
Optimization Methods for Volumetric Modulated Arc
Therapy and Radiation Therapy Under Uncertainty

by

Fei Peng

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in the University of Michigan
2013

Doctoral Committee:

Professor H. Edwin Romeijn, Co-Chair
Associate Professor Marina A. Epelman, Co-Chair
Associate Professor Amy M. Cohn
Professor Jeffrey A. Fessler
Clinical Instructor Martha M. Matuszak



c© Fei Peng 2013

All Rights Reserved



ACKNOWLEDGEMENTS

This thesis would not have been possible without the advice from my advisors, Dr. Edwin

Romeijn and Dr. Marina Epelman. I am deeply grateful for Dr. Romeijn’s support and

guidance throughout my time in graduate school. He encourages me to challenge and not

be content with myself, and his attention to the big picture has always led me to think

more about the “why” below the surface of a problem. I want to give my sincerest thanks

to him for being patient, supportive and inspiring. I am truly lucky to have him as an

advisor. I would also like to thank Dr. Epelman for her advice every step along the way.

Her attention to detail has helped me to never lose sight of the practical and important

issues and motivations, and she can always give me suggestions to improve my research in

ways I had not thought of. She is a great mentor, and I am grateful for the sustained help

she provided me over the past few years.

I appreciate Dr. Amy Cohn, Dr. Jeff Fessler, and Dr. Martha Matuszak for serving on

my committee. I have had the pleasure to work with Dr. Cohn on a research project during

my graduate studies. Her enthusiasm and wholeheartedness have taught me a great deal.

Her dedication to teaching also helped me tremendously as a new GSI. I thank Dr. Fessler

for his feedback on my research, and for his help in my medical imaging class. Being on a

topic outside of IOE, his class was extremely challenging for me, yet his teaching was one

of the those I enjoyed the most at U of M. I am grateful to Dr. Matuszak for providing

her experience and perspective. Her suggestions and advice helped me understand and focus

more attention on the clinical side of the problems, which are of great importance in radiation

therapy research. It has been a breeze working with all of my committee members over the

ii



past couple of years. Their advice and perspectives have helped a lot in shaping this thesis.

They are the best committee I can ask for.

I want to also thank Dr. Steve Jiang’s group at UC San Diego for giving me the opportu-

nity to spend two summers there for research, and introducing me to many practical issues

in radiation therapy. Dr. Jiang is a great person to learn from, and to sit around with. The

time I spent in San Diego was both productive and enjoyable, and I am grateful for that.

I wish to thank the staff members at IOE for their support during my time here. Tina

has never failed to brighten my day with a big smile on her face. She is the most positive

person I have ever met.

I have made some wonderful friends at IOE. The company of Troy Long, Ilbin Lee, Robert

Riggs, and Majid Al-Gwaiz has made the time in the office feel much shorter. They are the

ones I share the happiness over a good joke, or a bad day with little progress.

I am blessed to have parents like mine. Their love and encouragement have carried me

over many obstacles in my life, and they have always trusted me. I am forever grateful to

them for what they have done for me. Finally, I would like to thank my wife Sujie Liu.

Graduate school is tough, and I could not have made it through without her. She is always

there when I am down, and her belief in me has helped me put faith in myself in the moments

of doubt. She is the best thing to happen to me in my life.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

I. Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Intensity modulated radiation therapy . . . . . . . . . . . . . . . . . 2

1.2.1 Treatment planning for IMRT . . . . . . . . . . . . . . . . 4
1.2.2 Fluence map optimization . . . . . . . . . . . . . . . . . . 6
1.2.3 Evaluating a treatment plan — Dose Volume Histogram . . 9

1.3 Volumetric modulated arc therapy . . . . . . . . . . . . . . . . . . . 10
1.3.1 VMAT with constant gantry speed and dose rate . . . . . . 12

1.4 Uncertainty and adaptive radiation therapy . . . . . . . . . . . . . . 13
1.5 Contributions and outline of the thesis . . . . . . . . . . . . . . . . . 14

II. VMAT Treatment Plan Optimization . . . . . . . . . . . . . . . . . . . 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The VMAT optimization model . . . . . . . . . . . . . . . . . . . . . 20
2.3 An algorithm for solving (MP) . . . . . . . . . . . . . . . . . . . . . 23
2.4 Restricted master problem . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Intermediate stage master problem . . . . . . . . . . . . . . . . . . . 27
2.6 Pricing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Pricing problem derivation . . . . . . . . . . . . . . . . . . 29
2.6.2 Solving the pricing problem . . . . . . . . . . . . . . . . . . 31

2.7 From (MP) to (FP): gantry speeds and dose rates . . . . . . . . . . 33
2.8 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



2.8.1 Upper bound on fluence rate . . . . . . . . . . . . . . . . . 34
2.8.2 Lower bounds on fluence and dose rates . . . . . . . . . . . 35
2.8.3 Interdigitation and other MLC constraints . . . . . . . . . 35
2.8.4 Transmission effects . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Data and implementation . . . . . . . . . . . . . . . . . . . . . . . . 38
2.10 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.11 Performance of VMAT plans . . . . . . . . . . . . . . . . . . . . . . 41

2.11.1 The most greedy heuristic . . . . . . . . . . . . . . . . . . 42
2.11.2 Effect of the value of s on treatment quality and time . . . 43
2.11.3 Least greedy heuristic . . . . . . . . . . . . . . . . . . . . . 44
2.11.4 VMAT treatment plan quality compared to benchmark . . 45
2.11.5 Rate of change in gantry speed . . . . . . . . . . . . . . . . 47
2.11.6 Transmission dose . . . . . . . . . . . . . . . . . . . . . . . 49

2.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

III. VMAT with Constant Gantry Speed and Dose Rate . . . . . . . . . 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 VMATC optimization problem formulation . . . . . . . . . . . . . . 55
3.3 Decomposition approaches to (VC) . . . . . . . . . . . . . . . . . . . 57

3.3.1 Decomposition approach 1: gantry speed and dose rate se-
lection as a sub-problem . . . . . . . . . . . . . . . . . . . 57

3.3.2 Decomposition approach 2: aperture selection as a sub-
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Methods for (approximately) solving (LS(S,R)) . . . . . . . . . . . . . 60
3.4.1 Determining apertures at all control points given set C . . . 61
3.4.2 Methods for selecting/refining apertures . . . . . . . . . . . 62

3.5 Two frameworks for finding (approximate) solutions to (VC) . . . . . 66
3.5.1 Framework A: approximately solving (SR) . . . . . . . . . 66
3.5.2 Framework B: alternating optimization . . . . . . . . . . . 70

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.1 Exact vs direct search methods for refining apertures . . . 74
3.6.2 Overall strategy under frameworks A and B . . . . . . . . . 75
3.6.3 Comparison with VMAT plans . . . . . . . . . . . . . . . . 80

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

IV. Adaptive Radiation Therapy . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 The adaptive IMRT optimization model . . . . . . . . . . . . . . . . 90
4.3 Setting m a-priori . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Monte-Carlo bounding techniques . . . . . . . . . . . . . . . . . . . 94

4.4.1 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.2 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.3 Calculating the confidence intervals . . . . . . . . . . . . . 96

v



4.4.4 Applying the bounding technique to problem (P) . . . . . . 97
4.5 Comparison with a model in the literature . . . . . . . . . . . . . . . 99
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6.1 Comparing the stochastic model with the conventional model105
4.6.2 Re-optimization and adaptive radiation therapy . . . . . . 107
4.6.3 Comparison with model (CH) . . . . . . . . . . . . . . . . 111

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

V. Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . 120

5.1 VMAT treatment plan optimization problem . . . . . . . . . . . . . 121
5.2 Treatment planning for VMATC . . . . . . . . . . . . . . . . . . . . 122
5.3 IMRT plan optimization under uncertainty . . . . . . . . . . . . . . 123

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

vi



LIST OF FIGURES

Figure

1.1 A Varian Truebeam radiation therapy treatment system. Image courtesy of
Varian Medical Systems of Palo Alto, California. Copyright 2013, Varian
Medical Systems. All rights reserved. . . . . . . . . . . . . . . . . . . . . . 2

1.2 (a): leaves in the MLC block the radiation from the source, creating an
irregular aperture; (b): view of the source from the MLC. Images courtesy
of Varian Medical Systems of Palo Alto, California. Copyright 2013, Varian
Medical Systems. All rights reserved. . . . . . . . . . . . . . . . . . . . . . 4

1.3 (a): 3D geometry of a prostate cancer patient; (b): one CT slice of the same
patient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Illustration of a fluence map consisting of intensities of beamlets in seven
different beam angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 A typical DVH plot for prostate cancer treatment plan . . . . . . . . . . . 10
1.6 The set of control points along the treatment arc. The circle in the middle

represents the patient on the treatment couch. . . . . . . . . . . . . . . . . 11
2.1 Flow chart for the column generation based greedy heuristic for (MP) . . . 26
2.2 Distribution of 177 control points around the arc for (a) Cases 1 — 4, and

(b) Case 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 DVH comparison for Cases 1 — 5. Solid: 177-beam IMRT; dashed: VMAT 46
2.4 Gantry speeds (left column) and dose rates (right column) vs. control points

for Case 2: (a) s = 6 deg/sec, ignoring rate of change constraint; (b) s = 6
deg/sec, considering rate of change constraints; (c) s = 4 deg/sec, ignoring
rate of change constraint; (d) s = 4 deg/sec, considering rate of change
constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Case 2 s = 6, (a): final dose with (dashed) and without (solid) transmis-
sion; (b): final dose with (dashed) and without (solid) transmission, where
transmission dose normalized to 95% target coverage; (c): normalized final
dose with transmission, plan optimization with (dashed) and without (solid)
considering transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Possible outcomes of one Nelder-Mead iteration, starting from initial simplex
{y0, y1, y2} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Optimization scheme for VMATC treatment plans . . . . . . . . . . . . . . 71

vii



3.3 Objective function value in exact and direct search methods for refining
apertures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Objective function value in exact and direct search methods for refining
apertures, with the direct search method run until convergence . . . . . . . 76

3.5 (a): 15 initial triangles tested in the Nelder-Mead algorithm; (b): (S,R)
pairs (stars) corresponding to the best 80% solutions . . . . . . . . . . . . 78

3.6 5 additional triangles tested in the Nelder-Mead algorithm . . . . . . . . . 78
3.7 Objective, treatment time and total MU comparison for all 20 triangles

tested in the Nelder-Mead algorithm. 1 — 9: small; 10 — 13: medium; 14
— 15: large; 16 — 20: additional five triangles . . . . . . . . . . . . . . . . 79

3.8 (S,R) pairs (star) corresponding to the best 80% solutions from 10 initial
runs under Framework B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.9 Objective, treatment time and total MU of 10 plans under framework B
(star) relative to the best plan from framework A . . . . . . . . . . . . . . 83

3.10 Comparison of average aperture size for VMAT (orange) vs VMATC (green)
plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.11 DVH of VMATC (dashed) and VMAT plans (solid) for Cases 1-5 . . . . . 84
4.1 DVH clouds for the stochastic plans (solid) and the conventional plans

(dashed) for 5 sample treatments . . . . . . . . . . . . . . . . . . . . . . . 106
4.2 Probability of covering a % volume of the ITV in one fraction for conven-

tional vs. stochastic plans . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3 Coverage probability for conventional vs. adjusted stochastic plan, Case 3 . 108
4.4 DVH clouds for the initial stochastic plans (solid) and adaptive plans (dashed)

for Case 1 in five sample treatments. Left: reoptimizing once, right: weekly
reoptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Coverage probability for initial stochastic and adaptive plans for Cases 1.
(a): reoptimizing once at fraction 20; (b-1) — (b-5): weekly reoptimization
at fractions 8, 15, 22, 29, and 36, respectively . . . . . . . . . . . . . . . . . 116

4.6 DVH clouds for the stochastic plans (solid) and the plans from model (CH)
(dashed) without adaptive reoptimization for 5 sample treatments . . . . . 117

4.7 Probability of covering a certain volume of the ITV in one fraction for
stochastic plans vs. plans obtained by solving model (CH) . . . . . . . . . 118

4.8 DVH clouds for the adaptive (SAA) plans (solid) and the adaptive plans from
model (CH) (dashed) of 5 sample treatments for Case 1. Left: reoptimization
once; right: weekly reoptimization . . . . . . . . . . . . . . . . . . . . . . . 118

4.9 Probability of covering a certain volume of the ITV in one fraction for adap-
tive stochastic plans vs. adaptive plans from model (CH) for Case 1. (a):
reoptimizing once at fraction 20; (b-1) — (b-5): weekly reoptimization at
fractions 8, 15, 22, 29, and 36, respectively . . . . . . . . . . . . . . . . . . 119

A.1 A schematic diagram of the source, MLC leaf, and isocenter plane . . . . . 127
A.2 A ray passing the MLC tip and a second ray tangent to the leaf end . . . . 128
B.1 Schematic of a ray tangent to the leaf end and a ray intersecting the leaf . 130

viii



LIST OF TABLES

Table

2.1 Problem dimensions of different cases (after downsampling). . . . . . . . . 39
2.2 Physical machine parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Performance of 177-beam IMRT treatment plans. . . . . . . . . . . . . . . 42
2.4 Performance of VMAT treatment plans with s = SL = 0.83 deg/sec. . . . . 43
2.5 Performance of VMAT treatment plans for Case 2 obtained with different s

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Performance of VMAT treatment plans with s = SU . . . . . . . . . . . . . 45
2.7 Impact of disallowing interdigitation on algorithm run time. . . . . . . . . 47
2.8 Impact of the presence of the bound ∆S on the rate of change in gantry

speed on treatment time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.9 Impact of considering transmission on optimization runtime, treatment time

and total MU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1 Clinical criteria for the prostate cancer cases. . . . . . . . . . . . . . . . . . 73
3.2 Problem dimensions of the downsampled cases. . . . . . . . . . . . . . . . . 73
3.3 Machine parameters used in VMATC experiments. . . . . . . . . . . . . . . 74
3.4 Average runtime of the aperture selection problem from 30 random (S,R)

pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5 VMATC and full VMAT treatment plans for cases 1-5 . . . . . . . . . . . . 82
4.1 Problem dimensions of our test cases. . . . . . . . . . . . . . . . . . . . . . 103
4.2 DVH criteria for critical structures. . . . . . . . . . . . . . . . . . . . . . . 104
4.3 Sample sizes and bounds in the initial (SAA) problem. . . . . . . . . . . . 105
4.4 Sample sizes and bounds on the objective function in the adaptive reopti-

mization problems for Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5 Effect on cumulative dose of increasing the intensity by 10% at different

stages of the treatment course. . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Comparison of (SAA) solution x̂ with solution from model (CH) for the

initial stochastic optimization problem . . . . . . . . . . . . . . . . . . . . 112
4.7 Comparison of (SAA) solutions with those from model (CH) for reoptimiza-

tion problems under one-time reoptimization for Case 1 . . . . . . . . . . . 112
4.8 Comparison of (SAA) solutions with those from model (CH) for weekly

reoptimization problems for Case 1 . . . . . . . . . . . . . . . . . . . . . . 113

ix



4.9 Relative difference between actual and expected dose over the undelivered
fractions at different stages of the treatment course . . . . . . . . . . . . . 114

4.10 Relative difference between actual and expected dose over the entire treat-
ment at different stages of the treatment course . . . . . . . . . . . . . . . 114

x



LIST OF APPENDICES

Appendix

A. Relationship between Moving Speed of Radiation Field Edge and Moving
Speed of MLC Leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B. Derivation of Transmission Coefficient for a Beamlet Outside the Radiation
Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C. Convergence of the SAA Approach . . . . . . . . . . . . . . . . . . . . . . . . 132

xi



CHAPTER I

Introduction and Preliminaries

1.1 Background

Cancer is the second leading cause of death in the United States, responsible for ap-

proximately 23% of all deaths according to the National Institute of Health. Of all cancer

patients, approximately 50% undergo radiation therapy as part of their treatment.

Radiation therapy is one of the cancer treatment methods. It uses high-energy radiation

to control and eliminate the tumor by damaging the DNA of the malignant cancer cells.

As radiation is deposited to the cancerous regions, it also affects the cells in the normal

tissues that receive radiation dose in this process, leading to various side effects. Therefore,

radiation therapy treatments must be carefully designed and delivered in order to minimize

the side effects and achieve the desired treatment outcome.

There are two common types of radiation therapy: internal radiation therapy (also known

as brachytherapy) and external beam radiation therapy. Brachytherapy, sometimes called

internal radiation therapy, is a procedure that involves placing radioactive seeds or sources

in or near the tumor, thereby irradiating a very localized area and reducing the radiation

delivered to healthy tissues away from the radioactive material. Throughout the rest of this

thesis we will focus on external beam radiation therapy, for which radiation is delivered from

a treatment machine outside of the patient body. The treatment machine is equipped with a

linear accelerator that accelerates electrons, which can be used to treat the patient directly

1



or to create photons which are used to treat the patient. The radiation is delivered through

a gantry-mounted two-dimensional beam that is aimed at precise areas of the patient body.

Figure 1.1 is a TruebeamTM commercial radiation therapy treatment system produced by

Varian Medical Systems, Inc.

Figure 1.1: A Varian Truebeam radiation therapy treatment system. Image courtesy of
Varian Medical Systems of Palo Alto, California. Copyright 2013, Varian Medical Systems.
All rights reserved.

The amount of radiation used in radiation therapy is measured in Gray (Gy), which

defines the absorption of one joule of radiation energy by one kilogram of matter. While

the total amount prescribed in the treatment depends on many factors including the type

and progression of the cancer, the treatment is usually delivered in a series of daily sessions

spread over several weeks. Each of these sessions is referred to as a fraction. Delivering

the treatment in small daily doses exploits the difference in radiation responses between the

tumor and normal cells, and allows the normal cells to recover between fractions (Halperin

et al. (2008)).

1.2 Intensity modulated radiation therapy

Intensity modulated radiation therapy (IMRT) is an advanced radiation therapy treat-

ment method, for which equipment and treatment planning algorithms have been contin-

2



uously developed for more than a decade. With the help of computer-controlled linear

accelerator, the IMRT machine is capable of delivering a high-precision dose distribution

that conforms to the three-dimensional shape of the tumor, and creates sharp dose gradi-

ents (measured by how quickly the dose changes between two adjacent areas with different

dose levels) to effectively avoid the tissues surrounding the tumor (see Intensity Modulated

Radiation Therapy Collaborative Working Group (2001) for an overview of IMRT).

IMRT treatments usually consist of sequential radiation delivery from a (usually small)

number of pre-defined beam angles around the patient body. The use of different beams

allows treatment planners to effectively avoid placing critical organs directly in the path of

radiation targeted at the tumor, and deliver the desired dose distribution collectively from

all beam angles. Selecting the number and orientation of beam angles can be considered as

an optimization branch in and of itself and has spurred the interest of many researchers (see

Stein et al. (1997); Pugachev et al. (2001); Jia et al. (2011) for example). We will focus on

cases for which the selection of the beam angles is performed by experienced planners and

done before the treatment plan optimization.

The IMRT treatment machines are equipped with a device called the Multileaf Collimator

(MLC). The MLC is comprised of dozens of leaf pairs that can stay stationary or move during

the treatment. Individual leaves in the MLC work together to dynamically change the shape

of the exposed beam (also known as aperture). Figure 1.2 (a) illustrates the location of the

MLC inside the gantry and the aperture created with the MLC, and (b) is a view of the

radiation source through the leaves. Note that the fact that the radiation source is a point

leads to the size of the radiation field being different from the size of the MLC aperture, and

the movement speed of the radiation field edge different from the physical speed of the leaves.

We explain the relationship between these quantities in detail in Appendix A. Throughout

the rest of this thesis, we assume that the apertures are MLC openings projected onto the

isocenter plane, which is the plane passing the center of the tumor and parallel to the beam,

and the leaf speed is the projected leaf speed for individual leaves. The planner can easily

3



convert these quantities back to those used by the MLC system before the plan is delivered

on the treatment machine. In IMRT treatments, a beam angle usually includes multiple

apertures, each with a distinctive intensity level. The apertures at the same beam angle

are delivered sequentially, and together contribute to an intensity “landscape” for the beam,

which is usually referred to as the fluence map. The ability of IMRT machines to position

the MLC leaves with high precision allows planners to control the intensity of very small

areas of the beams, e.g., 5mm×2mm in size, called beamlets. Determining the intensities

for individual beamlets is one of the most important components of the treatment planning

process, which we will describe below.

(a)

(b)

Figure 1.2: (a): leaves in the MLC block the radiation from the source, creating an irregular
aperture; (b): view of the source from the MLC. Images courtesy of Varian Medical Systems
of Palo Alto, California. Copyright 2013, Varian Medical Systems. All rights reserved.

1.2.1 Treatment planning for IMRT

The treatment planning process for radiation therapy starts with a visualization of the

patient’s internal geometry through the use of Computed Tomography (CT) images. By

4



examining the CT images, physicians identify regions that contain cancer tumor that need

to be irradiated, and regions that belong to critical organs which need to be spared in order

to avoid side effects. Figure 1.3 (a) shows the 3D geometry of a prostate cancer patient, and

(b) shows one CT slice that contains the internal structures of the same patient.

(a) (b)

Figure 1.3: (a): 3D geometry of a prostate cancer patient; (b): one CT slice of the same
patient

Based on this anatomical information and the type of cancer, a physician then defines the

appropriate prescription dose for the tumor, as well as a set of criteria used for evaluating

the dose distribution to the tumor, such as “at least 95% of the target volume must receive

the prescription dose”. Usually it is not possible to entirely spare the normal organs of any

radiation dose and deliver the prescribed dose to the tumor due to the proximity of critical

organs, especially when the cancerous cells have invaded into such organs. The physician

will, in addition, prescribe restrictions on the dose to normal organs, such as “no more

than 10% of the brainstem volume can receive more than 10 Gy of dose”. Often times the

restrictions for the target and the critical structures are conflicting with each other, and the

process of determining their specifics usually depends on a combination of clinical experience

and guidelines provided by existing treatment protocols.

The next step in the treatment planning process is to perform dose calculation. A large

number of voxels, obtained by dividing the patient body (usually evenly) into a three-

dimensional grid, as sample points to measure the dose absorbed. The dose calculation
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process determines the dose contribution to different voxels if a beamlet is exposed for cer-

tain amount of time (called the dose deposition coefficient). The IMRT treatment machine

is configured so that the amount of radiation output per unit of time, which we refer to

as monitor unit (MU), is fixed. However, because different tissues have different radiation

absorption, the amount of radiation that reaches each point in the patient body also de-

pends on factors including, among others, the type of tissues the radiation beam passes,

and the sequence they are passed. Therefore the dose calculation process needs to be done

while taking the patient-specific anatomy into account. Common dose calculation meth-

ods include pencil beam (Ahnesjö et al. (1992); Jeleń et al. (2005)), model-based methods

(Mackie et al. (1985); Papanikolaou et al. (1993); Van Esch et al. (2006)), and Monte Carlo

simulation or Monte-Carlo-like algorithms (Rogers and Bielajew (1990); Wang et al. (1998);

Jia et al. (2010); Fogliata et al. (2011)). Once the dose calculation process is completed, the

dose deposition coefficients are used as input parameters in the treatment plan optimization

problem.

1.2.2 Fluence map optimization

The treatment plan optimization problem, of which the basic type is called fluence map

optimization, determines the optimal fluence map from all beam angles that collectively

deliver the treatment plan that can best achieve the prescription dose for the target, and

meet or exceed the normal tissue requirements as much as possible. The fluence map opti-

mization is done by solving an “inverse” planning problem, which starts with a desired dose

distribution and ends with the beamlet intensities that can best achieve this distribution:

• V : the set of all voxels

• I: the set of all beamlets

• dij: the dose deposition coefficient corresponding to beamlet i ∈ I and voxel j ∈ V

• xi: decision for the intensity of beamlet i ∈ I
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• zj: decision for the dose delivered to voxel j ∈ V

• F (·): voxel based penalty function

(FMO) minimize
x,z

F (z)

subject to:

zj =
∑
i∈I

dijxi ∀j ∈ V

xi ≥ 0 ∀i ∈ I.

Here we make the reasonable assumption that the dose delivered from different beamlets

is additive. The objective function used in the optimization problem needs to be able to

properly capture the different requirements we have for different structures, as well as to

address the trade-off between structures. Researchers have proposed various functional forms

for the objective function for this purpose, including:

• tumor control probability (TCP) and normal tissue complication probability (NTCP)

(Wolbarst (1984); Lyman (1985); Zaider and Minerbo (1999)). These methods first fit

the dose response data of a single cell to a mathematical function (which usually has a

sigmoidal shape), then derive the probability of having no clonogenic cells in the target,

and the probability of not causing complications to the normal organs, after receiving

a (homogeneous or inhomogeneous) dose. For the target we want the probability to be

as close to 1 as possible, and for the normal organs as close to 0 as possible.

• equivalent uniform dose (EUD) and generalized EUD (gEUD) (Niemierko (1997, 1999)).

The EUD method establishes an equivalent homogeneous dose for an inhomogeneous

dose distribution: if the EUD is uniformly distributed to the entire target volume, the

number of surviving clonogens will be the same as that under the corresponding inho-

mogeneous dose distribution. This concept was later extended to make it applicable to

critical organs, and its name changed to gEUD. The gEUD has often been a method
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of choice and used by many researchers since its introduction (Choi and Deasy (2002);

Thieke et al. (2003); Wu et al. (2005)).

• voxel-based convex function. Rather than trying to model the biological effects, this

family of approaches measures the quality of the treatment plan by the value of a

convex function at the dose delivered to each voxel, and use the average of such function

values as the objective function. The resulting function can thus be separated for each

voxel, making it simple to work with mathematically in the optimization problem.

Typical choices for the convex function include absolute value function and least square

functions.

