[6] AV Aho, C. Beeri, and JD Ullman. The theory of joins in relational databases. TODS,
4(3):297–314, 1979.

[7] B. Alexe, L. Chiticariu, R.J. Miller, and W.C. Tan. Muse: Mapping understanding and
design by example. In ICDE, pages 10–19, 2008.

[8] B. Alexe, L. Chiticariu, and W.C. Tan. SPIDER: a schema mapPIng DEbuggeR. In VLDB,
pages 1179–1182, 2006.

[9] B. Alexe, P.G. Kolaitis, and W.C. Tan. Characterizing schema mappings via data exam-
ples. In SIGMOD, pages 261–272, 2010.

[10] B. Alexe, B. ten Cate, P.G. Kolaitis, and W.C. Tan. Designing and refining schema map-
pings via data examples. In SIGMOD, page 133, 2011.

[11] Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. Stbenchmark: towards a bench-
mark for mapping systems. Proc. VLDB Endow., 1:230–244, August 2008.

[12] M. Arenas and L. Libkin. A normal form for xml documents. TODS, 29(1):195–232,
2004.

[13] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth. Semantics and imple-
mentation of schema evolution in object-oriented databases. In Proceedings of the 1987
ACM SIGMOD international conference on Management of data, SIGMOD ’87, pages
311–322, New York, NY, USA, 1987. ACM.

[14] Pablo Barceló. Logical foundations of relational data exchange. SIGMOD Rec., 38:49–
58, June 2009.

[15] H. Bast and I. Weber. Type less, find more: fast autocompletion search with a succinct
index. In SIGIR, pages 364–371, 2006.

[16] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Comput. Surv., 18(4):323–364, December 1986.

197

[17] Z. Bellahense, A. Bonifati, and E. Rahm, editors. Schema Matching and Mapping.
Springer, 2011.

[18] P.A. Bernstein, S. Melnik, and J.E. Churchill. Incremental schema matching. In VLDB,
pages 1167–1170, 2006.

[19] K Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed Eltabakh, Carl-
Christian Kanne, Fatma Ozcan, and Eugene J Shekita. Jaql: A Scripting Language for
Large Scale Semistructured Data Analysis. PVLDB, 4(12), 2011.

[20] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, S. Sudarshan, and IIT Bombay. Key-
word searching and browsing in databases using BANKS. In ICDE, page 431, 2002.

[21] Joachim Biskup. Achievements of relational database schema design theory revisited.
In Semantics in Databases, pages 29–54, 1998.

[22] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang Chiew Tan. Archiving Scien-
tific Data. In SIGMOD, pages 1–12, 2002.

[23] D. Burdick, M. A. Hernández, H. Ho, G. Koutrika, R. Krishnamurthy, L. Popa, I. R. Stanoi,
S. Vaithyanathan, and S. Das. Extracting, Linking and Integrating Data from Public
Sources: A Financial Case Study. IEEE Data Eng. Bull., 34(3):60–67, 2011.

[24] M.J. Cafarella, A. Halevy, and N. Khoussainova. Data integration for the relational web.
VLDB, 2(1):1090–1101, 2009.

[25] Stefano Ceri and Jennifer Widom. Deriving Production Rules for Incremental View Main-
tenance. In VLDB, 1991.

[26] Latha S. Colby. A recursive algebra and query optimization for nested relations. In
SIGMOD, pages 567–582, 1989.

[27] C. Curino, H. Moon, and C. Zaniolo. Managing the history of metadata in support for
db archiving and schema evolution. Advances in Conceptual Modeling–Challenges and
Opportunities, pages 78–88, 2008.

[28] C.A. Curino, L. Tanca, H.J. Moon, and C. Zaniolo. Schema evolution in wikipedia: toward
a web information system benchmark. In In International Conference on Enterprise
Information Systems (ICEIS. Citeseer, 2008.

[29] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful database schema evolution:
the prism workbench. Proc. VLDB Endow., 1(1):761–772, August 2008.

