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CHAPTER I

Introduction

U.S. shipbuilders produce the finest warships in the world, but cost growth is erod-

ing the purchasing power of the Navy.

–Office of the Deputy Under Secretary of Defense[38]

For the past decades, the U.S. shipbuilding industry has been recognized as not

competitive as the leading international shipbuilders. The majority of contemporary

research in shipbuilding has been centered on technology, such as welding and cutting,

or design oriented research. Ship production, as an essential execution process of

building a ship, should also draw on the world-class manufacturing and operations

philosophies and techniques. This research focuses on introducing the most recent

operations research techniques to shipbuilding, to design a more robust and efficient

system, and to improve ship production planning and control. At the same time,

shipbuilding also motivates us to identify and solve new problems in operations

research. The models and methodologies developed in this research also can be

applied to improve other systems in manufacturing and serves industries.

1.1 Problem Overview

Shipbuilding is a unique industry that uses a wide variety of manufactured com-

ponents and requires a large number of workers possessing various skills as well as

1
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specialized facilities. U.S. shipbuilders have been preeminent in the production of

military vessels; However, in the world merchant ship market, they have not been

competitive since the Second World War, with the exception of small specialized

crafts. Over the last decade, the U.S. shipbuilding industry has improved signifi-

cantly on productivity as a result of Navy and industry initiatives and investment.

The technology gap between the U.S. industry and leading international shipbuilders

is closing. However, there are still large technology gaps in some U.S. shipyards that

present opportunities to make further substantial improvements, particularly in the

preproduction functions which include design, production engineering, and planning

[38].

To improve the efficiency of shipbuilding methods, it is essential to investigate and

measure how current problems affect overall productivity. Problems in current naval

ship production include construction commencing with immature designs, demand

changes due to new ship specialization, material and other schedule delays, inexperi-

enced labor, ineffective production control, lack of design for supply chain resilience,

high cost due to delay, and lack of standard parts. These issues result in high variabil-

ity in production workload and low facility utilization in ship production. Therefore,

improvement in the system may be achieved by (1) introducing a methodology that

enhances the system’s robustness; (2) developing a model that can capture system

variability; and (3) designing a smart control and planning policy that has quicker

response to the change of production as well as delay. To introduce new technology

to shipbuilding, one must first understand the basic process of shipbuilding.
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1.2 The Shipbuilding Process

There are two major processes in shipbuilding: hull construction and outfitting.

Hull construction includes all the activities associated with fabricating and assem-

bling the hull, while outfitting refers to the process of fabrication and installation of

nonstructural components.

Hull construction normally uses the block construction method, which is also

called Modularization . This construction method has been used in ship production

since World War II. The ship is divided geometrically into blocks. Depending on the

ship size and type, a typical ship might consist of 100 blocks. Blocks are assembled

in a block assembly area and then lifted to the drydock for the final erection. The

main hull construction workflow contains the processes of part fabrication, sub-block

assembly, block assembly, and final hull erection. Figure 1.1 illustrates a layout of

blocks used for a bulkcarrier.

Figure 1.1: Hull Blocks
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Outfitting in shipbuilding includes everything from painting to installing pumps

and piping systems, the main propulsion system, electrical system, air conditioning

(HVAC), and so forth. Most outfitting work can be performed during or after any of

the stages in hull construction workflow. It is always easier and more cost efficient to

process the outfitting at an early stage since there is easier access and more feasibility

in using large machinery. The scheduling of outfitting and hull construction are

usually separate processes, and scheduling of outfitting processes depends greatly on

human experience. Nonetheless, it remains very challenging to integrate outfitting

activities in hull construction.

Figure 1.2 depicts the Oshima shipyard layout. Oshima shipbuilding is a Japanese

shipbuilding company which ranked No. 7 in Gross Tonnage among the world ship-

builders in 2012. This layout shows the basic workflow in a typical shipyard beginning

with hull construction process and some of the outfitting processes, such as paint-

ing and piping. Some outfitting is additionally carried out during sub-assembly and

block assembly. There are two outfitting quays in this shipyard, indicating that a

large amount of outfitting activities will be performed after hull construction.

Overall, shipbuilding is a complex and massive manufacturing process with var-

ious labor skills, and unique processing and equipment. Therefore, it is no surprise

that a large amount of planning, scheduling, and decision-making is necessary at

almost every level of the shipbuilding process. There are many aspects and areas

in shipbuilding that can be improved by operations methodology. A fundamental

problem is at which level to attack problems and what type of approach to use. In

the following section, the research structure will be laid out.
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Figure 1.2: Shipyard Layout

1.3 Research Structure

There are three models detailed here that target on both the hull construction

process and outfitting process:

Model 1: Flexible Block Assembly Process (Chapter II)

Model 2: Hull Construction under CONWIP Planning Policy (Chapter III)

Model 3: Two-stage Closed Queueing Network for Outfitting Planning (Chapter IV)

Model 1 and model 2 focus on hull construction, while model 3 emphasizes on the

outfitting planning process.

Model 1 introduces operational flexibility to the block assembly process, allowing

some block assembly workshops to process different types of blocks rather than solely

one. Operational flexibility entails that the flexible workshop can be controlled to

process different blocks in a dynamic manner. The operational flexibility concept

is based upon current shipbuilding facilities, and it does not require investment
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in any new equipment or facilities. Flexibility can bring robustness to the system

to combat common problems in shipbuilding like demand change, large variability,

and low facility utilization. Another critical problem is how to control the flexible

resource (i.e. which job should be assigned to the flexible workshop). Flexibility

undoubtedly improves the system’s robustness, but it additionally makes the system

more complex. The goal of this research is to develop a simple, applicable, and

efficient policy to control the flexible resource.

Model 2 is focused at the planning level of hull construction. Most shipyards are

currently using the Manufacturing Resource Planning (MRP) system to plan and

schedule hull construction. In recent decades, a lot of new planning and scheduling

methodologies have been developed, such as the very popular Lean Manufactur-

ing. However, Lean Manufacturing is limited in its ability to schedule and plan

at the strategic level and thus is difficult to apply to the American shipbuilding

environment. Additionally, Lean methodologies do not provide any new planning

methodology with fundamental improvement. On the contrary, Constant Work In

Process (CONWIP) is a combination of push (MRP) and pull (JIT) system, that is

easier to implement and has more robust control. It can also be modeled as a closed

queueing network to capture the variability of the system. Therefore, the CONWIP

discipline is inducted at the strategic level in order to improve the current planning

and scheduling methodology of hull construction. At the execution level, flexible

block assembly is maintained as part of the hull construction process. This is a very

innovative model, mainly due to its flexibility under CONWIP control. There are

three objectives in this model: (1) Discovering the optimal CONWIP level; (2) How

to control the flexible resource under CONWIP discipline; (3) How much capacity

should be invested in flexibility.
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Model 3 targets the planning and control of outfitting activities. Current planning

of outfitting depends mostly on previous experience. A mathematical model of out-

fitting planning can provide analytical information to improve the current outfitting

technique. Two models are developed for different levels of the outfitting process.

A static model provides the percentage of outfitting work that should be performed

at each stage, and a dynamic model provides a control policy at the execution level,

indicating when to process the outfitting work given the current status of the system.

Both models are stochastic models, which capture the high variability of outfitting

processes.

1.3.1 Methodologies

The main methodologies used in this research include Queueing Networks, Markov

Decision Processes, and Discrete-Event Simulation.

Queueing Networks:

Queueing networks are used to model the aforementioned problems. Queueing net-

work can capture the variability in shipbuilding assuming different distribution pro-

cessing times. Exponential distribution of the block processing time is assumed in

the model due to the great processing time variability. Model 1 uses an open queue-

ing network with Poisson Arrivals to incorporate the variability of job release in

the shipbuilding system. Model 2 and 3 use closed queueing networks to model the

CONWIP system.

Markov Decision Processes:

Markov Decision Processes (MDPs) are used in each model to (1) analyze the system;

and (2) obtain the insights of the optimal control policy structure. MDP can provide

the optimal control policy dynamically according to the system’s state. In particu-

lar, MDP is applied to control the flexible workshop to decide which job should be
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assigned to the flexible workshop dynamically.

Discrete-Event Simulation:

Discrete-event simulation concerns the modeling of a system where the state variables

change instantaneously at separate points in time [23]. Discrete-event simulation is

used to simulate Model 1 and 2, to (1) look into the intuition of the system behave;

and (2) compare the heuristics with the MDP solution.

1.4 Dissertation Outline

This research intends to discover an innovative way to improve shipbuilding pro-

ductivity using operations research. New flexible queueing network models and dy-

namic control heuristics are also developed using Markov Decision Processes and

regression models. Chapter II (model 1) introduces the operational flexibility to

block assembly process and a MDP model is developed for searching the optimal

control policy of the flexible workshop. Chapter III (model 2) extends the flexible

block assembly model from Chapter II, using CONWIP release policy at strategic

level. The problem of how to invest on the capacity of flexibility resource is also inves-

tigated in this model. Chapter IV (model 3) explores an analytical model to improve

the planning and control of ship outfitting process. One static model provides the

planning information of how much outfitting should be processed at each stage, and

one dynamic model seeks an efficient control policy to decide when to perform the

outfitting activities. Finally, Chapter V reviews the important contributions of the

work from both the theoretical and the application perspectives.



CHAPTER II

Dynamic Control of the Flexible Block Assembly Processes

2.1 Introduction

In recent decades, flexibility has been developed as a general concept to enhance

performance in manufacturing and service industries. Flexibility in this research

specifically refers to the use of cross trained labor, enhanced information systems,

advanced logistics, small batch sizes, and multi-purpose machines/tools, all of which

have dramatically improved the robustness of a manufacturing system [19].

When a manufacturing firm is facing issues such as uncertain demand, congestion

in workflow, and work force availability, using flexible machines or workshops will help

to balance the production workload. Fundamental production process paradigms

include craft production, project build and the use of build bays, job shops, batch

production, assembly lines, and continuous flow lines. Shipbuilding provides a very

unusual paradigm incorporating both build bays for some types of ship blocks (basic

ship construction unit) and the use of more automated assembly/flow lines for other

types of blocks. We examine an approach to incorporate flexibility into the block

assembly process of shipbuilding.

9
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2.1.1 The Concept of Manufacturing Flexibility

The development of flexible manufacturing systems began in the early 1970s, and

brought the efficiency of mass production to batch production for multiple products.

According to [30],“With the emergence of new microprocessor technologies, the con-

cept of flexibility in manufacturing has become an important consideration in the

design, operation, and management of manufacturing systems.” It is also noted in

[20] that the flexibility of a manufacturing system indicates its control capacity by

means of an increase in variety, speed, and effectiveness of responses to uncertain

future environmental developments.

Dimensions of Flexibility

Based on the terminology and classification system in [22] and [30], several dimen-

sions of flexibility can be identified at three levels of manufacturing: (1) individual

resource level, (2) shop floor level, and (3) plant level.

Individual Resource Level:

- Machine Flexibility: The various types of operations that the machine can

perform without requiring a prohibitive effort in switching from one operation to

another or large changes in performance outcomes.

- Labor Flexibility: The number and variety of operations or tasks a worker can

execute without incurring high transition penalties or significant changes in perfor-

mance outcomes.

Shop Floor Level:

- Routing Flexibility: A manufacturing systems ability to produce various prod-

ucts by alternate routes through the system without incurring high transition penal-

ties or significant changes in performance outcomes.
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Plant Level:

- Product Flexibility: The ability with which new parts or products can be pro-

duced without high cost or significant changes in performance outcomes.

- Production Flexibility: The number and variety of part or product types that

the manufacturing system can produce without adding costly capital equipment or

increasing significant changes in performance outcomes.

- Mix Flexibility: The number and variety of parts or products that can be

produced without incurring high transition penalties or significant changes in per-

formance.

Flexibility at the individual resource level serves as a basic building block for

flexibilities at the shop floor level and plant level. It was also noted in [22] that

flexibility at the individual resource level tends to be more tactical, and flexibilities

at the shop floor level and plant level tend to be more strategic.

Operational Flexibility

Operational flexibility is the ability of a production operation in a plant depart-

ment or work cell to respond quickly and cost-effectively to changing demand mix,

demand volume, processing time uncertainty, etc. This type of flexibility focuses on

the production planning and control in a manufacturing system. Operational flexi-

bility results from processes that coordinate cross-trained workers, multi-functional

machines, information technology, and effective controls of production lines and work

cells so that the operation is more efficient and responsive in a dynamic, uncertain

environment.

The benefits of operational flexibility include increasing facility utilization and

availability, reducing processing time uncertainty, as well as improving responsiveness

by reducing delay. To introduce the potential benefits of operational flexibility to
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the shipbuilding process, a flexible block assembly process is proposed as a first step

toward the overall flexible shipbuilding management system.