Romeijn et al. (2004) showed that optimizing with most of the above objective functions

or a combination of them will lead to the same treatment plan as optimizing with a cor-

responding voxel-based convex objective function. Therefore, we will use structure-specific,

voxel-based functions as the objective function in our optimization models. It provides sim-

plicity in the optimization problem, and can generate high quality treatment plans (see, for

example, Shepard et al. (1999); Romeijn et al. (2003)).

Besides the simple constraints used in (FMO) above, investigators have utilized con-

straints of different types to enforce restrictions on the intensities and/or voxel dose, or to

achieve a desired dose distribution. Common examples of such constraints include minimum,

maximum, or average voxel dose in a certain structure, constraints based on biological crite-

ria such as TCP and EUD, and excess or shortfall criteria (see Romeijn and Dempsey (2008)

for an overview of related topics).

The solution to problem (FMO) provides us with a vector of beamlet intensities, as well

as the dose delivered to each voxel given this intensity profile. Figure 1.4 shows a fluence

map consisting of intensities of beamlets in seven different beam angles, where brighter colors

corresponds to higher intensities. The beamlet intensities are subsequently fed into a post-

processing step (also called the leaf sequencing step). The leaf sequencing step ensures that

the fluence map with irregular intensities can be delivered by the MLC by converting it into
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a number of apertures, each with uniform intensity. It is desirable that the beam-on time

(the time the source is turned on in the treatment) and/or the number of total apertures

is minimized as a result of the leaf sequencing step (see Crooks et al. (2002); Taşkın et al.

(2010)).

Figure 1.4: Illustration of a fluence map consisting of intensities of beamlets in seven different
beam angles

1.2.3 Evaluating a treatment plan — Dose Volume Histogram

The most common way of evaluating the quality of a treatment plan, or equivalently

the corresponding dose distribution, is by examining the associated Dose Volume Histogram

(DVH). DVH is a method for summarizing the 3-D dose distribution in different structures

with a set of 2-D curves, and it has been one of the most important tools in the process

of evaluating IMRT treatment plans. Figure 1.5 is a typical DVH plot for prostate cancer.

Each curve on the plot represents an individual structure, and a point on a curve represents

a dose value (horizontal axis) and the corresponding percentage of volume (vertical axis) in

the corresponding structure that receive dose above that value. We can visualize on the DVH

many common constraints and criteria that impose upper or lower bounds on the percentage

of volume at certain dose value (diamond markers) as well.

9



0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	  

Fr
ac
0o

n	  
of
	  v
ox
el
s	  

Dose	  (Gy)	  

body	  
target	  
bladder	  
rectum	  
femoral	  heads	  

Figure 1.5: A typical DVH plot for prostate cancer treatment plan

1.3 Volumetric modulated arc therapy

Volumetric modulated arc therapy (VMAT) is a new radiation therapy treatment modal-

ity that delivers radiation while the gantry and the attached radiation source are in contin-

uous motion. VMAT allows the source output (dose rate), gantry speed and the aperture

shape to simultaneously vary. As opposed to IMRT treatments which require setup time

in between consecutive beam angles, VMAT treatments are usually delivered in one or two

continuous rotations (also referred to as arcs), therefore drastically reducing the treatment

time. Since Yu (1995) introduced the intensity modulated arc therapy, which later led to

the full capacity VMAT systems, VMAT has attracted the attentions of both the medical

and the operations research communities. While VMAT delivery equipments and treatment

planning algorithms are still being actively developed, clinical studies (see, for example,

Cozzi et al. (2008); Bertelsen et al. (2010); Matuszak et al. (2010)) that compare VMAT

to traditional IMRT and other types of treatment modalities with existing commercial sys-

tems have found that VMAT is capable of both substantially reducing the overall treatment

time and providing comparable or superior treatment plan quality. As a result of the shorter

treatment delivery time, clinics can benefit from increased throughput and alleviated patient
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discomfort during the treatment. Moreover, reduced delivery time also means the treatments

are less susceptible to intra-fraction motions, i.e., motions that happen during the treatment,

such as breathing and organ fill-up/depletion, therefore further improving the quality of the

actual treatments.

The concept of a control point is introduced to help treatment planners to control and

describe a VMAT treatment. Although decisions involved in a treatment, namely gantry

speed, dose rate and aperture shape, need to be specified at every angle along the gantry

trajectory, doing this will quickly make the planning problem intractable. Instead, it is a

common practice in research as well as in commercial planning systems to restrict these

decisions to be made at only a pre-determined set of angles, namely the control points. The

treatment machine is configured so that in between consecutive control points, the gantry

speed, dose rate as well as aperture shape transition smoothly. Figure 2.2 shows a sample

set of control points along a sample treatment arc. Note that the treatment arc can utilize

the entire 360◦ circle, or can have a small gap under the treatment couch for reasons such

as to avoid delivery from under the couch, and to avoid placing a critical organ directly in

between the radiation source and the target.

Figure 1.6: The set of control points along the treatment arc. The circle in the middle
represents the patient on the treatment couch.

Despite the advantages of the VMAT technology, treatment planning for VMAT is much
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more challenging than for IMRT. Because VMAT utilizes a much larger set of angles, the

amount of data involved in the treatment planning process, as well as the efforts required

in formulating and solving the plan optimization problem are much larger. Moreover, the

continuous gantry motion adds restrictions on the relationship between the machine param-

eters used at different control points. In particular, the change in gantry speed from one

control point to a subsequent one must be compatible with the treatment machine’s physical

acceleration/deceleration limits, and the change in aperture shapes cannot be too drastic

between two control points. Therefore, special care must be taken when designing treatment

plans for VMAT. We will discuss an optimization algorithm for VMAT in Chapter II.

1.3.1 VMAT with constant gantry speed and dose rate

IMRT machines equipped with conventional linear accelerator and MLC are able to

deliver rotational arc therapy that resemble VMAT treatments. This type of treatment has

less flexibility compared to full VMAT, allowing only constant gantry speed and dose rate

during the treatment. However, like VMAT, it has the freedom to dynamically change the

aperture shapes through the utilization of the MLC. It was first referred to as the Intensity

Modulated Arc Therapy (IMAT) or Dynamic Arc Conformal (DAC) radiotherapy. Research

efforts and clinical experiments on IMAT/DAC were the earliest of those on VMAT before

the invention of dedicated VMAT treatment systems (Yu (1995); Ma et al. (2001); Verellen

et al. (2002); Crooks et al. (2003); Cao et al. (2007)). In fact, some have used the term

IMAT to refer to treatments methods in which dose rate and/or gantry speed can change

dynamically. To avoid confusion, we refer to VMAT treatments that only allow constant

gantry speed and dose rate as VMATC in the rest of this thesis.

Even though VMATC treatments lack some of the most important capabilities of VMAT,

especially those that allow the gantry speed and dose rate to dynamically change during the

treatment, fully realizing its potentials can still be beneficial. Being able to deliver the

treatment in one rotation potentially allows the delivery time to be reduced, thus allowing
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clinics with conventional IMRT systems to enjoy many of the benefits of VMAT treatments

and avoid the large capital expenditure required to upgrade to the full VMAT systems.

In spite of the similarities between VMAT and VMATC treatments, VMATC’s lack of the

ability to change gantry speed and dose rate substantially limits our choice of apertures in the

planning process, and poses difficulties that need to be addressed with substantially different

methods from those used for VMAT. In Chapter III we propose and study optimization

algorithms for the VMATC treatment planning problem.

1.4 Uncertainty and adaptive radiation therapy

The presence of uncertainty in the delivery of radiation therapy treatments often causes

the treatment quality to be compromised and the actual dose distribution to deviate from

the planned one. Setup errors in the positioning of the patient, changes in patient anatomy

due to the changed progression of the disease, which happen in between fractions, as well

as intra-fraction uncertainty that are typically caused by, e.g., breathing and bowel motions

during the treatment all contribute to uncertainties in the treatment.

The use of immobilization devices have been explored in clinics to control and reduce

uncertainty (Bentel (1998)). However, these aids cannot fully eliminate small errors and

motion that affect the position of the patient relative to the radiation beams. The traditional

approach to dealing with this uncertainty is by expanding the Clinical Target Volume (CTV),

which is delineated from the CT images of a stationary patient, by an internal margin to

produce the Internal Target Volume (ITV), and a margin to form the Planning Target

Volume (PTV). In the treatment plan optimization the PTV is used as the target to account

for uncertainties during the treatment. However, many researchers have shown that the use

of margin may not achieve the desired target coverage, and may introduce overdosing of the

organs surrounding the PTV (for example, Olafsson and Wright (2006); Men et al. (2011)).

Alternatively, researchers have applied various techniques in stochastic optimization, dy-

namic programming and robust optimization in order to explicitly incorporate uncertainty
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into the plan optimization problem (see, for example, Löf et al. (1999); Baum et al. (2006)).

However, it is important to ensure that in solving the optimization models, the solution

does not only depend on extreme cases but also takes the majority of possible scenarios into

account, and that the optimization models are not oversimplified in the solution process.

In Chapter IV we propose a stochastic optimization based model, and a solution procedure

that can guarantee high quality solutions.

Recent advancements in imaging technology has made it possible to monitor and record

the information associated with the treatment delivery in each fraction, such as fraction-to-

fraction setup variation and organ deformation, as well as to reconstruct in vivo the 3D dose

distribution for a given fraction (Partridge et al. (2002); Yang et al. (2007)). This additional

information allows researchers and practitioners to not only verify the correct delivery of

the planned treatment, but also review and correct any discrepancies in the actual dose

distribution. We extend our stochastic optimization based model to adaptive treatments,

where plan optimization is performed during the treatment course to account for the actual

delivered dose.

1.5 Contributions and outline of the thesis

The rest of this thesis is organized as follows:

• Chapter II discusses a method for solving the treatment plan optimization problem for

VMAT. We propose a new column generation based algorithm that takes into account

bounds on the gantry speed and dose rate, as well as an upper bound on the rate

of change of the gantry speed, in addition to MLC constraints. To our knowledge,

the constraints have not all been considered in any existing research. The algorithm

iteratively adds one aperture at each control point along the treatment arc. In each

iteration, a restricted problem optimizing intensities at previously selected apertures

is solved, and its solution is used to formulate a pricing problem, which selects an
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aperture at another control point that is compatible with previously selected apertures

and leads to the largest rate of improvement in the objective function value of the

restricted problem. Once a complete set of apertures is obtained, their intensities are

optimized and the gantry speeds and dose rates are adjusted to minimize treatment

time while satisfying all machine restrictions. Comparisons of treatment plans obtained

by our algorithm to idealized IMRT plans of 177 beams on 5 clinical prostate cancer

cases demonstrate high quality with respect to clinical dose-volume criteria. For all

cases our algorithm yields treatment plans that can be delivered in around 2 minutes.

Our approach can be easily modified to accommodate a range of other settings of the

VMAT treatment machine.

• Chapter III considers the VMATC treatment plan optimization problem. We specif-

ically consider the simultaneous optimization of the constant gantry speed and dose

rate, in addition to the optimization of leaf positions. We propose two algorithmic

frameworks for (approximately) solving the optimization problem. One framework

separates leaf setting optimization, which chooses the leaf positions given a dose rate

and gantry speed combination, from the optimization of the constant dose rate and

gantry speed. The framework searches for a dose rate and gantry speed combination

that leads to the best plan qualities. The alternative framework applies alternating

optimization to dose rate and gantry speed and the leaf settings. We compare both

optimization frameworks on clinical patient cases, and compare the resulting VMATC

plans to the VMAT plans. Our results show that VMATC is capable of producing

very high quality treatment plans compared to VMAT, albeit at the expense of long

computation time and higher total radiation output from the source.

• Chapter IV focuses on the optimization of IMRT treatment plans under inter-fraction

uncertainty. We propose a stochastic model that incorporates the uncertainty in dose

delivered in one fraction, as well as over the treatment course. Instead of solving
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this problem directly, which easily becomes intractable for real-world cases, we draw

samples from the error distribution and solve the sample average approximation prob-

lem. We apply a dynamic sampling procedure that establishes bounds on the objective

function, therefore enabling us to find verifiably high quality, approximate solutions

to the optimal solution. We show with clinical prostate cancer cases that using the

stochastic model can improve the treatment plan quality compared to the conventional

approach. If delivered dose information is available during the treatment course, we

can extend our solution framework to adaptive radiation therapy optimization prob-

lems. However, in the adaptive optimization problems the solution puts more emphasis

on the per-fraction target coverage, and usually results in higher dose to the surround-

ing structures. This effect needs to be taken into account when using this model in

adaptive treatment planning.

• In Chapter V we conclude the thesis, and propose directions for future research.
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CHAPTER II

VMAT Treatment Plan Optimization

2.1 Introduction

Rotational delivery of Intensity Modulated Radiation Therapy (IMRT) was first proposed

by Yu (1995) as Intensity Modulated Arc Therapy (IMAT). This radiation therapy treatment

modality delivers radiation while the gantry rotates around the patient in one or more arcs

while, at the same time, field shapes (apertures) are formed to modulate fluence using a multi-

leaf collimator (MLC) system. Recently, this modality has gained popularity and interest due

to the introduction of several commercially available implementations, and is now usually

referred to as Volumetric Modulated Arc Therapy (VMAT). These advances have also made

it possible to dynamically change the dose rate and gantry speed. As compared to more

standard IMRT treatments, which use a relatively small number of fixed beam directions,

VMAT has the potential to significantly reduce treatment time. This has the additional

benefits of decreasing patient discomfort, mitigating intrafraction motion uncertainties, and

increasing the utilization rate of the equipment.

Since the conception of VMAT, researchers have investigated inverse planning techniques

as well as methods to make VMAT plans deliverable in one single arc. Various studies utilized

techniques including simulated annealing (Cameron (2005); Earl et al. (2003)) and trans-

formation of an IMRT treatment plan (Crooks et al. (2003)) to design VMAT treatments.

These studies showed that, with constant gantry speed and dose rate, either multiple arcs or
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an excessively long time for a single arc are required to deliver a high-quality treatment. In

a theoretical study, Bortfeld and Webb (2009) compared single-arc VMAT treatment to tra-

ditional IMRT on a phantom and argued that single-arc VMAT may not be able to replicate

the optimal intensity profile without intensity modulation at individual angles – a claim that

was denied in a response by Otto (2009). Today the potential quality of VMAT treatment

plans is generally believed to be comparable to IMRT treatment plans (Palma et al. (2008);

Verbakel et al. (2009)).

The nature of VMAT treatments makes the treatment plan optimization problem much

more complex than an IMRT treatment plan optimization problem due to the continuous

nature of the gantry motion, gantry speed constraints, dose rate constraints, and MLC

leaf speed constraints. Even when the set of angles is discretized, exact methods quickly

become intractable. Hence the literature has exclusively focused on simplifications of the

model and/or heuristic solution approaches. Many approaches to the VMAT treatment plan

optimization problem rely on converting an IMRT plan in some fashion. Luan et al. (2008),

Shepard et al. (2007), and Wang et al. (2008) proposed algorithms that rely on (i) first

identifying an optimal IMRT treatment plan using 10◦-spaced beam directions and then (ii)

producing a deliverable VMAT plan by minimizing the difference between the sequenced

and the ideal IMRT fluence maps. Cao et al. (2009) started the treatment planning process

by performing IMRT planning with direct machine parameter optimization, which directly

optimizes aperture shapes and weights. They then used a simulated annealing based arc

sequencer to convert the resulting fluence maps into deliverable VMAT plans while again

minimizing the difference between the IMRT and VMAT fluence maps. Craft et al. (2011)

performed IMRT optimization on 2◦-spaced beam angles and, noting that adjacent fluence

maps were similar, used a combination of beam merging and sliding window leaf sequences to

obtain a VMAT deliverable plan whose quality is close to the “ideal” IMRT plan. However,

their observation that adjacent fluence maps in the high-resolution IMRT treatment plan are

similar appears to depend strongly on the particular treatment plan optimization algorithm
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employed, so the approach may not be robust to changes in treatment plan evaluation criteria

that would require using a different algorithm.

Several approaches to VMAT treatment plan optimization use the concept of control

points, which represent beam directions along the arc where machine parameters such as

gantry speed, aperture shape, and dose rate are controlled. Between control points, the

machine parameters are then either kept constant or interpolated in some fashion. Otto

(2008) proposed a simulated annealing algorithm that adds control points sequentially and,

in each iteration, randomly samples aperture weights and shapes. Bedford (2009) discretized

an IMRT fluence map into multiple intensity levels and assigned each level to a control point

close to the corresponding angle in the IMRT plan. A subsequent local search procedure

attempts to improve leaf positions and segment weights. Bzdusek et al. (2009) started with

an IMRT plan on a coarse set of angles, then generated two apertures to approximate each of

the fluence maps and placed these at predetermined control points. Additional control points

were assigned interpolations of these apertures, and the remaining machine parameters were

calculated in a subsequent optimization step. Gözbasi (2010) formulated the problem as a

large integer programming model, but for tractability reasons resorted to grouping beamlets

and solved a series of approximate problems. Unfortunately, the required computation time

of the algorithm are still impractical and the algorithm also failed to consistently provide

clinically acceptable results on their test cases.

Finally, Men et al. (2010b) proposed a column generation based approach which se-

quentially adds aperture shapes at control points while ensuring that each newly generated

aperture is compatible with previously chosen ones. However, no bounds on the dose rate

were taken into account, and gantry speed was considered to be constant. In this chapter

we formalize and extend this approach to explicitly take the following physical restrictions

into account during the course of the algorithm:

• apertures at consecutive control points must be compatible, i.e., the leaves in individual

rows of the MLC must be able to finish their transition from the previous aperture to
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the next aperture before the gantry reaches the next control point;

• restrictions on machine parameters, such as upper and lower bounds on the gantry

speed and dose rate, as well as the upper bound on the rate of change of the gantry

speed must be obeyed.

Although some of the algorithmic approaches proposed in the literature and discussed above

account for some of these restrictions by either explicitly incorporating them into the treat-

ment plan optimization or by modifying the optimized plan into one that satisfies them in

a post-processing step, to the best of our knowledge none incorporates all of the restric-

tions explicitly in the treatment plan optimization process. Our algorithm is implemented

using the Compute Unified Device Architecture (CUDA) to take advantage of the parallel

processing power of the Graphic Processing Unit (GPU).

2.2 The VMAT optimization model

Let K denote the total number of (not necessarily equispaced) control points along one

or more treatment arc(s) (in case of multiple arcs, K represents the total number of control

points along all arcs, which will be ordered so that the first control point on the second arc

succeeds the last control point on the first arc, etc.). We associate with each control point k

an aperture Ak, a dose rate rk (in MU/second), and a gantry speed sk (in degrees/second).

In addition, we can express the fluence rate (in MU/degree) at control point k as yk = rk/sk.

Note that each control point represents a snapshot of the continuous gantry rotation, i.e.,

rk, sk, yk, and Ak represent the state of the treatment machine as the gantry passes through

control point k. For convenience, we will add a dummy control point 0 in the beginning of

the arc. For tractability we will then calculate the dose delivered to each voxel by making the

approximation that the aperture, dose rate, and gantry speed (and hence fluence rate) are

constant throughout the arc spanning from one control point to the next. Note in particular

that this means that we do not need to specify any of the variables at the dummy control
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point 0. If the angular distances δk between pairs of control points k and k − 1 are small,

then this approximation will be sufficiently accurate (Otto (2008)).

The gantry speeds and apertures specified at consecutive control points need to be com-

patible with each other. This compatibility requirement derives from the characteristics of

the MLC system used to form the apertures during the treatment. As the gantry travels

from control point k− 1 to control point k, the leaves of the MLC system need to shift from

positions prescribed by aperture Ak−1 to those prescribed by aperture Ak. Since the speed

of such leaf movement is bounded, the time spent by the gantry moving between the control

points needs to be sufficiently large (and hence its speed sufficiently small) to allow for the

required leaf movement to take place. We will denote the maximum gantry speed that will

allow aperture A′ at control point k to be reached from aperture A at control point k − 1

by SUk−1,k(A,A
′) for k = 1, . . . , K, where, for convenience, SU0,1(A,A′) = ∞ for all pairs of

apertures A and A′.

In addition to the discretization parameters δk (k = 1, . . . , K), there are several other

machine parameters that need to be taken into account. First, a VMAT delivery machine

may have upper and lower bounds on gantry speed (denoted by SU and SL), and an upper

bound on dose rate (denoted by RU). Furthermore, there typically is an upper bound on the

rate of change in speed that the gantry can sustain, which may be given per degree or per

control point. We will denote the upper bound on the change in speed between control points

k− 1 and k by ∆Sk. Finally, we let A denote the set of all apertures that are deliverable by

the MLC system. In particular, we will assume that left and right leaves within each pair can

be positioned at any non-overlapping continuous points within their range, and that motion

is independent between leaf pairs. In particular, we assume that there are no interdigitation

constraints. After formulating our base model and developing our algorithm, we will discuss

how additional constraints, such as a lower bound on dose rate, independent bounds on the

fluence rate, and interdigitation constraints, can be incorporated into our solution approach

when necessary.
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Finally, let the discretized set of voxels be V , and denote the delivered dose distribution

by z = (zj : j ∈ V)>, where zj is the total dose delivered to voxel j ∈ V . The quality of

the dose distribution z is evaluated using an objective function F : R|V| → R. Under our

approximation zj is equal to the sum of the doses delivered to the voxel from all control

points. Moreover, since the delivered dose is linear in fluence, it is convenient to denote the

dose received by voxel j ∈ V from aperture A ∈ A at control point k at unit fluence by

Dkj(A) (k = 1, . . . , K).

The complete VMAT optimization model, which we refer to as the full problem (FP),

then reads:

(FP) minimize F (z)

subject to

zj =
K∑
k=1

Dkj(Ak) δk yk j ∈ V

yk =
rk
sk

k = 1, . . . , K

|sk − sk−1| ≤ ∆Sk k = 2, . . . , K

sk ∈ [SL, SU ] k = 1, . . . , K

rk ∈ [0, RU ] k = 1, . . . , K

sk ≤ SUk−1,k(Ak−1, Ak) k = 1, . . . , K (2.1)

Ak ∈ A k = 1, . . . , K,

where the terminal aperture A0 in (2.1) can be chosen arbitrarily and is added for convenience

only.

We can simplify this model by first noting that for any feasible solution s, r,y, z and

(Ak : k = 1, . . . , K) of (FP) we can obtain another feasible solution with the same apertures

and the same values of y and z (and hence the same objective function value), but with

all the gantry speeds at their lower bound value SL by scaling the dose rates by a factor of

SL/sk ≤ 1, k = 1, . . . , K, to compensate. As a result, we can eliminate the gantry speed
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variables from the model. In addition, we can then replace the upper bound constraints on

the dose rates by upper bounds on fluence rate and eliminate the dose rate variables as well.

The problem thus reduces to the following master problem (MP):

(MP) minimize F (z)

subject to

zj =
K∑
k=1

Dkj(Ak) δk yk j ∈ V (2.2)

yk ∈ [0, Y U ] k = 1, . . . , K (2.3)

SL ≤ SUk−1,k(Ak−1, Ak) k = 1, . . . , K (2.4)

Ak ∈ A k = 1, . . . , K, (2.5)

where Y U ≡ RU/SL. We will refer to (MP) as the master problem, for reasons made clear in

the following section. By construction, for any feasible solution to (MP) we can construct an

equivalent feasible solution to (FP), in the sense that it has the same apertures and values

of y and z, by setting sk = SL and rk = yk · sk for k = 1, . . . , K. Moreover, there may

be several combinations of gantry speeds and dose rates that lead to equivalent solutions to

(FP), and some may be more desirable than others, e.g., due to shorter treatment times. We

will discuss this in more detail in Section 2.7.

Note that (MP) is not convex because of the nonlinearities associated with the apertures

in constraints (2.2) — (2.5). Therefore, instead of solving problem (MP) exactly, we propose

a column generation based algorithm.

2.3 An algorithm for solving (MP)

Our proposed algorithm starts with a dose distribution z = 0 and without an aperture

specified at any of the control points. The algorithm then proceeds by, in each iteration,

attempting to improve the current treatment plan and dose distribution by selecting an

aperture at one of the control points for which none has been specified yet (that is, generating
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a column in constraint (2.2) of (MP)), and terminates when a completely specified treatment

plan is obtained. In any given iteration, which is characterized by a set C ⊆ {1, . . . , K} of

control points and the corresponding collection of apertures {Āk, k ∈ C}, we optimize

fluence rates of these apertures by solving the so-called restricted master problem (RMP).

The RMP is constructed so that a feasible solution to this problem implicitly provides a

deliverable plan that can be fully specified by feasibly completing the sequence of apertures

while retaining the current aperture fluence rates (in particular, yk = 0 for k 6∈ C). The

optimal solution to the RMP then defines the so-called pricing problem (PP) which is used

to select the next control point and aperture to be added to the plan. The intuition behind

the PP is that, relative to the current solution, each candidate aperture at each control point

k 6∈ C has an associated price which is defined as the rate of improvement in the objective

function value if the fluence rate of that aperture is increased (from its current value of 0).

The pricing problem then finds the control point/aperture combination that has the best

price. In contrast with direct aperture optimization (DAO) for IMRT treatment planning

(Preciado-Walters et al. (2004); Romeijn et al. (2005); Shepard et al. (2002)), only a single

aperture is added for each control point. This makes our algorithm heuristic in nature and,

in particular, a greedy heuristic.

More formally, our algorithm can be described as follows:

Column generation based greedy heuristic for (MP)

Step 0. Set C = Ø and z̄ = 0.

Step 1. Use the information on the current treatment plan (control points C, apertures Āk

for k ∈ C, and dose distribution z̄) to formulate and solve an instance of the PP.

Step 2. If the optimal value of the PP is nonpositive, go to Step 5. Otherwise, denote the

optimal solution to the PP by c̄ and Āc̄, and replace C by C ∪ {c̄}.

