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CHAPTER 1

Optically Driven Quantum Dots for Quantum Information Applications

In the last 20 years, the field of optically driven QDs has rapidly grown from the

early stages of characterization to become one of the leading candidates for scalable

quantum information applications. In this work, optically driven quantum dot (QD)

spins are studied for quantum information applications. A single QD is charged with

an electron whose spin state is used to encode quantum information. The QD spin can

be coupled to photons through the QD’s optically excited trion states [1, 2]. Photon

states entangled with the QD spin can be used to mediate entanglement between QD

spins providing the basis of a scalable quantum information architecture [3–5]. In

this work, we apply quantum optics techniques to the study of QDs and demonstrate

a QD spin-photon entangled state which is an important step towards realizing a

scalable optically coupled QD spin architecture.

1.1 Brief History of Quantum Information Processing

Over the past few decades, there has been tremendous advancement in the ability

to control individual quantum states. The invention of the laser and nonlinear optics

in the 1960’s led to rapid advances in optical science [6, 7]. Since then, the fields of

atom trapping, quantum optics, and ultrafast optical science have evolved at a re-

markable pace. These advancements led to the ability to trap and manipulate single

atoms [8, 9]. Many attribute the field of quantum information processing to Richard

Feynman, who explored the idea that a computer based on quantum mechanics could

be more efficient than a classical computer [10]. Interest in quantum computing

1
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was further motivated by the work of Deutsch [11] and the discovery of powerful

quantum algorithms such as Grover’s search algorithm [12] and Shor’s factoring algo-

rithm [13], which offer significant speedups over classical computing algorithms. The

next theoretical breakthrough in quantum information science was the development

of fault-tolerant quantum computing, showing that the computational errors, which

are inherent in a real world quantum computer, could be controlled by implementing

quantum error correction codes [14, 15]. In the 1990’s and 2000’s, experiments using

trapped ions, nuclear spins in molecules, atomic gases, single photons, superconduct-

ing circuits, defect centers in crystals, and QDs demonstrated that a diverse range of

material systems can be useful for quantum information applications [16]. A current

goal in many of these systems is realizing a practical architecture suitable for scalable

quantum information processing/computing [17], including using different physical

systems to implement different parts of a hybrid quantum network [18].

1.1.1 Trapped Ion-Photon Interfaces

The charged QD system is a solid state analogue of a single trapped ion, so

it is useful to review some of the recent results from the trapped ion community.

In 1999, it was proposed that entanglement between distant ion qubits could be

heralded using intermediate photon states [19]. In 2004, Blinov et al showed that

the polarization state of a photon spontaneously emitted from a lambda system of a

single trapped ion is entangled with the resulting hyperfine level [20]. In the following

years, it was shown that two intermediate ion-photon entangled states can be used

to herald entanglement between two distant ion qubits [5]. The approach relies on a

probabilistic postselection protocol using Hong-Ou-Mandel interference [21,22], which

utilizes interference between two indistinguishable photons. In the experiment, two

ions are simultaneously excited, which then decay by spontaneous emission. The

photon frequency is entangled with the hyperfine level so that,

|ψi〉 =
1√
2

(|↑〉i|ω↑〉i − |↓〉i|ω↓〉i) (1.1)

where i = a, b, as depicted in Figure 1.1.
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Figure 1.1: Distant entanglement between two ions can be heralded by coincident clicks on a

detectors in an H.O.M. interferometer. The protocol requires intermediate ion-photon entanglement.

When these photons are mixed on a 50-50 beam splitter the resulting state is,

|Ψa,b〉 = |ψa〉 ⊗ |ψb〉. (1.2)

The two detectors simultaneously click only if the photons are in the antisymmetric

state [22],

|ψphoton〉 =
1√
2

(|ω↑〉a|ω↓〉b − |ω↓〉a|ω↑〉b). (1.3)

So that coincident detector clicks projects the state vector to |ψphoton〉, which heralds

an entangled state between the distant spins of the form [5],

〈ψphoton|Ψa,b〉 =
1√
2

(|↑〉a|↓〉b − |↓〉a|↑〉b) . (1.4)

This heralded spin-spin entanglement is a useful resource for quantum information

science since it provides a platform where the simplest quantum network (2 qubits) can

be studied. The first step to achieving this distant spin-spin entanglement is verifying

that the intermediate spin-photon state is entangled. Verifying that an InAs QD is

capable of generating a spin-photon entangled state is the primary objective of this

work.
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1.2 Optically Driven Quantum Dots

Simultaneously with the invention of the laser in the 1960s, great advancement

in semiconductor processing, such as molecular beam epitaxy (MBE) [23] and GaAs

based optoelectronics led to new capabilities to control the quantum states of charge

carriers in solids. Specifically, the realization of 2 dimensional quantum well, 1 dimen-

sional quantum wire, and 0 dimensional QD structures allowed for tuning electronic

states through confinement. The 0 dimensional QD is of particular interest for quan-

tum information applications because its energy levels are discrete and can be used

to encode quantum information.

There are two basic types of QDs: gate-defined QDs which are based on quantum

well structures that use electronic gates to provide the in-plane confinement poten-

tial that can trap single carriers [24, 25], and semiconductor QDs which realize 3

dimensional electronic confinement through the QD’s physical structure. Due to the

relatively weak in-plane confinement in gate-defined QD, optical studies on QDs are

usually limited to semiconductor QDs which we study here. Semiconductor QD sys-

tems generally fall into two categories: chemically synthesized colloidal (II-VI) QDs,

and epitaxially grown (III-V) QDs usually based on GaAs heterostructure technology.

In this work, we study single InAs/GaAs QDs, which are grown by molecular beam

epitaxy. The QDs begin as nanometer sized islands of InAs which are formed by

a self-assembly process while growing InAs on a GaAs substrate. These islands are

then capped with GaAs to form the QD. Since the bandgap of GaAs is much larger

than the bandgap of InAs, electrons and holes can be confined to the QD potential.

Due to this spatial confinement, it becomes possible to optically excite single

excitons (electron-hole pairs) since the QD potential gives rise to an anharmonic

energy level diagram. That is, since the size of the QD is smaller than the exciton

Bohr radius, the energy to excite two excitons inside the QD is not twice the energy

to excite one exciton. This anharmonic energy level spacing allows the QD to be

thought of as a solid-state realization of single trapped atom. Early work in (GaAs)

interface fluctuation QDs showed that this atomic like picture of a single QD exciton is

valid [26]. In that system, Rabi oscillations, exciton-exciton entanglement, and 2 qubit
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quantum gates were realized [27–29], showing that single QD excitons, manipulated

by coherent optical laser pulses, are useful for quantum information science.

In 1998, Loss and DiVencenzo outlined a proposal using QDs for scalable quantum

computing. In this proposal, they proposed using (electron) spins confined to QDs

as quantum storage devices and outlined a list of criteria which must be realizable

for a scalable quantum computing architecture, which are known as the DiVencenzo

Criteria [24]. They are listed here in their original form in quotation along with a

description of their meaning where appropiate:

1. “Identification of well-defined qubits”

2. “Reliable state preparation” -Ability to initialize the system to a pure state

3. “Low decoherence” -Coherence time much longer than the gate operation time

4. “Accurate quantum gate operations” -Universal set of quantum gates

5. “Strong quantum measurements” -Ability to read out specific qubit states

One of the primary challenges in any quantum information architecture is find-

ing a physical system where the qubit can be manipulated and read out efficiently

while simultaneously exhibiting long coherence times because it couples weakly to

the environment. The exciton state of a single QD can be used to encode quantum

information, however since the exciton is an excited state which radiatively decays in

< 1 ns, they are short lived and have limited use in quantum information schemes,

which require long coherence times relative to the gate operation time (typically 1

ps). By encoding the quantum information in the long lived spin state of a QD, one

can realize a scalable qubit which exhibits “low decoherence” [24], relative to the gate

operation time.

A single semiconductor QD can be charged with an electron to realize an optically

coupled QD spin system as depicted in Figure 1.2. The charged QD system was stud-

ied in GaAs interface fluctuation QDs with some success [30], but due to the relatively

weak in-plane confinement of carriers in GaAs QDs, it was determined that charged
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Figure 1.2: A single semiconductor QD can be charged with an electron. The spin of the electron

can be used as a long lived quantum storage device which can be optically manipulated with coherent

laser pulses through the QD’s trion state. A single photon scattered by the QD can serve as a

quantum communication link between QDs or provide a spin readout channel.

self-assembled InAs/GaAs QDs are better candidates for quantum information appli-

cations [2, 31]. In the charged QD system, the ground state sublevels are composed

of the two spin states of a single electron in the QD. The optically excited trion state

of the QD is a negatively charged exciton: a three-particle system composed of two

electrons and one hole. This forms a QD “lambda” system which can be thought

of as the solid-state analogue of a single trapped ion, where the qubit is encoded in

the long lived spin ground state, and the spin can be rapidly manipulated through

the QD’s optically excited trion states. In the single charged QD system, all of the

single qubit DiVencenzo Criteria have been realized [1, 2], and the current focus is

on scaling the optically driven QD spin architecture to a multiple qubit system for

practical quantum information applications.

1.3 Scaling the Optically Driven Quantum Dot Spin Architecture

A challenge in realizing a scalable architecture for quantum information applica-

tions is maintaining well defined single qubits that can be independently manipulated
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and read out, while simultaneously mediating controlled interactions between qubits

that allow for conditional gate operations, which are required to realize a universal

set of quantum gates. In terms of quantum mechanics, these conditional gate opera-

tions generally require the ability to entangle specific qubits where the entanglement

is used as a resource both for computation and error correction [16]. There are two

leading approaches being explored for scaling the optically driven QD spin system:

local interactions and flying (photon) qubits.

1.3.1 Coupling Quantum Dots with Local Interactions

Local interactions, (dipole-dipole, exchange, tunneling) between spatially adja-

cent QDs can be used to directly mediate interactions. However, controlling local

interactions is challenging because self-assembled QDs usually nucleate randomly on

the sample, where only the average areal density of QDs is tunable. Recently, there

have been promising advances in realizing site-controlled QD growth by using electron

beam or focussed ion beam techniques to deterministically induce a QD nucleation

site by patterning the substrate before the QDs are grown [32, 33]. Although there

has been tremendous progress in controlling QD nucleation sites, so far site-controlled

QDs have exhibited significantly degraded optical properties compared to tradition-

ally grown QDs, likely due to unstable trapped states associated with the patterning.

Another exciting approach relies on vertically stacking QDs to form “QD molecules” [34]

In this approach, after an InAs QD is capped with a GaAs layer, another layer of

InAs is grown. The the presence of the bottom QD induces a strain in the top layer

which causes a second QD to preferentially nucleate above the bottom dot. The

QDs are sufficiently close together that there can be significant wavefunction overlap

between the electron and hole wavefunctions under certain conditions, which give

rise to a “tunneling interaction.” By utilizing the tunneling interaction, conditional

operations between spin qubits of distinct QDs is possible. Recently, entanglement

between two electron spins confined to two QDs of a QD molecule has been demon-

strated using the tunneling interaction, which is an important step towards a scalable
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Figure 1.3: Two QD spins at different nodes of a quantum network can be coupled using interme-

diate spin-entangled photons.

QD spin system [35].

1.3.2 Flying Qubits: Photons

We pursue a scaling approach that relies on intermediate flying photonic qubits.

The QD spin can be coupled to photons using the QD’s optically excited trion states,

and since single photons are also capable as serving as qubits, they can be used to

link spatially distant QD spins (Figure 1.3), where intermediate spin-photon entangled

states could be used to mediate entanglement between distant QD spins.

In principle, a single photon scattered off one QD could be channeled to interact

with another QD to mediate spin-spin entanglement, but in order for the fidelity of

such an operation to be near unity, the QDs must be interfaced with an optical cavity

that can strongly couple a QD transition to a particular field mode [3, 4]. Since the

QD is embedded in a solid-state structure, an optical cavity (microdisk, micropillar,

photonic crystal) can be fabricated around the QD by lithographic techniques offer-

ing the possibility of an optically coupled QD spin circuit. In this circuit, one can

imagine a QD spin coupled to a field mode of a cavity at each node, and the nodes

are linked together with integrated optical waveguides. In recent years, there has

been tremendous progress in realizing a strongly coupled QD-cavity system [36–38],

and the current focus is realizing a strongly couple QD spin-cavity system and the

deterministic coupling between QD spins located at different nodes of a primitive QD
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Figure 1.4: When the |Tx−〉 state decays by spontaneous emission, the polarization state (H,V )

of the single spontaneously emitted photon is entangled with the spin state (|x+〉,|x−〉) of the QD.

This type of entanglement can be used in a two QD protocol, as shown in Figure 1.1 for trapped

ions, to herald entanglement between distant QDs.

network [39–41].

Another approach uses two intermediate spin-photon entangled states to herald

distant spin-spin entanglement. This would rely on a post-selection protocol similar

the method demonstrated with trapped ions (Section 1.1.1). The benefit of this

approach is that the entanglement is heralded by a measurement, so that distant

spin-spin entanglement can be generated with near unity fidelity without requiring

perfect coupling between the QD and a particular field mode. So it is possible to

achieve high fidelity distant spin-spin entanglement without the use of a strongly

coupled QD-cavity system. A limitation of the approach is that the heralding success

rate decreases exponentially with the number of qubits, which will limit the practical

size of the system, but still provides a useful platform for studying few qubit quantum

networks.

Both of these approaches require the generation of a QD spin-photon entangled

state, which is the primary focus of this thesis. In this work, we show that when the

|Tx−〉 state of the QD decays by spontaneous emission, and light is collected along
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the growth direction, a spin-photon entangled state of the form [42,43],

|Ψ〉 =
|H〉|x+〉 − i|V 〉|x−〉√

2
, (1.5)

is generated, which is a maximally entangled state between the QD spin and the

polarization state of the emitted photon. The entanglement is verified by perform-

ing correlation measurements between the QD spin and photon polarization in two

bases. Developing the theoretical and experimental capabilities to execute such a

measurement is the primary subject of this thesis. In addition to the spin-photon en-

tanglement theory and experiment, various quantum optics measurements on single

QDs are performed which further demonstrate the usefulness of optically driven QD

spins for quantum information applications.

1.4 Chapter Summary

In this Chapter, the optically driven QD spin architecture is introduced, and a

brief history of quantum information processing is given. Since an optically coupled

QD spin is similar to a single trapped ion, recent progress in realizing a scalable ion-

photon interface is reviewed to give context to some of the approaches pursued here.

The primary focus of this work is demonstrating a QD spin-photon entangled state for

scaling the QD spin architecture, which requires the development of quantum optics

techniques and theoretical tools applied to the optically driven QD spin system.



CHAPTER 2

Optical and Electronic Properties of InAs Quantum Dots

GaAs, InAs and other direct band gap semiconductors have had tremendous im-

pact in optical and electro-optical science and technology. Light emitting diodes,

diode lasers and IR detectors are just a few of the practical devices that have emerged

from these materials [44–46]. In addition to these applied technologies, semiconduc-

tor heterostructure science, based primarily on molecular beam epitaxy (MBE) [47],

has led to the ability to engineer electronic wave functions in quantum well and QD

structures. In more recent years, laser technologies based on semiconductor QDs

have resulted in standard commercial products offering high stability operation at

the 1.3µm telecom band [48]. Colloidal (II-VI) and epitaxial QDs also have potential

applications in solar energy as tunable light absorbers [49]. Single QDs have been

studied mainly for applications in quantum optics and quantum information science.

They provide a very attractive system because their energy levels are atom-like, but

unlike atoms, they can be tailored for specific applications [26]. In this chapter, we

review some important electronic and optical properties of semiconductors, describe

the InAs QD sample structure, present the energy eigenstates of a InAs charged QD,

and review the optical selection rules for transitions between the energy levels.

2.1 Review of Semiconductor Band Structure

The optical and electronic properties of semiconductors are understood by study-

ing the band structure of the materials. A basic property of crystalline materials is

the existence of electronic energy bands that arise from the periodic nature of the

11
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constituent atoms’ potential. The simplest example of periodic potential gives rise

to eigenstates known as Bloch states, which are extended states of the crystal. If the

potential (V ) is of the form,

V (r) = V (r +R), (2.1)

where R is the spacing of the periodic potential, the resulting Bloch states are of the

form,

ψk(r) = eik·ruk(r), (2.2)

which is a plane wave envelope multiplied by uk(r) which has the same periodicity

as the potential. This general result is useful to keep in mind as we discuss the band

structure of real semiconductors where the potential is composed of periodic lattice

of atoms.

The electronic band structure of semiconductors can be calculated using various

techniques [50]. One commonly used and instructive technique is known as the tight-

binding method [51]. In the tight binding calculations, the wave functions of the

constituent atoms’ valence electrons are used as the basis states for the band structure

calculation. The basic assumption is that these electrons are “tightly” bound so that

there is limited overlap between the wavefunctions of neighboring atoms. Details of

these calculations can be found in standard books on solid-state physics [46,50]. Here,

we recall the approach and basic results following some of the notation in Singh [46].

In a tight-binding calculation, the Hamiltonian is taken to be of the form,

H = Hatoms + ε(r), (2.3)

where Hatoms is the potential formed by the bare atoms, and ε(r) is a perturbation

to this potential. The states are taken to be of the form,

Ψk(r) =
∑
R

eik·Rφ(r −R), (2.4)

where we sum over unit cell (R), and φ(r) is expanded as a sum of the bare atomic

states ψn such that,

φ(r) =
N∑
n

anψn(r), (2.5)
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where N is the number of atomic orbitals used. To find the expansion coefficients

(an), we use the Schrödinger equation,

HΨk = E(k)Ψk (2.6)

and the orthonormality of the atomic wavefunctions to generate of system of N cou-

pled equations. The terms involving integrals over ε and between different atomic

sites are usually left as fitting parameters that are determined experimentally. Typi-

cally only a few of the atomic states are used as the basis states. Solving this system

one can find N dispersion relations (E(k)), which make up the band structure.

For III-V semiconductors like InAs and GaAs, the crystal structure is zinc-blende,

which is composed of two displaced face-centered cubic lattices. The outermost va-

lence electrons of the constituent atoms (Ga, In and As) are s and p states. There is

one s molecular orbital and three p orbitals (px, py, pz), which are known as the sp3

basis states. Using these as the basis states, a typical wavefunction for calculating a

tight binding band structure is of the form,

Ψk(r) =
∑
R

4∑
m=1

2∑
j=1

Amj(k)φ(r − rj −R)eik·R, (2.7)

where m indexes the sum over the four sp3 basis states for each atom and j indexes

the two atoms in each unit cell. R is the sum over unit cells. Equations 2.6 and 2.7

can be used to determine the band structure up to several fitting parameters which

are usually determined experimentally [46,51]. Keeping this theoretical framework in

mind, we now discuss some properties of the band structure.

A typical (undoped) semiconductor band structure consists of many energy bands,

with the Fermi level falling between two bands. Because of this, we are usually

interested in two of the energy bands: the “conduction” band that is directly above

the Fermi level, and the “valence” band which is below the Fermi level. The energy

difference between the lowest point in conduction band and the highest point in the

valence band is called the bandgap. Since the translational symmetry of the system

is given by the crystal structure, the physical momentum of electrons in a solid is

usually not a useful quantity to consider. Instead, we use the crystal momentum
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where charge carriers have an effective mass, m∗, which is given by the curvature of

the bands. Electrons in the conduction band behave similarly to free electrons with

the effective mass m∗e. If an electron is missing from the valence band, it behaves as

if there is positive charge carrier, known as a hole, with an effective mass m∗h.

A semiconductor’s optical properties, determined by the band structure, are typ-

ically organized into two categories. In direct bandgap semiconductors like GaAs

and InAs, the conduction band minimum and valance band maximum occur for the

same momentum (k) (Figure 2.1). In indirect bandgap semiconductors like silicon

and germanium, the conduction band minimum does not align with the valence band

maximum. An important difference between a direct and indirect semiconductor’s op-

tical properties is the ability for electrons and holes to recombine radiatively. Due to

energy and momentum conservation, optical transitions have to be vertical (∆k = 0)

since optical photons carry negligible momentum. Excited electrons and holes rapidly

relax down to the band edge, so carriers in direct bandgap semiconductors can ra-

diatively recombine (since the transition is vertical), emitting photons, whereas in

indirect bandgap semiconductors this process is highly suppressed due to the mis-

alignment of the band edges (∆k 6= 0). This is why silicon usually can not be used

for light emitting diodes and lasers. Since we are interested in efficient coupling of

photons into and out of the semiconductor states, we will be concerned with direct

bandgap semiconductors.

To understand the selection rules of optical transitions between energy bands, we

need to understand the angular momentum states of electrons and holes. Unlike an

electron bound in an atom that has continuous three dimensional rotational sym-

metry, an electron in a crystal is subject to the discrete rotational symmetries of

the crystal’s point group. Since angular momentum conservation comes about from

rotational symmetry, angular momentum is not a “good” quantum number in a crys-

tal. However, we can still associate the band edge states with angular momentum

states. Electrons in the conduction band are s like, associated with the orbital an-

gular momentum (L = 0), and holes in the valence band are p like (L = 1). This

representation with atomic angular momentum states is valid because the irreducible
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Figure 2.1: A simplified direct bandgap semiconductor band structure showing the conduction

band (CB), heavy hole (HH) band, light hole (LH) band, and split off (SO) band. For an intrinsic

semiconductor, the Fermi energy is centered between the lowest conduction band and highest valence

band. In bulk the HH and LH bands are degenerate at k = 0, however in a QD. Due to spin-orbit

coupling, the SO band is energetically distant and is usually not considered while studying the HH

and LH.

representations of the band edge states transform under rotations like the s and p

atomic orbitals. In the tight binding picture described above, this can also be seen

as the conduction (valence) band edge states being composed of the s (p) constituent

atomic basis states.

Electrons are spin 1/2 particles. Since the valence band states are p like (L = 1),

we must consider the spin-orbit interaction which couples the spin (S) and orbital

(L) angular momentum states. The Hamiltonian for this interaction is

HSO = λ L · S, (2.8)

where λ is a constant.

Including the spin-orbit Hamiltonian, the new eigenstates are most easily found

by re-writing the interaction in terms of the total angular momentum, J = L + S,
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so that,

HSO = λ
J2 −L2 − S2

2
, (2.9)

The spin-orbit interaction splits the hole eigenstates into three bands. They are called

the heavy hole |HH〉 = |j = 3/2,mj = ±3/2〉, the light hole |LH〉 = |j = 3/2,mj = ±1/2〉

and the split off hole |SO〉 = |j = 1/2,mj = ±1/2〉, where the growth direction (z)

sets quantization axis. One should note that the conduction (valence) band states

are purely s (p) only at the Γ (k = 0) point. Away from the Γ point, the interaction

between these states can be calculated using the Kohn-Luttinger Hamiltonian [52]. A

simplified band structure for a direct band gap semiconductor is shown in Figure 2.1.

In bulk, the heavy hole and light hole are degenerate at the Γ point; however, in a

QD, these eigenstates are split by confinement and strain.

2.2 Excitons in Bulk

Incident optical radiation with energy at or above the band gap can excite elec-

trons into the conduction band leaving behind holes in the valence band. There is

an attractive Coulomb interaction between the negatively charged electron and the

positively charged hole given by,

VC = − e2

4πεr
, (2.10)

where e is the electron charge, ε is the permittivity, and r is the separation of the

electron and hole. For most semiconductors, this interaction can be treated as a

perturbation to the band structure. The resulting bound electron-hole state is called

an exciton and can be calculated using the Schrödinger equation with effective mass

theory. The resulting exciton envelope solutions are similar to the hydrogen atom

problem, but one should be careful with this analogy since the exciton is not a ground

state of the system. The exciton is an excited state of the system, and it decays

by radiatively recombining, resulting in a full valence band and no electrons in the

conduction band. So in this sense, the problem is a better analogy to positronium,
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the bound state between an electron and a positron. Excitons are usually classified

as Frenkel, which typically have small Bohr radius (a0 ≈ 0.1 − 1 nm) and high

binding energy (EB ≈ 100 − 1000 meV), or Wannier-Mott which have larger Bohr

radius (a0 ≈ 10 − 100 nm) and low binding energy (EB ≈ 1 − 10 meV). In high ε

semiconductors, like GaAs (and InAs), this interaction is fairly weak (EB ≈ 5 meV)

so the excitons are Wannier-Mott. Since kT at room temperature is 26 meV, usually

excitons in these materials are directly observable only at low temperature.

2.3 Excitons in QDs

A QD can be thought of as a three-dimensional square well which spatially confines

electrons and holes. If the size of the QD is sufficiently small (relative to the exciton

Bohr radius), the system becomes effectively zero-dimensional yielding a discrete

energy states. Here, we study single self-assembled InAs/GaAs QDs (see Figure 2.2).

Semiconductor QDs are made of a small band gap semiconductor (InAs) which is

surrounded in all three dimensions by a large band gap semiconductor (GaAs) that

gives rise to the spatial confinement of electrons and holes. The room temperature

bandgaps of bulk InAs and GaAs are 0.35 eV and 1.42 eV respectively. The InAs

QDs we study are approximately 2.8 nm tall and 20 nm in diameter that is small

compared to typical exciton Bohr radii for bulk InAs and GaAs, which are 40 nm

and 10 nm respectively [53]. Unlike bulk semiconductors where excitons are extended

Bloch states of the crystal, the confinement in a QD leads to localized excitons, and

it becomes possible to isolate a single exciton, since the strong Coulomb interaction

between localized excitons leads to an anharmonic energy level structure. So if one

exciton is created at ~ω, the two exciton state (biexciton) occurs at a shifted energy

~ω + ∆, where ∆ is the binding energy between excitons.
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Figure 2.2: InAs islands form on top of a highly strained InAs wetting layer which grows on a

GaAs substrate. After performing the indium flush technique the islands are capped with GaAs,

forming the QD.