2.1.2 Block Assembly Process with Operational Flexibility

Shipbuilding, traditionally a labor-intensive manufacturing industry, includes sev-

eral types of manufacturing processes, such as the assembly process, out-fitting pro-

cess, painting process, and erection process. Flexibility can be introduced into the

shipbuilding process in many ways. The research presented here focuses on the ship

block assembly manufacturing system, because the block assembly processes usually

require the most consistent work in shipbuilding, and the ship block assembly pro-

cess planning activity is essential to other process planning activities. Operational

flexibility is introduced to the block assembly process via the flexible curved block

workshop, so that flat blocks can be produced either on a flat block panel production

line or in a curved block workshop.

Modularization and Block Type

Blocks are the basic building units for a ship. This modular block construction

strategy has been preferred in shipbuilding since World War II. Shipbuilders follow

this strategy to erect a ship block-by-block until the ship is complete [8]. Each block

is composed of a fixed amount of materials and components, such as steel plates and

sections of various sizes and shapes. The construction of blocks involves scheduling

and routing steel parts, defining operations sequence, assembling parts, outfitting

components on block, and painting.

There are multiple types of blocks; however, they all have either flat or curved

features. Block types are generalized as flat blocks or curved blocks in the presented

model:
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-Flat block: The outer surface of a flat block is a flat plate. There are no projec-

tions from panel under sides which require special jigs. Blocks are to be assembled

on a panel production line.

-Curved block: The outer surface of a curved block is curved. Curved blocks

are formed with curved plates which require the pin jigs to support the block from

underside. Blocks of this type can only be built in a bay-build facility.

Flat blocks are characterized by less complex assembly work content and assem-

bled with actual flow, while the curved features of curved blocks make them more

difficult to build and are assembled with virtual flow. The work content and time

required for curved block assembly is considerably greater than the work content and

amount of time required for flat block assembly.

Block Assembly Processes

Many U.S. shipyards have adopted a process lane concept, in which flat blocks

are assembled on the flat block panel production line with actual flow. Based on

the extensive description in [31], we describe the basic block assembly process as

follows. Firstly, the basic flow pattern for flat blocks begins from the steel plate and

structural sections. The steel goes to the plate shop for initial surface preparation

and coating, followed by cutting the parts. Then the parts may go directly through

the panel line or be palletized for subassembly. Actual flow of the flat blocks on the

panel production line includes stages for assembling the block and outfitting. Finally,

after painting and completing additional outfitting on-block work, the blocks are sent

directly to the building position. Figure 2.1 shows the panel production line for flat

block production.

Curved blocks are usually assembled in bay-build facilities held by pin jigs. Parts

are manufactured in the plate shop, but some of the parts may be sub-assembled
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Figure 2.1: Flat Panel Assembly line

before being sent to the curved block build-bay. Figure 2.2 shows the working con-

ditions in a curved block workshop.

To maintain efficiency and uniform work flows in the process lanes, planning and

process control are essential. The time to complete each block directly affects the

time to complete the whole ship. However, issues such as delays in other schedules,

changes in the requirement, and defects in work will impact the assembly process

and increase the block processing time. The variation of each blocks processing time

will accumulate, resulting in high variation in the time need to complete the final

ship. To reduce both the mean and variation of block processing time when the block

assembly system faces these disruptions, operational flexibility is introduced to the

block assembly process.

If the production planning and control in the ship block manufacturing systems

can be improved by coordinating the flexible curved block facilities, additional ben-

efits may be realized; for example, the curved block facilities can be used more effec-

tively, the bottleneck effect can be reduced, and advanced planning and scheduling

for other process can be improved.
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Figure 2.2: Curved Panel Assembly Line

Proposed Flexible Block Assembly Paradigm

The flexible block assembly processes allow a curved block workshop to dynami-

cally allocate its build bays to the appropriate mix of flat blocks and curved blocks.

The flexible structure is shown in Figure 2.3.

Figure 2.3: Flexible Block Assembly Process Paradigm

Flexibility is only introduced to the curved block build bays since flexibility cannot

be cost effectively introduced to the flat block panel production line. One reason

for this is that the specialization of the production system on the flat block panel

production line requires the flat block bottom for the process of the panel production
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line. Additionally, the semi-automatic welding systems on the panel production line

are more efficient when joined to the flat parts rather than to the curved parts.

To implement a flexible block assembly process, three primary activities may

be required when flexible curved block build bays assemble the flat blocks. First,

parts and the sub-assembled structure of the flat blocks must be delivered to flexible

curved block build bays. Second, it requires the adjustment of the facilities in curved

block build bays, such as by adapting pin jigs to hold the flat block. Finally, cross-

training workers who can operate the assemble process for both curved blocks and

flat blocks are preferred. The flexible curved block build bays are not as efficient as

the flat block production line when assembling flat blocks. Therefore, the problem

formulation discussed later in this chapter assumes that the working time is longer for

the curved block build bays to produce the flat block than for the panel production

line.

Based on this flexible block assembly paradigm, this model examines how incor-

porating a flexible curved block facility can, with appropriate control/scheduling,

increase the efficiency and timeliness of the block assembly process for both flat and

curved blocks while enhancing the robustness of the shipbuilding system.

2.2 The “N” Structure Queueing Network

2.2.1 Model Description

The model is formulated as a flexible queueing system that has two streams of job

arrivals to infinite capacity buffers and two parallel workshops. Workshop 1 is the

panel production line. Workshop 2 is the flexible curved-block build bay. Workshop

1 can process only jobs from the flat block buffer, while workshop 2 can process

jobs from either the flat block buffer or curved block buffer. The processing time for

both workshops are modeled as exponentially distributed. Each queue has an infinite
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capacity buffer. There is holding cost for each block waiting in the system and the

objective is to minimize the long-run average holding cost per unit time (with long-

run average flowtime being a special case given that the holding cost for each block

is one). This type of queueing network with partial flexibility is also called an “N”

structure queueing network.

The model is a stylized abstraction of a real system, and it was designed and cre-

ated under multiple assumptions and limitations in order to make it most accurately

represent the plausible responses of an actual system. The assumption of Poisson

arrivals for block release is based on the reality that block release times can be highly

variable in practice (in part due to design change orders and also timing delays in

the supply chain process). Ship blocks are complex three-dimensional structures, so

the variation across blocks and defects require real time rework, introducing great

processing time variability. An essential assumption in our model is that there is no

preemption or collaboration allowed for a single block. In the block assembly pro-

cess, it will not be cost effective to preempt the unfinished block due to the size and

weight of the block. More importantly, it will increase the processing time and affect

the quality. Collaboration between servers is sometimes allowed in the literature (see

[16]). However, in shipbuilding systems, a particular block can be only assembled

either on the flat block production line or in the curved block workshop. Finally, the

assumption of infinite buffers for both workshops is due to the fact that we cannot

reject any block jobs.

2.2.2 Literature Survey

This “N” queueing network has been studied by [14] and [4]. However, their

attention was restricted to a heavy traffic regime. [14] assumed Poisson input streams

and deterministic service time. [14] analyzed this problem as a Brownian control
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problem and provided a discrete-review policy using the BIGSTEP method. [4]

analyzed the system using the solution of Brownian control problem and provided

a threshold policy which is asymptotically optimal under the heavy traffic limit. [1]

studied “N” structure model with no arrivals, but the problem is much harder with

arrivals. [32] studied a “N” system with many servers, and they focused on the heavy

traffic regime with the reneging of customers. They proved that a cµ type greedy

policy is asymptotically optimal in many-server heavy traffic model. Our purpose

is to achieve better performance in less than heavy traffic, and we are focused on

near-optimal performance from policies that can still be implemented in practice.

Recently, a similar model has been studied by [36] and [7]. [36] studied the

“N” network with preemption and found an optimality sufficient condition for cµ

control policy to be optimal for the “N” network. [7] studied the “N” network model

with upgrades and provided a structural control policy which includes cµ rule and

a threshold policy with optimality conditions. [26] focuses on the “N” queueing

network with reneging and limited buffers. The significant difference between their

models and ours is that it is not allowed preemption or collaboration in our model

due to the constraints of the shipbuilding application. This makes our problem

more complicated and harder to control. Further, our focus is on finding tractable

near-optimal policies that can be applied.

Much work has been done in the field of controlling flexible servers for different

queueing structures. [29] studied a model of two servers and three customer classes,

where servers are trained to serve a shared task (the structure is also called “W”).

They proved the efficiency of the “W” structure, and sufficient optimality conditions

for cµ rule, which prioritizes serving the fixed task before shared task.

Within the “N” structure queueing model there are existing problems still under-
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going research, such as attempting to optimally assign partially flexible servers to

jobs in a parallel queueing system to minimize the holding cost. Additionally, after

much research, it appears the non-preemptive “N” model has not been studied. By

disallowing preemption, the state space must be enlarged. The optimality equations

become greatly complicated, and the structure of an optimal policy changes so that it

becomes optimal to idle in some states for various problem instances. The structural

analysis of the problem becomes extremely difficult. We do not focus on proving

properties of optimal policies; rather we focus on creating an effective heuristic con-

trol policy, which is benchmarked using the numerical solution of the optimal policy

via Markov Decision Process (MDP). Our primary contribution is to design effective

new heuristic policies, and to benchmark the potential impact for a flexible block

assembly process in shipbuilding. These heuristics have been shown to perform very

well; further, they reveal insight into how effective control can be achieved.

2.2.3 Markov Decision Process Formulation

Arrivals of block i follow a Poisson process with rate λi. The processing rate of

workshop j for block type i is exponentially distributed with rate µji. µ12 = 0 since

“N” structure queueing network only has partial flexibility. Qi is the queue capacity

for block type i. Our model will be general in allowing for finite or infinite queue

length at station 1 or 2, respectively. That is, queue i overflows if an arrival sees Qi

jobs already in queue i; however, loss is costless and Qi = ∞ is allowed. hi is the

holding cost for block type i.

Let Xπ(t) = (Xπ
1 (t), Xπ

2 (t)) denote the number of blocks in the system at time

t under policy π, where Xπ
i (t) ∈ {0, 1, 2, ..., Qi} is the number of block type i at

time t. The objective is to find an optimal job assignment policy to control the

flexible workshop in order to minimize the long run average holding cost of the
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system, assuming no preemption and collaboration are allowed. Both workshop 1

and workshop 2 can stay idle even though the queues are not empty. The expected

long-run average holding cost criterion is:

(2.1) Jπ = lim inf
T→∞

1

T
E

[ ∫ T

0

(
h1X

π
1 (t) + h2X

π
2 (t))dt

]
.

Average Cost Per Stage

The state variables of the system are (1) vector X(t) = {X1(t), X2(t)}, the number

of blocks in the system at time t; (2) vector s(t) = {s1(t), s2(t)}, the status of the

workshop at time t. s1(t) is the status of flat block workshop, where s1(t) ∈ {0, 1};

s2(t) is the status of flexible workshop, where s2(t) ∈ {0, 1, 2}. The workshop status

is included as part of the state variable due to the model assumption that there is no

preemption or collaboration allowed. The job cannot be assigned to the workshop if

the workshop is not idle. Moreover, there are circumstances that the optimal control

polity will idle the workshop even when there are jobs waiting in the queue due to

the non-preemption assumption. Therefore, it is necessary to keep track of the status

of both workshops in order to find a complete optimal control policy.

Uniformization is used to formulate the equivalent Controlled Discrete Time

Markov Chain (CDTMC). Let the uniformization factor ψ = λ1 + λ2 + µ11 +

max{µ21, µ22}, where ψ > 0. Let λ′1 = λ1/ψ, λ′2 = λ2/ψ, µ′11 = µ11/ψ, µ′21 =

µ21/ψ, and µ′22 = µ22/ψ denote the discrete time parameters after uniformization

corresponding to the transition probabilities in the embedded DTMC. This im-

plies that the discrete time costs can be defined in terms of the continuous time

costs as h′1 = h1/ψ and h′2 = h2/ψ. The expected instantaneous cost function is

g(x, s) = h′1x1 + h′2x2. The average cost per stage starting from state {x0, s0} is
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defined by

(2.2) Jπ(x0, s0) = lim
N→∞

1

N
E

[N−1∑
k=0

g(xk, sk, µk(xk, sk)) | x0, s0

]
.

Optimality Equation

Let Jk(x, s) denote the optimal k-stage cost to go function, and set the terminal

cost function, J0(x, s) = 0. Event operators are defined to simplify the notation.

There are five event operators: (1) T a1 , the event of arrival of flat block; (2) T a2 , the

event of arrival of curved block; (3) T d11 , the event of the departure of flat block from

flat block workshop; (4) T d21 , the event of the departure of flat block from flexible

workshop; (5) T d22 , the event of the departure of curved block from flexible workshop.

The control action is to minimize the long-run average holding cost. Given any state

{x1, x2, s1, s2}, the event operator will search for the optimal action to minimize the

cost (see the Appendix 2.7.1 at the end of this chapter for all the detailed event

operator definitions with control actions).