Step 3. Solve the instance of the RMP associated with C and Ak = Āk, k ∈ C.
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Step 4. Remove apertures in the set ��C={k ∈ C : yk = 0}, i.e., set C ← C\��C.

Step 5. If |C| < K, return to Step 1.

Step 6. If necessary, complete the treatment plan by identifying feasible apertures (which

will have fluence 0) at control points c 6∈ C, and denote the final set of fluence rates

by ȳk (k = 1, . . . , K).

Figure 2.1 provides a graphical representation of the structure of this algorithm.

In the remainder of this section, we will provide additional details on Steps 1, 2 and

3 of this algorithm in Sections 2.4 and 2.6. Section 2.7 discusses obtaining a solution to

(FP) based on the solution to (MP) returned by our algorithm. Section 2.8 discusses how

additional constraints on the setting of the VMAT delivery machine can be incorporated into

(FP) formulation and our solution. Finally, we present experiments and results in Section

2.9.

2.4 Restricted master problem

At each iteration of the algorithm we obtain the RMP from (MP) by fixing the apertures

Ak = Āk for all control points in the current set C ⊆ {1, . . . , K} and setting the fluence rates

yk = 0 for all control points k 6∈ C. The RMP then reads:

(RMP(C)) minimize F (z)

subject to

zj =
∑
k∈C

Dkj(Āk) δk yk j ∈ V

yk ∈ [0, Y U ] k ∈ C.

(2.6)

(RMP(C)) can be thought of as a restriction of (MP) in that it considers a subset of control

points, and considers the apertures Āk, k ∈ C, to be fixed and given. Note that (RMP(C))
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Figure 2.1: Flow chart for the column generation based greedy heuristic for (MP)

is a nonlinear optimization problem with linear constraints, and it is a convex optimization

problem provided that F is a convex function.

Recall that any feasible solution to (RMP(C)) should correspond to a deliverable plan

that can be fully specified by completing the sequence of apertures at control points k 6∈ C

in a way that is compatible with apertures Āk, k ∈ C, and setting yk = 0, k 6∈ C. To

ensure that this is indeed the case, the set of apertures Āk, k ∈ C in the restricted problem

should satisfy the following condition. For all k ∈ C, let k− be the predecessor of k in C, i.e.,

k− = max{k′ ∈ C : k′ < k}, where k− ≡ 0 if k = min{k′ : k′ ∈ C}. Any feasible solution to

(RMP(C)) for any C ⊆ {1, . . . , K} can be extended to a feasible solution to (MP), provided
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that

SUk−k(Āk− , Āk) ≥ SL, k ∈ C. (2.7)

Here we have generalized the notation of (FP) and (MP) by denoting the maximum gantry

speed that will allow aperture A′ at control point k′ to be reached from aperture A at control

point k < k′ by SUkk′(A,A
′) (where again, for convenience, we will let SU0,k(A,A

′) =∞ for all

pairs of apertures A and A′ and all k = 1, . . . , K). In Section 2.6 we will discuss in detail the

pricing problem designed to ensure that the apertures added at each iteration of the column

generation algorithm satisfy (2.7).

If, from solving (RMP(C)), any aperture Āk (k ∈ C) has intensity rate 0, we can remove

these apertures without affecting the plan quality. Apertures added early in the algorithm,

when the total delivered dose is relatively low, are likely to have large openings and/or high

fluence rates. As the algorithm progresses, these apertures are no longer effective, their

fluence rates are set to 0 in the (RMP(C)) and they are subsequently removed. Since only

one aperture can be used at every control point, removing these redundant apertures allows

better ones to be added later on in the column generation process. Let ��C={k ∈ C : yk = 0}

be the set of control points that have redundant apertures, after solving (RMP(C)), we set

C ← C\��C.

2.5 Intermediate stage master problem

The RMP is solved at every iteration to find the fluence rate for apertures k ∈ C. However,

our algorithm is not complete before we have a procedure to search for the next improving

aperture. We examine the master problem at an intermediate stage, where only control

points k ∈ C have apertures specified, and all possible apertures are included for control

points k /∈ C. This problem is not solved during the optimization process, rather we use

its associated first order optimality conditions to find the rate of improvement in objective

function value per unit fluence rate for apertures at control points k /∈ C. This information

will help us identify the best aperture to add to the treatment plan.
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Note that for control points k /∈ C, we associate an fluence rate value with every possible

aperture, therefore there will be several fluence rates associated with one control point, and

thus constraints (2.2) and (2.3) will have to be modified to accommodate this. Let

ykA k /∈ C, A ∈ A.

represent the fluence rate for aperture A ∈ A at control point k, we can use∑
A∈A

ykA k /∈ C

instead of yk in (2.2) and (2.3). The intermediate stage master problem can then be formu-

lated by modifying formulation (MP) as:

(MI) minimize
z,y

F (z)

subject to

zj =
∑
k∈C

Dkj(Āk) δk yk +
∑
k/∈C

∑
A∈A

Dkj(A) δk ykA j ∈ V (πj)

yk ≥ 0 k ∈ C (ρk)

yk ≤ Y U k ∈ C (γk)∑
A∈A

ykA ≤ Y U k /∈ C (γk)

ykA ≥ 0 k /∈ C, A ∈ A (βk(A))

We associate the set of constraints in (MI) with dual variables πj (j ∈ V), ρk (k ∈

C), γk (k ∈ {1, . . . , K}), and βk(A) (k /∈ C, A ∈ A). The first order optimality conditions,

which are necessary and sufficient for optimality for this problem (see, for example, Bazaraa

et al. (2006) for reference) read:

− πj ∈
∂F (z)

∂zj
j ∈ V (2.8)

ρk − γk = −
∑
j∈V

πj Dkj(Āk) δk k ∈ C (2.9)

γk (yk − Y U) = 0 k ∈ C (2.10)
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ρk · yk = 0 k ∈ C (2.11)

− γk + βk(A) = −
∑
j∈V

πj Dkj(A) δk k /∈ C, A ∈ A (2.12)

γk (
∑
A∈A

ykA − Y U) = 0 k /∈ C (2.13)

βk(A) · ykA = 0 k /∈ C, A ∈ A

γk ≥ 0 k ∈ {1, . . . , K}

ρk ≥ 0 k ∈ C

βk(A) ≥ 0 k /∈ C, A ∈ A (2.14)

Observe that the optimal solution to problem (RMP(C)), (ȳ, z̄), and the corresponding

dual variables πj(z̄)(j ∈ V), ρk, γk (k ∈ C) satisfy conditions (2.8) — (2.11). We can set

variables ykA = 0 (k /∈ C, A ∈ A), and set γk = 0 (k /∈ C), and verify if (2.12) and (2.14) are

satisfied. If so, the current solution is already optimal for problem (MP). Otherwise, (2.12)

and (2.14) provide us with the price for aperture A ∈ A:

βk(A) = −
∑
j∈V

πj(z̄)Dkj(Ak) δk k /∈ C, A ∈ A. (2.15)

Care needs to be taken to ensure that any aperture we select for k /∈ C is compatible with

the apertures in control points k ∈ C. Next we explain in detail how improving apertures

are chosen so that compatibility constraint (2.4) is satisfied.

2.6 Pricing problem

2.6.1 Pricing problem derivation

Suppose we were to add aperture A ∈ Ak at a control point k 6∈ C, where Ak ⊆ A is a

set of deliverable apertures that can feasibly be added to the current treatment plan. From

the discussion in Section 2.5, the rate of improvement (i.e., decrease) in objective function
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value per unit fluence rate in this aperture can be calculated as

βk(A) ≡ −
∑
j∈V

πj(z̄)Dkj(Ak) δk,

where (πj(z̄) : j ∈ V)> = π(z̄) ≡ −∇F (z̄). Our strategy will be to select a control point k

and aperture A that solve the following optimization problem, which we will refer to as the

pricing problem:

(PP) max
k 6∈C

max
A∈Ak

βk(A).

In order to ensure that solutions to (PP) satisfy condition (2.7), we need to specify the

set Ak in such a way that

Ak ⊆
{
A ∈ A : SUk−k(Āk− , A) ≥ SL, SUkk+(A, Āk+) ≥ SL

}
≡ AUk .

The choice of Ak ⊆ AUk in the PP dictates a tradeoff in the behavior of our heuristic

algorithm. On the one hand, choosing a smaller set Ak at the current iteration results in

lesser flexibility in the current selection of apertures. On the other hand, this can potentially

allow for more flexibility in later iterations of the heuristic. We will consider the following

family of potential choices for Ak in (PP), parameterized by a lower bound s on the speed

between two control points:

Ak(s) =
{
A ∈ A : SUk−k(Āk− , A) ≥ s, SUkk+(A, Āk+) ≥ s

}
for s ≥ SL. (2.16)

It is easy to see that Ak(s
′) ⊆ Ak(s) whenever s′ ≥ s, with Ak(S

L) = AUk . Note also

that, although the choice of s does not explicitly determine the final gantry speed used at

different control points, because it affects the selection of apertures Ak(s), it implicitly affects

the final gantry speed and thus the delivery time. We will explore the impact of the choice

of parameter s on the overall performance of the algorithm in our experiments.

If the optimal value of (PP) is non-positive, we conclude that the current solution cannot

be improved by adding any aperture at any control point (at least in the framework of our

algorithm). In this case, the algorithm will be terminated (see Step 2), and fluence rates at

control points k 6∈ C will remain at zero. However, if an improving control point/aperture
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are found, the algorithm will proceed to Step 3.

2.6.2 Solving the pricing problem

We will now describe a solution approach for the pricing problem (PP). First, it is easy to

see that this problem decomposes into a collection of independent problems for the different

candidate control points k, so that we can focus on the problem for a given k 6∈ C:

(PP(k)) max
A∈Ak

∑
j∈V

πj(z̄)Dkj(A),

where we have also eliminated the scaling constant δk.

Next, in the absence of interdigitation constraints, we can decompose (PP(k)) by MLC

row. In particular, if the MLC system consists of M leaf pairs, we can represent any aperture

A ∈ A as a collection of leaf settings for its individual rows. Let us denote an aperture by

A = (a1, . . . , aM), where am ∈ α describes the leaf settings of MLC row m of aperture A, and

α is the set of deliverable “row apertures.” The set Ak can be written as Ak = XMm=1Akm,

with

Akm ⊆
{
a : SUk−k(āk−m, a) ≥ SL, SUkk+(a, āk+m) ≥ SL

}
, (2.17)

where ācm is the mth row aperture of Āc at control point c ∈ C and, with a slight abuse of

notation, SUk′k(a, a
′) denotes the maximum gantry speed that will allow row aperture a′ of

aperture A′ at control point c to be reached from row aperture a at control point k′ < k.

Let Dkmj(a) denote the dose received by voxel j ∈ V from row aperture a ∈ α in row m and

control point k at unit fluence rate, with Dkj(A) =
∑M

m=1 Dkmj(am). The pricing problem

(PP(k)) can then be decomposed by row:

(PP(km)) max
a∈Akm

∑
j∈V

πj(z̄)Dkmj(a).

Recall that we would like to consider the family of feasible regions Ak = Ak(s) defined

by (2.16) for s ≥ SL. The corresponding family Akm(s) of feasible regions for (PP(km)) is

Akm(s) =
{
a : SUk−k(āk−m, a) ≥ s, SUkk+(a, āk+m) ≥ s

}
for s ≥ SL. (2.18)
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Let us analyze the structure of these sets in more detail. Any row aperture a can be char-

acterized as a pair of leaf settings (`, r), where 0 ≤ ` ≤ r ≤ N are the positions of the left

and right leaf, respectively (N , which we assume to be integer, is the range of the MLC

row). Furthermore, let v denote the maximum leaf speed (in distance/second, with the unit

of distance depending on the choice of N). Then, for k < c,{
a ∈ α : SUkk(a, a

′) ≥ s
}

=

{
(`, r) : 0 ≤ ` ≤ r ≤ N ; |`− `′|, |r − r′| ≤ vδck

s

}
,

where δck =
∑k−1

k′=c δk′ . Therefore,

Akm(s) =

{
(`, r) : 0 ≤ ` ≤ r ≤ N ; |`− ¯̀

k−m|, |r − r̄k−m| ≤
vδk−k
s

;

|`− ¯̀
k+m|, |r − r̄k+m| ≤

vδkk+

s

}
,

(2.19)

with the appropriate and obvious definitions of (¯̀
k−m, r̄k−m) and (¯̀

k+m, r̄k+m). Thus, the set

Akm(s) is simply the set of all (`, r) such that 0 ≤ ` ≤ r ≤ N and with upper and lower

bounds on ` and r which get tighter as s increases.

Finally, in order to fully specify (PP(km)), we need to characterize Dkmj(a) = Dkmj(`, r).

Specifying Dkmj(`, r) as a function of continuous variables (`, r) will require an immense

amount of data. Instead, we use a common approximation obtained by discretizing each

MLC row into N beamlets (thus specifying an appropriate MLC row range), where beamlet

n represents the interval [n − 1, n]. We then precompute traditional beamlet-based dose

deposition coefficients Dkmnj, i.e., the dose rate to voxel j ∈ V from beamlet n in MLC row

m at control point k (n = 1, . . . , N , m = 1, . . . ,M , k = 1, . . . , K) at unit fluence rate and

make the following approximation:

Dkmj(`, r) =

r∫
`

φkmj(x) dx,

where φkmj : [0, N ]→ R+ is the following step function:

φkmj(x) = Dkmnj, n− 1 < x ≤ n; n = 1, . . . , N.

Note that the coefficientDkmnj is similar, except in indexing, to the dose deposition coefficient
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dij defined in Section 1.2.2.

To summarize, the pricing problem (PPkm) with Akm = Akm(s) can be written as:

max
(`,r)∈Akm(s)

r∫
`

πkm(x; z̄) dx, (2.20)

where

πkm(x; z̄) =
∑
j∈V

πj(z̄)φkmj(x).

The problem (2.20) can be solved efficiently by noting that the only candidate values for `

and r that have to be considered are (i) integers, and (ii) the bounds derived from (2.19).

This is because function πkm(x; z̄) is monotonically increasing or decreasing for n− 1 < x ≤

n; n = 1, . . . , N , due to the structure of function φkmj(x).

2.7 From (MP) to (FP): gantry speeds and dose rates

Our column generation algorithm will return a feasible solution ȳ, z̄ and Āk, k = 1, . . . , K

to the problem (MP). As a final step of our solution procedure, we need to compute gantry

speed and dose rate vectors s and r consistent with this solution. Substituting the apertures

and fluence rates into constraints of (FP), we need to find a feasible solution to the following

system:

ȳk =
rk
sk

k = 1, . . . , K (2.21)

|sk − sk−1| ≤ ∆Sk k = 1, . . . , K − 1 (2.22)

sk ∈ [SL, SU ] k = 1, . . . , K (2.23)

rk ∈ [0, RU ] k = 1, . . . , K (2.24)

sk ≤ SUk−1,k(Āk−1, Āk) k = 1, . . . , K. (2.25)

This system has a feasible solution since the apertures and fluence rates computed by the

algorithm are guaranteed to be compatible with the gantry moving at speed SL. However,

this solution would lead to a treatment with undesirably long delivery time. Instead, we
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would like to identify a solution to (2.21)–(2.25) that can be delivered in the shortest time

possible. Adding this objective function and rewriting constraints (2.21)–(2.25) in terms of

the gantry speeds only, we obtain the following convex optimization problem:

(SP) minimize
K∑
k=1

δk
sk

subject to

sk ∈ [SL, SUk ] k = 1, . . . , K

|sk − sk−1| ≤ ∆Sk k = 1, . . . , K − 1, (2.26)

where

SUk = min

{
SU , SUk−1,k(Āk−1, Āk),

RU

ȳk

}
, k = 1, . . . , K.

If s̄k is an optimal solution to this problem, then the corresponding dose rates are r̄k = ȳks̄k,

k = 1, . . . , K.

In order to assess the impact on delivery time of the bound on the change in speed we will

also consider a relaxation of (SP) in which constraints (2.26) are removed. It is easy to see

that the corresponding solution will be to choose sk = SUk and rk = ȳkS
U
k (for k = 1, . . . , K).

2.8 Other considerations

In this section we discuss how additional constraints on the setting of the VMAT delivery

machine can be incorporated into the model (FP), its reformulation (MP), and our solution

heuristic.

2.8.1 Upper bound on fluence rate

Our basic model contained no bounds on the fluence rate, other than those implied by

bounds on the gantry speed and dose rate. An independent upper bound on the fluence rate

can be easily incorporated by including it among the constraints of (FP), and by calculating

Y U in (MP) and (RMP(C)) as the minimum of this upper bound and the ratio RU/SL.
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2.8.2 Lower bounds on fluence and dose rates

Our basic model did not include lower bounds on fluence and dose rates, other than

nonnegativity constraints. If such lower bounds Y L and RU , respectively, are dictated by

the VMAT delivery specification, they can be easily included among the constraints of (FP).

However, inclusion of one or both such bounds invalidates the reformulation steps that lead

to the equivalent problem (MP). We could then, instead, consider a generalization (MP)

in which we add lower bounds on the fluence which are the larger of Y L and RL/SU and

apply our heuristic solution procedure without modification (aside from the obvious addition

of lower bounds on fluence rates to (RMP(C))). The resulting mater problem, however, is

no longer equivalent to (FP), but rather is a relaxation. The consequences of using this

relaxation are:

(i) An intermediate solution obtained by solving (RMP(C)) with |C| < K may not be

extendable to a feasible solution to (FP). This means, in particular, that we have to

modify Step 2 of the greedy heuristic and add an aperture even if the optimal solution

value to the PP is nonpositive.

(ii) Postprocessing problem (SP) may not have a feasible solution. Therefore, we may have

to slightly modify the final treatment plan to be able to satisfy the constraints on the

rate of change in gantry speed.

2.8.3 Interdigitation and other MLC constraints

Lastly, consider a VMAT delivery system that does not allow interdigitation of MLC

leaves in adjacent rows. The main impact of this constraint is a modification of the solution

process of the pricing problem discussed in Section 2.6.2.

Before discussing the required modification, we will argue that if interdigitation con-

straints are satisfied in each iteration of the algorithm (i.e., for all apertures Āk, k ∈ C),

and we obtain a VMAT plan by linearly interpolating these apertures between control points
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in C, then the interdigitation constraints will also hold for MLC apertures throughout the

treatment. To obtain the interpolation, we assume that both the gantry and each of the

leaves move at constant speeds between two consecutive control points. Let us examine two

adjacent MLC rows m and m+ 1 at two control points k and k+. We assume that

¯̀
km ≤ r̄k,m+1 and ¯̀

k+m ≤ r̄k+,m+1, (2.27)

i.e., the left leaf in row m and the right leaf in row m+1 do not overlap at either control point,

and denote the time it takes the gantry to rotate from k to k+ by ∆t. At an intermediate

time t ∈ (0,∆t), with the gantry at location c : k < c < k+, the leaf positions are computed

by linear interpolation as follows:

`m = ¯̀
km + (¯̀

k+m − ¯̀
km) · t

∆t
= ¯̀

km ·
∆t− t

∆t
+ ¯̀

k+m ·
t

∆t

and

rm+1 = r̄k,m+1 + (r̄k+,m+1 − r̄k,m+1) · t
∆t

= r̄k,m+1 ·
∆t− t

∆t
+ r̄k+,m+1 ·

t

∆t
.

It is easy to see that because of (2.27), we have `m ≤ rm+1; using the same technique we can

show that `m+1 ≤ rm, assuming same is true at control points k and k + 1. Thus, at any

location between the control points the interdigitation constraints are satisfied.

Now we study the impact of the interdigitation constraints on the pricing problem. Be-

cause of the dependency between individual MLC rows created by these constraints, we

cannot no longer decompose the problem (PP(k)) by row. As before, we characterize row

aperture am ∈ α at MLC row m of aperture A by (`m, rm) where 0 ≤ `m ≤ rm ≤ N and the

(integer) N represents the range of the MLC row, and denote by SUck(a
′
m, am) the maximum

gantry speed that will allow row m of aperture A = (a1, . . . , aM) at control point k to be

reached from row m of aperture A′ = (a′1, . . . , a
′
M) at control point c < k. To incorporate

the interdigitation constraints, we add the inequalities

`m ≤ min{rm+1, rm−1}, m = 1, . . . ,M (2.28)

to the description of the set Ac(s) in (2.16), where we let r0 = rM+1 =∞. By construction,
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Ak(s) 6= ∅ throughout the algorithm.

The pricing problem for k /∈ C under interdigitation constraints can then be written as:

(PPI(k)) maximize
∑
j∈V

πj(z̄)
M∑
m=1

Dkmj(`m, rm)

subject to

0 ≤ `m ≤ rm ≤ N m = 1, . . . ,M

|`m − ¯̀
k−m|, |rm − r̄k−m| ≤

vδk−k
s

m = 1, . . . ,M (2.29)

|`m − ¯̀
k+m|, |rm − r̄k+m| ≤

vδkk+

s
m = 1, . . . ,M (2.30)

`m ≤ min{rm+1, rm−1} m = 1, . . . ,M,

where Dkmj(`m, rm), as before, is approximated by an integral of the beamlet-based step

function φkmj : [0, N ]→ R+. Given this discretization of each MLC row into beamlets, this

version of the pricing problem can still be solved efficiently using a Dynamic Programming

approach described in Romeijn et al. (2005), with potential left and right leaf positions

including integers and bounds in (2.29) and (2.30).

2.8.4 Transmission effects

The leaves in the MLC system are designed to block all radiation directed at them.

However, since these leaves have finite hight, they cannot completely prevent the radiation

from passing. Transmission refers to the radiation dose leaked through individual leaves and

in between adjacent leaves in the MLC. Moreover, many MLC systems utilize leaves that have

round ends (Galvin et al. (1992)). Transmission effects are more serious in areas near the end

of leaves because of the smaller leaf hight. Boyer et al. (2001) provided recommendations

for MLC leaf design that require the leaves attenuate the beam to less than 5%.

Without explicitly taking transmission into account, the optimization dose will differ from

the actual delivered dose. In Appendix B we present a detailed derivation of the transmission

coefficient, α(τ1, τ2), for a beamlet that covers a segment that lies between τ1 and τ2, with
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τ1 < τ2, from the edge of the radiation field. With this information we can incorporate

transmission effects into the dose deposition coefficient for any aperture A ∈ A. Recall that

we defined the coefficient

Dkj(A) =
M∑
m=1

Dkmj(`km, rkm) ∀k = 1, . . . , K, j ∈ V .

We can expand this definition to include the transmission dose. Define:

Dkj(A) =Dkj(A)

+
M∑
m=1

b`kmc−1∑
n=0

α(`km − n− 1, `km − n)Dkmnj + α(0, `− b`kmc)(`km − b`kmc)Dkmb`kmcj

+ α(0, drkme − rkm) (drkme − rkm)Dkmbrkmcj +
N−1∑

n=drkme

α(n− rkm, n− rkm + 1)Dkmnj

 ,
where the un-attenuated dose deposition coefficients for partial beamlets [b`kmc, `km] and

[rkm, drkme] are approximated by the proportion of those of whole beamlets. We can use

coefficient Dkj(A) in the place of Dkj(A) to obtain a better approximation of the true co-

efficient. This can be done in both the restricted master problem and the pricing problem.

However, doing this in the pricing problem means that the solution is no longer guaranteed

to be either integers or the bounds derived from (2.19), and we may have to modify the so-

lution algorithm and find approximate solutions to the pricing problem. Therefore we only

take the transmission effects into account in (RMP(C)).

2.9 Data and implementation

Our algorithm was evaluated on a clinical dataset of prostate cancer patients treated at

UCSD Moores Cancer Center. The preprocessing steps, including image processing and cal-

culation of the dose deposition coefficients Dkmnj are performed using our in-house treatment

planning system. The dose calculations in this system are based on a finite-size pencil-beam

algorithm with 3-D density correction (Gu et al. (2009, 2011)). For each case we used beam-

lets of size 1 × 1 cm2 and voxels of size 4 × 4 × 2.5 mm3. The full voxel grid will be used
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in evaluating the dose distribution. However, in order to reduce the problem size, the op-

timization problem used a downsampled voxel grid that selected 1 of every 2 voxels along

each of the three dimensions in critical structures and 1 of every 4 in unspecified tissue. The

dimensions (after downsampling) and other characteristics of the 5 cases are summarized

in Table 2.1. Figure 2.2 illustrates the distribution of control points around the arc. For

all cases we used K = 177 control points, and the angular distances between control points

are shown in Table 2.1. Finally, the physical machine parameters we used are based on the

Varian VMAT machines (Varian Medical Systems, Inc., Palo Alto, CA, USA) and are shown

in Table 2.2 (where ∆Sk = ∆S for all k = 1, . . . , K).

Case # voxels # beamlets # Dkmnj 6= 0 δk (k = 3, . . . , 176) δ2, δ177 δ1

1 18,375 14,337 37,224,301 330
174

1
2
· 330

174
0

2 14,392 11,328 26,751,546 330
174

1
2
· 330

174
0

3 18,469 21,417 52,850,633 330
174

1
2
· 330

174
0

4 9,747 14,337 47,707,351 330
174

1
2
· 330

174
0

5 17,342 17,700 61,606,811 340
174

1
2
· 340

174
0

Table 2.1: Problem dimensions of different cases (after downsampling).

30
°

(a)

20
°

(b)

Figure 2.2: Distribution of 177 control points around the arc for (a) Cases 1 — 4, and (b)
Case 5.
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RL RU SL SU ∆S v SAD SCD

(MU/sec) (MU/sec) (deg/sec) (deg/sec) (deg/sec) (cm/sec) (cm) (cm)

0 10 0.83 6.0 0.75 2.25 100 53.9

Table 2.2: Physical machine parameters.