There are various methods for calculating QD wavefunctions, including effective

mass theory, 8-band k·p, and pseudopotential theory to name a few methods [54–56].

The basic result can be understood within the effective mass approximation treat-

ing electrons and holes separately. We start with the time independent Schrödinger

equation,

(
−~2

2me

∇2 + Vperodic(r) + VQD(r)

)
ψ(r) = E ψ(r), (2.11)

where, me is the free electron mass, Vperodic is the periodic part of the potential arising

from the crystal, and VQD the potential from the QD, associated with a larger (nm)

length scale. Using effective mass theory, we can write,

(
−~2

2m∗
∇2 + VQD(r)

)
χenv(r) = Eenv χenv(r), (2.12)

where m∗ is the effective mass and instead of a standard Bloch wavefunction, the

wavefunctions for carriers confined to QDs are of the form,

ψ(r) = χenv(r)u0(r) (2.13)
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where χenv(r) is the envelope function and u0(r) is the rapidly varying periodic part

of the wavefunction which is s like for electrons and p like for holes. One can solve

Equation 2.12, subject to the QD confining potential, separately for electrons and

holes to find the envelope wavefunctions. The naming conventions for the envelope

and periodic parts of the wavefunction are similar, and should not be confused. For

both electrons and holes, the lowest energy envelope wavefunctions are symmetric,

and are called the “s shell” envelope wavefunctions in analogy with the ground state of

hydrogen, and the first excited states are called the “p shell” envelope wavefunctions

since they have odd parity.

The self-assembled InAs/GaAs QDs studied in this thesis are grown by molecular

beam epitaxy (MBE) in the Stranski-Krastanov (SK) growth mode along the 001

crystal axis. InAs is deposited on a GaAs substrate, and the 7% lattice mismatch

between the InAs and GaAs causes islands of InAs to form on top of an InAs wetting

layer. Naively considering the bulk InAs bandgap, one might assume that excitons

in InAs QDs would emit light at 0.35 eV. However, the QD structure modifies this

energy in two interrelated ways: quantum confinement from the InAs/GaAs band gap

mismatch, and strain from the InAs/GaAs lattice mismatch. The quantum confine-

ment effects that arise from the band gap mismatch can be qualitatively understood

in analogy to a three-dimensional square well potential, where the bound state ener-

gies are found to increase with decreasing well size. This square well picture is useful,

but not complete. Since the InAs/GaAs QD growth process relies on the mismatch

between the InAs and GaAs lattice constants, we have to consider the effect of strain

on the QD’s electronic structure. The band structure (and resulting bandgap) is re-

lated to the semiconductor’s lattice constant, where a smaller (larger) lattice constant

results in a higher (lower) bandgap. In the growth process, the InAs begins to grow

coherently: the first few atomic layers adapt to the GaAs substrate’s lattice constant

forming the (≈ 0.5 nm thick) wetting layer. As more InAs is deposited, the lattice

constant begins to relax to its bulk value. After a critical thickness, the QDs form

and are then capped with GaAs, so we can picture the effective lattice constant of

the InAs varying between the layers of GaAs, as each InAs layer adapts to the neigh-
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boring lattice. This distortion of the InAs lattice results in a built-in strain which

shifts the QD energy. These effects result in the energy of an interband QD transition

being determined by four major components,

Etotal = Ebandgap + EB + Econfinement + Estrain, (2.14)

where EB is the binding energy of the exciton. For the InAs QDs studied in this thesis,

Etotal ≈ 1.3 eV. The contributions of Econfinement and Estrain are approximately equal,

and given that the Ebandgap + EB ≈ 0.35 eV, the QD energy is largely determined

by the QD potential. In the self-assembly process, the location of each QD and

the size/shape of each QD is random. Since the energy eigenstates are strongly

dependent on the QD potential, an ensemble of QDs is inhomogeniously broadened

over approximately 100 meV.

It should also be noted that temperature also affects these energies, which can be

qualitatively understood in terms of the lattice constant changing with temperature.

In this thesis, all experiments are performed under 10 K, which corresponds to a

thermal energy of ≈ 0.9 meV. The confinement of carriers in the QD is strongest

in the growth (z) direction (≈ 300 meV), and tens of meV in the transverse (x, y)

directions, so the carriers are stable in the QD below 10 K (kbT ≈ 0.9 meV).

2.4 InAs Quantum Dot Structure and Characterization

When InAs QDs are first grown, they are approximately 20 nm in diameter and

5-10 nm tall, which when capped with GaAs results in QDs that emit radiation in

the near infrared (≈ 1.1µm). In order to study the QDs with Ti:sapphire lasers

and silicon detectors, the QD growth process is modified by a growth interruption

technique known as the indium flush technique [57]. Here, after the QDs are grown,

≈ 3 nm of GaAs is deposited onto the wetting layer and the temperature is raised.

The exposed InAs evaporates, effectively removing the top of the InAs QD. The QD

is capped with GaAs resulting in a pancake-shaped InAs QD, which emits in the

900− 1000 nm range [57].
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High NA lens 

Figure 2.3: The sample structure showing the Schottky diode and GaAs heterostructure. The InAs

QDs are located between two layers of intrinsic GaAs. The n(Si)-doped substrate provides electrons

that can tunnel into the QD. An external bias voltage (V) is applied to deterministically charge the

QD. A high numerical aperture (NA) aspheric lens is used to optically address single QDs.

The QDs are grown in a Schottky diode heterostructure shown in Figure 2.3, and

consists of a ≈ 1018cm−3 n-doped GaAs substrate, 40 nm intrinsic GaAs, 2.8 nm

InAs, 280 nm intrinsic GaAs, and a 5 nm Ti layer which forms the top contact of the

Schottky diode. The structure is designed for stable charging of the QD with elec-

trons from the n-doped substrate (Naval Research Lab sample number: R081105).

Forward biasing the diode raises the Fermi level so that electrons can tunnel into

the QD. The Coulomb blockade effect allows for deterministic charging of the QD

with single electrons, giving the charge configuration a macroscopic voltage existence

range. The charge state of the QD is identified through bias dependent photolumines-

cence (PL) spectroscopy [58]. Electrons and holes are optically injected into the bulk

material with a high energy laser (typically 500 − 900 nm). Some of these carriers

non-radiatively relax to the low energy states of the QD where they can recombine,

emitting radiation at the QD resonance energy. The QD PL is dispersed by a sin-

gle grating spectrometer and detected by a cooled (CCD). A typical PL spectrum is

shown in Figure 2.4.

By taking PL spectra as a function of applied sample bias, we are able to observe
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Figure 2.4: A typical QD photoluminescence spectrum at 4 K. Here, a few QDs are excited by the

laser spot, contributing multiple emission lines.
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Figure 2.5: A bias dependent photoluminescence map showing the charging pattern of a single

QD. The 6 meV jump in emission energy from the neutral exciton to the trion state is helpful in

identifying the charge state. The X2− state is also labeled. The other lines present on the PL map

are from neighboring QDs that are also excited by the laser spot.

steps in the charging pattern which we can associate with a particular charge state of

the QD (see Figure 2.5). The charge configuration which we discuss is the negatively

charged exciton (called a trion) which is composed of two electrons and one heavy

hole. These states are identified in bias dependent PL by a characteristic 6 meV jump

in emission energy.

For many quantum information applications, it is useful to isolate a three-level

“lambda” system where information can be stored in the long lived ground state

sub-levels, and the system can be rapidly manipulated through the optically excited

state. In order to realize this system with an InAs QD, we charge the QD with a

single electron, and use the spin state of the electron as the qubit. The charged QD’s

trion state can be used for optical coupling of the spin qubit.
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2.5 Optical Transitions in Negatively charged QDs

In order to understand optical transitions in a negatively charged QD, we re-

view some basic concepts from time dependent perturbation theory. The quantum

mechanical description of light matter interactions begins with the time dependent

Schrödinger equation for a charged particle, with mass (m) and charge (q) in an

electromagnetic field,

i~ψ′(t) = He+mψ(t) (2.15)

where,

He+m =
|(P − qA/c)|2

2m
+ qφ, (2.16)

where A is the vector potential and φ is the static potential, and P is the canonical

momentum. This P · A Hamiltonian can be re-formulated and instead written in

terms of the dipole moment operator µ = −er and the applied electric field E such

that,

He+m = H0 − µ ·E, (2.17)

where H0 = P 2

2m
+ Vperodic(r) + VQD(r), so that the QD wavefunctions are eigenstates

of H0, and the µ ·E term allows for transitions between these eigenstates.

We will typically consider the case where the applied electric field is taken to be

a time varying classical field of the form,

E(t) = E cos (kz − ωt), (2.18)

which is a traveling wave propagating opposite the sample’s growth direction (z)

where ω/2π is the frequency of the applied field and E is the amplitude.

In order for an optical dipole transition to be allowed, the matrix element between

two states |i〉 and |j〉

〈j|µ ·E|i〉 (2.19)
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must be nonzero.

For the negatively charged QD, the ground state of the system is composed of a

single electron in the lowest conduction band energy level which has angular momen-

tum |1/2,±1/2〉, with the notation |j,mj〉 . The lowest excited state of the system is

the trion state composed of two conduction band electrons in a spin singlet and one

heavy hole in the valence band. Since the electrons are in a singlet state, the angular

momentum state of the trion is determined by the heavy hole state associated with

|3/2,±3/2〉. In a QD, the light hole state (|1/2,±1/2〉) is not degenerate, but does

contribute to a light hole heavy hole mixing effect, which results in a rotation of the

optical selection rules [59], which we will come back to in Chapter 6. We will consider

electric dipole transitions between the electron spin ground state and the heavy hole

trion state. Since the growth direction (z) sets the quantization axis, we write the

QD electron ground states as

ψ±z = χs,c(re)|1/2,±1/2〉, (2.20)

where the χs,c(r) represents the envelope wavefunction, and the subscript labels that

it is s shell and for a conduction (c) band state.

Similarly for the heavy hole trion we have,

ψ±tz = χs,v(rh)|3/2,±3/2〉

⊗ χs,c(re1)χs,c(re2)
1√
2

(|1/2,+1/2〉1|1/2,−1/2〉2 − |1/2,−1/2〉1|1/2,+1/2〉2) ,

(2.21)

The envelope wavefunctions for ψ±z and ψ±tz are included for completeness. Since

all the envelope wavefunctions are s shell, they do not dramatically affect the selection

rules because the overlap integral between any of these envelope wavefunctions is

approximately 1. We have also written out the singlet state of the trion’s electron

pair, even though it will not affect the calculation of the selection rules. To simplify

the problem, the states that we will use to calculate the optical selection rules are,

|z±〉 = |1/2,±1/2〉, (2.22)
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Figure 2.6: The four z-basis eigenstates of a negatively charged InAs. The ground states consist of

a full valence band (VB) and single electron in the conduction band (CB) energy level. The lowest

excited states consist of a singlet electron pair in the conduction band energy level and a heavy hole

in the valence band.

and

|Tz±〉 = |3/2,±3/2〉. (2.23)

For the remainder of this work, we will refer to these as the the z-basis states (see

Figure 2.6).

Since the irreducible representations of the electron and valence band edge states

transform the same way as the atomic orbitals, we can derive the optical selection rules

for transitions between eigenstates using the Wigner-Eckart theorem. This requires

writing the interaction in terms of irreducible spherical tensors. We review some of

the formalism and then apply the Wigner-Eckart theorem to find the charged QD

selection rules.
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We recall the complex spherical unit vectors,

ε̂+1 = − 1√
2

(x̂+ iŷ) (2.24)

ε̂−1 =
1√
2

(x̂− iŷ) (2.25)

ε̂0 = ẑ (2.26)

(2.27)

where a vector A = Axx̂+ Ayŷ + Az ẑ can be represented as,

A =
∑

q=−1,0,1

(−1)qAq ε̂−q (2.28)

and,

A ·B =
∑

q=−1,0,1

(−1)qAqB−q (2.29)

Using this, the position operator, r = r can be written,

r = r
∑

q=−1,0,1

(−1)qC(1)
q ε̂−q (2.30)

where C
(l)
m =

(
4π

2l+1

)
Yl,m, is the Racah tensor and the Yl,m are the spherical harmonics.

Similarly we can write the field as,

E =
∑

q=−1,0,1

(−1)qEq ε̂−q = −E−1 ε̂+1 + E0 ε̂0 − E+1 ε̂−1 (2.31)

Using Equaton 2.29, the µ ·E dot product becomes

µ ·E = −er
∑

q=−1,0,1

(−1)qC(1)
q E−q. = −er

(
−C(1)

−1 E+1 + C
(1)
0 E0 − C(1)

+1 E−1

)
(2.32)

We recall that the Wigner-Eckart theorem gives,

〈n′j′m′j|rC(1)
q |njmj〉 = 〈n′j′||rC(1)||nj〉〈j1,mjq|j′m′j〉, (2.33)

where 〈j1,mq|j′m′j〉 is a Clebsch-Gordan (CG) coefficient, and 〈n′j′||rC(1)||nj〉 is

the reduced matrix element. The CG coefficient is zero unless, m′j = q + mj and
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Figure 2.7: Energy level diagram of the z-basis eigenstates of a negatively charged QD. It is

composed of two degenerate two-level systems with selection rules that allow for excitation with

circularly polarized light. The cross transitions (red) are not allowed.

|j − 1| ≤ j′ ≤ j + 1. To find the allowed optical transitions, we consider the matrix

elements of Equation 2.32 with the z-basis states. For example, the matrix element

between |z+〉 and |Tz+〉 is,

〈Tz+|µ ·E|z+〉 =

− e
(
−〈Tz+|rC(1)

−1 |z+〉 E+1 + 〈Tz+|rC(1)
0 |z+〉 E0 − 〈Tz+|rC(1)

+1 |z+〉 E−1

)
(2.34)

where we have taken the dipole approximation. Applying the Wigner-Eckart theorem,

the only nonzero term is, 〈Tz+|rC(1)
+1 |z+〉 E−1. By looking at Equation 2.31, we find

that E−1 corresponds to the ε̂+1 spherical unit vector. We can relate this to the

polarization state of the field by recalling that circularly polarized light is defined as,

σ± = ∓ε̂±1 =
1√
2

(x̂± iŷ) (2.35)

So, we find that σ+ polarized light excites the transition from |z+〉 to |Tz+〉.

Similarly, σ− polarized light excites the transition from |z−〉 to |Tz−〉, and

〈Tz−|µ ·E|z+〉 = 〈Tz+|µ ·E|z−〉 = 0. (2.36)

These selection rules are summarized in Figure 2.7, where the cross transitions are not

allowed. In later chapters, we will apply an external magnetic field which mixes these
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z-basis and forms a lambda type system. The lambda system will allow for optical

manipulation of the electron spin ground state, and the creation of a spin-photon

entangled state.

2.6 Chapter 2 Summary

In this chapter, we summarized some important properties of direct bandgap

semiconductors. Self-assembled InAs QDs were introduced and the sample structure

presented. We found that the energy level structure of a charged QD is composed of

two degenerate two-level systems. In the next two chapters, we will use this system

to develop the experimental capabilities required for quantum optics measurements

and the spin-photon entanglement experiment.



CHAPTER 3

Fluorescence from Single Quantum Dots

In quantum information applications of optically driven QD spins, photons are

used to map information into and out of the QD spin state. A simple way to read

information out of the spin state is to apply a narrow bandwidth pulse to the QD

which maps one of the spin state populations into an excited state population which

can then decay, emitting a single photon which is detected by a single photon detector.

Furthermore, the spontaneously emitted photon from the QD’s trion state is entangled

with the resulting spin ground state [20, 42, 43, 60–62], and can be used to herald

entanglement between distant QD spins [5]. These quantum information applications

require the ability to directly detect the photons emitted from a single QD when

driven on or near resonance. In this chapter, the theory of a driven two-level system

is presented and related to the fluorescence signal. The experimental realization of

resonance fluorescence is described in detail.

3.1 Resonantly Driven Two-Level QD System

A two-level system is coupled by an allowed optical dipole transition. When this

system is driven by a nearly resonant excitation field, it scatters photons into a solid

angle of 4π. In this thesis, all “absorption” experiments are performed with a coherent

driving field from a narrow bandwidth cw laser. The scattered field can be homodyned

with the transmitted laser field to give an absorption signal. Alternatively, the light

scattered by the two-level system can be directly detected if the excitation field can be

sufficiently rejected. Fluorescence intensity spectrum of the two-level system can be

30
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obtained by tuning the frequency of the driving field through the resonance, revealing

a Lorentzian profile at the natural line width.

“Resonance fluorescence” (RF) is often studied with a monochromatic excitation

field tuned exactly on resonance [63, 64]. The frequency spectrum of QD resonance

fluorescence, and the first and second order correlation functions have been studied

previously [65–67]. The results qualitatively agree with theoretical predictions, how-

ever, deviations from the ideal two-level resonance fluorescence theory indicate the

influence of QD’s environment. These deviations are usually attributed to spectral

wandering arising either from charge fluctuations from trapped surface states near

the QD causing an effective Stark-shift, or the hyperfine interaction with the QD’s

constituent (≈ 105) nuclear spins which cause an effective Zeeman-shift that fluctu-

ates in time. In this chapter, we limit the discussion to the fluorescence intensity

which is proportional to the system’s excited state population [68],

Here, we use a semi-classical approach, taking the driving field to be an sinusoidal

classical field following Berman and Malinovsky [68]. The system is modeled as a

closed two-level system with an allowed electronic dipole transition. The Hamiltonian

for the system in the rotating-wave approximation is given by,

H(t) =
~
2

 −ω0 Ω∗0(t)eiωt

Ω0(t)e−iωt ω0

 , (3.1)

where ω0 is the resonance frequency, and ω is the field frequency. The Rabi frequency

is Ω0 = µE0/~, where µ is the dipole moment of the optical transition, and E0 is the

driving field’s amplitude.

We move to a field interaction picture, where the density matrix is now represented

as, ρ̃ = e−i
ωt
2
σzρei

ωt
2
σz , and the Hamiltonian is now,

H̃(t) =
~
2

 −δ Ω∗0(t)

Ω0(t) δ

 , (3.2)

where δ = ω0 − ω is the detuning. The density matrix evolves in time according to

the master equation,

i~ρ̃/dt = [H̃, ρ̃] + relaxation terms, (3.3)
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which yields the following equations of motion,

˙̃ρ11(t) = −iχ∗(t)ρ̃21(t) + iχ(t)ρ̃12(t) + γ2ρ̃22(t) (3.4)

˙̃ρ22(t) = iχ∗(t)ρ̃21(t)− iχ(t)/2ρ̃12(t)− γ2ρ̃22(t) (3.5)

˙̃ρ12(t) = −(γ − iδ)ρ̃12(t)− iχ∗(t)[ρ̃22(t)− ρ̃11(t)] (3.6)

˙̃ρ21(t) = −(γ + iδ)ρ̃21(t) + iχ(t)[ρ̃22(t)− ρ̃11(t)], (3.7)

where γ is the decoherence rate, γ2 is the excited state decay rate and χ = Ω0/2. These

equations can be solved algebraically in steady state by setting the time derivatives

equal to zero. The excited state population is [68],

ρ22 =

2γ
γ2
|χ|2

γ2 + δ2 + 4γ
γ2
|χ|2

. (3.8)

The fluorescence intensity is related to ρ22 in steady state with,

Intensity(χ, δ) = ρ22(χ, δ)γ2ητ, (3.9)

where η is the detection efficiency of the experimental setup and τ is the integration

time.

Further details on the theory of resonance fluorescence spectrum and the coherence

properties of the scattered radiation can be found in quantum optics textbooks [68–

71]. For now, this result is sufficient to explain the fluorescence signal of a single

charged QD.

3.2 Experimental Setup and Results

As described in Chapter 2, an effective two-level system is formed by a negatively

charged InAs QD which is composed of two degenerate two-level systems (Figure 3.1).

A linearly polarized excitation laser can drive both transitions, and the scattered pho-

tons can be detected on axis by placing an orthogonal polarization analyzer before the

detector. A trion state is identified through bias dependent photoluminescence, and

voltage modulation absorption spectroscopies as described previously [58, 59, 72, 73].

The primary challenge in resonant direct detection experiments is separating the light
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Figure 3.1: The energy level diagram for a negatively charged InAs QD, composed of two degenerate

two-level systems. σ+ (σ−) polarized light drives the transitions, so horizontally polarized light can

be used to simultaneously couple to both of the transitions, while the vertically polarized QD photons

can be directly detected.

scattered or emitted from the QD from the excitation lasers used to drive the QD

transition since spectral filtering cannot be used. The remaining standard rejection

techniques include: spatial filtering through alignment or use of an iris/aperture,

temporal filtering by time gating the detection either electronically or optically, and

polarization filtering by cross polarizing the detection axis from the excitation axis.

All of these techniques are combined to achieve adequate rejection in the demonstra-

tion of spin-photon entanglement. For continuous wave (cw) experiments presented

in this chapter, a carefully designed crossed polarization setup provides sufficient

rejection.

In order to achieve efficient mode matching between the incident laser field and

the QD’s dipole, the area of the focussed beam spot should roughly the same size as

the cross-sectional area of the optical-dipole transition [74]. For the QD’s transition,

whose dipole exhibits minimal decoherence, this corresponds to ≈ 1 µm, which cor-

responds to a near diffraction limited spot on the QD, since the wavelength is ≈ 950

nm. In order to achieve this, previous experimental designs utilized an aluminum

mask with micron-sized apertures effectively working in the near field. Polarization

measurements on these samples showed that the metallic apertures dramatically dis-
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torted the polarization integrity and limited the polarization rejection to ≈ 100×.

Since polarization and spatial filtering are required to isolate the QD fluorescence

from the laser pulses in an RF experiment, an alternative approach is used. A pair of

aspheric lenses mounted to either side of the sample package focus and collect light.

This approach has the advantage of significantly improving the polarization integrity

of the transmitted beam, so that polarization rejection alone can be used to achieve

rejection exceeding 106×. In addition, since high numerical aperture (NA) lenses are

used, a much smaller beam spot diameter (1−2 µm) is realizable on the sample which

allows for substantially lower input powers to realize the same effective field on the

QD.
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Figure 3.2: Schematic diagram of the direct detection setup. The polarization of the excitation

laser is set with a polarizer and Babinet-Soleil compensator. The laser is passed through a 1 : 1

compensation telescope before it is focussed onto the sample by a 0.68 NA aspheric lens. Light

is collected with another 0.68 NA lens in the transmission geometry and passed through another

1 : 1 compensation telescope. The excitation laser is blocked with a polarizer set orthogonal to the

transmitted beam. The QD fluorescence is focussed into a single mode fiber and detected with a

single photon detector.
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Voltage modulation (VM) absorption experiments are performed by applying a

square wave (typ. 1 kHz) modulation voltage across the Schottky diode which Stark

shifts the QD resonance allowing for the use of phase sensitive detection using a lockin

amplifier [72]. For this sample structure (Chapter 2), typical Stark shifts for trion

resonances are on the order of 1 Volt per wavenumber. VM absorption experiments

are usually performed either in the “small” (≈ 20 mVpp) or “large” (≈ 200 mVpp)

modulation regimes. For small modulation, the modulation amplitude is smaller than

the trion state’s line width, which results in a derivative line shape. For the “large”

modulation regime, where the modulation amplitude is larger than the trion state’s

line width, the resulting line shape should be the same as the unmodulated profile.

More details on the VM technique can be found in previous theses [59,73].

In previous sample designs where ≈ 1 µm metallic apertures were used to perform

single QD absorption spectroscopy, dramatic line shape distortions and line broaden-

ing were frequently observed (Figure 3.3). Other groups have reported similar results,

and some attribute the distortion to a non-linear Fano effect caused by the excited

state coupling to a 2D continuum in the sample structure [75]. These effects have

also been explained as non-trivial interference effects from internal sample reflections

where the real and imaginary part of the QD’s optical response are mixed [76]. Mov-

ing to the “aperture-free” samples and using high NA lenses, we find that these line

shape distortions vanish almost completely (Figure 3.4). This dramatically simpli-

fies the characterization of the QD state since previously one had to search for a

“good” QD state with minimal line shape distortion before more complicated exper-

iments (often relying on the ability to fit to the line shape) could be performed. On

the aperture-free samples, QD resonances typically exhibit absorption line widths of

400-600 MHz.
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Figure 3.3: An example of a typical (distorted) VM absorption spectrum on a single trion in an

apertured sample. Here large modulation is used so the signal should be modeled as a Lorentzian.

The line shape distortion is believed to arise from reflections in the sample which mix the real and

imaginary parts of the QD’s optical response.

The aspheric lenses are aligned at room temperature by approximately collimating

the back reflection of a collimated input beam (950 nm) from the front of the sample

and then collimating the transmitted beam. The best performance has been achieved

when the back reflected beam at room temperature is slightly diverging. A good test

of the alignment is the magnitude of the single QD VM absorption signal (DT/T ).

For a typical cw VM absorption experiment, the incident power is typically 100 nW.