[30] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby,
Brad A. Myers, and Alan Turransky, editors. Watch what I do: programming by demon-
stration. MIT Press, Cambridge, MA, USA, 1993.

[31] Jan Van den Bussche. Simulation of the nested relational algebra by the flat relational al-
gebra, with an application to the complexity of evaluating powerset algebra expressions.
Theoretical Computer Science, 254(1-2):363–377, 2001.

[32] H.H. Do and E. Rahm. COMA: a system for flexible combination of schema matching
approaches. In VLDB, pages 610–621, 2002.

[33] A.H. Doan, P. Domingos, and A.Y. Halevy. Reconciling schemas of disparate data sources:
A machine-learning approach. In SIGMOD, pages 509–520, 2001.

198

[34] Xin Luna Dong and Alon Halevy. A platform for personal information management and
integration. In Proceedings of VLDB 2005 PhD Workshop, page 26. Citeseer, 2005.

[35] C. Drumm, M. Schmitt, H.H. Do, and E. Rahm. Quickmig: automatic schema matching
for data migration projects. In CIKM, pages 107–116, 2007.

[36] H. Elmeleegy, M. Ouzzani, and A. Elmagarmid. Usage-based schema matching. In ICDE,
pages 20–29, 2008.

[37] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag New York Inc, 2007.

[38] R. Fagin. Multivalued dependencies and a new normal form for relational databases.
TODS, 2(3):262–278, 1977.

[39] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Composing
Schema Mappings: Second-Order Dependencies to the Rescue. TODS, 30(4):994–1055,
2005.

[40] PC Fischer, LV Saxton, SJ Thomas, and D. Van Gucht. Interactions between depen-
dencies and nested relational structures. Journal of Computer and System Sciences,
31(3):343–354, 1985.

[41] D. Florescu and D. Kossmann. Storing and querying xml data using an rdmbs. IEEE
Data Engineering Bulletin, 22(3):27–34, 1999.

[42] G. Graefe. Efficient columnar storage in b-trees. SIGMOD, 2007.

[43] Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumick. Data Integration using Self-
Maintainable Views. In EDBT, 1996.

[44] Ashish Gupta, Inderpal Singh Mumick, Jun Rao, and Kenneth A. Ross. Adapting Ma-
terialized Views after Redefinitions: Techniques and a Performance Study. Inf. Syst.,
26(5):323–362, 2001.

[45] Terry Halpin. Conceptual schema and relational database design (2nd ed.). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[46] C.S. Hara and S.B. Davidson. Reasoning about nested functional dependencies. In POD-
S, pages 91–100, 1999.

[47] Jeffrey Heer, Maneesh Agrawala, and Wesley Willett. Generalized selection via interac-
tive query relaxation. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 959–968. ACM, 2008.

[48] M. Hernández, G. Koutrika, R. Krishnamurthy, L. Popa, and R. Wisnesky. HIL: A High-
Level Scripting Language for Entity Integration. In EDBT, 2013.

[49] M.A. Hernández, R.J. Miller, and L.M. Haas. Clio: A semi-automatic tool for schema
mapping. In SIGMOD, page 607, 2001.

[50] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in relational databas-
es. In VLDB, page 681, 2002.

[51] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. Tane: An efficient algorith-
m for discovering functional and approximate dependencies. The Computer Journal,
42(2):100, 1999.

[52] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct manipulation inter-
faces. Hum.-Comput. Interact., 1(4):311–338, December 1985.

199

[53] Zachary G. Ives, Craig A. Knoblock, Steven Minton, Marie Jacob, Partha Pratim Talukdar,
Rattapoom Tuchinda, JoseLuis Ambite, Maria Muslea, and Cenk Gazen. Interactive data
integration through smart copy and paste. In CIDR, 2009.

[54] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li, Arnab
Nandi, and Cong Yu. Making database systems usable. In SIGMOD, pages 13–24, 2007.