The prescription dose to the PTV was set to 79.2 Gy, corresponding to a 44-fraction

treatment with 1.8 Gy delivered in each fraction. All Dose-Volume Histogram (DVH) based

criteria for the PTV and critical structures, in particular rectum, bladder, and femoral heads,

that were used to evaluate all treatment plans are based on clinical protocols at UCSD as

well as RTOG protocol H-0126 (Radiation Therapy Oncology Group (2004)) (see the ta-

bles in the remainder of this section for details). In our optimization model, we chose F

to be a voxel-based penalty function that penalizes the dose received by a voxel quadrat-

ically but asymmetrically with respect to a threshold dose that depends on the structure

containing the voxel; consequently, F is a smooth piece-wise quadratic convex function.

The structure-dependent relative weights of these penalty functions were determined using a

manual procedure that iteratively modified these weights until satisfactory treatment plans

were obtained for all 5 cases. This led to a common set of weights for all cases, thereby elim-

inating variation between cases caused by individual parameter tuning. In order to facilitate

the comparison between the treatment plans we normalized each treatment plan by scaling

the dose distribution so that 95% of the PTV receives the prescription dose.

Finally, we implemented our algorithm using the Compute Unified Device Architecture

(CUDA) to take advantage of the processing power of the Graphic Processing Unit (GPU).

GPU is a platform for implementation of large-scale parallelization of computer code, and has

been shown to be very suitable for solving radiation therapy treatment plan optimization

problem (Men et al. (2009, 2010a,b)). The RMP is solved using our in-house gradient

based solver. On an Nvidia Tesla C1060 GPU card, our algorithm takes 2 — 6.5 minutes

to complete. The high efficiency of our VMAT optimization engine provides a significant

step towards a clinical application of VMAT for adaptive radiotherapy, although of course
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a treatment planning system for adaptive radiotherapy would contain several additional

components.

2.10 Benchmark

Before evaluating our VMAT treatment plans, we provide a benchmark for comparison

by solving an IMRT treatment plan optimization problem with the same objective function

as (FP) and using the K = 177 beam angles that correspond to control points in the VMAT

treatment plan optimization model. These IMRT plans are used to assess the quality of

our VMAT plans and are not suitable for clinical use due to the unreasonably long time

required to deliver an IMRT plan with 177 beam angles. Since the IMRT treatment plan

optimization model allows intensity modulation at each beam angle and contains no con-

straints on aperture compatibility nor gantry speed, they can be viewed as an ideal, likely

clinically unattainable, solution. Therefore, any VMAT treatment plan that is close to this

ideal IMRT treatment plan will also be close to the optimal VMAT treatment plan.

Table 2.3 includes the clinical dose-volume criteria and the 177-beam IMRT plans eval-

uated with these criteria for all 5 cases. All plans are able to avoid significant hot- and

cold-spots in the PTV, and are able to satisfy most of the DVH criteria for the critical

structures. For Case 2 14% of the bladder volume and 18% of the rectum volume overlap

with the PTV, and for Case 4 almost 30% of the bladder volume overlaps with the PTV.

For these patients, even additional patient-dependent parameter tuning did not allow us to

resolve the violations highlighted in the table without introducing more serious ones.

2.11 Performance of VMAT plans

As discussed in Section 2.6.1, the column generation heuristic is parameterized by the

parameter s, which represents how “greedy” the heuristic is. Moreover, since the choice of

s affects the choice of Āk, which affects SUk in the time-minimization problem (SP), it also

41



Structure Threshold Volume Case
Dose (Gy) Criterion (%) 1 2 3 4 5

PTV 73.7 ≥99 100 99 100 99 100
79.2 ≥95 95 95 95 95 95
87.1 ≤10 0 0 0 6 0

Rectum 75 ≤15 1 11 8 5 5
70 ≤25 2 13 11 8 6
65 ≤35 3 16 13 10 9
40 ≤45 12 26 24 28 20

Bladder 65 ≤17 5 20 13 42 10
40 ≤35 10 38 20 70 20

Femoral heads 50 ≤10 0/0 0/0 0/0 0/1 0/0
(L/R) 45 ≤25 0/0 0/0 0/0 0/3 0/0

40 ≤40 0/0 0/0 0/0 1/6 0/0

Table 2.3: Performance of 177-beam IMRT treatment plans.

impacts the delivery time of the final treatment plans. In this section we test our heuristic

under various settings of s, and study the performance of the resulting treatment plans in

terms of quality and delivery time.

2.11.1 The most greedy heuristic

Recall that a smaller value of s means that there are more apertures to choose from

in each iteration. We will start by choosing the smallest value of s, i.e., we will start by

investigating the most greedy variant of our heuristic. Note that we use the same objective

function as for the 177-beam IMRT optimization without any additional tuning, so that

the results only reflect the differences between the two modalities and treatment planning

techniques.

The results in Table 2.4 show that our VMAT treatment plans exhibit high quality in

general, closely resembling the IMRT treatment plans when evaluated with the same set

of clinical criteria. The major differences between the IMRT and VMAT plans are with

respect to the dose distribution in the femoral heads, but the VMAT plans still easily meet

all clinical criteria.

42



Structure Threshold Volume Case
Dose (Gy) Criterion (%) 1 2 3 4 5

PTV 73.7 ≥99 100 100 100 99 100
79.2 ≥95 95 95 95 95 95
87.1 ≤10 0 0 0 1 1

Rectum 75 ≤15 2 11 8 4 5
70 ≤25 3 15 11 6 7
65 ≤35 4 17 14 9 10
40 ≤45 13 29 25 20 23

Bladder 65 ≤17 4 21 12 41 10
40 ≤35 11 39 21 66 19

Femoral heads 50 ≤10 0/0 0/0 0/0 0/0 0/0
(L/R) 45 ≤25 0/0 0/0 0/0 0/0 0/0

40 ≤40 0/0 0/0 0/0 1/0 0/0
Runtime (s) 284.9 323.8 271.4 223.9 299.0
Treatment time (s) 225.4 197.5 242.8 217.5 241.0

Table 2.4: Performance of VMAT treatment plans with s = SL = 0.83 deg/sec.

The second to last row of Table 2.4 contains the plan optimization times, in seconds,

using the algorithm for each case, while the last line shows the treatment delivery time for

each case. These treatment times range between 3.29 to just over 4 minutes, versus the

fastest allowable arc delivery time of 1 minute.

2.11.2 Effect of the value of s on treatment quality and time

Unfortunately, the treatment plans in Table 2.4 require relatively long treatment times,

which negates some of the benefits of using VMAT treatments. We therefore next study

whether we can choose a larger value of s, which can be expected to decrease treatment

time, without significant changes in treatment plan quality. In these tests we focus on Case

2, which is one of the more challenging cases.

Table 2.5 shows the performance of the VMAT treatment plans obtained for Case 2with

various values of s ranging from SL to SU . We can conclude that the treatment plan quality is

not sensitive to the choice of s. However, the overall treatment time is reduced dramatically,

by a factor of more than 1.3 from 3.3 minutes to just over 2 minutes, when using s = SU = 6.
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Finally, we provide an estimate of the total number of MUs required for treatment given by∑K
k=1 δk ȳk where the ȳk is the fluence rate at control point k in the final solution (see also

the definition of the fluence rates yk in Section 2.2). Note that even though the treatment

times for s = 4 and s = 6 are similar (slightly shorter with s = 4), a comparison of total

MU shows that using s = 6 is more desirable as the total MU required is much lower.

Structure Threshold Volume s (deg/sec)
Dose (Gy) Criterion (%) 0.83 2 4 6

PTV 73.7 ≥99 100 100 100 100
79.2 ≥95 95 95 95 95
87.1 ≤10 0 0 0 0

Rectum 75 ≤15 11 11 12 12
70 ≤25 15 14 15 15
65 ≤35 17 17 18 18
40 ≤45 29 29 32 32

Bladder 65 ≤17 21 21 22 21
40 ≤35 39 40 42 42

Femoral heads 50 ≤10 0/0 0/0 0/0 0/0
(L/R) 45 ≤25 0/0 0/0 0/0 0/0

40 ≤40 0/0 0/0 0/2 0/0
Runtime (s) 323.8 260.1 116.1 71.5
Treatment time (s) 197.5 171.8 145.8 149.3
Total MU 873.5 859.1 737.2 667.7

Table 2.5: Performance of VMAT treatment plans for Case 2 obtained with different s values.

2.11.3 Least greedy heuristic

Based on the results in the previous section we focus our further analysis on the least

greedy heuristic. Table 2.6 shows the performance of the VMAT treatment plans obtained

with s = SU = 6. Similarly to Case 2 we conclude that there is no significant changes

clinically in treatment plan quality as compared to the plans in Table 2.4, but the treatment

time is greatly reduced for all cases. In particular, the treatment time is consistently just

over 2 minutes for all 5 cases.
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Structure Threshold Volume Case
Dose (Gy) Criterion (%) 1 2 3 4 5

PTV 73.7 ≥99 100 100 100 99 100
79.2 ≥95 95 95 95 95 95
87.1 ≤10 0 0 0 2 0

Rectum 75 ≤15 1 12 9 4 5
70 ≤25 3 15 13 6 8
65 ≤35 4 18 16 9 10
40 ≤45 18 32 31 27 28

Bladder 65 ≤17 5 21 13 43 11
40 ≤35 12 42 24 71 22

Femoral heads 50 ≤10 0/0 0/0 0/0 0/1 0/0
(L/R) 45 ≤25 0/1 0/0 1/2 1/4 0/0

40 ≤40 0/4 0/0 5/5 4/6 3/1
Runtime (s) 78.8 71.5 59.2 54.2 67.6
Treatment time (s) 149.3 149.3 141.1 142.6 155.5
Total MU 611.5 667.7 539.0 557.6 610.4

Table 2.6: Performance of VMAT treatment plans with s = SU .

2.11.4 VMAT treatment plan quality compared to benchmark

Figure 2.3 shows the DVHs of the 177-beam IMRT and VMAT (with s = SU = 6)

treatment plans for Cases 1 — 5. As can be gleaned from the corresponding tables, the

largest differences in these plans are with respect to the dose distribution in the femoral

heads, but these are still well within the clinical protocol. Given the restrictions that VMAT

delivery imposes on a treatment plan, we feel that the quality of the VMAT plan is not only

clinically acceptable, but also high since the degradation from the idealized 177-beam IMRT

plan is relatively small.

2.11.4.1 Disallowing interdigitation

In order to study the effect of using an MLC system that does not allow interdigitation,

we implemented the modified pricing problem (PPI) described in Section 2.8.3 and applied

our resulting algorithm on all 5 cases. Our experiments revealed no significant change in

solution quality, while the solution time increased substantially for all cases, due to the

45



0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	  

Fr
ac
0o

n	  
of
	  v
ox
el
s	  

Dose	  (Gy)	  

body	  
target	  
bladder	  
rectum	  
femoral	  heads	  

Case1

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	  

Fr
ac
0o

n	  
of
	  v
ox
el
s	  

Dose	  (Gy)	  

body	  
target	  
bladder	  
rectum	  
femoral	  heads	  

Case2

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	  

Fr
ac
0o

n	  
of
	  v
ox
el
s	  

Dose	  (Gy)	  

body	  
target	  
bladder	  
rectum	  
femoral	  heads	  

Case3

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	  

Fr
ac
0o

n	  
of
	  v
ox
el
s	  

Dose	  (Gy)	  

body	  
target	  
bladder	  
rectum	  
femoral	  heads	  

Case4

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	  

Fr
ac
0o

n	  
of
	  v
ox
el
s	  

Dose	  (Gy)	  

body	  
target	  
bladder	  
rectum	  
femoral	  heads	  

Case5

Figure 2.3: DVH comparison for Cases 1 — 5. Solid: 177-beam IMRT; dashed: VMAT
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increased complexity of the pricing problem (see Table 2.7).

Solution time (s) Case
1 2 3 4 5

Allowing interdigitation 78.8 71.5 59.2 54.2 67.6
Disallowing interdigitation 511.5 351.7 685.3 300.1 660.5

Table 2.7: Impact of disallowing interdigitation on algorithm run time.

2.11.5 Rate of change in gantry speed

Now we investigate the effect of the constraint on the rate of change in gantry speed on

treatment time. As discussed in Section 2.7, we can assess the impact of the rate of change

restriction by removing the corresponding constraint (2.26) from problem (SP). As before,

we focus this study on Case 2.

Figure 2.4 plots the gantry speeds and dose rates for control points 1 through 176 for Case

2. Graphs (a-1) and (b-1) show gantry speeds, and (a-2) and (b-2) show dose rates, obtained

by setting s = SU = 6 in the column-generation algorithm, with rate of change constraint

(2.26) omitted for graph (a-1) and (a-2), but included for graph (b-1) and (b-2). Graphs

(c-1) — (d-2) contain analogous results with s = 4. It is clear that without a constraint on

the rate of change, the gantry speed changes rapidly during the treatment in order to extend

the time spent at apparently favorable control points while limiting the time spent at less

favorable ones. Notice as well that at most control points the speed remains equal to the

value s used in the column generation algorithm even after solving (SP).

When the rate of change constraint is enforced, as in parts (a-1) and (c-1), the sequence

of speeds is smoothed so that the change in speed between control points is no more than

∆Sk. Note that, as discussed in Section 2.7, the rate of change constraint does not have any

impact on treatment plan quality. However, if it were technologically feasible to increase

or eliminate the bound on the rate of change in gantry speed, the treatment time could be

shortened by about 35% to 1.7 minutes, as shown in Table 2.8.
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Figure 2.4: Gantry speeds (left column) and dose rates (right column) vs. control points for
Case 2: (a) s = 6 deg/sec, ignoring rate of change constraint; (b) s = 6 deg/sec, considering
rate of change constraints; (c) s = 4 deg/sec, ignoring rate of change constraint; (d) s = 4
deg/sec, considering rate of change constraints.
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Treatment time (s) Case
1 2 3 4 5

Without bound 97.8 99.4 91.6 94.9 98.9
With bound 149.3 149.3 141.1 142.6 155.5

Table 2.8: Impact of the presence of the bound ∆S on the rate of change in gantry speed
on treatment time.

2.11.6 Transmission dose

Finally we study the effect of incorporating the transmission dose into the dose calculation

during the optimization process. Again we incorporate the transmission dose by using the

modified coefficient Dkj(A), explained in Section 2.8.4 in the (RMPC). We first examine the

impact of transmission on the dose distribution by applying the plan generated for Case 2

with S = SU , and calculating the delivered dose with and without transmission. Figure 2.5

(a) shows a comparison of the DVH curves obtained in these two different settings. Because of

transmission dose, the delivered dose is higher for all of the structures. However, the shapes of

the corresponding curves remain similar. Normalizing the final dose distributions, for which

the dose is scaled down 6.5%, reveals that given the same target coverage, transmission dose

adds slightly to the dose to critical structures and normal tissues.

As discussed in Section 2.8.4, considering transmission helps us find better solutions to

the (RMP(C)), which lead to more accurate aperture prices in (PP(k)) and better apertures

being added in the column generation process. We compare two solutions, one obtained with

transmission taken into account in the optimization process, and one without. For each plan

we include transmission dose in calculating the the final dose distribution. The results can

be seen in Figure 2.5 (c). Being able to incorporate the transmission dose in the optimization

problem results in slightly lower doses to the critical structures and more homogeneous dose

in the target. Moreover, the delivery time, MU and optimization time are all similar to the

plan obtained without taking transmission into account, as shown in Table 2.9.
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Figure 2.5: Case 2 s = 6, (a): final dose with (dashed) and without (solid) transmission; (b):
final dose with (dashed) and without (solid) transmission, where transmission dose normal-
ized to 95% target coverage; (c): normalized final dose with transmission, plan optimization
with (dashed) and without (solid) considering transmission

Optimization scheme runtime (s) treatment time (s) total MU
With transmission 85.8 143.1 665.4
Without transmission 71.5 149.3 667.7

Table 2.9: Impact of considering transmission on optimization runtime, treatment time and
total MU
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2.12 Conclusions

We have developed an efficient algorithm for generating VMAT treatment plans. Our

approach incorporates various physical constraints, including bounds on dose rate, gantry

speed, and rate of change in the gantry speed during treatment. Moreover, the approach is

flexible enough to allow for additional constraints, including MLC delivery constraints. We

have shown that our algorithm is capable of generating treatment plans of high quality on

5 prostate cancer cases. The VMAT plans produced by our algorithm can be delivered in

around 2 minutes. Moreover, a GPU implementation allows us to complete the optimization

within a couple minutes. Along with additional 15 seconds for computing the dose deposition

coefficients before the optimization and 15 seconds for computing the final dose distribution

after the optimization using a GPU-based dose calculation engine (Gu et al. (2011, 2009)),

this work provides a major step towards a clinical application of on-line adaptive VMAT

therapy.
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CHAPTER III

VMAT with Constant Gantry Speed and Dose Rate

3.1 Introduction

Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate

(VMATC) was first introduced in its initial form in Yu (1995) as the Intensity Modulated

Arc Therapy (IMAT). In this type of treatment, the gantry rotates continuously around the

patient while the radiation source is tuned on. The leaves in the Multileaf Collimator (MLC)

system move dynamically to modulate the shape of the exposed field (aperture), however,

both the gantry speed and the source output rate (dose rate) must stay constant during the

treatment.

VMATC treatment has attracted the attention from many researchers as well as clini-

cians. Similar to VMAT, VMATC treatment is delivered while the gantry is in continuous

motion, whereas the conventional Intensity Modulated Radiation Therapy (IMRT) delivers

radiation sequentially from a number of beam angles in a “step-and-shoot” fashion, and

requires setup time between consecutive beam angles. Moreover, IMRT delivery from each

beam angle takes a long time because of the intensity modulation required. As a result,

VMATC has the potential to shorten the overall treatment time compared to IMRT, which

leads to less patient discomfort, less intrafraction motion uncertainties, as well as increased

equipment utilization for the clinics. Furthermore, VMATC is able to use a large set of angles

around the patient, instead of being restricted to a relatively small number of pre-determined
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angles. This may potentially lead to improved treatment plan quality over IMRT.

VMATC treatments can be delivered from an IMRT treatment machine equipped with

conventional linear accelerator and MLC system. Because IMRT is commonly used as the

primary external beam radiation therapy treatment method, this gives a wide range of clinics

access to research and experiments with VMATC treatments. However, VMATC lacks the

flexibility to dynamically vary the gantry speed and dose rate. This gives the optimization

for VMATC a very different nature from that for VMAT. Therefore it is necessary to develop

optimization algorithms specifically for VMATC.

Because of the lack of inverse planning techniques, some early efforts in designing treat-

ment plans for VMATC were focused on using a Beam-Eye-View (BEV) approach, by align-

ing the apertures at different angles to the shape of the projected target (Yu et al. (2002);

Wong et al. (2002)). The majority of research was done by converting IMRT plans and

making them deliverable in treatments consisting of multiple arcs. Yu (1995) relied on an

IMRT treatment with beams 5◦ apart as the starting plan. The intensity profile at every

beam was then heuristically decomposed into a number of intensity levels and the associated

leaf positions, so that the leaf positions with matching intensity level at different angles are

compatible on the same arc. Crooks et al. (2003) segmented an IMRT fluence map at each

angle into several intensity levels, and distributed these segments on the small arc between

two consecutive angles. The time it takes for the gantry to traverse this arc is divided

and assigned to each segment so that their delivery time, and thus intensity, matched the

original intensity. However, the authors assumed that segment transition can happen instan-

taneously, and that the leaf travel speed was unbounded, which may lead to undeliverable

plans. Moreover, the gantry speed necessary to deliver the treatment may be undesirably

slow in the solution. In a study on designing leaf-sequencing methods for converting IMRT

fluence map to deliverable leaf settings, Shepard et al. (2007) employed a simulated anneal-

ing heuristic to find the leaf settings that best resemble the IMRT fluence map. Later in a

similar study, Luan et al. (2008) applied a shortest path algorithm that minimizes the error
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between the original IMRT and the sequenced fluence maps. However, due to the differences

between IMRT and VMATC treatments, a treatment plan designed for IMRT and perturbed

to satisfy the compatibility constraints is not necessarily a good plan for VMATC. More-

over, the process of converting the IMRT plan will inevitably introduce degradations in plan

quality, and the commonly used method of minimizing the difference in fluence maps may

not lead to the minimal difference in plan quality.

Using heuristic methods that do not depend on a prior IMRT treatment plan, Cotrutz

et al. (2000) proposed an approach that combined a number of arcs, each with a manually

picked rectangular aperture, to produce a treatment. Earl et al. (2003) and Cameron (2005)

both proposed methods that used simulated annealing to perturb the starting set of aper-

tures, which conformed to the shape of the projected target at different angles (i.e., a BEV

approach). In the former article the dose rate was part of the decisions perturbed in the

simulated annealing method, whereas in the latter two the dose rate was determined through

optimization for the given leaf positions.

The results in these studies showed that either multiple arcs or one arc with long delivery

time were required to generate VMATC treatment plans that resemble the quality of a

conventional IMRT plan. In favor of this observation, Bortfeld and Webb (2009) performed

a theoretical study based on a phantom case, and claimed that single-arc VMATC plans

may unduly compromise the plan quality compared to IMRT plans if the treatment time

was to be kept under 2 minutes.

The above-mentioned studies, among others, have lead to the advancement in treat-

ment technologies and the introduction of dedicated commercial VMAT systems that enable

variable gantry speed and dose rate during the treatment, and research focus has shifted

towards plan optimization problem for full VMAT treatments since (Otto (2008); Bedford

(2009); Men et al. (2010b); Peng et al. (2012)).

Although VMATC lacks two important features, namely dynamically changing gantry

speed and dose rate during the treatment, being able to deliver this type of treatment can
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still be very appealing to clinics equipped with conventional IMRT machines, as VMATC

treatment provides many the benefits of full VMAT without requiring an expensive system

upgrade. This can be particularly beneficial to countries that do not have access to treatment

machines with full VMAT capabilities. Moreover, fully realizing the potential of VMATC

treatment will require investigation into all degrees of freedom it offers. To the best of

our knowledge, none of the existing research studies on VMATC have directly taken the

optimization of the constant gantry speed into account. However, as gantry speed directly

determines how far the leaves can travel between consecutive control points and thus the

allowed change in aperture shapes, it impacts the plan quality in addition to treatment time.

In this research we consider the treatment planning problem for VMATC with a single

arc, and we treat both (constant) gantry speed and dose rate as decision variables in the

optimization process. We compare our VMATC plans with VMAT on actual patient cases,

and show that VMATC can generate single-arc treatment plans with quality close to full

VMAT. Our approach can readily be extended to treatments with multiple arcs. The results

of our research may help clinics make an informed decision when upgrading to dedicated

VMAT systems.

3.2 VMATC optimization problem formulation

We assume that during VMATC treatment the gantry rotates continuously along a pre-

specified trajectory. Let S denote the constant gantry speed, chosen from a range [SL, SU ]

that is physically feasible for the treatment machine, and let R ∈ [RL, RU ] represent the

constant dose rate for the VMATC treatment. The MLC apertures can, in principle, be

controlled at every angle on the gantry rotation trajectory. However, for tractability reasons

the treatment is usually defined by controlling the apertures at all or a subset of K discrete

control points along the arc. We define the angular distance between control point k − 1

and k as δk (k = 1, . . . , K), and define an additional control point 0 in the beginning of

the treatment arc for convenience. In between control points, the treatment machine will
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configure itself so that the leaves in the MLC move at constant speeds to reach their positions

at the next control point from the previous control point.

By controlling the machine this way, we can in principle calculate the dose to each voxel

as a function of S, R, and the leaf positions along the gantry trajectory. However, computing

the dose based on the continuous leaf motion is not only inefficient, but also impractical,

since it usually needs to be done numerous times in the optimization process. We therefore

consider an approximation that computes the overall dose as the sum of dose associated with

the control points. Note that this is the same “step-and-shoot” approximation described in

Chapter II, which assumes that the aperture stays constant on the arc spanning control

points k − 1 and k (k = 1, . . . , K). We can calculate the dose delivered to voxel j ∈ V as

follows:

zj =
k∑
k=1

Dkj(Ak) ·
Rδk
S

∀j ∈ V , (3.1)

where Dkj(Ak) is the dose deposition coefficient associated with aperture Ak and voxel j,

and Rδk
S

equals the total source output (measured by Monitor Unit (MU)) delivered from

control point k. Otto (2008) showed that zj calculated by (3.1) will be sufficiently close to

the actual dose if K is sufficiently large and δk is sufficiently small for all k ∈ {1, . . . , K}.

Now given that the VMATC planning problem is essentially a VMAT problem with

variables S and R restricted to be constant for all angles, we can easily modify formulation

(FP) in Chapter II by equating all sk to S and all rk to R, and arrive at the formulation for

VMATC:

(VC) minimize
S,R,A,z

F (z)

subject to

zj =
K∑
k=1

Dkj(Ak) ·
Rδk
S

j ∈ V (3.2)

S ≤ SUk−1,k(Ak−1, Ak) k = 1, . . . , K (3.3)

S ∈ [SL, SU ]
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R ∈ [RL, RU ]

Ak ∈ A k = 1, . . . , K.

Recall that SUk−1,k(Ak−1, Ak) is the maximum speed allowed for the MLC apertures to shift

from Ak−1 to Ak between control points k−1 and k, and A is the set of apertures deliverable

by the MLC system.

Although this problem appears similar to problem (FP), it cannot be solved using the

same algorithm, where after every aperture is added to the master problem, the fluence rates

of all apertures need to be chosen so that the objective function value will improve. For the

VMATC problem, the fluence rate must always be the constant value associated with S and

R. As a result, adding an aperture with a negative price may actually lead to a worsened

objective function value. Therefore, we will develop (heuristic) algorithms specifically for

(VC) in this chapter.