When aligned properly, the transmitted power is 10 − 15% of the incident power.

The transmitted beam is focussed onto a Hamamatsu S8890-15 avalanche photodiode

(APD) with a ≈ 10 cm lens. When the APD biased at 50− 100× gain (typically 450

V), it is operating in its linear regime and has a photosensitivity of ≈ 30− 65 A/W.

The photocurrent is shunted across a 10 kΩ resistor, to yield a voltage in the range

of 1-10 mV. A VM absorption signal (DT/T ) of 1 − 2 × 10−3 is indicative that the

lenses and sample are well-aligned. A typical “aperture-free” VM absorption signal

is shown in Figure 3.4.
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Figure 3.4: An example of a typical voltage modulation absorption spectrum on a single trion in

an aperture-free sample. Large modulation is used so the line shape should be a Lorentzian. The

solid line is a fit to a single Lorentzian with a line width of 450 MHz.

The basic setup for observing single QD RF is shown in Figure 3.2. Its primary

components are: a cw laser, an input polarizer, an optical cryostat holding the sample,

a polarization analyzer, a fiber coupled single photon detector, and a photon counter.

The laser is a narrow (< 1 MHz) bandwidth tunable Ti:sapphire ring laser (Coherent

899-21) operating between ≈ 890− 980 nm. For the InAs QDs studied here, the QD

resonances are typically 950 nm. The laser is horizontally (H) polarized by a high

quality (106 extinction ratio) calcite polarizer (Glan-Thompson) before it is focussed

onto the front (titanium side) of the sample by a 0.68 NA aspherical lens (Thorlabs

352330-B), which is mounted onto the sample package with custom made lens holder

(Figure 3.5). The transmitted light is collected by a 0.68 NA aspherical lens on the

back of the sample. The transmitted beam is then passed through a polarization

retarder (Babinet-Soleil Compensator or quarter-wave plate) which is used to correct

for birefringence in the windows, lenses and sample. A high extinction ratio (thin

film) polarization analyzer that is set to pass vertically (V) polarized light rejects

the excitation laser, but due to the circularly polarized selection rules of the charged
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Figure 3.5: The lens/sample mount. Precision dowel rods keep the lenses aligned in two dimensions.

0-80 set screws are used to adjust the focus of the lenses.

QD, half of the collected RF still passes. The fluorescence is coupled into a single

mode fiber (SM800, ≈ 0.12 NA) with an under filled 0.16 NA aspheric lens (Thorlabs

C260TME-B) and detected by a single photon avalanche detector (SPAD).

It is important to note that using a single mode fiber is crucial for achieving this

application. After the polarization analyzer, the excitation laser is only attenuated by

≈ 104×, which is not sufficient for RF measurements. The mode of the transmitted

laser has a four-lobed cross structure known as a “Maltese cross” (see Figure 3.6).

This pattern arises due to polarization aberrations that occur on the curved surface

of the high NA lenses since s and p polarizations acquire different phases at the

interfaces. The net effect of these aberrations has been studied and results in a

transmitted mode that is almost exactly orthogonal to the Gaussian input mode of

the single mode fiber [77,78]. The advantage is that the collected QD fluorescence can

be collected over a relatively large solid angle (≈ 0.68), but the remaining excitation

laser leak through cannot couple to the fiber due to its spatial mode structure. Of

course, these polarization abberations will also limit the polarization purity of the

QD fluorescence to ≈ 10−4, which reduces the achievable fidelity of a spin-photon
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Figure 3.6: An example of a Maltese cross pattern formed by a cross polarization setup and a high

NA objective. Photo courtesy of Jieun Lee.

entangled state. These polarization abberations are not the dominant limitations on

the fidelity (currently ≈ 10−2), but they can in principle be corrected for with an

appropriate lens system [78].

Here, a brief summary of the alignment procedure for fluorescence experiments

is given. The alignment of the excitation laser to the QD is peaked by maximizing

the VM absorption signal (DT/T). The laser power is then increased to 1 mW, and

the polarization analyzer is then set to pass the excitation laser. This beam is then

coupled into a single mode fiber with a power meter, 60% is typically achievable if

the aspheres are well aligned. The polarizer and retarder are then adjusted against

each other to zero the reading on the power meter. The excitation power is then

lowered to 200 nW incident (≈ 20 nW transmitted, ≈ 1011 photons per second) and

the collection fiber is connected to the SPAD. The QD can be tuned off resonance

using the DC Stark effect, and the remaining laser leak through can be rejected by

servoing the analyzer and retarder. Typically this is done until the excitation laser

is not visible over the dark counts (10-50 cps). Reasonable higher powers can be

used to increase the sensitivity. When the QD is tuned back into resonance using
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the bias, the RF counts are clearly visible in the range of 5 kcps using the Micro

Photon Devices (MPD) “PDF series” SPAD and 50 kcps using the Picoquant τ -

SPAD, corresponding to detection efficiencies (η) on order of 5 × 10−6 and 5 × 10−5

respectively. This procedure assumes that the (QD-aligned) transmitted laser is a

good approximation for the output mode of the QD’s dipole transition, which is not

exact. At this stage, one might try to increase the RF signal by peaking the alignment

of the collection optics. Changes to the alignment will slightly change the polarization

and therefore reduce the rejection, so the QD fluorescence will quickly get swamped

by excitation laser leak through. To overcome this, the sample is voltage modulated,

and the output of the SPAD is sent to a lockin amplifier locked to the modulation

frequency. The unmodulated background does not contribute to the lockin reading,

so the RF signal can be peaked. After peaking, the polarization optics have to be

reset to minimize the laser leak through, but the RF signal is now optimized. Once

the collection alignment is optimized, further spatial rejection of the excitation lasers

can be obtained by adjusting the excitation laser alignment to excite the QD at a

slight angle relative to the detection axis. This is accomplished most easily by walking

the excitation laser alignment with two steering optics while monitoring the DT/T

VM absorption signal to insure that the excitation laser remains aligned to the QD.

An example of a typical fluorescence spectrum is shown in Figure 3.7, with a fit to

the Lorentzian profile as predicted by Equations 3.8,3.9.
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Figure 3.7: An example of a QD fluorescence intensity spectrum of a single trion state measured

with the MPD-PDF detector. The solid line is a fit to a Lorentzian with a power-broadened line

width of 611 MHz.
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3.3 Chapter 3 Summary

In this chapter, the basic theory of a driven two-level system is reviewed using

the density matrix formalism. Single QD absorption measurements are reviewed,

highlighting the differences in typical QD line shapes observed on “apertured” and

“aperture-free” samples. The experimental apparatus used to measure single QD

fluorescence is described in detail. Finally, direct detection of the QD fluorescence

is experimentally realized and the line shape is found to be a Lorentzian consistent

with the theoretical prediction.



CHAPTER 4

Time-Domain Measurement Techniques

In Chapter 3, we developed the techniques allowing for direct detection of QD

fluorescence under resonant cw excitation. In the next chapter, the QD is investigated

by transient measurements of the QD fluorescence under resonant excitation, which

will serve as the foundation for quantum information applications which are executed

in the time domain. For these time domain measurements, we use a technique known

as time-correlated single photon counting to measure single photons emitted from

the QD. We also need to develop techniques to generate high quality narrow band

optical pulses, which are capable of spectrally isolating specific QD transitions. In

this chapter, we introduce these techniques which are used for the remainder of this

work.

4.1 Time-Correlated Single Photon Counting

Time-correlated single photon counting (TCSPC) is a well-established spectroscopy

technique, that was first developed to observe the time dependence of scintillation in-

tensity [79]. In optical science, TCSPC is typically used to determine fluorescence

lifetimes of excited molecular states by (indirectly) obtaining a measure of the fluo-

rescence intensity as a function of time. Here, we present a brief description of the

technique, but further information can be found in books dedicated to TCSPC [80].

The purpose of TCSPC is to measure the decay rates of an excited system. In

this work, we consider the case of exciting a single charged QD, which is modeled as

an effective two-level, although the method is often applied to ensembles of complex

44
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molecules which can have multiple decay rates. The sample is typically excited with

a short pulse (relative to the excited state lifetime) that is periodic in time at some

repetition period (Trep). The light emitted from the sample is collected with a lens

and then detected with a photodetector. With an ensemble of molecules, which

can generate a large fluorescence intensity, one could consider directly detecting this

emission with a normal photodector whose photocurrent is linearly proportional to

the incident intensity. This photocurrent could be recorded as a function of time with

an oscilloscope triggered off the excitation laser. This method can be used to perform

fluorescence lifetime measurements, but it has significant limitations for weak signals

or fast decay rates, due to electronic noise and bandwidth.

The TCSPC method overcomes these challenges by using single photon detectors,

which output a large electronic pulse that can be triggered by a single incident photon.

These electronic pulses are sent to timing electronics which measure the arrival time

relative to the excitation laser pulse. The detection events are time binned in a

histogram, and after the experiment is repeated many times, the histogram yields

a measure of the fluorescence intensity as a function of time. The crucial aspect

of TCSPC is that although the pulse width and rise/fall times can be relatively

long, (≈ 20 ns and ≈ 1 ns respectively), the uncertainty in the pulse arrival time

can be as low as ≈ 30 ps for state of the art systems. This uncertainty is called

the timing resolution or timing jitter of a TCSPC setup. The timing resolution is

usually measured by leaking a low intensity of the short (≈ 1 ps) excitation pulse

onto the detector. This effectively gives the δ(t)-function response of the system and

is referred to as the instrument response function (IRF). The width (FWHM) of the

IRF gives the timing resolution of the TCSPC setup. In principle, the signal can be

deconvolved with the IRF to further reduce the timing uncertainty of a measurement,

but in practice, these methods are limited by the signal-to-noise ratio.
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Figure 4.1: A typical TCSPC showing: a pulsed laser, a QD sample, a (SPAD) single photon

detector and the timing electronics. In a traditional (TAC based) TCSPC setup, the signal from the

SPAD starts the clock, and sync signal of a fast photodiode measuring the excitation laser pulses

stops the clock.
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The system’s timing resolution is usually limited by the timing jitter of the detec-

tor. In this work, we use silicon single photon avalanche detectors (SPADs), which are

avalanche photodiodes designed to operate reverse biased above the breakdown volt-

age. A useful review of modern single photon detectors has been published recently

by R. Hadfield [81]. In a SPAD, a single photon can create an electron-hole pair in the

detector’s active region. The high reverse bias imparts sufficient energy onto the elec-

tron and hole so that they can excite more carriers leading to an “avalanche” effect.

In this avalanche mode, a single photon can produce a large milliamp photocurrent

pulse composed of ≈ 1015 electrons. A limitation of the technology is that the exact

amplitude (height) of the pulses is somewhat random and is not dependent on the

number of photons in a given pulse, so that 1 photon pulse incident the detector gen-

erates the same electric pulse as a 1000 photon pulse hitting the detector. It should

be noted that recent technological advances have begun to overcome this limitation

[81,82]. The output pulses are amplified to match the “NIM pulse” standard which is

a negative (typically −800 mV) pulse into 50 Ω. After a pulse is created, the SPAD

requires some time to reset before it can detect another photon. This reset time is

called the detector’s dead time, and is controlled by a quenching circuit. This dead

time sets the maximum count rate a detector can handle. SPADs also exhibit an effect

known as afterpulsing, where after the dead time, there is a nonzero probability for

the detector to fire another (false) pulse. In SPAD design, dead time and afterpulsing

probability are deeply related since the probability of afterpulsing goes down with a

longer dead time. SPADs also produce dark counts, which are caused by the thermal

excitation of carriers, and increase with larger area detectors and higher temperature.

Dark counts are suppressed by using detectors with small active areas (20− 150 µm)

and by cooling them with integrated thermo-electric coolers.



48

0 2 4 6 8 1 0 1 2 1 4

1 E - 3

0 . 0 1

0 . 1

1

Arb
. U

nit
s

T i m e  ( n s )

M P D - P D F  
 τ- S P A D

 

 

Figure 4.2: Instrument response functions from the fast “PDF” detector (black) and high detection

efficiency “τ -SPAD” detector (red) measured with a TCSPC setup similar to Figure 4.1 by leaking

some of the excitation laser onto the detector. The widths (FWHM) shown here are approximately

45 ps and 450 ps respectively. The detector “tails” arise from carriers created in the low field region

of the detector.
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The thickness of the SPAD’s active region affects the detection efficiency and the

timing resolution. A thick active region is more likely to absorb a photon, which

increases the detection efficiency, but this also increases the timing jitter of the de-

tector because the depth at which the carriers are created affects the timing of the

output pulse. In this thesis, we use two different models of SPADs: a fast timing

SPAD (Micro Photon Devices- PDF model) and a high detection efficiency SPAD

(Picoquant τ -SPAD model). The PDF detector is coupled with a single mode fiber

(SMF-28, FC/PC connector) and has a timing jitter of ≈ 40− 50 ps (FWHM) with

a detection efficiency of ≈ 2% at 950 nm. The τ -SPAD detector has a 150 µm active

area, a timing jitter of ≈ 450 ps (FWHM) with a detection efficiency of ≈ 20% at

950nm. Both detectors have low dark counts < 25 cps and afterpulsing probability

of 1− 3%. The detector dead times are both approximately 50− 70 ns which yields a

maximum count rate of approximately 10 Mcps. The instrument response functions

for the PDF and τ -SPAD are shown in Figure 4.2. The IRFs are not temporally

symmetric, and show a relatively slow “tail.” The tail arises from carriers that are

created in the low field region of the detector which slowly drift into the high field

region before they can trigger an avalanche. Since the fluorescence signals are con-

volved with this asymmetric IRF, the raw data can appear distorted or stretched out

towards positive time. Nevertheless, the narrow FWHM of the IRF dominates the

useful timing resolution of the detector.

The major components of a traditional TCSPC experiment are a: pulsed laser,

sample, single photon detector, fast photodiode, constant fraction discriminator (CFD),

time-to-amplitude converter (TAC), analog digital converter, and computer to col-

lect and analyze the data. There are many high performance CFDs and TACs are

available as NIM modules from companies like Ortec. The fast photodiode monitors

the laser pulses that excite the sample, which we call the sync. The emission from

the sample is then detected by the single photon detector that generates electronic

pulses which are time-correlated with the detection time of the photon. These pulses

are sent over coaxial cable to a CFD which effectively normalizes the amplitude of

the pulse, since this amplitude varies from run to run. The normalized pulses go to
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Figure 4.3: Instead of a traditional TAC, the HH400 uses independent time-to-digital converters

on both the signal and sync and records the event times relative to an internal clock. These times

can then be subtracted digitally to perform a traditional start-stop TCSPC measurement.

the “start” input of the TAC. An edge of the electric pulse triggers the TAC, which

linearly ramps a voltage until the edge of a “stop” pulse from the sync stops the

ramping. The final voltage is a measure of the relative time between the excitation

pulse and the single photon detection event. These values are digitized and recorded

over many cycles by a computer which time bins the events to build a histogram.

Like the single photon detector, the TAC electronics also have a reset time, which is

usually on the order of 1 µs. Time delays are usually inserted by delay generators or

simply by introducing additional lengths of coaxial cable. Most electrical components

are impendence matched to the 50 Ω standard, and usually use BNC, LEMO, or SMA

connectors. The most common coaxial cable is RG-58/U which is a 50 Ω cable.

In this work, we use a Picoquant HydraHarp 400 (HH400) model multichannel

picosecond event timer for TCSPC measurements. This instrument is based on a

modern approach replaces the TAC with time-to-digital converters (TDCs) that in-

dependently measure the event times relative to an internal clock. The signal event

(start) and the sync (stop) each have their own CFD and TDC so the events can

be “time-tagged.” To perform a traditional TCSPC measurement, the difference be-
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tween the start and stop is calculated digitally and then time binned (Figure 4.3).

The time-tagging allows for correlations between different experimental runs to be

measured, and the independent channels gives the flexibility to scale the system to

multiple input channels [83]. This digital approach also allows for improved linearity

and long term stability over analog TACs. An additional benefit of this method is

that arbitrary time delays can be inserted digitally instead of requiring external delay

boxes or cables. The inputs of the instrument are 50 Ω terminated and designed

to measure standard −800 mV NIM pulses. All input channels have independent

CFDs. There are two timing inputs and one “sync” channel, which is usually used

to measure the excitation laser pulse train, but all three channels can be used as

timing channels if desired. The instrument triggers of the falling edge of the pulse

and accepts pulses 0.5-30 ns in width and requires the pulse rise/fall time to be less

than 2 ns. The timing resolution of the TDCs is < 12 ps RMS, the reset time is

< 80 ns, and the maximum count rate is 12.5× 106 cps. The instrument has several

modes of operation. In this Chapter 5, we will use the HH400 in “integration” mode

to bin counts as a function of time relative to the excitation pulse, and “T2” mode

where the detection events from two channels are time-tagged. For the spin-photon

entanglement experiment in Chapter 7, the “T3” mode is used, which utilizes the

HH400’s multichannel capability to time-tag events from two independent channels

relative the excitation pulse, requiring all three channels.

4.2 Generating Fast Optical Pulses with Electro-Optic Modulators

The lifetime of the optically excited QD trion state is approximately 1 ns. In

order to observe the transient response of the QD, the QD must be excited with

optical pulse short compared to this lifetime. These pulses are typically generated

by a pulsed laser such as a mode-locked Ti:sapphire laser which outputs short pulses

in the range of ≈ 0.1 − 100 ps at a repetition rate of ≈ 70 − 100 MHz. For the

Coherent MIRA laser used in later chapters, the laser is operated in the picosecond

mode putting out ≈ 2 (autocorrelation intensity width 2 − 3 ps) pulses at 950 nm
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with a repetition rate of 76.5 MHz. Assuming a hyperbolic secant squared pulse

shape, these pulses have approximately 156 GHz (0.65 meV) of bandwidth. For many

quantum information application of QDs, multiple tailored laser pulses are used to

spectrally address specific transitions that can be as close as 2 − 3 GHz, requiring

narrow bandwidth optical pulses with stable center frequencies. Narrow bandwidth

pulses could be generated by splitting a short pulse (large bandwdith) into several

paths and using optical pulse shaping (diffraction gratings or etalons) to generate

different pulse widths at different center frequencies. These shaped pulses could then

be delayed relative to each other using mechanical delay lines, and recombined to

form the various required pulse sequence. This technique has the advantage that one

laser can potentially generate all the required pulses, but it requires significant optical

complexity, and one is limited to the 156 GHz bandwith of the source pulse.

In this work, we take a different approach. Instead of filtering a short picosecond

pulse, we begin with a narrow bandwidth cw laser, and then time gate this laser with

a high speed electro-optic modulator (EOM). The cw field could be generated by a

cw Ti:sapphire ring laser or a narrow bandwith diode laser.

The EOMs used here are intensity modulators from EOSPACE, which vary the

intensity of transmitted light as a function of an applied voltage. They are based

on the strong electro-optic response of lithium niobate (LiNbO3), where a voltage

across the crystal changes the index of refraction, allowing for phase modulation of

a transmitted field. The EOM is a monolithic waveguide structure that forms a

Mach-Zehnder interferometer (Figure 4.4). Light is coupled into the EOM with a

polarization maintaining (PM) single mode fiber with the polarization aligned to the

fiber’s slow axis (usually aligned with the notch on the FC/APC connector). We use

high polarization contrast ratio (25 dB) PM850 (Panda) fiber from OZ Optics (part

number: PMJ-3A3A-850-5/125-3-3-1-ER=25). The light coupled into the EOM is

then split into two arms with a Y-junction. The phase applied to the field in one

(or both) of the arms is controlled by the voltage to the device. The two paths

are recombined with another Y-junction and passed through an integrated polarizer

which improves the modulator performance by rejecting the unwanted polarization.
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Figure 4.4: (a) A simplified diagram of a waveguide LiNbO3 EOM. Light is coupled into the device

with a PM fiber. The black lines with arrows show the optical path through the monolithic LiNbO3

structure. The light is split with a Y-junction into two paths. By applying an external voltage the

phase imparted to the optical field in one arm can be varied relative to the other. The light in two

paths is recombined, filtered with a polarizer and coupled out to another PM fiber. The dashed

line shows the RF strip line that couples the traveling wave voltage through the device in the same

direction as the propagating optical field. The simplified device depicted here is similar to a z-cut

design, where the RF voltage mostly drives one arm (lower). In an x-cut device, the RF is coupled

down the center of the device and drives the two arms anti-symmetrically.(b) A photograph of a

z-cut EOM used in this work, showing the PM fibers, the RF input and DC bias pins. The device

is about the size of a pencil.

The light is coupled out of the modulator and into another PM fiber. By applying

a time dependent voltage to the EOM, one can generate arbitrary optical intensity

waveforms.

There are two common configurations of these intensity modulators which are

named based off the direction of the (LiNbO3) crystal axis: x-cut and z-cut. x-

cut modulators are commonly used for long distance communications at telecom

wavelengths. The x-cut design allows for phase modulation of both arms, which

results in the ability to generate optical pulses with minimal (almost zero) chirp. x-cut

modulators can be designed for operation at the QD wavelength (typically 950 nm),

however, the photorefractive effect at this wavelength severely limits their usefulness
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as it dramatically reduces the modulation contrast for even low (1 mW) input powers.

This photorefractive “damage” comes from long lived photo-excited charges that get

trapped in the LiNbO3. The device can recover from this photorefractive damage

by slowly cycling the EOM between 50 − 60 C and room temperature a few times.

The EOM can be permanently damaged if high power is accidentally coupled into

the device along the wrong polarization axis mostly because the integrated polarizer

is absorptive. Because of the low power handling and contrast performance of the

x-cut modulators, in later chapters, we utilize z-cut EOMs, which are able to achieve

high contrast modulation for much higher input powers (10-20 mW). However, in a

z-cut EOM, the phase modulation is mostly applied to one arm of the Mach-Zehnder

as depicted in Figure 4.4. This asymmetric phase modulation gives rise to a chirp in

the intensity modulated output. To understand the origin of the chirp, we review the

basic theory of EOM operation following the analysis in Rogers et al. [84].

The external voltage V (t) applied to the modulator is an RF traveling wave that

is coupled into the modulator with an SMA connector. This traveling wave voltage

propagates along the waveguide structure modulating the LiNbO3 index and is termi-

nated on the end of the EOM with a resistor. Depending on the design of the EOM,

the applied voltage can partially phase modulate both arms of the EOM. We start

by defining a voltage-to-phase parameter for each of the two arms of the EOM, β1

and β2. Now, the transmitted optical field is the sum of the fields from the two arms

which has the form [84],

E(t) = E1(t) + E2(t) =
1

2
E0

(
ei[ωt+β1V (t)+φ1] + ei[ωt+β2V (t)+φ2]

)
, (4.1)

where ω is the optical frequency, φ1 and φ2 are the DC phases of the two arms, and

E0 is the input amplitude. An external DC bias is applied to the device using to set

the state phase difference φ1 − φ2. The total time dependent output phase φ(t) is

given by [84],

φ(t) =
1

2
((β1V (t) + φ1) + (β2V (t) + φ2)) , (4.2)
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and the output phase difference is

∆φ(t) =
1

2
((β1V (t) + φ1)− (β2V (t) + φ2)) , (4.3)

which allows us to re-write the output field as,

E(t) = E0 cos (∆φ(t))ei(ωt+φ(t)). (4.4)

We find that the output power is therefore,

P (t) = P0 cos2 (∆φ(t)). (4.5)

where P0 ∝ I0 = 1
2
nε0c|E0|2. We see that as ∆φ is varied from 0 to π/2, we can

achieve intensity modulation, and we define this voltage as Vπ = π(β1 − β2), which

is typically on order of 1.5− 4 V. Due to insertion loss and other losses in the EOM,

for a given input power Pin, there is a lower maximum output power Pmax. For the

z-cut devices, Pmax ≈ 0.25× Pin; and for the x-cut,Pmax ≈ 0.1× Pin.

As mentioned earlier, the DC bias sets the static phase difference between the

two arms of the EOM, which establishes the operating point of the EOM see Fig-

ure 4.5. Typically, we set the EOM to minimize the output power with the DC

voltage, and then apply RF via the SMA connector to perform intensity modulation.

Unfortunately, this DC set point drifts in time due to charges that accumulate in the

modulator, so the DC voltage has to be continually adjusted to keep the transmission

minimized. This is performed by sampling part of the EOM output with a photo-

diode and using a feedback controller to maintain the lock. Since we are locking to

a minimum, this is accomplished by applying a small AC dither voltage (typically 1

kHz) to the DC voltage pins, which can be detected with a lockin amplifier before it

is fed into the input of an integrating feedback controller. The output of the feedback

controller is summed with the set voltage and applied to the DC input pins of the

EOM. Integrated circuit boards are available from YY Labs, Inc (Fremont, CA) that

are specifically designed to lock these EOMs. YY Labs models, mini-MBC-3 and

mini-MBC-4 are used to lock the x-cut and z-cut EOMs respectively. These EOM

controller boards have been customized to allow for manual fine tuning of the lock

point which is crucial to achieving high pulse contrast.
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Figure 4.5: An example of the measured output power of the x-cut EOM as a function of applied

DC voltage. The output varies sinusoidally as expected. The π voltage is shown, where here Vπ ≈ 3

V. For pulsed operation, the EOM is locked to a minimum before pulses are applied to the RF input.
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The output contrast Pmax/Pmin is defined here as the ratio of the maximum out-

put power to the minimum output power for the same input power Pin. The output

contrast can be measured by monitoring the output power on a power meter while ad-

justing the DC voltage applied to the EOM pins (Figure 4.5). The output contrast is

a very important in experiments because a low contrast results in an effective cw field

leaking through the EOM. Since this cw field is always on, it can drive surprisingly

large unintended dynamics by exciting the QD. In the x-cut EOM, extinction ratios

of 25 dB are achievable, with 30 dB being possible over short periods (typ. 1 hour)

before photo-refractive damage occurs. The z-cut modulators used in later chapters

are high contrast EOMs which are capable of achieving 50 dB output contrast by

utilizing an additional fine tuning pin (for a total of two DC voltages).

