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CHAPTER I

Introduction

1.1 Background and Motivation

With usage and age, degradation is an inevitable course of any asset (tool, ma-

chine or system). The degradation of the asset’s health state is met with proper

maintenance actions that restore the health state to the point where the functionality

of the asset is resumed. Maintenance has received significant attention in the last few

decades in various applications. The appreciation of maintenance associated costs and

the asset maintenance complexities due to technological advances have accelerated the

evolution of the maintenance paradigm. For example, Koren [1] reported that mainte-

nance was in fact the most important factor in manufacturing system cost. Mobley [2]

reported that ineffective maintenance management would bring wasted maintenance

cost of about $60 billion annually.

In one direction, maintenance paradigm evolved towards involving more predic-

tion in the decision making. For example, in manufacturing it is easy to recognize the

evolution from reactive maintenance (fail and fix), to preventive maintenance (timely-

based maintenance), then to condition-based maintenance (monitor and diagnose),

and finally arriving at the prognosis and health management (PHM) (predict and

prevent). In another direction, maintenance plans have been increasingly integrated

with the other asset management operations, such that it guarantees effective uninter-
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ruptable or strategically interrupted optimal operations. Examples of those are joint

production and maintenance planning in manufacturing and joint fleet management

and maintenance in transportation.

In many applications, we are managing a system of identical assets or components

utilized differently. The difference in utilization is caused by performing different op-

erations or tasks, being under different loading conditions or being differently used in

terms of frequency. Examples of these are ground fleets (public transportation busses,

delivery trucks in shipping companies, etc.), airline fleets, group of identical machines

in a factory or machine shop, and electrical and mechanical systems in residential and

commercial complexes (elevators, HVAC units, water pumps, etc.). The assets defini-

tion here can extend as well for humans as Human Resources management. Examples

of identical assets performing different functionalities or undergoing different loading

profiles are medical personnel in hospitals and soldiers in battle fields. The former one

undergoes different loading conditions as the work shifts vary (day and night shifts).

The latter one undergoes different loading conditions per the deployment location.

The difference in use will generally result a difference in the degradation rate of

these assets health states (see Figure 1.1). With time, the difference in the health

states becomes noticeable, and the componenets reach the threshold at which a main-

tenance action is required. The maintenance action can be in the form of substitu-

tion (replacement with a new one), or repair. This maintenance action can be costly

especially in the former case; additionally it might interrupt the operation and func-

tionality of the asset at crucial times.

In many cases the system is only intended to be functional for a finite time horizon.

For example, NYC Transit buses have an average life expectancy of 12-15 years. When

their time on the street comes to an end, they are sold for their recyclable scrap value

[3]. For such scenario and using a direct approach where each part is assigned the

same operation, task, or loading profile throughout the system lifetime, parts of the

2



(a) 
(b) 

(c) 

(d) 

(e) 

Substitution Action 

Substitution Action 

Healthy Degraded 

Figure 1.1: Health State Degradation in a System of Identical Components Utilized
Differently.

system might undergo expensive maintenance actions (such as substitutions) just a

short time prior to the retirement of the system. This is primarily due to the necessity

to maintain the entire system functionality. However, with such occurrence the system

is obviously under-utilized.

We define a new generic concept in joint asset management-maintenance denoted

as Degradation-based Swapping. The degradation-based swapping relies on under-

standing the degradation evolution in the health states of the assets upon which

it performs swapping actions that will promote better utilization of the system. A

swapping action (see Figure 1.2) is defined as the inter-placement of two identical

components operating under different loading profiles or have different rate of usages
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within a system. The expensive maintenance actions are still ineludible; nonetheless

swapping has the potential of reducing them.

We use this concept as the key stone in building a uniquely formulated and un-

precedented (to the extent of our knowledge) resource allocation policy that optimally

identifies the swapping and substitution actions necessary for utmost system utiliza-

tion. We denote this policy as Degradation-based Optimal Swapping (DBOS) Policy.

(a) 
(b) 

(c) 

(c) 

(d) 

Substitution 

Action 

Healthy Degraded 

Swapping 

Action 

Figure 1.2: Degradation-based Swapping Anatomy.

1.2 Prospect Applications for DBOS and Relevant Research

Work

The degradation based swapping concept is effectively generic that it can be ap-

plied in various disciplines. The DBOS policy can be used to utilize any assets as
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long as the following conditions are met:

• A system of identical components or assets performing different functions.

• Degradation is correlated somehow to loading profile or frequency of use, and

the degradation rates are sufficiently sparse(scattered).

• Swapping is much cheaper than substitution.

• Maintenance is conducted at pre-determined points.

• System is intended to be functional for a finite time horizon and will be retired

after that.

We will demonstrate the output when some of these conditions are not met in

Chapter II. Specifically, we will perform parametric case studies (see Section 2.4.2 that

will illustrate favoring substitution over swapping when swapping and substitution

costs come close to each other, or when the degradation rates are not sufficiently

sparse.

Despite the requirement of attaining all the previously mentioned conditions for

DBOS to promote utilization, we will demonstrate numerous fields and disciplines at

which these conditions are met. We explain some applications in more detail (See

Figure 1.3). Nonetheless, the applications that this concept can promote utilization in

are countless. We take the chance also to review some of the closely related research

work that has been done in the area of the application.

1.2.1 Fleet-level Battery Utilization for Electric or Hybrid-Electric Fleets

(Transportation I)

While oil prices throughout the last decades have undergone significant increases,

transportation still in general relies on it for 97% of its energy. Corporations, organi-

zations, governmental agencies, and learning institutions are examples of fleet owners

5



Degradation-

based 

Swapping 

Fleet-level 

Battery 

Utilization for 

Hybrid Vehicles 

Transportation I: 

Fleet-level 

Swapping for 

Planes/ Plane 

Engines/ plane 

Batteries 

 

Transportation II: 

Fleet-level 

Swapping for 

Tire Life Cycle 

Management 

Transportation III: 

System-level 

Manufacturing 

Utilization 

Manufacturing: 

Mechanical & 

Electrical 

Systems 

Elevators 

HVAC & 

Pumps 

Operational Control 

High stress- 

demanding 

jobs rotations. 

Soldiers 

Doctors 

HR Management: 

Figure 1.3: Prospect Application for Degradation-based Swapping.

who are significantly affected by that due to the amount of driving their fleets expe-

rience. For example, Walmart operated 7,000 trucks that in 2005 drove 872 million

miles to make 900,000 deliveries to its 6,600 stores [4]. United States Postal Services

(USPS) has 212,530 vehicles (letter carriers and trucks) which have driven a total of

1.3 billion miles in 2012 [5]. It becomes significantly harder for these companies and

organizations with large fleets to maintain their preferred profit margins. Therefore,

many of these fleet companies were highly motivated to reduce their annual fuel con-

sumption which reflects on millions of dollars in savings by incorporating electric or

hybrid electric vehicles in their fleets. Hybrid electric vehicles are those equipped with

an internal combustion engine and a battery using both sources of energy appropri-

ately, whereas electric vehicles depend solely on electricity, and hence acquire a much

6



more expensive battery on board. Class 6, 7 and 8 vehicles, especially in stop-and-go

applications, are dominant with respect to fleet hybridization. Additionally, environ-

mentally friendly technologies have attracted large companies and corporations who

benefit from both commercial advertisement of endorsing such technologies, and es-

tablished savings. One example of that is Walmart Corporation, which has set a goal

of doubling the fleet efficiency by 2015 from a 2005 baseline, through a multistage

plan that includes adding more electric and hybrid electric vehicles to the fleet. Both

FedEx and UPS have as well endorsed hybridizing parts of their fleets by incorporat-

ing in their fleets 264 and 380 hybrid trucks, respectively [6, 7]. Examples of such

plans are not inclusive to profit-motivated companies and corporations. They cover

a wide and versatile spectrum that includes governmentally-managed departments,

cities, and public and private schools and universities. Examples of cities who have

already added or ordered hybrid buses for their public transportation systems include

Washington, D.C. (950 hybrid buses), New York, NY (850 hybrid buses), Philadel-

phia, PA (480 hybrid buses), Minneapolis and St. Paul, MN (480 hybrid buses),

Ann Arbor, MI, and Detroit, MI [8, 9]. Additionally, schools and universities (e.g.

University of Michigan, MI and Kenton County School, KY) have as well introduced

hybrid-electric buses into their fleets.

The hybrid systems are significantly costly. For example, the difference in cost be-

tween a standard public transportation bus and a hybrid one is more than $100,000 [8].

In a hybrid system, batteries have the most significant share of the total cost of the

hybrid system [see Figure 1.4]. Lithium-ion batteries dominate the energy storage

in hybrid systems by virtue of their high cell voltage, high energy density and ex-

cellent cyclability. However, Lithium-ion batteries unavoidably lose some capacity

irreversible upon cycling. This capacity loss is often referred to as capacity fade or

degradation. This degradation reaches a point where these batteries are no longer

suitable for mobility application. This point is referred to as the “End of Life”. The

7



United States Advanced Battery Consortium [10] defines the end of life for hybrid

vehicle batteries to be the stage at which the battery meets specific failure criteria.

The criteria state that failure occurs in the battery when the net delivered capacity of

a cell, module, or battery is less than 80% of its rated capacity when measured on the

Dynamic Stress Test (DST), or when the peak power capability (determined using

the Peak Power Test) is less than 80% of the rated power at 80% depth of discharge

(DOD).

At these batteries End-of-Life, substitution becomes inevitable. The substitution

action here is defined as the replacement of the degraded battery with a new one.

The limited battery useful life motivates the consideration of maintenance plans which

can incorporate a predictive scheme of batteries health states evolution in the field.

These plans have the potential to reduce the projected battery maintenance costs and

can promote less abruptly interrupted daily task assignment to these hybrid vehicles

through optimal utilization.

Figure 1.4: Breakdown of PHEV Drive System Cost by Component [11].

Fair prediction of the battery degradation within commercial fleets is attainable

due to the consistency in the expected work load. For example, in a fleet of de-

livery trucks, the batteries in hybrid vehicles assigned to downtown area routes are

8



most likely subjected to larger frequencies of micro charging and discharging cycles

in comparison to those within vehicles assigned to the suburban areas. Micro charg-

ing and discharging cycles refer to subsequent small increases and decreases of the

battery charge. This reflects significantly on the degradation rate of these batteries.

This consistency can help a predictive maintenance policy to optimally utilize all the

batteries on fleet level.

We employ the degradation-based swapping concept to formulate such policy.

Contrary to current practice where companies run batteries in the same loading pro-

file until they reach retirement, the policy introduces swapping batteries within the

fleet. The swapping action is defined here as the inter-change in the placement of

two batteries from two different loading (degradation) profiles. Depending on the

application, the swapping can include the whole vehicle or just the battery. In some

cases the batteries are detachable from vehicle, such as in the case of some of the new

designs for electric buses. In other cases, the batteries separation can be of difficult

nature, and thus the whole vehicle would be moved to the different loading profile.

Relying on the prediction of the different degradation rates which is attributed

mainly to the loading and usage conditions, the policy optimally places the batter-

ies at each interval within the loading conditions that provide the best utilization.

This will be shown to achieve a significant reduction in the projected cost of the

maintenance plans. Additionally, the DBOS policy has the potential of providing

an integration between maintenance actions and the company’s daily operations (in-

tegration of maintenance and logistics). This enables a sustainable management of

the costly hybrid fleet asset. Furthermore, the information obtained can be invested

to build up a database of retired batteries in terms of their conditions and date of

retirement. This database can significantly improve the success of the retired batter-

ies remanufacturing schemes, already implemented (or under construction) in several

OEMs. The remanufacturing helps both reduce the environmental impact resulting
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from the disposal of such batteries and promote the use of cheap second-hand hybrid

technologies.

In literature, three popular problems investigated with respect to ground vehicles

fleet management are: the vehicle routing problem, the bus driver scheduling prob-

lem, and fleet replacement and lifecycle management. The vehicle routing problem

aims to design a set of m minimum cost vehicle routes through n customer locations,

so that each route starts and ends at a common location and some side constraints

are satisfied [12]. The bus driver scheduling problem is involved with the assignment

of drivers to a selection or working shifts satisfying the service requirements [13]. It

is quite evident that these two problems are someway far from our objective. The

fleet replacement and lifecycle management is in fact a series of problems that are

involved primarily with the timely replacement of vehicles and equipment through

prediction of asset lifecycles. A famous problem that focuses on this aspect is the

bus engine replacement problem, which is also known as Zurcher’s replacement prob-

lem [14]. The intended target was fleet maintenance management at the Madison

(Wisconsin) Metropolitan Bus Company. Zurcher sought an age-dependent replace-

ment policy to minimize expected total discounted or long-run average costs, where

the cost function included the expensive replacement cost, and an age dependant

monthly operating cost that incorporated unexpected failure cost component [15].

In a similar manner, DBOS will focus on minimizing maintenance costs of the fleet,

which are mainly attributed to the replacement of batteries. The unexpected failure

cost is introduced in DBOS as penalties incurred for over-usage. The main difference

is that while Zurcher’s problem focuses only on taking optimal replacement decisions,

DBOS utilizes the fleet through the swapping actions, choosing optimal placements

of the batteries within the degradation (loading) profiles, in addition to choosing

optimal replacements (substitutions) to reduce the total maintenance plan costs.

We note that the fleet-level battery utilization will be the primary application
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used in DBOS development in Chapters II through IV. Nonetheless, the described

framework can be easily “tailored” to any of the applications mentioned in Figure 1.3

or other applications that can benefit from the degradation-based swapping concept.

1.2.2 Fleet-level Swapping for Planes/ Plane Engines/ Plane Batteries

(Transportation II)

DBOS can be applied in airline fleets to utilize planes (or major components

such as turbines and batteries) similarly as in ground vehicle fleets. However several

conditions may require further modification to DBOS to make it applicable. The

main reason behind this is the different locations the planes are at a specific time,

rendering the swapping action more complex.

As it will be shown in Chapter II, DBOS model is expected to partially share

the form of one of the most famous scheduling problems in airline fleet management

which is globally known as the fleet assignment problem in transportation science.

Given a flight schedule and a set of aircrafts of different types, the fleet assignment

problem faced by an airline is to determine which type of aircraft should fly each flight

segment on the airline’s daily (or weekly) schedule [16]. The similarity between these

two problems mainly arises in the placement decision variable; chosen to be binary

in many cases, this variable holds the key to optimize the objective function [17].

In the fleet assignment problem, there are several factors considered in assigning

a fleet to a flight leg. These factors include passenger demand, revenue, seating

capacity, fuel costs, crew size, availability of maintenance at arrival and departure

stations, gate availability, and aircraft noise. Many of these factors are captured in the

objective coefficient of the decision variable; others are captured by constraints [18].

On a similar basis, modeling the problem for the DBOS policy is intended to take

into account several factors, such as degradation profiles, demand, batteries health

states tracking, maintenance capabilities and costs associated with the swapping and
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substitution actions. However, there are several important differences between the

two problems such as the substitution variables (reset variables) needed for DBOS to

function properly. The substitution variables interaction with the placement variables

and their major contribution in the objective function uniquely characterizes DBOS.

Airline planning process evolves through several decision making phases including

schedule construction and fleet planning that are succeeded by aircraft maintenance

routing and crew scheduling. The schedule is a list of flight numbers that gives the

origin of the flight, its destination, time of departure, time of arrival, and days of

the week that the flight operates [19]. The next step (the fleet assignment which

is explained above) dictates which type of plane that will fly each flight leg. Hane

et al. [18] and Abara [20] investigated, modeled and provided suitable optimization

algorithms for this part. A third level of planning determines the actual routing of

the tail numbers where maintenance considerations predominate. The maintenance

routing problem has been considered in [20, 21, 22, 23, 19]. Initial research considered

these steps of planning separately. Recently, the need for integrated planning and ro-

bust planning in this field was realized. Integrated planning is intended to integrate

the functional phases at the planning stage, and robust planning is intended to make

decisions at the planning stage that are beneficial to the operations [24]. Integrat-

ing schedule design and fleet assignment was implemented in [25, 26]. Examples of

research on robust planning include robust fleet assignment as in [27, 28].

The swapping in airline fleet assignment has been sometimes referred to as the

Re-fleeting problem, first introduced by Berge and Hopperstad [29]. The proposed

concept, Demand Driven Dispatch (D3), refers to the dynamic change of aircraft type

assignments as the flight departure times approach and forecasts improve. The work

mentioned restricts the change of assignment to one aircraft family due to the need to

preserve crew schedules. Talluri [23] improved this swapping algorithm for a daily fleet

assignment considering in specific the problem of changing the assignment of a spec-
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ified flight leg to a different equipment type while still satisfying basic requirements

(flow balance, flight coverage and equipment count). Acknowledged limitations to the

mentioned work included the inconsideration of many operational constraints (main-

tenance and crew constraints) and restricting swaps between only two equipment

types at a time. Jarrah et al. [30] improved and remodeled the re-fleeting problem as

a multicommidity integer network flow problem with side constraints which allowed

handling multiple aircraft types.

We make note here that while the re-fleeting problem represents swapping in

principle, it is different from the degradation-based swapping concept in DBOS. The

re-fleeting is concerned with swapping aircraft types (not tail numbers) and is not

performed upon understanding of the health states evolution for optimum utilization

of the fleet as DBOS does. The change in demand where feasible profitability is

attainable, is the mere trigger in the re-fleeting problem. The reduction in the costly

substitutions where feasible placement inter-changing is attainable, is the trigger in

DBOS.

1.2.3 Fleet-level Swapping for Tire Life Cycle Management (Transporta-

tion III)

It does only take one trip on any US highway to recognize the significance these

vehicles represent for the economy with their numbers. In fact there are almost half

a million long-haul trucks on the road today [31] that haul over $8.3 trillion worth

of merchandise annually [32]. Tires, like any component in a functional system,

suffers degradation and requires maintenance from time to time. It was found that

tire-related costs are the single largest maintenance item for commercial vehicle fleet

operators with more than 50% of all truck and trailer breakdowns involving a tire in

some way [33]. One of the unique characterizations of the tire degradation in long

haul trucks is the tread wearout. Treads role is significant with respect to driving
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performance and truck handling (safety). As a matter of fact, Federal Motor Carrier

Safety Administration has regulations for a minimum legal tread groove pattern depth

of at least 4/32 of an inch on any tire on the front wheels of a bus, truck, or truck

tractor, and 2/32 of an inch on any other nonfront tires [34]. The uniqueness of

tread wearout is the ability to restore the tread through a relatively complex process

called retreading. While retread tires costs 30% to 50% in comparison to new ones,

retreading can effectively return the tire to a “like new” condition if it is done correctly

and at the right time. The success of this process decreases significantly when the

tire is overused. Retreading can be done several times before the tire is sent for

retirement. With this complex lifecycle, fleet companies and tire manufacturers are

seeking life-cycle management policies to enable optimal utilization of the tires.

Degradation-based Swapping in tires life cycle management has been present for

many years in a simple form. Tire manufacturers recommend rotating tires every

5,000 to 10,000 miles. This rotation is a form of a fixed swapping that is influenced

by the fact that different tires within the same vehicle degrade differently. We will

show in Chapter II that DBOS, being optimal, has the potential of outperforming this

fixed swapping significantly. In the truck tire life cycle management, DBOS can be

helpful if swapping is allowed. There can be two forms of swapping in this case: (1)

on truck level where the position of the tire within an 18-wheel truck is significantly

correlated to its degradation, and (2) on fleet level where different trips, loads, road

conditions, etc. have direct correlation with the tread wearing out. The retreading

event in this case will represent the reset maintenance action (like substitutions in

fleet level battery utilization). We are currently working closely with a major tire

manufacturing company, to assess DBOS ability of being part of a holistic long-haul

truck tire life cycle management. The details of this complex management is beyond

the scope of this thesis and is protected under a non disclosure agreement.
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1.2.4 System-level Manufacturing Utilization

In many manufacturing systems and manufacturing job shops, there are several

machines that are capable of performing a number of different processes required as

part of the production process. In these cases, identical machines can be used to

perform different processes or produce different products. We can link this group of

identical machines performing similar or different tasks in a manufacturing system or

manufacturing job shop to fleet operation, and will refer to it as fleeted manufacturing

group.

The degradation in the health state of the key tool in these machines can be corre-

lated to the task assigned or product produced. Therefore, the scheduling and assign-

ment of these tasks for these machines will directly affect the anticipated maintenance

actions. The number of machines within a fleeted manufacturing group dedicated to

perform certain task, or produce certain product is solely dependent on the demand.

However, the specific machines within this group chosen to perform a certain task, is

a choice of the scheduling authority in the production plant as long as the demand

is satisfied. Therefore, the scheduling can be“tailored” towards specific production

and maintenance outcome, and the control over this can be established. This control

can be of great significance for plans with finite time horizons. For example, the

scheduling can be chosen to prevent any maintenance actions in specific production

times in the plan horizon (e.g., critical production times, high demand intervals, etc.),

or force the maintenance action to be taken with specific capabilities (e.g., mainte-

nance crew is available in certain days, maintenance crew capability is limited, etc.).

If the scheduling indicated above is capable of optimally utilizing the key tools of

the machines within a fleet in the optimum feasible way, meanwhile satisfying the

conditions stated above (demand, capabilities, etc.), the scheduling can become an

optimum policy for production and savings can be maximized.

For further clarification, an example is shown in Figure (1.5a), where five identical
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machines have the capability of producing any of the three products A, B, and C.

The number of machines assigned to produce a specific product is solely dependent

on the demand, and cannot be changed. However, the choice of assigning a specific

machine to a specific product can be established as long as the demand is satisfied.

In this example, at a specific instant, two machines, another two machines and one

machine is assigned to products A, B, and C, respectively. The solid, dashed and

dotted arrows represent for example the assigned tasks/products for each machine at

3 consecutive hours.

Figure 1.5: (a)An Example of a Fleet of Identical Machines Producing Different Prod-
ucts. (b)An Example of Machine’s Key Tool Degradation Profiles When
Producing Different Products.