3.3 Decomposition approaches to (VC)

Solving (VC) directly is difficult; in what follows, we propose and test two heuristic

optimization frameworks that rely on the decomposition approaches to (VC) described in

this section. Problem (VC) has two types of decisions: (i) selecting values of continuous

variables S and R, and (ii) selecting apertures at control points. To describe our heuristic

optimization frameworks, it is convenient to consider the following two “decomposition-

based” interpretation of (VC).

3.3.1 Decomposition approach 1: gantry speed and dose rate selection as a

sub-problem

Suppose that we have selected one aperture Ak for every control point k ∈ {1, . . . , K},

then the gantry speed and dose rate can be optimized. However, not all gantry speeds in

the range [SL, SU ] can be used, as S must be compatible with the apertures in consecutive
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control points in order to allow the current aperture sequence to be deliverable. Let M be

the set of MLC leaf rows, and let akm = (`km, rkm) be the leaf setting in row m ∈ M at

control point k. Finally, let v be the maximum travel speed for leaves in the MLC. It can

be easily seen that S must be chosen so that:

|`mk − `m,k−1|
v

≤ δk
S

∀m ∈M, k ∈ {1, . . . , K} (3.4)

|rmk − rm,k−1|
v

≤ δk
S

∀m ∈M, k ∈ {1, . . . , K}. (3.5)

These conditions ensure the gantry rotation time between two consecutive control points is

sufficient for the leaf transition. We can define the maximum allowed (constant) speed S̄U

from (3.4) and (3.5) as:

S̄U = min
m∈M,k∈{1,...,K}

{
δk · v

|`mk − `m,k−1|
,

δk−1 · v
|rmk − rm,k−1|

}
.

The optimization problem for the dose rate and gantry speed then reads:

(GD(A)) minimize
z,R,S

F (z)

subject to:

zj =
K∑
k=1

Dkj(Ak) ·
Rδk
S

∀j ∈ V

R ∈ [RL, RU ] (3.6)

S ∈ [SL, S̄U ]. (3.7)

As long as S̄U , SL > 0, which is apparent as the gantry must rotate at a positive speed,

this problem can be transformed into an equivalent optimization problem by defining fluence

rate y = R
S

, and combining the feasible ranges for R and S into the feasible range for y:

(DY(A)) minimize
z,y

F (z)

subject to:

zj =
K∑
k=1

Dkj(Ak) δk y ∀j ∈ V
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y ∈ [YL, YU ]

where

YL =
RL

S̄U
, YU =

RU

SL
.

Note that problem (DY(A)) is a convex problem that can be easily solved.

3.3.2 Decomposition approach 2: aperture selection as a sub-problem

The gantry speed, together with the fixed maximum leaf travel speed, determines how

far individual leaves in the MLC can travel between two control points, which in turn de-

termines the sequence of apertures deliverable in the treatment. Once the gantry speed and

dose rate combination is chosen, the achievable plan quality only depends on the aperture

selection (i.e., leaf setting) at each control point. We formulate the problem for optimizing

the apertures as follows:

(LS(S,R)) H(S,R) = minimize
A,z

F (z)

subject to

zj =
K∑
k=1

Dkj(Ak) ·
Rδk
S

j ∈ V

S ≤ SUk−1,k(Ak−1, Ak) k = 1, . . . , K

Ak ∈ A k = 1, . . . , K.

We observe that solving (VC) is the same as minimizing H(S,R) over S and R, or

equivalently, solving the following problem:

(SR) minimize
S,R

H(S,R)

subject to

S ∈ [SL, SU ] (3.8)

R ∈ [RL, RU ]. (3.9)
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However, directly solving (LS(S,R)) is difficult, as the dose deposition matrix Dkj(Ak) has

a complex relationship with Ak that is dependent on the patient’s anatomy. We describe a

heuristic method for solving this problem in the next section.

3.4 Methods for (approximately) solving (LS(S,R))

We propose an algorithm for solving (LS(S,R)) that iteratively selects and refines apertures

at the set of control points, while maintaining a deliverable treatment plan throughout the

solution process. We start with an outline of the algorithm:

1. Initializate with an “empty” treatment – all apertures are assumed “closed”. Let C = ∅

be the set of control points that currently have apertures selected

2. Selecting an initial sequence of apertures:

(a) determine a sequence of control points, which we will follow to select the apertures;

(b) for the next control point in the sequence, say k̄, set C ← C ∪{k̄}, select aperture

Ak̄;

(c) if |C| = K, go to Step 3; otherwise go to Step 2(b).

3. Refining the collection of apertures selected in Step 2:

(a) determine a sequence of control points to follow;

(b) perform the following refinement step:

i. for the next control point in the sequence, say k̄, refine aperture Ak̄;

ii. if we are at the end of the sequence, go to Step 3(c); otherwise go to i.

(c) terminate if the objective does not improve; otherwise repeat Step 3(b).

In this algorithm, every time an aperture is selected or refined, it is done in a way that

will improve or maintain the quality of the current solution. We discuss this in detail in the
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following sections. In our implementation in Section 3.6, we used the following sequence of

control point in both Steps 2 and 3: the first two apertures are selected at control points

1 and K, the next aperture is selected halfway between 1 and K to reduce the distance

between selected apertures by half, then two more apertures are selected to reduce the

distance between selected apertures to 1/4 or the entire arc, etc., until all the control points

have apertures selected.

3.4.1 Determining apertures at all control points given set C

Recall that when an aperture is selected at every control point and S and R are given,

the same “step-and-shoot” approximation we used for VMAT can be used to perform the

dose calculation. However, during Step 2 of algorithms that fit the above general description,

we will encounter intermediate steps in which only a subset of the control points have an

aperture specified. Unlike in VMAT, where we would set dose rate at such control points to

zero, varying the dose rate is not an option in VMATC if we want to maintain a deliverable

plan at every step of the algorithm, and care needs to be taken when calculating the delivered

dose in this situation.

Let C ⊂ {1, . . . , K} be the subset of control points that have apertures specified in the so-

lution process. Then the apertures at all other angles, including control points {1, . . . , K}\C,

can be found by linearly interpolating the leaf positions at control points in C. We can de-

fine function F , which calculates leaf settings amk at control point k ∈ {1, . . . , K} and row

m ∈M , given those specified in C:

FCkm(amk′ : k′ ∈ C) =

(
`mk− +

`mk+ − `mk−∑k+

i=k−+1 δi
·

k∑
i=k−+1

δi, rmk− +
rmk+ − rmk−∑k+

i=k−+1 δi
·

k∑
i=k−+1

δi

)
.

(3.10)

Here k− and k+ are the indices of control points in C that are immediately before and after

control point k, respectively:

k− = max{c, c ∈ C : c ≤ k} and k+ = min{c, c ∈ C : c ≥ k}
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It is easy to see that k−, k+ and k coincide if k is itself included in C.

In the discussion so far we assumed that we used at least two control points 1 and K.

Under this assumption, the control points k− and k+ are well-defined for any k ∈ {1, . . . , K},

allowing us to evaluate F via a simple interpolation. However, we can extend the definition

of function F to cover other situations: if control point k has no aperture specified before

(after) itself, it will use the same aperture as the one specified at the control point after

(before). And if no aperture has been specified yet, it is natural to define the treatment

plan as empty where all leaves are closed at the edge of the beam. Once the apertures at all

control points are determined with function F , we can readily calculate the dose distribution

using (3.1).

3.4.2 Methods for selecting/refining apertures

In Steps 2 and 3 of the aperture selection algorithm, we select apertures sequentially at

the set of control points so that the treatment quality can be improved. In this section we

describe two types of methods, one based on a local search procedure that can only examine

a finite set of options when selecting the leaf setting, the other based on optimization, which

can find the leaf setting in one row optimally but takes longer to execute. Moreover, the

optimization based method can only be applied in refining the apertures.

3.4.2.1 Local search heuristic

This method can be used in both Steps 2 and 3 of the above algorithm. Suppose that

the set of control points that currently have an aperture selected is C ⊂ {1, . . . , K}, and

now for more control over the treatment delivery process and/or for improving the solution

quality, we want to increase the number of selected apertures by 1, say at k ∈ {1, . . . , K}\C.

The leaves at k used to occupy the interpolated positions determined by the selected control

points k− and k+ in C. To choose a potentially better leaf setting, first we need to determine

which ones are feasible in each row. This is again dictated by the constant gantry speed and
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the leaf travel speed:

|`mk− − `mk| ≤ v ·
∑k

i=k−+1 δi

S
∀m ∈M (3.11)

|rmk− − rmk| ≤ v ·
∑k

i=k−+1 δi

S
∀m ∈M (3.12)

|`mk+ − `mk| ≤ v ·
∑k+

i=k+1 δi

S
∀m ∈M (3.13)

|rmk+ − rmk| ≤ v ·
∑k+

i=k+1 δi

S
∀m ∈M (3.14)

`mk ≤ rmk (3.15)

Here (3.15) is the physical restriction that leaves in the same row cannot overlap. Note that

these restrictions are written assuming k− and k+ both exist. If either or none of them exist

because control point k does not have a preceding or succeeding control point, we can simply

ignore the associated constraints.

Let ãmk =
(

˜̀
mk, r̃mk

)
(m ∈ M), be the original interpolated leaf positions at k. Con-

straints (3.11) — (3.14) provide a feasible range, say [`m,
¯̀
m] and [rm, r̄m], for the left and

the right leaves (`mk, rmk) in each row m ∈ M . Suppose that the dimension of each row

is [0, N ], and we divide it into N beamlets along the leaf travel direction in order to allow

computation of the dose deposition coefficients in a pre-processing step. We propose the

following method for selecting/refining the aperture at k:

1. set (`mk, rmk) =
(

˜̀
mk, r̃mk

)
∀m ∈M

2. for each row m ∈M sequentially, perform the following local search:

(a) for every combination in the set:{(
ˆ̀
mk, r̂mk

)
: ˆ̀

mk ≤ r̂mk, ˆ̀
mk ∈ {`m, d`me, . . . , b¯̀mc, ¯̀

m, ˜̀
mk},

r̂mk ∈ {rm, drme, . . . , br̄mc, r̄m, r̃mk}}

set (`mk, rmk) =
(

ˆ̀
mk, r̂mk

)
(b) find the interpolated leaf positions in row m ∈M for control points k−, . . . , k− 1
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and k + 1 . . . , k+ using (3.10)

(c) calculate the corresponding dose distribution using (3.1), and evaluate the objec-

tive function

set (`mk, rmk) to be the leaf setting that provides the minimum objective.

The leaf position in any beam row found in this procedure will either be the original

interpolated position, a boundary point, or one that occupies one of the beamlet edges. This

ensures that the treatment plan quality can be improved or maintained after an aperture is

selected/refined.

3.4.2.2 Exact optimization

This is an alternative method for refining the aperture selection in Step 3 of the algorithm

above, and is based on identifying the feasible ranges for leaf positions in each row given S and

the apertures currently selected at k− 1 and k+ 1, and partitioning those ranges into small,

usually beamlet-sized intervals. Within each interval, the dose vector is an affine function

of the leaf position, and thus the optimal leaf positions within that interval can be obtained

by solving a continuous optimization problem. By enumerating all such intervals, we can

obtain an optimal leaf setting (for given S and R, and apertures selected at other control

points). However, the solution time of all of these optimization problems will significantly

exceed that of the local search heuristic presented above. We will study the tradeoffs between

solution quality and running time of the two aperture selection methods. Moreover, we will

only utilize this method in Step 3 of the algorithm, when k− = k − 1 and k+ = k + 1, since

otherwise changing the leaf positions at k affects all control points between k− and k+, and

the number of intervals we need to consider may be too large to execute the procedure.

Assuming all control points k ∈ {1, . . . , K} has one aperture assigned already, we study

the optimization of leaf settings at control point k̄ ∈ {1, . . . , K} and row m̄ ∈M . Note that

dose delivered from all other control points is constant, and that dose delivered from rows
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other than m̄ at k̄ is also constant. For simplicity we define this constant dose as

z̄j =
∑

k∈{1,...,K}\{k̄}

∑
m∈M

Dkmj(amk) ·
Rδk
S

+
∑

m∈M\m̄

Dk̄mj(amk̄) ·
Rδk̄
S

∀ j ∈ V .

Here Dkmj(amk) is the dose deposition coefficient associated with the leaf setting amk at

control point k, row m, and voxel j. Suppose that the left and right leaf positions in row m̄

at k̄ are l and r, respectively, the optimization problem then reads:

(LO) minimize
z,`,r

F (z)

subject to:

zj = z̄j +Dk̄m̄j(`, r) ·
Rδk̄
S

(3.16)

` ∈ [`, ¯̀], r ∈ [r, r̄], 0 ≤ ` ≤ r ≤ N (3.17)

Again we use [`, ¯̀] and [r, r̄] to represent the feasible ranges for the left and the right leaves

derived from constraints (3.11) — (3.14).

Recall that we discretize a continuous beam row into N different beamlets. In order to

compute the dose deposition coefficient associated with leaf setting (`, r), we assume that a

partially covered beamlet will deliver dose proportional to the fraction of the beamlet area

that is exposed. As a result this coefficient coefficient can be computed as:

Dk̄m̄j(`, r) =

(d`e − `) ·Dk̄m̄d`ej +
N∑

n=d`e

Dk̄m̄nj

−
(dre − r) ·Dk̄m̄drej +

N∑
n=dre

Dk̄m̄nj

 ,

(3.18)

where Dkmnj is the beamlet-based dose deposition coefficient associated with beamlet n in

row m at control point k.

Both terms in (3.18) are piece-wise linear and neither convex nor concave in general,

therefore problem (LO) is not directly solvable. However, when ` and r are each restricted

to be within a beamlet, problem (LO) is convex. We can then independently solve (LO) for

every combination of intervals:

` ∈ [`, d`e], or [d`e, d`e+ 1], . . . , or [b¯̀c, ¯̀], and
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r ∈ [r, dre], or [dre, dre+ 1], . . . , or [br̄c, r̄],

for which ` ≤ r is satisfied. The solution to the optimization problem that yields the best

objective function value is then the optimal solution to (LO).

3.5 Two frameworks for finding (approximate) solutions to (VC)

With the technical preliminaries explained, we are ready to describe the two frameworks

for solving problem (VC).

3.5.1 Framework A: approximately solving (SR)

Recall that if we solve problem (SR) to optimality, we will have the optimal solution

to (VC). However, the methods for evaluating the objective function of (SR) by solving

(LS(S,R)) described in Section 3.4 are heuristics, and thus solving (LS(S,R)) only yields an

approximate solution. Let H̃(S,R) be the objective value obtained by applying a heuristic

solution method to (LS(S,R)), we can then approximately solve (SR) by considering the

following problem:

(SRapprox) minimize
S,R

H̃(S,R)

subject to (3.8) and (3.9). Note that one single evaluation of function H̃(S,R) is equiva-

lent to performing the entire aperture selection procedure, and therefore is computationally

expensive. As a result, performing a large number of function evaluations is not realistic.

Moreover, the fact that we solve problem (LS(S,R)) with a heuristic method means that

H̃(S,R) does not provide any reliable information about the smoothness, differentiability or

convexity of H(S,R). Therefore we have to solve problem (SRapprox) with a method that

does not rely on derivatives. Optimization algorithms of this type usually fall into one of

the following categories:

1. Line-search methods based on estimated gradients. This type of method estimates
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the gradient value with approximation techniques, such as finite differences (Gilmore

and Kelley (1995)), then performs a line search along a direction dependent on the

gradient to find a improving solution. However, in cases when the objective function

is not smooth or continuous, the approximated descent direction is not necessarily

a good direction to search along. Moreover, finding the step size may involve many

function evaluations, making it unattractive for expensive functions like ours (Fowler

et al. (2008)).

2. Search heuristics that mimic processes and phenomenon that happen in nature, such

as simulated annealing and genetic algorithm. Simulated annealing (Kirkpatrick et al.

(1983); Van Laarhoven and Aarts (1987)) models the annealing process in metallurgy.

In each step the algorithm probabilistically determines if it will move to a neighboring

point of the current point, and the probability that controls this process is dynamically

and usually slowly changed to lead the system to points with better objective func-

tion values. Genetic algorithm as well as related heuristics (see, for example, Goldberg

(1989); Gen and Cheng (1999)), mimics the natural evolution process. It maintains a

population of solutions, and by selecting, mutating and varying stochastically individu-

als that are more fit, i.e., have better objective values, produces a new population from

the current one. These algorithms have performed very well in finding good (but not

necessarily optimal) solutions in practice. However, the optimization process usually

requires a large number of function evaluations.

3. Direct search algorithms. This includes a family of pattern search methods (Audet and

Dennis Jr (2004); Conn et al. (2009)), and simplicial search methods, (most notably

the Nelder-Mead algorithm Nelder and Mead (1965)), among others. These methods

decide where the next function evaluation will take place entirely based on the function

values encountered in history. These methods, especially the Nelder-Mead method,

have been popular among scientists faced with an expensive function and a limited
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computational budget because of their ability to find good solutions within a relatively

small number of function evaluations (Lagarias et al. (1998)).

4. Trust region based methods. These methods rely on approximating the objective func-

tion with analytical and usually quadratic functions (a.k.a. a surrogate model) that are

easy to evaluate and optimize. By maintaining a trust region, in which the surrogate

model is believed to be a good approximation of the underling function, and optimizing

the surrogate model over the trust region, the algorithm proceeds to new solutions be-

lieved to provide sufficient decrease for the underlying function. The surrogate model

and the trust region are continuously modified as the algorithm proceeds. These meth-

ods are attractive because the quadratic surrogate models used make them very robust

when dealing with curvature information. Extensive research has been done to inves-

tigate the convergence properties and application of these methods (Conn et al. (2000,

2009)).

5. Response surface methods (RSM). RSM is a collection of methodologies useful in appli-

cations such as optimization, and selection of conditions to meet requirements (Mont-

gomery and Myers (2002)). The fact that RSM can fulfill the users’ goals by using a

limited number of observations makes it a desirable choice for many. RSM assumes

the underlying function of interest is noisy because of an underlying statistical error

component, and is usually based on an approximation of the function by a low order

polynomial. Optimization with RSM in general involves an iterative process of fitting

a model to available data, finding improving directions, moving along the direction to

a new solution, and updating the model.

Although many of these methods and/or their variants, with the exception of those

in the second category, have been shown to converge locally or globally for continuously

differentiable functions (see, for example, Lagarias et al. (1998); Conn et al. (2009)), in cases

when no information is available about the objective function, none of these methods can
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guarantee convergence even to locally optimal solutions. Moreover, given that the evaluation

of function H̃(S,R) is likely to take a nontrivial amount of time, it is highly desirable that

we chose a method that can efficiently reduce the objective function in small number of

iterations, and one that can work with function shapes that do not necessarily resemble

linear or quadratic functions. For these reasons, we choose the Nelder-Mead algorithm to

apply in our experiments.

We give a brief introduction of the Nelder-Mead method following the notations in Conn

et al. (2009). For an optimization problem in n-dimensions, the Nelder-Mead algorithm

is based on maintaining and changing a simplex of n + 1 vertices Y = {y0, . . . , yn}. The

method iteratively replaces the worst vertex, say yn, from the simplex with a point on the

line connecting yn and the centroid of the best n vertices yc. The new vertex of each iteration

can be one of the following types (illustrated in Figure 3.1 (a)): a direct reflection yr, an

expansion ye, an outside contraction yoc, or an inside contraction yic. However, in some

cases the algorithm can perform a shrink, which only keeps the best vertex, and shrinks the

simplex by moving all other vertices close to the best one (illustrated in Figure 3.1 (b)).

In each iteration, the algorithm first evaluates objective value at yr, then potentially at ye,

yoc, yoc or yic. The type of outcome is determined by the objective values at these points

relative to the objective value of the n+1 vertices in the current simplex. The algorithm can

be terminated when the diameter of the simplex reduces below a predetermined threshold,

or when the difference between the minimum and maximum objective values at all vertices

becomes smaller than a threshold, or alternatively, as the original authors suggested in Nelder

and Mead (1965), when the variance in the objective function values at all vertices drops

below certain threshold, at which point the best vertex in the final simplex is used as the

solution. In the experiments we use a modification of the implementation in the NLopt

library (Johnson), which includes the Nelder-Mead variant described in Box (1965) that

incorporates bound constraints.
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(a) (b)

Figure 3.1: Possible outcomes of one Nelder-Mead iteration, starting from initial simplex
{y0, y1, y2}

3.5.2 Framework B: alternating optimization

An alternative framework for solving (VC) is by using an alternating optimization (AO)

scheme. The AO method, sometimes also referred to as the Gauss-Seidel method (), is

suitable for situations where the problem is difficult to solve directly, and there is a natural

partitioning of variables for which the optimization is easy to carry out for each group of

variables. The problem is then solved by alternating among each subset of variables. Our

second framework, illustrated in Figure 3.2, is as follows:

1. Generate an initial (S,R) pair, solve problem (LS(S,R)) to obtain a set of apertures.

2. Given the apertures, optimize the gantry speed and dose rate by solving problem

(GD(A)) described in Section 3.3.1.

3. If the objective function value does not improve, terminate; otherwise update gantry

speed and dose rate and go to Step 4.

4. Refine the apertures given the updated (S,R) pair until no more objective improve-

ments can be made; go to Step 2.

Note that the solution to problem (GD(A)) will provide us with an optimal fluence rate

y∗. However, there may be multiple (S,R) combinations that correspond to this ratio and
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Figure 3.2: Optimization scheme for VMATC treatment plans

satisfy (3.6) and (3.7). Although it is not apparent which (S,R) pair will lead to better final

solutions, selecting a slower gantry speed will inevitably result in longer treatment times.

Moreover, the aperture selection procedure will take advantage of a slower gantry speed,

and allow the MLC leaves to travel longer distances between two control points. This will

in turn lead to smaller S̄U value the next time we solve problem (GD(A)). As a result, from

an initial (S,R) pair, treatment plans generated later in framework B will have the same

or longer treatment times than those seen earlier. This can be mitigated by choosing the

resulting (S,R) values in such a way that the treatment time is minimized, in other words,

choose values:

S = S̄U , R = S̄Uy∗ if y∗ ≤ RU

S̄U

S =
RU

y∗
, R = RU if y∗ >

RU

S̄U
.

Under conditions on the differentiability and/or the convexity of the objective function,

and the feasible set being a Cartesian product of sets, global convergence results for AO have
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been established for both the unconstrained and constrained cases (Grippo and Sciandrone

(2000); Tseng (2001)). However, in our case the compatible sequence of apertures depends

on the choice of gantry speed. And because our aperture selection is done with a heuristic

procedure, performing Step 2 is not guaranteed to yield the optimal apertures for an (S,R)

combination. Therefore, we do not expect the AO to produce a globally optimal solution for

(VC).

Under this framework, the method can potentially inspect more (S,R) pairs since refining

the apertures will in general be faster than the initial aperture selection problem. However, no

guidance is available in the selection of new (S,R) points when the AO procedure terminates.

We augment the AO with a multi-start method that randomly generates initial S and R

values in the feasible region, and runs the AO procedure repeatedly from each initial value

to search for the best solution.

3.6 Experiments

Our test dataset includes five clinical prostate cancer patients cases (the same five cases

used in Chapter II), gathered from University of California at San Diego (UCSD) Moores

Cancer Center. There is one target (prostate) with a prescription dose of 79.2 Gy over

44 fractions, and three critical structures (bladder, rectum, femoral heads) besides normal

tissue. The dose volume histogram (DVH) criteria for evaluating the treatment plans are

summarized in Table 3.1. The patient volume is divided into a grid of voxels of size 4×4×2.5

mm3. This entire grid is used in the final dose calculation to evaluate the delivered dose under

a given treatment plan. However, in the optimization problem we consider a downsampled

grid, in which we keep one in every 8 voxels in the critical organs and one in every 64 voxels

in the normal tissue. For each patient the treatment includes one arc with 177 total control

points, and the treatment beam is discretized into 1×1 cm2 beamlets. The resulting problem

dimensions for all 5 patients are presented in Table 3.2. We use a set of machine parameters

(shown in Table 3.3) that resembles that of a Varian treatment machine.
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Structure Threshold (Gy) Percentage (%)
PTV 73.7 ≥99

79.2 ≥95
87.1 ≤10

Bladder 65 ≤17
40 ≤35

Femoral heads 50 ≤10
45 ≤25
40 ≤40

Rectum 75 ≤15
70 ≤25
65 ≤35
40 ≤45

Table 3.1: Clinical criteria for the prostate cancer cases.

Case voxels beamlets nonzero Dbmnj distance between control points (◦)

δ3, . . . , δ176 δ2, δ177 δ1

1 18,375 14,337 37,224,301 330
174

1
2
· 330

174
0

2 14,392 11,328 26,751,546 330
174

1
2
· 330

174
0

3 18,469 21,417 52,850,633 330
174

1
2
· 330

174
0

4 9,747 14,337 47,707,351 330
174

1
2
· 330

174
0

5 17,342 17,700 61,606,811 340
174

1
2
· 340

174
0

Table 3.2: Problem dimensions of the downsampled cases.

Our objective F is a smooth piece-wise quadratic function, which penalizes both over-

and under-dosing of each individual voxel in the target, and only overdosing of voxels in

the other structures. To facilitate comparison with the full VMAT plans, we use the same

weighting factors for different structures as those in Chapter II, and for the same of making

a comparison, the resulting treatment plans are scaled so that the dose distribution achieves

95% target coverage. Our algorithm is implemented in C++, with all convex optimization

problems solved using CPLEX 12.5. The evaluation of delivered dose and objective function

in the aperture selection procedure is implemented with the Parallel Programming and Com-

puting Platform (CUDA) to take advantage of the parallel computing power of the Graphics
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Processing Unit (GPU).

Dose rate gantry speed physical leaf speed distance from source

(MU/sec) (deg/sec) (cm/sec) (cm) (cm)

RL RU SL SU v SAD SCD

0 10 0.83 6.0 2.25 100 53.9

Table 3.3: Machine parameters used in VMATC experiments.