The fast RF voltage pulses are generated by a two-channel fast pulse generator

from Picosecond Pulse Labs (Model 12010). It is capable of high repetition rate (800

MHz), fast rise/fall times (< 100 ps), pulse widths below 250 ps, and can output up to

2.5 V into 50 Ω. The instrument is programable with fully adjustable pulse: width,

amplitude, delay, repetition rate, or it can be externally triggered. Pulse patterns

can also be programmed using software. The pulse rise time is not adjustable, so

long pulses have a square shape. The electronic pulses can be shaped using external

rise time filters to generate Gaussian-like pulses. An important feature of the pulse

generator is that it has minimal overshoot/undershoot or ringing, and its output is

very flat when the pulses are off. Some examples of electronic pulses generated with

this generator are shown in Figure 4.6. The pulses are usually sent directly to the

EOM with 50Ω coaxial cable. In some experiments, it is useful to split the output of

the generator with an impendence matched RF splitter (Picosecond Pulse Labs model

5331), introduce temporal delay with different lengths of cable, and then recombine

the pulses with a impedance matched combiner. High quality -6 dB attenuators are

inserted at each input to reduce reflections. These amplitude shaped pulses must

then be amplified with a Picosecond Pulse Labs model 8001 (12 GHz bandwidth)

amplifier before they are sent to the input of the EOM.

Typically, we are interested in generating ≈ 1 ns pulses at a repetition rate of ≈ 76
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Figure 4.6: Examples of fast electronic pulses used to modulate the EOMs, showing three different

pulse widths. The pulses are measured with an Agilent 86100a wide bandwidth oscilloscope.
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MHz with the EOMs. The z-cut modulators can handle 10 − 20 mW of (950 nm)

input power without any sign of photorefractive damage, which exhibits itself most

prominently as a degradation of the EOM’s contrast ratio. A small amount (1− 5%)

of the EOM’s output is sampled with a beam splitter and sent to a photodiode in the

YY Labs controller. The high contrast YY Labs controller for the z-cut modulator

has two photodiodes with different sensitivities which must be balanced properly to

achieve optimal performance. The control box searches for a minimum by varying

the bias of the EOM’s DC pins. Once this DC lock point is found, pulses can be

applied to the RF input (SMA jack) of the modulator. However, once the pulses

are applied, the lock point must be tuned to maximize the pulse contrast. We can

monitor these pulses with relatively high dynamic range by leaking a small amount of

the light onto the PDF SPAD and using the HH400 TCSPC setup, operating in the

“oscilloscope” mode. The HH400 provides a continually refreshing intensity vs. time

(semi-log) plot at ≈ 1 Hz which allows us to fine tune the YY Labs controller lock

point to maximize the pulse contrast. Typically, this is performed at a count rate of

105 cps. The afterpulsing from the PDF SPAD (3%) limits the measurable contrast

ratio to ≈ 30 dB for low duty cycle pulses (250 ps at 76 MHz) and ≈ 20 dB for

higher duty cycle pulses (4 ns at 76 MHz) because it contributes a false background

to the TCSPC measurement (Figure 4.8). However, by carefully maximizing the pulse

contrast using this method, we reliably achieve contrast ratios near the EOM’s limit.

This can be verified by measuring the QD’s time resolved emission signal, since the

nonlinear response of the QD can be used to effectively increase the dynamic range

of the measurement.

As mentioned earlier, an important feature of the z-cut modulator is that its

output has a chirp. From Equations 4.1 and 4.2, we can see that the time dependent

phase gives rise to this chirp (time-dependent frequency) where [84],

ω(t) =
dφ(t)

dt
=

1

2
(β1 + β2)

dV (t)

dt
. (4.6)

We see that this is proportional to the rate of change of the voltage and the relative

values of β1 and β2. For an x-cut modulator design, β1 ≈ −β2, so there is essentially
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Figure 4.7: The SPAD and TCSPC setup are used to measure the EOM generated pulses and

maximize the EOM pulse output contrast. The pulses are attenuated so that the average count rate

of the detector is ≈ 105.

zero chirp. However, for a standard z-cut design, β1 6= −β2, which results in a nonzero

chirp. This is characterized by the “α0 chirp parameter”, such that

α0 =
β1 + β2

β1 − β2

(4.7)

where for the case of an applied voltage pulse, we have

ω(t) =
π

2
α0

1

Vπ

dV (t)

dt
. (4.8)

For the z-cut modulators used in this work, α0 = 0.7.

The chirp should be considered while designing experiments using the z-cut EOM

generated pulses since it effectively increases the bandwidth of the optical pulse. This

is potentially problematic because this bandwidth could lead to unintended excitation

of other transitions. In this work, we generate square pulses with the EOM, so these

instantaneous frequency components are isolated to the rise and fall of the pulse (see

Figure 4.9). Given pulses have a rise time of roughly 100 ps, we can approximate the
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Figure 4.8: Examples of EOM generated pulses showing three different pulse widths. The observed

increased background for longer pulses comes from detector afterpulsing as explained in the text.
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Figure 4.9: Calculated frequency chirps for 4 ns Gaussian pulse (red), and a 4 ns square pulse with

100 ps rise/fall time (blue). Since the chirp is proportional to the derivative of the voltage pulse,

the chirp is most pronounced at the rise and fall of the square pulse.
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maximum magnitude chirp (δω) as,

δω

2π
=

1

4
0.7

1

100 ps
≤ 1.75 GHz. (4.9)

The calculated chirps for a 4 ns Gaussian pulse and 4 ns square pulse with 100 ps

rise time are shown in Figure 4.9, and we see that the maximum chirp amplitude for

the square pulse is ≈ 1.2 GHz. For longer pulses, the chirp is only significant for

≈ 200 ps of the total 4 ns pulse width. Density matrix simulations of a three- and

four-level system, excited by a 4 ns square chirped pulse, show that the effect that

the chirp has on exciting other transitions is small (few percent) as long as the level

splitting are greater than 2− 3 GHz. For shorter pulses, ≈ 200 ps FWHM, the chirp

amplitude is significant for the entire pulse, so it should be seriously considered when

the pulses from the z-cut EOM are driving coherent processes like power dependent

Rabi oscillations. In Chapter 5, the (zero chirp) x-cut EOM is used exclusively. In

Chapters 6-7, we use the z-cut EOMs to generate a short 250 ps pulses to excite trion

population, and a long 4 ns to perform optical pumping. The chirp is included in

later density matrix calculations, but due to the specific applications of these pulses,

the chirp does not influence the results significantly.

4.3 Chapter Summary

In this chapter, we have summarized the experimental techniques required to per-

form quantum optics measurements. In Chapter 5, these techniques will to be used to

study the transient response of optically driven QDs and observe photon antibunching

under cw excitation. The fundamentals of the TCSPC technique used in this work,

and some important characteristics of single photon detectors are reviewed. The ba-

sic operational theory and application of the lithium niobate EOMs used to generate

narrow bandwidth optical pulses are presented. In Chapter 7, these techniques are

applied to verify a QD spin-photon entangled state, and in future, these techniques

will serve as resources for implementing various quantum information applications

interfacing photons and QD states.



CHAPTER 5

Transient Measurements and Quantum Optics with a Resonantly Driven

Quantum Dot

Realizing a scalable optically driven QD spin architecture requires the ability to

map quantum information between nodes of a QD spin network. In this work, we are

pursuing an approach which utilizes intermediate photon qubits to carry quantum

information between spatially distant QD spins [3, 39]. This approach requires a

spin-photon interface, allowing for coherent mapping between a QD spin state and a

photon state, while maintaining the ability to perform local operations on the QD spin

state. In Chapter 3, we developed the capability to directly detect QD fluorescence

under resonant cw excitation. We now apply the TCSPC technique and use the EOM

generated optical pulses of Chapter 4 to observe the transient emission of an excited

QD trion state. These techniques are applied to the two-level charged QD system

to measure the trion lifetime, observe Rabi oscillations, and perform a photon anti-

bunching measurement. These experiments will serve as the foundation for future

quantum information applications, which are executed in the time domain.

5.1 Trion State Lifetime and Power Dependent Excitation

We begin by studying the transient fluorescence of a charged QD after it is excited

by a resonant optical pulse. In this chapter, we model the QD as an effective two-level

system, as described in Chapter 2. The ground state of the charged QD is defined

to be the lower state with population ρ11, and the optically excited trion state is

defined to be the upper state with population ρ22. First, the lifetime of the trion

64
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state is measured, and then the nonlinear response under coherent pulsed excitation

is verified by measuring the amplitude of the transient emission signal as a function

of excitation pulse power. For convenience, we recall that the equations of motion for

a two-level system in the field interaction picture, under resonant excitation δ = 0,

are given by,

ρ̇11(t) = −iχ∗(t)ρ̃21(t) + iχ(t)ρ̃12(t) + γ2ρ22(t) (5.1)

ρ̇22(t) = iχ∗(t)ρ̃21(t)− iχ(t)ρ̃12(t)− γ2ρ22(t) (5.2)

˙̃ρ12(t) = −γρ̃12(t)− iχ∗(t)[ρ22(t)− ρ11(t)] (5.3)

˙̃ρ21(t) = −γρ̃21(t) + iχ(t)[ρ22(t)− ρ11(t)], (5.4)

where γ is the decoherence rate, γ2 is the excited state decay rate, and χ(t) = Ω0(t)/2

is half of the time dependent Rabi frequency. The spontaneous emission (for a ho-

mogenous medium) rate is,

γ2 =
ω3n|µ|2

3πε0~c3
, (5.5)

where ω is the transition frequency, n is the index, and µ is the transition dipole

moment. From previous measurements, the lifetime of the trion state is known to

be ≈ 1 ns [85], which is consistent with a dipole moment of ≈ 25 D (Debye), where

1D ≈ 3.34× 10−30 C m.

Trion lifetime measurements are performed by exciting the system with resonant

pulses which are shorter than the expected 1 ns lifetime. We indirectly measure

the emission intensity as a function of time using the TCSPC method described

in Chapter 4. Since we are directly detecting the signal, the emission intensity is

proportional to the excited state population (Intensity(t) ∝ ρ22(t)). Specifically, we

consider a step-wise excitation pulse of the form,

χ(t) = χ0[Θ(t)−Θ(t− t0)] (5.6)
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Figure 5.1: The TCSPC setup used to perform transient measurements on the charged QD under

pulsed excitation. Optical pulses are generated by an EOM which temporally gates a cw laser. Light

from the QD is detected by a fast SPAD, and events are recorded using the HH400 picosecond event

timer operating in integration mode. The excitation pulses are rejected using the cross polarization-

fiber setup described in Chapter 3.

where the step function (Θ(t)) forms a pulse which is “on” from t = 0 to t = t0. So

that for times after the excitation pulse has passed, χ(t) = 0, and we find

ρ22(t) = ρ22(t0)e−γ2(t−t0), (5.7)

which is the the expected exponential decay. A formal relationship between the

emission intensity to the excited state population can be derived using the source-

field approach [68] which we use later in Section 5.3.

The time resolved fluorescence is recorded using the TCSPC setup shown in Fig-

ure 5.1. The excitation pulses are generated by an x-cut EOM temporally gating a cw

Ti:sapphire laser (Coherent 899-21). The laser is tuned on resonance (10539.85 cm−1)

by maximizing the cw fluorescence signal counts before pulses are generated. Here,

horizontally polarized 250 ps pulses excite the trion population, and we use the cross

polarization-fiber setup described in Chapter 3 to separate the QD emission from
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the excitation pulses. The QD emission is detected with the fast SPAD (MPD-PDF

model) with timing jitter ≈ 48 ps. The experiment is performed at a repetition rate

of 76 MHz, set by the pulse generator. Photon detection events are recorded with

the (HH400) picosecond event timer relative to the sync signal of the pulse generator.

The HH400 is operated in integration mode which time bins the detection events.

The semi-classical theory of a coherently driven two-level system is well established

[68, 86]. In the limit of a strong resonant cw driving field and no decay, the system

undergoes Rabi oscillations where the excited state population is,

ρ22(t) = sin2(
Ω0t

2
). (5.8)

where we see that the excited state population oscillates in time at the Rabi frequency

Ω0 = µE0/~.

Rabi oscillations are useful in quantum information applications because they can

be used to coherently manipulate the state, serving to rotate the qubit. In order to

perform the rotation rapidly, the Rabi oscillations are usually driven with short pulses

of fixed pulse width [27, 85, 87]. From Equation 5.8, we see that Rabi oscillations

can also be observed for a fixed pulse width by varying the Rabi frequency, which is

proportional to the square root of the applied pulse power.

We now estimate the pulse power required to excite a significant trion population

(ρ22(t0) ≈ 1). We recall that the pulse area (A), is given by,

A =

∫ ∞
−∞

Ω0(t) dt (5.9)

Assuming a square pulse with width (τp),

A = Ω0 × τp =
µE0

~
τp, (5.10)

we can find required pulse amplitude to achieve a π rotation (ρ22(t0) = 1), assuming

µ ≈ 25 D

E0 =
π ~
µ τp

≈ 15.9 kV/m, (5.11)

for τp = 250 ps, which corresponds to a peak intensity of

I0 =
1

2
nε0c|E0|2 ≈ 1.2× 106 W/m2, (5.12)
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for ≈ 3.5 Given that the focussed laser beam diameter is estimated to be ≈ 2µm on

the sample, the required peak power is P0 ≈ 3.7× 10−6 W. For a 250 ps pulse at 76

MHz repetition rate, this yields an average power of Pav ≈ 70 nW. In practice, the

π-power is determined experimentally by measuring the fluorescence signal amplitude

as a function of pulse power(see Figure 5.4), but this provides a starting place for the

experiments.

In order to estimate the magnitude of the emission signal, we have to consider the

repetition period (Trep = 13.2 ns), the integration time (Tint = 120 s), the detection

efficiency (η = 5×10−6), and the bin size (Tbin = 8 ps), which spreads the counts over

the lifetime (1/γ2 ≈ 1 ns). The repetition period is sufficiently long so that we can

assume that each run of the experiment is independent. The time bin size is usually

chosen to be a few times smaller than the timing resolution of the TCSPC setup. The

integration time is chosen to obtain reasonably high signal to noise. Since this is a

photon counting experiment, the noise should follow a Poisson distribution, where for

each time bin, we have N counts with a standard deviation of ±
√
N . If we assume

that the excitation pulse, fully drives the system to the excited state (ρ22(t0) ≈ 1),

then the average number of counts per time bin is given by,

Counts per time bin ≈ η
1

Trep

Tbin
1/γ2

Tint. (5.13)

which results in approximately 360 counts per time bin using the numbers above.

The corresponding statistical signal-to-noise ratio (SNR) is approximately 19:1 per

time bin.

The raw data for typical trion fluorescence signal is shown in Figure 5.2 and is

in good agreement with the predicted exponential profile and signal level. Since

the lifetime (640 ps) is much longer than the systems timing resolution (48 ps),

deconvolution with the instrument response function is not necessary. By (Stark)

tuning the QD transition off resonance with the excitation laser using the sample bias,

a background measurement is recorded which shows the baseline. The background

includes dark counts and the residual excitation pulse leak through which is not fully

rejected by the polarizer/fiber setup. The ratio of the integrated signal to background
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Figure 5.2: Time resolved QD emission under 250 ps pulse excitation with an integration time of

2 minutes. The black shows the signal when the QD is tuned onto resonance with the laser pulse

using the DC-Stark effect. The red is the background level when the QD is tuned off resonance,

showing the residual excitation pulse leaking onto the detector around 4.1 ns.
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Figure 5.3: The QD emission (blue) following the 250 ps excitation pulse is fit with a single

exponential decay function (red) to obtain a trion lifetime of 1/γ2 = 640± 25 ps.

in the 3 ns to 6 ns time window is approximately 20:1, indicating that if a photon

is measured in this window, there is a 95% probability that it is QD emission. For

the remainder of this chapter, the off resonant background is subtracted from the

fluorescence signal. To observe the single exponential nature of the QD emission after

the excitation pulse, the data is plotted on a semi-log scale (Figure 5.3). The data are

background subtracted, all values less than 1 are set to 1, and a single exponential is

fit to the data. For this QD, the trion lifetime is found to be 1/γ2 = 640± 25 ps.

In order to verify the nonlinear nature of the QD, time-resolved QD fluorescence

measurements are performed as a function of excitation power. We fit to a section of

the emission signal after the excitation pulse, and use this as a measure of the excited

state population at t = t0. We are able to observe the onset of power dependent

Rabi oscillations (Figure 5.4), which scale properly with the square root of the pulse

power. The measurement yields a π-power of Pinc = 40 µW (average power of 760

nW), where these are the incident powers measured in front of the cryostat. Taking

into account the transmission through the cyrostat windows and sample, we estimate
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Figure 5.4: Transient fluoresence under 250 ps excitation for six different excitation powers. The

onset of power dependent Rabi oscillations shows the nonlinear optical response of the QD. The inset

shows the signal amplitude as a function of the square root of the power. The signal amplitudes are

measured for nine different powers by integrating the fluorescence counts from 1 ns to 3 ns, after

the excitation pulse has passed.

that the peak power incident on the QD is ≈ 10.8 µW.

The experimentally determined π-power indicates that the trion dipole moment is

approximately 15 D, which is about a factor of two smaller than the predicted dipole

moment from the decay rate (Equation 5.5). It should be noted that the value for

focussed laser beam diameter (2 µm) used to calculate the Rabi frequency is only an

estimate and could be the source of a systematic error. It should also be noted that in

the calculation of the spontaneous emission rate (Equation 5.5), the photon density

of states is assumed to be spatially homogeneous, which is only an approximation for

a QD within a GaAs heterostructure, and could explain the discrepancy. Since the π-

power can be measured, we use the experimentally obtained values for the remainder



72

of this work.

5.2 Time Dependent Rabi Oscillations

In the previous section, the QD is driven with resonant 250 ps pulses which are

shorter than the excited state lifetime. Using these pulses, the trion lifetime is de-

termined, and the onset of power dependent Rabi oscillations is observed. Since the

optical pulses are generated by EOMs, the pulse width can be increased to generate

square pulses of controllable width (see Chapter 4). Using these square pulses, we

are able to observe Rabi oscillations as a function of time by temporally resolving

the trion fluorescence using the TCSPC setup [88]. Since the fluorescence intensity is

proportional to the excited state population, the measurement shows that the excited

state population undergoes real time dependent oscillations that are not destroyed

by decoherence. Using this method, the Rabi frequency of an applied pulse can be

determined with a single 1− 2 minute measurement. By using the lifetime extracted

from the short pulse measurements, one can determine the decoherence rate of the

optical transition. Similar oscillations can be observed under cw excitation by per-

forming correlation (g(2)(τ)) measurements on the resonance fluorescence from a single

QD [66]; however, since they are second order intensity correlation experiments, they

are experimentally demanding since the success rate scales like the detection efficiency

squared which is usually much less than 1.

If a system starts in its ground state ρ11(0) = 1, the excited state population of

a resonantly driven two-level system is given by the Rabi solution (Equation 5.8) in

the absence of decay. If decay is included, analytic solutions to the density matrix

equations of motion can still be found if the system is driven on resonance [86, 89].

The excited state population is given by,

ρ22(t) =
Ω2

0/2

Ω2
0 + γγ2

(
1− [cos(λt) +

γ + γ2

2λ
sin(λt)]e−

1
2

(γ+γ2)t

)
, (5.14)

where

λ =

√
Ω2

0 −
(γ − γ2)2

4
, (5.15)
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Figure 5.5: Normalized QD fluorescence under resonant 2 ns square pulse excitation is shown in

red. The black trace shows the excitation pulse measured by the TCSPC setup leaking a small

amount of the excitation pulse onto the detector. In both cases, the raw data are plotted so they

are convolved with the SPAD’s instrument response function.

recalling that γ is the decoherence rate and γ2 is the excited state decay rate. We are

able to see that the excited state population has two terms oscillating at λ with dif-

ferent weights that are out of phase. The oscillations are damped with an exponential

envelope whose decay rate is the average of the decoherence rate and the population

decay rate. Even though this result is well known [86,89], it might be somewhat non-

intuitive. To understand the physics, it is useful to consider the Bloch sphere picture

of a driven two-level system. The Bloch vector begins pointing along the negative

z-axis. When a driving field is turned on, the Bloch vector begins oscillating about

the x-axis, spending equal time along the y- and z-axis which decay with rates γ and

γ2 respectively.

Experiments are performed on the same QD trion state as in Section 5.1 and

using the same TCSPC setup. By increasing the pulse width to 2 ns, we are able

to obtain a measure of the excited state population and observe the time dependent
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Figure 5.6: The raw data (red) is deconvolved with the setup’s instrument response function to

give the deconvolved signal (blue). The high frequency oscillations present in the deconvolved data

are an artifact from the deconvolution.

Rabi oscillations (Figures 5.5,5.7). We again use the fast SPAD with 48 ps timing

resolution, as in Section 5.1, but since we now are interested in Rabi oscillations

that can evolve faster than the excited state decay lifetime (640 ps), the signal must

be deconvolved with the instrument response function (see Chapter 4). The decon-

volution is performed with a standard linear deconvolution package using Tikhonov

regularization [90]. An example of the (background subtracted) raw data and the

deconvolved data are shown in Figure 5.6.

From Equation 5.14, we see that the ρ22(t) is dependent on the Rabi frequency,

the decoherence rate and the population decay rate. By fitting the deconvolved

data to Equation 5.14 and using the (640 ps) lifetime determined by short pulse

measurements, we can extract the decoherence rate γ and Rabi frequency (Ω0), which

are the only two physical fitting parameters. The fits are convolved with the system’s

IRF and plotted with the raw (background subtracted) data. The measurement is

repeated for seven excitation powers, four of which are shown in Figure 5.7.
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Figure 5.7: Time-dependent Rabi oscillations for four different excitation powers, plotted with the

convolved fits of Equation 5.14 in red. P0 corresponds to a peak power of approximately 3.4 µW.
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Figure 5.8: Black: The Rabi frequency scales linearly with the square root of the excitation power

as expected. Grey: The decoherence rate is also plotted against the square root of the excitation

power, showing no sign of excitation induced dephasing. The grey bar shows the ideal case of

γ = 1
2γ2 calculated from the 1/γ2 = 640± 25 ps, where the thickness of the bar shows the error.

The Rabi frequencies scale with the square root of the excitation power as expected

from theory, and indicate a trion dipole moment of 17 D which is relatively consistent

with the short pulse measurements (15 D). The extracted decoherence rates and Rabi

frequencies for all seven powers are shown in Figure 5.8.

Averaging over the seven measurements, the decoherence rate is found to be

1/γ = 1.22 ± 0.06 ns, which is in good agreement with the theoretical prediction,

γ = 1
2
γ2, for the case of pure dephasing. This result is somewhat surprising because

cw spectra from single InAs QDs typically exhibit homogenous absorption (and fluo-

rescence intensity) linewidths of 500− 600 MHz indicating a faster decoherence rate.

For the QD studied in this chapter, the low power linewidth is 623±25 MHz FWHM

(Figure 5.9), which implies a decoherence time of 1/γ = 1/(π623 MHz) = 511 ± 21

ps. We attribute this line broadening to a spectral wandering process arising from

fluctuations of the QD’s nuclear spin bath [91–93]. Our result that, γ ≈ 1
2
γ2 is
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Figure 5.9: The cw QD fluorescence intensity as a function of the QD-laser detuning in the low

power limit. The Lorentzian fit to the data gives a linewidth of 623± 25 MHz FWHM.

consistent with time domain studies on ensembles of InAs QDs [94], and more recent

nonlinear cw measurements on a single InAs QD [95]; however, groups performing

correlation measurements on QD resonance fluorescence have reported significantly

faster dechoherence rates [66]. In Chapter 6-7, we will use similar pulses to initialize

the QD state via optical pumping and read out the spin state by scattering a single

photon.

5.3 Photon Antibunching

In Chapter 3, the QD is driven with a cw field and the QD fluorescence intensity

is measured as function of the laser-QD detuning. So far in this chapter, we have

performed TCSPC measurements by exciting the QD with resonant laser pulses and

time resolving the fluorescence intensity. We now return to using resonant cw excita-

tion, and use the TCSPC technique to study the quantum optical properties of the

QD fluorescence. Since a charged QD has been shown to form an effective two-level

system, its fluorescence is expected to exhibit photon antibunching [96]. Photon an-

tibunching refers to the zero probability of detecting two photons at the same time,
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and light sources that exhibit antibunching are referred to as single photon sources.

This effect was first observed in atomic resonance fluorescence by Kimble, Dagenais

and Mandel in 1977 [96]. It has been well established that QDs can serve as high

quality single photon sources when driven optically [87,97–99] and electrically [100].