In Figure 1.5b, an example of the different degradation profiles of the health

state of the machine’s key tool (blade) is shown. The horizontal line represents (for

example) the threshold in the health state at which the key tool requires a prescribed

maintenance action (e.g., replacement, re-shaving).

In most situations, scheduling in manufacturing systems is running independently

of the understanding of the key tools health state degradation. The tasks are assigned

to the fleeted manufacturing group either in a fixed manner, promoted by dedicated

manufacturing scheduling, or randomly assigned. However, DBOS can provide better

utilization through swapping assignments/products amongst the group [35, 36]. This
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can achieve a reduced and/or controlled maintenance actions as key tools’ remaining

useful life is effectively utilized. The policy will primarily rely on the prediction of

the different degradation rates which are attributed mainly to the loading and usage

conditions (tasks/products). The prediction of such degradation level introduces a

potential to conduct swapping actions of these products/tasks amongst the different

machines, enabling the control of the end of life for these machines key tools. One

direct impact is in the form of providing significant savings in projected maintenance

costs for finite time horizon plans, when such policy is applied. Additionally, this

policy provides the ability to conveniently incorporate maintenance actions with the

company’s daily operations.

In the last decades, maintenance scheduling has received significant focus in lit-

erature as the paradigm of maintenance has been shifting from complete dependence

on the age-dependent preventive maintenance (PM) policies [37, 38, 39] to condition-

based maintenance as in [40, 41, 42]. In most of these research efforts, production

scheduling has not been the focus and is assumed to be decided independently from

the maintenance anticipated actions. Yang et al. [43] proposed a new method for

scheduling of maintenance operations in a manufacturing system using the continuous

assessment and prediction of the level of performance degradation of manufacturing

equipment, as well as the complex interaction between the production process and

maintenance operations. The cost effects of different maintenance schedules were

assessed and an optimum maintenance scheduling has been chosen utilizing Genetic

Algorithm (GA).

One of the first efforts investigating joint maintenance-production scheduling poli-

cies is found in [44]. When the restoration cost function has a linear or exponential

form, the mentioned work was able to find optimal simultaneous determination of

the number of equal-interval maintenance inspections in a production run, the length

of the production run and consequently the economic manufacturing quantity, and
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the maximum level of backorders. Other efforts in joint maintenance production

scheduling are found in [45, 46, 47, 48, 49].

In this application, DBOS uniqueness arises from the fact that it is intended to

“tailor” the production towards some maintenance outcome and deals with fleets of

identical machines working on similar or different assignments or products.

1.2.5 Other Prospect Applications for DBOS

The DBOS concept is very generic and is applicable to numerous fields. For all the

previously mentioned applications, DBOS or some sort of swapping has been applied

to. However, there are other applications to which DBOS has prospect of being

applied. DBOS can be used to promote utilization in residential and commercial

complexes taking advantage of the after hours partial shut down of some of the

mechanical and electrical systems (See Section 5.3.1.1). With advances in psychology

science, DBOS has the potential to help in Human Resources (HR) management

especially pertaining disciplines where individuality is almost nonexistent (See Section

5.3.1.2). DBOS has also the potential to be applied in other transportation fields such

as swapping ships and fleets (based on area of operation) and swapping railroad cars

in rail transport system.

1.2.6 DBOS Analogy to Sports

We conclude this section pointing the DBOS policy analogy to sports. The policy

mimics the mentality of the team coach in sports. For example, in soccer, there

is limited number of substitutions allowed for each team. Additionally, the team

members on the bench are not as good as the ones on field. This could be analogous

to saying that a substitution will be costly. Additionally, the different players on

the field get tired at different rates; mainly based on the position of the player. For

example, a midfielder covers twice as much distance per match as some defenders.
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This is again analogous to the different degradation rates in the assets within the

system based on the loading conditions under which they operate. The analogy of

the proposed policy to sports can be seen clearly in what is defined as modern soccer.

In modern soccer, the players are loosely positioned in the field in comparison to

old traditional soccer [see Figure 1.6]. Strikers may get back sometimes and play as

midfielders; defenders can go forward and assist in attacks and vice versa. A successful

coach will be the one who teaches his players through training how to implement

these swapping actions in position on an optimal level. This decreases the necessity

to substitute as players will share the responsibility across all positions. Substitution

takes place only when a player is completely exhausted. In the same sense, DBOS

policy will attempt to swap the assets amongst different loading conditions, therefore

sharing the degradation across the system. Substitutions are only done when reaching

degradation threshold.

Figure 1.6: DBOS Policy Analogy to Sports.

1.3 Research Objectives

After we have introduced the degradation-based swapping concept and its various

prospect applications, the research presented in the remainder of this thesis has three

main objectives.
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First, we want to transfer the Degradation-based Optimal Swapping concept to a

representative concise mathematical model. We start with deterministic degradation

estimation where the policy in this case will be in the form of an optimal schedule.

Using the primary application in this thesis, the schedule should provide comparable

or better performance than existing fleet management policies in terms of maintenance

plan projected costs and fleet utilization. The optimization of the generated model

will be investigated through standard optimization algorithms and will include the

development of a swapping-specific optimization algorithm to robustly and repeatedly

acquire global optimal solutions.

Second, we want to augment this model to account for uncertain degradation.

This augmentation will be in the framework of the Stochastic Dynamic Programming

(SDP) and Markov Decision Processes (MDP). This augmented model should be able

to generate a policy that is capable of adapting to uncertain degradation, and hence

is expected to provide robust performance with respect to uncertain degradation.

Third, we want to integrate a local inventory management model to the policy.

The inventory model should account for inventory deterioration as the primary appli-

cation in this thesis (batteries) have been shown to demonstrate such phenomenon.

This inventory integration should be able to generate optimal replenishment policies

and handle special instances such as replenishment with lead time, and special pricing

circumstances.

1.4 Outline of the Dissertation

The remainder of this dissertation is organized as follows.

Chapter II explains the modeling of DBOS policy and the optimization of the gen-

erated model. A deterministic degradation is adopted in this chapter to understand

the capability, performance and dynamics of DBOS. Upon optimization, the gener-

ated model will establish a series of optimal placements and substitution actions that
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promote enhanced utilization of the system. Experimentation on the optimization of

various instances based on the primary application in this thesis is conducted with

several standard optimization algorithms. The development of a swapping-specific

branch and bound based optimization algorithm will be shown to have significance

with respect to larger size problems. The performance of DBOS will be compared

with other policies currently employed in practice. This chapter is based on work

described in [17, 50] with respect to the fleet-level battery utilization application and

[35, 36] with respect to the manufacturing system-level utilization application.

Chapter III focuses on augmenting the model developed in Chapter II, in order to

account for uncertainty in the health state degradation estimation. The augmentation

is conducted through the use of stochastic dynamic programming (SDP) framework

built on Markov Decision Processes (MDP) evolution. The generated policies upon

this framework are studied extensively, testing them against variation of uncertainty

distributions and misinformation of uncertainty distribution. This chapter is based

on work described in [51].

Chapter IV is concerned with the integration of a local inventory model with the

stochastic DBOS policy. The generated model will represent an integrated DBOS-

Inventory policy that is capable of achieving optimal replenishment of the new com-

ponents (batteries in the primary application) needed for the substitution actions,

associated with optimal management of the system. The local inventory model will

account for the deterioration of the components while in inventory. Case studies

will show how the integrated policy will only stock up (optimally) when inventory is

motivated such as in cases relevant to replenishment with lead time, and cases with

special pricing circumstances.

Finally, Chapter V presents conclusions, contributions, and future work.
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CHAPTER II

Deterministic Degradation-based Optimal

Swapping

2.1 Introduction

In the previous chapter we have established the generic degradation-based con-

cept as a management tool for a system of identical components operating in different

conditions. In this chapter, we present the formulation of the Degradation-based Op-

timal Swapping (DBOS) policy model, in which deterministic degradation will be

assumed. Incorporating uncertainty adds more complexity to the problem. There-

fore, it is widely found in literature that uncertainty is incorporated in later efforts.

Grossmann [52] had efficiently summarized the motivation behind this in three points.

Deterministic models help overcome complexities arising from the nature of the prob-

lem itself. Additionally, deterministic models can be used to analyze different scenar-

ios for the uncertain parameters avoiding complex stochastic models. And finally, in

many applications the deterministic modeling forms the basis for the stochastic one

such as when Petkov and Maranas [53] extended the pre-formulated combined pro-

duction planning and scheduling model first proposed by Birewar and Grossmann [54]

by including demand uncertainties. In this case, we are following the third scenario

where we aim to extend the Deterministic DBOS scheme that we will develop in
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this chapter to account for uncertainty in the next chapter. This will enable us to

comprehensively understand the dynamics of DBOS.

This chapter will include as well an investigation of suitable approaches to achieve

the optimum solution for the generated model. The formulation will be based upon

the primary application in this thesis which is the fleet-level battery utilization. How-

ever, the same equations can be used for some of the other applications directly, and

might require small retrofitting in others.

This problem can be categorized under the planning and scheduling optimization.

The output can be in the form of a schedule of different placements for the batteries

within the fleet, with optimally selected substitution actions occurring from time to

time. Both planning and scheduling deal with the allocation of available resources

over time to perform a collection of tasks. The difference between planning and

scheduling is not always clear cut. However, in general planning deals with longer

time horizons (e.g., weeks, few months) and it deals with high level decisions such as

investment in new facilities and production levels. Scheduling on the other hand is

concerned with shorter time horizons (e.g., days, few weeks) with the emphasis often

being on the detail level decisions such as sequencing of operations [52]. Although

the expected outcome decisions from the DBOS policy are low level decisions such as

the change of the loading profile at which the battery is placed, DBOS is intended

to be part of a long maintenance plan horizon. Therefore the policy can be classified

under either scheduling or planning. DBOS model is expected to partially share the

form of one of the most famous scheduling problems which is globally known as the

fleet assignment problem in transportation science. Given a flight schedule and a set

of aircrafts of different types, the fleet assignment problem faced by an airline is to

determine which type of aircraft should fly each flight segment on the airline’s daily

(or weekly) schedule [16]. The similarity between these two problems mainly arises

in the placement decision variable; chosen to be binary in many cases; this variable
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holds the key to optimize the objective function [17]. In the fleet assignment problem,

there are several factors considered in assigning a fleet to a flight leg. These factors

include passenger demand, revenue, seating capacity, fuel costs, crew size, availabil-

ity of maintenance at arrival and departure stations, gate availability, and aircraft

noise. Many of these factors are captured in the objective coefficient of the decision

variable; others are captured by constraints [18]. On a similar basis, modeling the

problem for the DBOS policy is intended to take into account several factors, such as

degradation profiles, demand, batteries health states tracking, maintenance capabili-

ties and costs associated with the swapping and substitution actions. However, there

are several important differences between the two problems such as the substitution

variables (reset variables) needed for DBOS to function properly. The substitution

variables interaction with the placement variables and their major contribution in the

objective function uniquely characterizes DBOS. The daily scheduling of the fleet as-

signment problem formulation imposes large number of integer variables and severely

degenerate model which leads to poor performance of standard linear programming

techniques. Methods to address this problem include an interior-point algorithm,

dual steepest edge simplex, cost perturbation, model aggregation, branching on set-

partitioning constraints, and prioritizing the order of branching [18].

Planning and scheduling problems generally incorporate discrete/continuous op-

timization problems. The mixed integer nonlinear program (MINLP), inherently re-

quires special treatment as complexities arise due to nonlinearity and integer choices.

The most common MINLPs encountered in planning are 0-1 integer nonlinear pro-

gramming (ZOINLP) problems where none of the continuous variables exist and all

the decision variables are binary (zero or one). Details of the modeling of DBOS

policy revealed in Section 2.2 will show that the generated model belongs to the

(ZOINLP) problems category.

The basis of tackling integer programming problems (whether linear or nonlinear)
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in many algorithms relies on relaxing the problem into continuous sub-problems.

The algorithm in this case works on a higher level establishing control on the sub-

solvers and using the information from the sub-problems solutions to arrive to the

integer solution. The sub-problems are solved by some well-performing continuous

variable programming problem solver (such as Simplex for linear programming (LP)

problems [55] and Sequential Quadratic Programming (SQP) with reduced gradient

method [56] for nonlinear programming (NLP) problems). Branch and Bound (B&B)

algorithm by [57] falls under this category of integer programming problem solvers.

B&B consists of a tree enumeration in which LP or NLP sub-problems are solved at

each node, and eliminated based on bounding properties. B&B’s success and speed

in finding the solution inherently depends on the relaxed problem sub-solver.

Other algorithms for solving MINLP include Generalized Benders Decomposition

(GBD) [58, 59], and Outer-Approximation (OA) [60, 61]. These are iterative methods

that solve a sequence of alternate NLP sub-problems with all the zero-one variables

fixed, and Mixed Integer Linear Programming (MILP) master problems that predict

lower bounds and new values for the zero-one variables [52]. The LP/NLP based

branch and bound in [62] integrates both subproblems within one tree search. The

Extended Cutting Plane method (ECP) by Westerlund and Pettersson [63] is not

involved with the solution of the NLP sub-problems, and rather uses successive lin-

earizations. All these methods assume convexity to guarantee convergence to the

global optimum. Literature also provides some non-rigorous methods for handling

non-convexities such as the equality relaxation algorithm [64] and the augmented

penalty version of it by Viswanathan and Grossmann [65].

Recently, stochastic methods have gained popularity over most conventional calculus-

based search algorithms. This increased popularity is attributed to the successful im-

plementation of these algorithms to solve various optimization problems which con-

tains variables with discrete choices such as integer, binary, discrete set, etc. Among
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these methods, genetic algorithms (GAs) and simulated annealing (SA) have been

widely studied.

GAs were originally developed by [66] based on the Darwinian theory of biological

evolution. Hwang and He [67] summarized GA’s advantages over some conventional

calculus-based search algorithms. First, GA imposes no limitation (such as continuity

and differentiability) on the search space of the optimization problem. Secondly, a GA

searches for the optimum solutions by parallel processing a population of solutions

rather than just a single solution. Thirdly, a GA is based on natural selection criteria

rather than deterministic rules and its search procedure is based predominantly on

genetic operations. Finally, the GA search process has no need for any mathematical

knowledge other than the fitness value of each potential solution. For the reasons de-

scribed above, GA-based methods might have better chance in obtaining optimum (or

near-optimum) solutions than calculus-based algorithms. The major disadvantages

of GA includes the lack of assurance for obtaining a global optimum, lack of assur-

ance of constant optimization response times, and incompatibility for online control

applications due to the randomness in solutions and convergence.

There are many versions of GA. The simplest GA encodes all the individuals in

the population into binary and performs the recombination on them, just before they

are decoded back to real numbers in order to calculate the fitness in the next gen-

eration. This algorithm is known as binary genetic algorithm (BGA). The encoding

and decoding in BGA causes the optimizer to spend a considerable time. Therefore,

there has been an increase in the interest of GA’s that can apply the recombination

operators on real numbers with no encoding and decoding to binary. The GA de-

veloped for such purposes is called real parameter genetic algorithm (RGA). Other

classifications of GA depend on whether the implementation is sequential or parallel.

Sequential implementation represents the default GA where all of the steps explained

above are done iteration after another on one processor. Typically this is used to
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describe the generational sequential GA, while steady state sequential GA replaces

only a portion of the current population with the new offsprings rather than creat-

ing an entirely new population. Parallel GA is related to the involvement of several

processors to perform the steps at the same time. The difference between the central-

ized parallel GA and the distributed parallel GA [68] lies in the distribution of the

roles for these processors. In centralized parallel GA, there exists a master processor

which synchronizes the actions of the processors which perform the evaluations and

recombination operations. In the distributed parallel GA, the master selection step

is replaced by local selection routines which are distributed over the processors which

already contain routines for evaluation and recombination.

Simulated annealing (SA), which is based on the physical process of annealing

[69], is another widely applied stochastic method. When implemented successfully,

SA shows good hill-climbing ability as it converges towards the optimal solution.

Hence SA is considered one of the powerful tools for solving complicated problems

such as combinational optimization problems. Because of the random nature of the

search process used to identify the optimal solution, the convergence speed of SA is

very slow [70]. However the merits of such algorithm are well acknowledged which

motivated the inclusion of this algorithm in many hybrid GA algorithms as in [67, 71].

2.2 Mathematical Modeling of Deterministic DBOS Policy

The key to apply the DBOS policy is a concise and representative model which

accounts for swapping and substitution actions. The objective of the policy aims

towards optimal battery utilization over a finite plan horizon in a way that minimizes

total maintenance plan projected costs.

Typical constraints are formulated for demand (number of vehicles operating in

each degradation profile), batteries health state degradation tracking (swapping and

substitution effects, threshold, etc.). Other constraints are relevant to the company’s
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logistics such as maintenance crew availability, business requirements, etc. The model

includes two types of decision variables: placement variables and substitution vari-

ables.

2.2.1 Placement Decision Variables

The model is formulated to follow the placement of batteries in terms of location

and time. The location here refers to the loading profile in which the battery is placed,

and for which predicted degradation rate of the health state is assumed to be known.

The variable is studied at predefined constant discrete intervals of time (∆), which

are chosen upon the company’s preference and capability to achieve regular workflow.

This interval should be inspired by the company’s prescheduled checkups cycles. For

example, if the company’s vehicles are usually maintained or checked up monthly,

then choosing ∆ to be equal to 1 month is reasonable. ∆ relates the frequency of

the discrete time points at which the scheduler has the option to perform a swapping

action.

Theoretically as ∆ gets smaller, more swapping options are present, and we expect

the total maintenance cost to decrease or remain the same. We will denote this

rule as the DBOS-Discretization interval correspondence. The total maintenance

cost remains the same and introducing further swapping actions will not improve

the cost function, and the optimizer opts for no additional swapping actions upon

correct implementation of the policy (accurate optimization). This DBOS rule is very

important as it allows us to verify the robustness of optimization algorithms when

handling DBOS instances. For a fixed plan horizon, as ∆ decreases, the number

of decision variables increases. This is related to the fact that there will be more

points at which we have to make a decision resulting in more decision variables. The

increase in the number of decision variables can be used to test the performance of

different optimization algorithm (in terms of handling DBOS model). Specifically, we
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determine the optimal cost for a given case study. Using the correspondence above,

we have then established the lower bound. That means if decreasing ∆ for the same

plan horizon of this case study results in a cost higher than the one we found earlier,

this will reveal the inability of the employed optimization algorithm to handle the

DBOS model. This will be detailed in Section 2.4.2.
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Figure 2.1: Health State Changes with Swapping and Substitution Actions.

In this formulation, the placement decision variable, Xij(k) ∈ {0, 1} in the model

is chosen to be binary:

Xij(k) =


1 if the ith battery is placed in the jth loading profile at time k

0 if no action is taken at time k

(2.1)

where its indices stand for

i = 1, · · · , n battery or vehicle index in the fleet

j = 1, · · · ,m degradation (loading) profiles

k = 1, · · · , K discrete time, where K ×∆ = T = plan horizon
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For example, if ∆ = 1 month, and X31(7) = 1 means that the 3rd battery is placed

in the first degradation profile at the 7th month.

There are several constraints which are related directly to the placement decision

variable. Some of these constraints arise from physical sense, others from demands and

capabilities. The first constraint relates to the physical sense that a specific battery

can be only assigned to one degradation profile for a specific interval. Additionally, the

demand dj drives the number of batteries (or vehicles) assigned to the jth degradation

profile per interval. In formulation, these two constraints, respectively, translate to:

m∑
j=1

Xij(k) = 1 ∀i = 1, · · · , n; ∀k = 1, · · · , K (2.2)

n∑
i=1

Xij(k) = dj ∀j = 1, · · · ,m; ∀k = 1, · · · , K (2.3)

The placement variable is the indirect indicator for whether a swapping action

has taken place or not. This can be formulated through:

|Xij(k)−Xij(k − 1)| =


1 if the ith battery is swapped at time k

to/from the jth degradation profile

0 otherwise

(2.4)

The total number of swapping actions which takes place at time k can be given

by:

Total number of swapping actions =
1

2

n∑
i=1

m∑
j=1

|Xij(k)−Xij(k − 1)| (2.5)
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Equation (2.5) enables us to formulate the constraints related to the company’s

preferential rules for swapping. Examples of these rules include an enforced mini-

mum span between subsequent swapping actions for the same battery, and maximum

number of allowable swapping actions within the fleet per interval. For the first one,

if ∆ is assumed to be equal to 1 month (for example), and a minimum of 3 months

of enforced span between subsequent swapping actions for the same battery, then it

translates to:

1

2

m∑
j=1

|Xij(k)−Xij(k − 1)|+ 1

2

m∑
j=1

|Xij(k + 1)−Xij(k)|

+
1

2

m∑
j=1

|Xij(k + 2)−Xij(k + 1)| ≤ 1, ∀i = 1, · · · , n; ∀k = 2, · · · , K (2.6)

Or it can be abbreviated as:

1

2

2∑
h=0

m∑
j=1

|Xij(k + h)−Xij(k + h− 1)| ≤ 1, ∀i = 1, · · · , n; ∀k = 2, · · · , K (2.7)

In the general form, the constraint can be represented as (for a minimum span of

H ·∆ between swapping actions for the same battery):

1

2

H−1∑
h=0

m∑
j=1

|Xij(k + h)−Xij(k + h− 1)| ≤ 1, ∀i = 1, · · · , n; ∀k = 2, · · · , K (2.8)

Maximum number (α) of swapping actions per interval can be easily modeled as:

1

2

n∑
i=1

m∑
j=1

|Xij(k)−Xij(k − 1)| ≤ α, ∀k = 2, .., K (2.9)
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2.2.2 Substitution Decision Variables

A substitution decision variable, Zi(k) ∈ {0, 1} to represent any substitution

action is included in the modeling.