3.6.1 Exact vs direct search methods for refining apertures

In Section 3.4 we proposed two different methods for fine-tuning the leaf positions given

a complete plan with K control points. The exact method requires us to solve a number of

optimization problems and potentially requires much longer solution time compared to the

direct search method, however it guarantees the optimal leaf setting in each optimization

problem, whereas the direct search method is fast but only explores a finite number of

options. First we explore the tradeoff between solution time and quality by employing the

exact method in refining the set of selected apertures.

Expecting a long runtime for the exact method, we chose Case 2, the smallest case of the

five in the number of beamlets per beam, as the sample case for our experiment here. The

size of the problem is further reduced by using K = 34 total control points, each 10◦ apart.

We set S = SU so that the range of feasible leaf positions in each optimization problem is

the smallest, and chose R = 7.34 MU/sec randomly from the feasible range. Both methods

are tested under the same setting. We compare the objective function value in different

iterations (where one iteration determines the leaf setting in one row and one control point

at a time). Figure 3.3 shows the progression of the objective function vs iteration number

for the two methods.

The exact method outperforms the direct search method in each iteration in reducing the

objective function value. We stop this test when the apertures at every control point have

been refined once, at which point the final objective function value obtained by the exact
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Figure 3.3: Objective function value in exact and direct search methods for refining apertures

method is 1.8% better than that obtained by the direct search method. However, solving

the optimization problems for all refinement iterations only took 1.9 seconds for the direct

search method, whereas the exact method took 30,111.4 seconds (more than 8.3 hours). The

significant reduction in solution time clearly outweighs the slight loss of plan quality in using

the direct search method, which will become more pronounced if we apply these methods

to a case with a larger input dataset. Moreover, if we repeat the refinement procedure with

the direct search method for more iterations, the objective quickly reduces to below the

value obtained in the exact method. This comparison is shown in Figure 3.4. The direct

search method took a total of 21.1 seconds to converge, at which point no more than 0.1%

of objective improvements can be made after refining all leaf pairs at all control points. For

these reasons we will focus exclusively on the direct search method in the aperture selection

in the experiments below.

3.6.2 Overall strategy under frameworks A and B

For the remainder of this section we focus our attention on designing a treatment plan

within 30 minutes, a reasonable estimate of the maximum time available for treatment

planning in clinics. Within frameworks A and B, our strategy depends on how fast we can

solve the aperture selection problem. For framework A in particular, if this time is short
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Figure 3.4: Objective function value in exact and direct search methods for refining apertures,
with the direct search method run until convergence

enough to allow the Nelder-Mead algorithm to converge quickly, we can pursue a multi-

start approach and explore different areas in the feasible region. However, if the aperture

selection time is long, we need to then look for a suitable starting simplex for the Nelder-

Mead algorithm that in general provides good solutions. On the other hand, in framework

B, the alternating optimization procedure is always embedded in a multi-start approach,

where whenever the AO converges, another (S,R) pair will be chosen randomly to initialize

the AO procedure again, until the time limit is reached.

Table 3.4 summarizes the average runtime of the aperture selection described in Section

3.4, calculated from 30 independent runs each associated with a random (S,R) pair. Note

that in framework B, from every starting (S,R) pair the AO procedure consists of performing

the aperture selection as well as (S,R) optimization potentially multiple times, the average

runtime may take longer than these reported values. We set the termination criteria so that

if no more than 0.1% improvement in the objective function can be made by repeating Step

3(b) in the algorithm, we terminate the search. The resulting runtimes range from just over

2 minutes to more than 6 minutes, which will only allow a few to a maximum of just over a

dozen (S,R) pairs to be explored in either frameworks.
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Case 1 2 3 4 5

Average runtime (s) 252.6 136.5 379.5 260.8 381.8

Table 3.4: Average runtime of the aperture selection problem from 30 random (S,R) pairs

3.6.2.1 Starting (S,R) point under Framework A

Given the observation above, the Nelder-Mead algorithm in framework A is not likely to

start and converge multiple times within the time limit, and therefore we need to look for

one particular simplex in the feasible region that in general leads to good solutions. The

number of vertices used to construct the simplex in the Nelder-Mead algorithm here equals

three, resulting in a triangle.

Again, without any information about the shape of function H̃(S,R), no theoretical

results exist to guide the choice. Therefore we need to test different configurations for the

triangle in terms of size and the area they cover. We terminate the Nelder-Mead algorithm

if the maximum difference in the objective values from all vertices is less than 0.1%. Figure

3.5 (a) shows the initial 15 triangles used in our tests. We take two large, four medium

and nine small triangles and spread them out to cover the entire feasible region. After the

Nelder-Mead algorithm reaches 30 minutes or terminates early (which in our case does not

happen in any test) from each starting triangle for each case, we put all final solutions in

a pool and plot the best 80%. From Figure 3.5 (b) we can see that these solutions are all

concentrated on the lower right half of the feasible region, which is reasonable since neither

low dose rate combined with high gantry speed, or high dose rate combined with low gantry

speed are likely to generate good quality plans. We fit these solutions to a line, and expand

the line in both directions to encompass the set of solutions. From this region we then

randomly generate five additional triangles. We repeat the generation process to find a set

of triangles that together cover most of this region, the results are shown in Figure 3.6, and

these triangles are tested in the Nelder-Mead algorithm.

At the end of the tests we compare the 20 solutions, started with the original 15 and the

77



additional 5 triangles, for every individual case in terms of objective, treatment time and

total MU values in Figure 3.7, where all values are scaled to the average of the 20 solutions.

If we require that the objective function value as well as the treatment time be lower than

the average for all cases, only the medium triangle on the right bottom corner in Figure 3.5

(a), and the red triangle in Figure 3.6 can meet the requirement. Both are able to keep the

total MU under 105% of the average for all cases. In the subsequent tests, we use the latter

triangle for its ability to provide better objective function values in comparison.
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Figure 3.5: (a): 15 initial triangles tested in the Nelder-Mead algorithm; (b): (S,R) pairs
(stars) corresponding to the best 80% solutions
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Figure 3.6: 5 additional triangles tested in the Nelder-Mead algorithm
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Figure 3.7: Objective, treatment time and total MU comparison for all 20 triangles tested
in the Nelder-Mead algorithm. 1 — 9: small; 10 — 13: medium; 14 — 15: large; 16 — 20:
additional five triangles
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3.6.2.2 Performance under framework B

Next we compare the performance of framework B and framework A. In implementing

framework B, we terminate the the alternating optimization when no more than 0.1% im-

provement can be made in the optimization of (S,R). Once the AO stops, another initial

(S,R) pair is chosen to start the optimization again, until the time limit is reached.

We ran framework B independently for ten different times, each time randomly and

uniformly choosing an initial (S,R) pair. We keep the best solution encountered in each run

for all cases, and again plot the (S,R) pairs corresponding to the 80% of the best solutions

on the feasible region. We can see in Figure 3.8 that the solutions again in general lie within

a band close to the bottom right corner.

Based on this information, we adjust the way that the initial (S,R) pairs are sampled: we

first fit a line to these solutions, and uniformly generate a point along the line. Then the point

is moved perpendicularly to the line according to a normal distribution with mean 0 and

variance σ2, where σ2 is set to be equal to the variance of the distance from the set of points to

the fitted line. The (S,R) pairs generated this way stay close to the band of good solutions,

and still have a chance of exploring different areas in the feasible region. We ran framework

B again 10 times under this setting, and record the range of resulting objective, treatment

time and total MU values corresponding to these plans. Figure 3.9 shows these quantities

for all five patient cases, normalized to the solutions from framework A. Even though the

objective values under Framework B are better for case 5, for all other cases framework A

clearly outperforms framework B. Framework A also achieves good performance in terms of

treatment time and total MU values. Therefore we choose framework A over B in all the

remaining experiments below.

3.6.3 Comparison with VMAT plans

Finally, we compare the VMATC plans obtained from framework A to VMAT treatments,

for which we already have a method of optimizing the treatment plans (described in Chapter
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Figure 3.8: (S,R) pairs (star) corresponding to the best 80% solutions from 10 initial runs
under Framework B

II). In Table 3.5 we summarize the statistics of the VMATC plans versus those of the

corresponding VMAT plans. Out of the five test cases, VMATC actually outperforms the

full VMAT plans for 4 cases in terms of objective value and for 2 cases in terms of treatment

time. Moreover, the dose distributions for the VMATC plans are able to satisfy the same

set of DVH criteria as the corresponding VMAT plans with no significant deterioration in

quality, as can be seen from Figure 3.11. The only compromise in VMATC treatments is

that the total MU is in general considerably higher under VMATC. Without the ability to

dynamically control the gantry speed during the treatment, VMATC cannot quickly open up

or close apertures, or selectively turn off the source during the treatment. Therefore it has to

use smaller apertures throughout the treatment to avoid giving large amounts of dose from

unfavorable angles. Figure 3.10 shows the average size of active apertures (i.e., those that

have positive fluence rates), calculated by adding up the area of each open leaf row, for the

corresponding VMAT and VMATC treatment plans. The apertures used in VMAT plans are

significantly larger than those in VMATC plans on average, ranging between 42% — 90%

larger for the five cases tested. Having to use small apertures makes VMATC less effective

in delivering the prescribed dose, and leads to higher total MU values in comparison.
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Case modality treatment time (s) total MU runtime (s) objective value
1 VMAT 149.3 611.5 78.8 22279

VMATC 107.4 751.6 1800 21166
2 VMAT 149.3 667.7 71.5 41763

VMATC 110.8 1017.8 1800 42589
3 VMAT 141.1 539.0 59.2 33865

VMATC 171.4 979.1 1800 30985
4 VMAT 142.6 557.6 54.2 54344

VMATC 171.4 979.1 1800 52451
5 VMAT 155.5 610.4 67.6 32819

VMATC 176.6 1008.8 1800 30693

Table 3.5: VMATC and full VMAT treatment plans for cases 1-5

3.7 Conclusions

We developed two solution frameworks for the optimization problem for VMATC treat-

ments. We considered the optimization of the constant gantry speed and dose rate as well as

the apertures. We recommend the configuration under framework A that consistently pro-

vides high quality solution in terms of objective function value, total MU and total treatment

time. A comparison with VMAT on actual patient cases shows that VMATC is capable of

producing very high quality plans. However, the lack of the ability to dynamically change

the dose rate and gantry speed typically leads to higher total MU values for the VMATC

plans, and the treatment planning time is much longer compared to VMAT, for which the

optimization usually only takes around 1 minute to complete. Moreover, one set of opti-

mization parameters may not be suitable for multiple cancer sites and prescription doses,

and we may need to “retune” the implementation in these cases.
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Figure 3.9: Objective, treatment time and total MU of 10 plans under framework B (star)
relative to the best plan from framework A
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plans
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Figure 3.11: DVH of VMATC (dashed) and VMAT plans (solid) for Cases 1-5
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CHAPTER IV

Adaptive Radiation Therapy

4.1 Introduction

Many aspects of Intensity Modulated Radiation Therapy (IMRT) treatments are subject

to uncertainty, of which the most common is the uncertainty in the positions of the tumor

and its surrounding organs with respect to the treatment beams. The treatment is subject

to (i). uncertainties caused by the day-to-day variations in and after the setup process and

changes in the patient’s anatomy; and (ii). uncertainties during the treatment, caused by the

shifts in structures due to motions such as breathing and filling up of internal organs (see,

e.g., Langen and Jones (2001), Van Herk et al. (2004)). The former is usually referred to

as inter-fraction uncertainty, and the latter – intra-fraction uncertainty. These uncertainties

can lead to deviations of delivered dose from dose designed in the treatment planning process,

and compromise the quality of the actual treatment.

The conventional approach to accounting for uncertainties is to first define the Clinical

Target Volume (CTV), which includes the tumor and its immediately surrounding tissues

that likely contains cancerous cells, then add an internal margin to account for intra-fraction

motion which leads to the Internal Target Volume (ITV), and finally add a margin around the

ITV to produce the Planning Target Volume (PTV). The PTV is then used as the target in

the treatment planning process. The margin is intended to account for both inter- and intra-

fraction motions, and its size is determined based on statistics of the patient population (van
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Herk et al. (2000); Van Herk et al. (2004)). However, the use of margin might not adequately

model the dose delivered to different structures under uncertainty for several reasons: First.

shifts in the patient and/or organ position do not usually result in the same rigid shifts in

the dose distribution. In fact motions may heavily distort the dose distribution and lead to

under-dosing of the targets and/or over-dosing of the healthy structures; secondly, the use of

a uniform margin may not be appropriate, particularly when the target is closely surrounded

by critical structures. Overlap of the margin and other structures will likely cause the normal

structures to be over-dosed in delivering the treatment. Moreover, the margin-based model

uses only the aggregate dose of the entire treatment and disregards the per fraction dose,

which is important for certain targets and critical structures. As a result the delivered dose

in certain fractions may differ from the prescribed dose even when the aggregate planned

dose is adequate.

Many researchers have therefore explored various alternative approaches. In the field

of robust optimization, Chu et al. (2005) approximated the dose delivered to every voxel

as normally distributed assuming Central Limit Theorem (CLT), and calculated its mean

and variance using 7 pre-calculated scenarios and their probabilities. The authors then

proposed a robust LP with constraints on the probability of over- or under-dosing every voxel,

and solved the problem by transforming it first to a Second Order Cone Program (SOCP).

Similarly, Olafsson and Wright (2006) assumed normal cumulative dose and calculated its

mean and variance from 5 scenarios. An optimization problem was then formulated as an LP

with bounds on the delivered dose, and solved through an SOCP reformulation. However,

imposing the constraint that the probability of every single voxel meeting certain criteria

does not guarantee the collection of voxels will all meet those criteria, especially when the

number of voxels is very large. In a study to investigate the benefits of robust optimization

for intra-fraction breathing motion, Chan et al. (2006) and Bortfeld et al. (2008) associated

breathing phases with probability density function (pdf) and bounds on the pdf to model

uncertainty in motion patterns. The optimization of beam weight profile was done by solving
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an LP that took into account the uncertainty set. Relying on CLT, Sobotta et al. (2010)

assumed that the tail of the dose distribution under uncertainty resembled the tail of a

Gaussian distribution, and thus the mean, variance and the probability of the dose lying

in certain intervals of interest can be calculated. The authors suggested an optimization

problem that maximized the probability of finding the penalty function within the interval,

while imposing constraints on violation of that interval. Finally, Fredriksson et al. (2011)

applied min-max optimization and minimized the worst case penalty function in a number

of scenarios. However, the fact that the treatment is usually delivered over many fractions

means that the realized cumulative dose is generally far different from the dose in any of the

extreme cases, and the worst case optimization is too pessimistic.

Stochastic programming is also a method of choice when protection is sought against

uncertainty. Löf et al. (1999) solved a model that maximizes the expected value of a func-

tion of the probability of tumor control and normal tissue damage. However the authors

had to resort to Monte Carlo simulation methods for approximating the objective function

when the number of fractions N is above 5 because of computational difficulties. Li and

Xing (2000) modeled the expected dose to a voxel as the sum of the dose to a different

position, weighted by the probability of the voxel occupying that position, and penalized

the difference between the prescribed and expected dose for every voxel. The experiments

showed that the model achieved improved sparing of critical structures and similar target

coverage. Unkelbach and Oelfke (2005) employed a similar dose calculation method, but

incorporated the variance of dose in target voxels as part of the penalty function to ensure

homogeneous target dose. Baum et al. (2006) used coverage probability to represent the

probability of a point in space being covered by a certain organ under uncertainty, and the

objective function consisted of the sum of target and critical organ penalties weighted by

their respective coverage probability. These studies all relied on one assumption that may

not be appropriate in real-world situations: the dose distribution in space is assumed to

be constant regardless of motion and error. In reality any motion will inevitably change
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the dose distribution, sometimes substantially. McShan et al. (2006) proposed a technique

called Multiple Instance Geometry Approximation (MIGA), which calculated the dose dis-

tribution for a number of scenarios, and the treatment plan optimization is performed using

the expected dose calculated from these scenarios. However, one potential issue with this

approach is that the number of scenarios used (seven) may not be large enough to capture

the distribution of uncertainty, or computational difficulties may become apparent. In a

tumor-tracking based approach, Nohadani et al. (2010) took advantage of the 4-D CT data

and separated the patient’s breathing motion into 6 phases, and proposed a model that op-

timized the intensity-phase combination and minimized the expected penalty. Finally, Men

et al. (2011) proposed an optimization problem that included expected penalties for both

the per-fraction dose and the cumulative dose. Assuming CLT, the expected penalty for the

cumulative dose was replaced by the penalty of the expected dose, and the per-fraction dose

was approximated by a large number of scenarios.

Many of the above-mentioned approaches relied on CLT, which was reasonable when

the number of fractions in the treatment was large. However, for treatments with only a

small number of fractions (a good example is Stereotactic Body Radiation Therapy (SBRT),

which involves treatments up to only 5 fractions), this assumption may not be appropriate

anymore. This also apples to the re-optimization of the treatment plans, where only the

remaining fractions in the treatment are considered.

Technological advances have made it possible to monitor the patient’s anatomy change,

fraction-to-fraction setup variations, as well as to reconstruct the actual dose distribution

using daily images of the patient (Mohan et al. (2005); Langen et al. (2005); Oldham et al.

(2005); Yang et al. (2007)). To exploit the additional information provided by these tech-

nologies, many techniques, which we all refer to as Adaptive Radiation Therapy (ART),

have been developed. Ferris and Voelker (2004) proposed a DP framework for determining

the optimal dose in each fraction of the treatment under random errors. The authors pro-

posed a neuro-dynamic programming (NDP) based heuristic that, at every stage, minimized
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the expected approximate terminal penalty assuming the same policy is applied henceforth.

The optimization is done by way of simulation, where 5 different shifts were used to model

the random errors in any scenario. Deng and Ferris (2008) employed the same solution

technique, except that a neural network was used in approximating the terminal penalty.

However, the strategies used are chosen from a pool of pre-selected decisions, which may

not be the best achievable. de la Zerda et al. (2007) combined closed-loop control theory

with ART, and proposed two adaptive optimization methods that, based on the knowledge

of the deviation in delivered dose and the geometry change, tried to correct the deviation

in the immediate next fraction and the remaining fractions respectively. However, the opti-

mizations were done without considering any uncertainty factors, even though motion was

expected in the treatment. Saka et al. (2011) followed a similar approach and optimized

the constant plan for all remaining fractions after taking the delivered dose and observed

geometry change into account. However the optimization model did not include any pro-

tection against uncertainty in the dose to be delivered. Finally, Sir et al. (2012) employed

the MIGA (McShan et al. (2006)) approach in modeling inter-fraction uncertainties, and in-

tegrated stochastic programming with open-loop feedback control to optimize the constant

plan to the end of the treatment. The nature of the stochastic programming approach means

that a larger number of fractions inevitably translates to significantly larger problem size.

Also realistic model of uncertainty requires potentially many scenarios, which can easily lead

to intractable optimization problems.

The goal of this research is to build upon the previous work done by the fore-mentioned

researchers, and achieve four things that, to our knowledge, have not all been considered by

any single research simultaneously:

• Adequately model the patient’s inter-fraction motion uncertainties;

• Take both per-fraction and cumulative dose evaluation criteria into account in the

optimization model;
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• Solve the stochastic programming problem with high, verifiable quality for real-world

cases with long treatment courses;

• Extend the optimization approach to cover adaptive radiation therapy, where central

limit theorem may not be an appropriate assumption in modeling the total dose to be

delivered.

The remainder of this chapter is organized as follows: first we describe the general assump-

tions and the optimization model in Section 4.2. We explain in detail our proposed solution

approach, and extend the approach to ART problems in Sections 4.4 and 4.4.4. In Section

4.5 we compare our model with the model proposed in Men et al. (2011), which is simpler

to implement in practice, under different settings. Finally we present numerical experiments

with real-world patient cases and results in Section 4.6.

4.2 The adaptive IMRT optimization model

LetN denote the total number of fractions in the treatment, and n the number of fractions

already delivered. Let s be a random scenario, defined by a rigid shift of the patient along the

three axes, and let p(n) = (s1, . . . , sn) be a random path consisting of n consecutive random

scenarios s1, . . . , sn. Note that throughout this chapter we use boldface letters to represent

random parameters, and regular font for parameters that are deterministic. In addition, let

D(·) denote the dose deposition matrix. If the argument is a scenario, it corresponds to the

dose deposition matrix under that scenario. On the other hand, if the argument is a path,

D(·) then equals the sum of all the dose deposition matrices under the series of scenarios in

that path. Moreover, let z̄(n) denote the dose already delivered in the first n fractions, and let

z(N−n)(·) denote the dose that is yet to be delivered in the next N − n fractions. Moreover,

to distinguish between dose delivered in one and multiple fractions, let zk(·) denote the dose

to be delivered in fraction k, k = 1, . . . , N . Finally, let L and C be the sets of evaluation

criteria that apply to fractional and cumulative dose, respectively, and let G`(·), ` ∈ L and
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Gc(·), c ∈ C be the the (convex) penalty term that applies to fractional and cumulative dose,

respectively.

The problem for adaptive IMRT under uncertainty can then be formulated as:

(P) g∗ = min
x

E

[∑
`∈L

G`(z
n+1(x, s)) +

∑
c∈C

Gc

(
1

N
· (z̄(n) + z(N−n)(x,p(N−n)))

)]

subject to:

zn+1(x, s) = D(s)>x (4.1)

z(N−n)(x,p(N−n)) = D(p(N−n))>x (4.2)

x ∈ X. (4.3)

Here X is a compact feasible region for variable x. We minimize the sum of two expected

penalty terms: one that applies to the dose to be delivered in the immediate next fraction,

and another that applies to the average dose in the entire treatment course. Note that

since s and p(N−n) are random quantities, the dose to be delivered, namely zn+1(x, s) and

z(N−n)(x,p(N−n)), are also random. In this formulation, if n = 0 and thus z̄(n) = 0, the entire

treatment is yet to be delivered. On the other hand if n > 0, this formulation becomes an

adaptive model that takes delivered dose z̄(n) into account and re-optimizes the treatment

plan for each fraction in the remainder of the treatment.

Note that functions G`(z
n+1(x, s)) and Gc

(
1
N
· (z̄(n) + z(N−n)(x,p(N−n)))

)
implicitly de-

pend on matrices D(s) and D(p(N−n)). Since it depends on the patient’s internal geometry,

the relationship between the patient setup scenario and the dose deposition matrices cannot

be easily characterized mathematically. Therefore instead of solving problem (P) directly,

we apply a technique known as the Sample Average Approximation (SAA) (King and Wets

(1991); Kleywegt et al. (2002); Verweij et al. (2003); Linderoth et al. (2006)). We first ran-

domly draw samples from the distribution of p to replace the random parameters in the

penalty function. The true objective function value is then approximated with the average

of these samples. By doing this we essentially transformed problem (P) into a deterministic
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problem, where the samples are known parameters:

(SAA) gm = min
x

1

m

m∑
i=1

[∑
`∈L

G`(z
n+1(x, si)) +

∑
c∈C

Gc

(
1

N
· (z̄(n) + z(N−n)(x, p

(N−n)
i ))

)]

subject to:

zn+1(x, si) = D(si)
>x, ∀i = 1, . . . ,m

z(N−n)(x, p
(N−n)
i ) = D(N−n)(p

(N−n)
i )>x, ∀i = 1, . . . ,m

x ∈ X.

Here si is the first in the series of scenarios in p
(N−n)
i for all i.

Note that if the number of samples m = ∞, problem (SAA) will become equivalent to

problem (P). However, in reality it is not possible to take an infinite number of samples,

and we must decide on the value of m before problem (SAA) can be formulated or solved.

Therefore we need to ensure that m is large enough so that our approximation of (P) with

(SAA) is adequate, i.e., the resulting objective function gm is close enough to g∗.

4.3 Setting m a-priori

One possible option for selecting m is to choose a sufficiently large value a-priori, so

that the resulting objective function value at the optimal solution in the (SAA) has a high

probability of being a nearly-optimal solution to (P).

Assuming that X is bounded and the expected penalty:

g(x) =̇E

[∑
`∈L

G`(z
n+1(x, s)) +

∑
c∈C

Gc

(
1

N
· (z̄(n) + z(N−n)(x,p(N−n)))

)]
is finite for all x ∈ X, Ruszczyński and Shapiro (2003) derived the number of samples m

needed for the solution to (SAA) to be have a high probability of being a nearly-solution to

(P). Let Ŝδm and Sε represent the set of approximate solutions to (SAA) and (P) respectively,

defined by:

Ŝδm = {x ∈ X :
1

m

m∑
i=1

[∑
`∈L

G`(z
n+1(x, si)) +

∑
c∈C

Gc

(
1

N
· (z̄(n) + z(N−n)(x, p

(N−n)
i ))

)]

92



≤ gm + δ},

and

Sε = {x ∈ X : E

[∑
`∈L

G`(z
n+1(x, s)) +

∑
c∈C

Gc

(
1

N
· (z̄(n) + z(N−n)(x,p(N−n)))

)]
≤ g∗ + ε}.

The number of samples m required for P (Ŝδm ⊂ Sε) ≥ 1− α, for small ε > δ ≥ 0, is then:

m ≥ 12σ2
max

(ε− δ)2

(
η log

2DL

ε− δ
− logα

)
, (4.4)

where D := supx,y∈X ‖x− y‖ is the diameter of the feasible region X, η is the dimensionality

of the feasible region, and L is the Lipschitz constant of the penalty function, defined such

that:

|g(x)− g(y)| ≤ L‖x− y‖

for all x, y ∈ X. Moreover, define u(x) as a mapping from the set X/Sε to S0. σ2
max is then

defined as:

σ2
max =̇ max

x∈X/Sε
Var

[∑
`∈L

G`(z
n+1(u(x), s)) +

∑
c∈C

Gc

(
1

N
· (z̄(n) + z(N−n)(u(x),p(N−n)))

)]

− Var

[∑
`∈L

G`(z
n+1(x, s)) +

∑
c∈C

Gc

(
1

N
· (z̄(n) + z(N−n)(x,p(N−n)))

)]
.