Based on the analysis of the system dynamics, the most natural version of the

recursive value function within finite queues is the MDP:

Jk+1(x,s) = g(x,s) + λ′1 · 11{x1<Q1

}T a1Jk(x,s) + λ′2 · 11{x2<Q2

}T a2Jk(x,s)

+ µ′11 · 11{x1≥1,s1=1
}T d11Jk(x,s) + µ′21 · 11{x1≥1,s2=1

}T d21Jk(x,s)

+ µ′22 · 11{x2≥1,s2=2
}T d22Jk(x,s)

+ (1− λ′111{
x1<Q1

} − λ′211{
x2<Q2

} − µ′1111{
x1≥1,s1=1

}
− µ′2111{

x1≥1,s2=1
} − µ′2211{

x2≥1,s2=2
})Jk(x,s).(2.3)

To prevent Jk+1 from going to infinity, the relative value iteration method is

applied to solve the MDP. The relative value iteration (see [5]) uses the corresponding
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differential cost vector h. The same constant is subtracted from the value function for

all states Jk(x, s), so that the difference vector h remains bounded. The differential

cost vector, hk(x, s), is defined as followes:

hk(x, s) = Jk(x, s)− Jk(x0, s0) ∀x, s ,(2.4)

x0, s0 are chosen to be the state {0, 0, 0, 0} as the fixed state (x0, s0). The relative

value function recursion is:

hk+1(x1, x2, s1, s2) = g(x1, x2, s1, s2)

+ λ′1 · 11{x1<Q1

}T a1hk(x1, x2, s1, s2)

+ λ′2 · 11{x2<Q2

}T a2hk(x1, x2, s1, s2)

+ µ′11 · 11{x1≥1,s1=1
}T d11hk(x1, x2, s1, s2)

+ µ′21 · 11{x1≥1,s2=1
}T d21hk(x1, x2, s1, s2)

+ µ′22 · 11{x2≥1,s2=2
}T d22hk(x1, x2, s1, s2)

+ (1− λ′111{
x1<Q1

} − λ′211{
x2<Q2

} − µ′1111{
x1≥1,s1=1

}
− µ′2111{

x1≥1,s2=1
} − µ′2211{

x2≥1,s2=2
})hk(x1, x2, s1, s2)

− (λ′1 · T a1hk(0, 0, 0, 0) + λ′2 · T a2hk(0, 0, 0, 0)),(2.5)

The above algorithm is mathematically equivalent to the value iteration equation

in equation (2.3), but is computationally stable for solving the infinite horizon prob-

lem. It has been shown that the iterates hk(x, s) generated by the relative value

iteration method are bounded in [5]. The relative value iteration is guaranteed to

converge to some vector h(x, s), with the optimal long run average holding cost
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calculated as:

λ∗ = (λ′1 · T a1hk(0, 0, 0, 0) + λ′2 · T a2hk(0, 0, 0, 0)) .(2.6)

2.2.4 Numerical Examples

Table 2.1 presents a set of illustrative numerical examples based on the MDP

model to gain some insights into the structure of the optimal control policy. We

numerically solve the MDP with a convergence criterion of 10−5 and truncate the

buffer capacity at Q1 = Q2 = 50. One reason for the finite but large buffer sizes

here is to reveal the optimal policy structure without the complexity of “boundary

effects” induced when the queues reach Q1 or Q2. Therefore, the policy presented is

only for states numbered from 0 to 30.

Cases λ1 λ2 µ11 µ21 µ22 h1 h2 Scenario
1 1 0.6 1 1 1 2 1 h1 > h2
2 1 0.6 1 1 1 1 2 h1 < h2
3 1 0.2 1 0.5 0.25 1 1 µ11 > µ21, µ21 > µ22

4 1 0.6 1 0.5 1 1 1 µ11 > µ21, µ21 < µ22

5 1 1.5 1 2 1 1 1 µ11 < µ21, µ21 > µ22

6 1 1.5 1 2 4 1 1 µ11 < µ21, µ21 < µ22

Table 2.1: MDP Numerical Test Cases

In cases 1 and 2, the impact of changes in the holding cost on the structure of

optimal control policy are analyzed. Figure 2.4 illustrates that (1) when h1µ21 >

h2µ22, the structure of the optimal control policy is a state-dependent threshold

policy; (2) when h1µ21 < h2µ22, the optimal control policy is a strict priority policy,

which serves to exhaust the curved blocks first before “helping” the dedicated flat

block workshop.

In cases 3, 4, 5, and 6 of Table 2.1, workshop processing time was altered to

measure its impact on the optimal control policy structure. Figure 2.5 presents the
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(a) Case 1: h1µ21 > h2µ22 (b) Case 2: h1µ21 < h2µ22

Figure 2.4: Optimal Control Policy Structure: Impact of Holding Cost

MDP numerical results of cases 3 and 4. When h1µ21 > h2µ22, the structure of the

optimal control policy is the same as case 1, a switching curve depending on system

states. However, when the flexible workshop is not as efficient as the dedicated

flat block workshop, the threshold level of number of flat blocks increased; when

h1µ21 < h2µ22, the optimal policy is a strict priority giving priority to curved blocks.

The result graphs of cases 5 and 6 are not presented since they are consistent with the

results of cases 3 and 4. The only difference between the graphs of cases 5 and 6 and

those of cases 3 and 4 is that there are more idling states for the flexible workshop

in cases 3 and 4, since the flexible workshop is not as efficient as the dedicated flat

block workshop, and the optimal control policy tries to prevent the flexible workshop

from “stealing” jobs from the dedicated flat block workshop.

2.3 Computational Experiments

In this section, we address the question of how to dynamically assign blocks to

the flexible workshop over time. We develop a state-dependent threshold policy
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(a) Case 3: h1µ21 > h2µ22 (b)Case 4: h1µ21 < h2µ22

Figure 2.5: Optimal Control Policy Structure: Impact of Processing Time

and use simulation based optimization to determine the threshold level. A large

benchmarking test-suite is designed and it covers different circumstances to compare

the performance of difference heuristics. The optimal solution from MDP is used as

a benchmark to compare the performance of the heuristics.

2.3.1 Selection of Heuristic Control Policies: The Base Set

Six heuristic policies are tested in this simulation to control the flexible workshop.

The static policies (Fixed-Before-Shared policy, Cµ rule) do not use any informa-

tion regarding the state of the system; some dynamic policies (First Come, First

Served policy, Generalized-Cµ rule) use the historical data; and queue-length-based

dynamic policies (Longest Queue, Optimal Threshold) use real-time information on

the number of jobs in the queue.

First Come, First Served (FCFS): FCFS services the requests in the order that

they arrive, and may also be referred to First in First Out (FIFO).

Fixed-before-shared (FBS): FBS is a strict priority rule in which the flexible work-

shop will keep working on the curved block until there are no curved blocks waiting
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in queue. This is also called the serve to exhaustion or clearing rule.

Cµ rule: The Cµ rule is a strict priority rule in which the queue with larger Cµ

index has higher priority. c is the holding cost, which is denoted by h in this paper.

µ is the processing rate. When h1µ21 < h2µ22, the Cµ rule will give curved block

priority, which works the same as the FBS policy; otherwise, the Cµ rule will give

flat block priority.

Generalized Cµ rule (Gcµ): A job with a larger wcµ index has higher priority. In

our model, w is the waiting time of job in the system.

Longest Queue (LQ): The LQ policy prioritizes the queue with the larger number

of jobs waiting.

FBS policy has proven to be optimal under the condition h1µ21 < h2µ22 for the

“N” queueing network with pre-emption by [36]. This rule was also studied by [10]

in a serial CONWIP system. These studies identified that an effective work-sharing

policy should have the flexible worker do the task that only he/she can perform

before helping other workers. [29] studied the optimality condition of FBS policy

controlling the “W” queueing network, which is similar to the “N”.

Cµ rule has proven to be optimal for a model of no dedicated server and several

parallel stations by [6], and a single-server multi-class queue model studied by [34].

[15] has shown the optimality conditions for Cµ rule controlling the G/G/1 queue

with K different customer classes. However, the Cµ rule is static priority rule and

not stable for some queueing networks.

The GCµ rule is not a Markov policy since it depends on historical information

of the jobs in the queue. In a general single-server multi-class queueing system with

convex delay cost, [33] proved that the GCµ rule is asymptotically optimal in heavy

traffic.
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The LQ policy is widely studied and implemented because it is simple to apply

to any flexible structure and works very well for many systems. LQ was applied in

[19] for controlling both closed and open flexible queueing structures.

To design a policy that is tailored to the “N” structure and works effectively, we

developed a state-dependent threshold policy: the Optimal Threshold policy. Let θ

denote the threshold level and x1 be the number of flat blocks in the system. When

x1 ≤ θ, use FBS policy to control the flexible workshop; otherwise, use the Cµ rule

(see Figure 2.6). The logic behind this rule is that (1) when the number of flat blocks

is smaller than the threshold, using FBS policy can prevent the flexible workshop

from “stealing” flat block from the dedicated workshop and starving the dedicate

workshop; (2) when the number of flat blocks exceeds threshold, using Cµ rule can

improve the cost by by selecting the job that maximize the greedy reward rate at

which it can remove holding cost from the system, which is the intuition contained

in [6]. It will not starve the dedicated flat block workshop if the threshold is set at

an appropriately high level.

Figure 2.6: Threshold Policy
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A challenge for this type of threshold control policy is to find the optimal threshold

level to minimize the long-run average holding cost. In simulation, we searched the

threshold levels to obtain the one optimizing the system. To avoid the need for

a computationally expensive simulation based search, a method using birth-death

processes is developed to approximate the threshold level in next section. Other

heuristics, such as allowing the threshold to be linear with a slope of less than 90

degrees, have been investigated, but these alternatives did not works better.

For the control of workshop 1 (the non-flexible workshop), we used non-idling

policy: (1) if workshop 1 will work on block type 1 as long as the queue of block type

1 is not empty; (2) when both workshop 1 and workshop 2 are idle, first available

block type 1 will be assigned to workshop 1, since workshop 1 is more efficient in our

model.

2.3.2 Stability Analysis

In simulation, the capacity for block job queue are infinity. Therefore, it is impor-

tant to identify the system’s stability region when Qi =∞, the set of model param-

eters for which an optimal policy can yield finite long run average queue lengths. It

can provide insights and a practical design guideline for the heuristic test-suite. By

solving a linear program similar to that of [2] and [29] (see Appendix 2.7.3 in the

end of this chapter ), we identify stability region for arrival rates λ1 and λ2:

λ1 < µ11 + µ21(1− λ2/µ22),(2.7)

λ2 < µ22.(2.8)

In contrast, the stability region of the inflexible system is λ1 < µ11 and λ2 < µ22,

so the new stability region is extended considerably by using the flexible workshop

to allow λ1 to be (1 + µ21/µ11(1− λ2/µ22)) times lager.
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2.3.3 Method of Investigation for the Analysis of the System Congestion and Mix of
Job Types

The systems were simulated using a custom discrete event simulation. Each sim-

ulation run began with an empty system, and ended after 100,000 blocks exited the

line, including a warmup period of 1,000 blocks. Each run was replicated 50 times.

For variance reduction purposes, the common random numbers technique was used

for each policy, and each workshop had its own random number stream for processing

times. At a confidence level of 95%, all standard errors were within 0.5%.

First, the sensitivity of the policies were analyzed with respect to the mix of job

types and congestion factors. Let γ1 and γ2 denote the system congestion factors

of the flat block queue and curved block queue, where γ1 = λ1
µ11+(1−γ2)µ21

, γ2 = λ2
µ22

,

and γ1, γ2 ∈ {0, 1} to keep systems stable. Table 2.2 shows test-suites to test four

different scenarios. When γ2 is low, the flexible workshop has more free capacity to

help the dedicated flat block workshop to produce flat block; when γ2 is high, the

flexible workshop will not have extra capacity to assist. We increased γ1 from 0.1 to

0.9 in each test-suite to test how control policies perform under different congestions

of flat block.