Zi(k) =


1 if the ith battery is substituted at the beginning of epoch k

0 no substitution at the beginning of epoch k

(2.10)

The substitution variable has only two indices as it relates only to battery i being

substituted and time k at which substitution takes place.

The decision whether to initiate a substitution action or not, is merely dependent

on the health state of the battery. This indicates the need to track the battery’s health

state degradation throughout its deployment in the field. In modeling DBOS with

deterministic states, it is assumed that the degradable health states are predictable.

The prediction is dependent on both the battery health state at the beginning of the

current interval, and the degradation profile at which the battery is placed.

To track the degradation of the batteries health states, an accumulative degrada-

tion dependent quantity yi(k) is defined. The accumulative degradation is a mono-

tonically increasing dependent variable which is calculated in the model based on the

decision variables (placement and substitution variables). Based on the assumption

of linear degradation the accumulative degradation can be found by:
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yi(0) = 0, ∀i = 1, · · · , n

yi(k) = (1− Zi(k))

(
(yi(k − 1) +

m∑
j=1

rjXij(k)

)
+ Zi(k)

m∑
j=1

rj.Xij(k)

= (1− Zi(k))yi(k − 1) +
m∑
j=1

rj.Xij(k) ∀k = 2, .., K; ∀i = 1, .., n

(2.11)

where rj is the degradation rate when the battery is assigned to jth degradation

profile. In this formulation, when a new battery is brought in, the accumulative

degradation is set to zero. Additional constraints arise from the bounds on the accu-

mulative degradation variable:

0 ≤ yi(k) ≤ β, ∀k = 1, · · · , K;∀i = 1, · · · , n (2.12)

where β is the threshold at which substitution becomes inevitable.

2.2.3 Objective Functions

There are several objectives that could be used towards an optimum policy. The

policy can aim for minimized maintenance costs, maximized utilization, or a combi-

nation of both. One direct and simplified objective that can be chosen is to minimize

the projected maintenance costs over a finite plan horizon. With the satisfaction of

the constraints described above, the minimization of the projected costs which are at-

tributed to the substitution and swapping actions can achieve an optimum scheduling

policy. Based on the discussion previously, the cost can be found by:

J =
1

2

K∑
k=2

{
c1(k)

n∑
i=1

m∑
j=1

|Xij(k)−Xij(k − 1)|

}
+

n∑
i=1

K∑
k=1

{c2(k)Zi(k)} (2.13)
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where c1(k) is time dependent swapping cost coefficient, which includes penalties

and potential of loss due to swapping, and c2(k) is time dependent substitution cost

coefficient. The choice to make both cost coefficients as time dependent increases the

flexibility of the model.

2.3 On the Solution of Deterministic DBOS Model

The mathematical model of the DBOS policy with deterministic states has been

introduced in Section 2.2. This section is dedicated to the solution of the generated

model.

2.3.1 Preliminary Attempts and Limited Success of Standard Stochastic

Optimization Algorithms

Although the generated model successfully captures the intended functionality

of the policy, the DBOS policy model is a Zero-One Integer Nonlinear program-

ming (ZOINLP) problem, whose solution will be shown to be challenging. More

specifically, all the decision variables (both placement and substitution variables) are

zero-one integers and the only non-linearity in the model arises from the accumula-

tive degradation update Equation (2.11). The outer structure of the model suggests

simplicity and the potential of a simple algorithm application to find the optimal so-

lution. However, the model’s “looks are deceiving” as the inter-relations between the

decision variables in addition to the significantly larger coefficient of the substitution

cost with respect to the swapping cost inflicts complications through the application

of different algorithms. The complexity in the inter-relations of the decision variables

lies on the fact that there is no direct effect between them, rather placement variables

influence the calculation of an intermediate quantity (the accumulative degradation)

which influences the other decision variables (substitution variables). The coefficient

of the substitution cost is estimated to be of two orders more than the coefficient as-
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signed to the swapping cost. In fact this corresponds to the core motivation in DBOS

policy as the substitution is considered extremely costly with respect to swapping.

The deterministic nature of the model suggests an attempt to find the optimal

solution through a deterministic algorithm. We define deterministic algorithm to be

the one which generates the same answer for different runs. Exhaustive Search is one

of the most known deterministic algorithms which is used usually as a bench mark due

to its ability in finding the global optima. However even for a small DBOS problem,

the exhaustive search is unattainable. For example, the problem in Case Study I in

Section 2.4.1 is expected to have an execution in the order of (264 = O(1019)) function

evaluations. This is an astronomical number.

The B&B algorithm becomes deterministic if the applied sub-solver for the relaxed

problem is deterministic as well. An example of this is B&B with Simplex for linear

problems. The problem on hand is not linear which means that the sub-solver should

be built based on a NLP algorithm. SQP with local search is not purely deterministic;

however it is considered to be the most efficient general purpose NLP algorithm today

[72]. In fact, the modified version of SQP approaches deterministic behavior when

the algorithm converges. Motivated by that, a B&B algorithm with SQP and local

search has been attempted. The optimizer failed to arrive at feasible answer. The

reason behind this failure is the extreme nonlinearity growth in the accumulative

degradation constraint (Equation (2.11)). The growth in the nonlinearity of this

constraint has been shown explicitly in Appendix A. Preliminary findings showed

that the sub-solver is greatly struggling in solving the relaxed problems and thus

the algorithm is incapable of finishing one node of the enumerated tree. There are

some modifications in the implementation of the B&B algorithm which could help the

algorithm to overcome this highly nonlinear constraint, or even make it immune by

choosing a more adequate sub-solver. Later, we use this conclusion in the development

of the DBOS-specific B&B-based optimization algorithm in Section 2.3.2.
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The failure in applying B&B algorithm with SQP has motivated the consideration

of stochastic algorithms (Heuristics). Additionally, standard stochastic algorithms

such as GA and SA do not apply intensive calculations per iteration, making them

increasingly attractive for problems with large number of variables. As GA and SA

deal only with unconstrained optimization, the problem was relaxed using Lagrangean

multipliers.

As we will show in Section 2.4, both GA and SA were applied. The applied GA

has a built-in elitist strategy, where the highest-ranking solution of all the solutions

produced by the previous generations is copied directly into the next generation.

Applying this helps in retaining most important genes within the population pool,

and the best objective value in each generation is assured not to increase throughout

all the iterations. SA, on the other hand, was applied with a standard form. The

neighborhood function which generates the new solution is chosen to be of random

nature. The neighborhood function works extremely well when the initial solution

the algorithm starts with has all zeros at the placement variables. This means that

the penalized function undergoes extreme descending in the first iterations until the

heavily penalized equality constraints (Equations (2.2) and (2.3)) are satisfied. After

that the convergence slows down. Based on the general form of SA, solutions that

do not improve the objective function are only accepted if the acceptance criteria

allow for that. This criteria depends on the random number generated, the difference

between the objective values in the current and previous iterations, and the current

iteration (temperature). Thus with adequate cooling temperature schedule, diversity

in the new solutions will resume even after equality constraints are satisfied.

As it will be shown in the next Section, both GA and SA have been able to

generate relatively good solutions for small problems. While most of the generated

solutions outperformed the No Swapping policy, the majority of the solutions were

suboptimal. This is due to the fact that both algorithms were converging at local
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optima. We note that the SA implementation outperformed the GA implementation.

This was observed in the speed of convergence and the quality of the output results.

However, using the DBOS-Discretization interval correspondence detailed in Section

2.2.1, both algorithms have been found to fail the test. This reflect on the robustness

of the both algorithms in terms of finding solution for problems with large number

of decision variables. In addition to lack of robustness, repeatability (because of

the stochastic nature of heuristics by construction) was another issue. As we are

generating solutions for the first time for a new problem, we are lacking information

of how good a solution is. For these reasons a retrofitting of the B&B algorithm that

applies specifically to DBOS has been implemented.

2.3.2 DBOS-Policy-Specific Branch-and-Bound-based Optimization Al-

gorithm

2.3.2.1 Proposed Algorithm Explanation

In this Section, we introduce a DBOS-policy-specific Branch-and-Bound-based

algorithm that will be shown to successfully generate repeatable answers as well as

expand the scalability towards DBOS problems of larger sizes. The algorithm is

illustrated in Figure 2.2.

The algorithm reduces the complexity of the model by providing incremented esti-

mates of the total number of required substitutions (
∑n

i=1

∑K
k=1 Zi(k)). The estimates

are generated heuristically from expected loads and logic induced rules (rules that are

sensible in the manner of fleet management and expected substitution occurrences).

Total demand over horizon (when averaged per battery) dictates whether this es-

timate is started at zero or not. For example, if the average demand per battery

exceeds threshold value (β), starting with estimate (
∑n

i=1

∑K
k=1 Zi(k)=0) becomes

trivial. For each estimate, all satisfying (non-repeated) configurations are investi-

gated. The reconfiguration is done systematically that it will generate each time a
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Figure 2.2: DBOS-Policy-Specific Branch-and-Bound-based Algorithm.

new configuration until all possible unrepeated configurations for that estimate have

been tested. We note here that repeated configurations include any new Zi(k) array

that is generated from swapping rows in an old Zi(k) array as this action provides

no new configurations. The first estimates are chosen to be very conservative (low

number of substitutions). This probably leads to infeasibility for all or most recon-

figurations of Zi(k) for the first iteration. Nevertheless, the conservativeness provides
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assurance for minimum objective value function as the major part of the cost is at-

tributed to the substitution. We note here that the infeasibility is identified quickly

and therefore the performance of the algorithm in general is not hindered by the

conservativeness.

With this implementation, at each instant the nonlinearity in the model (Equation

(2.11)) ceases to exist and the problem is reduced to a Zero-One Integer Linear Pro-

gramming (ZOILP) problem. This promotes the utilization of a B&B scheme with a

(LP) sub-solver. The later only applies if the absolute value in the objective function

is formatted in the standard LP form as well. This is implemented through a num-

ber of well-known mathematical tricks that do not solve a 100% equivalent problem;

rather they solve another problem that has solution of objective value similar to the

original problem. Section 1.3 in Bertsimas and Tsitsiklis’s LP book [16] has a detailed

explanation of the absolute value handling using either one of two tricks (See Figure

2.3). The first relies on introducing new variables replacing all the absolute values.

Additional constraints then make certain that whatever was inside the absolute value

in the original problem is less than these new variables. The second trick also depends

on introducing new variables. These variables are constrained to be nonnegative and

they replace the original problem variables in both the objective function and the

constraints. The second trick is obviously less attractive if the absolute value is an

interaction of more than one variable. It should be noted that the formatting of the

absolute value into the standard LP form with these tricks incorporates an increase

in the number of the decision variables which may adversely affect the algorithm’s

performance for extremely large problems.
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Figure 2.3: Handling Absolute Values in LP Problems [16].

2.3.2.2 On the Optimality of the Generated Solutions by the Proposed

Algorithm

The proposed algorithm solutions can be characterized to be global optimal so-

lutions. This can be proven through investigating the nature of the three levels of

optimization over which the algorithm is operating. The lowest level represented by

solving the relaxed reformulated (to handle the absolute value) LP problem is solved

by revised simplex method with anti-cycling, which finds global optimal solutions [16]

drawn from the convexity of the objective function. The second level is the branch-

ing search to find the zero-one solution that minimizes the objective function in the

branch and bound. As the branch and bound algorithm searches all possible branches

(except when extending the branches is proven not to enhance the objective value),

the branch and bound finds a global optimum for its problem. Finally, the third and

highest level is the search for the configuration that satisfies a specific estimate of
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(
∑n

i=1

∑K
k=1 Zi(k)) (determined by the first loop in the algorithm), and has the best

objective value. With the satisfaction of the condition which states that the substi-

tution is much more costly than swapping (one of the conditions stated in Section 1.2

for utilization to be promotable by DBOS), the solution found by the third level is a

global optimal one.

2.3.2.3 Limitations of the Proposed Algorithm

Despite its ability to outperform GA and SA (as it will be shown in the next

section), this algorithm has limitations as well. First, the prescribed procedure in

the algorithm is aimed at DBOS compatible problems described in the beginning of

Section 1.2. Mainly the substitution cost must be significantly larger. The algorithm

utilizes the fact that any number of swapping actions will always be cheaper than

additional substitution action. If this does not apply, a retrofit of the procedure

should be included, where the second loop is no longer running configurations of one

estimation of (
∑n

i=1

∑K
k=1 Zi(k)), but rather several ones. This procedure will be used

in Section 2.4.2 to obtain solutions for the parametric studies there. It will be shown

then that the DBOS model still applies in these instances, but rather they are no

longer candidates of utilization promotion achieved by optimal swapping.

Another major limitation to the proposed algorithm is the effect of the problem

size when the problem is getting significantly large. As we mentioned, the algorithm

will be shown to solve larger instances than GA and SA can, yet when the instance

size increases significantly, the algorithm can become computationally demanding.

When the problem size increases, the computational time increases in three directions

according to the algorithm procedure. The first is the number of configurations

satisfying a specific estimate of (
∑n

i=1

∑K
k=1 Zi(k)) found from the first loop. The

second is the number of nodes (branches) potentially examined in the branch and

bound algorithm’s search to find the solution. The third is the size of the LP relaxed
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problem solved at each node by Simplex method, which is significantly affected by

the problem size (specifically, the number of decision variables). Therefore, it can be

easily concluded that the algorithm will demand significant computational time when

the problem size is significantly large.

One way to reduce this effect, is parallelism, where the application of the second

loop (the solution of the different configurations) is conducted on parallel solvers

(or machines). Furthermore, the previous procedure can be enhanced if the parallel

solvers are sharing the best solution found, where this can be used as an upper bound,

to further truncate the branch and bound “search tree”. This means that if some

solver is getting the solution of the relaxed LP at a specific branch to be higher

than the shared best solution, the whole branch can be cut and ignored. This can

significantly reduce the total computational time, as we are no longer solving many

configurations (in the second loop) completely due to this truncating effect.

2.4 Case Studies

In this section, we report numerical results of the different optimization algorithms

discussed above on the formulated DBOS model.

2.4.1 Case Study I

The problem parameters are available in Table 2.1. Initially, the cost coefficients

and degradation rates are inspired by real applications. However, for the sample prob-

lem to be presentable and comprehensible, the maintenance plan horizon is shortened.

Therefore, the degradation rates have been modified to reflect this. The modification

in the coefficients is intended to simulate the real scenario where longer horizons are

chosen, and thus substitutions are inevitable.
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Table 2.1: Case Study I Parameters

Parameter Symbol Value

Number of vehicles in the fleet n 5 (A,B,C,D,E)
Number of Loading Profiles m 4

Plan Horizon (years) K 4
Discrete interval (years) ∆ 1

Demand dj [1, 1, 1, 2]
Degradation Rates rj [0.11, 0.08, 0.04, 0.02]

Swapping Cost Coefficient c1(k) $400
Substitution Cost Coefficient c2(k) $11600

Threshold β 0.2

2.4.1.1 Results from SA, GA, and the Proposed Algorithm

GA is first applied. Figure 2.4 shows a convergence for one of the runs. Elapsed

time for each run was about 19 minutes, when run on a 2.67 GHz quad-core processor.

Figure 2.4: Convergence in GA When Applied to DBOS Model.

The corresponding solution associated with this run has an objective value of

$26, 400 where all constraints are satisfied. The solution found by the algorithm is

shown where X∗
ij(k) represents the placement variables, Z∗

i (k) represents the substi-

tution variables, and y∗i (k) corresponds to the accumulative degradation.

The results above can be summarized in the following schedule of batteries place-
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k 1 2 3 4

X∗
ij(k) =


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1



0 0 0 1
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0



0 0 0 1
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1



Z∗
i (k) =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 y∗i (k) =


0.02 0.04 0.06 0.17
0.04 0.08 0.12 0.20
0.11 0.11 0.13 0.15
0.08 0.10 0.11 0.15
0.12 0.10 0.18 0.20


ment, where the numbers refer to the degradation profile at which the battery is

placed at each interval:

At the end of the first year, the optimizer swaps batteries D and E (D↔E), then

at the end of the second year it swaps batteries C and D (C↔D), in addition to

performing a substitution on battery C prior to that. At the end of the third year,

the optimizer swaps batteries A, B, D, and E. Battery A takes the place of battery

D (A→D), battery D takes the place of battery B (D→B), battery B takes the place

of battery E (B→E), and finally battery E takes the place of battery A (E→A). A

replacement for battery D takes place as well at that year.

It is clear how the model is able to capture all the intended swapping actions to

minimize the number of substitutions. In fact, when compared with no swapping

policy (direct policy) which results in a cost of $46,400, the DBOS policy model

savings in this run amount to 43.1% of the projected costs. A summary of several

Table 2.2: Schedule of Batteries Placement from One of GA Results

Battery 1st year 2nd year 3rd year 4th year

A 4 4 4 1
B 3 3 3 2
C 1 1* 4 4
D 2 4 1* 3
E 4 2 2 4

(*) means a substitution action has taken place
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GA runs is shown in Figure 2.5.
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Figure 2.5: GA Different Runs.

SA algorithm is implemented next. Figure 2.6 shows 30 different runs for the SA

implementation. From the figure, it can be seen that the SA implementation for the

DBOS model outperformed the GA implementation. The quality of the solutions

is enhanced as all results outperformed the No Swapping (direct) policy and the

solutions have lower cost values in general. In addition to the quality of the output

results, the speed of convergence was better in SA as well. Elapsed time for each run

was only 45.7 seconds.

We apply the DBOS-specific B&B-based optimization algorithm. The results are

shown in Figure 2.7. It can be clearly seen how the proposed algorithm successfully

and repeatedly achieve the global optimal solution of cost equivalent to $14,000; a

solution that has not been attained with either GA or SA. The optimum schedule

per DBOS policy for Case Study I is shown in Table 2.3. From the table, it can be

seen that there was a way with strategically selected swapping actions to suffice with

one substitution. While one substitution results were achieved by two runs from each

of GA and SA results (the lowest occurrences in Figures 2.4 and 2.6), the proposed

45



0 

10000 

20000 

30000 

40000 

50000 

0 10 20 30 

C
o

st
 

run 

no swapping cost 

Figure 2.6: SA Different Runs.

algorithm outperformed them in reducing the number of swapping actions to arrive

at one substition result.
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Figure 2.7: Proposed Algorithm Different Runs.

We finally present the results of the DBOS-discretization interval correspondence

test for Case Study I when SA and the proposed algorithms were used (GA results

were significantly worse and hence ignored). ∆ was decreased to half a year and then
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Table 2.3: Schedule of Batteries Placement from the Proposed Algorithm Results

Battery 1st year 2nd year 3rd year 4th year

A 4 4 4 1
B 2 1 1* 2
C 4 2 2 4
D 3 3 3 3
E 1 4 4 4

(*) means a substitution action has taken place

to quarter a year. Figure 2.8 summarizes the results. It can be seen how SA is failing

when the problem size is getting larger, while the proposed algorithm maintains an

equal cost. A clearer view of the DBOS-discretization interval correspondence is

found in Case Study II (Section 2.4.2).
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Figure 2.8: SA Algorithm Results vs. DBOS-Specific B&B-based Algorithm Results
When ∆ is Reduced in Case Study I.

2.4.1.2 Benchmarking DBOS Policy

Finally for Case Study I, we benchmark the performance of the DBOS policy,

several management policies have been applied (see Figure 2.9). The maintenance
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plan cost has been evaluated for each of the four shown policies. In the “No-swapping”

policy, the batteries in the fleet are dedicated to one degradation profile throughout

the plan horizon, where no swapping is allowed. The rotational fixed swapping policy

refers to the policy where swapping actions are conducted in a timely, fixed and

cyclic manner. An example of that is the rotational swapping of tires in automobiles

to even out the degradation. The third policy (Intelligent fixed swapping) refers

to the case when swapping actions are conducted between the most and the least

degraded batteries at each cycle. The intelligence refers to basing the decision on

being informed about the health state of the battery. Though the latter performs

better than the No-swapping and Rotational Fixed Swapping policies, the DBOS

policy clearly outperforms all of them. Moreover, the DBOS policy coupled with the

proposed optimization algorithm represents the best result with the least maintenance

plan projected costs.
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Figure 2.9: Benchmarking DBOS Policy.

2.4.2 Case Study II

In this section, we perform several parametric studies. We first verify the DBOS-

discretization interval correspondence we concluded in Section 2.2.1. Then, we per-
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Table 2.4: Case Study II Parameters

Parameter Symbol Value

Number of vehicles in the fleet n 3
Number of Loading Profiles m 2

Plan Horizon (years) K 4
Discrete interval (years) ∆ 1, 2/3, 1/2, 1/4

Demand dj [1, 2]
Degradation Rates rj [0.11, 0.04]

Swapping Cost Coefficient c1(k) $400
Substitution Cost Coefficient c2(k) $11600

Threshold β 0.2

form parametric studies for the cost coefficients and the degradation rates to confirm

the rational of DBOS illustrated in Chapter I.

For the first part, the DBOS-specific branch-and-bound-based algorithm is imple-

mented on the case study of parameters shown in Table 2.4, where ∆ is varied from

3 months to 6 months to 8 months and finally to 1 year. The case study will serve

as well to illustrate the scalability of the proposed algorithm when larger numbers

of decision variables are involved. That is, decreasing ∆ increases the size of the

problem significantly due to the increase in the placement and substitution variables

under investigation. The influence of this increase on the performance of SA and the

proposed algorithm is investigated.

The left-hand plot in Figure 2.10 shows the results when SA was used. It can

be seen that the SA algorithm is unable to capture the intended behavior of the

DBOS policy. The policy aims to opt for swapping when swapping achieves decreased

objective values. In this case, as the problem size grows the optimizer fails to recognize

the unnecessary swapping actions and therefore the total cost increases. On the other

hand, the right-hand plot in Figure 2.10 shows the results of the DBOS-specific B&B-

based algorithm when ∆ is varied. The anticipated behavior appears clearly. The

cost decreases when ∆ is varied from 1 year, to 8 months and finally to 6 months.