For a single two-level atom, the antibunching effect is sometimes explained by

saying that a single atom is only able to “emit” one photon at a time. This interpre-

tation is reasonable for time domain measurements where a short pulse excites the

atom to the upper state, which then decays emitting a single photon. However, reso-

nance fluorescence from a single two-level system exhibits photon antibunching even

under cw excitation, which is a steady state scattering problem. In fact, applying

the absorption/emission interpretation to a cw resonance fluorescence experiment re-

sults in wrong answers about the spectral composition of the resonance fluorescence,

which in the low power limit is elastic Rayleigh scattering. To better understand

these effects, we review some concepts from quantum optics and the theory of photon

antibunching. Finally, an antibunching experiment is performed to verify the single

photon nature of the QD fluorescence studied in this work.

In the study of quantum optics, the electric field operator is written in terms of

the creation (a†j) and annihilation (aj) operators,

E(r) = i
∑
j

√
~ωj

2ε0V

(
ajεje

ikj ·r − a†jεje−ikj ·r
)
, (5.16)

where, j indexes the mode, V is the quantization volume, and the other symbols have

their usual meanings, and we recall that

[aj, a
†
k] = δj,k, (5.17)

[aj, ak] = 0, (5.18)

[a†j, a
†
k] = 0. (5.19)

The field operator is often separated into components,

E(r) = E+(r) +E−(r), (5.20)
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such that,

E+(r) = i
∑
j

√
~ωj

2ε0V

(
ajεje

ikj ·r
)
, (5.21)

and

E−(r) = −i
∑
j

√
~ωj

2ε0V

(
a†jεje

−ikj ·r
)
. (5.22)

We recall that the Hamiltonian for the field can be written in term of the creation

and annihilation operators,

H =
∑
j

~ωj
(
n̂j +

1

2

)
. (5.23)

where n̂j = a†jaj is the number operator. Fock states are eigenstates of n̂j where nj

is the occupation of mode ωj, such that

n̂j|nj〉 = a†jaj|nj〉 = nj|nj〉, (5.24)

and we recall that,

a†j|nj〉 =
√
nj + 1|nj + 1〉, aj|nj〉 =

√
nj|nj − 1〉. (5.25)

Fock states represent excitations of a single mode with frequency ωj, whose eigenen-

ergies are,

En,j = ~ωj
(
nj +

1

2

)
(5.26)

Since the QD is ideally a single photon source, we are interested in single photon

states of the field. A single photon Fock state is generated in mode j by the creation

operator acting on the vacuum |0〉,

|1j〉 = a†j|0〉. (5.27)

Fock states can be used to construct other states of the field, such a single mode

coherent (Glauber) states which are often used to represent the coherent fields gen-

erated by narrow band lasers, and multimode coherent states which can be used to

model laser pulses, and multimode Fock states to give a few examples.



80

A more general single photon state is a multimode single photon state given by,

|ψ(t)〉 =
∑
j

cj(t)a
†
j|0〉 =

∑
j

e−iωjtcj(0)|1j〉, (5.28)

which is a good model for a single photon spontaneously emitted from a QD after it

is excited by a short pulse. Recall that the lifetime of the excited QD trion state is

approximately 1 ns, so a single spontaneously emitted photon is composed of many

modes, giving rise to a single photon wavepacket with a 1 ns exponential temporal

envelope. However, we are not using pulses to excite the QD, we are using cw ex-

citation, where the time domain spontaneous emission picture does not apply. As

mentioned earlier, resonance fluorescence from a cw driven two-level system is really

a scattering problem, and we will have to use different theoretical tools to properly

calculate the properties of the scattered field. To illustrate some basic properties of

quantized fields, we first review some important results from quantum optical co-

herence theory and use a single mode single photon Fock state as a toy model for

the QD fluorescence. We then apply these techniques to the problem of resonance

fluorescence from a two-level system.

Recall that in the Heisenberg picture, the field operator is given by,

E+(r, t) = i
∑
j

√
~ωj

2ε0V

(
ajεje

ikj ·r−iωjt
)
, (5.29)

and E−(r, t) = [E+(r, t)]†. Given a state of the field |ψ〉, the average intensity

measured by a square law detector is,

〈I(t)〉 = 〈ψ|E−(r, t) ·E+(r, t)|ψ〉, (5.30)

and the temporal second order intensity correlation is given by [68,71],

g(2)(τ) =
〈E−(t)E−(t+ τ)E+(t+ τ)E+(t))〉
〈E−(t)E+(t)〉〈E−(t+ τ)E+(t+ τ)〉

. (5.31)

where we have dropped spatial coordinate and assume the field is measured at the

same position.
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Calculating g(2) for a single mode Fock state |n〉, we find

g(2) =
〈n|E−E−E+E+)|n〉
〈n|E−E+|n〉2

=
κ2〈n|a†a†aa|n〉
(κ〈n|a†a|n〉)2

=
κ2〈n|(a†a)2 − a†a|n〉

κ2〈n|a†a|n〉2

=
n2 − n
n2

, (5.32)

where κ is a constant. We see that for any Fock state, g(2) < 1. For a single photon

Fock state n = 1, we get antibunching (g(2) = 0), which indicates that if one photon

is measured, we cannot measure another photon. Now that we have seen that a single

photon Fock state exhibits antibunching, we return to the problem of QD resonance

fluorescence.

One could imagine performing second order intensity correlation measurements

with a single fast photodetector capable of continually measuring I(t), digitizing the

output, and calculating the correlation function after the measurement. This ap-

proach is technologically difficult due to many of the same challenges that motivated

the development of TCSPC techniques to measure fluorescence lifetimes (see Chapter

4). The first challenge is that the high gain timing resolving detectors required to

detect single photons operate in pulsed mode, and are typically not capable of re-

solving the number of photons incident on the detector. The second challenge is the

≈ 50 ns detector deadtime after a detection event (“click”) and afterpulsing limits

the useful temporal correlation capabilities of a single detector to times much longer

than the 1 ns lifetime of a QD trion state. The traditional solution to these problems

is to use two detectors and measure the temporal correlation between the detector

clicks. It should be noted that new detector technologies such as superconducting

nanowire detectors are causing some reevaluation of these traditional limitations on

photon number resolution, dead time and afterpulsing [82,101,102].

Intensity correlation experiments are usually performed in a Hanbury-Brown and

Twiss (HBT) type setup (Figure 5.10) [103]. The setup measures intensity correlations

by first splitting the incident light with a 50-50 beam splitter, and then measuring
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Figure 5.10: The HBT setup used to perform photon antibunching experiments on a single charged

QD. A narrow bandwidth cw laser drives the charged QD. The QD resonance fluorescence is collected

and sent to a 50-50 fiber beam splitter. τ -SPAD single photon detectors measure the light on the

two outputs. The detection events are recorded with the HH400 picosecond event timer operating

in “T2” mode.

the light in the output arms with two square-law photodetectors which are sensitive

to intensity as function of time I(t). HBT setups are often used in quantum optics

experiments to verify that one has a single photon source. The basic idea is that if

the input state is a single photon, it can only be detected by one of the detectors,

so that the intensity correlation between these two detectors within a certain time

window is zero. In terms of the traditional TCSPC setup described in Chapter 4,

SPAD 1 is sent to the “start” and SPAD 2 is sent to the “stop” of a TAC, so that in

the case of a single photon source, there are no coincidence events at zero time delay.

In the HBT setup, the detectors are at two different spatial locations, so the

second order intensity correlation function is a function of space and time such that

[68],

g(2)(r1, t1, r2, t2) =
〈E−(r1, t1)E−(r2, t2)E+(r2, t2)E+(r1, t1)〉
〈E−(r1, t1)E+(r1, t1)〉〈E−(r2, t2)E+(r2, t2)〉

, (5.33)
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where r1, t1 and r2, t2 are the space time coordinates. However, the spatial distances,

and time delays can be incorporated into τ to recover g(2)(τ) of Equation 5.31.

The second order intensity correlation function for resonance fluorescence, g(2)(τ),

is often calculated by using the quantum regression theorem [71], but first we must use

an operator approach referred to as “source-field” [68], which allows us to express

the quantum mechanical properties of the scattered field in terms of the quantum

properties of the atomic operators. We can then calculate the second order intensity

correlation function with these atomic operators. We follow the approach used in

Berman and Malinkovsky [68], and Scully and Zubairy [71]. We begin with the

quantized atom-field Hamiltonian for a two-level system interacting with an arbitrary

number of field modes,

H =
~ω0

2
σz +

∑
j

~ωja†jaj +
∑
j

~
(
gjσ+aj + g†jσ−a

†
j

)
, (5.34)

with

gj = −i〈2|µ|1〉 · εj
√

ωj
2~ε0V

, (5.35)

where σz = |2〉〈2| − |1〉〈1| is the population difference operator, σ+ = |2〉〈1|, σ− =

|1〉〈2|, and ω0 is the atomic (QD) frequency and ωj is the field frequency.

The Heisenberg picture is used to find expressions for the time dependence of the

operators: a†j(t), aj(t), σ+(t), and σ−(t). The expression for aj(t) is,

aj(t) = aj(0)e−iωjt − ig†j
∫ t

0

σ−(t′)e−iωj(t−t
′)dt′ (5.36)

which can be inserted into,

E+(r, t) = i
∑
j

√
~ωj

2ε0V

(
aj(t)εje

ikj ·r
)
, (5.37)

to give two terms. The first term involving aj(0)e−iωjt is the free evolution of the field,

and the second term called E+
s is the “source” term which arises from the interaction

terms in the Hamiltonian,

E+
s (r, t) =

∑
j

√
~ωj

2ε0V

(
εje

ikj ·rg†j

∫ t

0

σ−(t′)e−iωj(t−t
′)dt′

)
, (5.38)
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where we have taken the atom (QD) to be at the origin. So we now are able to

write the source-field in terms of an integral over the atomic lowering operator. In

order to simplify the problem, we move to a continuum description of the field modes,

replacing the sum,
∑

j, with
(

V
(2π)3

) ∫∞
−∞ d

3k and ωj with ωk = ck. The Weisskopf-

Wigner approximation is made by evaluating the g’s at a center optical frequency ωc,

which is large compared to the other frequencies. Then by making the rotating wave

approximation, and working out the geometry of the problem in the far field (large

r), it can be shown that the source-field reduces to [68,71],

E+
s (r, t) = −

(
ω2
c 〈1|µ|2〉 sin θ

4πε0c2r

)
σ−(t− r/c)θ̂, (5.39)

which shows that the source-field from the atom (QD) is proportional to the atomic

lowering operator at a retarded time t−r/c where r is the distance between the atom

and the location at which the field is measured. For the remainder of this work, we

suppress the retardation r/c to simplify the notation.

Using this result, we return to calculating g(2)(τ) for resonance fluorescence. We

can now rewrite,

g(2)(τ) =
〈E−(t)E−(t+ τ)E+(t+ τ)E+(t))〉
〈E−(t)E+(t)〉〈E−(t+ τ)E+(t+ τ)〉

, (5.40)

as

g(2)(τ) =
〈σ+(t)σ+(t+ τ)σ−(t+ τ)σ−(t))〉
〈σ+(t)σ−(t)〉〈σ+(t+ τ)σ−(t+ τ)〉

. (5.41)

and for zero time delay, τ = 0,

〈σ+(t)σ+(t)σ−(t)σ−(t))〉 = 0. (5.42)

We see that the numerator is zero, since σ+(t)σ+(t) ∝ |2〉〈1||2〉〈1| = 0, indicated the

antibunching at time zero [68].

So we have formally shown that resonance fluorescence exhibits antibunching for

zero time delay. In order to get the full time dependence of g(2)(τ), the quantum re-

gression theorem is typically used [64,71]. By making the Markovian approximation,

the quantum regression theorem lets one write the two-time correlation functions
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needed to calculate g(2)(τ) in terms of single time expectation values. The result is

that [64, 71],

〈σ+(t)σ+(t+ τ)σ−(t+ τ)σ−(t)〉

=
Ω2

0/2

Ω2
0 + γγ2

(
1− [cos(λ|τ |) +

γ + γ2

2λ
sin(λ|τ |)]e−

1
2

(γ+γ2)|τ |

)
, (5.43)

where

λ =

√
Ω2

0 −
(γ − γ2)2

4
, (5.44)

which for τ > 0 is exactly the same expression that we found in Section 5.14 for

ρ22(t) by solving the semiclassical density matrix equations for the initial condition

ρ11(0) = 1. The normalized g(2)(τ) in steady state is therefore,

g(2)(τ) =

(
1− [cos(λ|τ |) +

γ + γ2

2λ
sin(λ|τ |)]e−

1
2

(γ+γ2)|τ |

)
(5.45)

which we again see is zero for τ = 0 [64,71].

It is interesting to consider the interpretation of this result, since we have found

that the steady state second order intensity correlation function of the resonance

fluorescence under cw excitation has the same form as the transient excited state

population ρ22(t) under step-wise excitation. This similarity was noted by Kimble

and Mandel in their 1976 work on resonance fluorescence, as an example of what a

small role the quantized nature of the field has to do with the results of quantum optics

measurements [64]. As can be seen with the source-field approach (Equation 5.39), the

quantum optical properties of the field can be related back to the quantum mechanical

properties of the source atom. In the case of g(2)(τ), we can consider the measurement

of the first photon as initializing the atom to the ground state, setting the same

initial condition used in calculating Equation 5.14. The initialized two-level system is

driven by a cw field which leads to Rabi oscillations in time, so that the conditional

probability of detecting a second photon after the first is given by Equation 5.14 [64,

66].
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Figure 5.11: A two-sided IRF shows the temporal response in a second order intensity correlation

measurement. It is constructed by convolving a time reversed IRF from one detector with a forward

time IRF from the other and symmetrizing the result. The resulting IRF width 630 ps FWHM.

5.3.1 Experimental results

The experiments are performed on the same QD trion state studied throughout

this chapter. A Coherent 899-21 laser generates the resonant cw field which drives the

QD at 10538.85 cm−1 with approximately 920 nW of incident power (10 mV transmis-

sion, Ω0/2π ≈ 360 MHz) The resonance fluorescence is collected in the transmission

geometry, and the excitation laser is rejected using the same cross-polarization fiber

setup used in previous sections. The fluorescence is split with a 50-50 fiber beam

splitter and sent to two nearly identical SPADS. Here, we use the higher detection

τ -SPAD model detectors since the success rate of a second order intensity correla-

tion measurement is proportional to the detection efficiency (η) squared (see below),

where η ≈ 10−5. Recall that these detectors have a timing resolution (IRF FWHM)

of about 450 ps, but since the g(2)(τ) measurement is dependent on the IRFs of both

detectors, a composite coincidence IRF is constructed by convolving a time reversed

IRF with the forward time IRF shown in Figure 5.11.
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Detection events are time-tagged using two independent channels of the HH400

in “T2” mode. The detection events are post processed to calculate the temporal

correlation function between detection events. Since we split the first photon at time

t1 between two detectors, it can go to either SPAD 1 (D1) or SPAD 2 (D2). Similarly

the second photon at time t2 can also go to either detector, so the probability of

getting two clicks is,

Psuccess =
1

2
η(D1(t1) +D2(t1))× 1

2
η(D1(t2) +D2(t2)), (5.46)

which equals

Psuccess =
1

4
η2(D1(t1)D1(t2) +D1(t1)D2(t2) +D2(t1)D1(t2) +D2(t1)D2(t2)). (5.47)

Due to the dead time of the detectors and electronics, only the two terms with a click

in each detector can contribute,

Psuccess =
1

4
η2(D1(t1)D2(t2) +D2(t1)D1(t2)), (5.48)

and since we are time-tagging each channel separately and analyzing the data in

post-processing, we are able to collect both of these contributions. In a traditional

TCSPC experiment using a single TAC with one detector as the “start” and the other

as the “stop,” only one of these terms is recorded. So we have found that the success

probability scales like 1
2
η2. In the post-processing, we choose a time bin size of 64 ps,

which following an analysis similar to Equation 5.13 requires 2-3 hours of integration

to obtain a SNR of approximately 10:1.

The raw data are shown in Figure 5.12 along with the theoretical prediction ex-

pected from Equation 5.45 and the convolved theory. The data is accumulated over

approximately 3 hours, which corresponds to a g(2)(∞) level of about 70 counts per

time bin. In Figure 5.12 we have plotted Equation 5.45 (green) using the parameters

obtained from the short pulse and Rabi data with no free parameters. The theory

is then convolved with a two-sided IRF (Figure 5.11) to show the expected signal.

Here, we do not attempt to deconvolve the raw data due to the relatively low signal

to noise, however, the convolved theory shows good qualitative agreement with the
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Figure 5.12: Blue: Second order intensity correlation function for QD resonance fluorescence under

cw excitation showing a clear antibunching dip at zero time delay. Green: Theoretical prediction

from Equation 5.45 using the QD parameters measured in pulsed measurement. Red: The theoretical

prediction (green curve) is convolved with the two-sided IRF (Figure 5.11) to show the expected

signal. The blue line at 0.5 shows the single photon limit, and since the g(2) signal is below 0.5 at

time zero, the QD is a single photon source.
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measured g(2) signal. Since the antibunching dip falls below 0.5 at zero time, we can

conclusively say that the QD is a single photon source.

5.4 Chapter Summary

In this chapter, we have developed a theoretical background for quantum optics

measurements, and performed transient measurements on the spontaneous emission

and resonance fluorescence from a single charged QD. Using TCSPC techniques and

EOM generated optical pulses, we have measured the lifetime of the QD trion state,

and observed both power dependent and time dependent Rabi oscillations, verifying

the coherent optical response of the QD. Under cw excitation, the second order inten-

sity correlation function of QD resonance fluorescence exhibits photon antibunching

which shows that it is a source of single photons.



CHAPTER 6

An Optically Driven QD Spin

In this work, we are ultimately pursuing a quantum information architecture based

on optically driven QD spins. Recall from Chapter 3, that the QD is charged with a

single electron which will serve as a spin qubit, but due to the optical selection rules,

the spin can not be manipulated optically. In this Chapter, we apply an external

magnetic field which breaks the symmetry and leads to new eigenstates, which allow

for the realization of an optically driven QD spin qubit. This chapter is intended

as a review of charged InAs QDs in the presence of an external magnetic field. The

physics of this system and the experimental achievements presented in this Chapter

are now well-established [2, 59,73,104,105].

6.1 Selection Rules with Magnetic Field in the Voigt Geometry

In the absence of an external magnetic field, the charged QD is composed of

two degenerate two-level systems which we call the z-basis states (Chapter 2). The

transition between |z+〉 to |Tz+〉 is excited with σ+ polarized light and the transition

from |z−〉 to |Tz−〉 is excited with σ− polarized light, and the cross transitions (e.g.

|z+〉 to |Tz−〉) are not allowed. We now consider the effect of an external magnetic

field applied perpendicular to the growth direction (called the Voigt geometry). Recall

that the ground state spin is determined by the single electron in the conduction

band energy level, and the trion state spin is determined by the heavy hole since the

electron spins form a singlet (Chapter 2). The Zeeman interaction between the spins

and the externally applied magnetic field mixes the z-basis to form new eigenstates.

90
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In particular, the magnetic field is applied along the x direction so that Bext = Bx̂,

so that the interaction Hamiltonian is,

HZeeman = ge,iµBBŜe,x − gh,iµBBŜh,x (6.1)

where, B is the magnitude of the applied field, µB is the Bohr magneton, ge,i and gh,i

are the electron and heavy hole in-plane g-factors, and Ŝe,x (Ŝh,x ) and are the spin

operators for the electron (hole). Writing this Hamilton in the z-basis, we find

HZeeman =

〈z+|

〈z−|

〈Tz+|

〈Tz−|

|z+〉 |z−〉 |Tz+〉 |Tz−〉
0

~ge,iµBB
2

0 0

~ge,iµBB
2

0 0 0

0 0 0 −~gh,iµBB
2

0 0 −~gh,iµBB
2

0

 (6.2)

which can be broken into two independent 2 × 2 Hamiltonians for the electron and

hole. The new eigenstates of the system, called the x-basis states, are

|x+〉 =
|z−〉+ |z+〉√

2
(6.3)

|x−〉 =
|z−〉 − |z+〉√

2
(6.4)

|Tx+〉 =
|Tz−〉+ |Tz〉√

2
(6.5)

|Tx−〉 =
|Tz−〉 − |Tz+〉√

2
, (6.6)

with the energy level structure of this four-level system is shown in Figure 6.1. The

x-basis ground states are split by the Zeeman frequency ∆e = ge,iµBB, and the trion

states are now split by ∆h = gh,iµBB.

The optical selection rules in the x-basis can be calculated from the z-basis se-

lection rules. Recall that the electric dipole interaction is Hdip = −µ · E, so if we

consider a transition between |x+〉 and |Tx+〉, we find
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Figure 6.1: Energy level diagram for the charged QD with an external magnetic field applied

perpendicular to the growth geometry (Voigt direction), forming a four-level system. The ground

states form the spin qubit and are split by the Zeeman frequency (∆e). The optically excited

trion states are at a frequency, ω0, above the ground states which corresponds to a wavelength of

approximately 950 nm for the QDs studied in this work. The trion states are split by the hole

Zeeman frequency (∆h). The transitions are coupling with horizontally (H) and vertically (V )

polarized light, where the i is a reminder of the relative phase between matrix elements.
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−〈Tx+|µ ·E|x+〉 = −
(
〈Tz+|+ 〈Tz−|√

2

)
µ ·E

(
|z+〉+ |z−〉√

2

)
(6.7)

= −1

2
(〈Tz+|µ ·E|z+〉+ 〈Tz+|µ ·E|z−〉+ 〈Tz−|µ ·E|z+〉+ 〈Tz−|µ ·E|z−〉) .

(6.8)

Looking back at Equations 2.30-2.34, we see that the only nonzero terms are

− 1

2
(〈Tz+|µ ·E|z+〉+ 〈Tz−|µ ·E|z−〉) =

− 1

2
(〈Tz+|rC(1)

+1 |z+〉 E−1 + 〈Tz−|rC(1)
−1 |z−〉 E+1) (6.9)

where E−1 and E+1 are the coefficients of the polarization vectors in the spherical

tensor basis,

E = −1

2
(E−1 ε̂+1 + E+1 ε̂−1). (6.10)

Taking the coefficients to be equal, and recalling that ε̂±1 = ∓ x̂±iŷ√
2

, we find,

E = −E
2

(ε̂+1 + ε̂−1) = − E

2
√

2
[−(x̂+ iŷ) + (x̂− iŷ)] =

E√
2
iŷ, (6.11)

so we see that the |x+〉 to |Tx+〉 transition is driven by a ŷ polarized field which

corresponds to vertical polarization in the laboratory. Performing similar calculations

on the the other three transitions, one finds that the |x−〉 to |Tx−〉 is also driven by

vertically polarized field, and the two cross transitions are driven by (x̂), a horizontally

polarized field. Because of these selection rules, we refer to the outer two transitions

as “vertically or V polarized” and the inner two as “horizontally or H polarized.”

There is a relative phase of i between the transition matrix elements of the H and

V transitions. These selection rules are shown in Figure 6.2. Even though we call

the transitions H and V , the actual orientation of these transitions in the laboratory

frame can vary due to the heavy-light hole mixing effect [59, 106]. The transitions

are still excited by linearly polarized light, and the V transitions remain orthogonal

to the H transitions, however, the absolute orientation of the transitions is rotated
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Figure 6.2: Selection rules of a charged QD with a magnetic field applied in the Voigt geometry.

The inner (outer) transitions are driven by horizontally-H (vertically-V ) polarized light which are

orthogonal, although the absolute orientation of these transitions can vary due to heavy-light hole

mixing. When the laser is polarized at 45 degrees, all transitions can be excited.

relative to the laboratory frame. Since the relative polarizations are not affected,

once the rotation angle for a specific QD is found, studies can be performed in this

rotated frame as usual [59].

The external magnetic field, “turns on” the cross transitions, which allows for

optical manipulation of the electron spin. Since the magnetic field determines the

Zeeman splittings, it can be used to tune the four-level system for particular quantum

information applications. In order to frequency resolve the four levels, the magnitude

of the magnetic field applied is on the order of 0.5 − 3 T, since the trion linewidth

is approximately 600 MHz and the electron (hole) splitting frequencies are typically
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7 GHz/T and 4 GHz/T respectively (ge,i ≈ 0.5 and gh,i ≈ 0.3). In the analogy with

QDs as artificial atoms, this system is in some sense a realization of an artificial

trapped ion, where the long lived spin state, which exhibits slow decoherence, can be

used to encode quantum information, while the optically excited states can be used

to rotate the spin with fast optical pulses.