Test-suite µ11 µ21 µ22 h1 h2 γ2 γ1 Scenario
1 1 1.25 1 1 1 0.4 [0.1, 0.9] γ2 is low and h1µ21 > h2µ22

2 1 1.25 1 1 1 0.8 [0.1, 0.9] γ2 is high and h1µ21 > h2µ22

3 1 0.8 1 1 1 0.4 [0.1, 0.9] γ2 is low and h1µ21 < h2µ22

4 1 0.8 1 1 1 0.8 [0.1, 0.9] γ2 is high and h1µ21 < h2µ22

Table 2.2: Test-suite for the Congestion Factor

Figure 2.7 illustrates the simulation results of test-suite 1 and test-suite 2. In these

two test-suites, h1µ21 > h2µ22. Under these circumstances, the Cµ rule gives priority

to flat blocks. From Figure 2.7 (a), we can observe that (1) the inflexible system



30

(a) Test-suite 1 (b) Test-suite 2

Figure 2.7: Analysis of System Congestion Factor when h1µ21 > h2µ22

is unstable when γ1 > 0.5, since the system’s dynamics are beyond the stability

region of inflexible system; (2) Cµ rule has the worst performance of controlling the

flexible system with increasing γ1; and (3) FCFS, FBS Generalized Cµ rule, Longest

Queue (LQ), and Optimal Threshold policy perform similarly when the congestion

of the curved block is low. This demonstrates that, when the flexible workshop

has a large amount of excess/discretionary capacity, various sensible flexible control

policies will have about the same impact on the system performance. Figure 2.7 (b)

shows that the system performance under control of Cµ rule is even worse than the

inflexible system. These findings indicate that a flexible system with a bad control

policy makes the system worse. Optimal Threshold policy has the best performance

in both two test-suites, as shown in Figure 2.7 (a) and (b) that Optimal Threshold

policy has minimal cost .

In test suite 3 (Figure 2.8 (a)) and test suite 4 (Figure 2.8(b)), h1µ21 < h2µ22, and

the performance of Cµ rule and FBS will be the same as Threshold policy. Therefore,

it was only necessary to test FCFS, Optimal Threshold, Generalized Cµ rule, and

Longest Queue (LQ). Figure 2.8(a) shows that the inflexible system is unstable when

γ1 > 0.6. When γ1 = 0.7, λ1 = 1.036, where λ1 > µ11, which is beyond the inflexible
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(a) Test-suite 3 (b) Test-suite 4

Figure 2.8: Analysis of System Congestion Factor when h1µ21 < h2µ22

system stability region. From Figure 2.8 (b), one can observe that (1) when the

congestion of the flat block is low, γ1 < 0.7, the performance of inflexible system

and flexible system are similar, showing that flexibility cannot greatly benefit the

system when the flexible workshop is busy and there are not many flat block jobs;

and (2) Optimal Threshold policy distinctly has the best performance in all cases

demonstrating the robustness of the Optimal Threshold policy.

From the results, it can be concluded that the performance under the Optimal

Threshold policy consistently achieves the minimum cost under all types of environ-

ments in the test-suite. When h1µ21 < h2µ22 and x1 < θ, Optimal Threshold policy

gives priority to the curved block type and thus avoids “stealing” flat block jobs

from the dedicated flat block workshop; when h1µ21 < h2µ22 and x1 > θ, Optimal

Threshold policy gives priority to the flat block, which can help the dedicated flat

block workshop assemble the flat block. These test results also indicate under what

circumstances flexibility can benefit the system, and how control policies impact the

performance of flexibility.
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2.3.4 Benchmarking the Base Set of Heuristic Policies with Respect to Optimality

The MDP is solved numerically in order to benchmark the performance with the

state space is truncated at a level at which the boundary states are only reached

with sufficiently small probability (Q1 = Q2 = 100).

Let Zπ denote the average holding cost under policy π, and λ∗ denote the optimal

cost from the MDP. The percentage optimality gap for policy π, Gπ is defined as

follows:

(2.9) Gπ =
Zπ − λ∗

λ∗
· 100% .

We developed an extensive test suite (see Table 2.3) to compare the performance

of our proposed heuristic with the optimal cost from MDP. This test suite covers

different combinations of holding costs, processing rates, and arrival rates (congestion

factors). There are three test cases for holding cost, i.e. cases of h1 = h2, h1 > h2,

and h1 < h2. Four different combinations of processing rate were designed: (1)

µ11 > µ21 and µ11 > µ22, (2) µ11 < µ21 and µ11 > µ22, (3) µ11 > µ21 and µ11 < µ22,

(4) µ11 < µ21 and µ11 < µ22. The congestion factor γ1 has four cases to capture the

utilization levels of greatest interest: 0.7, 0.8, 0.9, 0.95. γ2 has four cases: 0.3, 0.5,

0.7, and 0.9. This test suite generates 3× 16× (12 + 6 + 8 + 6) = 1536 cases.

Table 2.4 illustrates the performance of policies FCFS, Optimal Threshold, Gen-

eralized Cµ rule, and Longest Queue (LQ). When h1µ21 ≤ h2µ22, FBS, Cµ rule, and

Optimal Threshold have the same control action. Therefore, it is only necessary to

test the Optimal Threshold in these cases. When the system is under low traffic, the

mean optimality gap for Optimal Threshold is only 0.28% in low traffic and 2.61%

in high traffic, by far the lowest. The standard deviation in Table 2.4 shows that (1)
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Holding Cost

3 Cases
h1 = h2 h1 > h2 h1 < h2

h1 1 2 1
h2 1 1 2

Processing Rate

µ11 > µ21, µ11 > µ22
µ11 1
µ21 0.8 0.9 1

12 cases µ22 0.4 0.6 0.8 1

µ11 > µ21, µ11 < µ22
µ11 1
µ21 0.8 0.9 1

6 cases µ22 1.2 1.4

µ11 < µ21, µ11 > µ22
µ11 1
µ21 1.1 1.2

8 cases µ22 0.4 0.6 0.8 1

µ11 < µ21, µ11 < µ22
µ11 1
µ21 1.1 1.2 1.4

6 cases µ22 1.2 1.4
Congestion Factor

16 cases
γ1 0.7 0.8 0.9 0.95
γ2 0.3 0.5 0.7 0.8

Table 2.3: Large Test Suite Design

Optimal Threshold has the smallest standard deviation and the performance is very

stable; (2) LQ is more robust than FCFS. Although LQ and FCFS have a similar

mean of optimality gap, LQ has smaller standard deviation.

Table 2.5 illustrates the performance of the base set of heuristic policies. The mean

optimality gap for the Optimal Threshold policy is 0.43% in low traffic and 3.02% in

high. The results show that Optimal Threshold policy has the best performance in all

circumstances and it is more robust and stable than the other policies. LQ is a very

robust and stable policy as well, but Cµ rule becomes very unstable, especially under

high traffic. Generalized Cµ rule is more stable than Cµ rule since the Generalized

Cµ rule is not a strict priority policy and it is able to adapt based on the job waiting

time in the system. The standard deviation in Table 2.5 shows the robustness of

Optimal Threshold.
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Traffic Policy No. of Cases Mean Std. Dev. Min Max

Low: γ1 < 0.9

Opt.Threshold 360 0.28% 0.88% 0.00% 3.35%
FCFS 360 7.43% 3.93% 0.79% 20.35%

Generalized-cµ 360 5.51% 2.93% 0.58% 13.63%
LQ 360 8.01% 2.74% 1.79% 15.43%

High: γ1 ≥ 0.9

Opt.Threshold 360 2.61% 2.69% 0.00% 10.13%
FCFS 360 10.78% 5.92% 1.43% 27.11%

Generalized-cµ 360 9.46% 4.33% 1.24% 20.84%
LQ 360 14.89% 5.63% 1.93% 25.01%

Table 2.4: Optimality Gap(%) with h1µ21 ≤ h2µ22 (FBS, Cµ rule, and Optimal Threshold policies
are identical)

Traffic Policy No. of Cases Mean Std. Dev. Min Max

Low: γ1 < 0.9

Opt.Threshold 408 0.43% 0.44% 0.00% 2.83%
FCFS 408 5.37% 3.13% 0.77% 18.93%
FBS 408 5.79% 5.61% 0.00% 28.01%
cµ 408 49.76% 36.48% 1.93% 103.87%

Generalized-cµ 408 4.96% 2.83% 0.92% 15.61%
LQ 408 2.74% 2.56% 0.00% 9.03%

High: γ1 ≥ 0.9

Opt.Threshold 408 3.02% 2.21% 0.00% 11.31%
FCFS 408 15.66% 9.78% 3.74% 41.35%
FBS 408 18.79% 12.83% 0.61% 48.72%
cµ 408 85.33% 26.01% 15.74% 105.04%

Generalized-cµ 408 12.97% 6.52% 3.31% 35.49%
LQ 408 6.63% 3.31% 0.40% 17.81%

Table 2.5: Optimality Gap(%) with h1µ21 > h2µ22

2.4 System Analysis for a New Analytical Threshold Policy

The computational results show that the simple Optimal Threshold policy has the

best performance among all heuristics and is nearly optimal. However, searching for

the optimal threshold level is computationally demanding and requires simulation-

based search, which is not easily applicable in the real world. In this section, we

use a birth and death process as a simpler approximation of the flexible network to

develop an Analytical Threshold policy.
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2.4.1 Two Birth-Death Processes Useful for Estimating the Threshold

When the system is controlled under the Threshold policy with threshold level θ,

the flat block queue can be estimated as a continuous time Markov chain birth-death

process as shown in Figure 2.9. The state X1 is the number of flat blocks in system.

When X1 is smaller than the threshold level θ, only flat block workshop will work on

the flat block and the processing rate is µ11. When x1 is larger than the threshold

level θ, both the flat block workshop and the flexible workshop can be applied to

work on the flat block and the processing rate is µ11 + µ21.

Figure 2.9: The birth-death process approximation of the flat block queue subsystem

A different birth-death process is used to approximate the curved block queue.

Let P 2(θ) denote the long run average fraction of time that the flexible workshop

works on curved blocks, which depends on θ and X1. The processing rate for the

curved block queue is P 2(θ)µ22. Therefore, the approximation of the curved block

queue is as shown in Figure 2.10.

Figure 2.10: The birth-death process approximation of the curved block queue subsystem

The birth-death process is applied to estimate the average queue length for both

the flat block queue and curved block queue, and can calculate the long run average

holding cost. Let Xj(t) denote the number of type j blocks in the queue at time t and
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define the steady-state probabilities P j
i , i ≥ 0, as the probability that, on average,

the length of queue j equals i.

Let L1(θ) and L2(θ) denote the average queue length of flat block and curved

block, respectively, and Z(θ) denote the long run average holding cost, which is

defined as follows:

(2.10) Z(θ) = h1L
1(θ) + h2L

2(θ) .

Here, the goal is to find the optimal θ∗ to minimize the long run average holding

cost Z(θ).

2.4.2 Cost Function

The average queue length of the flat block queue L1(θ) can be estimated by using

the steady-state probabilities. From the probability flow balance principle we can

obtain them as follows:

P 1
i = (

λ1

µ11

)i · P 1
0 ,∀i ≤ θ ,(2.11)

P 1
i = (

λ1

µ11

)θ(
λ1

µ11 + µ21

)i−θ · P 1
0 ,∀i > θ .(2.12)

To determine P 1
0 , we use the fact that the P 1

i must sum to 1:

∞∑
i=0

P 1
i = P 1

0 {
θ∑
i=0

(
λ1

µ11

)i +
∞∑

i=θ+1

(
λ1

µ11

)θ · ( λ1

µ11 + µ21

)i−θ} = 1, so

P 1
0 =

1∑θ
i=0( λ1

µ11
)i +

∑∞
i=θ+1( λ1

µ11
)θ · ( λ1

µ11+µ21
)i−θ

,(2.13)

Let ρ1 = λ1
µ11

and ρ2 = λ1
µ11+µ21

. To keep the system stable, λ1 < µ11 + µ21.

Therefore 0 < ρ2 < 1. When µ11 > λ1, 0 < ρ2 < ρ1 < 1; otherwise when µ11 < λ1,

0 < ρ2 < 1 < ρ1. The steady-state probability of state 0 is as follows:
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P 1
0 (θ) = [

1− ρ1
θ+1

1− ρ1

+
ρ1
θρ2

1− ρ2

]−1

=
(1− ρ1)(1− ρ2)

ρθ1(ρ2 − ρ1) + (1− ρ2)
.(2.14)

It is simple to prove that P 1
0 (θ) is a concave function of θ and always larger

than 0 under all circumstances of ρ1, ρ2 and θ, given that those parameters satisfy

the stability conditions (2.7). We use the steady-state probabilities to calculate the

average queue length of flat block queue L1(θ):

L1(θ) =
θ∑
i=0

i · ρ1
i · P 1

0 (θ) +
∞∑

i=θ+1

i · ρ1
θρ2

i−θ · P 1
0 (θ)

= P 1
0 (θ)(

θρ1
θ+2 − (θ + 1) · ρ1

θ+1 + ρ1

(1− ρ1)2
+
−θρ2

2ρ1
θ + (θ + 1)ρ2ρ1

θ

(1− ρ2)2
) .(2.15)

The last equation used the algebraic identity:

N∑
i=1

i · ai =
NaN+1

a− 1
− a(aN − 1)

(a− 1)2
.(2.16)

To calculate the average queue length of curved block queue, L2(θ), the probability

that the flexible workshop works on curved block must be computed:

P 2(θ) = P (x1 ≤ θ)

=
θ∑
i=0

P 1
i

=
θ∑
i=0

i · ρ1
i · P 1

0 (θ)

= P 1
0 (θ)

1− ρ1
θ+1

1− ρ1

.(2.17)
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To keep the curved block queue stable, θ must satisfy: P 2(θ) ·µ22 > λ2. Otherwise

the system will not be stable. Since P 1
0 (θ) > 0 and 1−ρ1θ+1

1−ρ1 > 0, P 2(θ) > 0. P 2(θ) is a

concave function increasing with θ. Therefore, when θ is too small, P 2(θ) · µ22 < λ2,

and the system will be unstable. This evidence explains why the system can be

unstable under the cµ rule.