After that, there is no improvement in the objective value when ∆ is shortened from
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6 months to 3 months. The optimizer in this case opts for no more swapping actions

than what has been chosen for the 6 months discretization interval, and therefore the

policy is correctly captured.
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Figure 2.10: SA Best Result (Left) and DBOS-specific B&B-based Algorithm Result
(Right) When ∆ is Varied.

For the second part of this case study, we variate the cost coefficients associated

with the substitution and swapping actions bringing them closer to each other. Per

the discussion in Section 1.2, the DBOS policy will enable further utilization through

conducting optimal swapping decisions when the substitution cost is significantly

larger than the swapping cost in addition to further conditions. We demonstrate that

when we bring the cost coefficients closer to each other (value-wise), the swapping

will no longer be justified. Table 2.5 shows the results. We note first that all the

results have been obtained by retrofitting the proposed algorithm as described in

Section 2.3.2.3. We also make note that we are not concerned by the optimal values

themselves (as these are numeric values depending on the chosen cost coefficients).

We are rather more interested in the number of substitutions and swapping actions,

of which the optimal solution is comprised. The results in the table display the fact

that when the swapping cost becomes close to the substitution cost (for this small

case study it is exactly equivalent), swapping-promoted utilization will be no longer

attainable as substitution provides cheaper (and better for the “future”) results.

In the final part of this case study, we variate the degradation rates maintaining
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Table 2.5: Parametric Study of Swapping and Substitution Costs

c1(k) c2(k) Optimal # of Subs. #of Swaps. Enhancement Over
Cost No Swapping

800* 11600* 24800 2 2 47%
2500 7500 20000 2 2 50%
5000 5000 15000 3 0 0%
(*) The Original Values in the Case Study

similar total loads per fleet. In Section 1.2, we stated that the swapping will promote

utilization if the degradation rates are sparse (scattered) enough to make the swapping

a “meaningful” action. This means that if the degradation profiles are close to each

other, the swapping will not promote utilization and hence the DBOS policy will

opt for more substitutions over swapping actions. The results confirming this are

shown in Table 2.6. Once again, the results are obtained by the retrofit of the DBOS-

specific B&B-based algorithm to account for the cases when substitution is preferred

over swapping actions. Also we are not concerned with the optimal costs in terms of

values. We are rather concerned with the configuration of substitutions and swapping

actions that led to it. It can be seen that once the degradation rates are close to each

other (not sparse enough), the swapping no longer provides utilization promotion,

and hence is no longer optimal.

Table 2.6: Parametric Study of Degradation Rates

Degradation Optimal # of Subs. # of Swaps. Enhancement Over
Rates Cost No Swapping

[0.13, 0.02, 0.02] 24800 2 2 47%
[0.11, 0.04, 0.04]∗ 24800 2 2 47%
[0.08, 0.06, 0.05] 23200 2 0 0%
[0.07, 0.06, 0.06] 34800 3 0 0%
(*) The Original Values in the Case Study
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2.5 Conclusions

This chapter has presented the formulation of degradation-informed resource allo-

cation policy denoted as Deterministic Degradation-based Optimal Swapping (DBOS).

The formulation was based on the primary application in this thesis which is the fleet

level battery utilization. The policy which is intended to be part of the maintenance

planning for the fleet, utilizes batteries on fleet level through a series of optimally

chosen swapping and substitution actions. The policy takes advantage of the differ-

ent degradation rates of the batteries within the fleet, based on loading conditions,

to choose optimal placements of these batteries. The representative mathematical

model with deterministic health states have captured the intended functionality of

the policy through correct optimization. Investigation of standard optimization algo-

rithms performance with DBOS has been presented as well. A DBOS-policy-specific

algorithm has been developed and successfully implemented, where numerical results

have shown the outstanding performance of the algorithm in comparison to other

standard optimization techniques. Numerical results, as well, validated the role of

the discretization interval in the DBOS policy denoted as the DBOS-discretization in-

terval correspondence. Upon achieving global optimal results, decreasing ∆ is shown

to allow the option to (but not necessary) perform additional swapping actions min-

imizing the costly substitution ones. Finally DBOS policy has been benchmarked

with other maintenance management policies where the coupling of DBOS with the

proposed optimization algorithm has provided significant savings in the projected

maintenance costs.

52



CHAPTER III

Stochastic Degradation-based Optimal Swapping

3.1 Introduction

In the previous chapter, a high confidence (deterministic) degradation estimation

has been adopted to uniquely formulate the degradation-informed resource allocation

planning scheme, designated as Degradation-based Optimal Swapping (DBOS). In

this chapter, the problem is extended to include uncertain degradation estimation

and the formulation of the Stochastic DBOS policy. The latter will mainly depend on

the adoption of Markov decision processes (MDP) framework. By concept, policies

are more adaptive than planning and scheduling schemes. Policies react to “bad

luck” occurrences with optimal decisions, preventing undesirable outcomes that may

result from inaccurate prediction. For example, batteries can degrade more than the

anticipated values at a specific interval, and thus the schedule no longer represents

an optimal management scheme. Therefore, to ensure the achievement of the main

goals of the DBOS concept, uncertainty has to be introduced. The research in this

chapter includes the necessary reconfigurations of the deterministic DBOS model to

include the uncertainty and the challenges in fitting it to the (MDP) framework.

Literature reveals numerous approaches for planning with uncertainty. These can

be categorized into six groups: two-stage stochastic programming, parametric pro-

gramming, fuzzy programming, chance constraint programming, robust optimization
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techniques, and risk mitigation approaches [73]. The differences in these main ap-

proaches lie in the way uncertainty is incorporated and dealt with in the model.

There are three different ways for uncertainty incorporation. The bounded distri-

bution form, where the uncertain parameter is assumed to take on values within a

specified range defined by an upper and lower bound, is often adopted if there is not

enough information to construct an accurate estimation of the uncertain parameter

distribution [73]. The use of probabilistic distribution can take place when there is

sufficient information to construct a reliable distribution for the uncertain parameter.

Finally the use of fuzzy sets as noted by Li and Ierapetritou [74] can replace the

bounded and known distribution cases.

Parametric Programming, which is based upon the theory of sensitivity analy-

sis, aims to define a function which maps the uncertain parameter values to a given

optimal solution for the entire uncertain parameter space. Examples of this work

are found in [75, 76, 77]. Chance constraint programming replaces constraints con-

taining uncertain parameters with their probabilistic forms. Using the distributions,

the probabilistic constraints are then reformulated into a deterministic form. The

major issue of chance constraint programming is that feasibility of the solution is not

guaranteed. Examples of chance constraint programming can be found in [78, 53].

Unlike chance constraint programming, robust optimization techniques guarantee the

feasibility of the obtained solution for the nominal set of system conditions, as well

as being robust with regard to the multiple forms of uncertainty present within the

system under investigation. The robust optimization framework involves first ex-

pressing the true parameter values through the declaration of random variables, then

the formulation of probabilistic constraints, and finally, the transformation of these

probabilistic constraints into their deterministic counterparts, which are added to

the existing model [73]. Examples of robust optimization techniques can be found

in [79, 80].
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Two-stage stochastic programming, which is the primary approach in transporta-

tion planning, represents the umbrella under which several well-known techniques

such as Multi-stage Stochastic Programming and Stochastic Dynamic Programming

(SDP) lie. The later is sometimes referred to in some publications as Markov De-

cision Processes (MDP). The Two-stage programming is set based on the notion of

a first-stage that contains variables which must be ascertained before the uncertain

parameters are realized, and a second stage that is composed of those variables which

represent recourse decisions that are enacted upon the realization of the given un-

certain parameters [73]. The first-stage objective function term is deterministic in

nature while the second-stage term involves an expectation evaluation. In order to

address the expectation evaluation, a finite number of uncertain parameter scenarios

can be generated with the recourse variables being indexed by scenario so that every

possible parameter realization has an associated recourse action. The scenario gen-

eration approach becomes problematic with the growth in the model size due to the

increase in the number of considered scenarios.

Distribution-based approach can represent an alternative to the scenario gener-

ation, where the expectation of the recourse objective function term is determined

through the integration of the given probability distributions. While the problem size

is considerably smaller in the distribution-based approach, the formulation becomes

nonlinear which requires techniques such as Monte Carlo, Gaussian quadrature, etc.

Once again, these methodologies may become computationally expensive as the num-

ber of uncertain parameters increase.

Markov Decision Processes (MDP) represents the most famous sequential decision

modeling technique. In it, the set of available actions, the rewards, and the transition

probabilities depend only on the current state and action and not on states occupied

and actions chosen in the past. The model is sufficiently broad to allow modeling

most realistic sequential decision-making problems [15]. A close problem to DBOS
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mentioned in the well cited reference is the bus engine replacement problem which

is also known as Zurcher’s replacement problem [14]. Further explanation of the

problem and explanation of the similarity and differences with DBOS is available in

Section 1.2.1.

3.2 Mathematical Modeling of Stochastic DBOS Policy

The transformation of the deterministic DBOS model to become a stochastic

one relies on including uncertainties within the health state prediction. In more

details, the health states of the batteries at the end of the next discrete interval in

the time horizon are estimated with some uncertainty at the beginning of this interval

depending on the decisions taken (placement and substitution). Once the interval is

over, the real health state information becomes available and can be used to make

decisions for the next interval. In current practice, there are several methods to

achieve that. There could be offline testing taking place at the end of each interval,

or an online data acquisition system which collects and analyzes data at the end of

the interval. The details of acquiring the real health state information of the battery

in this case is beyond the scope of this thesis.

The framework of the decision making will be based on Stochastic Dynamic Pro-

gramming (SDP) and Markov Decision Processes (MDP). We first reformulate the

original deterministic model to account for uncertainties through the following mod-

ification to Equation (2.11):

yi(k) = (1−Zi(k))yi(k− 1) +
m∑
j=1

rjXij(k) + ϵi ∀k = 2, · · · , K; ∀i = 1, · · · , n (3.1)

Where ϵi represents the error in the deterministic degradation prediction, identi-

fied after the discrete interval has passed. At the start of the interval, both groups
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of decisions; the placements Xij(k) and the substitutions Zi(k); are chosen. The

uncertainty associated with the estimate will be in the form of a random variable

ϵi that represents the error in the prediction. While this random variable can take

several values (negative and positive), the probability distribution associated with it

is assumed to be known. With this assumption, the stochastic dynamic programming

(SDP) problem as in (Puterman, 1994) can be defined as:

SDP = {S, M, R, C, P}. (3.2)

where S denotes the set of states, M denotes the set of available actions, R is the set

of state dependent rewards, C is the set of state and action dependent costs, and P

is the set of transition probabilities which depend on what action can result in what

state(s) when executed from any of the states.

3.2.1 States

The states in SDP are a sufficient and efficient summary of the available infor-

mation which affects the future of the stochastic process. Other than the partially

observed MDP framework, the state at a point in time should not contain informa-

tion that is not available to the decision maker at that time, because the decision is

based on the state at that point in time. For this problem, the states must specify

the health state of each battery (using the accumulative degradation) and the cur-

rent “shape” of the system in terms of battery placements, which we will refer to as

system placement (G). After decisions (actions) are made, the state of the system

will change accordingly including degradation in the health states, and a change in

the battery placements if a swapping action has been selected. Before the end of this

current interval, the new health states can only be predicted with some uncertainty.

Therefore, only the health states at the start of the interval are considered part of the
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state definition in this SDP framework. For a concise formulation, the placements

of all the fleet batteries in the loading profiles at a specific instant, represented by

the binary placement variables (Xij(k)), will be replaced by one discrete variable;

called system placement (G); that summarizes all of them. There will be always a

limited number (nG) of possible (feasible) system placements as can be concluded

from Equations (2.2) and (2.3). These equations limit the feasible combinations of

Xij(k). For example, a small fleet comprising of 3 vehicles distributed on 2 loading

profiles can only have 3 different placements. There is no single formula which can

calculate nG, but a very simple recursive program can find the number and all possible

configurations.

The health states of each battery are once again tracked through the accumulative

degradation. Yip represents the accumulative degradation of the ith battery in state

ςp. Due to the limited battery’s operational range in terms of health state, Yip possible

values are limited by the threshold value (at which substitution is inevitable), and

the discretization resolution ϕ. For example, we will choose for our case studies

the threshold value (β) to be 20% or 0.2. This is inspired by the definition of the

End-of-Life for hybrid vehicles batteries occurring when the battery meets specific

failure criteria (See Section 1.2.1). Therefore and as the accumulative degradation

has been modeled to be monotonically increasing, the threshold of 20% is chosen. The

discretization resolution (ϕ) will mainly depend on the accuracy of the methodology

(offline testing, analysis of online data, etc.) through which the real health state is

identified at the end of each discrete interval. The total number of states (N) in the

state space can then be found by (
(

β
ϕ

)
+ 1)n × nG.
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S = {ς1, · · · , ςN} (3.3)

ςp = (Y1p, · · · , Ynp, Gp) p = 1, · · · , n (3.4)

Yip ∈ {0, ϕ, 2ϕ, · · · , β}

Gp ∈ {1, · · · , nG}

3.2.2 Actions

For this problem, the actions (decisions) available to the decision maker are all

the possible combinations of swapping-substitution actions. The decision maker can

opt for a change in the system placement (G′), and hence swapping would have

taken place. Additionally, any of the n operational batteries in the fleet can undergo

substitution (Z), and be replaced by a new one.

M = {µ1, · · · , µM̄} (3.5)

µk = {Z1k, · · · , Znk, G
′
k} (3.6)

Zik ∈ {0, 1} for all i = 1, · · · , n

G′
k ∈ {1, · · · , nG}

Therefore the number of possible actions (M̄) will be 2n × nG.

3.2.3 Immediate Costs

Costs are attributed in this problem formulation to the actions mainly. However,

for the swapping as we compare the new system placement with the older one to

pinpoint the swapping costs, the cost dependence will include the current state as

well. Swapping actions incur expenses associated with labor work and penalties for
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potential of loss in fleet’s output work. Similarly, substitution will incur costs associ-

ated with the new battery cost, labor work, and potential of loss. The costs incurred

at each decision can be found by:

C(ςp, µk) =
n∑

i=1

{c2Zi}+ c1,Gp,G′
p
{Gp ̸= G′

p} (3.7)

Where c2 is the substitution cost coefficient, and c1,Gp,G′
p
is the cost coefficient

associated with all the swapping actions necessary to fulfill the change of the system

placement from Gp to G′
p. The coefficient is a function of Gp and G′

p, because of

the fact that there could be one single swapping action or several ones required to

change the system placement. For example, the penalty associated with the potential

loss of output work from the fleet is dependent on how many vehicles are involved in

the swapping. Therefore, the coefficient can be defined to have different values based

on that. We note here that ideally there are no costs or rewards associated with

the states themselves, as the definition of the states include only operational range

of the batteries. However, there are hidden costs associated with some actions that

may evolve the health states of the batteries beyond the operational range (over the

threshold). The details of these are explained in Section 3.2.5.

3.2.4 Transition Probabilities

The transition probabilities are associated by definition with the uncertainty in

the model, specifically the random error (ϵ) in the deterministic prediction of the

health state. ϵ represents a random variable with assumed known distribution. Fur-

thermore, if the health state prediction model is sufficiently accurate, ϵ as a random

variable can be assumed to justifiably have the following properties: zero mean value,

and symmetric probability distribution around the mean value. Additionally, with

this assumption, ϵ theoretically will have a discrete uniform distribution, where all

elements of the finite set of potential values are equally likely (something like tossing
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Figure 3.1: An Example of Probability Distribution of ϵ

a balanced coin or unbiased die, or the first card of a well-shuffled deck). However,

in practice it is more likely to have higher probability attributed to the mean value

and will have more of a bell shaped distribution. In fact, this would be the case if

we use actual historic data to statistically derive the probability distribution. This

hybrid theoretically-based practically-modified probability distribution will be used

throughout the Chapter. Discretization of the probability to match the discrete SDP

framework introduced above will result in probability distribution (probability mass

function) similar to the one in Figure 3.1. In this figure, it is assumed that the num-

ber of possible values of ϵ is 7, symmetrically distributed around the mean, where

higher probability is on the mean. We will refer to this number of possible values as

the error resolution [see Section 3.3.4].

Practically, the exact values of the probabilities can vary depending on the appli-

cation, the confidence in the deterministic health state predictor, and other miscel-

laneous factors. We show in Section 3.3.2 different probability distributions and its

effect on the performance of the stochastic DBOS policy.

A final assumption which addresses the joint probability distribution is made. For

simplicity, we assume that the random variables ϵi; for i = {1, · · · , n} are indepen-

dent of each other. This is to say that the error in the deterministic prediction for

any of the vehicles will be independent of the other errors in the predictions of the
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health state evolution in the other batteries within the fleet. This assumption is not

intuitive because of the nature of the fleet operation and Equation (2.3). However,

we had assumed in our modeling that the health state predictor is accurate enough,

and the error in the prediction is independent from the placement of the battery

within the fleet, isolating the error as an independent random variable representing

the uncertainty from other variables under study. Therefore, the assumption of the

errors being independent of each other in this case becomes plausible. With this as-

sumption, the joint probability distribution can be found by the multiplication rule

for statistically independent random variables:

Prob(
n∪

i=1

ϵi) =
n∏

i=1

Prob(ϵi) (3.8)

Now using the one step transition probability formulation from [81]:

Prob(ςi, µk, ςj) = Prob(ςj|ςi, µk)

=
∑
ϵi∈ϵ̄

Prob(ϵi)1{ςj=SM (ςi,µk,ϵi)} (3.9)

where ϵ̄ is the set representative of all the possible outcomes of the random variable

ϵ, 1{L} is the indicator function defined by:

1{L} =


1 if the statemet L is true

0 otherwise

(3.10)

and SM is the states transition function given in DBOS case by Equation(3.1). Equa-

tion (3.9) can be written in a more simplified form by incorporating Equation(3.8)
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:

Prob(ςi, µk, ςj) = Prob(ςj|ςi, µk)

= Prob(ϵ1 = Λ1, · · · , ϵn = Λn)

= Prob(ϵ1 = Λ1) · · ·Prob(ϵn = Λn) (3.11)

where Prob is the discrete probability found from the probability distribution supplied

with the problem as a parameter (e.g., Figure 3.1), and Λi′ is the error value in the

health state prediction for the battery (i′) in the fleet that matches Yi′i (from state ςi)

and Yi′j (from state ςj) given action µk. To clarify this more, we present the following

example for a two-vehicle scenario. Assume the initial health states at the start of this

interval were 0.06 and 0.11 for vehicles 1 and 2’s batteries; respectively. Furthermore,

assume the decision (action) taken at this interval is to opt out of any substitutions,

and to place the batteries in loading profiles with deterministic degradation rates

equal to 0.07 and 0.03, respectively. If we assume similar probability distribution

to Figure 3.1, then there are 49 (from 72) possible outcomes for the batteries health

states at the end of the current interval. The probability of the next state to have

health states equivalent to 0.12 and 0.14 is equal to Prob(ϵ1 = −0.01) × Prob(ϵ2 =

0) = 0.242× 0.399 = 0.097.

3.2.5 Hidden (Random) Costs

In many applications the one-period contribution function is a deterministic func-

tion of ςi and µk , and hence written as the deterministic function C(ςi, µk). However,

these costs do not fully represent the case here. There are random hidden costs in this

problem formulation that will result in the case of some decision evolving the health

states of the batteries (and in turn the SDP states) to a value beyond the operational

range, i.e. undefined SDP states. The batteries in this sense are overused and hence
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a suitable penalty should be incurred.

There are two main issues associated with this scenario. The first is the undefined

states. The second is concerned with how to attribute this additional cost while for-

mulating the policy as the decision maker at the start of the interval lacks information

about the real outcome of the health states.

The problem with undefined states lies in the fact that consulting the policy after

arriving at these states will no longer offer any decisions for the decision maker.

Additionally, during the construction of the policy, we will be unable to progress to

the next interval as these states are undefined and hence their evolution is undefined

as well.

In some applications, extending the defined states range can solve the problem.

However this will increase the state space size, which in some applications such as

DBOS is highly undesirable, due to the originally large size. In other SDP frameworks,

undefined states can be avoided by assigning zero probability to the action that may

result in such state. However, in this problem it is not suitable to opt for this solution.

The most significant reason behind this can be explained with the help of the example

in Figure 3.2. In this example, the system has state equal to S1.There are only two

feasible actions: a1 with the solid line arrow is “do not substitute” and a2 with the

double-lined arrow is “substitute”. From the figure, it can be seen that there are

6 different possible outcomes (states). While a2 evolves the state S1 to any of the

3 defined possible states (S4, S5, S6), a1 has a 5% probability of evolving S1 to the

undefined state Su. Clearly, a1 will result in lower direct costs than a2. If we are to

assign zero probability for a1 to avoid the undefined state, we will be missing on the

chance of taking a more economic decision “fearing” a probability of 5%. Therefore

this fix is not recommended.

The second issue with this scenario is the attributed costs because for the over-

usage of batteries. As the policy is formulating, the decision maker is not allowed (by
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Figure 3.2: Undefined State Issue in DBOS

definition) to foresee the actual outcome of the new state. The health states can be

within operational range or can represent an over-usage. In standard SDP framework,

the recommended state dependent costs when the output state is random can be

solved by the consideration of the expected value function[81]. The contribution of

this hidden cost can be viewed as the expected contribution given that we are in state

ςt and take action µt. Using the discrete probability distribution and the compatible

expected value correlation, the expected value of the state dependent cost in DBOS

can be found by:

Chidden(ςi, µk) =
nnext∑
j=1

Probj(ςj| ςi, µk)U(ςj) (3.12)

where U(ςj) is the added cost for being in state (ςj). In DBOS case, this cost will be

in the form of a penalty if the state is undefined. It means that U(ςj) will be zero as

long as we are in operational range of the health states, and will have a proportional

penalty when batteries are overused. Equation (3.12) can be written as:

Chidden(ςi, µk) = chid

nnext∑
j=1

Probj(ςj| ςi, µk)1{ςj /∈S} (3.13)

where chid is the hidden cost (penalty) coefficient. While this approach solves the
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second issue, the states (ςj) are still undefined when we are outside the operational

range.