To estimate m with (4.4), we need to know the values of L and σ2
max. The main difficulty

in finding these values is that the distribution of the patient’s position does not directly

translate to the distribution of the delivered dose. Because the calculation of the dose

deposition matrix involves applying a model of the physical interaction of the radiation

particle with the patient’s body, it cannot be effectively accounted for in calculating σ2
max.

Moreover, as the authors mentioned in Ruszczyński and Shapiro (2003), the bound resulting

from (4.4) is typically too conservative to be used practically.

For these reasons, rather than searching for valuem a-priori, we use an alternative method

that sets m dynamically.
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4.4 Monte-Carlo bounding techniques

Before discussing how we can choose the value of m in problem (SAA), we need to

examine in detail how we can find the range in which the optimal objective value of (P)

resides. This is done by finding both an upper and lower bound for g∗. We first state the

analysis for a general problem:

(SP) h∗ = min
y∈Y

E[f(y, ξ)], with y∗ = arg min
y∈Y

E[f(y, ξ)],

where y is the vector of decision variables and Y is a compact feasible region. It is reasonable

to assume that E[f(y, ξ)] <∞ for every y ∈ Y , or we can shrink the region Y to only include

points that satisfy this requirement. Moreover, ξ is the vector of random parameters, and

assume that f(y, ξ) is a convex function for any given ξ.

Assuming that function E[f(y, ξ)] is too complex or large to be computed or optimized

directly, we take advantage of the SAA approach. Taking m i.i.d. samples ξi from the

distribution of ξ, we construct the following approximating problem:

(SPm) hm = min
y∈Y

1

m

m∑
i=1

f(y, ξi), with ym = arg min
y∈Y

1

m

m∑
i=1

f(y, ξi).

The Monte-Carlo bounding method focuses on verifying the quality of the solution to (SP)m

by establishing a confidence interval on h∗.

4.4.1 Lower bound

The lower bound on h∗ can be found from the following theorem (Madansky (1960); Mak

et al. (1999)):

E[hm] = E

[
min
y∈Y

1

m

m∑
i=1

f(y, ξi)

]
≤ h∗.

Here we paraphrase the proof as follows: first note that

h∗ = min
y∈Y

E[f(y, ξ)] = min
y∈Y

E

[
1

m

m∑
i=1

f(y, ξi)

]
.
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Let ym(ξ1, . . . , ξm) be the minimizer of 1
m

∑m
i=1 f(y, ξi), it immediately follows that for every

set of m random samples ξi (i = 1, . . . ,m), we have:

1

m

m∑
i=1

f(y∗, ξi) ≥ 1

m

m∑
i=1

f
(
ym(ξ1, . . . , ξm), ξi

)
.

As a result:

E

[
1

m

m∑
i=1

f(y∗, ξi)

]
= h∗ ≥ E

[
1

m

m∑
i=1

f
(
ym(ξ1, . . . , ξm), ξi

)]
= E[hm].

This leads to the lower bound on h∗.

For the same reasons that we cannot solve problem (SP), in practice the value E(hm) is

found by approximation using a batch-mean method:

E[hm] ≈ L(M)=̇
1

M

M∑
i=1

him.

Here we solve a total of M (SPm) problems, each of which is formulated with independent

sample groups ξi1, ξi2, . . . , ξiM , i = 1, . . . ,m, and him is the optimal objective function value

of the i-th such problem, obtained at yim. Then the average of these objective values can be

used as an estimator of the lower bound E[hm].

4.4.2 Upper bound

Because y∗ is the optimal solution to problem (SP), we can readily see that:

E[f(ŷ, ξ)] ≥ E[f(y∗, ξ)] = h∗ for any ŷ ∈ Y.

Therefore we can find an upper bound on h∗ by finding E[f(ŷ, ξ)] for some ŷ. Of course we

want the resulting upper bound E[f(ŷ, ξ)] to be as close to g∗ as possible. This is done by

selecting ŷ from the set of points that are already promising in coming close to y∗. Recall

that the lower bound on h∗ is found by solving M SAA problems. The solutions yim are our

best attempt at finding the approximate optimal solution to problem (SP), and we use these

solutions here to calculate the upper bound on h∗.

Again, in practice the expected value E[f(ŷ, ξ)] can be estimated by taking a large
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number of samples, and using the sample mean estimator:

E[f(ŷ, ξ)] ≈ U(K)=̇
1

K

K∑
i=1

f(ŷ, ξi)

where K is a large number.

4.4.3 Calculating the confidence intervals

In the above analysis, both the upper and lower bounds are calculated using samples.

This can help us find a confidence interval on the value h∗. As long as we use sufficiently

large number of samples M and K, it is appropriate to assume that Central Limit Theorem

applies. We have:

√
M(L(M)− E[hm]) ∼ N(0, σ2

m), and

√
K (U(K)− E[f(ŷ, ξ)]) ∼ N(0, σ̄2(ŷ))

where σ2
m = var(hm), and σ2(ŷ) = var (f(ŷ, ξ)). These variance values can be approximated

by the sample variances:

σ2
m ≈ σ̄2

m =̇
1

M − 1

M∑
j=1

(hjm − L(M))2,

and σ2(ŷ) ≈ σ̄2(ŷ) =̇
1

K − 1

K∑
k=1

(f(ŷ, ξk)− U(K))2.

Now let α be the confidence level we want to achieve, and let Tn be a random variable

that has a t-distribution with degree of freedom n− 1, and let tn−1,α satisfy:

P{Tn ≤ tn−1,α} = 1− α.

We can then define:

εu =
tK−1,α

2√
K

σ̄(ẑ), and ε` =
tM−1,α

2√
M

σ̄m.

Assuming that the samples in estimating the upper and lower bounds are independent of

each other, we have:

P {L(M)− ε` ≤ E[hm] ≤ h∗ ≤ E[f(ŷ, ξ)] ≤ U(K) + εu}
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= 1− P {L(M)− ε` ≥ E[hm], or E[f(ŷ, ξ)] ≥ U(K) + εu}

≥ 1− (P{L(M)− ε` ≥ E[hm]}+ P{E[f(ŷ, ξ)] ≥ U(K) + εu})

= 1− (1− P{L(M)− ε` ≤ E[hm]})− (1− P{E[f(ŷ, ξ)] ≤ U(K) + εu})

≈ 1− α

2
− α

2

= 1− α.

Therefore we can use

[L(M)− ε`, U(K) + εu] (4.5)

as the confidence interval for h∗ with confidence level α.

4.4.4 Applying the bounding technique to problem (P)

Now we can apply the Monte-Carlo bounding technique to problem (P), and use (SAA)

to find the approximate solution to (P). First, define the penalty corresponding to a single

path p
(N−n)
i as:

G(x, p
(N−n)
i ) =

∑
`∈L

G`(z
n+1(x, si)) +

∑
c∈C

Gc

(
1

N
· (z̄(n) + z(N−n)(x, p

(N−n)
i ))

)
i = 1, . . . ,m.

Then the objective function of (SAA) can be simplified as:

gm = min
x

m∑
i=1

1

m
G(x, p

(N−n)
i ).

We can see that the results in Section 4.4 can be applied directly here:

E[gm] ≤ g∗ ≤ E[G(x̂,p(N−n))], for any x̂ ∈ X. (4.6)

This gives rise to the following procedure for determining the sample size and solving

problem (P) with (SAA).

Dynamic sampling procedure

1. Determine initial sample size m, batch size M and sample size K. These can be picked

arbitrarily as the starting point. Set the confidence level α, and determine the stopping
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criteria for this procedure based on the relative size of the confidence interval.

2. Randomly sampleM batches ofm sample paths p
(N−n)
1,j , p

(N−n)
2,j , . . . , p

(N−n)
m,j , j = 1, . . . ,M .

Formulate an (SAA) problem with every batch of sample paths, solve a total of M

(SAA) problems and obtain:

gjm = min
x∈X

1

m

m∑
i=1

G(x, p
(N−n)
i,j ) for j = 1, . . . ,M

xjm = arg min
x∈X

1

m

m∑
i=1

G(x, p
(N−n)
i,j ) for j = 1, . . . ,M.

By averaging the resulting objective values from all of the (SAA) problems, obtain the

lower bound on g∗:

L(M) =
1

M

M∑
j=1

gjm.

3. Obtain K independent samples p
(N−n)
1 , . . . , p

(N−n)
K , and calculate for all candidate so-

lutions xjm (j = 1, . . . ,M) found in Step 2:

uj =
1

K

K∑
k=1

G(xjm, p
(N−n)
k ), ∀j = 1, . . . ,M.

Take the best, i.e., the smallest of these, to be our upper bound:

U(K) = min
j=1,...,M

uj.

Moreover, define the corresponding solution as:

x̂ =̇xĵm such that uĵ = U(K), ĵ ∈ {1, . . . ,M}.

4. Calculate:

σ̄2
m =

1

M − 1
·
M∑
j=1

(gjm − L(M))2,

and σ̄2(x̂) =
1

K − 1
·
K∑
k=1

(G(x̂, p
(N−n)
k )− U(K))2,

and calculate:

ε` =
tM−1,α

2√
M

σ̄m, εu =
tK−1,α

2√
K

σ̄(x̂).
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From (4.5) we know that the 1− α confidence interval on g∗ is:

[L(M)− ε`, U(K) + εu].

5. If the confidence interval obtained in Step 4 satisfies the stopping criteria, terminate;

otherwise increase M or m or K, and go to Step 2.

When the algorithm terminates, we can use the solution x̂ as the approximate solution

to problem (P). We show in Appendix C that when the numbers m, M, and K → ∞, gm

as well as both L(M), U(K) will converge to g∗. Therefore this procedure will eventually

converge for any confidence level α and any arbitrarily tight stopping criteria. Note that, as

we show in the numerical experiments below, the actual number of samples m, M and K do

not have to be very large in order for us to find a satisfactory solution.

4.5 Comparison with a model in the literature

Men et al. (2011) proposed a similar model in dealing with inter-fraction uncertainties

in the plan optimization for the entire treatment. When the number of fractions in the

treatment is large enough to justify the law of large numbers (LLN) assumption, the authors

replaced the path-based expected penalty term with penalty of the expected dose:

min
x

∑
`∈L

E
[
G`(z

1(x, s))
]

+
∑
c∈C

E

[
Gc

(
1

N
· z(N)(x,p(N))

)]
≈ (CH) min

x

∑
`∈L

E
[
G`(z

1(x, s))
]

+
∑
c∈C

Gc

(
E

[
1

N
· z(N)(x,p(N))

])
,

while imposing the same constraints (4.1) (4.2) and (4.3). The assumption behind the

approximation is the convergence of the average dose to the expected dose. In solving this

model, the two terms in model (CH) were further approximated using a large number m′

scenarios:

min
x

1

m′

m′∑
i=1

∑
`∈L

[
G`(z

1(x, si))
]

+
∑
c∈C

Gc

(
1

m′

m′∑
i=1

z1(x, si)

)
,
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i.e., the expected penalty associated with fractional dose is approximated with the average

of penalty in m′ scenarios, and the expected dose is approximated with the average dose of

m′ scenarios.

This model is promising and easy to use in that it only requires solving one single op-

timization problem, and the solution can be used as the treatment plan. However, it could

not provide a measure of the quality the approximating solution and objective compared to

the original problem. Moreover, the LLN assumption relies on a large number of fractions in

the path p, which means it might not work as well in designing adaptive treatments where

the path may only contain a few fractions. We want to compare our SAA framework with

approach (CH), and explore two things in particular:

1. is model (CH) good enough in approximating the true objective g∗ and obtaining a

good solution?

2. is the above still true for n > 0, i.e., in the re-optimization framework?

To answer question 1, note that since Gc is a convex function, applying Jensen’s inequality

shows that: ∑
c∈C

Gc

(
E

[
1

N
· z(N)(x,p(N))

])
≤
∑
c∈C

E

[
Gc

(
1

N
· z(N)(x,p(N))

)]
.

In other words, the objective in (CH) is an under-estimator of the true objective at any

solution. However, we are most interested in the quality of the objective at its optimal

solution x̄. We can evaluate it by performing the paired t-test. The paired t-test compares

the mean of two random variables, which in our case are functions G(x̂,p(N)) and G(x̄,p(N)).

Here x̂ is the terminal solution provided by the dynamic sampling procedure. The null

hypothesis for the test is that the mean difference between the paired observations is zero:

E
[
G(x̂,p(N))

]
= E

[
G(x̄,p(N))

]
.

To carry out the test, first we draw a large number, e.g., K ′, of sample paths from the
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distribution of p(N), and calculate:

dk = G(x̂,p
(N)
k )− G(x̄,p

(N)
k ) ∀k = 1, . . . , K ′

d̄ =
1

K ′

K′∑
k=1

dk, and

sd =

√√√√ 1

K ′ − 1

K′∑
k=1

(dk − d̄)2.

Then we can find the t-statistic

T =
d̄

sd/
√
K ′
.

Under the null hypothesis, T follows the t-distribution with degree of freedom K ′−1. Given

confidence level α, we can look up the t-distribution table and find the corresponding p-value

for T . If the p-value is higher than our confidence level α, we then accept the null hypothesis,

and say that the two solutions x̂ and x̄ produce the same objective function value; otherwise

we reject the null hypothesis. The t-test can also provide the 1 − α confidence interval for

the difference:

[d̄− tK′−1,α
2

sd√
K ′
, d̄+ tK′−1,α

2

sd√
K ′

].

The authors did not apply this model in the adaptive setting, because the approximation:∑
c∈C

E

[
Gc

(
1

N
· z(N)(x,p(N))

)]
≈
∑
c∈C

Gc

(
E

[
1

N
· z(N)(x,p(N))

])
.

depends on the (LLN) assumption: the average of a large number N independent and

identically distributed (i.i.d.) random variables is close to the expected value. When the

number of fractions to be delivered becomes smaller, this assumption may not apply anymore.

However, we can still extend model (CH) to the adaptive optimization setting:

min
x

∑
`∈L

E
[
G`(z

1(x, s))
]

+
∑
c∈C

E

[
Gc

(
z̄(n) + z(N−n)(x,p(N−n))

N

)]
≈ min

x

∑
`∈L

E
[
G`(z

1(x, s))
]

+
∑
c∈C

Gc

(
z(n)

N
+

(N − n)

N
E
[
z(N)(x,p(N))

])
We test the performance of this model in solving the adaptive optimization problems,
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and compare its solutions to the (SAA) solutions in Section 4.6.3.

4.6 Experiments

We compare our algorithms on four prostate patient cases, exported from an imaging

and treatment planning system at Department of Radiation Oncology at the University of

Florida. All patients are treated with 9 equispaced 60Co beams at angles 0◦, 40◦, 80◦, 120◦,

160◦, 200◦, 240◦, 280◦ and 320◦ respectively. The size of the beam is 40×40 cm2, and the

beamlets are of size 1×1 cm2. In discretizing the patients’ geometry, we used a grid consisting

of voxels of size 4×4×4 mm3. In the optimization model we used a downsampled grid of size

8×8×8 mm3 in unspecified tissues. However, in evaluating the final dose we always use the

full resolution grid. All of our test cases have one target (prostate) with a prescription dose

of 73.8 Gy to be delivered over 41 daily fractions. The critical structures include rectum,

bladder and femoral heads in addition to normal tissue.

The patient setup location is assumed to be jointly normally distributed with mean of

0 and standard deviation of 3mm along each of the three axes (see Ekberg et al. (1998);

Tinger et al. (1998); Van Herk et al. (2004)). Assuming that large errors will be detected

and corrected prior to the treatment, we restrict the error along each axis to be within

±6mm. Note, however, that our model and solution procedure does not require the normal

distribution assumption, and they work in principle with any distribution appropriate in

modeling the specific motion type. For each case, we randomly sample 500 setup scenarios

by perturbing the patient’s position according to this distribution, and use this collection

of scenarios as an approximation of the continuous space of random setup locations. All of

the sample scenarios and paths used in the optimization problems are then drawn from this

pool of 500 samples. The sizes of relevant parameters are listed in Figure 4.1. The number

of non-zero elements in the dose deposition matrix is not a constant any more, as shifts in

the patient position relative to the beams will affect the number of voxels irradiated by the

same beamlet, and thus affecting the total number of non-zero entries in the dose deposition

102



matrix.

Case # voxels (total / down-sampled) # beamlets # non-zero elements in D(s)

1 226,324 / 38,731 2,318 2,908,444 – 3,103,615

2 205,911 / 35,988 2,336 3,320,876 – 3,432,446

3 131,216 / 22,330 2,002 2,074,564 – 2,124,810

4 162,628 / 29,828 2,413 3,232,972 – 3,273,917

Table 4.1: Problem dimensions of our test cases.

The penalty function used in all of our experiments are one-sided quadratic functions

that are based on voxel dose, having the same structure as the ones used in Men et al.

(2011). The penalty functions are as follows:

G`(z) = w`t ·
1

|vt|
∑
j∈vt

max{Tt − zj, 0}2 ∀t ∈ T, ` ∈ L

Gc(z) = wct ·
1

|vt|
∑
j∈vt

max{zj − Tt, 0}2 ∀t ∈ T ∪O, c ∈ C,

where T and O are the set of targets and critical structures, respectively, vt is the collection

of voxels in structure t, and Tt is the threshold value for the dose delivered to a voxel in

structure t. Moreover, w`t and wct are the weights assigned to structure t in function G` and

Gc (` ∈ L, c ∈ C), respectively. Our experiments are performed on a Mac Pro with 2×2.8

GHz Quad-core Xeon CPUs and 14 GB of memory. All of the optimization problems are

solved with an in-house interior point method based solver (see Wright (1987); Aleman et al.

(2010) for a description of the interior-point method), implemented in Matlab version 7.14.

The DVH constraints and criteria for evaluating the treatment plans are established

based on RTOG protocols (Radiation Therapy Oncology Group (2004)). Those defined for

the critical structures are summarized in Table 4.2. In establishing the constraints for the

target, for the margin-based model we followed the traditional approach and required that

95% of the PTV voxels receive the prescription dose, ≥99% receive 93% of the prescription

dose, and ≤ 10% receive more than 110% of the prescription dose. For the stochastic model,
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since we removed the margin and only took the ITV into account, we want to cover the

entire ITV with prescription dose under all circumstances; in addition, we require that none

of the ITV voxels receive more than 110% of the prescription dose.

Structure Rectum Bladder Femoral heads
Threshold dose (Gy) 75 70 65 40 65 40 50 45 40
Upper limit on volume (%) 15 25 35 45 17 35 10 25 40

Table 4.2: DVH criteria for critical structures.

One of the major challenges in comparing different plan optimization models is that the

process of adjusting the parameters to meet the DVH constraints is highly subjective and

model dependent. The margin built around the ITV in the conventional models leads to

a larger target volume, and usually also introduces overlaps with the surrounding critical

structures. These differences in the structure sizes, combined with different dose constraints

for the target, necessitate tuning the parameters for individual models. This is done to best

meet the DVH requirements while taking into account the trade-off between structures and

clinical considerations.

After the tuning is done, the same models are applied to all patients to eliminate further

variations that may be introduced by additional tuning for individual patient cases. In order

to facilitate the comparison across different cases, the treatment plans obtained from the

margin-based model are scaled so that 95% of the total PTV volume receive the prescription

dose under the nominal scenario.

After the plans from the margin-based model and the stochastic model have been gener-

ated, we apply them to the same set of 5 simulated treatment paths, each consisting of 41

fractions. For the following comparisons, we only inspect the target dose distributions based

on ITV dose, as the ITV is the region we are interested in covering with prescription dose.
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4.6.1 Comparing the stochastic model with the conventional model

We use our first experiment to show how directly taking randomness into account affects

the treatment quality in a random setting. We first set n = 0 and z̄(n) = 0 and find an

approximate solution to problem (P) using the procedure described in Section 4.4.4. This is

equivalent to designing an initial plan at the beginning of the treatment, without performing

any adaptive re-planning. In Table 4.3 we summarize the sizes of different samples used in

the solution process, and the runtime for one (SAA) problem as well as the bound obtained

on the objective g∗ for both cases. For the same case, the runtime for the (SAA) problems

are not identical in different runs, however they are very similar to each other because of the

similar problem sizes, and therefore we report only one representative statistic. Observe that

the number of samples m that we need in the (SAA) problem is rather small, showing that

(SAA) is very efficient in approximating problem (P) and in finding high quality solutions.

However, doing this requires solving the (SAA) problem M times, which may lead to long

treatment planning time.

Case sample size m batch size M sample size K bound on g∗ (SAA) runtime
1 30 20 100 2.1% 235 s
2 30 25 100 0.9% 307 s
3 30 30 100 5.4% 181 s
4 30 25 100 5.5% 319 s

Table 4.3: Sample sizes and bounds in the initial (SAA) problem.

The solutions are then applied to the 5 sample treatments, and the resulting DVH is

compared with DVH obtained from applying the margin-based solutions. We combine the

DVH curves for each patient of 5 sample treatments, and the result is a “cloud” of curves,

presented in Figure 4.1 for our test cases.

It can be observed that the treatments benefit from taking advantage of the stochastic

model. The stochastic plans are in general providing similar or better target coverage without

introducing additional hotspots, and can reduce the dose delivered to especially the rectum
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and the bladder which in general receive high doses. Although the femoral heads and skin

receive higher doses at the very low dose ranges, these structures under the stochastic plans

can still easily meet the same set of criteria compared to the conventional plans.
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Figure 4.1: DVH clouds for the stochastic plans (solid) and the conventional plans (dashed)
for 5 sample treatments

Another criterion important to the clinicians is the probability of delivering the pre-

scribed dose to the ITV in each fraction. As mentioned before, ensuring the target receives

the prescription dose not only over the entire treatment, but also in each fraction is critical

in a successful treatment. For both the conventional plan and the stochastic plan, we use

100 randomly sampled scenarios to evaluate the probability of a particular fraction of tar-
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get voxels receiving the prescription dose. The results are shown in Figure 4.2. In general

the stochastic model is able to achieve higher target coverage compared to the conventional

model. For Case 3, more than 24% of the bladder and more than 16% of the rectum overlap

with the PTV. By ignoring the normal tissue in the overlapped regions, the conventional

model compromises the rectum and bladder to provide better target target coverage. How-

ever, if we adjust the stochastic model to put more emphasis on the per-fraction effects, even

for Case 3 a higher coverage probability can be achieved (Figure 4.3).
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Figure 4.2: Probability of covering a % volume of the ITV in one fraction for conventional
vs. stochastic plans

4.6.2 Re-optimization and adaptive radiation therapy

Being able to collect and exploit additional information about the delivered dose provides

us the opportunity to explore the benefits of adaptive radiation therapy. Due to the ran-

domness in the treatments the delivered dose distribution may differ from the planned one,

and adaptive re-optimization makes it possible to react to and correct the deviations in the
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Figure 4.3: Coverage probability for conventional vs. adjusted stochastic plan, Case 3

delivered dose and achieve potential additional benefits compared to performing stochastic

optimization alone. As mentioned in Section 4.2, our dynamic sampling framework also

works for designing adaptive treatments when updated information about delivered dose

becomes available during the treatment course.

We next investigate the effects of applying re-optimization during the simulated treat-

ment. Recall that if n > 0, which means n fractions have been carried out, solving model

(P) will be re-optimizing the treatment plan for the rest of the N − n fractions, taking into

account the delivered dose z̄(n). Here we assign to z̄(n) the dose delivered to the patient

in the first n fractions of the simulated treatments, and re-optimize the plan given this in-

formation. We then apply the updated treatment plan to the remaining fractions in the

treatments. The results are compared with the stochastic optimization plans on the same

simulated treatment courses.

In order to compare different re-optimization schedules we tested two schemes: one where

re-optimization is done once at the midpoint of the treatment, and another where we perform

weekly re-optimization for every treatment course. We will focus on for Case 1, for which the

trade-off between the target and the critical structures is more evident and the differences in

the results can be more readily seen. Table 4.4 shows the sample numbers m,M and K used

and the associated bounds in these experiments. It is interesting to notice that the runtime

depends heavily on the number of samples m but not much on the number of fractions left
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in the treatment course.

Scheme fraction sample path m M K bound on g∗ (SAA) runtime (s)
Reopt once 20 1 30 20 100 2.4% 297

2 25 25 2.1% 240
3 30 20 2.0% 293
4 30 20 1.8% 290
5 30 25 2.4% 280

Reopt weekly 7 1 30 25 100 5.1% 272
2 25 20 5.2% 229
3 25 20 3.8%
4 25 20 5.0%
5 25 25 5.3%

14 1 30 25 100 5.3% 274
2 25 20 4.5% 226
3 25 20 4.7%
4 25 20 5.8%
5 25 25 4.6%

21 1 30 25 100 4.2% 278
2 25 20 1.8% 229
3 25 20 2.5%
4 25 20 5.9%
5 25 25 4.8%

28 1 30 25 100 2.1% 320
2 25 20 3.0% 261
3 25 20 1.9%
4 25 20 1.1%
5 25 25 4.9%

35 1 30 25 100 1.1% 380
2 25 20 1.2% 274
3 25 20 1.3%
4 25 20 0.9%
5 25 25 1.9%

Table 4.4: Sample sizes and bounds on the objective function in the adaptive reoptimization
problems for Case 1.

Figure 4.4 shows the DVH cloud for both cases. Notice that the rectum and the bladder

both receive higher dose under the adaptive optimization schemes. However, from Figure 4.5

we can clearly see that the later the reoptimization takes place, the more the target coverage

probability for the reoptimized plans improves. Because the per-fraction and cumulative dose
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criteria are conflicting, this results in more dose being delivered to the critical structures close

to the ITV.