When P 2(θ) · µ22 > λ2, the curved block queue is similar to the M/M/1 queue.

let ρ3 = λ2
µ22

. The average queue length L2(θ) as follows:

L2(θ) =
λ2

P 2(θ) · µ22 − λ2

=
ρ3

P 2(θ)− ρ3

.(2.18)

The convexity of L1(θ) and L2(θ) depends on the value of θ, ρ1, and ρ2. Generally,

there is no closed form for optimal θ∗ that minimizes the cost function Z(θ). However,

this function can still be used to numerically search the θ∗, which is a much faster

than the simulation search.

2.4.3 The Sub-optimality Gap of the Analytical Threshold

The same test-suite from Table 2.3 with h1µ21 > h2µ22 is used in order to ac-

curately compare to the previous results. This test includes 916 cases in total. We

numerically search for the value of θ∗ that minimizes Z(θ) for each of these test cases,

and for a value of θ∗ is the threshold level for the Analytical Threshold policy. We

test the performance of the Analytical Threshold policy via simulation and compare

them with MDP. Table 2.6 illustrates the performance optimality gap of Analytical

Threshold policy and Optimal Threshold Policy.

As expected, the performance of the Analytical Threshold policy is worse than the

Optimal Threshold Policy. A detailed analysis revealed that the analytical threshold
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level is smaller than the optimal threshold level in simulation. One possible reason

for this is that when we use the birth-death processes to decouple the system, it is

difficult to incorporate the cases when the curved block queue is empty, the flexible

workshop will work on flat blocks without any consideration to the threshold level.

Therefore, the average processing rate for the flat block queue approximated by the

birth-death process is generally smaller than the average processing rate in simu-

lation. With smaller average processing rate, the analytical threshold level will be

lower than the optimal one, to increase the probability that the flat block queue will

be improved by the flexible workshop.

2.5 A Regression Based Approximation of the Threshold Level: The
Regression Threshold Policy

We are not aware of prior literature that used an empirical statistical method

being used to refine a heuristic policy in the context of the control of queues, and we

show that it is possible to obtain additional performance in this way. The Analytical

Threshold policy has already yielded a reasonably good nonlinear functional approx-

imation of the optimal policy. Given that the range of systems captured in our test

suite is representative of the application context, the empirically computed Optimal

Thresholds can be used to tweak the Analytical Threshold policy. The numerical re-

sults show that the analytical threshold levels approximated by birth-death process

are generally smaller than the optimal threshold levels from simulation. Therefore,

we use a linear regression model to achieve a more accurate approximation of the

optimal threshold level.

Let θ̃ denote the analytical threshold level approximated by the birth-death pro-

cess, and θ be the optimal threshold level from simulation. We randomly chose half of

the test cases from Table 2.3 with h1µ21 > h2µ22, which includes 408 cases. ρ1 = λ1
µ11

,
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ρ2 = λ1
µ11+µ21

, and ρ3 = λ2
µ22

, which are defined in previous section.

A second-order regression model is applied in this regression, which included θ̃,

ρ1, ρ2, ρ3, h1/h2, λ1, λ2, µ11, µ21, µ22, h1, h2, and interaction and quadratic terms of

λ1, λ2, µ11, µ21, µ22, h1, h2, as predictors, and θ as the response. Forward Stepwise

Selection is used ([24]) to select the most significant variables from these initial

predictors. θ̃ is the most significant predictor, which is to be expected based on the

good quality of the Analytical Threshold. We also used Matrix Plot to analyze the

relationship between the response and predictors. The plot of θ and θ̃ indicates that

there exists a quadratic term of θ̃ which can improve the fitness of the regression

model. Therefore, we added θ̃2 to the regression equation. The R-squared value is

increased from 88.06% to 91.2% by adding this quadratic term. The forward stepwise

method selected 7 significant predictors out of 34 initial predictors, and the regression

equation is:

θ =2.343 + 1.65θ̃ − 0.0293θ̃2 − 0.54h1/h2 + 12.6λ2h2 − 4.25µ21 − 4λ2h1(2.19)

+ 5.39µ22 − 5.5λ1λ2.

We use the regression equation above to calculate the Regression Threshold level

for each test case in the other half of the large test-suite from Table 2.3. Simulation

is used to calculate the system cost under the control of both Regression Threshold

policy and Analytical Threshold policy. Table 2.6 illustrates the performance opti-

mality gap of Analytical Threshold policy, Regression Threshold policy, and Optimal

Threshold Policy.

The results in Table 2.6 show that the cost of the system under Regression Thresh-

old policy control is very close to the cost of Optimal Threshold policy. There are

two reasons for the good performance of the Regression Threshold policy: (1) the
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Traffic Policy Mean Std. Dev. Min Max

Low: γ1 < 0.9
Optimal Threshold 0.43% 0.44% 0.00% 2.83%

Analytical Threshold 3.06% 1.88% 0.44% 9.75%
Regression Threshold 0.50% 0.49% 0.00% 3.12%

High: γ1 ≥ 0.9
Optimal Threshold 3.02% 2.21% 0.00% 11.31%

Analytical Threshold 6.24% 3.40% 0.71% 19.22%
Regression Threshold 3.55% 3.04% 0.01% 12.57%

Table 2.6: Optimality Gap(%) with h1µ21 > h2µ22

regression equation includes the most significant parameters, and is therefore very

robust and flexible to any changes of the system dynamics; (2) the regression thresh-

old level is frequently larger than the optimal threshold level. We found that the

system is not that sensitive to having a threshold larger than the optimal threshold

level, analogous to the (S,s) policy of inventory theory.

2.6 Conclusion and Future Work

In this chapter, operational flexibility is introduced to the block assembly process

in shipbuilding, which allowed the curved block workshop to build both flat blocks

and curved blocks. This approach assumes that using current shipbuilding technol-

ogy, flexibility can only be built into the curved block build bays since flexibility

cannot be cost effectively introduced in the flat block panel production line. Even

with only partial (one-way) flexibility, the innovation allows for dynamic workload

balancing for improved performance. The flexible block assembly process is formu-

lated as the “N” structure queueing network.

The problem of dynamically controlling the flexible workshop in the “N” queueing

network is investigated to minimize the long run average holding cost. First we

developed a Markov Decision Process (MDP) model for the non-preemptive “N”

queueing network to (1) gain insight of the structure of the optimal control policy,
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(2) provide the optimal cost benchmark for our heuristics. The non-preemptive

feature makes the MDP model complicated. The numerical MDP results suggest

that (1) when h1µ21 > h2µ22, the structure of the optimal control policy is a state-

dependent switching curve; (2) when h1µ21 < h2µ22, the optimal control policy is a

strict priority policy, which is exhausting the curved blocks first before helping the

dedicated flat block workshop to assemble flat blocks.

A simple and robust, state dependent Optimal Threshold policy is developed which

requires simulation-based search. The Optimal Threshold policy depends only on

the number of flat blocks in the system. With θ denoting threshold level, when

x1 ≤ θ, we employ a strict priority for curved block policy to control the flexible

workshop; and when x1 > θ, we are using Cµ rule to control the flexible workshop.

The Optimal Threshold policy is compared with other heuristic control policies via

simulation, including FCFS, FBS, Cµ rule, Generalized Cµ rule, and Longest Queue

(LQ) control policies. The extensive test suite shows that (1) this threshold policy

performs the best amount all the heuristic policies we tested; (2) the average holding

cost is very closed to the optimal cost calculated by the MDP model.

Although the Optimal Threshold policy simply depends only on the number of

flat blocks in the system, finding the threshold level is essential and challenging.

We use two birth-death processes to develop an Analytical Threshold policy, which

is subsequently employed to develop a regression model to compute a Regression

Threshold policy. The regression equation is based on a large test-suite and results

shows that the approximation of the optimal threshold level is promising as a way

to get very close to the optimal policy. This approach uses a great deal of pre-

computation, but it is computationally easy to apply in real time.

It remains as future research to identify if the approach of integrating analytical
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approximations is valuable not only in open flexible parallel open queueing networks,

but also in a wide ranges of systems, including closed flexible parallel queueing net-

works and tandem queueing networks.

2.7 Appendix

2.7.1 Definition of Event Operators

Event operator T a1 : Arrival of flat block with probability λ′1
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T a1Jk(x1, x2, s1, s2) =

11{
x1=0,x2=0,s1=0,s2=0

}min
{
Jk(x1 + 1, x2, s1 = 1, s2 = 0), Jk(x1 + 1, x2, s1 = 0, s2 = 1),

Jk(x1 + 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1≥1,x2=0,s1=0,s2=0

}min
{
Jk(x1 + 1, x2, s1 = 1, s2 = 1), Jk(x1 + 1, x2, s1 = 1, s2 = 0),

Jk(x1 + 1, x2, s1 = 0, s2 = 1), Jk(x1 + 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1=0,x2≥1,s1=0,s2=0

}min
{
Jk(x1 + 1, x2, s1 = 1, s2 = 2), Jk(x1 + 1, x2, s1 = 1, s2 = 0),

Jk(x1 + 1, x2, s1 = 0, s2 = 1), Jk(x1 + 1, x2, s1 = 0, s2 = 2), Jk(x1 + 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1≥1,x2≥1,s1=0,s2=0

}min
{
Jk(x1 + 1, x2, s1 = 1, s2 = 1), Jk(x1 + 1, x2, s1 = 1, s2 = 2),

Jk(x1 + 1, x2, s1 = 1, s2 = 0), Jk(x1 + 1, x2, s1 = 0, s2 = 1), Jk(x1 + 1, x2, s1 = 0, s2 = 2),

Jk(x1 + 1, x2, s1 = 0, s2 = 0)
}

+ 11{
s1=0,s2 6=0

}min
{
Jk(x1 + 1, x2, s1 = 1, s2), Jk(x1 + 1, x2, s1 = 0, s2)

}
+ 11{

x2=0,s1 6=0,s2=0
}min

{
Jk(x1 + 1, x2, s1, s2 = 1), Jk(x1 + 1, x2, s1, s2 = 0)

}
+ 11{

x2≥1,s1 6=0,s2=0
}min

{
Jk(x1 + 1, x2, s1, s2 = 1), Jk(x1 + 1, x2, s1, s2 = 2), Jk(x1 + 1, x2, s1, s2 = 0)

}
+ 11{

s1 6=0,s2 6=0
}Jk(x1 + 1, x2, s1, s2)

(2.20)
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Event operator T a2 : Arrival of curved block with probability λ′2

T a2Jk(x1, x2, s1, s2) =

11{
x1=0,s1=0,s2=0

}min
{
Jk(x1, x2 + 1, s1 = 0, s2 = 2), Jk(x1, x2 + 1, s1 = 0, s2 = 0)

}
+ 11{

x1=1,s1=0,s2=0
}min

{
Jk(x1, x2 + 1, s1 = 1, s2 = 2), Jk(x1, x2 + 1, s1 = 1, s2 = 0),

Jk(x1, x2 + 1, s1 = 0, s2 = 1), Jk(x1, x2 + 1, s1 = 0, s2 = 2), Jk(x1, x2 + 1, s1 = 0, s2 = 0)
}

+ 11{
x1≥2,s1=0,s2=0

}min
{
Jk(x1, x2 + 1, s1 = 1, s2 = 1), Jk(x1, x2 + 1, s1 = 1, s2 = 2),

Jk(x1, x2 + 1, s1 = 1, s2 = 0), Jk(x1, x2 + 1, s1 = 0, s2 = 1), Jk(x1, x2 + 1, s1 = 0, s2 = 2),

Jk(x1, x2 + 1, s1 = 0, s2 = 0)
}

+ 11{
x1=1,s1=1,s2=0

}min
{
Jk(x1, x2 + 1, s1 = 1, s2 = 2), Jk(x1, x2 + 1, s1 = 1, s2 = 0)

}
+ 11{

x1≥2,s1=1,s2=0
}min

{
Jk(x1, x2 + 1, s1 = 1, s2 = 1), Jk(x1, x2 + 1, s1 = 1, s2 = 2),

Jk(x1, x2 + 1, s1 = 1, s2 = 0)
}

+ 11{
x1=1,s1=0,s2=1

}min
{
Jk(x1, x2 + 1, s1 = 0, s2 = 1)

}
+ 11{

x1≥2,s1=0,s2=1
}min

{
Jk(x1, x2 + 1, s1 = 1, s2 = 1), Jk(x1, x2 + 1, s1 = 0, s2 = 1)