We heuristically solve this by the following approach which specifically works for

the DBOS SDP framework. It is expected that the decisions taken at the SDP states

that include the upper limit of the operational range of the health states of the bat-

teries to incorporate substitution due to the penalties incurred for over-usage. We

will refer to these states as “border states”. With respect to the policy itself, if some

action will evolve the state to some undefined next state (in DBOS, it is an over-usage

state), then we can use the closest defined state as a replacement to maintain the func-

tionality of the policy for the next interval. This option maintains optimality if and

only if the expected (intuitive) decisions for both the defined and undefined states are

identical, and their expected next states are the same. In DBOS, the closest defined

state to the undefined state is a border state. As these border states have optimal

decision to substitute, and similarly the optimal decision (by intuition) at the unde-

fined state is to substitute, then both have identical decisions. As the substitution in

DBOS, by construction, will reset the battery health state, then the next state will

not be a function of the previous health state for both defined and undefined states.

Both decisions and next interval states are identical and hence optimality will not be

jeopardized, and the policy can maintain functionality. To impose the penalty, the

cost function will include the hidden cost that will be proportional to the probability

of ending in an undefined state, similar to Equation (3.13). An example of this can

be seen in Figure 3.3, where the border state here is S3. With respect to the policy,

the state evolution occurs as in the right hand part of the figure. The undefined state

is not existent. Instead the 5% probability in action a1 will be directed to the closest

border state, S3. Hidden cost will be incurred with this 5% probability.

One final remark about this heuristic approach is that the penalty will be imposed

during the policy construction. However, during the policy validation, the penalties
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Figure 3.3: Heuristic Fix for Undefined States in DBOS

are only incurred after we identify the real next state and will be imposed if the

state(s) have actually overstepped the operational range of the battery’s health states.

While this is not standard validation methodology, we explain the motivation behind

this through the following analogy. A parent wants to motivate his middle school

son to study more offering rewards if he gets high grads and threatening punishment

(e.g., take his video games, grounding) if he does not achieve good grades (This is

identical to the savings (rewards) for not conducting substitution vs. penalty costs

(punishment) associated to overusing the batteries). Now the son has an exam next

day. The exam requires 4 hours of study to fully cover the material (this is similar

to doing all potentially necessary substitutions to avoid overusage). The exam is

stochastic in nature. The teacher can bring all questions from specific part of the

material or it can be distributed. The exam can be easy, or hard (This is similar to

the degradation stochastic nature). The son saw the neighbors kids outside playing

after a long winter and he is tempted to join them (this is similar to DBOS tempted to

avoid substitutions). Now the son, based on the incentives (rewards and punishments)

from his parent, formulates his own policy based on his intuition. Instead of studying

the whole 4 hours, he decides to study for 2.5 hours as he feels he will be able to cover
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with sufficient probability the material needed to get a good grade (this is similar to

DBOS formulating the policy based on prediction and potential of overusage). Now,

the parent has no idea and cannot actually punish the son until the exam comes, the

stochastic part of it becomes known and the son either gets lucky (get good grade

based on his limited covered material) or he gets unlucky (the exam turns out to

be from material outside his coverage). After, the son gets his grade, only then the

parent can actually reward or punish him. Similarly, during the policy validation,

we have to wait until next state becomes known and the stochastic degradation is

recognized. Only then we decide to punish the policy for overusing.

3.2.6 Solution Approach

Now that we have formulated the problem in the framework suitable for treatment

using discrete stochastic dynamic programming, we solve this problem using backward

induction dynamic programming. Backward induction minimizes a function of the

following form [81]:

V t(ς t) = min
µt∈Mt

(
Ct(ς t, µt) +

∑
ς′∈S

P (ς ′| ς t, µt)V t+1(ς ′)

)
∀ς t ∈ S (3.14)

where all superscripts indicate here the discrete time point in the horizon and ς ′

is a possible next state given ς t. This function which represents the value of being

at state ς t is mostly known as the Bellman’s equation. From its name, backward

induction starts at the very end of the horizon and iterates towards the beginning,

computing the value function V t(ς t) for all states ς t ∈ S each time. The terminal

value V T (ςT ) is assumed to be given.

With respect to DBOS, we will start by a simplifying assumption: the terminal

value at the end of the horizon is zero. It can be easily incorporated if we wish to sell
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the batteries for example to a second market at the end of the horizon. Then, we will

only need to know the expected revenue generated at that instant by selling these

used batteries. With this, we will follow the Backward Induction procedure described

below [81].

Step 0. Initialization

Initialize the terminal contribution VT (ςT )

Set t = T − 1

Step 1. Calculate:

V t(ς t) = min
µt∈Mt

(
Ct(ς t, µt) +

∑
ς′∈S

P (ς ′| ς t, µt)V t+1(ς ′)

)
∀ς t ∈ S

Step 2. If t > 0, decrement t and return to Step 1. Else, stop

3.3 Case Studies

In this section, we will demonstrate the strong performance of the stochastic DBOS

policy versus the deterministic DBOS policy through a series of case studies. The

solutions for the deterministic cases have been obtained through the application of

the DBOS-specific Branch-and-Bound-based algorithm detailed in Section 2.3.2. The

deterministic DBOS policy has already demonstrated the ability to outperform many

common fleet joint maintenance-management policies as explained in details in the

same reference. Therefore, we will only compare deterministic and stochastic DBOS

policies. Although these case studies reflect small fleets, in principle the policy applies

for larger fleets. With larger fleets, Approximate Dynamic Programming (ADP) tech-

niques become essential due to the large state-space size (the curse of dimensionality)

[81]. The details of how to augment these algorithms to DBOS scenario represent a
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separate contribution and are beyond the scope of this thesis. Nonetheless, a short

description of the opportunities to implement them will be highlighted in the Future

Work Section in the final Chapter.

3.3.1 Case Study III

In this section, we report numerical results of a 3-vehicle fleet case study. The

problem parameters are available in Table 3.1. The cost coefficients are inspired by

real applications. The degradation coefficients have been modified to reflect shorter

chosen plan horizon for the numerical case study as a sample problem. The modifica-

tion in the coefficients is intended to simulate the real scenario where longer horizons

are chosen, and thus substitutions are inevitable. The probability mass function of

each of the errors in the deterministic health state prediction is similar to the one

shown in Figure 3.1. Both deterministic DBOS and stochastic DBOS policies have

been used to manage the fleet.

Table 3.1: Case Study III Parameters

Parameter Symbol Value

Number of vehicles n 3
Number of loading profiles m 2
Plan horizon (years) K 5
Vehicles allocated per loading profile dj [2,1]
Degradation rates (per month) rj [0.05,0.08]
Swapping costs ($) c1(k) 800
substitution costs ($) c2(k) 11600
Threshold β 0.2
Discretization interval (year) ∆ 1
Hidden cost (penalty) coefficient Chid 58000
used in policy build-up∗

Proportional penalty of over-usage of 3000
batteries used in policy validation
($/0.01 of over-usage in health state)
* This number will be multiplied by a small probability as seen from Equation (3.13)

To mimic real life scenario, a random number between 0 and 1 is generated at
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each discrete interval. Pinpointing the generated random number on the cumulative

distribution, the next SDP state (and in turn the health states of the batteries) out of

the 343 possible next states is selected. Due to the stochastic nature of the problem,

the number of runs conducted per policy is 5000. All runs started with states with

initial condition of brand new batteries and different initial system placements. When

comparing the mean value of the estimated total maintenance costs for all the runs, it

was found to be 37515 and 35001 for deterministic and stochastic DBOS, respectively.

The improvement is only 6.7%, but this is not “the full picture” of the performance.

This is mainly due to the fact that the mean value is zero, bringing the two policies

mean performances close. A good representation of the performance would be in

dividing the costs into several ranges and finding the frequency of occurrences as in

Figure 3.4. It should be noted that the ranges on the figures are not equally divided,

where we decrease the ranges around high frequency occurrences to provide deeper

insights.
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Figure 3.4: Case Study III Results

From Figure 3.4, it can be clearly seen how stochastic DBOS outperforms deter-

ministic DBOS. Around the mean value, we find 93% of the stochastic policy runs
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have achieved this range, in comparison to less than 55% of the deterministic runs.

Additionally, in the higher ranges (above $40k), we find significant number of oc-

currences for the deterministic policy in comparison to extremely small number of

occurrences for the stochastic policy. This reveals the inability of the deterministic

policy to cope with “bad” scenarios where higher than predicted degradations in the

batteries health states are taking place. Both (around the mean and higher ranges

results) provide the conclusion that the stochastic DBOS is more robust in terms of

handling uncertainties in the degradations and maintaining the maintenance plans

costs at low levels.

3.3.2 Case Study IV

The second case study aims to examine the performance of the stochastic DBOS

policy when applied to various error distributions. We maintain the assumption of

the general shape of the error distribution in terms of symmetry around the mean,

and a mean of zero error. However, the distributions standard deviations (and hence

the variations) are varied from the original values showed in Figure 3.1. Table 3.2

shows the different distributions examined, where Dist C represents the distribution

from Figure 3.1 and Dist F represents the theoretical uniform (equal probability)

distribution.

Table 3.2: Different Error Probability Distributions Tested in Case Study IV

Distribution Variance Standard Deviation

Dist A 0.545 0.738
Dist B 0.734 0.857
Dist C (normal) 0.995 0.998
Dist D 1.260 0.122
Dist E 3.000 1.732
Dist F (uniform) 4.000 2.000

An increase in the variation reflects an increase in the uncertainty of the predicted

error. More importantly, an increase in the variation reflects in the DBOS policy an
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increase of the probability of larger errors (e.g., ϵ =0.02 and 0.03), and hence it would

be expected that the policy will suffer a decline in the performance and an increase in

the cost values, which will be observable in both stochastic and deterministic DBOS

policies. Figure 3.5 reveals this fact. In the case of Distributions A through D, there

is a gradual decline in the performance of the stochastic policy noted through the

decrease of occurrences in the $34k-$37k cost category. The decline increases sig-

nificantly through Distributions E and F. This is mainly attributed to the variance

value jump increasing from Dist. D to Dist. E and finally Dist F. A similar behavior

is noticed in the deterministic DBOS performance, though we note that stochastic

DBOS policy is more adversely affected by the distribution variance. In fact, just

comparing occurrences in the $34k-$37k cost category, the deterministic DBOS be-

comes very comparable to the stochastic DBOS policy in large variances relatively.

However, upon examining the higher ranges (above $40k), stochastic DBOS attributes

can be easily recognized in minimizing the occurrences in these ranges. With high

variance, deterministic DBOS shows increased occurrences in the higher ranges due

to its inability to cope with the errors in the deterministic predictions.

The main conclusion of Case Study IV is that while stochastic DBOS perfor-

mance intuitively deteriorates with increased variance, yet it maintains the ability

to handle “bad luck” runs much better than deterministic DBOS, avoiding excessive

maintenance costs.

3.3.3 Case Study V

The main objective of the third case study in this chapter is to examine the

performance of stochastic DBOS policy formulated based on a specific distribution,

when the exogenous information (error distribution) turns out to be different. In

many cases, the true distribution of the prediction error cannot be known prior to

actual implementation, or might be estimated mistakenly. Therefore, in this case
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Figure 3.5: Case Study IV Results
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study, we aim to investigate the loss in performance if the policy was build upon

wrong distributions. The policies formulated in case study VI will be tested against

distributions different from which they have been formed with. In specific, policies

formulated by using Dist A and Dist C will be tested against Dist F, and vice versa.

3.3.3.1 True Exogenous Information = Dist C & Dist A

We first test stochastic DBOS policy formulated with Dist F against exogenous

information with Dist C and Dist A. Figure 3.6 shows the results compared with the

stochastic DBOS policy formulated with the correct (matching) error distributions

and deterministic DBOS.

The results show a quite intuitive behavior. Using the correct distribution to build

up the policy generates better results (the occurrences in the $34k-$37k category).

Nonetheless, using stochastic DBOS policy even if it is build on wrong distribution

outperforms deterministic DBOS. While deterministic DBOS becomes comparable

in the mid ranges, the stochastic DBOS policy build on Dist. F still manages to

minimize the occurrences in the high cost ranges (above $40k).

3.3.3.2 True Exogenous Information = Dist F

Now, we present the second part of case study V, where the exogenous information

has Dist F. We test stochastic policies formulated based on Dist A, Dist C, and the

matching distribution Dist F. Results are shown in Figure 3.7. This case represents a

counter-intuitive behavior as from the occurrences (especially in mid ranges), it can

be noticed that stochastic DBOS policies formulated with Dist A and C outperform

stochastic DBOS policy formulated with matching distribution (Dist F). The following

behavior can be explained through the examination of the batteries health states

evolution. The stochastic DBOS policies formulated with Dist A and Dist C tend

to overuse the batteries (health states beyond threshold value) more frequently than
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Figure 3.6: Case Study V- Part One Results
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when the matching distribution has been used for policy buildup. Table 3.3 shows

the occurrences of over-usage when different policies are used. It should be noted

that this behavior for stochastic DBOS policies formulated with Dist A and C only

occurs when tested on non-matching and harsh exogenous information environment.

These policies themselves maintain safe factors similar to (or even better than) what

Dist F based stochastic DBOS policy showed in terms of minimal over-usage. Table

3.4 shows that.
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Figure 3.7: Case Study V-Part Two Results

Table 3.3: Over-usage of Batteries in Case Study V-b Results

Policy Formulated Battery Health State Battery Health State
Based on: = 0.21 Occurrences = 0.22 occurrences

Dist F 266 0
Dist C 1686 291
Dist A 1750 316

In conclusion, for high variance exogenous information, other policies show lower

costs but higher over-usages. In all scenarios, using a stochastic policy is better than
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Table 3.4: Original Over-usage of Batteries in Dist A and Dist C based Stochastic
DBOS Policies when Tested on Matching Distributions

Policy Formulated Battery Health State Battery Health State
Based on: = 0.21 Occurrences = 0.22 occurrences

Dist C 66 5
Dist A 13 1

deterministic policy, even if it is built upon wrong distribution. Recommendations

from this case study can be summarized with the following: If the error distribution

is known to be of high variance and over-usage is an issue (sensitive), using similar

distribution for policy build up will be better. If over-usage is not a major concern,

using normal Dist C for policy buildup will be better. If error distribution is unknown,

using Dist C provides the best tradeoff between low cost and reasonable number of

over-usages.

3.3.4 Case Study VI

The objective of this case study mainly aims to examine the loss in performance

when low error resolution is used. In specific details, we reduce error resolution in

Figure 3.1 from 7 pillars (number of possible values taken by the random parameter)

to 5 pillars and finally to 3 pillars, maintaining the general structural properties of

the distribution. We maintain the mean of the error at 0, and maintain the sum of

probabilities to be equal 1 by equally redistributing the canceled pillars. We use these

new (low resolution) error distributions to formulate stochastic DBOS policies cor-

responding to them. Then we test the generated policies on exogenous environment

that is of high resolution (7 pillars). The motivation behind this setup lies in the fact

that stochastic DBOS policy (like most Stochastic Dynamic Programming instances)

suffers from the curse of dimensionality. The reduction in the resolution of (ϵ) can

significantly impact the necessary memory allocation and processing times (see Table

3.5). Therefore, if the loss in the performance due to lower error resolution is accept-
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able, lower resolution stochastic DBOS policies can represent a more efficient option,

computational-wise. Moreover, this scenario can be also similar to Case Study V

motivation, where exact distribution of prediction error is not accurately attainable

for physical or instrumental (measuring) reasons, and we would like to investigate the

DBOS performance under such circumstances.

Table 3.5: Memory Allocation and Time Required for Different Resolutions of Dist.
C based Stochastic DBOS policies

Policy Max Memory Used Time

Dist C - 7 Pillars Policy 3.5GB 2.3 hrs
Dist C - 5 Pillars Policy 1.1GB 1.5 hrs
Dist C - 3 Pillars Policy 0.25GB 0.9 hrs

Figure 3.8 shows the results of deterministic DBOS and stochastic DBOS with high

and low error resolutions. As it can be seen from the cost ranges, the performance

of the policy has not been affected by lowering the error resolution. In fact, it looks

as if it is getting better. However, upon investigation of the health states evolution

of the batteries as in Case Study III, we find out more over-usages are occurring

with lower error resolutions. Table 3.6 shows the statistics of the over-usages. It can

be clearly seen that with lower error resolution, more occurrences of over-usages are

taking place.

Table 3.6: Over-usages of Batteries in Stochastic DBOS policies with Lower Error
Resolutions

Policy Battery Health State Battery Health State
= 0.21 Occurrences = 0.22 occurrences

Dist C - 7 Pillars Policy 66 5
Dist C - 5 Pillars Policy 92 5
Dist C - 3 Pillars Policy 245 21

The main finding of Case Study IV is that using stochastic DBOS is better than

deterministic DBOS, even if it is built upon lower error resolution. For Dist. C, 5

pillars and 3 pillars cases are very comparable to high error resolution, where the
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Figure 3.8: Case Study VI Results

lowest resolution (3 pillars case) showed more over-usages. Recommendations from

Case Study IV can be summarized with the following: For Dist. C which represents

practically the most likely error distribution, the use of 5 pillars low error resolution

is justified.

3.4 Conclusions

We reformulated the degradation-informed resource allocation policy that we de-

veloped in the previous Chapters towards accounting for uncertainties in the batteries

health states. Modifications to the deterministic model have generated several compli-

cations, which have been comprehensively solved for idealistic small fleets problems.

Numerous case studies have shown stochastic DBOS to outperform deterministic

DBOS. stochastic DBOS has been tested against variation in uncertainty, lack of

knowledge of uncertainty distribution, and lower resolution of error. Results have

shown stochastic DBOS’s ability to avoid “bad luck” runs robustly, and hence avoid
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excessive maintenance costs. stochastic DBOS has also outperformed deterministic

DBOS in the cases where wrong distributions were used for the policy build-up. With

stochastic DBOS policy (as most SDP instances) suffering from the curse of dimen-

sionality and based upon results from Section 3.3, the decision support toolbox in

Table 3.7 is generated. It represents the final recommendations with respect to best

practice management for hybrid fleet management, in accordance to what has been

developed.

Table 3.7: DBOS Decision Support ToolBox

Problem Degradation Recommended
Size Estimation Policy

Small High Confidence Deterministic DBOS
with modified SA algorithm

Large High Confidence Deterministic DBOS with
DBOS-policy-specific
B&B-based algorithm

Small Uncertain, Stochastic DBOS
Error Dist. is Known, (use matching dist.

Sensitive to over-degradation for policy buildup)
Small Uncertain, Stochastic DBOS

Error Dist. is known, (use Dist. C
Not Sensitive to over-degradation for policy buildup)

Small Uncertain, Stochastic DBOS
Error Dist. is Unknown (use Dist. C

for policy buildup)
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CHAPTER IV

Degradation-based Optimal Swapping with Local

Inventory

4.1 Introduction

Deterministic DBOS and stochastic DBOS have shown significant improvement in

terms of maintenance management and fleet utilization, in comparison to other fleet

management policies. However, both policies assume instantaneous new battery avail-

ability when substitution is to take place. In practice, batteries orders will be subject

to several issues such as the lead time (which is the time between the placement of

the purchase order and the delivery of the battery). For example, the requested items

might not be in stock at the supplier’s inventory. The loss of output work in fleets

can be adversely effective in terms of loss of profits (as in delivery trucks), and might

be in some applications unacceptable (as in public transportation fleets where there

is no redundancy in the fleet). For this reason, it is customary for fleet owners (or

whoever is in charge of fleet maintenance in case it is outsourced to another company)

to acquire a local inventory for several spare parts, especially those known of frequent

degradations and break downs. Not only this enables prompt maintenance actions

without the need to wait for these spare parts to arrive in what is known as Mean

Logistics Delay Time (MLDT), but also it can provide optimal purchasing policies
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when the decision maker is well informed.

MLDT is defined as the average time that is required to obtain replacements from

the manufacturer and transport them to the work site. In reactive maintenance, the

MLDT can significantly affect the availability of the system by allowing the mean time

between failures (MTBF) to acquire higher shares in the timeline. The availability

of the system is a crucial indicator of the probability that the system maintains

ability to operate as required during a target period. The operational availability

can be found by calculating the percentage of the time when all the vehicles of the

fleet are ready and operational, to the total time. If the fleet is not required to be

operational at all times, the mentioned times will account only for periods at which

fleet functionality is needed. It can be clearly understood that the total time includes

when some vehicles are not operational (known as the downtime). Therefore, with

no planning, downtime will consist of MLDT and the necessary time to restore the

system to the target functionality after acquiring the necessary spare parts, known

as Mean Time to Repair (MTTR).

MTBF Downtime MTBF 

MLDT 

MTBF 

MTTR MTTR 

MTBF 

Downtime 

Reactive Maintenance with no 

local Inventory  

Reactive Maintenance with local 

Inventory  

Figure 4.1: MLDT Effect on Downtime.

In fleet management, the MLDT can be avoided by the inclusion of the local

inventory. The inclusion of local inventories requires special attention to the fleet

maintenance policies. We established in previous Chapters the necessity of evolv-
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ing the standard fleet joint maintenance-management policies, when hybridization

(or electrification) is taking place due to the inclusion of the costly and degradable

components such as Li-ion batteries. Similarly, there are several challenges associ-

ated with establishing and managing local inventories in fleet companies, especially

those pertaining replacement batteries. This chapter will address these challenges

through the development of a joint fleet-inventory management policy, denoted as

the Integrated DBOS-Inventory policy.