We offer a qualitative explanation of why performing reoptimization gives more dose to

the target region. Recall that the objective function in the adaptive optimization model

takes the following form:

1

m

m∑
i=1

[∑
`∈L

G`(z
n+1(x, si)) +

∑
c∈C

Gc

(
1

N
· (z̄(n) + z(N−n)(x, p

(N−n)
i ))

)]
.

For the cumulative term, the intensity vector x only affects future fractions n + 1 to N .

Therefore as more fractions are delivered, increasing x has less effect on the cumulative

dose and thus on the penalty term associated with it. This can be verified by examining

the (SAA) solutions for reoptimization at fractions 8, 15, 22, 29 and 36, respectively, in

one sample treatment for Case 1. For each adaptive optimization problem, we increase the

optimal intensity by 10% and calculate the average increase in the cumulative dose for each

structure over m different samples. The results in Table 4.5 confirm that x has much smaller

effect on the cumulative dose as n grows. On the other hand, x affects the per-fraction

penalty term the same way regardless of n, as the penalty depends on dose in fraction n+ 1

only. As a result, re-optimization towards the end of the treatment course will increase the

dose in the target region and thus the dose to the surrounding structures.

Fraction Increase in cumulative dose (%)

number normal tissue femoral heads rectum bladder ITV

8 8.3 8.3 8.3 8.2 8.3

15 6.6 6.6 6.6 6.7 6.6

22 4.8 4.8 5.0 4.9 4.9

29 3.1 3.0 3.3 3.5 3.2

36 1.4 1.3 1.6 1.6 1.5

Table 4.5: Effect on cumulative dose of increasing the intensity by 10% at different stages of
the treatment course.

It can be concluded that under the current framework, adaptive optimization puts more
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emphasis on target coverage than critical structure sparing, especially when the number of

remaining fractions is small. This is an important factor to consider when applying adaptive

optimization with this model.

4.6.3 Comparison with model (CH)

In this section, we compare our model with the one proposed in (Men et al. (2011)). As

discussed in Section 4.5, model (CH) is easier to implement, and does not require solving

multiple optimization problems. However, it does not provide any measure of the solution

quality. On the same set of cases, we compare the solution quality of the plans obtained

from our model and model (CH).

4.6.3.1 Initial optimization problem

We follow the authors’ method in implementing model (CH), and use m′ = 100 samples

in estimating the expected penalty and the expected dose in model (CH), and apply the same

set of parameters in defining the penalty terms. Table 4.6 includes results of the objective

value comparison for our solution and the solution from (CH) for the initial optimization

problem. For all cases except Case 3, the p-values are much smaller than the critical value

0.05, and it is statistically significant enough to show that the true objective value at x̂ is

lower than that at x̄. For Case 3, the p-value is also very close to 0.05. However, the difference

in objective values are only around a few percent, which can be expected as (CH) is designed

to be a good approximation to (P) when N is large. The solution time for model (CH) is

much shorter compared to (SAA). In Figures 4.6 and 4.7 we compare the simulated dose and

coverage probability to our plans. While the cumulative dose to the critical structures, most

notably rectum and bladder, is higher for all cases under model (CH), the target coverage

probabilities are in general better for the corresponding solutions.
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Case estimated obj. U(K) p-value 95% c.i. for G(x̂,p(N))− G(x̄,p(N)) (CH) runtime
1 3709.1 0.003 [-114.2, -24.1] 48
2 3132.6 0.094 [-189.0, 15.2] 48
3 4663.3 <0.1% [-277.9, -107.0] 29
4 3596.1 <0.1% [-210.0, -82.7] 45

Table 4.6: Comparison of (SAA) solution x̂ with solution from model (CH) for the initial
stochastic optimization problem

4.6.3.2 Adaptive optimization problems

Finally, we perform the same tests to compare the expected objective function values for

the adaptive optimization problems. In order to fairly compare the outcomes from different

optimization models, the input dose used in the respective problem, in other words, z̄(n),

must be consistent. We therefore apply the initial and adaptive solutions from our model

until the fraction the comparison takes place. Then model (CH) is solved and its solutions

compared to our model. The results in Tables 4.7 and 4.8 show that for all but a few cases,

our solutions are similar to or better than the solutions from model (CH). It is interesting to

see that model (CH) performed very well in all cases, using much shorter optimization time

than (SAA).

Fraction sample estimated objective U(K) p-value 95% c.i (CH) runtime (s)
20 1 3613.0 0.013 [-69.9, -8.3] 62

2 3788.1 0.001 [26.0, 98.7] 58
3 3811.8 0.008 [23.6, 151.7] 58
4 3662.0 <0.1% [-97.3, -39.1] 54
5 3809.0 <0.1% [59.8, 103.1] 60

Table 4.7: Comparison of (SAA) solutions with those from model (CH) for reoptimization
problems under one-time reoptimization for Case 1

Intuitively, the LLN assumption that the average of i.i.d. random samples equals the

expected value becomes less accurate the fewer the number of samples. However, we do not

observe any deterioration in solution quality in the adaptive solutions from applying model

(CH). This is because as n increases, a larger portion of the overall dose is delivered. Even
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Fraction sample estimated objective U(K) p-value 95% c.i (CH) runtime (s)
8 1 3760.1 0.063 [-25.5, 0.70] 46

2 3661.1 <0.1% [-119.8, -87.0] 52
3 3705.1 <0.1% [-99.9, -75.4] 49
4 3785.9 <0.1% [-110.4, -101.9] 49
5 3798.1 0.98 [-85.1, 87.7] 48

15 1 3741.8 0.018 [-29.8, -2.9] 49
2 3735.9 <0.1% [-85.0, -27.7] 54
3 3691.7 <0.1% [-88.3, -62.6] 51
4 3708.1 <0.1% [-86.1, -54.7] 50
5 3805.1 0.22 [-101.1, 23.9 ] 53

22 1 3782.0 0.25 [-37.5, 9.9] 52
2 3703.1 0.001 [-80.1, -23.3] 62
3 3697.8 <0.1% [-111.2, -42.3] 63
4 3817.7 0.001 [-83.2, -21.1] 54
5 3782.5 0.86 [-42.1, 50.0] 57

29 1 3786.7 0.57 [-70.2, 38.7] 67
2 3716.3 <0.1% [-82.3, -27.0] 49
3 3757.6 0.612 [-18.1, 30.6] 61
4 3825.9 0.08 [-65.0, 3.9] 70
5 3754.2 0.468 [-53.2, 24.6] 65

36 1 3763.0 0.17 [-83.6, 14.7] 111
2 3736.4 0.547 [-66.2, 35.3] 125
3 3688.9 <0.1% [-164.7, -73.7] 108
4 3731.5 0.44 [-65.8, 28.9] 96
5 3842.3 <0.1% [91.4, 134.7] 109

Table 4.8: Comparison of (SAA) solutions with those from model (CH) for weekly reopti-
mization problems for Case 1

though the difference between the actual and expected dose over the remaining fractions

becomes bigger, this difference is “diluted” by the delivered dose. We test this empirically

with one sample path: at fractions 8, 15, 22, 29 and 36 respectively, calculate the expected

dose over the remaining N −n fractions based on the optimal solution obtained from model

(CH). Then we randomly sample 10 paths of N − n fractions, and calculate the actual

dose over each path with the same solution from (CH). The absolute difference between

the expected and actual doses for each path is calculated, and averaged over the 10 paths.

Table 4.9 lists the relative difference for all five structures. The relative difference increases
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with n for all structures, indicating that the LLN assumption is less and less applicable

when n grows. However, comparing the expected and actual cumulative dose over the entire

treatment in Table 4.10 reveals that the impact on the overall dose becomes much smaller.

Fraction Difference in expected and actual dose (%)

number n+ 1 normal tissue femoral heads rectum bladder ITV

8 0.05 0.7 1.2 1.9 0.04

15 0.07 1.0 1.2 1.7 0.04

22 0.05 1.3 1.1 2.6 0.07

29 0.11 2.3 1.6 2.8 0.09

36 0.09 3.6 1.5 2.7 0.1

Table 4.9: Relative difference between actual and expected dose over the undelivered frac-
tions at different stages of the treatment course

Fraction Difference in expected and actual dose (%)

number n+ 1 normal tissue femoral heads rectum bladder ITV

8 0.04 0.6 1.0 1.6 0.03

15 0.04 0.6 0.8 1.1 0.02

22 0.02 0.6 0.6 1.3 0.03

29 0.03 0.7 0.5 0.9 0.03

36 0.01 0.5 0.2 0.4 0.02

Table 4.10: Relative difference between actual and expected dose over the entire treatment
at different stages of the treatment course

Finally, we apply model (CH) in performing the adaptive optimization, and obtain the

DVH clouds for the overall dose in the sample treatments, as well as the target coverage

probabilities in Figures 4.8 and 4.9. Similar to the observation in the initial optimization,

model (CH) tends to emphasize the per-fraction target coverage, and results in more dose

to the critical organs in general.
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4.7 Conclusions

We investigated a stochastic programming based model that minimizes the expected

penalty based on both the per-fraction and cumulative doses. By solving a sample average

approximation model we can greatly reduce the complexity required in solving the proposed

model. Also, a statistical bound on the true objective function can be established by applying

the dynamic sampling procedure. Experiments with real patient data show that our approach

achieves improvements over the conventional, margin-based model in target coverage as

well as overall dose distribution. Our model can easily be extended to adaptive treatment

planning. However, in the adaptive optimization problems the solution lays more stress on

the target coverage and therefore results in higher dose to the surrounding structures. This

effect can be undesirable and needs to be factored in when using this model. Moreover, our

model requires solving multiple optimization problems, which is time consuming without

using any parallel computation. A comparable but simpler model proposed in the literature

is shown to provide moderately deteriorated but still satisfactory results.
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Figure 4.4: DVH clouds for the initial stochastic plans (solid) and adaptive plans (dashed)
for Case 1 in five sample treatments. Left: reoptimizing once, right: weekly reoptimization
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Figure 4.5: Coverage probability for initial stochastic and adaptive plans for Cases 1. (a):
reoptimizing once at fraction 20; (b-1) — (b-5): weekly reoptimization at fractions 8, 15, 22,
29, and 36, respectively
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Figure 4.6: DVH clouds for the stochastic plans (solid) and the plans from model (CH)
(dashed) without adaptive reoptimization for 5 sample treatments
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Figure 4.7: Probability of covering a certain volume of the ITV in one fraction for stochastic
plans vs. plans obtained by solving model (CH)
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Figure 4.8: DVH clouds for the adaptive (SAA) plans (solid) and the adaptive plans from
model (CH) (dashed) of 5 sample treatments for Case 1. Left: reoptimization once; right:
weekly reoptimization
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Figure 4.9: Probability of covering a certain volume of the ITV in one fraction for adaptive
stochastic plans vs. adaptive plans from model (CH) for Case 1. (a): reoptimizing once
at fraction 20; (b-1) — (b-5): weekly reoptimization at fractions 8, 15, 22, 29, and 36,
respectively
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CHAPTER V

Conclusions and Future Research

Radiation therapy is a complex yet exciting field that interacts with medicine, physics,

operations research as well as many other subjects. While it has been an active field for many

years, new treatment methods and technologies emerge, and bring with them problems that

require unconventional optimization models and algorithms. In particular, the treatment

plan optimization problem for VMAT is still a difficult one due to the large problem size and

the restrictions due to the continuous gantry movement. While most optimization methods

resort to heuristics, our research can serve as a step towards explicitly incorporating all

machine constraints, and eventually an exact solution algorithm for VMAT.

On the other hand, the tradeoff between the large capital expenditure required in updat-

ing to a dedicated VMAT system and the potential benefits is an important factor to consider

when clinics are transitioning to VMAT treatment systems. By developing a treatment plan-

ning method for VMATC, we offer an alternative treatment that can be implemented on the

existing IMRT systems, and provides similar plan quality to VMAT treatments.

Accounting for uncertain events that happen between and during radiation therapy treat-

ments is important to ensure the outcome of the actual treatment. Even though advances in

imaging and patient monitoring technologies have made it possible to detect small changes

in the patient setup process as well as their internal geometries, radiation therapy treatment

can still benefit from directly incorporating uncertainty in the optimization.
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Finally, many of the algorithms we developed for solving radiation therapy treatment

planning problems can be applied or modified to solve other problems that involve large-

scale, nonlinear optimization systems.

Despite our best effort, we can only address a limited number of issues in this thesis.

There are still many interesting problems to be studied.

5.1 VMAT treatment plan optimization problem

For the VMAT treatment plan optimization problem, the greedy nature of the algorithm

dictates that apertures added earlier in the column generation process may not be good

choices later. A possible improvement is to study how ineffective apertures, in addition to

those with zero intensities, can be detected during the solution process.

In theory, the optimal VMAT plans will always outperform VMATC plans due to the

additional degrees of freedom. However, compared to VMATC, many of the VMAT plans

actually performed worse in terms of objective value, as seen in Table 3.5. We can poten-

tially find better solutions by introducing a refinement step similar to that used in VMATC

optimization, which improves the aperture shapes and/or fluence rates during or after the

column generation process, although this means that the optimization procedure will re-

quire more time to complete. Moreover, using the VMATC solution as the starting point for

VMAT optimization can also be a promising direction to pursue.

Reducing the treatment time and total MU values are not considered explicitly in the

column generation procedure. However, these are important factors when evaluating the plan

quality. Although the post-processing step minimizes the treatment time, the final gantry

speed and thus treatment time depend on the apertures and fluence rates that are already

determined. We want to, in the future, incorporate constraints that impose upper bounds on

the treatment time and total MU so as to explore the tradeoff between the objective value

and these other quality measures.

Finally, we would like to be able to include transmission effects in the pricing problems,
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so that we can more accurately evaluate the prices of potential apertures. However, this

means that the pricing problem cannot be solved with the current method anymore, and we

will need to look for other appropriate methods.

5.2 Treatment planning for VMATC

In the optimization of VMATC plans, our method for finding the apertures is very local

in nature. In each iteration the selection is only based on changes in the leaf setting in one

row. We would like to study algorithms that considers multiple leaf rows at a time so that

we can search a larger area of the feasible region.

Moreover, in the current leaf setting optimization process, we have only studied one de-

terministic strategy for determining the sequence of control points and leaf rows. There are

potentially alternative deterministic strategies, as well as strategies that involve randomiza-

tion in this process. We would like to test there strategies, compare them to the current

approach, and determine the best option to be used in the optimization process.

Furthermore, the optimal way of performing the refinement step, which theoretically pro-

vides better solutions than the heuristic approach used currently, is too slow to be practically

feasible. Exploring parallel solvers to speed up the solution of the optimization problems

can benefit the solution quality.

The prostate cancer cases we tested are relatively less complicated compared to cancer

sites such as head and neck, which sometimes involves multiple targets with different target

prescription dose levels. It may not be true anymore that one starting simplex works for

different cases. In that case, finding a good treatment plan in small amount of tests may

become a bigger challenge. It will be interesting to see how the current strategies perform

for a different set of cases.

Finally, the experiments in Chapter III showed similar qualities for VMATC plans com-

pared to the corresponding full VMAT plans. These results are highly algorithm dependent,

and cannot be generalized to arrive at the same conclusions about these treatment modali-
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ties, since we cannot solve either treatment planning problem to optimality. However, they

do reveal that the current VMATC plans are of high quality. It will be interesting to see the

same comparison if we restrict VMATC even further, and require that they use the same

amount of treatment time and/or total MU compared to the VMAT plans.

5.3 IMRT plan optimization under uncertainty

The dynamic sampling procedure used in solving the stochastic optimization model is

slow, as it needs the solution from multiple optimization problems to generate a bound on

the true objective. We would like to explore other implementation options, such as parallel

computing, to make it more practical in the clinical setting.

The current uncertainty scenarios only include rigid shifts in the patient setup position.

It may be beneficial to also take geometry changes into account in the uncertainty models.

This, however, will require a thorough understanding of the potential variations in the sizes

and locations of the patients’ internal structures. Studying the variations in the patient

population with the same cancer type that underwent the same type of treatment can help

us extract information in such modeling attempts. Moreover, we would like to study the

number of samples used in approximating the random setup error. The number should be

sufficiently large to be an appropriate approximation, and ideally be determined through a

less arbitrarily process.

Finally, our experiments showed that under the adaptive optimization framework, the

emphasis of the solutions shifts away from the cumulative dose penalty, and towards the per-

fraction dose penalty as more fractions are delivered. It is important to be able to quantify

this tradeoff, and investigate modifications to our model to take advantage of it. We want

to also study alternative models that can benefit the treatment plan under the adaptive

planning, without making compromises in the process.
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APPENDIX A

Relationship between Moving Speed of Radiation Field

Edge and Moving Speed of MLC Leaf

The isocenter plane in radiation therapy is defined as a plane perpendicular to the ray in

the center of a beam that crosses the center of the target. The distance from the radiation

source to the isocenter plane, called SAD, is usually much larger than the size of the target,

therefore the radiation rays emitted from the source are usually considered to be parallel to

each other. However, the fact the source is a point means that the rays are not parallel, or

perpendicular to the treatment machine’s isocenter plane. The primary consequence is that

the positions of the leaf ends are not the same as the position of the radiation field edges.

Moreover, the speed at which the leaves move are not equal to that of the radiation field

edge.

As shown in Figure A.1, when the leaf is at position A which is at a distance w1 from

the center of the beam, the edge of the radiation field on the isocenter plane is at W1. Let

SCD be the distance from the source to the center of the leaf, we have:

w1

W1

=
SCD

SAD
.

Now if the leaf moves to a point B w2 away from A, a similar analysis shows that the
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displacement of the radiation field edge W2 satisfies:

w2

W2

=
SCD

SAD
⇒ W2 = x2 ·

SAD

SCD
.

In other words, the radiation field edge moves faster than the speed of the leaf movement by

a factor of SAD
SCD

.

This means that any aperture formed by the MLC is larger when projected to the isocen-

ter plane. Since we are interested in the radiation exposure at the isocenter plane where the

patient is located, we can use the projected leaf speed, i.e., the radiation field edge speed,

instead of the actual leaf speed in the optimization problem. Let v̂ be the maximum physical

MLC leaf speed, the maximum projected leaf speed can then be calculated as:

v = v̂ · SAD

SCD
.

Doing this will result in all “leaf positions” being radiation field edge positions, and

“apertures” being exposed radiation field shapes. These can be easily converted back to the

corresponding MLC leaf positions at the end of the optimization process.

Note that here we made an approximation that the radiation field edge is defined by

the ray that passes the tip of the leaf, whereas the ray that is tangent to the leaf is usually

slightly closer to the beam center. The difference in radiation field edge position is shown in

Figure A.2 as the distance between D and E. Because SAD� W , we can assume that angle

∠CSD = ∠CSE = θ. Let R be the radius of the leaf end, we have:

x = w +R−R cos θ

z = SCD +R sin θ.

Therefore:

x

X
=

z

SAD

=
SCD +R sin θ

SAD
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as a result:

X =
SAD

SCD +R sin θ

=
w · SAD +R (1− cos θ) · SAD

SCD +R sin θ

=
W · SCD +R (1− cos θ) · SAD

SCD +R sin θ

The difference between X and W equals:

W −X = W − W · SCD +R (1− cos θ) · SAD

SCD +R sin θ

=
WR sin θ −R(1− cos θ) · SAD

SCD +R sin θ
.

Because SAD � W , cos θ is close to 1 and sin θ is close to 0. As result, W −X is also close

to 0.

Therefore we define the radiation field edge with the ray that passes the tip of the leaf.

This allows us to use a simple representation of the projected leaf speed in the optimization

problem, without unduly compromising the quality of the solution.

Figure A.1: A schematic diagram of the source, MLC leaf, and isocenter plane

127



Figure A.2: A ray passing the MLC tip and a second ray tangent to the leaf end
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APPENDIX B

Derivation of Transmission Coefficient for a Beamlet

Outside the Radiation Field

Part of this section follows the analysis in Boyer and Li (1997). Consider two rays `1

and `2 emitted from the source, with `1 tangent to the leaf end, and `2 intersecting the leaf

for a length of `. Shown in Figure B.1, `1 and `2 are considered approximately parallel, and

their distance

d = R−
√
R2 − (

`

2
)2,

and

d′ =
d

cos θ
.

Following a similar analysis as Appendix A, we can calculate the length of the projection

of d′ on the isocenter plane

δ = d′ · SAD

SCD +R sin θ

=
R−

√
R2 − ( `

2
)2

cos θ

SAD

SCD +R sin θ
(B.1)

The Beer-Lambert law describes that the radiation intensity I after transmitted through a

material of thickness y depends on the initial intensity I0 and the material-specific coefficient
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Figure B.1: Schematic of a ray tangent to the leaf end and a ray intersecting the leaf

λ:

I

I0

= e−λy.

For each material, we can define a Half Value Thickness (HVT) as the thickness required to

reduce the intensity to half of the original magnitude. Then:

1

2
= e−λHVT

⇒ λ =
ln 2

HVT
.

For ray `2 the attenuation factor then equals:

α = e−λ` = e−
ln 2
HVT

·` = (
1

2
)`/HVT < 1

⇒ ` = − lnα

ln 2
· HVT. (B.2)

Plugging (B.1) into (B.2), we can eliminate ` and find an relationship between α and δ:

δ =
R−

√
R2 − (

− lnα
ln 2
·HVT

2
)2

cos θ

SAD

SCD +R sin θ

⇔ R− δ · cos θ(SCD +R sin θ)

SAD
=

√
R2 − (

− lnα
ln 2
· HVT

2
)2
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⇔ δ2 ·
[

cos θ(SCD +R sin θ)

SAD

]2

− 2Rδ · cos θ(SCD +R sin θ)

SAD
= −1

4
(
lnα

ln 2
)2 HVT.

Let:

γ1 =
cos θ(SCD +R sin θ)

SAD
=

SAD√
SAD2+W 2

(SCD +R W√
SAD2+W 2

)

SAD

= SCD ·
√

SAD2 +W 2 +RW

γ2 =
HVT

2 ln 2
,

we have:

δ2 γ2
1 − 2Rδ γ1 = −γ2

2 lnα2.

Because α < 1, lnα < 0, we get:

α = exp

[
− 1

γ2

(2Rδ γ1 − γ2
1 δ

2)
1
2

]
≈ exp

[
− 1

γ2

(2Rδ γ1)
1
2

]
(because δ is small)

=̇ exp
[
−µ
√
δ
]

(define µ =

√
2Rγ1

γ2

).

Now we can calculate the transmission coefficient for a beam that lies between τ1 and τ2

from the edge of the radiation field:

α(τ1, τ2) =
1

τ2 − τ1

τ2∫
τ1

α(δ) dδ

=
1

τ2 − τ1

τ2∫
τ1

e−µ
√
δ dδ

=
2

τ2 − τ1

τ2∫
τ1

e−µ
√
δ
√
δ d
√
δ

=
2

τ2 − τ1

√
τ2∫

√
τ1

e−µt t dt

= − 2

µ(τ2 − τ1)

[
e−µ

√
τ2(
√
τ2 +

1

µ
)− e−µ

√
τ1(
√
τ1 +

1

µ
)

]
.
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APPENDIX C

Convergence of the SAA Approach

In this section we show that when m, M , and K → ∞, the objective function value of

problem (SAA), namely gm, as well as the bounds L(M) and U(K) converge to the optimal

objective value g∗.

First note that as M and K →∞, the estimates L(M)→ E[gm] and U(K)→ E[G(x̂,p)].

If the solution to the (SAA) problem, namely x̂, converges to the optimal solution x∗ of (P),

it then follows that gm converges to g∗, and both E[gm] and E[G(x̂,p)] converge to g∗, and

as a result L(M) and U(K) also converge to g∗. We will show below that, as m → ∞, the

solution of the (SAA) problem converges to the solution of (P).

We start by examining the general problem (SP) and (SPm). Robinson (1996) showed

that with probability 1, a minimizer of (SPm) will, for large m, exist and be as close as

desired to the set of minimizers of (SP) if the following three conditions are satisfied:

1. Y is compact

2. Ef(y, ξ) is continuous

3. 1
m

∑m
i=1 f(y, ξi) converges to Ef(y, ξ) uniformly with probability 1.
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Instead of proving Condition 2 directly, we can take advantage of the Uniform Conver-

gence Theorem, which states that:

Uniform Convergence Theorem. If fn is a series of continuous functions that uniformly

converges to a function f . Then f is continuous.

If we can prove that Condition 3 is satisfied, we can alternatively show that the following

condition holds in order for Condition 2 to hold:

Condition. 1
m

∑m
i=1 f(y, ξi) is continuous for all m > 0.

We leave the first two conditions aside for now, and first tackle the third condition. This

proof can be done using the following theorem:

Theorem. (Jennrich (1969)) If

• Y is compact

• f(y, ξ) is continuous at each y ∈ Y for all ξ, and a measurable function of ξ at each y

• there exists a dominating function d(·) such that E[d(ξ)] <∞, and

‖f(y, ξ)‖ ≤ d(ξ) ∀y ∈ Y, ξ ∈ Ξ

Then

sup
y∈Y

∥∥∥∥∥ 1

n

n∑
i=1

f(y, ξ)− E[f(y, ξ)]

∥∥∥∥∥ → 0 almost surely,

which implies uniform convergence.

The first two conditions in the Theorem above are easy to see for our problem, since the

feasible region X is compact, and given the realized path p(N−n), the objective function is

the sum of quadratic terms, and is therefore continuous. For the last condition, note that

assuming the setup error of the patient is restricted to be within a certain region, i.e., large

displacement will be detected and corrected, our objective function is bounded above by a

finite number, sayM, and below by 0 . Therefore if we define d(·) =M, the third condition
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will also be satisfied. As a result, we know that as m→∞, the solution to problem (SAA)

will be arbitrarily close to the set of solutions to (P).
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