}
+ 11{

x1=0,s1=0,s2=2
}min

{
Jk(x1, x2 + 1, s1 = 0, s2 = 2)

}
+ 11{

x1≥1,s1=0,s2=2
}min

{
Jk(x1, x2 + 1, s1 = 1, s2 = 2), Jk(x1, x2 + 1, s1 = 0, s2 = 2)

}
+ 11{

s1 6=0,s2 6=0
}Jk(x1, x2 + 1, s1, s2)

(2.21)
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Event operator T d11 : Departure of flat block from workshop 1 with probability

µ′11

T d11Jk(x1, x2, s1, s2) =

11{
x1=1,x2=0,s1=1,s2=0

}Jk(x1 − 1, x2, s1 = 0, s2 = 0)

+ 11{
x1=2,x2=0,s1=1,s2=0

}min
{
Jk(x1 − 1, x2, s1 = 1, s2 = 0), Jk(x1 − 1, x2, s1 = 0, s2 = 1),

Jk(x1 − 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1≥3,x2=0,s1=1,s2=0

}min
{
Jk(x1 − 1, x2, s1 = 1, s2 = 1), Jk(x1 − 1, x2, s1 = 1, s2 = 0),

Jk(x1 − 1, x2, s1 = 0, s2 = 1), Jk(x1 − 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1=1,x2≥1,s1=1,s2=0

}min
{
Jk(x1 − 1, x2, s1 = 0, s2 = 2), Jk(x1 − 1, x2, s1 = 0, s2 = 0)

}
+ 11{

x1=2,x2≥1,s1=1,s2=0
}min

{
Jk(x1 − 1, x2, s1 = 1, s2 = 2), Jk(x1 − 1, x2, s1 = 1, s2 = 0),

Jk(x1 − 1, x2, s1 = 0, s2 = 1), Jk(x1 − 1, x2, s1 = 0, s2 = 2), Jk(x1 − 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1≥3,x2≥1,s1=1,s2=0

}min
{
Jk(x1 − 1, x2, s1 = 1, s2 = 1), Jk(x1 − 1, x2, s1 = 1, s2 = 2),

Jk(x1 − 1, x2, s1 = 1, s2 = 0), Jk(x1 − 1, x2, s1 = 0, s2 = 1), Jk(x1 − 1, x2, s1 = 0, s2 = 2),

Jk(x1 − 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1=2,s1=1,s2=1

}Jk(x1 − 1, x2, s1 = 0, s2 = 1)

+ 11{
x1≥3,s1=1,s2=1

}min
{
Jk(x1 − 1, x2, s1 = 1, s2 = 1), Jk(x1 − 1, x2, s1 = 0, s2 = 1)

}
+ 11{

x1=1,x2≥1,s1=1,s2=2
}Jk(x1 − 1, x2, s1 = 0, s2 = 2)

+ 11{
x1≥2,x2≥1,s1=1,s2=2

}min
{
Jk(x1 − 1, x2, s1 = 1, s2 = 2), Jk(x1 − 1, x2, s1 = 0, s2 = 2)

}
(2.22)
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Event operator T d21 : Departure of flat block from workshop 2 with probability

µ′21

T d21Jk(x1, x2, s1, s2) =

11{
x1=1,x2=0,s1=0,s2=1

}Jk(x1 − 1, x2, s1 = 0, s2 = 0)

+ 11{
x1=2,x2=0,s1=0,s2=1

}min
{
Jk(x1 − 1, x2, s1 = 1, s2 = 0), Jk(x1 − 1, x2, s1 = 0, s2 = 1),

Jk(x1 − 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1≥3,x2=0,s1=0,s2=1

}min
{
Jk(x1 − 1, x2, s1 = 1, s2 = 1), Jk(x1 − 1, x2, s1 = 1, s2 = 0),

Jk(x1 − 1, x2, s1 = 0, s2 = 1), Jk(x1 − 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1=1,x2≥1,s1=0,s2=1

}min
{
Jk(x1 − 1, x2, s1 = 0, s2 = 2), Jk(x1 − 1, x2, s1 = 0, s2 = 0)

}
+ 11{

x1=2,x2≥1,s1=0,s2=1
}min

{
Jk(x1 − 1, x2, s1 = 1, s2 = 2), Jk(x1 − 1, x2, s1 = 1, s2 = 0),

Jk(x1 − 1, x2, s1 = 0, s2 = 1), Jk(x1 − 1, x2, s1 = 0, s2 = 2), Jk(x1 − 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1≥3,x2≥1,s1=0,s2=1

}min
{
Jk(x1 − 1, x2, s1 = 1, s2 = 1), Jk(x1 − 1, x2, s1 = 1, s2 = 2),

Jk(x1 − 1, x2, s1 = 1, s2 = 0), Jk(x1 − 1, x2, s1 = 0, s2 = 1), Jk(x1 − 1, x2, s1 = 0, s2 = 2),

Jk(x1 − 1, x2, s1 = 0, s2 = 0)
}

+ 11{
x1=2,x2=0,s1=1,s2=1

}Jk(x1 − 1, x2, s1 = 1, s2 = 0)

+ 11{
x1≥3,x2=0,s1=1,s2=1

}min
{
Jk(x1 − 1, x2, s1 = 1, s2 = 1), Jk(x1 − 1, x2, s1 = 1, s2 = 0)

}
+ 11{

x1=2,x2≥1,s1=1,s2=1
}min

{
Jk(x1 − 1, x2, s1 = 1, s2 = 2), Jk(x1 − 1, x2, s1 = 1, s2 = 0)

}
+ 11{

x1≥3,x2≥1,s1=1,s2=1
}min

{
Jk(x1 − 1, x2, s1 = 1, s2 = 1), Jk(x1 − 1, x2, s1 = 1, s2 = 2),

Jk(x1 − 1, x2, s1 = 1, s2 = 0)
}

(2.23)
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Event operator T d22 : Departure of curved block from workshop 2 with probability

µ′22

T d22Jk(x1, x2, s1, s2) =

11{
x1=0,x2=1,s1=0,s2=2

}Jk(x1, x2 − 1, s1 = 0, s2 = 0)

+ 11{
x1=1,x2=1,s1=0,s2=2

}min
{
Jk(x1, x2 − 1, s1 = 1, s2 = 0), Jk(x1, x2 − 1, s1 = 0, s2 = 1),

Jk(x1, x2 − 1, s1 = 0, s2 = 0)
}

+ 11{
x1≥2,x2=1,s1=0,s2=2

}min
{
Jk(x1, x2 − 1, s1 = 1, s2 = 1), Jk(x1, x2 − 1, s1 = 1, s2 = 0),

Jk(x1, x2 − 1, s1 = 0, s2 = 1), Jk(x1, x2 − 1, s1 = 0, s2 = 0)
}

+ 11{
x1=0,x2≥2,s1=0,s2=2

}min
{
Jk(x1, x2 − 1, s1 = 0, s2 = 2), Jk(x1, x2 − 1, s1 = 0, s2 = 0)

}
+ 11{

x1=1,x2≥2,s1=0,s2=2
}min

{
Jk(x1, x2 − 1, s1 = 1, s2 = 2), Jk(x1, x2 − 1, s1 = 1, s2 = 0),

Jk(x1, x2 − 1, s1 = 0, s2 = 1), Jk(x1, x2 − 1, s1 = 0, s2 = 2), Jk(x1, x2 − 1, s1 = 0, s2 = 0)
}

+ 11{
x1≥2,x2≥2,s1=0,s2=2

}min
{
Jk(x1, x2 − 1, s1 = 1, s2 = 1), Jk(x1, x2 − 1, s1 = 1, s2 = 2),

Jk(x1, x2 − 1, s1 = 1, s2 = 0), Jk(x1, x2 − 1, s1 = 0, s2 = 1), Jk(x1, x2 − 1, s1 = 0, s2 = 2),

Jk(x1, x2 − 1, s1 = 0, s2 = 0)
}

+ 11{
x1=1,x2=1,s1=1,s2=2

}Jk(x1, x2 − 1, s1 = 1, s2 = 0)

+ 11{
x1≥2,x2=1,s1=1,s2=2

}min
{
Jk(x1, x2 − 1, s1 = 1, s2 = 1), Jk(x1, x2 − 1, s1 = 1, s2 = 0)

}
+ 11{

x1=1,x2≥2,s1=1,s2=2
}min

{
Jk(x1, x2 − 1, s1 = 1, s2 = 2), Jk(x1, x2 − 1, s1 = 1, s2 = 0)

}
+ 11{

x1≥2,x2≥2,s1=1,s2=2
}min

{
Jk(x1, x2 − 1, s1 = 1, s2 = 1), Jk(x1, x2 − 1, s1 = 1, s2 = 2),

Jk(x1, x2 − 1, s1 = 1, s2 = 0)
}
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2.7.2 Relative Value Iteration Equations

We define hk(x, s), the differential cost vector:

hk(x, s) = Jk(x, s)− Jk(x0, s0) ∀x, s.,(2.24)

where x0, s0 is chosen to be the state {0, 0, 0, 0} as the fixed state (x0, s0). The

relative value function recursion is:

hk+1(x1, x2, s1, s2) = g(x1, x2, s1, s2)

+ λ′1 · 11{x1<Q1

}T a1hk(x1, x2, s1, s2)

+ λ′2 · 11{x2<Q2

}T a2hk(x1, x2, s1, s2)

+ µ′11 · 11{x1≥1,s1=1
}T d11hk(x1, x2, s1, s2)

+ µ′21 · 11{x1≥1,s2=1
}T d21hk(x1, x2, s1, s2)

+ µ′22 · 11{x2≥1,s2=2
}T d22hk(x1, x2, s1, s2)

+ (1− λ′111{
x1<Q1

} − λ′211{
x2<Q2

} − µ′1111{
x1≥1,s1=1

}
− µ′2111{

x1≥1,s2=1
} − µ′2211{

x2≥1,s2=2
})hk(x1, x2, s1, s2)

− (λ′1 · T a1hk(0, 0, 0, 0) + λ′2 · T a2hk(0, 0, 0, 0)),(2.25)

The above algorithm is mathematically equivalent to the value iteration equation

in equation (2.3), but is computationally stable for solving the infinite horizon prob-

lem. It has been shown that the iterates hk(x, s) generated by the relative value

iteration method are bounded in [5]. The relative value iteration is guaranteed to

converge to some vector h(x, s), with the optimal long run average holding cost

calculated as:

λ∗ = (λ′1 · T a1hk(0, 0, 0, 0) + λ′2 · T a2hk(0, 0, 0, 0)).(2.26)



50

2.7.3 Proof of the Stability Region

We use a linear programming model to analyze the system stability. A similar

allocation LP model has been studied by [2] and [29]. Let yij denote the long run

proportion of time workshop i spends working on job j. Ii is the long run proportion

of time that workshop i is idle. We develop the LP model to find the allocation rate

of yij to maximize the minimum idle time among all the workshops. The general LP

formulation is as follows:

MaxMin{Ii}(2.27)

s.t.

λj <
∑
i

yijµij ∀j(2.28)

Ii = 1−
∑
j

yij ∀i(2.29)

Ii ≥ 0 ∀i(2.30)

yij ≥ 0 ∀i, j.(2.31)

Equation (2.29) is the system stability constraint. Equation (2.30) represents the

relationship between yij and Ii. In our model, we have two workshops,i = 1, 2, and

two job types, j = 1, 2. Specifically,y12 = 0 in our model. As long as there is existing

the feasible solution for I1 and I2, the system should remain stable.

Proof. First, the stability region for the curved block queue is λ2 < µ22, since the

flexible workshop is the only workshop for curved block queue.

Second, to prove the stability region for the flat block queue, we considerate two

cases:

(1) When µ11 > µ21, the optimal solution solved by LP will make full use of workshop

1. Under this condition, when λ1 < µ11 , the system is stable. The corresponding
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optimal solution for LP is y11 = λ1
µ11

, y21 = 0, and y22 = λ2
µ22

. When λ1 > µ11, the

optimal solution is y11 = 1, y21 = λ1−µ11
µ21

, and y22 = λ2
µ22

. The system is stable if, and

only if, y21 +y22 ≤ 1. Thus we have λ1−µ11
µ21

+ λ2
µ22
≤ 1. The stable region for flat block

queue is λ1 < µ11 + µ21(1− λ2/µ22), when µ11 > µ21.

(2) When µ11 < µ21, the optimal solution solved by LP is y11 = λ1−y21µ21
µ11

, y21 =

1 − λ2
µ22

, and y22 = λ2
µ22

. The system is stable if, and only if, y11 ≤ 1. Thus we have

λ1−y21µ21
µ11

< 1. The stable region for flat block queue is λ1 < µ11 + µ21(1 − λ2/µ22),

when µ11 < µ21. Therefore, the stability region for the flat block queue is λ1 <

µ11 + µ21(1− λ2/µ22).