The rest of this chapter is organized as follows. Section 4.2 will review relevant

research work to the problem and specifically detail the associated challenges. Section

4.3 will focus on the augmentation of the DBOS model to accommodate the inventory

management. Section 4.4 will discuss several case studies, where the performance of

the integrated DBOS-Inventory model is examined.

4.2 Literature Review

Inventory management spells the difference between corporate success and failure

[82]. It is concerned with specifying the sizes (and in some cases the places) of the

stocked items. It dictates the amount to be ordered, and the time of the order. The

main trade off in inventory management arises from the inclination for demand satis-

faction, and the costs associated with maintaining the inventory. With consideration

of additional factors such as the order costs and the lead times, inventory management

is essential for functionality and profitability. For example, Economic Order Quantity

(EOQ), which represents one of the oldest classical production scheduling models, can

specify the optimal quantity of order that minimizes the inventory holding costs and

ordering costs. This in turn projects significantly on profits (or losses).

The policies associated with the inventory replenishment systems are the ”fruits of

labor” of inventory models. They are concerned with the most important functions of

inventory management in terms of when should orders be placed to restock inventory
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and how much should be ordered. These policies are inherently affected by the de-

mand type (as explained above), and the supply issues such as economies of scale (for

production and delivery), capacity limits (for production and delivery) and delays in

replenishment [82]. A concise representation of these policies (if it exists) depends

mainly on the mentioned factors above, and the inventory related costs comprising

of replenishment related costs, holding costs, and stockout costs.

An example of these policies is the famous (s, S) and (s, Q) policies. The former

one specifies an optimal quantity of inventory level (s), known as reorder point, under

which a restocking is to take place. That means if the inventory level is higher than

the reorder point, restocking will not be optimal. If the level is lower, restocking

will take place to bring the inventory level to an upper optimal value (S). The (s,

Q) inventory policy (also known as the reorder point, order quantity system) focuses

on separating the reorder point (s) and the ordering quantity to handle stochastic

demands successfully. In terms of replenishment policies, we refer to the frequency

of the inventory observation (review), which can be continuous, or conducted period-

ically at predefined intervals. A famous inventory policy compatible with the latter

one is the (R, S) inventory policy, also known as periodic review policy. In this policy,

the inventory level is only observed at intervals of R and if the inventory is at level

(y), a quantity (S - y) is ordered to bring the inventory position to S [83].

In addition to the standard considerations in inventory management mentioned

above, the battery replacements inventory will incorporate further challenges. The

main challenge pertains to the fact that batteries are degradable even when they

are stored at inventory. Spotnitz [84] reported that the loss of the Li-ion capacity

in storage will have a typical shape like the one in Figure 4.2. This capacity loss

exhibits reversible and irreversible components where only part of the capacity loss

can be recovered by charging the cell. This small irreversible degradation in batteries

can be significant when considering the fleet maintenance plan horizons. Hence, these
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inventories are perishable or deteriorating inventories.

Figure 4.2: Typical Capacity vs. Time for Storage Test [84].

Deterioration is defined as damage, spoilage, decay, obsolescence, evaporation,

pilferage, etc. that result in decrease of usefulness of the original one [85]. Most

of the existing inventory models in the literature assume that items can be stored

indefinitely to meet the future demands. However, certain types of commodities

either deteriorate or become obsolete in the course of time and hence are unstable

[86]. For example, the commonly used goods like fruits, vegetables, meat, foodstuffs,

perfumes, alcohol, gasoline, radioactive substances, electronic components, etc., where

deterioration is usually observed during their normal storage period. Therefore, if

the rate of deterioration is not sufficiently low, or the duration of storage can be

significantly large (like in DBOS case), its impact on modeling of such an inventory

system cannot be ignored.

We refer to the distinction between deterioration and obsolescence in perishable

inventories as clarified in [86]. Obsolescence refers to items that lose their value

through time because of rapid changes of technology or the introduction of a new

product by a competitor. Referred to as style goods, these items must be sharply

reduced in price or otherwise disposed off after the season is over. An example of style

goods are fashion goods [87] and spare parts for replaced models [88]. Electric (or

hybrid) vehicles batteries are issued in generations, each of which partially eclipses the

previous ones in terms of performance and compatibility. Nonetheless, it will hardly
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render it obsolete. This is to say that older generations of batteries will remain useful

as they are compatible to the already hybridized fleets. However they will not sustain

the same value in the market as new generations arise (depreciation). While we

investigate the influence of this behavior on the replenishment policies generated by

the integrated DBOS-Local Inventory model through later case studies, the model

itself is focused (perishable-wise) on the deterioration of batteries while in storages.

First efforts in perishable inventories included the fashion goods deteriorating at

the end of prescribed storage period in [87] and the exponentially decaying inventory

developed by Ghare and Schrader [89]. The exponentially decaying inventory refers to

certain commodities shrinkage with time by a proportion which can be approximated

by a negative exponential function of time. Since then, considerable work has been

done in this field. Thorough reviews can be found in [90, 91, 86]. A less thorough

review with more recent efforts is provided by [92].

Nahmias [90] categorized the deteriorating inventory models on the basis of shelf-

life characteristics into fixed lifetime as in [93, 94], and random lifetime as in [95, 96,

97, 98, 99]. The former category included those cases where the lifetime is known

a priori to be a specified number of periods or a length of time independent of all

other parameters of the system. The latter category included the exponential decay

as a special case and those cases where the product lifetime is a random variable

with a specified probability distribution [90]. This categorization was an extension

of Van Zyl’s [100] one, where he used the classification “age dependent” perishability

and “age independent” perishability to distinguish between fixed life and exponential

decay. Goyal [86] extended Nahmias’s [90] categorization to a third group of models

in which the inventory decays corresponding to the proportional inventory decrease

in terms of its utility or physical quantity.

The demand plays a key role in inventory modeling. It can be deterministic which

includes steady, intermittent, and time variant (with a trend or seasonality), or it can
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be stochastic (unpredictable, random). With this key role, it can be easily concluded

that each of the research efforts in deteriorating inventory had adopted demand as-

sumptions that governed the modeling effort. For example, deterministic uniform

demand was assumed in [101, 102, 103], and deterministic time variant demand was

assumed in [104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 85]. Examples

of efforts that assumed stochastic demand with known probability distribution are

[95, 99, 115]. Examples of efforts that assumed stochastic demand with arbitrary

probability distribution are [116, 117, 97].

Most of the previous efforts investigate the inventory as an independent part (at

least management wise), isolating it from the other operational practices within the

functional productive entity (a production company, a service provider, etc.). The

real life inter-relations which an inventory is expected to have with the rest of the

operations are mimicked through the modeling and estimation of the demand and

supply. This decentralization is very plausible when the inventory represents the

dominant function (as in supermarkets and commercial stores, wholesalers, energy

storing operations in energy companies, etc.). However, in many other applications,

the inventory represents only one unavoidable part of the complicated and integrated

productive scheme. In these cases, integrating the inventory management with the

other operations can be of significant economical impact. For example, Exxon Chemi-

cals estimated that the adoption of planning integration techniques (which inherently

incorporates inventory management) has led to an annual reduction in operating costs

by 2% and operating inventory by 20% [118]. Similarly, DuPont has also noted that

the integration of planning and scheduling played a part in reducing the working

capital tied up in inventory from 160 to 95 million dollars for a polymers facility

[118].

Chemical production planning is not the only field where inventory-planning inte-

gration has received interest. In manufacturing, there have been a spate of programs
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developed by industry, all aimed at reducing inventory levels and increasing efficiency

on the shop floor. Examples include conwip, kanban, just-in-time manufacturing,

lean manufacturing, and flexible manufacturing [83]. In transportation planning, in-

ventory management has been integrated with the vehicle routing problem in what is

known as the inventory routing problem. As mentioned in Section 1.2.1, the vehicle

routing problem aims to design a set of m minimum cost vehicle routes through n

customer locations, so that each route starts and ends at a common location and

some side constraints are satisfied [12]. Integrating the inventory management to this

problem reflects on the consideration of adding the inventory associated costs to the

objective function. Research efforts in this field covered deterministic and stochastic

demands, examples of which can be found in [119, 120, 121, 122, 123, 124].

From all of the previous, the importance of integrating the inventory with plan-

ning and scheduling is quite evident. Therefore, we aim in this Chapter to introduce

some incorporation of inventory modeling with DBOS, which will strengthen its de-

liverables in terms of being a robust battery-level fleet management policy. We note

that DBOS does not show clear demand structure for the new batteries prior to the

substitution action. Therefore, using an independent inventory model is hindered

by the lack of the demand information (even for inventory models with demand of

arbitrary distribution, the demand is still assumed to be representative and have

certain structure). It is for this reason that we will introduce a special formulation

that includes both DBOS and the inventory functionality, to implicitly capture the

demand. The augmentation of the DBOS model aims to account for the inclusion

of a local inventory with deteriorating (in storage) batteries. In addition to the fleet

management functionality, an optimal replenishment will be another deliverable.
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4.3 Problem Formulation

To integrate inventory management with DBOS, several changes are to take place

on the presented model in Section 3.2. These changes will include the establishment

of the age-dependent substitution variables (decision variables), purchase or replen-

ishment variables (decision variables), and inventory variables (dependent variables).

We first provide the mathematical modeling, and then explain the necessary changes

in the SDP framework that we have setup in the previous Chapter. The case stud-

ies in this Chapter will be solved based on the SDP framework. Nevertheless, the

provision of a concise mathematical model in Section 4.3.1 has several benefits. The

mathematical model presents the reference to which the SDP framework can be built

upon, especially that we are using Markov Decision Processes, where the definitions

of states and actions might be misleading. Additionally, the mathematical model can

be used for optimization purposes especially for the high confidence (deterministic)

degradation estimation as in Chapter II. Furthermore, the model can be used for

simulation investigations to analyze different scenarios where the SDP is intractable.

Finally, a representative model is always a good asset for further development down

the line.

4.3.1 Mathematical Modeling of DBOS-Inventory Integrated Policy

On the one hand, the placement aspect of DBOS, modeling wise, is not changed.

Therefore, we maintain the placement variables Xij(k) with no change, and maintain

the relevant constraints that involve these variables solely as in Equations (2.2), (2.3),

(2.8), and (2.9).

On the other hand, the substitution variables Zi(k) require augmentation. Pre-

viously, these were binary variables that reflected the occurrence of a substitution

action, at which a specific old battery is replaced with a new one. With the inclu-

sion of the local inventory, and the decaying of batteries within the inventory, this
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substitution may not incorporate a new battery with zero accumulative degradation.

The battery that is replacing the degraded one might have been in storage for a

while, and hence partially degraded. The substitution variable thus is no longer a

mere flag of replacement, it has to represent the age of the battery that is replacing

the degraded one. To accommodate this, we make a simplifying assumption. The

batteries degradation while at inventory is relatively small. Moreover, we expect the

inventory environment (in terms of temperature, humidity, etc.) to be well controlled.

Therefore, it becomes plausible to assume the degradation of the batteries within the

inventory to be of deterministic nature. This means that if we know the duration of

time for which the battery has been placed at the storage, we can find its inventory

deterioration. We augment Zi(k) as in Figure 4.3 to become an age-dependent sub-

stitution variable Ziq(k) ∈ {0, 1}, where the subscript q = 1, · · · , qm, represents the

age of the replacing battery with upper bound qm. The upper bound can be found

by:

qm = min

(
K,

β

ρ

)
(4.1)

where β, as defined previously, is the threshold value at which the battery becomes

unfit to be in the field and requires replacement (substitution), ρ is the deterioration

rate of the batteries in inventory and K is number of intervals found from the horizon

plan (T ) and the discretization interval (∆).

Figure 4.3 shows an example where substitution has been scheduled for the second

battery in interval 2, and the third battery in interval 4. On the left hand side, the

substitution is age-independent as in previous chapters. On the right hand side,

the substitution is age-dependent, where the replacing in the first substitution is

conducted by a “fresh” new battery, and the replacing in the second substitution is

conducted by a three-intervals-old (in inventory) battery.

In the DBOS-inventory integrated model, the substitution is separated from the
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Ziq(k) 

Figure 4.3: Augmenting the Substitution Variable

acquiring of new batteries (purchase). Therefore, we define a purchase (replenish-

ment) variable P (k) ∈ 0, · · · , P u, which is a discrete decision variable that states the

number of new batteries to be ordered at the beginning of each discrete interval. The

upper limit P u can be determined by a number of factors such as maximum purchase

capability, maximum delivery size, supplier capacity, etc. With this construction,

we are at most selecting one age-dependent substitution per battery. Therefore, we

derive the following physically intuitive constraint:

qm∑
q=1

Ziq(k) ≤ 1 ∀i = 1, · · · , n; ∀k = 1, · · · , K (4.2)

Following next, we define the dependent variables Qq(k) ∈ 0, · · · , Qu, which we

denote as inventory variables. Inventory variables indicate the stock level of each

possible age category, and are governed by the following equations:
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Qq(k) ≥ 0 ∀q = 1, · · · , qm; ∀k = 1, · · · , K (4.3)

Q1(1) = Qinitial −
n∑

i=1

Zi1(1) (4.4)

Q1(k) = Q1(k − 1)−
n∑

i=1

Zi1(k) ∀k = 2, · · · , λ (4.5)

Q1(k) = P (k − λ)−
n∑

i=1

Zi1(k − λ) ∀k = λ, · · · , K (4.6)

Qq(k) = Qq−1(k − 1)−
n∑

i=1

Zi1(k) ∀q = 2, · · · , qm, ∀k = 2, · · · , K (4.7)

Qq(1) = 0 ∀q = 2, · · · , qm (4.8)

where Qinitial is the stock level of new batteries at the beginning of the plan horizon,

and λ is the lead time between placing an order and its delivery. Qinitial is assumed to

be zero in most cases; nonetheless we maintain it as a parameter because in some cases

the purchase contract some fleet companies strike incorporates spare parts with the

main items in the contract (being in our case the hybrid or electric vehicles). Equation

(4.3) is a physical constraint of the stock level being non-negative. Equations (4.4)

through (4.7) govern the interrelation between the three groups of variables (age-

dependent substitution, purchase, and inventory variables). Equation (4.8) states

that there are only new batteries in stock in the first interval.

We finally reformulate the health state update in Equation (2.11) to incorporate

the new age-dependent variables. The updated equation for the accumulative degra-

dation variables Yi(k) is:
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yi(k) =

qm∑
q=1

[(1− Zi(k))yi(k − 1) + fqZiq(k)] +
m∑
j=1

rjXij(k)

∀i = 1, · · · , n; ∀k = 2, · · · , K (4.9)

where fq is a vector that establishes the initial decay within the inventory (for each

age category) for the replacing batteries. This vector can be either supplied as a

parameter or found by:

fq = (1− q)ρ ∀q = 1, · · · , qm (4.10)

where we assume linear decay within inventory. Bound constraints in Equation (2.12),

and accumulative degradation initialization in Equation (2.11) require no changes,

and can be used here:

0 ≤ yi(k) ≤ β yi(0) = 0 ∀i = 1, · · · , n ∀k = 1, · · · , K; ∀i = 1, · · · , n

(4.11)

To account for uncertainty, we use similar approach to the one explained in Section

3.2, where Equation (4.9) becomes:

yi(k) =

qm∑
q=1

[(1− Zi(k))yi(k − 1) + fqZiq(k)] +
m∑
j=1

rjXij(k) + ϵ (4.12)

∀i = 1, · · · , n; ∀k = 2, · · · , K

where ϵ represents the error in the deterministic degradation prediction, identified

after the discrete interval has passed.
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The objective function has been selected previously to be in the form of minimizing

total maintenance plan’s projected costs. With inventory, this objective is comprised

of Swapping cost, Purchase cost, Holding Cost, and Substitution cost. The swapping

cost can be found similarly to Equation (2.13):

Jswap =
1

2

K∑
k=2

{
cswap(k)

n∑
i=1

m∑
j=1

|Xij(k)−Xij(k − 1)|

}
(4.13)

The purchase cost can be found by:

Jswap =
K∑
k=1

{cp(k)P (k) + corder(k)(P (k) ̸= 0)} (4.14)

where cp(k) is the time dependent cost of new battery, and corder(k) is time dependent

order placement cost.

The holding cost for inventory can be found by:

Jholding =
K∑
k=1

qm∑
q=1

{ch(k)Qq(k)} (4.15)

where ch(k) is the time dependent holding cost coefficient that can reflect a number

of costs associated with maintaining the inventory environmentally (temperature,

humidity), and operationally (inventory labor, renting space, electricity, etc.). The

last contributing cost to the objective function is the substitution cost, which can be

found by:

Jholding =
K∑
k=1

qm∑
q=1

n∑
i=1

{csub(k)Zi(k)} (4.16)

where csub(k) is the time dependent substitution cost coefficient reflecting the labor

cost and potential of loss in work load. We note here that this coefficient is different

from the one shown in Section 2.2.3 as it does not incorporate the price of new battery

covered by the purchase cost.
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The objective function then becomes now:

J =
1

2

K∑
k=2

{
cswap(k)

n∑
i=1

m∑
j=1

|Xij(k)−Xij(k − 1)|

}

+
K∑
k=1

{cp(k)P (k) + corder(k)(P (k) ̸= 0)}+
K∑
k=1

qm∑
q=1

{ch(k)Qq(k)}

+
K∑
k=1

qm∑
q=1

n∑
i=1

{csub(k)Zi(k)} (4.17)

4.3.2 Integrated DBOS-Inventory SDP Formulation

We augment the SDP = {S,M,R,C, P} formulation provided in Section 3.2, to

account for the inclusion of inventory management. As the states in Markov Decision

Processes (MDP) are assumed to store all relevant information necessary for the

decision maker to take action, their definition should be extended with inventory.

The extension has two case scenarios depending on whether a lead time exists or not.

4.3.2.1 States with No Lead Time

With no lead time to include, only the information regarding the stock levels of

each age category requires incorporation in the state definition. Thus, we have:

S = {ς1, · · · , ςN} (4.18)

ςp = (Y1p, · · · , Ynp, Gp, Q1p, · · · , Qqmp) p = 1, · · · , n (4.19)

Yip ∈ {0, ϕ, 2ϕ, · · · , β} ∀i = 1, · · · , n

Gp ∈ 1, · · · , nG

Qqp ∈ {0, 1, · · · , Qu} ∀q = 1, · · · , qm

where, as in Section 3.2.1, Yip represents the accumulative degradation of the
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ith battery in state ςp measure with discretization resolution ϕ, and Gp represents

the system placement with nG possible placements. The new variable in the state

definition, Qqp, represents the stock level of batteries of age q in the inventory. The

total number of states (N) in the state space can be found now by (
(

β
ϕ

)
+ 1)n×NG×

(Qu)qm .

4.3.2.2 States with Lead Time

Previously, with no lead time, our unconstrained access to batteries at anytime

allowed room for freedom in terms when orders arrive and when they are used in

substitution actions and when they are stored. Specifically, while all the previous

occur during an interval, we had not pinpointed exactly when these happen within

the interval. When there is lead time, we have to “tread carefully” in our definitions

with respect to the exact moment purchase, substitution, and storage takes place.

This is primarily due to the fact that actions have no access to the ordered batteries

until the orders lead time has passed. We are then faced by two scenarios when

there is lead time. The first occurs when the lead time is equal to one interval. The

second occurs when the lead time is larger than that. These two scenarios arise from

a chosen definition in terms of the states and actions, and their reflection on the real

time horizon (pinpointing them in an interval). We set up the MDP such that the

action is conducted exactly right after we become knowledgable of the states (battery

health states and inventory levels). That includes the swapping, the substitution and

most importantly the purchase. Therefore, the decision to purchase with lead time

that equals one interval means that the next time we check the inventory levels, the

item(s) we ordered are already delivered. In that case, the state definition requires

no change. The difference from the zero lead time case will take place in the state

transition as will be shown in Section 4.3.2.4.

When there is lead time that is larger than one interval, we will not find the orders
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delivered the next time we check the inventory levels. In that case the orders will

be “pending”. The information about the purchase orders that have been placed but

not yet delivered are essential for the decision maker. It becomes clear that the state

definition in this second scenario requires their inclusion. The inclusion should be

an efficient summary of the orders that have been placed, and their times. For this

reason, we define a pending inventory variable (QpendingΛp) to store this information

in. QpendingΛp will state how many batteries have been ordered that require Λ intervals

to be delivered. Intuitively, Qpending1p will state the order that will be delivered in

the next interval. The state definition becomes:

S = {ς1, · · · , ςN} (4.20)

ςp = (Y1p, · · · , Ynp, Gp, Qpending1p, · · · , Qpendingλp, Q1p, · · · , Qqmp) p = 1, · · · , n

(4.21)

Yip ∈ {0, ϕ, 2ϕ, · · · , β} ∀i = 1, · · · , n

Gp ∈ {1, · · · , nG}

QpendingΛp ∈ {0, 1, · · · , P u} ∀Λ = 1, · · · , λ− 1

Qqp ∈ {0, 1, · · · , Qu} ∀q = 1, · · · , qm

with qm = min
(
T − (λ− 1), β

ρ

)
due to the arise of the QpendingΛp variables that are

now taking the place of the Qqp variables. The total number of states (N), can be

found now by (
(

β
ϕ

)
+ 1)n × nG × (Qu)qm+λ.

4.3.2.3 Actions

The actions (decisions) definition has to be extended as well. It will comprise of

all the possible combinations of swapping, age-dependent substitutions, and purchase

(replenishment). Thus, we have:
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M = {µ1, · · · , µM̄} (4.22)

µk = {z1k, · · · , znk, G′
k, Pk} (4.23)

zik ∈ {0, 1, · · · , qm} with no lead time and ∀i = 1, · · · , n

G′
k ∈ {1, · · · , nG}

Pk ∈ {1, · · · , P u}

where zi is a variable indicating whether a substitution has taken place or not for

battery i and what was the age category of the replacing battery. For example,

zi = 0 represents no substitution for battery i, and zi = 6 means a substitution

has taken place with respect to battery i, where the replacing battery has been in

inventory for 6 intervals. It is clear that z is a summarized representation of the

age-dependent Substitution variable Ziq(k) described in Section 4.3.1. Therefore the

number of possible actions (M̄) will be (qm + 1)n × nG × P u.