[55] M. Jakobsson. Autocompletion in full text transaction entry: a method for humanized
input. SIGCHI, 17(4):327–332, 1986.

[56] M. Jayapandian, A. Chapman, V.G. Tarcea, C. Yu, A. Elkiss, A. Ianni, B. Liu, A. Nandi,
C. Santos, P. Andrews, et al. Michigan molecular interactions (mimi): putting the jigsaw
puzzle together. Nucleic acids research, 35:D566, 2007.

[57] Capers Jones. End user programming. Computer, 28(9):68–70, 1995.

[58] William Jones. Personal information management. Annual review of information science
and technology, 41(1):453–504, 2007.

[59] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar.
Bidirectional expansion for keyword search on graph databases. In VLDB, pages 505–
516, 2005.

[60] J. Kang and J.F. Naughton. On schema matching with opaque column names and data
values. In SIGMOD, pages 205–216, 2003.

[61] P.G. Kolaitis. Schema mappings, data exchange, and metadata management. In PODS,
pages 61–75, 2005.

[62] Mark W Lansdale. The psychology of personal information management. Applied Er-
gonomics, 19(1):55–66, 1988.

[63] M. Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246,
2002.

[64] Barbara Staudt Lerner and A. Nico Habermann. Beyond schema evolution to database
reorganization. SIGPLAN Not., 25(10):67–76, September 1990.

[65] W.S. Li and C. Clifton. SEMINT: A tool for identifying attribute correspondences in
heterogeneous databases using neural networks. Data and Knowledge Engineering,
33(1):49–84, 2000.

[66] Henry Lieberman. Your wish is my command: Programming by example. Morgan Kauf-
mann, 2001.

[67] S. Lopes, P. Jean-Marc, and L. Lakhal. Efficient discovery of functional dependencies
and armstrong relations. EDBT, pages 350–364, 2000.

[68] J. Madhavan, P.A. Bernstein, A.H. Doan, and A. Halevy. Corpus-based schema matching.
In ICDE, pages 57–68, 2005.

[69] J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with cupid. In
VLDB, pages 49–58, 2001.

[70] D. Maier, A.O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies.
TODS, 4(4):469, 1979.

200

[71] Heikki Mannila and Kari-Jouko Räihä. Dependency inference. In Proceedings of the 13th
International Conference on Very Large Data Bases, pages 155–158. Morgan Kaufmann
Publishers Inc., 1987.

[72] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph match-
ing algorithm and its application to schema matching. In ICDE, pages 117–128, 2002.

[73] R.J. Miller, L.M. Haas, and M.A. Hernéandez. Schema Mapping as Query Discovery.
pages 77–88, 2000.

[74] Mukesh K. Mohania and Guozhu Dong. Algorithms for Adapting Materialised Views in
Data Warehouses. In CODAS, pages 309–316, 1996.

[75] Wai Yin Mok, Yiu-Kai Ng, and David W Embley. A normal form for precisely characteriz-
ing redundancy in nested relations. TODS, 21(1):77–106, 1996.

[76] Hyun J. Moon, Carlo A. Curino, Alin Deutsch, Chien-Yi Hou, and Carlo Zaniolo. Managing
and querying transaction-time databases under schema evolution. Proc. VLDB Endow.,
1(1):882–895, August 2008.

[77] Inderpal Singh Mumick, Dallan Quass, and Barinderpal Singh Mumick. Maintenance of
Data Cubes and Summary Tables in a Warehouse. In SIGMOD, pages 100–111, 1997.

[78] A. Nandi and P.A. Bernstein. HAMSTER: using search clicklogs for schema and taxono-
my matching. VLDB, 2(1):181–192, 2009.

[79] N. Novelli and R. Cicchetti. Functional and embedded dependency inference: a data
mining point of view. Information Systems, 26(7):477–506, 2001.