CHAPTER III

Capacity Planning and Control of Flexible Hull
Construction Processes under CONWIP Discipline

3.1 Introduction

Chapter II introduced operational flexibility to the block assembly process in

ship hull construction, which is modeled as an “N” structure queueing networks.

This model provides an effective control policy for operating the flexible workshop

to minimize the average holding cost at execution level. In this chapter, Constant

Work In Process (CONWIP) release policy is introduced at the strategic level of the

flexible block assembly process. The reason for introducing CONWIP release policy

to shipbuilding is that CONWIP policy is an effective and robust release policy with

easier implementation than current shipbuilding planning policy. This CONWIP

model is also used to measure the improvement of system performance by flexibility.

Two research problems are targeted in the model: (1) how to control the flexible

workshop to maximize the system throughput under CONWIP release policy; and

(2) how to plan the capacity of flexible resource. To introduce a new planning policy

to the hull construction, current hull construction planning methodology will be

reviewed first in the next section.

52
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3.1.1 Methodology Behind Hull Construction Planning in Shipbuilding

As mentioned in Chapter 2, hull construction has been using the modular block

construction strategy since World War II. The processes of hull construction shown in

Figure 3.1 includes part fabrication, part assembly, sub-block assembly, semi-block

assembly, block assembly, grand-block joining and final hull erection. The main

work flow consists of part fabrication, sub-block assembly, block assembly, and final

hull erection. However, processes such as part assembly, semi-block assembly, and

grand-block joining provide useful planning alternatives.

Figure 3.1: Hull Planning Steps

The hull construction planning is based on its processes. The current most com-

monly used scheduling approaches in shipbuilding are Manufacturing Resource Plan-

ning (MRP II or Push System) and network scheduling (critical path method). Given

hull construction due date and block sequence, the schedules and due date is broken

down level by level, down to part fabrication, which is the beginning of the process.
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MRP system and network scheduling methods have been widely used in all types

of industries and are being updated and improved by Operations Management and

Industrial Engineering researchers. However, some fundamental difficulties caused

by the MRP System are extremely resolve or improve. These problems include: (1)

Every step in the process must be given a “planned time”, which is hard to predict.

Plans fall apart without simple real-time remedies; (2) The budgeted time for every

step in the process must be given “slack time” to accommodate variability, which will

create wasted time when things go well or just average; (3) Waste and inefficiency is

built into this approach. As compared to the MRP planning methodology, CONWIP

release policy has more robustness in the jobs release times and easier control of the

system.

3.1.2 CONWIP Release Policy

Constant Work In Process (CONWIP) is a hybrid of push-and-pull type systems,

which attempts to regulate Work In Process (WIP) in the system. In a CONWIP

system, the departing jobs send production cards back to the beginning of the line

to authorize release of new jobs and it results in a WIP level that is nearly constant

[17]. This policy is also known as the Closed Loop Release policy [11].

From a modeling perspective, a CONWIP system can be modeled as a closed

queueing network. In contrast, a MRP system can be modeled as on open queueing

network. In MRP systems, job release depends on the material requirement plan

without any feedback from the system status. Therefore, the number of jobs can

vary over time in a MRP system.

Compared to MRP system, the benefits of using CONWIP are:

1. It is easier to implement and provides more robust control.

2. There is less congestion in production flow.
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3. It has greater predictability since it keeps constant work in process.

Therefore, the benefits of using CONWIP in shipbuilding process include:

1. It makes the current planning system easier to control, especially for the limited

capacity and storage space in shipyard.

2. It can be applied to almost every level of ship production scheduling. For instance,

a CONWIP policy can be used to control a entire shipyard and keep a constant

number of ships under construction, or it can be used to keep a workshop with a

constant number of blocks under construction.

3. CONWIP can increase the efficiency of shipbuilding. It has been showed that for

the same Work in Process, CONWIP has higher throughput than MRP.

The remaining question is at which level to introduce the CONWIP control policy

in the shipbuilding process and how to plan the number of jobs in the system as the

CONWIP level.

3.1.3 The CONWIP Model of Shipbuilding

In this section, a shipbuilding system is developed using the CONWIP planning

policy. In ship hull construction, the block is the prime zone for all planning and

scheduling. Therefore, the CONWIP release policy is introduced at the block assem-

bly level, i.e., a constant number of block jobs is maintained at the execution level.

The flexible block assembly system from chapter 2 is also maintained in this model

in order to evaluate the benefits of flexibility. A dry dock workstation is added at

the execution level of the model. Therefore, this model includes all major processes

in hull construction.

Figure 3.2 illustrates the flexible shipbuilding CONWIP system model. Ship in-

formation including number of blocks, block type, and hull erection sequence are

provided. In this model, a one dimensional block erection sequence is assumed for
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the process in the final drydock station. A two or three dimensional block erection

sequence will be studied in the future research. At the strategic level, CONWIP

release policy is applied to release jobs.

Figure 3.2: Flexible Shipbuilding CONWIP Model

In the execution level, there are two processes: (1) block assembly process, (2)

hull erection process. In the block assembly process, there are two types of block

workshops: a flat block workshop (a panel production line) and a flexible curved block

workshop (a curved block build bay). The flexible block assembly processes allow

a curved block workshop to dynamically allocate its build bay to the appropriate

mix of flat blocks and curved blocks. In the hull erection process, there is a block

buffer and a dry dock. The hull erection process follows the block erection sequence

constraint. If the adjacent block is not available in the block buffer, the dry dock

will be idle.

This CONWIP shipbuilding system is formulated as a closed flexible queueing
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networks with three types of jobs: (1) flat block jobs in the block assembly process,

(2) curved block jobs in the block assembly process, and (3) blocks in the final hull

erection. There are three distinct workshops: (1) the flat block workshop, (2) the

flexible curved block workshop, and (3) the final dry dock workshop. The processing

time of these three workshops are exponentially distributed. This CONWIP model

holds the same assumption as in the “N” structure model in Chapter II: (1) expo-

nential processing time is assumed for each work station; (2) there is no preemption

allowed for any block; and (3) there is no collaboration between workshops.

3.2 Control of Flexible Workshop under CONWIP Discipline: A Simu-
lation Model

3.2.1 Simulation Model

This CONWIP model described above is a very complex model. This is because

the drydock workshop needs to follow the block sequence constraint, which make

it very difficult to model this system mathematically, and also hard to develop an

effective policy to control the flexible workshop. Therefore, a simulation model is

developed to address these problems, which is presented in Figure 3.3.

Figure 3.3: CONWIP Shipbuilding Simulation Model

The CONWIP level K is the number of blocks in the system. N is the total

number of blocks for a ship. P1 is the percentage of flat blocks in a ship, and P2 is
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the percentage of curved blocks in a ship. Let block 1 and block 2 denote flat block

and curved block respectively. Workshop 1 (W1) represents the flat block workshop,

workshop 2 (W2) indicates the flexible curved block workshop, and workshop 3 (W3)

denotes the final dry dock workshop. µjk is the processing rate for block j in workshop

k. The same processing rate at workshop 3 is assumed for both flat blocks and curved

blocks, i.e., µ31 = µ32 = µ3. Workshop 3 must to follow the block sequence, which is

given at beginning of the simulation.

A major concern investigated here is how to control the flexible workshop while

achieving the three following objectives: (1) reducing ship completion time, (2) im-

proving the utilization of drydock, and (3) reducing block buffer size. These three

objectives may have positive or negative correlations. However, in this model, we

only presents how CONWIP level and control of flexibility impact on these three

objectives without analyzing the insight correlations between these objectives.

Each shipyard works on several ships simultaneously and has only a finite amount

of resources available; therefore, it is essential that ship completion time be as brief

as possible to meet customer demand. This is why reducing ship completion time,

which is often also referred to as “makespan”, is a main objective of this model.

Improving the utilization of drydock, which is equivalent to reducing the idle time of

the drydock, is also essential to maintain while seeking control. In ship production

scheduling, drydocks often represent the primary choke point to delivering a ship.

Planned construction schedules are crucial since shipyards generally have a backlog

of ships waiting for a drydock. The time that each ship spends in drydock must

be minimized as much as possible to ensure on-time deliveries and to maximize the

throughput of work in shipyards. The final objective, reducing the block buffer size

before the final hull erection, is also of great importance since the final hull erection
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follows a master block erection sequence, and requires a pre-erection area to avoid

inserting blocks and to maintain stability in the erection process [35]. Flexibility

in the block assembly process may reduce the block buffer size and stabilize the

hull erection process, but it is essential to simultaneously maintain these specified

objectives.

In the next section, three heuristics are introduced to the simulation model to

control the flexible workshop.

Heuristics

Three heuristics to control the flexible curved workshop are examined in the sim-

ulation model: (1) First Come, First Served (FCFS); (2) Longest Queue (LQ); and

(3) Shortest Processing Time First rule (SPT).

First Come, First Served (FCFS) is a service policy by where the requests of

customers or clients are attended to in the order that they arrived, without other

biases or preferences. In this simulation model, the flexible workshop under control

of FCFS will select the block which arrives the block queue first.

Longest Queue (LQ) is a typically high-performing policy. LQ will select the job

at the head of the queue that has the largest number of jobs. The LQ policy has

been widely used and researched since it works well for most systems and is simple

to implement into any flexible structure. In this model, the flexible workshop under

control of LQ policy will select the block from either the flat block queue or curved

block queue which has the largest number of blocks waiting in the system.

Shortest Processing Time First rule (SPT) is a control policy that selects the

job with the shortest processing time regardless of all other aspects. This type of

selection reduces the total number of jobs in queue as quickly as possible. Some

research has shown that SPT rule is optimal for minimizing the makespan for single
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machine [28].

3.2.2 Simulation Structure

Discrete-event simulation is used to compute and compare the performance of

the above heuristics. Discrete-event simulation considers the modeling of a system

in which the state variables change instantaneously at discrete, aperiodic points

in time. A C-based simulation toolkit, Simlib, is incorporated for efficiency [23]

because it facilitates filing and removing records from lists, processing event lists,

and computing discrete-time statistics on variables of interest.

Fundamental Aspects of the Simulation Structure

This simulation model consists of seven queues and four events. Seven queues

include the information of the block sequence, three workshops, and three block

buffer before each workshop. Since there are three types of jobs: (1) build flat blocks,

(2) build curved blocks, and (3) block erection, three events will occur due to the

departure of each job. Another event is to end simulation, which is predetermined.

Figure 3.4 illustrates the structure of the simulation.

1. List of Queues:

(1) LIST-QUEUE-RELEASE: This queue stores the block information including the

total number of blocks, block type, and block erection sequence. The fraction of flat

and curved blocks are P1 and P2 respectively.

(2) LIST-QUEUE-FLAT: This queue stores the flat block jobs which have been re-

leased to the system.

(3) LIST-WORKSHOP-FLAT: This queue represents the flat block workshop, and

has a capacity of one. The status of this queue is either one (processing flat block),

or zero (idle). A non-idling policy is applied here to control the flat block workshop,
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Figure 3.4: Simulation Structure

i.e., never idle flat block workshop as long as the flat block queue is not empty.

(4) LIST-QUEUE-CURVE: This queue stores the curved block jobs that have been

released to the system.

(5) LIST-WORKSHOP-CURVED: This queue represents the flexible curved block

workshop which has a capacity of one. The status of this queue is either one (pro-

cessing either flat block or curved block), or zero (idle). The processing time differs

when the flexible curved block workshop is working on different type of block. The

heuristics listed in the previous section will be applied here to control the flexible

workshop to select the block.

(6) LIST-QUEUE-BOCK-BUFFER: This queue stores the finished blocks awaiting

final hull erection, and ranks jobs based on the erection sequence.
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(7) LIST-WORKSHOP-ERECTION: This queue represents the drydock workshop

which has capacity of one. The status of this queue is either one or zero. This

workshop needs to follow the block sequence. If the required block is not available

in the block buffer, the drydock workshop will be idle.

2. List of Events:

(1) EVENT-DEPARTURE-F: Flat block workshop finishes assembling a flat block.

(2) EVENT-DEPARTURE-C: Flexible curved block workshop finishes assembling

either a curved block or flat block.

(3) EVENT-DEPARTURE-E: A block has been erected in the dry dock. This event

will trigger to release next block to the system.

(4) EVENT-END-SIMULATION: The simulation is complete.

The major steps and logics in each event will be introduced in the next section.

Simulation Demonstration

The simulation starts with initializing the ”Simlib” toolkit and input the ship

design information. N blocks are generated using a uniform random number gen-

erator. These blocks are ordered based on sequence ID and stored in the LIST-

QUEUE-RELEASE. When the system commences, blocks are released to either

LIST-QUEUE-FLAT or LIST-QUEUE-CURVE, which controlled by the CONWIP

level. A block is released if and only if WIP is less than the CONWIP level.