With lead time, the same definitions apply except when qm is selected from K

(or K − (λ − 1) when the lead time is larger than one). The difference is that zi

will run only for i = 1, · · · , qm − 1 as substitutions with batteries older than this

cannot take place (time line wise) within the plan horizon (i.e. these specific sort

of substitutions are offered after the plan horizon would have ended and by then no

actions are needed).

4.3.2.4 Immediate Costs, Hidden Costs, Transition Probabilities, and So-

lution Approach

As in Chapter III, we will have two categories of costs associated with the actions

taken and states arrived at. The immediate cost extension will include the inventory

relevant costs detailed in Section 4.3.1. The new immediate cost equation becomes:
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C(ςp, µk) =csub

n∑
i=1

{zik ̸= 0}+ c1,Gp,G′
k
{Gp ̸= G′

pk}

+ cp{Pk}+ corder{Pk ̸= 0}+ ch

{
qm∑
q=1

Qpq

}
(4.24)

where csub, cp, ch, and corder are defined in Section 4.3.1, and c1,Gp,G′
pk

is defined in

Section 3.2.3 in the previous Chapter.

Before talking about transition probabilities, we note that the transition of states

is more complex in the DBOS-Inventory Integrated model. The transition of the first

components in the state definition (battery health states and system placement) is

similar to what has been described in Chapter III, with the health state evolution

governed now by Equation (4.9) rather than Equation (3.1). However the evolution

of the inventory related variables depends on whether there is lead time or not,

since the state definition changes with that. Whether there is lead time or not, the

transition should satisfy the rational of Equations (4.4) through (4.8). However, the

difference in the state definitions in the two cases motivates the provision of detailed

state transition equations. With no lead time, the state transition from ςp to ςp′ with

action µk is found by:

Q1p′ = Pk −
n∑

i=1

{zik = 1} (4.25)

Q2p′ = Q1p −
n∑

i=1

{zik = 2} (4.26)

...

Qqmp′ = Q(qm−1)p −
n∑

i=1

{zik = qm} (4.27)

In the lead time case, once again we identify the two scenarios explained in Section
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4.3.2.2. When the lead time equals one interval, the next state inventory level will be

a reflection of the purchase action. However, the substitution actions accompanying

the purchase action can no longer benefit from the purchase:

Q1p′ = Pk (4.28)

Q2p′ = Q1p −
n∑

i=1

{zik = 1} (4.29)

Q3p′ = Q2p −
n∑

i=1

{zik = 2} (4.30)

...

Qqmp′ = Q(qm−1)p −
n∑

i=1

{zik = qm − 1} (4.31)

When the lead time is larger than one interval, the QpendingΛp variables place a

buffer between the purchase action and the real inventory variables. Specifically, the

purchase action will reflect only on Qpending(λ−1)p′ , and the real inventory variable Q1p′

will involve only Qpending1p:
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Qpendingλ−1p′ = Pk (4.32)

Qpending(λ−2)p′ = Qpending(λ−1)p applies when λ ≥ 3 (4.33)

Qpending(λ−3)p′ = Qpending(λ−2)p applies when λ ≥ 4 (4.34)

...

Qpending1p′ = Qpending2p applies when λ ≥ 3 (4.35)

Q1p′ = Qpending1p (4.36)

Q2p′ = Q1p −
n∑

i=1

{zik = 1} (4.37)

Q3p′ = Q2p −
n∑

i=1

{zik = 2} (4.38)

...

Qqmp′ = Q(qm−1)p −
n∑

i=1

{zik = qm − 1} (4.39)

With respect to transition probabilities, there are no additional sources of uncer-

tainty. The developed framework in Chapter III can be used with one small change,

upper and lower bounds for Qqp. In this case two options emerge based on the ap-

plication and the fleet company preference. A strict lower and upper bounds can be

imposed by assigning zero probability to any action that may overstep the operat-

ing range of the inventory levels. Unlike the case in Chapter III where we desired

to maintain all possible actions due to the stochastic outcome of the battery health

state evolution, the inventory evolution is 100% deterministic. Therefore, the next

stocking levels will be known as soon as we make our decision, and hence the zero

probability solution is effective.

The second option will emerge when there are more leniencies in the company’s

operation. For example with respect to the upper bound, the company can have
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the ability of storing excess inventory at other places which will be more expensive

intuitively. Another example is relevant to the lower bound. For example, we can

define the case when Qip is dropping below 0, to be a representation of rush orders.

In this case, the company can for example reach for an expensive local supplier (or

local competitor) with zero lead time. It is undoubted that in this case, we will have

to use the border state replacement procedure similar to the one detailed in Section

3.2.5 to maintain the functionality of the policy. The borders here are drawn with

respect to the inventory level and not the health state. In both examples, penalties

formulated by next-state dependent costs are added, and these costs can be added to

the SDP. We finally reemphasize the note that while these are next-state-dependent

costs, they are not hidden costs as the inventory evolution within the state evolution in

this framework is deterministic. The framework is now suitable for treatment using

discrete stochastic dynamic programming. We solve this problem using backward

induction dynamic programming as described in Section 3.2.6.

4.4 Case Studies

In this Section, we will demonstrate the important role of the integrated DBOS-

Inventory policy in terms of providing savings when stocking batteries for the fleet

company is of importance. Although these case studies reflect small cases (two vehicle

swapping), in principle the policy applies for fleets. The DBOS-Inventory framework

is an extension of the DBOS one, which suffers as most SDP instances from the curse

of dimensionality. This extension increases the state-space size and the severity of the

curse. Approximate Dynamic Programming (ADP) techniques can be helpful in this

manner. We reiterate here that the scope of the research work in this thesis is the

establishment of the new and unprecedented DBOS and Integrated DBOS-Inventory

policies, on the theoretical level. Therefore, details of how to augment the ADP

algorithms represent a separate contribution and are beyond the scope of this research
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work. Nonetheless, a short description of the opportunities to implement them will be

highlighted in Section 5.3. Per the motivation of inventory explained in Section 4.1,

stocking batteries is beneficial in two cases: non-zero lead time, and special pricing

circumstances. Examples of the latter one is a special introductory price when spare

batteries are part of the fleet hybridization (or electrification) contract, and ramp up

prices (increase in the price of batteries with time). Taking this into consideration,

the case studies aim to investigate the behavior of the Integrated DBOS-Inventory

policy, to verify its compliance with the inventory motivation rational.

4.4.1 Case Study VII

The first case study in this Chapter aims to examine the Integrated DBOS-

Inventory policy with a fixed purchase price (throughout the horizon) scenario and

with zero lead time. The problem parameters are available in Table 4.4.1.

Due to the stochastic nature of the problem, the number of runs conducted per

policy is 5000. All runs started with states with initial condition of brand new batter-

ies and different initial placements. Figure 4.4 shows the results of stochastic DBOS

(developed in Chapter III) and Integrated DBOS-Inventory policies.

As it can be seen from the figure, both policies are equivalent in performance.

A look at the inventory variables (a snapshot is shown in Figure 4.5) shows clearly

the intuitive behavior of maintaining the inventories clear all the time. With no

lead time, and the purchase price is fixed, there is no reason for stocking and hence

inventories are empty. This confirms the fact that when inventory motivation is

absent, Integrated DBOS-Inventory policy behaves exactly as DBOS policy.

4.4.2 Case Study VIII

This case study investigates the Integrated DBOS-Inventory policy when a special

introductory price of spare batteries is given to the customer fleet company (e.g., part
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Table 4.1: Case Study VII Parameters

Parameter Symbol Value

Number of vehicles n 2
Number of loading profiles m 2
Plan horizon (years) K 5
Vehicles allocated per loading profile dj [1,1]
Degradation rates (per month) rj [0.04,0.03]
Swapping costs ($) c1(k) 800
DBOS (only) substitution costs ($) c2(k) 11600
Integrated DBOS-Inventory Substitution Cost ($) csub(k) 1600
Purchase Cost ($) cp(k) 10000
Order Cost ($) co(k) 250
Holding Cost ($) ch(k) 500
Threshold β 0.1
Discritization Resolution ϕ 0.01
Deterioration rate of the batteries in inventory ρ 0.01
ϵ Resolution 3
Horizon Discretization interval (year) ∆ 1
Hidden cost (penalty) coefficient Chid 32000
used in policy build-up∗ ($)
Proportional penalty of over-usage of 3000
batteries used in policy validation
($/0.01 of over-usage in health state)
* This number will be multiplied by a small probability as seen from Equation (3.13)
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Figure 4.4: Case Study VII (Fixed cp) Results

of the fleet hybridization or electrification contract). We maintain zero lead time and

offer spare batteries at the beginning of the plan horizon at a discounted rate of 25% of

their nominal price. While this percentage seems drastic, it is tailored for simulation

purposes. It was found out that with shortened plan horizon, inventory deterioration

rate, costs of inventory holding, stocking starts to be observed after a reduction of

nearly 50% of the nominal battery price. The stocking at this level of reduction

is still of one battery. Therefore, the maintenance costs of both stochastic DBOS

and Integrated DBOS-Inventory policies are very close and comparisons are hard to

establish. The closeness is attributed to the fact that the savings associated with

one battery initial stocking is overshadowed by inventory holding costs and inventory

deterioration. A reduction of 75% in the original price will initiate stocking of two

batteries at the beginning which will enable clearer view of the savings in this small

case study (two vehicles), and thus addresses its aim. Hence, the discounted price of

25% is chosen for this case study. In real life scenario, fleets will be comprised of tens
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Figure 4.5: Snapshot of Health State and Inventory Variables from Some of the Runs
in Case Study VII

or hundreds of vehicles where stocking will be in larger numbers and savings can be

more discernible.

We compare maintenance plan costs associated with the Integrated DBOS-Inventory

policy with the ones associated with standard stochastic DBOS policy. Figure 4.6

shows the results. It can be seen clearly that the costs are higher with stochastic

DBOS. With no inventory, this policy cannot capitalize on special introductory price.

Figure 4.7 shows a snapshot of the inventory variables in a number of the runs. As

it can be seen, the policy stocks two spare batteries each time initially. Nonetheless,

what the policy does with these stocking is different from run to run depending on

the stochastic nature of the health state evolution. For example we show here 3 dif-

ferent scenarios (marked by colors of the rectangles shown in the figure) where the
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two battery inventory has been managed differently each time.

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

Fr
e

q
u

e
n

cy
 o

f 
O

cc
u

re
n

ce
s 

Cost Ranges ($) 

DBOS 

DBOS with Inventory 

Figure 4.6: Case Study VIII (Special Introductory Price) Results

The conclusion of this case study is that Integrated DBOS-Inventory policy takes

the action of stocking spare batteries when the opportunity of savings allows for

that. While inventory deterioration and inventory holding costs might reduce savings,

stocking batteries can still provide improvement over stochastic DBOS policy.

4.4.3 Case Study IX

The third case study in this Chapter aims to investigate the Integrated DBOS-

Inventory policy behavior when the battery prices are increasing with time (ramp-up

price). This situation might not be directly intuitive. On the one hand, Li-ion

batteries, as many other technologies, are undergoing significant development where

new models with cheaper production prices are emerging. On the other hand, the

Li-ion newer generations might not be compatible with the fleet who has undergone

hybridization or electrification many years and thus many system generations ago.
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Figure 4.7: Snapshot of Health State and Inventory Variables from Some of the Runs
in Case Study VIII

The compatible old-generation batteries might then undergo price increases as less

manufacturing facilities and production are involved with these generations. All of

this is driven by the supply and demand. A living example of this situation can be

seen in the market and prices of the internal memory used in personal computers

and Laptops, known as Random Access Memory (RAM). With the emergence of

the faster and newer DDR3 RAM, the DDR2 RAM which is needed for many older

motherboards has undergone significant price increases. Currently, DDR3 RAM can

be acquired as much as half the price of DDR2, despite the latter being slower. Similar

thing happened when DDR2 RAM replaced DDR RAM several years ago. Therefore,

while technological products seem to undergo price decreases generation after another,

the compatibility might change this point of view to price increases. Finally, the price
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increases can as well be justified by inflation as the prices of materials and energy

used in the production of the batteries are increasing.

We increase the price of acquiring new batteries each interval by $1600, where

the order cost is maintained. With this increase, the hidden cost (penalty) coefficient

used in policy build-up (chid) has to be increased as well. When the batteries are

becoming expensive, the policy will opt for over-usage if the penalty is no longer

proportional to the battery price, and we would see higher percentages of over-usages.

The proportional penalty of over-usage of batteries used in policy validation does not

have to be changed as it is merely used after the policy has been formulated and do

not affect the percentages of over-usages. We maintain the same penalties for both

policies in the validation part for fair comparison. Figure 4.8 shows the results. It is

clearly that the Integrated DBOS-Inventory policy not only has lower maintenance

plan costs in general, but also shows robust behavior in maintaining over 70% of the

runs within the same cost category. The policy capitalizes on being well informed

of the future price increases. Hence it takes advantage of the lower prices at the

beginning, specifically the first two intervals where it stocks batteries for later use

when these batteries are more expensive to purchase. Figure 4.9 shows a snapshot

of the inventory variables. Once again, it can be seen that different runs will have

different stocking and inventory evolutions (marked in the figure by the color of the

frame box). The stochastic nature of the health state evolution governs that.

We note that there is less than 10% of the runs where the stochastic DBOS policy

had low costs. A detailed look into the health state evolution in these runs revealed

that the predicted degradation was lower than expected in several of the intervals,

allowing the policy to avoid additional expensive substitutions at later stages.

The conclusion of this case study is that Integrated DBOS-Inventory policy can

benefit from being informed about future prices by taking the action of stocking spare

batteries. While inventory deterioration and inventory holding costs might reduce
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Figure 4.8: Case Study IX (Ramp up Price) Results

savings, stocking batteries can still provide improvement over stochastic DBOS policy.

4.4.4 Case Study X

The final case study aims to investigate the primary reason for acquiring an in-

ventory; a non-zero lead time. We apply the Integrated DBOS-Inventory policy on

a case study with similar parameters to the ones in Case Study VII, but with lead

time (λ) equals to one and two intervals. We allow for rush replenishment (from local

supplier or competitor) with high costs equivalent to $20k per battery. This is a next

state cost as explained in Section 4.3.2.4. The policy will trade off excessively overus-

ing the batteries and ordering this rush expensive replinishment when things do not

work as well as the policy has planned for. In previous cases, rush replinshment made

no value as the policy can substitute batteries (with the normal cost of purchase)

when overusing is imminent. In this case, ordering a new battery will take one or two

intervals (based on the lead time) which requires extensive planning.
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Figure 4.9: Snapshot of Health State and Inventory Variables from Some of the Runs
in Case Study IX

One important note we would like to make about this case study is the fact that

with lead time, we can only apply standard stochastic DBOS if all orders are rush

(and expensive) orders. Figure 4.10 shows the costs distribution of the different runs

for the DBOS with rush orders policy, and the Integrated DBOS-Inventory policy

with lead time equal to one and two intervals.

Intuitively, the figure shows that the rush expensive orders force DBOS without

inventory to sustain substantial maintenance costs which allows the proposed inte-

grated policy to significantly outperform that by a large margin. More importantly,

comparing the Integrated DBOS-Inventory policy results for (λ = 1) and (λ = 2)

reveals the smartness of the proposed policy in handling different lead times while

maintaining relatively close performances. It is undoubted that with increased lead
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Figure 4.10: DBOS Policy with Rush Orders and Integrated DBOS Inventory Policy
(with λ = 1 and 2) Results

time, any predictive policy will suffer a decrease in the performance, and this is what

we note for the lower cost category occurrences. However, it can be seen that the

loss is significantly small (few hundred occurrences in the lowest cost range only, and

maintaining equivalent occurrences in other ranges). This reflects the capability of the

proposed policy in adjusting to lead time and making predictive orders accordingly.

Studying the evolution of the Qq and Qpending variables (the latter only appears

when λ = 2) in Figures 4.11 and 4.12 reveals this predictive behavior. One or two

intervals (depending on λ) prior to the point at which substitution is taking place,

a purchase order is made. In most of the outcomes, the substitution will take place

directly upon the arrival of the ordered batteries (the action that follow the moment

when the orders are in Q1). This prevents actual inventory stocking (Qq for q ≥ 2

are zeros), and hence avoiding inventory holding costs (similar to the rational in

Case Study VII). However, due to the stochastic nature of the health state evolution,

there will be a limited number of occurrences when the ordered battery or batteries
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are actually stocked for one interval. This happens when the policy would have

anticipated substitution in the next interval; however the degradation of the batteries

in the field turned out to be “nicer than expected” and was smaller. There is an

incredible outcome of such behavior. As the proposed policy with fixed prices (even

when there is lead time) avoids any long-term stocking, we can heuristically ignore

modeling older batteries inventory levels (Qq for large q), which reduces the state-

action space dimension. What exact value of q after which we can ignore modeling the

inventory level is dependent on the degradation rates, degradation prediction errors

and their probability distribution. It can be selected upon running small size fleets

as in our case here. The case study provided in Appendix B will benefit from this

heuristic tackling of the policy’s curse of dimensionality.

We note also that there is a number of rush replenishment (less than 8% when

λ = 1, and 23% when λ = 2). Intuitively, with larger lead time more rush replenish-

ment are required due to the increased steps ahead prediction of the health states.

These rush replenishment are responsible for the high costs (above $38k). This is the

outcome of the current setup of our problem, having the penalty for the potential of

overusage during policy buildup, penalty for actual overusage for policy validation,

and penalty for rush replenishment (see Sections 3.2.5 and 4.3.2.4). Changing these

parameters will yield different numbers. For example, since all rush replenishment

are occurring in the final interval (which confirms that they are caused by prediction

malfunction), we can reduce the penalty of the potential of overusing in the last in-

tervals to allow the policy a more bolder attitude where it goes for overusage rather

than rush replenishment.

We benchmark the cost results with a more intelligent policy than DBOS with

rush orders. Referring back to the standard replenishment inventory policies, briefly

mentioned in Section 4.1, we can combine a version of the standard periodic review

(R,S) inventory policy with DBOS framework to generate a policy that is guaranteed
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Figure 4.11: Snapshot of Health State and Inventory Variables from Some of the Runs
of the Proposed Policy When λ = 1

to be optimal on the fleet management side (due to the merits of DBOS). This

way we can compare the optimality of the inventory replenishment side between the

Integrated DBOS-Inventory policy and the combined DBOS-(R,S) policy. Clearly, the

periodic interval at which the inventory is reviewed is the same as the discretization

interval (∆). We choose the upper limit (S) to equal 2 batteries as we have found that

this shows the best performance in terms of costs. Results comparing our proposed

policy, DBOS with rush orders policy, and the combined DBOS-(R,S) policy for lead

time equal to one are shown in Figure 4.13. From the figure, we can see that combining

DBOS and the (R,S) policy outperforms DBOS with rush orders. Additionally, we

note that with the combined policy, no rush orders has been recorded, confirming
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Figure 4.12: Snapshot of Health State and Inventory Variables from Some of the Runs
of the Proposed Policy When λ = 2

the significant performance and proving the intelligence of the combined policy over

rush orders. Now comparing the combined policy with our proposed policy, it can be

clearly noticed that our proposed Integrated DBOS-Inventory policy performance is

certainly unmatched. This confirms the optimality of the inventory replenishment in

our proposed policy since it’s being looked at in a centralized manner in comparison

to the decentralization occurring when combining DBOS with (R,S) replenishment

policy.

We attempt to benchmark the cost results from another point of view. Integrated

DBOS-Inventory policy represents an advanced prognostics and health management

(PHM) decision support tool as it connects PHM to inventory management. As
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Figure 4.13: Benchmarking the Proposed Policy with Standard Inventory Replenish-
ment Policy

we had mentioned briefly in Chapter I, maintenance paradigm has evolved from the

fail and fix approach (reactive maintenance), to periodic maintenance (preventive

maintenance), and then to the condition-based maintenance (CBM), finally arriving

at PHM. In the basic approach of CBM, the health state change is monitored and

upon crossing a predetermined threshold, a maintenance action is triggered. PHM

represents an evolution of that due to the incorporation of the prediction of the

health state change in PHM, enabling predictive maintenance as well as predictive

operations management. When MLDT (see Section 4.1) is significant, the importance

of connecting the maintenance with the supply chain logistics has been highlighted

by several researchers. Parlier [125] has proposed connecting CBM with supply chain

management for US military applications. In [126], he presented the significance of

applying such scheme on the maintenance of the AH-64 Apache nose gearbox with

almost half a million dollars in savings. We will similarly use the concept of connecting
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CBM with inventory management to benchmark our proposed policy.

We use the health state degradation to form a DBOS policy that will purchase

batteries when the accumulative degradation in the health states of the batteries

exceeds certain limit (threshold). The results for lead time that equals one interval

and different thresholds are shown in Figure 4.14. When comparing these results

to our proposed policy results for a lead time equal to one (Figure 4.10 or Figure

4.13), the CBM-based policy is outperformed by a significant margin. The proposed

policy worst occurrences are in the same cost category as the best occurrences of the

CBM-based policy (which prevented a clear plotting of them together on the same

graph). While this concludes the benchmarking objective, we point out that this

poor performance of the CBM-based policy is certainly counter-intuitive. The policy

fails even to outperform the DBOS with rush orders. The primary reason behind this

is the accelerated degradation with shortened plan horizon chosen in the case study

parameters. Further explanations of this are beyond the scope of the main part of the

thesis and will be detailed in Appendix B. We also report there another case study

with more “relaxed” degradation and with longer horizon, where the CBM-based

policy outperforms DBOS with rush orders.