[80] Z Meral Ozsoyoglu and Li-Yan Yuan. A new normal form for nested relations. TODS,
12(1):111–136, 1987.

[81] Efstratios Papadomanolakis and Anastassia Ailamaki. Autopart: Automating schema
design for large scientific databases using data partitioning. In SSDBM, pages 383–392,
2004.

[82] J. Paredaens and D. Van Gucht. Converting nested algebra expressions into flat algebra
expressions. TODS, 17(1):65–93, 1992.

[83] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[84] L. Popa, Y. Velegrakis, M.A. Hernández, R.J. Miller, and R. Fagin. Translating web data.
In VLDB, pages 598–609, 2002.

[85] E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema matching.
VLDB, 10(4):334–350, 2001.

[86] Balaji Rathakrishnan and Junguk L. Kim. An extended recursive algebra for nested
relations and itsoptimization. In COMPSAC, page 145, 1993.

[87] Mark A. Roth, Herry F. Korth, and Abraham Silberschatz. Extended algebra and calculus
for nested relational databases. TODS, 13(4):389–417, 1988.

[88] HJ Schek and MH Scholl. The relational model with relation-valued attributes. Informa-
tion Systems, 11(2):137–147, 1986.

[89] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. DeWitt, and
Jeffrey F. Naughton. Relational databases for querying xml documents: Limitations and
opportunities. In VLDB, page 314, 1999.

201

[90] Eugene J. Shekita and Michael J. Carey. A Performance Evaluation of Pointer-Based
Joins. In SIGMOD, pages 300–311, 1990.

[91] Ben Shneiderman. Direct manipulation: A step beyond programming languages (ab-
stract only). In Proceedings of the joint conference on Easier and more productive use
of computer systems. (Part - II): Human interface and the user interface - Volume 1981,
CHI ’81, pages 143–, New York, NY, USA, 1981. ACM.

[92] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A system for query,analysis and vi-
sualization of multi-dimensional relational databases. IEEE Trans. Vis. Comput. Graph-
ics, 8(1):52–65, 2002.

[93] M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, et al. C-store: a column-oriented dbms. In VLDB, pages 553–564,
2005.

[94] P.P. Talukdar, Z.G. Ives, and F. Pereira. Automatically incorporating new sources in key-
word search-based data integration. In SIGMOD, pages 387–398, 2010.

[95] P.P. Talukdar, M. Jacob, M.S. Mehmood, K. Crammer, Z.G. Ives, F. Pereira, and S. Guha.
Learning to create data-integrating queries. VLDB, 1(1):785–796, 2008.

[96] Jaime Teevan, William Jones, and Benjamin B Bederson. Personal information manage-
ment. Communications of the ACM, 49(1):40–43, 2006.

[97] D. Van Gucht and P.C. Fischer. Multilevel nested relational structures. Journal of Com-
puter and System Sciences, 36(1):77–105, 1988.

[98] M.W. Vincent, J. Liu, and C. Liu. Strong functional dependencies and their application
to normal forms in xml. TODS, 29(3):445, 2004.

[99] Steven A Wolfman, Tessa Lau, Pedro Domingos, and Daniel S Weld. Mixed initiative in-
terfaces for learning tasks: Smartedit talks back. In Proceedings of the 6th international
conference on Intelligent user interfaces, pages 167–174. ACM, 2001.

[100] Jeffrey Wong and Jason I. Hong. Making mashups with marmite: towards end-user
programming for the web. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’07, pages 1435–1444, New York, NY, USA, 2007. ACM.

[101] L.L. Yan, R.J. Miller, L.M. Haas, and R. Fagin. Data-driven understanding and refinement
of schema mappings. In SIGMOD, page 485, 2001.

[102] C. Yu and HV Jagadish. Efficient discovery of xml data redundancies. In VLDB, pages
103–114, 2006.

[103] M.M. Zloof. Query by example. In Proceedings of the May 19-22, 1975, national com-
puter conference and exposition, pages 431–438, 1975.