6.2 Spectroscopy on the Four-Level QD System

The four-level QD system is characterized using the cw spectroscopy techniques

described in Chapter 3. We continue using a semi-classical description of the QD-

laser field interaction, taking the incident laser fields to be classical, of the form

E(t) = E0(t) cos (ωt), where E0(t) is the envelope and ω is the laser frequency. The

Hamiltonian for the four-level system in the presence of an external driving field is,

Ĥ =

〈x−|

〈x+|

〈Tx+|

〈Tx−|

|x−〉 |x+〉 |Tx+〉 |Tx−〉
−~∆e

2
0 V13 V14

0 ~∆e

2
V23 V24

V31 V32 −~∆h

2
+ ~ω0 0

V41 V42 0 ~∆h

2
+ ~ω0


where we index the states in order of increasing energy: |x−〉 = |1〉, |x+〉 = |2〉,

|Tx+〉 = |3〉, |Tx−〉 = |4〉, and Vij = −〈i|µ ·E(t)|j〉 such that,

V13 = ~Ω13(t) cos (ωt− φ(t))

V24 = ~Ω24(t) cos (ωt− φ(t))

V14 = −i~Ω14(t) cos (ωt− φ(t))

V23 = −i~Ω23(t) cos (ωt− φ(t))

Vji = V ∗ij (6.12)

where the time-dependent Rabi frequency is related to the field envelope (Eij,0(t)) by

Ωij(t) = µEij,0(t)/~ and we take the magnitude of the dipole moment to be equal for

the four transitions.
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To calculate the optical response and time evolution of the driven four-level sys-

tem, we use the density matrix formalism discussed in Chapter 2. The equations of

motion for the density matrix elements are obtained by using the master equation,

i~ρ̂/dt = [Ĥ, ρ̂] + relaxation terms, (6.13)

which gives 16 equations of motion which are presented in several of my colleague’s

theses [73,107]. Usually, the rotating wave approximation is made, and the system is

transformed to an interaction picture to simplify the calculations, which is explained

nicely in a recent thesis [107]. The decay terms consist of the excited state decay

rates (nanosecond time scale), and their corresponding decoherence rates. In addition

to these, the electron or hole (of the trion) can undergo a spin flip, but the time scale

for such processes is milliseconds so it can generally be ignored. However, the electron

spin ground state can decohere at a much shorter time scale (few nanoseconds), due

to the hyperfine interaction with the nuclear spin bath [91,92,108].

In steady state, analytic solutions can be found to these equations, however they

are too long to print here and give little insight to the physics. For cw experiments

with narrow bandwidth lasers, it is usually advantageous to isolate a single three-level

lambda system to simplify the problem. For the case of time-domain experiments

involving short optical pulses that couple all four transitions, the time dependence of

density matrix elements is generally calculated numerically, however analytic solutions

for certain cases can be found (see Section 6.3).

6.2.1 Steady-State Spectroscopy and Optical Pumping

When the magnetic field is applied, the resulting four-level system can be thought

of as two three-level lambda systems sharing their ground states. One might assume

that since the magnetic field Zeeman splits the ground state levels, the QD electron

spin would automatically be initialized to the lowest energy state. This is not the

case because the thermal energy (345 µeV at 4 K) is sufficiently large to randomize

the electron spin state whose Zeeman energy is typically at most 200 µeV (at 7 T).

However from atomic physics, we know that a feature of a driven lambda system
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is that it exhibits an effect known as optical pumping [109]. When one leg of the

lambda system is resonantly driven with a cw field, the system evolves to a dark

state, where the population is “pumped” to the other ground state. In quantum

information science, optical pumping is a useful method for initializing the system to

a pure state. In the four-level QD system, optical pumping can be used to achieve

≈ 99% initialization fidelity after a few nanoseconds [104].

Narrow bandwidth lasers can be used to spectrally probe the four-level system.

However, if a cw laser optically pumps the system to the other ground state, it can

no longer scatter photons, and since this occurs on the time scale of nanoseconds,

the time averaged absorption (or fluorescence) signal is zero. Recall from Chapters

2 and 3, that a negatively charged QD is first identified through bias-dependent

photoluminescence and cw absorption spectroscopies, and that QD states have a

finite voltage existence range (typically 100− 200 mV), which is usually determined

at zero magnetic field. On the edge of the existence range, the Fermi energy is at a

level where the ground state charge configuration is metastable, with rapid tunneling

into and out of the QD. This is called the “co-tunneling region,” and it is useful for

cw spectroscopy in a magnetic field because if the tunneling rate is sufficiently fast,

the system no longer optically pumps, so cw absorption or fluorescence spectroscopies

can be performed [104].

Experiments are performed at approximately 5 K in a liquid helium optical cryo-

stat with an integrated superconducting magnet capable of applying fields up to 7

T. A charged QD is identified at zero field, and its voltage existence range is de-

termined by performing bias-dependent absorption study. The sample bias is set to

the co-tunneling region edge, typically at a point where the magnitude of absorption

signal is approximately half of its magnitude in the center of the existence range.

When the magnetic field is applied, the single trion resonance splits to reveal the four

transitions (Figure 6.3). Turning on the magnetic field does cause a slight change

to the optical alignment, but the asphere-integrated sample mount (Chapter 3) is

sufficiently stable so that the input laser remains sufficiently aligned with the QD to

obtain an absorption signal. In some cases, the alignment needs to be re-optimized
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Figure 6.3: Voltage modulation absorption of a charged QD in the co-tunneling region of the

voltage existence range showing the absorption signal at zero field (blue) and the signal at 1.1 T

(red) where the transitions are split by the magnetic field.
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Figure 6.4: In the middle of the existence range, a single probe laser optically pumps the system so

it becomes transparent (no absorption). A re-pumping laser can be added to recover the absorption

by “frustrating” the optical pumping.

by peaking off the signal at field. In addition to the Zeeman splittings, there is a

small diamagnetic effect which shifts all four transitions to higher energy as seen in

Figure 6.3. Typically a magnetic field of 1− 2 T is convenient for experiments, since

it allows for all four peaks to be clearly separated, but still within one scan range of a

tunable laser (typically 20-30 GHz). By comparing the spectral positions of the four

peaks to the single zero magnetic field resonance on the edge of the existence range,

one can use the trion’s Stark shift to predict the spectral positions of the resonances

anywhere within the trion state’s existence range.

For quantum information applications, the ground state has to be stable to serve

as a qubit, so we must work in the middle of the existence range, where the system

goes transparent to absorption due to optically pumping. The absence of absorption

in the middle of the existence range is evidence of optical pumping, but we would like

to optically probe and manipulate the four-level system in this stable regime. The

solution is to add an additional laser. This laser serves as a re-pumping beam that

frustrates the optical pumping by driving another transition which repopulates the

depleted ground state (Figure 6.4).
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In two laser experiments, the laser being detected is called the probe, and the

laser pumping the system is called the pump. The pump and probe are usually cross-

polarized at either +45/ − 45 or σ + /σ− so that both lasers can couple to all four

transitions, but polarization can be used to isolate the probe from the pump before

the detector. Typically, large voltage modulation is used so that the lock-in signal

directly reflects the absorption signal (c.f. Chapter 3) [59]. In Figure 6.5, we are

able to clearly observe optical pumping behavior. When the pump is off, there is no

absorption since the probe optically pumps the population over to the other ground

ground state. Then, when a pump is tuned to one of the low (high) energy transitions,

absorption is recovered on the two high (low) energy transitions, demonstrating the

re-pumping behavior [104, 110]. Similar two-laser fluorescence measurements can be

performed by directly detecting fluorescence as described in Chapter 3. However,

since polarization is used to reject the excitation lasers, the pump and probe must

be copolarized, and the signal is now proportional to the sum of two excited state

populations.

We have reviewed the fundamentals of cw spectroscopy and optical pumping of a

negatively charged QD in the presence of a magnetic field in the Voigt geometry. Using

cw absorption spectroscopy, the four-level system and its optical selection selection

rules are verified. We are able to observe two distinct regimes in the QD’s voltage

existence range: the co-tunneling regime where the unstable ground state allows for

identification of the transitions and selection rules, and the stable optical pumping

regime where the system optically pumps with a single probe laser. In the optical

pumping regime, the steady state probe absorption can be recovered by using an

additional (re-pumping) laser as described here, or by using a pulsed laser to rotate

the ground state as described in the next section [105]. Optical pumping will be

used for the remainder of this work to initialize the electron spin to a pure state.

Further details on these methods can be found in the theses which first developed

these techniques [59,73].
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Figure 6.5: In the middle of the voltage existence range, the ground state is stable, and the four-

level system undergoes optical pumping so it is transparent to a single probe laser beam (green). If

the re-pumping beam is pumps one of the right transitions absorption
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6.3 Picosecond Qubit Rotations- Spin Rabi

Quantum information applications of QD spins require the ability to manipulate

the spin qubit rapidly relative to the coherence time [24]. For InAs QDs, the electron

spin coherence time (T ∗2 ) is typically a few nanoseconds, although the intrinsic time

(T2) can be extended to the microsecond time scale using cw locking and echo tech-

niques [91, 108]. In this work, short (2-3 ps) pulses from a mode-locked Ti:sapphire

laser are used to perform coherent spin rotations, by driving the two-photon (Raman)

transitions of the four-level system.

In Chapter 5, the basic theory of Rabi oscillations is presented for a resonantly

driven two-level system. Using the charged dot in the absence of a magnetic field,

we are able to observe both time-dependent Rabi oscillations by time resolving the

fluorescence under square-pulse excitation, and field-dependent Rabi oscillations by

varying the power of short pulses. In quantum information science, field- dependent

Rabi oscillations using short pulses are especially useful because they can serve to

rotate the state of a qubit rapidly. Now that the QD spin can be initialized to a

pure state via optical pumping, we would like to use Rabi oscillations to coherently

manipulate the spin qubit. However, unlike the two-level system of Chapter 5, the

QD spin states of the four-level system are optically coupled through the excited trion

states. Recall that the Zeeman frequency, ∆e, is typically chosen to be 5−10 GHz, so

the spin could be directly manipulated by applying a resonant microwave field at ∆e

that drives the magnetic dipole transition [111], however, it is often more practical

to use short optical pulses driving the electric dipole transitions because of the short

pulse widths and ability to focuss the light onto a single dot using far field optics.

Consider the case of a QD initialized to the |x−〉 state by optical pumping. Using

the optical Rabi oscillations described in Chapter 5, one could perform optical ma-

nipulations of the QD spin by applying two separate optical pulses. For example, the

spin could be flipped with a π pulse on V2 that drives the population up to |Tx−〉,

and then a π pulse on H1 that drives the population down to |x+〉 (Figure 6.6). This

technique is not ideal because it relies on creating significant trion population, and

due to relatively short trion lifetime (≈ 1 ns), decay while the trion is populated limits
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Figure 6.6: The electron spin can be optically manipulated by a step-wise two pulse sequence

relying on intermediate trion population. Step-wise approaches generally exhibit lower fidelities due

to fast decay in the excited state.

the operation’s fidelity. The solution is to temporally overlap the pulses so that they

can drive a two-photon transition (stimulated Raman transition). If the excitation

pulses are sufficiently detuned from the trion resonance, they can still be resonant on

the two-photon transition, but they excite trion population only virtually [112, 113]

(Figure 6.7). For sufficiently detuned pulses, the system can be modeled as an effec-

tive two-level system composed of the two ground states |x+〉 and |x−〉, where the

optical pulses are used to drive “spin Rabi” oscillations between the spin states.

So we are left considering the interaction of a QD spin with a detuned optical

pulse. A complete derivation of this interaction can be found in the literature [112,113]

and in previous students theses [73, 107], but we review a few important results for

completeness. In practice, a single 2-3 ps pulse can replace the two pulses described

above given that the pulse bandwidth (≈ 200 GHz) is larger than the electron Zeeman

frequency (≈ 7 GHz). One begins with the complete Hamiltonian (Equation 6.1), and

since the pulse width is much shorter than the trion lifetime (≈ 1 ns), decay during

the pulse can be neglected. Therefore, it is sufficient to work with state amplitudes,

where the state vector can be written,

|ψ(t)〉 = a1(t)|1〉+ a2(t)|2〉+ a3(t)|3〉+ a4(t)|4〉 (6.14)
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Figure 6.7: Energy level diagram depicting the two-photon resonance for a detuned stimulated

Raman transition. The relevant frequencies are shown labeling the trion resonance (ω0), the electron

Zeeman frequency (∆e), the hole Zeeman frequency (∆h), and the laser detuning (δ).

The driving field is taken to be of the form,

E =
1

2
[(Ex(t)x̂+ Ey(t)ŷ)e−iωt + c.c.], (6.15)

The problem is most easily solved in the field interaction picture,

a1(t) = c1(t) (6.16)

a2(t) = c2(t) (6.17)

a3(t) = c3(t)e−iωt (6.18)

a4(t) = c4(t)e−iωt (6.19)

where ω is the center frequency of the driving field so that,

|ψ(t)〉 = c1(t)|1〉+ c2(t)|2〉+ c3(t)e−iωt|3〉+ c4(t)e−iωt|4〉. (6.20)

The Hamiltonian in this field interaction picture is,

HFIP = ~


−∆e

2
0 χ∗H(t) χ∗V (t)

0 ∆e

2
χ∗V (t) χ∗H(t)

χH(t) χV (t) −∆h

2
+ δ 0

χV (t) χH(t) 0 ∆h

2
+ δ

 (6.21)
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where we have made the rotating wave approximation, and χH(t) = µEx(t)√
2~ , χV (t) =

iµEy(t)√
2~ , and µ = |〈Tz+||µ̂||z+〉|, and we have taken the dipole moments of the four

transitions to be equal. The resulting equations of motion are

ċ1(t) = i
∆e

2
c1(t)− iχ∗H(t)c3(t)− iχ∗V (t)c4(t) (6.22)

ċ2(t) = −i∆e

2
c2(t)− iχ∗V (t)c3(t)− iχ∗H(t)c4(t) (6.23)

ċ3(t) = −iχH(t)c1(t)− iχV (t)c2(t) + i(
∆h

2
− δ)c3(t) (6.24)

ċ4(t) = −iχV (t)c1(t)− iχH(t)c2(t)− i(∆h

2
+ δ)c3(t). (6.25)

For a sufficiently large detuning, δ, one can adiabatically eliminate the excited states

(c3, c4), resulting in an effective two-level system. One can simplify the effective

two-level spin Hamiltonian to the form [73,107],

Hspin = ~

 −∆e

2
−χ∗H(t)χV (t)+χ∗V (t)χH(t)

δ

−χ∗H(t)χV (t)+χ∗V (t)χH(t)

δ
+∆e

2

 (6.26)

Where we see that the coupling between the spin states is from a two-photon process.

For the case of arbitrary polarization Ex(t) = cos (θ)E(t) and Ey(t) = sin (θ)E(t)eiφ.

The magnitude of the off diagonal terms are maximum for circular polarizations,

θ = π/4 and φ = (n+ 1/2)π, where n is an integer. So that we can write,

χ∗H(t)χV (t) + χ∗V (t)χH(t)

δ
= −µE

2(t) sin (φ)

~δ
. (6.27)

so φ = ±π
2

corresponds to σ± polarization. We are interested in using a short pulse

to drive a spin rotation, of the form,

E(t) = E0 sech

(
t

τ

)
, (6.28)

where τ is the pulse width, and E0 is the amplitude of the pulse. Assuming that τ is

much shorter than the precession period, one can write an effective rotation operator

for the interaction by neglecting precession during the pulse, such that [73,107],

R̂α = ~

 cos (α/2) i sin (α/2)

i sin (α/2) cos (α/2)


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where the rotation angle is given by α =
∫

[−µE2(t) sin (φ)
δ

]dt. So, we see that we

can control the rotation angle by the the applied field amplitude, detuning, and

polarization. We see that for circularly polarized pulses, sin (±π/2) = ±1, which

maximizes the rotation angle. We can observe “spin-Rabi” oscillations of the effective

two-level system by varying the field amplitude with the other parameters fixed [2,

30, 105]. In this work, the pulses are red detuned, so that δ > 0. The polarization

(σ±) can be used to flip the sign of the off diagonal terms.

6.3.1 Spin Rotation Experiments

Spin rotation experiments are performed in the magnetic optical cryostat with an

applied magnetic field of 1.1 T. The spin state is initialized to |x−〉 with a 4 ns optical

pumping pulse resonant with the V1 transition. A Coherent MIRA 900 mode-locked

Ti:sapphire laser generates 2 ps laser pulses which serve to rotate the spin state, by

driving the stimulated Raman transition (Section 6.3). The spin rotation pulses are

red detuned from the trion resonances by approximately 1 meV (240 GHz). The 4 ns

pulse is generated by gating a cw laser with an EOM synchronized with the MIRA

pulses which sets the experimental repetition rate of approximately 76 MHz. The 4

ns optical pumping pulse for the next experimental run also serves as a spin read out

by scattering a single photon if the spin is in the |x+〉 state (Figure 6.8).

The optical pumping and rotation pulses are circularly polarized (σ−). The σ+

polarized light from the QD is collected using the cross polarization fiber setup de-

scribed in Chapter 3. In order to further suppress the rotation laser pulses, the

collected light is passed through an air spaced etalon to spectrally reject the detuned

rotation laser by an additional factor of ≈ 35 dB. The etalon has a ≈ 37 GHz FWHM

transmission width and a free spectral range of ≈ 3.6 THz (10 nm) with an insertion

loss of ≈ −0.6 dB. The QD photons are directly detected using a single photon detec-

tor and the HH400 in integration mode as described in Chapters 4, 5. This provides a

measure of the fluorescence counts as a function of time relative to the experimental

clock.
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Readout Initialize 

13.2 ns Time 0 ns 
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2 ps 

Figure 6.8: Timing diagram for the spin-Rabi experiments. A 4 ns optical pumping pulse inializes

the system to a pure state. A detuned 2 ps pulse driving the two-photon resonance rotates the spin

state. The resulting spin population is read out by detecting a single scattered photon during the

next 4 ns pulse.
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Figure 6.9: (a) fluorescence histograms showing readout signal from the 4 ns pulse as a function of

the applied rotation pulse power. The area under the curves in the “Readout” time region serves as a

measure of the |x+〉 population. The noise around 2 ns comes primarily from imperfect background

subtraction. (b) The integrated readout signals from data sets as shown in (a) are plotted versus

the applied pulse power to observe power dependent spin-Rabi oscillations.
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Readout Initialize 𝜋/2 𝜋/2 

Delay (τ) 

13.2 ns Time 0 ns 

4 ns 4 ns 

Figure 6.10: Timing diagram for a spin coherence measurement. The first π/2 pulse creates a

superposition of x-basis states which undergos unitary evolution in time until the second pulse

rotates the coherence into a x basis population that is read out by the 4 ns pulse. The time delay

between the two π/2-area pulses is varied to observe oscillations at the electron Zeeman frequency.

The counts recorded during the readout/intialization pulse serve as a measure of

the |x+〉 population. The data are recorded as a function of rotation pulse power to

observe “spin-Rabi” oscillations. A background measurement of the undesired laser

pulse leaking onto the detector is recorded for each rotation power by Stark shifting

the QD out of resonance with the 4 ns laser pulse. Using this, the on resonant signal is

background subtracted, and the counts from the readout pulse are integrated to give

the readout signal amplitude shown in Figure 6.9. Since this is a second order process,

with an effective Rabi frequency of |Ω|
2

δ
, the oscillation frequency is proportional to the

applied average power, not the square root of the power as with trion Rabi oscillations.

We observe two complete spin-Rabi cycles (up to 4π-area), however only a few points

are recorded at high power since we are typically interested in 0−π-area pulses which

contribute less background to the measurement. For the remainder of this work, we

use relatively low power (π/2-area) pulses, where a fit to the low power (< π) region

of the data indicate near unity rotation fidelity.
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The spin rotation pulses can also be used to demonstrate the coherence of the

electron spin by rotating the spin prior to measurement in the x-basis [2, 30, 105].

This is usually carried out with two temporally separated rotation pulses, and is

referred to in the literature as a Ramsey experiment [114]. The QD spin is initialized

and read out as in the spin-Rabi experiments, but now two rotation pulses of equal

pulse area are used to manipulate the spin. The rotation pulse power is determined

experimentally by performing a spin-Rabi measurement. Typically, α = π/2 area

pulses are used to obtain the maximum signal amplitude. The QD is initialized with

a 4 ns optical pumping pulse, then the first rotation pulse generates a coherence

between the electron spin states. The system undergoes unitary evolution in time

until the second pulse rotates this coherence into an x-basis population which can be

read out by the following 4 ns pulse. The readout signal is,

Signal ∝ |〈x+|R̂π/2Û(τ)R̂π/2|x−〉|2 =
1

2
(1 + cos (∆eτ)) (6.29)

where

R̂π/2 =
1√
2

 1 i

i 1

 ,

and

Ûτ =

 1 0

0 e−i∆eτ

 ,

where τ is the time delay between the two rotation pulses. As the time delay between

the two rotation pulses is varied, the readout signal oscillates at the electron Zeeman

frequency, demonstrating the coherence.

The spin coherence signal is shown in Figure 6.11. The data are consistent with

Zeeman frequency of 7.35 GHz obtained from cw measurements, however, the ex-

pected sinusoidal signal is distorted and resembles a saw-tooth signal. This effect is

believed to arise from the hyperfine interaction with the QD’s 104 − 105 constituent

nuclear spins which can become polarized giving rise to a dynamic magnetic (Over-

hauser) field [91, 115]. The nuclear spin fluctuations that couple to the electron spin

through hyperfine interaction are the primary source of decoherence for the QD elec-

tron spin qubit, typically resulting in an electron spin coherence time (T ∗2 ) of a few
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Figure 6.11: Two-pulse measurement using the pulse sequence of Figure 6.10 showing electron spin

coherence. Oscillations are observed at the electron Zeeman frequency 7.35 GHz. The saw-tooth

signal is believed to arise from the hyperfine interaction with the QD’s constituent nuclear ensemble.

The author would like to acknowledge A. Burgers and U. Paudel for performing this measurement.

nanoseconds. Using spin echo techniques, the intrinsic decoherence time (T2) has

been measured out to microsecond time scales [108]. The nuclear spin fluctuations

have also been suppressed using resonant cw techniques, showing that the nuclear

field can be stabilized, extending the T ∗2 decoherence time scale to microseconds [92].

6.4 Chapter Summary

In this chapter, the energy levels and optical selection rules of a charged InAs in

the presence of an externally applied magnetic field have been derived. The resulting

four-level system allows for a long lived electron spin qubit which can be rapidly

manipulated through the QD’s optically excited trion states, realizing an optically

driven spin qubit. The system is studied with a combination of cw and time domain

techniques to verify the QD’s optical properties and the coherence of the electron spin

state. The spin can be initialized by optical pumping, coherently manipulated with

picosecond pulses driving the stimulated Raman transition, and read out by detecting

a single scattered photon. In the next chapter, these techniques will combined to
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enable the experimental demonstration of spin-photon entanglement.



CHAPTER 7

Spin-Photon Entanglement

In Chapter 6, a single optically driven QD spin qubit is realized with the charged

InAs QD system in the presence of an external magnetic field. The next step towards

realizing a scalable quantum information architecture requires the ability to entangle

spins confined to spatially distinct QDs. Spatially adjacent QD spins have been

entangled by using the local tunneling interaction [35], but we pursue an approach

that can mediate entanglement between distant QD spins using intermediate spin-

photon entangled states. In this Chapter, we present the theory and experimental

demonstration of a spin-photon entangled state.

7.1 A Quantum Dot Spin-Photon Entangled State

In this work, we consider the spin-photon entangled state generated by sponta-

neous decay from one of the QD’s trion states [42]. Recall that the charged QD in

the presence of a magnetic field forms an effective four-level system, and by using

frequency selective excitation, we can isolate a three-level lambda system (Chapter

6). If the |Tx−〉 state is excited, it spontaneously decays with equal probability to

|x+〉 or |x−〉. We can see that the decay to |x+〉 is correlated with emission of a

horizontally (H) polarized photon and the decay to |x−〉 is correlated with a verti-

cally (V ) polarized photon (Figure 7.1). However, decay from |Tx+〉 results in the

“opposite” correlation where |x+〉 (|x−〉) is correlated with V (H). Here, we study

the system after it is excited to the |Tx−〉 state, so we are considering the “right”

lambda system shown in Figure 7.1.

113
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Figure 7.1: When the |Tx−〉 state decays, the spontaneously emitted photon is correlated with the

resulting QD spin state.

In this Chapter, we will show that this correlated spin-photon state is actually an

entangled state (|Ψ〉) of the form,

|Ψ〉 =
|H〉|x+〉 − i|V 〉|x−〉√

2
. (7.1)

Spontaneous emission occurs due to the coupling of the atomic (QD) states to the

vacuum modes of the electromagnetic field which is usually treated with Weisskopf-

Wigner theory [116]. Since we are often only concerned only with the state of the

QD, we trace over the field, resulting in decay and decoherence rates for the the QD

which we use in the density matrix formalism. Because of this, spontaneous emission

is often thought of as a source of decoherence, since quantum information is “lost” to

the environment.

Here, we are concerned with the spin-photon state generated after decay from the

|Tx−〉 state. If we do not measure the state of the photon, and it is instead measured

by the environment, the QD is equally likely to be measured in either ground state

(|x+〉 or |x+〉), but there is no coherence. However, if we measure the state of the

spontaneously emitted photon, and correlate this with the resulting QD state, we

can observe coherent effects that arise from the entanglement between the spin and
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photon. This type of entanglement was first demonstrated in 2004 by Blinov et al.,

who showed that the polarization state of a spontaneously emitted photon from a

single trapped ion is entangled with the resulting hyperfine levels of the ion [20].