The conclusion of this case study is that Integrated DBOS-Inventory policy is

the best policy that can handle problems with lead time. The policy practices pre-

ordering λ intervals before the actual substitution takes place in the larger portion of

occurrences. The policy with lead time and fixed prices will opt for empty inventories

as much as possible to reduce inventory associated costs. Hence, the policy achieves

a combination of optimal inventory replenishment and optimal fleet management.

4.5 Conclusion

Inventory management spells the difference between corporate success and failure.

With respect to the fleet management plans, a local inventory inclusion is necessary
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Figure 4.14: Benchmarking the Proposed Policy with CBM-based Policy

when there is lead time. This inclusion is also preferable when special pricing circum-

stances such as the increase in the cost of the replacing components or the availability

of a special introductory price for the spare parts in the original contract. With re-

spect to fleet level battery utilization, the inclusion of inventory was challenging due

to the phenomenon of inventory deterioration. We presented in this Chapter a new

policy, denoted as the Integrated DBOS-Inventory policy, where deteriorating inven-

tory management was included to the DBOS policy developed in previous chapters.

The policy combines the merits of both, achieving optimal placements, optimal substi-

tutions, and optimal replenishing. Through several case studies, the policy was shown

to be successful in capturing the rational of the motivation of inventory. Avoidance of

any unnecessary stocking in inventory was noticed in Case Studies VII and X. Case

Studies VIII and IX showed the capitalization of the policy on inventory to achieve

savings in special pricing circumstances compared to the Stochastic DBOS policy.
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CHAPTER V

Conclusions and Contributions

5.1 Conclusions

In this dissertation, we proposed a uniquely formulated degradation-informed

resource allocation policy, which can provide enhanced utilization for systems of

identical assets or components which are used differently. The policy, denoted as

Degradation-based Optimal Swapping (DBOS) policy, promotes this utilization through

a series of optimally chosen swapping and reset (substitution) actions. The policy

takes advantage of the different degradation rates of the components within the sys-

tem, based on loading conditions or frequency of use, to choose optimal placements

of these components. The policy’s proven enhanced utilization promotes it to be a

key decision support tool in reference to maintenance management where its generic

feature allows its application in numerous disciplines. The primary application in this

thesis which is the fleet-level battery utilization is motivated by the ongoing plans

for electrification and hybridization of ground vehicle fleets. The plans aim to mini-

mize the overall cost of operation and fuel consumption and adhere to environmen-

tally friendly awareness. However, the hybridization projects increased maintenance

costs especially for highly costly and degradable components such as Li-ion batteries.

Therefore, DBOS can provide an enhanced utilization decreasing the projected main-

tenance costs significantly. The development of the policy in this primary application
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was conducted in three stages:

First, a high confidence (deterministic) degradation estimation has been adopted

to uniquely formulate the degradation-informed resource allocation planning scheme.

The optimization of the generated mathematical model which represented a (ZOINLP)

problem has been investigated. A DBOS-policy-specific algorithm has been developed

and successfully implemented. Numerical results showed the strong performance of

the algorithm in comparison to standard optimization techniques. Numerical results

validated the role of the discretization interval in the DBOS policy, allowing but not

necessary choosing the option to perform additional swapping actions minimizing the

costly substitution ones. Finally, DBOS was benchmarked with other fleet manage-

ment maintenance plans where DBOS has been shown to significantly outperform

them.

Second, we extended the problem to include uncertain degradation estimation.

The formulation of the Stochastic DBOS policy based on the framework of stochastic

dynamic programming and Markov Decision Processes has been achieved through

modifications to the deterministic model. The modifications have generated several

complications, which have been comprehensively solved for small fleets problems.

Numerous case studies have shown Stochastic DBOS to outperform Deterministic

DBOS. Stochastic DBOS has been tested against variation in uncertainty, lack of

knowledge of uncertainty distribution, and lower resolution of error. Results have

shown Stochastic DBOS’s ability to avoid “bad luck” runs robustly, and hence avoid

excessive maintenance costs. Stochastic DBOS has also outperformed Deterministic

DBOS in the cases where wrong distributions were used for the policy build-up.

Third, we further extended the problem to include a local inventory management

for the spare components involved with the substitution actions. With respect to the

fleet management plans, a local inventory inclusion is necessary when there is lead

time. This inclusion is also preferable when special pricing circumstances such as the
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increase in the cost of the replacing components or the availability of a special intro-

ductory price for the spare parts in the original contract. With respect to fleet level

battery utilization, the inclusion of inventory was challenging due to the phenomenon

of inventory deterioration. A new policy, denoted as the Integrated DBOS-Inventory

policy, was proposed, modeled, and tested. Perishable inventory management was

integrated to the DBOS policy developed in previous chapters. The policy combines

the merits of both, achieving optimal placements, optimal substitutions, and optimal

replenishing. Through several case studies, the policy was shown to be successful in

capturing the rational behind the motivation of inventory. Avoidance of any unneces-

sary actual stocking in inventory was shown in cases where motivation for inventory

was lacking, while capitalization of the policy on inventory to achieve savings was

seen in special pricing circumstances when compared to the Stochastic DBOS policy.

The policy was benchmarked with other standard inventory replenishment policies,

where the proposed policy outperformed them by large margins.

5.2 Contributions

This dissertation has four main contributions. First, we introduced the unprece-

dented degradation-informed resource allocation principle denoted as Degradation-

based Optimal Swapping (DBOS). This principle promotes enhanced utilization of

systems with identical components used differently. Second, we modeled the DBOS

concept with high confidence (deterministic) degradation in the health states of the

components and we developed a DBOS-specific B&B-based optimization algorithm

that is capable of producing repeatable global optimal solutions. Third, we extended

the problem to account for uncertain degradation; developing the stochastic DBOS

policy built using the framework of Stochastic Dynamic Programming and Markov

Decision Processes. The policy showed robust decision making and avoided excessive

maintenance costs. The results display strong candidacy to adopt the policy in larger

122



fleets using Approximate Dynamic Programming techniques. Fourth, we extended

the problem further more; developing the Integrated DBOS-inventory policy, which

accounted for deteriorating inventory. The policy was shown to acquire optimal re-

plenishment policies in addition to the optimal maintenance management associated

with DBOS.

5.3 Proposed Future Work

Future work can be conducted in several directions. We had introduced in Sec-

tion 1.2 several “straightforward” applications that DBOS or some sort of swapping

has been shown to provide utilization and savings. Other prospect applications for

DBOS are discussed in the Section 5.3.1. Opportunities for Approximate Dynamic

Programming (ADP) implementation is discussed in Section 5.3.2. Section 5.3.3 talks

about a future direction that includes augmentation of DBOS to account for fleets

comprised of mixed internal combustion (IC) engines vehicles and electric (or hybrid

electric) vehicles.

5.3.1 Other Prospect Applications for DBOS

5.3.1.1 Operational Control for Electrical and Mechanical Systems in

Residential or Commercial Complexes

Residential or commercial complexes usually involve several electrical and me-

chanical systems associated with them. Examples of these include elevators, HVAC

units (centralized like Chillers and Air Handling Units (AHU) or decentralized like

split HVAC units), water pumps, etc. These complexes are built to serve demands

in both peak times and off-peak times. For example, an office building needs to have

one commercial elevator for every 45,000 net usable square feet, or the ratio of floors

of the building to the amount of commercial elevators must be two to one or two-and-
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a-half to one, if more people use the building [127]. Apartment and hotel buildings on

the other hand differ slightly in regards to the amount and placement of commercial

elevators. For a hotel, a building must have one elevator for every seventy-five rooms

or one elevator for a three-floor building, while an apartment building requires one

commercial elevator for every ninety units, except in urban areas, where the ratio is

one commercial elevator for every sixty units [127]. Similarly, HVAC systems can be

comprised of several chillers and air handling units working together.

It can be seen that some of these systems might be redundant during off-peak

hours, or during less demanding days. For example, the HVAC systems are designed

to meet demand during the hottest days of the year; however these are only few days

in the year in most regions. To save energy, many building management systems

(BMS) have embedded shut down protocols that shuts down some of these systems

during off peak hours. The question, which ones should these BMS shut off today,

and which ones tomorrow? and the day after? The answer to this question in most

BMS systems is rotational swapping (similar to the vehicle tires rotation every 5000

miles). While rotational swapping provides better utilization than direct approach

(No Swapping), as has been shown in Section 2.4.1, it does not provide optimal

utilization. We are clearly here presented with a system of identical components

used differently (in this case it is the frequency rather than loading profile), and these

systems are intended to be operational for a finite time (e.g., operational lifetime of an

HVAC system ranges from 15 to 20 years [128]).Therefore, DBOS can be beneficial

in this case if the degradation rates form the difference in the frequency of use is

attainable somehow. The policy can assign which systems to be shutdown in an

optimal manner that provides savings in the maintenance plans costs.
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5.3.1.2 HR Management

Human beings are by far the most sensitive assets one could attempt to man-

age. The complex human psychology can nullify most management policies. The

Human Resources (HR) departments are just one way corporations and organiza-

tions are attempting to manage these complex resources. In terms of degradation,

the psychological stress can be viewed as the wearing out of the human asset. The

stress and thus the mental state degradation can reach levels where productivity is

significantly reduced. At this point, there would be some sort of a reset action (e.g.,

vacation, company retreat, etc.). However, unlike other assets, the individuality and

independence a human being shows makes the outcome of such degradation highly

unpredictable. Different humans handle stress differently and have different toler-

ances. In some disciplines, the individuality is ”dialed down” that any individual of

the group is capable of performing any of the assignments that is given to the group

almost equally. Examples of these are soldiers, and shift workers of the same level.

Soldiers rotate through a cycle of Training, Mobilization, Deployment, Redeploy-

ment, Withdraw and Going on Leave, and cycling back to Training and resetting,

The newest model of this cycling adopted in the US army is what is known as Army

Force Generation (ARFORGEN) and signed on in 2006 has the cycles summarized

in three stages Reset, Train/Ready and Available. In the Reset phase, soldiers will

return from deployment, have some down-time to re-connect with their families, and

return to their regular training schedule. During the Train/Ready phase, units be-

gin to train more extensively, are eligible for deployment, and begin preparing for

a specific overseas mission. Finally, in Available, soldiers are ready for deployment.

Once a unit deploys and returns to their home station, the cycle repeats itself [129].

While this system was developed to address the shortages in the ready army person-

nel during 2003-2006 period, it still mimics the rotational fixed swapping (as rotating

tires every 5000 miles) in terms of behavior. In this case, reset phase is equivalent to
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substitution. Therefore, if the degradation associated with the stress can be propely

modeled and forecasted, there is room for DBOS to promote better utilization. An-

other HR example that DBOS can help in is the medical staff that rotates between

the night shift and the day shift.

5.3.2 Stochastic DBOS Curse of Dimensionality and Prospect Solutions

We presented the augmentation of the DBOS policy to account for uncertainty

in Chapter III, in what we denoted as the Stochastic DBOS policy. We also showed

through several case studies how robust the policy is in terms of avoiding excessive

maintenance costs associated with unexpected increase in the degradation. One prob-

lem we noted is that Stochastic DBOS, as many SDP instances, suffers from the curse

of dimensionality.

The three curses of dimensionality stated by Powell [81] are:

1. State space: If the state variable St = (St1, St2, · · · , Sti, · · · , StI ) has I

dimensions, and if Sti can take on L possible values, then we might have up to

LI different states.

2. Outcome space: The random variable Wt = (Wt1, Wt2, · · · , Wtj, · · · , WtJ )

might have J dimensions. If Wtj can take on M outcomes, then our outcome

space might take on up to MJ outcomes.

3. Action space: The decision vector xt = (xt1, xt2, · · · , xtk, · · · , xtK ) might

have K dimensions. If xtk can take on N outcomes, then we might have up to

NK outcomes.

While this for the first instance might sound discouraging, Approximate Dynamic

Modeling (ADP) techniques can be utilized to overcome this and promote scalability.

ADP techniques have produced production quality solutions to plan the operations of

some of the largest transportation companies in the country. These problems require

126



state variables with millions of dimensions, with very complex dynamics [81]. As

a matter of fact, ADP can produce solutions for some problems that are within 1

percent of optimality in a small fraction of the time required to find the optimal

solution using classical techniques.

While ADP techniques usually produce sub-optimal results, the significant per-

formance of the stochastic DBOS policy over deterministic DBOS, which itself has

been shown to outperform other fleet management policies, presents enough room for

sub-optimal solutions to provide further utilization of fleets. Stochastic DBOS rep-

resents an ideal candidate for ADP techniques as the structure allows for that. If we

observe the transition probability structure, we find several repetitions. Additionally,

the state space is blown up because of the health states which again show repetitions.

The state space can be as well decomposed into smaller sizes, where the objective

function in that case can be changed to promote utilization in a different manner

than savings maintenance costs. For example, the 21 possible values of the batteries

health states as in Chapter II, can be divided into 3 partitions ([0, 0.06], [0.07, 0.13],

[0.14, 0.20]) allowing smaller and tidier computational efforts. However, if we ob-

serve the first and second partitions in this case, the maintenance plan cost no longer

promotes utilization as the problem will not experience the motivating substitution

action. Rather, the problem will eliminate the swapping actions if the maintenance

costs are used as the objective function, which counter to our objective. The solution

in this case would be in the development of a special objective function that can

promote utilization in these ranges.

Other than ADP techniques, decentralizing the problem into several small systems

(fleets) with proper communication can provide scalability as well. In this case there

will be two levels of swapping, lower level swapping initiated by typical stochastic

DBOS applied within smaller fleets and higher level swapping between the small fleets.

While decentralization, as ADP, will not guarantee optimal results, the suboptimal
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results can maintain enhanced utilization over other policies due to the significant

performance of Stochastic DBOS.

5.3.3 DBOS for Mixed Electric Hybrid (or Electric) and Internal Com-

bustion Engine Vehicles

The final future direction we propose is the development of a DBOS policy for

fleets of mixed Hybrid (or electric) and Internal Combustion Engines Vehicles. As

most of the fleets are not being hybridized all at once, a DBOS policy that ac-

counts for incremental hybridization(or electrification) can be beneficial for current

fleet management.

The policy in this case will be more complex. One added complexity is the result

of the different degradation of IC engines vehicles and hybrid or electric vehicles

with respect to the loading profiles. Another, is the necessity to incorporate gas or

diesel consumption in this case as placing one type of vehicles in certain route might

significantly increase the gas consumption. On the one hand, as hybrid vehicles are

more appealing in the stop-and-go applications, they might be preferable to the IC

engine vehicles operating in downtown area for example. However and as we had

previously illustrated the projected degradation in the battery health states with this

option can be problematic for the fleet operator. Thus the tradeoff can be seen clearly

in this problem, and a retrofitted DBOS could provide answers in this case.
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APPENDIX A

Nonlinearity Growth in the Accumulative

Degradation with Time in DBOS

The accumulative degradation constraint formulated by Equation (2.11) is the

source of nonlinearity in the DBOS policy model. We show here that not only this

constraint exhibits nonlinearity in the multiplication of several decision variables, but

also it severely grows nonlinearly with the increase of time t. We start with Equation

(2.11):

yit = (1− Zit)yit−1 +
m∑
j=1

rjXij(k), ∀t = 2, · · · , T ; ∀i = 1, · · · , n (A.1)

Now we substitute for different times starting with t = 1. For t = 1, the accumu-

lative degradation constraint is:

yi1 = (1− Zi1)yi0 +
m∑
j=1

rjXij(1) =
m∑
j=1

rjXij(1) ∀i = 1, · · · , n (A.2)

For t = 2, the accumulative degradation constraint is:

yi2 = (1− Zi2)yi1 +
m∑
j=1

rjXij(2), ∀i = 1, · · · , n (A.3)

130



We substitute in for yi1 from above and we get:

yi2 = (1− Zi2)
m∑
j=1

rjXij(1) +
m∑
j=1

rjXij(2), ∀i = 1, · · · , n (A.4)

For t = 3, the accumulative degradation constraint is:

yi3 = (1− Zi3)yi2 +
m∑
j=1

rjXij(3), ∀i = 1, · · · , n (A.5)

We substitute for yi2 from above and we get:

yi3 = (1− Zi3)

(
(1− Zi2)

m∑
j=1

rjXij(1) +
m∑
j=1

rjXij(2)

)
+

m∑
j=1

rjXij(3) (A.6)

= (1− Zi3)(1− Zi2)
m∑
j=1

rjXij(1) + (1− Zi3)
m∑
j=1

rjXij(2) +
m∑
j=1

rjXij(3) (A.7)

∀i = 1, · · · , n

For t = 4, the accumulative degradation constraint is:

yi4 = (1− Zi4)yi3 +
m∑
j=1

rjXij(4), ∀i = 1, · · · , n (A.8)

We substitute for yi3 from above and we get:
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yi4 =(1− Zi4)

(
(1− Zi3)(1− Zi2)

m∑
j=1

rjXij(1) + (1− Zi3)
m∑
j=1

rjXij(2) +
m∑
j=1

rjXij(3)

)

+
m∑
j=1

rjXij(4)

=(1− Zi4)(1− Zi3)(1− Zi2)
m∑
j=1

rjXij(1) + (1− Zi4)(1− Zi3)
m∑
j=1

rjXij(2)

+ (1− Zi4)
m∑
j=1

rjXij(3) +
m∑
j=1

rjXij(4) ∀i = 1, · · · , n (A.9)

It can be clearly seen that even for a short period of 4, the constraint grows

nonlinearly when future accumulative degradation are estimated. This nonlinear

growth can significantly cripple some optimization algorithms that are sensitive to

highly nonlinear constraints such as SQP with local search.
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APPENDIX B

CBM-based Inventory Policy

Overview

In this appendix, we aim to shed more light on the CBM-based (threshold-

triggered) inventory replenishment combined with DBOS framework policy, intro-

duced earlier in Section 4.4.4. The policy’s poor behavior when applied to the last

case study in Chapter IV will be the main discussion of the first part. In the second

part, we will present a case study that will reveal a better performance of such policy.

An In-Depth Look into CBM-based Policy Performance in

Case Study X

When the CBM-based policy was applied to Case Study X parameters, the results

were significantly poor (see Figure B.1). Not only the poor performance was recorded

in comparison to DBOS with rush orders, but also the rational behind the CBM-based

policy achieving best results at threshold equivalent to 0.08 is as well counter intuitive.

With β set at 0.1, it sounds like ordering batteries at 0.08 is too late and is missing the

point of the CBM-based policy. The CBM-based policy aims to make the order early
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enough (but not too early) using a degradation threshold value, so that the replacing

batteries are available to be used when the substitution is needed to take place. With

lead time equal to one interval, that means that the order should be placed at a

time when the battery’s health state will be capable of handling one more interval

degradation. With degradation rates equal to 0.04 and 0.03, it becomes intuitive that

a threshold of 0.06 or 0.07 should have generated better results. Investigation into

the health states evolution reveals the reason behind such results.
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Figure B.1: CBM-based Policy Results When Applied to Case Study X Parameters

The small operational range of health states values and the accelerated degrada-

tion (both of which have been selected to accommodate the curse of dimensionality of

the policy) are responsible for such malfunction. In specifics, we will talk about three

scenarios with selecting the threshold point. First, if the point has been selected to

accommodate the degradation rate (e.g., 0.06), then within a range of zero to 0.1, the

threshold policy will not have enough time to react and place a strategic purchase
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except when the health state is 0.06 exactly. The policy will not react if the health

states has not crossed the 0.06 and the policy reaction will be too late if it is after 0.06

(e.g., 0.08) as we will require a substitution before the ordered batteries arrive. The

probability of getting exactly 0.06 is significantly small. This means that the policy

will make “bad” decisions for all health states except for when it is lucky enough to

get the 0.06.

The second scenario occurs when we select the threshold to be small (very early

reaction, e.g., 0.04). The problem with such threshold is the continuous and exces-

sive ordering as we are crossing this value so often, which promotes wastefulness.

Finally,setting the threshold point at very high value will bring the CBM-based pol-

icy to approach the behavior of the DBOS with rush orders. With high threshold,

we do not cross that value so often, we therefore are not making enough purchases

at non-rush prices, thus we are highly dependent on rush orders to cover the substi-

tutions as the inventory is empty. Therefore, for this case study’s parameters, the

threshold of 0.08 has shown the “best” results.

In real applications, degradation is not that fast. The CBM-based policy will have

enough range to react and this will be shown in the following section.

Case Study XI

To establish the strength of the CBM-based policy, we extend the operational

health states range from Case Study X (with λ = 1) to 0.12, and we reduce the

degradation rates to 0.03 and 0.02. We also extend the plan horizon to 9 intervals.

Applying the modeling presented in Chapter IV directly will generate a significantly

large state action space. The problem will still be in the computational capability of

a standard personnel computer. However it will require extensive time. We employ

the heuristic fix concerning the role of the older batteries inventory (stock) levels

which was developed for fixed price scenarios. We choose (q) at which we ignore the
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inventory variables after to be 3. After simulating the problem, we had observed the

emptiness of the oldest batteries inventory levels (i.e. all Q3 values are zero), which

confirms our correct q selection as it is an indicator that neither they nor any Qq with

(q ≤ 3) play any role in the inventory management.

The results of this case study are shown in Figure B.2. With more relaxed degra-

dation rates and extended health states range, the merits of the CBM-policy are

easily recognized. The policy with several threshold values have been able to outper-

form DBOS with rush orders. The best threshold is 0.09 (which is very close to the

performance when the threshold was 0.1 and 0.08), confirming our initial intuition

that a threshold selected to accommodate the degradation rates (r here is 0.03 and

0.02) will generate the best CBM-based policy. We also note that when the threshold

was selected as high as 0.11, the results are not significant as the rush orders do not

represent the best policy anymore. It is thus expected with further relaxation of the

degradation and further extension of the health states operational range, that the

CBM-based policy will further outperform DBOS with rush orders. Our final remark

here is that our proposed Integrated DBOS-Inventory policy is still far from being

matched in terms of performance with any of the CBM-based policies.
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