To understand origin of the entangled spin-photon state, we begin with the theory

of spontaneous emission in a lambda system. The Hamiltonian for the quantized

three-level atom-field system is given by,

H =
∑
j

~ωja†jaj + ~ω1σ11 + ~ω2σ22 + ~ω3σ33

+
∑
j

∑
n=1,2

~gn,j
[
eikj ·rσn+aj − a

†
je
−ikj ·rσn−

]
, (7.2)

where we index the states as shown in Figure 7.2. ωj = ckj is the frequency of the

field mode, ω2 − ω1 = ∆e is the electron Zeeman frequency, and ~ω3 is energy of the

|Tx−〉 trion state. σ11, σ22 and σ33 are the population operators, |1〉〈1|, |2〉〈2|, and

|3〉〈3|. σn=1,2
+ is the raising operator for the atom (|3〉〈n = 1, 2|) and σn− = (σn+)†. The

gn,j are

gn,j = −i

(
ωj

2~ε0V

)1/2

µ3n; n = 1, 2. (7.3)

The system starts with the field in the vacuum state, so that the state vector for

the system is,

|Ψ〉(t) =
∑
j

a1,j(t)|1, kj, V 〉+
∑
j

a2,j(t)|2, kj, H〉+ a3,0(t)|3, 0〉. (7.4)

where the first index labels the state of the atom and the second corresponds to

the mode of the single photon. The system starts in the excited state which decays

according to,

a3,0(t) = e−γ3t/2Θ(t) (7.5)

where γ3 is the excited state decay rate. One can show that for times after the

emission (t� 1/γ3) [42],

|Ψ〉(t) =−
∑
j

g1,j

ωB − ωj − iγ3/2
e−i(ω1+ωk)t|1, kj, V 〉

−
∑
j

g2,j

ωR − ωj − iγ3/2
e−i(ω2+ωk)t|2, kj, H〉, (7.6)
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Figure 7.2: Energy level diagram for the states involved in lambda system decay.

where the center frequencies for the two transitions are ωB = ω3 − ω1 (blue) and

ωR = ω3−ω2 (red) which are frequency-mismatched since in the QD system, ωB−ωR =

ω2 − ω1 = ∆e > γ3. This means that the spontaneous emission from the two decay

channels is frequency resolvable with only Lorentzian overlap.

The result is that the spin of the QD is entangled with both the polarization and

frequency of the spontaneously emitted photon, which can be written as a hyper-

entangled state of the form,

|Ψ〉 =
|ωR〉|H〉|x+〉 − i|ωB〉|V 〉|x−〉√

2
, (7.7)

where |ωR〉 (red) and |ωB〉 (blue) labels the frequency qubit.

Since we would like to verify the spin-polarization entanglement, we consider what

effect the frequency qubit will have on our measurement. The density matrix of this
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hyperentangled state is,

ρ̂total =
1

2

|1〉 |2〉 |3〉 |4〉
1 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 1


〈1|

〈2|

〈3|

〈4|

(7.8)

where,

|1〉 = |ωR〉 ⊗ (|x+〉|H〉) (7.9)

|2〉 = |ωR〉 ⊗ (|x−〉|V 〉) (7.10)

|3〉 = |ωB〉 ⊗ (|x+〉|H〉) (7.11)

|4〉 = |ωB〉 ⊗ (|x−〉|V 〉). (7.12)

where the presence of the on and off diagonal terms are responsible for the entan-

glement. If the frequency of the photon is not detected, we trace over the frequency

qubit resulting in,

ρ̂spinpolarization =
1

2

|1′〉 |2′〉 1 0

0 1

 〈1′|
〈2′|

(7.13)

where |1′〉 = |x+〉|H〉 and |2′〉 = |x−〉|V 〉, which is a mixed case for the spin-

polarization state that exhibits no entanglement. So at first glance, it appears that

if we average of the frequency information as with a normal broadband detector, the

entanglement of a spin-polarization state is negligible due to the frequency mismatch

of the two decay channels.

However, in 2005, Economou et al. showed that the spin-polarization entangle-

ment can be measured by using a fast detection scheme that is capable of destroying

the frequency information [42]. In this work, we use the fast detection process of a

high timing resolution single photon detector to destroy the frequency information,

which allows us to measure a spin-polarization entangled state. In the next Section, a

simple quantum mechanical model of a fast detector is developed which lets us justify

this technique theoretically.
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Figure 7.3: The spin-entangled photon is detected by a single photon detector, which we model

as an ensemble of two-level detector atoms whose excited state rapidly decays to a avalanche or

reservoir state of the detector. The source atom (QD) is taken to be at the origin, and the detector

extends from x0 to x0 + L0.

7.2 Theory of Frequency-Mismatched Spontaneous Emission

In order to study the effect of the frequency mismatch on spin-photon entangle-

ment described in Section 7.1, we develop a simple quantum mechanical model of the

photodetector, and study the effect of the photon detection process on the resulting

state of the QD [117]. The setup of the problem is depicted in Figure 7.3, which

is composed of a three-level lambda system, a single photon state of the field, and

an ensemble of two-level detector atom’s whose excited state (|e〉) rapidly decays to

some macroscopic “avalanche” state (|avalanche〉) of the detector. The rapid decay

from |e〉 to |avalanche〉 occurs at a rate Γ, which we associate with the inverse of the

detector timing resolution.

To simplify the problem, the calculation is performed in one dimension, where we

assume that the two orthogonal polarization components of the spontaneous emission

are equally coupled to the detector with suitable polarization optics. The Hamiltonian
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for this system is,

H =
∑
m

~ωdσmee +
∑
j

~ωja†jaj

+
∑
m

∑
j

~gj
[
eikjxmσm+aj − a

†
je
−ikjxmσm−

]
+ ~ω2σ

s
22 + ~ω3σ

s
33

+
∑
j

∑
s=1,2

~gj,s
[
eikjxσs+aj − a

†
je
−ikjxσs−

]
, (7.14)

where m indexes the detector atoms. ωd is the detector atoms’ center frequency, σmee

is the population operator for detector atom m at location xm. The source atom/QD

(labeled by s) has levels |1〉, |2〉, |3〉 as shown in Figure 7.3, with state |1〉 taken at

zero energy. j indexes the mode of the field kj, where ωj = ckj, and the other symbols

have their usual meanings. The g’s are given by,

gj,s = −i

(
ωj

2~ε0AL

)1/2

µ3s; s = 1, 2, (7.15)

gj = −i

(
ωj

2~ε0AL

)1/2

µd, (7.16)

where A is the area of the detector, and L is the quantization volume. µ3s is the

dipole matrix element for the source atom (QD), and µd is the dipole matrix element

for the detector atom, where both are taken to be real. The detector is modeled as a

cylinder in the positive x direction that extends from x0 to x0 + L0, and the source

atom is located at the origin.

The state vector for the system can be written in an interaction representation as,

|Ψ〉 = b3,g,0(t) |3, g, 0〉 e−iω3t +
∑
j

b1,g,n(t) |1, g, kj〉 e−iωjt

+
∑
j

b2,g,j(t) |2, g, kj〉 e−i(ω2+ωj)t +
∑
m

b1,m,0(t) |1,m, 0〉 e−iωdt

+
∑
m

b2,m,0(t) |2,m, 0〉 e−i(ω2+ωd)t, (7.17)

where the first index labels the state of the source atom (QD), the second labels the

state of the detector atom which can either be in the ground state g or the detector
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atom m can be excited. The “avalanche” state of the detector is not directly needed

in the calculation so it is not included in the state vector. The third index labels the

state of the single photon field which can be in the vacuum state or can be occupied

with the mode kj.

From Schrödinger’s equation, we can find the equations of motion for state am-

plitudes to be,

ḃ1,g,j(t) = igj,1e
−i(ω31−ωj)tb3,g,0(t) + i

∑
m

gje
−ikjxme−i(ωd−ωj)tb1,m,0(t), (7.18)

ḃ2,g,j(t) = igj,2e
−i(ω32−ωj)tb3,g,0(t) + i

∑
m

gje
−ikjxme−i(ωd−ωj)tb2,m,0(t), (7.19)

ḃ1,m,0(t) = −i
∑
j

gje
ikjxme−i(ωj−ωd)tb1,g,j(t), (7.20)

ḃ2,m,0(t) = −i
∑
j

gje
ikjxme−i(ωj−ωd)tb2,g,j(t), (7.21)

ḃ3,g,0(t) = −i
∑
s=1,2

gj,s
∑
j

e−i(ωj−ω3s)tbs,g,j(t), (7.22)

where ω31 = ω3 − ω1 and ω32 = ω3 − ω2.

A continuum description of the field is used by replacing bj(t) with
√

2π
L
b(k, t),

∑
j

with
(
L
2π

) ∫∞
−∞ dk, and ωj with ωk = ck so that the equations of motion are,

ḃ1,g(k, t) = i

√
L

2π
g1e
−i(ω31−ωk)tb3,g,0(t) + i

√
L

2π

∑
m

gde
−ikxme−i(ωd−ωk)tb1,m,0(t),

(7.23)

ḃ2,g(k, t) = i

√
L

2π
g2e
−i(ω32−ωk)tb3,g,0(t) + i

√
L

2π

∑
m

gde
−ikxme−i(ωd−ωk)tb2,m,0(t),

(7.24)

ḃ1,m,0(t) = −igd

√
L

2π

∫ ∞
−∞

eikxme−i(ωk−ωd)tb1,g(k, t)dk, (7.25)

ḃ2,m,0(t) = −igd

√
L

2π

∫ ∞
−∞

eikxme−i(ωk−ωd)tb2,g(k, t)dk, (7.26)

ḃ3,g,0(t) = −i
√

L

2π

∑
s=1,2

gs

∫ ∞
−∞

e−i(ωk−ω3s)tbs,g(k, t)dk. (7.27)

where the g’s are evaluated at their appropriate center frequencies as in Weisskopf-

Wigner theory.
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We now wish to solve for analytic expression for the amplitudes b1,m,0(t) and

b2,m,0(t), which will let us calculate the resulting state of the atom (QD) once a

detector atom (m) has been excited. We begin with Equations 7.23 and 7.24 which

are formally integrated and substituted into Equation 7.27. By neglecting the back

action of the detector atoms on the source atom one finds,

ḃ3,g,0(t) =
L

2π

∑
s=1,2

g2
s

∫ t

0

dt′
∫ ∞
−∞

dke−i(ωk−ω3s)(t−t′)b3,g,0(t′) = − (γ3/2) b3,g,0(t),

(7.28)

where γ3 is the one-dimensional excited state decay rate for the source atom. Taking

the initial condition of the source atom starting in its excited state, we find,

b3,g,0(t) = e−γ3t/2Θ(t), (7.29)

where Θ(t) is the unit step function.

The fast detector model is now included by adding fast decay from b1,m,0(t) and

b2,m,0(t) such that Equations 7.25 and 7.26 become,

ḃ1,m,0(t) = −igd

√
L

2π

∫ ∞
−∞

eikxme−i(ωk−ωd)tb1,g(k, t)dk −
Γ

2
b1,m,0(t), (7.30)

ḃ2,m,0(t) = −igd

√
L

2π

∫ ∞
−∞

eikxme−i(ωk−ωd)tb2,g(k, t)dk −
Γ

2
b2,m,0(t). (7.31)

where Γ is taken to be large compared to the other rates in the problem, so we can

solve the equations for the quasi-static amplitudes,

b1,m,0(t) ≈ −2i

Γ
gd

√
L

2π

∫ ∞
−∞

eikxme−i(ωk−ωd)tb1,g(k, t)dk, (7.32)

b2,m,0(t) ≈ −2i

Γ
gd

√
L

2π

∫ ∞
−∞

eikxme−i(ωk−ωd)tb2,g(k, t)dk. (7.33)

We now show the details of the calculation only for b2,m,0(t) since these two equations

are of similar form. Equation 7.33 and 7.29 are substituted into 7.24 to give,

ḃ2,g(k, t) =i

√
L

2π
g2e
−i(ω32−ωk)te−γ3t/2Θ(t)

+
2

Γ

L

2π
g2
d

∑
m

∫ ∞
−∞

ei(k
′−k)xme−i(ωk′−ωk)tb2,g(k

′, t)dk′, (7.34)
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which can be solved by using Fourier transform technique where,

Bs,g(X, t) =
1√
2π

∫ ∞
−∞

eikxbs,g(k, t)dk, (7.35)

so that the Equation 7.34 becomes,

Ḃ2,g(x, t) = i
√
Lg2e

−iω32te−γ3t/2δ(x+ ct)Θ(t)

+
2

Γ
g2
dL
∑
m

δ(x− xm + ct)B2,g(x, t), (7.36)

and the sum is converted to an integral with
∑

m → NA
∫ x0+L0

x0
dxm, where N is the

density of detector atoms. In limit of L0 →∞,

Ḃ2,g(x, t) = i
√
Lg2e

−iω32te−γ3t/2δ(x+ ct)Θ(t)

− αc

2
Θ(x− x0 + ct)B2,g(x, t). (7.37)

where α =
2ωdNµ

2
d

Γε0c~ is the detector’s absorption coefficient. This equation can be solved

subject to the initial condition B2,g(x, 0) = 0, to give,

B2,g(x, t) =
i
√
Lg2

c
eiω32x/ceγ3x/2cΘ(−x)Θ(x+ ct)

× exp

[
−αc

2

(
t+

x− x0

c

)
Θ(x− x0 + ct)

]
. (7.38)

So now equation Equation 7.33 can be written,

b2,m,0(t) = −2i

Γ

√
L

2π
g2

∫ ∞
−∞

eikxme−i(ωk−ωd)tb2,g(k, t)dk

= −2i

Γ

√
Lg2e

iωdtB2,g(xm − ct, t). (7.39)

Combining Equations 7.38 and 7.39, we find that,

b2,m,0(t) = −L
Γ

gdg2

c
ei(ωd−ω32)teik32xme−

γ3
2 (t−xmc )e−

α
2

(xm−x0)Θ(ct− xm), (7.40)

where we have used that (xm−x0) > 0 and define ki,j = ωi,j/c. Similarly for b2,m,0(t)

one finds,

b1,m,0(t) = −L
Γ

gdg1

c
ei(ωd−ω31)teik31xme−

γ3
2 (t−xmc )e−

α
2

(xm−x0)Θ(ct− xm). (7.41)
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Recall that these amplitudes correspond to the excitation of the detector atom m,

and one of the ground state levels of the source atom. The decay rate Γ, which we

identify as the inverse of the timing resolution, causes rapid relaxation to a reservoir

state of the detector which heralds the presence of ground state coherence in the

source atom. To calculate the resulting coherence, we have to average over all of the

detector atoms since we do not know which one is excited, and normalize the result

by the probability of the detector being excited.

ρij(t) =

∫ x0+L0

x0
dxmbi,m,0(t) [bj,m,0(t)]∗ eiωjit∑2

s=1

∫ x0+L0

x0
dxm |bs,m,0(t)|2

, (7.42)

where L0 can now be finite. The resulting source atom ground state coherence is,

ρ12(t) =
µ31µ32

µ2
31 + µ2

32

∫ x0+L0

x0
e−α(xm−x0)e−γ3(t−

xm
c )eik21xmΘ(ct− xm)dxm∫ x0+L0

x0
e−α(xm−x0)e−γ3(t−

xm
c )Θ(ct− xm)dxm

, (7.43)

where we assume ω32 ≈ ω31 ≈ ωd except when these frequencies contribute to phases.

In the limit of large absorption α or k21L0 � 1, the phase e−ik21xm is effectively

constant over the integral. In the limit of αL0 � 1 and α� k21, γ3,

ρ12 =
µ31µ32

µ2
31 + µ2

32

eik21x0 . (7.44)

So that by taking the dipole moment matrix elements to be equal for the two transi-

tions we see that the coherence is its maximal value,

ρ12 =
1

2
eik21x0 , (7.45)

where the spatial phase (eik21x0) is a constant depending on x0, the distance between

the source atom and the detector.

It is interesting to note that the phase factor inside the integral of Equation 7.43

has the effect of reducing the resulting ground state coherence if it is allowed to

vary significantly. Since in our model of a fast detector, we choose the detector

timing resolution to be sufficiently fast (large Γ), and the absorption to occur at the

front of the detector (x0), we are able to suppress the effect of the photon’s frequency

information, which would otherwise reduce the measurable entanglement fidelity since
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the detector atoms could in principle measure which decay channel occurred. Since

the frequency information is destroyed by the rapid detection process, the detector

atoms do not have time to be sensitive to the frequency mismatch. This can be

interpreted as an example of a “quantum eraser” experiment where the frequency

“which-path” information is erased by the fast detection process [42, 60, 117, 118]. If

spontaneous emission is viewed as a quantum jump process, we can consider the fast

detection as providing a measurement of the (retarded) emission time of the photon,

which initializes the QD to a coherent superposition of the ground states, indirectly

proving that a spin-photon entangled state existed before the photon is measured.

7.3 Spin-Photon Entanglement Experiment

In the last two sections we theoretically justified the existence of a spin-photon

entangled state of the form,

|Ψ〉 =
|H〉|x+〉 − i|V 〉|x−〉√

2
, (7.46)

which is created by spontaneous decay from the |Tx−〉 state.

It is clear from Equation 7.46, that the spin and polarization are correlated, but in

order to experimentally demonstrate that this in an entangled state, we have to show

that the spin and polarization remain correlated in two different bases of measure-

ment. First, we show that in the computational (x-basis/eigenbasis) that detection

of an H polarized photon is correlated with |x+〉, and a V photon is correlated with

|x−〉. Then, in a rotated basis (z-basis), we show that detection of a circularly polar-

ized photon (σ±) is correlated with measuring the QD in a superposition of x-basis

states (|z±〉), where the correlation is time-dependent due to the precession of spin

at the electron Zeeman frequency. This spin precession is related to the frequency-

mismatch problem of the previous sections, since the measurement of a circularly

polarized photon initializes the QD spin to a superposition state (|z±〉), however the

exact time of the photon measurement varies over the lifetime of the trion state (≈ 1

ns).

In order to observe this time-dependent correlation, our detector’s timing reso-
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Figure 7.4: Energy level diagram including the electron and hole Zeeman frequencies for the

magnetic field used in this work. The electron Zeeman frequency is kept as small as possible, while

keeping the hole/trion splitting large enough to use frequency selective excitation. The optical

energy splitting is approximately 1.305 meV (10523.5cm−1).

lution (48 ps FWHM) must be faster than the precession period. As described in

Chapter 6, an externally applied magnetic field sets the electron and trion energy

splittings. The magnetic field is chosen to be large enough to sufficiently split the

energy levels, allowing for frequency selective excitation, while simultaneously keep-

ing the electron Zeeman frequency small enough to temporally resolve the rotated

basis correlation. For the charged QD studied here, this corresponds to a magnetic

field of 1.1 T which sets the electron (hole) Zeeman frequency to 7.35 GHz (4.62

GHz)(Figures 7.4,7.5) so that the detector timing resolution is ≈ 2.8× faster than

the electron spin precession period (136 ps).

The experiments are performed with the QD sample held at approximately 7 K

in the magnetic optical cryostat described in Chapter 6. The experimental setup is

shown in Figure 7.6. The narrow-bandwidth resonant optical pulses used to drive the

QD are generated with a pair of narrow band Ti:sapphire lasers (Coherent 899:21,

899:29 models) that are time gated with with EOMs (Chapter 4) to create a 250 ps

pulse which serves to excite the system to the |Tx−〉 trion state, and a 4 ns optical
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Figure 7.5: Fluorescence recorded as function of the excitation laser frequency showing the 7.35

GHz splitting between the two transitions of the right lambda system.

pumping pulse which serves to initialize the system to a pure state. Photons scat-

tered/emitted during/after these resonant pulses are used to provide a spin readout

channel. The cw lasers are independently intensity stabilized using traveling wave

acousto-optic modulators before being coupled into the EOMs. In the rotated basis

measurements, a mode-locked Ti:sapphire laser is used (Coherent MIRA 900 model)

to generate red detuned (1 meV) 2 ps pulses which rotate the QD spin state by driving

the stimulated Raman transition (Chapter 6). For the rotated basis measurements,

the pulse generator driving the EOMs is externally triggered by a fast photodiode

monitoring the mode-locked laser’s pulse train (repetition rate ≈ 76 MHz), which

serves as the master clock.

Light is collected in the transmission geometry using the aspheric lens setup de-

scribed in Chapter 3. For all the measurements, the excitation lasers are cross polar-

ized relative to the measurement axis of QD photons, which allows us to block the

excitation lasers. In addition to the polarization rejection, the excitation lasers are

aligned at a slight angle (≈ 2 − 5 mrad) relative to the collection axis. This allows
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Figure 7.6: The experimental setup used in the spin-photon entanglement experiments. The

QD is held in the magnetic optical cryostat at 7 K. Two cw lasers are modulated with EOMs to

generate resonant 250 ps and 4 ns pulses. A mode-locked Ti:sapphire laser is used in the rotated

basis measurements to rotate the spin state. The lasers are polarized before the cryostat with a

combination of polarizer and quarter-wave plate. Light is collected in the transmission geometry.

Another quarter-wave plate and polarizer are used to set the photon detection axis and to filter out

the excitation lasers. In the rotated basis measurement, an etalon is used to further suppress the

detuned pulses from the modelocked laser. The QD light is split and sent to a pair of single photon

detectors. Detection events are time-tagged with a picosecond event timer synchronized with the

laser’s repetition rate.
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us to achieve an overall rejection ratio exceeding 70 dB for the resonant excitation

pulses. For the rotated basis measurements, a large bandwidth etalon (described in

Chapter 6) is used to spectrally reject the detuned 2 ps pulse. Light from the QD

is coupled into a single mode fiber which is split with a 50:50 fiber splitter and sent

to a pair of single photon detectors. In the computational basis measurements, high

timing resolution is not required to observe the spin-polarization correlation, so two of

the high detection efficiency (τ -SPAD model) detectors are used. In the rotated basis

measurements, the fast (48 ps) timing resolution (PDF model) detector is required

to measure the entangled photon, but the high detection efficiency detector is used

to read out the QD spin state. Since we are dedicating each detector to a specific

measurement, the success rate is reduced by a factor of 2; however, the higher detec-

tion efficiency increases the success rate by a factor of 10, yielding a factor of 5 total

gain. The detection events from each detector are independently time-tagged relative

to the experimental clock by the HH400 picosecond event timer operating in “T3”

mode (see Chapter 4). All detection events are written to disk and post-processed to

calculate the correlations.

Six independent experiments are performed to measure eight conditional proba-

bilities, P (x±|H), P (x±|V ), P (z±|σ+), and P (z±|σ−), which are used to calculate

a lower bound on the entanglement fidelity using the expression [20],

F ≥ 1/2(ρHx+,Hx+ + ρV x−,V x− − 2
√
ρHx−,Hx−ρV x+,V x+

+ρσ+z−,σ+z− − ρσ+z+,σ+z+ + ρσ−z+,σ−z+ − ρσ−z−,σ−z−), (7.47)

where the density matrix elements are taken to be 1/2 of the appropriate conditional

probability. The first four measurements are performed in the computational basis to

obtain independent measures of P (x+|H), P (x−|H), P (x+|V ), and P (x−|V ). Two

independent experiments are performed in the rotated basis projecting the photon

polarization to σ+ and σ−, and since the correlation is time dependent, we are about

to extract P (z ± |σ+), and P (z ± |σ−) from these measurements.

7.3.1 Computational Basis Experiments
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Figure 7.7: The spin is initialized with a 4 ns optical pumping pulse, and then excited with a 250

ps (π-area) pulse to the |Tx−〉 state which decays, emitting the spin-entangled photon. If an H

photon is detected, the spin is projected to the |x+〉 state, so the probability of scattering a photon

during the next 4 ns pulse (which now serves to readout the spin) is 1. If no photon is detected, the

probability of scattering a photon with the 4 ns readout pulse is 0.5.

In the computational (x) basis, we verify that detecting an H polarized photon

is correlated with measuring the spin in the |x+〉 state, and that detecting a V

polarized photon is correlated with |x−〉. These experiments are performed with the

pulse sequence as shown in Figure 7.7.

For the H measurement, the system is first initialized to the |x−〉 state with a 4

ns optical pumping pulse resonant on transition V1 with an effective Rabi frequency

of Ω0 ≈ 1 GHz. Then, a 250 ps (π-area) pulse resonant on the V2 transition excites

the system to the |Tx−〉 state. The |Tx−〉 state decays, emitting the spin-entangled

photon. If an H polarized entangled photon is detected, the following 4 ns pulse (from

the next cycle) can serve to read out the |x+〉 population by scattering a single H

readout photon while it re-initializes the system for the next run of the experiment.

Since the photons are time-tagged relative to the experimental clock, the temporal

location of the photon allows us to identify it an entangled photon or a readout photon

(Figure 7.8).

Given that the detection efficiency is much less than 1, and that the two decay

channels to |x+〉 and |x−〉 are equally likely, if no entangled photon is detected, the
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Figure 7.8: An example of a time-histogram of a typical computational basis measurement. The

black (red) shows the signal (background) when the QD is tuned on (off) resonance with the DC

Stark shift. The entangled photon is generated following the 250 ps (π-area) excitation pulse. Here,

the readout photon is generated during the 4 ns pulse which re-initializes the system by optical

pumping. The oscillations during the readout are Rabi oscillations at a frequency of ≈ 1GHz.

spin is equally likely to be measured in either ground state, so the probability of

scattering a readout photon is 1/2. Using this, we are able to normalize the con-

ditional probabilities by comparing the number of entangled photon-readout photon

correlations for the same shot of the experiment to the number of correlations be-

tween temporally distant shots of the experiment which corresponds to a conditional

probability of 1/2 since these events are uncorrelated (see Figure 7.9).

As an independent check, we measure the anti-correlation between detecting an

H photon and measuring the spin in the |x−〉 state (Figure 7.10). This is performed

by inserting an additional 250 ps pulse resonant with the V2 transition, after |Tx−〉

decays but before the next 4 ns pulse, which serves to read out the population in the

|x−〉 state. So that if an H is detected, the probability of scattering a readout off

V2 is 0. The conditional probabilities are again normalized by comparing the number

of same shot correlations to the number of correlations between temporally distant

shots of the experiment.

For the excitation (readout) pulses, detection of an H photon indicates that the
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Figure 7.9: The conditional probabilities are normalized by comparing the number of entangled

photon-readout photon correlations for the same shot of the experiment to the number of correlations

for temporally distant (uncorrelated) shots of the experiment which correspond to a conditional

probability of 0.5.
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Figure 7.10: As an independent check, we perform a correlation measurement verifying that de-

tection of an H photon is anti-correlated with measuring the spin in the |x−〉 state, by inserting an

additional 250 ps spin readout pulse on V2 that reads out the |x−〉 population after the photon is

detected, but before the spin is re-initialized.
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Figure 7.11: Anti-bunching for the excitation pulse and readout pulse showing a nonzero signal at

time zero, arising from re-excitation due to off-resonant coupling of the pulses. This background is

used to correct the raw spin-photon correlation data.

spin has been initialized to the |x+〉 (|x−〉) state, so that the probability of detect-

ing two photons associated with either one of these pulses should be zero (similar to

antibunching). However, off-resonant coupling of the pulses to the undesired tran-

sition can lead to a trion getting re-excited, where it can scatter another erroneous

photon. These erroneous photons contribute a systematic background to the com-

putational basis measurements, which we can measure by counting the number of

entangled photon-entangled photon correlations and readout photon-readout photon

correlations for the same shot of the experiment Figure 7.11.

We can use these events to measure the likelihood of emitting a spurious photon

from either the excitation or readout pulses, which goes like P (EntangledPhoton)×

P (ErrorExcitationPulse) and P (ReadoutPhoton) × P (ErrorReadoutPulse). By scaling

these correlations by the ratio of entangled photons to readout photons, we can esti-

mate the number of erroneous correlations between the entangled and readout pho-

tons. The dominant contribution to this error is proportional to P (EntangledPhoton)×

P (ErrorReadoutPulse) and P (ReadoutPhoton) × P (ErrorExcitationPulse). Since this

background contributes equally across time bins, these counts are subtracted from

the raw data before they are normalized to correct for this systematic error (Fig-
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Figure 7.12: An example the raw and corrected computational basis correlation data which both

show a clear positive correlation signal at time zero. The uncorrelated distant runs are used to

normalized the conditional probabilities.

ure 7.12).

The conditional probabilities for the two H measurements (P (x+ |H), P (x−|H))

are then normalized requiring that their sum equals 1. We obtain the conditional

probabilities of P (x+ |H) = 0.94± 0.05 and P (x− |H) = 0.06± 0.01. The raw data,

without background subtraction or normalization, give P (x+ |H) = 0.91± 0.03 and

P (x− |H) = 0.12± 0.04.

We repeat this measurement detecting V polarized photons, where the excitation

lasers are now horizontally polarized. The 4 ns pulse is now resonant on the H2

transition which initializes the QD to the |x+〉 state, and the 250 ps (π-area) pulse

is resonant on the H1 transition exciting the system to |Tx−〉.

The data are analyzed the same way as in the H measurement, and we obtain

condition probabilities: P (x − |V ) = 0.84 ± 0.04, P (x + |V ) = 0.16 ± 0.01. The

uncorrected values are P (x − |V ) = 0.68 ± 0.02 and P (x + |V ) = 0.25 ± 0.02. In

this configuration, the effect of off-resonant coupling is more pronounced because the

excitation lasers are driving the “H” transitions which are the closest in energy. The

background subtraction method is able to partially correct for this error, however it

is unable to correct for the off resonant coupling’s effect on reducing the initialization
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Figure 7.13: Normalized spin-photon correlation data for the P (x+ |H) and P (x− |H) measure-

ments showing a correlation between detecting an H photon and measuring the spin in the |x+〉

state.
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Figure 7.14: Normalized spin-photon correlation data for the P (x+|V ) and P (x−|V ) measurements

showing a correlation between detecting an V photon and measuring the spin in the |x−〉 state.



135

3ns 

0 ns 13.2 ns 

4 ns 4 ns 

Rotate Spin 

3ns 
  ,

Readout 

  ,   ,  ,   ,

Excite Initialize Decay  

2
5

0
 p

s 

Detection π/2 

Pulse 

Figure 7.15: Timing diagram for the rotated basis measurements.

fidelities. Combining the H and V measurements, we can calculate a lower bound on

the computational basis fidelity of 0.79± 0.03 using,

Fc ≥ ρHx+,Hx+ + ρV x−,V x− − 2
√
ρHx−,Hx−ρV x+,V x+. (7.48)

7.3.2 Rotated Basis Correlation

The final two measurement are performed in the rotated (z) basis, where we

project the photon state to |σ±〉 which initializes the spin to a superposition of the

x-basis eigenestates (|z±〉). Since the eigenstates are not degenerate, the correlation

signal is now time dependent. The timing diagram is shown in Figure 7.15. The

excitation lasers are now circularly polarized, orthogonal to the detection axis, where

we again use the frequency of the excitation pulses to spectrally isolate specific tran-

sitions. The spin is initialized to the |x−〉 state, with a 4 ns pulse resonant on the V1

transition, followed by a 250 ps (π-area) pulse resonant with the V2 transition which

excites the system to the |Tx−〉, which decays, resulting in the spin-entangled photon.

|Ψ〉 =
|H〉|x+〉 − i|V 〉|x−〉√

2
, (7.49)

The photon state is measured along σ± using a quarter-wave plate and polarizer

before the single photon detector. Here, the fast (48 ps FWHM) timing resolution
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detector described in Chapter 4 is used to detect the entangled photon, so that at

time zero, the spin is projected to the state,

〈σ±|Ψ〉 =
|x+〉 ∓ |x−〉

2
, (7.50)

this undergoes unitary evolution according to Schrödinger’s equation for a time τ ,

Û(τ)〈σ±|Ψ〉 =
e−i∆eτ |x+〉 ∓ |x−〉

2
, (7.51)

so that as τ varies, the spin state oscillates between |z±〉. In order to observe this

time varying correlation signal, a 2 ps π/2 (Raman) pulse (Chapter 6) rotates the

spin measurement basis, so that the coherence is mapped into an x-basis probability

amplitude. Recall, that the operator for the rotation pulse can be written as,

R̂σ∓ =
1√
2

(|x+〉〈x+| ± i|x+〉〈x−| ± i|x−〉〈x+|+ |x−〉〈x−|) (7.52)

so that following the rotation pulse the state is,

R̂σ∓Û(τ)〈σ±|Ψ〉 =
(e−i∆eτ − i)|x+〉 ∓ (1− ie−i∆eτ )|x−〉

2
√

2
. (7.53)

The next 4 ns pulse serves to read out the |x+〉 population so that the resulting signal

is proportional to,

|〈x+|R̂σ∓Û(τ)〈σ±|Ψ〉|2 =
(e−i∆eτ − i)(e+i∆eτ + i)

8

=
1

4
(1 + sin (∆eτ)). (7.54)

We see that the signature of the rotated basis correlation is an coincidence oscillation

at the electron Zeeman frequency. Since the lifetime (≈ 1 ns) is longer than the

this oscillation period (136 ps), the time τ varies automatically. The number of

coincidences is weighted by the trion decay’s exponential envelope, so that the form

of the measured signal for times t after the excitation pulse is,

signal ∝ (1 + α sin (∆eτ + φ0))e−γ2tΘ(t), (7.55)

where we have allowed for imperfect contrast (α), and a phase shift φ0. An example

of the theoretical signal convolved with the detector’s instrument response function
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Figure 7.16: (a) Black: The theory (Equation 7.55 is convolved with the detector’s instrument

response function to show the form of the expected signal. Red: An exponential fit to the theoretical

signal is used to normalize to a conditional probability. (b) Black: Theoretical signal after dividing

out by the exponential fit. Red: A fit to the convolved normalized theory yields a fringe contrast of

0.4, which limits the maximum obtainable entanglement fidelity to 0.7.

is shown in Figure 7.16. After dividing out by the exponential envelope and fitting to

the convolved theory, we see that the maximum achievable contrast (α) is 0.4, due to

the temporal convolution of the theoretical signal with the 48 ps detector response.

This temporal convolution limits the maximum achievable entanglement fidelity of

the experiment to 0.7. An example of the correlation data before dividing out by the

exponential is shown in Figure 7.17.

We perform two independent measurements, projecting the photon state to σ+

and σ−. The number of entangled photon-readout photon coincidences are binned

as function of the entangled photon detection time. The data (after diving out by

the exponential envelope) is shown in Figure 7.18. The data are fit to the expression

(1 + α sin (∆eτ + φ0)), and from the two fringe contrasts (α), we are able to extract

four rotated basis conditional probabilities: P (z − |σ+) = 0.70± 0.05, P (z + |σ+) =

0.30± 0.05, P (z − |σ−) = 0.31± 0.04, and P (z + |σ−) = 0.69± 0.04.

7.3.3 Spin-Photon Entanglement Results

Combining the computational and rotated basis results (Figure 7.19), we are able
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(a) (b)

Figure 7.17: (a) Black: Rotated basis correlation signal showing oscillations at the electron Zeeman

frequency with an exponential envelope. Here the data are binned at 16 ps time bins and smoothed.

The spike at 1.5 ns is the residual rotation pulse leak through which is not completely blocked by

the rejection setup. Red: An exponential fit to the data is used to normalize the rotated basis

conditional probabilities. (b) Black: after dividing out by the exponential envelope, we observe the

coincidence signal whose fringe contrast is consistent with theoretical limit. Red: A sinusoidal fit is

overlaid as a guide to the eye.

to put a lower bound on the entanglement fidelity of F ≥ 0.59 ± 0.04 [43], which

is limited primarily by the temporal convolution of the rotated basis signal with the

detector’s instrument response function. Taking this into account, we are able to

achieve 84% of the detector limited fidelity. The remaining reduction in fidelity arises

primarily from off-resonant coupling in the V polarized measurements which reduces

the initialization fidelity.

Recently, De Greve et al. have reported spin-photon entanglement fidelities of 0.8

using a nonlinear frequency downconversion technique [62]. By mixing the entangled

photon with a short (8 ps) pump pulse, they are able to time gate their single photon

detector, effectively setting their timing resolution to 8 ps, at the expense of count

rate. However, for future studies, such as using intermediate spin-photon entangled

states to mediate probabilistic spin-spin entanglement [5], fast (sub-ns) timing reso-

lution is not required, so that by using larger magnetic fields, near unity spin-spin

entanglement fidelities are in principle realizable in our approach. This and other
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Figure 7.18: Black: Rotated basis correlation data used to extract the conditional probabilities.

The raw data are time binned relative to the rotation pulse with 48 ps time bins and the exponen-

tial envelope is divided out. Red: The data are fit using the experimentally determined Zeeman

frequency, 7.35 GHz. We fit to the first three periods where the signal to noise is the highest. The

fringe contrasts are 0.40± 0.10 for σ+ and 0.38± 0.08 for σ−.
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Figure 7.19: Conditional probabilities for the computational (x) and rotated (z) basis measure-

ments.

applications will be discussed further in the Chapter 8.

7.4 Chapter Summary

In this Chapter, we have presented the theory and experimental demonstration

of a QD spin-photon entangled state. Projective correlation measurements are per-

formed in two bases to verify that the spin and polarization state are entangled. This

spin-photon entanglement is an important step towards realizing a scalable quantum

information architecture based on optically driven QD spins.



CHAPTER 8

Conclusions and Future Directions

In this work, we have pursued quantum information applications of optically

driven QD spins. The spin of a single electron confined to an InAs QD has been

shown to form a useful single qubit for quantum information applications [1, 2], and

now the primary challenge in realizing a practical quantum information architecture

resides in scaling the system to a multiple spin system. In our approach, we use inter-

mediate spin-photon entangled states to mediate entanglement between distant QD

spins. The first steps toward achieving this goal are isolating single photons emitted

from the QD and showing that the generation of a spin-photon entangled state is

realizable, which is the subject of this thesis. Future studies will build upon these

achievements to pursue the realization of an elementary quantum network based on

QD spins coupled by photons.

8.1 Results Summary

The primary achievement of this work is the successful demonstration of a QD

spin-photon entangled state (Chapter 7). In order to accomplish this, a new sam-

ple and optical design is implemented and quantum optics techniques are applied to

the QD system, allowing for the demonstration of QD resonance fluorescence (Chap-

ter 3). Then, time correlated single photon counting techniques are applied to the

QD system, and programmable optical pulses are generated using waveguide electro-

optic modulators, providing frequency selective excitation of specific QD transitions

(Chapter 4). Combining these techniques, lifetime measurements, time dependent
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Rabi oscillations, and photon antibunching under resonant excitation are demon-

strated (Chapter 5). These techniques are then applied to the QD spin system in the

presence of an externally applied magnetic field to realize the optically coupled spin

qubit. State initialization through resonant optical pumping, and coherent manip-

ulation of the QD spin using detuned pulses driving a stimulated Raman transition

are demonstrated, where the QD spin state is read out by scattering a single photon

(Chapter 6). Finally, a QD spin-photon entangled state is demonstrated (Chapter 7),

which will be integral to future applications of scaling the QD spin architecture.

8.2 Applications of a Spin-Photon Entangled State

The QD spin-photon entangled state is the first step towards scaling the QD

spin system using intermediate photon states. On its own, this state represents a

hybrid entangled state between two qubits: a matter qubit (the QD spin), and flying

qubit (the polarization state of a single photon). A natural extension to this work

is extending the system to three qubits, then four qubits, and so on to build up a

quantum network of coupled QD spins. Here, some possible extensions of this work

are explored including practical considerations about the experimental realization of

such protocols.

8.2.1 Quantum Teleportation: Three Qubit System

The spin-photon entangled state can be used to demonstrate a quantum telepor-

tation scheme between a photon state and the resulting state of the QD spin (shown

in Figure 8.1). A single input photon is prepared in a coherent superposition of two

modes, forming a frequency qubit of the form,

|ψinput(t)〉 =
cR|ωR〉+ cBe

−i∆e(t−tc)|ωB〉√
2

, (8.1)

where |ωR〉 (red) and |ωB〉 (blue) labels the frequency qubit, ∆e = ωB − ωR is set

to match the electron Zeeman frequency, tc is the “creation” time of the state, and

the state amplitudes cR and cB are controlled by the preparation of the photon. The

single photon can be prepared by exciting a neutral QD to a coherent superposition
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Figure 8.1: A single photon frequency qubit, generated by exciting a single neutral QD to a

coherent superposition of its excited states, can be teleported to the QD spin state by measuring

coincident detector clicks in a H.O.M. interferometer. The resulting spin state is then read out to

verify that the state is transferred.

of its excited states, which are part of a three level “V” system [119]. When the QD

decays, the excited state amplitudes are mapped onto a coherent superposition of

the photon states as in Equation 8.1. Alternatively, the input photon can be created

by a heralded spontaneous parametric down-converted single photon source whose

bandwidth, and frequency is matched to the QD. An electro-optic phase modulator

can be used to generate a coherent superposition of two frequency modes.

Recall that spin-photon entangled of Chapter 7 can be written as,

|Ψ〉 =
|ωR〉|H〉|x+〉 − i|ωB〉|V 〉|x−〉√

2
, (8.2)

In order to observe the spin-photon polarization entangled state a fast detection

scheme is used in Chapter 7 to destroy this frequency information. However, if the

photon state is projected along a circular polarization, with a suitable waveplate and

polarizer combination, the resulting state can be written as,

|ψspin−freq〉 = |σ−〉〈σ−|Ψ〉 =
(|ωR〉|x+〉+ |ωB〉|x−〉)|σ−〉√

2
, (8.3)
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which is a spin-frequency entangled state.

The photons are mixed on a 50-50 beam splitter resulting in the state vector,

|ψinput(t)〉 ⊗ |ψspin−freq〉. (8.4)

The two detectors simultaneously click only if the photons are in the antisymmetric

state [22],

|ψasym〉 =
1√
2

(|ωR〉a|ωB〉b − |ωB〉a|ωR〉b), (8.5)

so coincident clicks project the state vector to the QD state at time td,

|ψQD(t)〉 =
1√
2

(cR|x−〉+ e−i∆e(t−td)e−i∆e(td−tc)cB|x+〉)

=
1√
2

(cR|x−〉+ e−i∆e(t−tc)cB|x+〉), (8.6)

where we have included the unitary evolution of the QD spin after the detection

and renormalized the state vector. We see that upon coincident detector clicks, the

state amplitudes of |ψinput〉 are “teleported” onto the QD spin state. A challenge

is that the optical frequencies and lifetime (pulse shape) of the input photon must

be indistinguishable from the spin-entangled photon for this protocol to work since

it relies of Hong-Ou-Mandel (H.O.M.) interference [21]. Since QD ensembles are

inhomogeneously broadened, two randomly selected QDs would not be suitable for

such a study. However in practice, it is not uncommon to find two QDs with nearly

identical optical properties after moderate searching. The transitions can then be

tuned exactly on resonance by applying external electric and magnetic fields.

In order to verify that the state transfer is successful, the input c’s are varied

and the resulting QD spin state must be verified. To show that the state transfer

is coherent, a π/2 spin rotation pulse can be applied to |ψQD(t)〉 at t = tr to map

the coherence into a population. An important feature of the resulting state is that

the dependence on the detection time (td) cancels out, and only the time difference

tr− tc between the rotation pulse and the “creation” of the input photon contributes

to the signal. So that if the excitation pulse that creates the input photon is synchro-

nized with the rotation pulse, an oscillation at the electron Zeeman frequency can
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be observed by varying tr − tc, indicating that the state is coherent. Since the sig-

nal is not dependent on exact photon detection time, which limited the spin-photon

entanglement fidelity, near unity teleportation fidelities should be realizable.

A challenge in this approach is that it requires three detection events for a success:

two to herald the entanglement, and one to read out the spin state. So the success

rate scales as η3, where η is the detection efficiency which is currently η ≈ 5 ×

10−5. In order to practically realize such an experiment, the detection efficiency

must be improved to η ≈ 0.1%, so that given the experimental repetition rate of 76

MHz, the experimental success rate exceeds once per minute. Achieving a detection

efficiency of > 0.1% has been realized by other groups studying InAs QD by using

solid immersion lenses and weak optical cavities integrated with the sample structure

to enhance the collection efficiency [61, 120]. Adopting such a design will facilitate

the demonstration of quantum teleportation schemes and other multi-qubit quantum

information applications.

8.2.2 Spin-Spin Entanglement

Intermediate spin-photon entangled states can also be used to mediate entangle-

ment between two distant QD spins. The setup is depicted in Figures 8.2,8.3, where

single photon detection events are used to herald entanglement between distant spins.

The approach is not deterministic since it relies on postselection, but such protocols

are capable of generating high fidelity entangled states which are useful for studying

simple quantum networks. There are two protocols known as “type-I” and “type-II”

entanglement, which are well known in the trapped ion community [19, 22, 121, 122].

In both protocols, the QDs are simultaneously excited with short laser pulses, and

the spin-entangled photons from the two QDs are mixed on a 50-50 beam splitter

before they are sent to a pair of single photon detectors. Detection events events es-

tablish the spin-spin entanglement which can then be verified by using the techniques

described in Chapter 7.

In the type-I protocol (Figure 8.2), the two QDs must be only weakly excited so
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Figure 8.2: In a type-I protocol, the two QDs are weakly excited so that the probability of either

being excited is much less than 1. If one detector registers a click, the QD spins are projected to an

entangled state (Equation 8.7).

that the probability of either QD being is excited (Pe) is much less than one. A single

detection event in one of the detectors heralds the spin-spin entangled state of the

form [122],

〈ψphoton|Ψa,b〉 =
1√
2

(
|x+〉a|x−〉b − eiφ|x−〉a|x+〉b

)
. (8.7)

where the phase φ is determined by the optical path difference between the two arms.

This approach is challenging because it requires interferometric stability between the

paths, but it has the advantage that the entanglement is heralded by a single detection

event. This protocol has recently been used to establish entanglement between two

trapped ions [123] and a similar protocol has been applied to spins associated with

nitrogen vacancy centers in diamond [124].

Of course, since the protocol requires weak excitation to achieve high entanglement

fidelities, there is a trade off between excitation probability and success rate. Given

the current detection efficiency, and setting the excitation probability to Pe ≈ 0.01,

the experimental repetition rate of 76 MHz yields a spin-spin entanglement genera-

tion rate of ≈ 20 s−1 [122]. In order to read out the both spin states to verify the
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Figure 8.3: In a type-II protocol, both QDs are initialized to the |Tx−〉 state, which decay emitted

two spin-entangled photons. Coincident detector clicks herald a spin-spin entangled state (Equa-

tion 8.8).

entanglement, two more spin readout photons must be detected so that the overall

success rate for for the experiment scales as η3 × Pe.

The type-II protocol (Figure 8.3), requires two simultaneous detection events to

herald entanglement (described in Chapter 1 for ions), which similar to the telepor-

tation protocol described in Section 8.2.1. The two QD are simultaneously excited,

which then decay emitting spin-entangled photons. The photons are mixed on a 50-50

beam splitter, and coincident detector clicks heralds the spin-spin entangled state,

|Ψ〉a,b =
1√
2

(|x+〉a|x−〉b − |x−〉a|x+〉b) . (8.8)

which does not have the optical path dependence of the type-I protocol. This exper-

imental simplification is especially important in trapped ion experiments due to the

challenge of spatially trapping ions below the Lamb-Dicke limit, which is why this was

the first approach used to establish entanglement between two trapped ion qubits [5].

Another advantage of the approach is that the fidelity is not directly affected high

excitation probability so both QDs can be fully excited. It is interesting to note that

the frequency mismatch of the two decay channels, which limited the spin-photon
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entanglement fidelity, is now a resource to enable high fidelity spin-spin entanglement

fidelity. The sub-ns timing resolution required in the spin-photon entanglement ex-

periment is not required as long as the photon wavepackets from the two QDs are

sufficiently indistinguishable.

The downside of the approach is that the success rate for establishing entangle-

ment scales as the detection efficiency squared since two photons must be detected.

Given the current detection efficiency, this corresponds to a spin-spin entanglement

generation of ≈ 3 min−1 [122]. Again, to verify the spin-spin entanglement two more

spin readout photons must be detected, so the total experimental success rate scales

at η4 for this protocol.

In both protocols, the entanglement generation and experimental success rates

can be improved by increasing the collection efficiency so that the detection efficiency

is η ≈ 0.1% [61,120]. However, since the spin-spin entanglement verification protocol

goes as η2, both of these protocols would require many hours of data accumulation

to acquire sufficient signal to noise. Another possibility is to integrate the QD with a

strongly coupled optical cavity, where the decay into a specific cavity mode becomes

a deterministic process, allowing for near unity collection efficiency.

A challenge associated with the single QD spin system is that the spin state

readout that scatters a single photon is part of the optical pumping process which

reinitializes the spin state. In many atomic systems, the ground state population is

read out by scattering many photons off of a non-destructive “cycling” transition.

A cycling transition is an effective two-level system whose excited state decays to a

single ground state, which allows for a spin state population to be read out without

destroying it. The single charged QD system does not have an accessible cycling

transition; however, by moving to a QD molecule sample, a “W” system can be

realized that is composed of a lambda system with two cycling transitions for each of

the ground states [125](Figure 8.4).

Using a cycling transition to read out the spin state can dramatically increase

the success rate of an experiment because many photons can be scattered to read

out the final spin state population. So that in a heralded spin-spin entanglement
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Figure 8.4: By moving to a QD molecule system a W system can be formed, which is composed of

a central lambda system (red) and two cycling transitions (blue) which can provide a nondestructive

readout the of spin populations. The kets label the spin configurations of the lower and upper QDs

which form the molecule.

protocol, once the entanglement is established, a spin readout protocol is initialized

by turning on a long laser pulse resonant with one of the cycling transitions. The

number of fluorescence photons detected during the readout pulse can be compared

to a threshold level to determine the spin state population. For example, given that

the current detection efficiency is η ≈ 5 × 10−5, and that the QD scatters ≈ 109

photons per second, the average wait time to detect a single photon is 20 µs, so that

many photons can contribute to the spin readout signal without slowing down the

experimental success rate, which is then limited only by the spin-spin entanglement

generation rate.

8.3 Chapter Summary

In this Chapter, the primary results of this thesis have been summarized, and a

few of the possible future directions have been analyzed. Specifically, applications of

the spin-photon entangled state are considered as they relate to scaling the QD spin

system. We analyze the feasibility of demonstrating quantum teleportation between

a photon state and the QD spin state and entanglement of distant QD spins using
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intermediate spin-photon entangled states. In addition to scaling the QD spin system

with spin-photon entangled states, other quantum information applications such as

hybrid entanglement between QDs and trapped ions [126], and QDs operating at

different optical frequencies can in principle be realized [3]. In such hybrid protocols,

it has been proposed that the optically driven QD spin qubit can be used for its

fast information processing since the system is compatible with fast gate times, and

the trapped ion interface could serve as a long lived quantum memory. Intermediate

spin-photon entangled states play a crucial role as a quantum communication channel

which can connect disparate quantum systems to realize many exciting quantum

information applications.
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[110] Mete Atatüre, Jan Dreiser, Antonio Badolato, Alexander Högele, Khaled Kar-
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