The detailed logic in each event are as follows:

(1) Block Finished by Flat Block Workshop (EVENT-DEPARTURE-F)

Figure 3.5 illustrates the departure process from the flat block workshop. When a

block is finished by the flat block workshop, it is removed from the LIST-WORKSHOP-

FLAT, delivered to the erection workshop directly if the erection workshop is idle and

the block satisfies the block erection sequence constraint. Otherwise, it is inserted



63

in the LIST-QUEUE-BLOCK-BUFFER based on its sequence ID. Subsequently, the

first block in the LIST-QUEUE-FLAT is sent to the flat block workshop if the LIST-

QUEUE-FLAT is not empty. Otherwise the flat block workshop remains idle until a

LIST-QUEUE-FLAT has an available block.

Figure 3.5: Event Departure of Flat Block

(2) Block Finished by Flexible Curved Block Workshop (ERECTION-DEPARTURE-

C)

Figure 3.6 illustrates the departure process from the flexible workshop. When a

block is completed by the flexible curved block workshop, the finished block is re-

moved from the LIST-WORKSHOP-CURVE, and delivered to the erection workshop

directly if the erection workshop is idle and the block satisfies the block erection se-

quence constraint. Otherwise, it is inserted to the appropriate position of the LIST-

QUEUE-BLOCK-BUFFER based on its sequence ID. Following this, depending on

the control policy, either a flat block or a curve block will be sent to the flexible curved

block workshop. If both the LIST-QUEUE-FLAT and the LIST-QUEUE-CURVE

are empty, the flexible curved block workshop remains idle.

(3) Block Completed by Erection Workshop (EVENT-DEPARTURE-E)

The completion of a block erection triggers the CONWIP system release next block
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Figure 3.6: Event Departure of Curved Block

to the system. Figure 3.7 shows the process of this event. Once a block has finished

the erection process in the drydock workshop, a block from LIST-QUEUE-RELEASE

is released to either LIST-QUEUE-FLAT or LIST-QUEUE-CURVE to maintain the

constant WIP level. If the block following the finished block in the sequence is

available from LIST-QUEUE-BLOCK-BUFFER, it will be assigned to the drydock

workshop. Otherwise, the drydock workshop will remain idle until the block with

correct sequence ID arrives at the LIST-QUEUE-BLOCK-BUFFER. After the com-

pletion of all blocks in the LIST-QUEUE-RELEASE and no blocks remain in the

system, the simulation for one ship terminates. Afterwards, either a new replication

of a ship is conducted or the simulation is completed.

3.2.3 Result Analysis

This system was simulated using a computer program written in VBA. Each

simulation run began with an empty system and ended after 100,000 blocks exited

the line (assume 300 blocks per ship), including a warm-up period of 1,000 blocks.

Each run was replicated 50 times. To reduce variability between runs, common
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Figure 3.7: Event Departure from Final Erection Process

random numbers were used for each policy, and each workshop processing time had

its own random number stream. At a confidence level of 95%, all standard errors

were within 0.5%.

Simulation analyzes the performance of the inflexible systems and flexible sys-

tems in terms of (1) ship completion time, (2) drydock utilization, and (3) drydock

block buffer size. Three control policies are applied to control the flexible curved

block workshop: (1) FCFS, (2) LQ, and (3) SPT. The criteria are the mean of ship

completion time, drydock utilization, and drydock block buffer size.

Test-Suite

P1 is the fraction of flat blocks, and P2 (P2 = 1 − P1) is the fraction of curved

blocks. The values of P1 and P2 highly depend on the ship type. There are normally

more flat blocks in commercial ships like cargo ships and tankers since there will be

fewer curved hull structures and more flat hull structures for the efficient storage.

These two parameters are very essential to test the benefits of flexibility. When

P1 > P2, the flexibility performs better than the inflexible system since the curved

block workshop can assist the flat block workshop to produce flat blocks. When

P1 < P2, the flexible workshop will be busy with curved blocks and have no extra
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capacity to assist the flat block workshop. For this reason, setting P1 = 0.7 and

P2 = 0.3 is suitable for the heuristic test cases design.

Two test cases of system dynamics were picked to illustrate some interesting

results. Table 3.1 provides the parameter value for these two cases. In case 1,

µ11 < µ21 and µ11 < µ22, i.e., the flexible curved block workshop is more efficient

than the flat block workshop. In case 2, µ11 > µ21 and µ11 > µ22, i.e., the flexible

curved block workshop is not as efficient as the flat block workshop. These two cases

cover both scenarios of an efficient and inefficient flexible workshop.

µ3 is the processing rate of final hull erection for both flat and curved blocks.

When µ3 is smaller than the sum of µ11 and µ22, the drydock workshop becomes the

bottleneck of the production system. The problem of drydock being the bottleneck

is that the advantage of flexibility will not be significant since most blocks will be

kept in the erection block buffer, which will cause the idling of the flexible workshop.

Therefore µ3 = 3 would balance the capacity between block assembly process and

final hull erection process.

Case 1 Case 2 Description
µ11 = 1 µ11 = 1 Processing rate for flat block workshop producing flat blocks
µ21 = 1.2 µ21 = 0.9 Processing rate for flexible workshop producing flat blocks
µ22 = 1.1 µ22 = 0.8 Processing rate for flexible workshop producing curved blocks
µ31 = 3 µ31 = 3 Processing rate for erection

Table 3.1: CONWIP Model Simulation Test-Suite

Ship Completion Time

The first criterion tested was ship completion time. While examining completion

times, it is most significant to note which heuristic, either FCFS, LQ, or SPT, has the

best performance in controlling the flexible curved block workshop, and how much

performance improved by introducing a flexible system compared with the inflexible

system. Under these circumstances, an inflexible system is defined as a curved block
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workshop that does not have flexibility and can only work on the curved block.

Therefore, there is no control policy needed for the curved block workshop in the

inflexible system.

Figure 3.8 presents the ship completion time of the system under each heuristics

in case 1. In this figure, the y-axis is the ship completion time, and the x-axis is the

CONWIP level, or the number of blocks in the system, which ranges from 1 to 20.

Figure 3.8: Case 1: Ship Completion Time Comparison

The results of this figure show that the ship completion time under the FCFS

policy is the shortest among all the control policies, which indicates that the FCFS

policy has the best performance in reducing the ship completion time. The perfor-

mance of LQ is very close to the performance of FCFS, and the gap between these

two policies performance decreases as the CONWIP level K increases. In this test

case, µ21 > µ22 causing SPT policy to give the flat block priority, i.e., the flexible

workshop only works on the curved block until the curved block queue is empty. The

performance of SPT is not as good as FCFS and LQ, but still better than the in-

flexible system. It shows the benefits of the flexibility since the inflexible system has

the worst performance. On average, having flexibility and employing FCFS reduced

the ship completion time by 17%.
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The results in Figure 3.8 also provide information on how to set the CONWIP level

K. It shows that when K > 10, the improvement by increasing K is not significant.

Therefore, under this circumstance, it is more efficient for a shipyard to keep the

WIP level K around ten to maintain a high system throughput and a low WIP level.

In case 2, the FCFS policy still exhibits the best performance as shown in Figure

3.9. On average, the FCFS flexible system reduced the ship completion time by 11%

as compared to the inflexible system. In this case, µ11 > µ21, which indicates that

the flexible workshop is not as efficient as the flat block workshop. Therefore, the

improvement by flexibility in case 2 is smaller than the improvement in case 1.

Figure 3.9: Case 2: Ship Completion Time Comparison

Figure 3.9 also shows that the SPT policy has the worst performance. In this

case, the SPT policy gives flat block priority, i.e., as long as there is flat block in the

queue, flexible workshop will work on the flat block instead of curved block. However,

the flexible workshop is not efficient and SPT policy keeps the flexible workshop

processing flat blocks, which causes a high congestion for the curved block. This

leads to the problem of the lack of curved blocks for the final drydock workshop to

process, which follows the block sequence to erect the blocks. Therefore, the flexible

workshop under control the SPT policy slows down the entire system and increases
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the ship completion time. This concludes that the flexible system with a bad control

policy can make the system even worse. Developing an efficient and robust control

policy for the flexible resource is therefore the most essential aim of the flexible

system.

Drydock Utilization

One common goal in most shipyards is to use the drydock efficiently. Therefore,

the second criterion in this simulation is the drydock utilization. Figure 3.10 illus-

trates results form the case 1 for the drydock utilization. The y axis in this figure is

the drydock utilization which ranges from 0 to 1. The results show that the flexible

system under control of FCFS policy constantly has the largest drydock utilization

over all CONWIP levels. The inflexible system has the lowest drydock utilization.

On average, flexibility controlled by the FCFS policy increased the drydock utiliza-

tion by 19% as compared to the inflexible system.

Figure 3.10: Case 1: Drydock Utilization Comparison

Figure 3.11 illustrates case 2 results which shows the flexible system under control

of FCFS policy has the largest drydock utilization. The flexible system under control

of SPT policy has the worst performance. Considering both results for the ship

completion time and drydock utilization, these results indicate that increasing the
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drydock utilization enhances the system throughput and reduce the ship completion

time. This results also indicate the positive correlation between the ship completion

time and the drydock utilization.

Figure 3.11: Case 2: Drydock Utilization Comparison

Average Block Buffer Size for Pre-erection

To maintain a high utilization of the drydock, the storage of finished blocks is

inevitable. Using flexibility can reduce the number of finished blocks required for the

final erection and allow for the same possible utilization of the drydock. Figure.3.12

illustrates the average length of the block buffer placed before the final hull erection.

The flexible system operated with FCFS can significantly reduce the block buffer

size as compared to the inflexible system under the same CONWIP level. Recalling

that the flexible system under FCFS performs better in every respect, we note that

the size of the queue at the block buffer grows linearly, whereas the flexible FCFS

system has a sub-linear growth rate. This reveals that another benefit of flexibility

can stabilize the number of blocks in the queue buffer before the final drydock by

increasing the number of blocks in the entire system.

The simulation results above show that: (1) flexibility can significantly reduce the

ship completion time, increase the drydock utilization, and reduce the block buffer
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Figure 3.12: Case 1: Block Buffer Size

size for the final erection process; (2) the FCFS policy has the best performance

among all the test policies; and (3) the SPT policy is unstable for controlling the

flexibility under CONWIP release with a block sequence constraint.

The discrete-event simulation model provides insight of the complex CONWIP

shipbuilding system and demonstrates the benefit of flexibility. However, finding

an optimal control policy of the flexible workshop is quite difficult due to the block

sequence constraint. In the next section, a mathematical model is developed to

search for the structure of the optimal control policy with a simplified block sequence

constrain.

3.3 Dynamic Two-Loop CONWIP Model

In this section, a two-loop CONWIP model formulated using Markov Decision

Processes is developed to search for the structure of an optimal policy to control the

flexible workshop. There are two CONWIP loops in this model; one loop aims to

keep a constant number of flat blocks in the system, while the other loop aims to

keep a constant number of curved blocks in the system. The reason for using two

CONWIP loops is to simplify the job release process. In the previous simulation
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model, blocks are released following the block assembly sequence, and the total

number of flat blocks and curved blocks is a constant number. However, the separate

numbers of flat blocks or curved blocks are not constant, and it is very difficult to

use Markov Decision Processes to formulate the problem since it requires a very

large state variables to record each possible number of flat blocks and curved block.

Therefore, two CONWIP loops are used to simplify the model. Figure 3.13 illustrates

the two-loop CONWIP model.

Figure 3.13: CONWIP MDP Model

Let KF denote the number of flat blocks in the system, or the CONWIP level

for flat blocks, and KC denote the number of curved blocks in the system, or the

CONWIP level for the curved blocks. When there is a flat block finished at final

stage (the drydock), a flat block will be released to the system. This same process

occurs for curved blocks as well.

At the execution level, there are three types of jobs: (1) flat block jobs in the

block assembly process, (2) curved block jobs in the block assembly process, and (3)

blocks in the final hull erection. There are three workshops: (1) the flat block work-

shop, (2) the flexible curved block workshop, and (3) the final dry dock workshop.
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The processing time of these three workshops are exponentially distributed. µ11 is

the processing rate of workshop 1 (flat block workshop) working on flat blocks; µ21

is the processing rate of workshop 2 (curved block workshop) working on flat blocks;

µ22 is the processing rate of workshop 2 (curved block workshop) working on curved

blocks; µ3 is the processing rate of workshop 3 (drydock) working on either flat or

curved blocks (i.e., we assume flat and curved blocks have the same processing time

in the final hull construction, because labors can be adjusted to render these capac-

ities equal, which we believe to be more desirable for attaining better operational

performance). µ11 > µ21 since flat block workshop is more efficient in processing flat

blocks. No pre-emption or collaboration is allowed for any single block.

Let γ denote the reward for system throughput, i.e., γ is earned when each block

is completed at the final hull construction. PF and PC are the costs per unit time per

unit of capacity of workshop 1 (flat block workshop) and workshop 2 (curved block

workshop). θF and θC represent the decision of capacity investment for workshops

1 and 2, respectively. The objective is to maximize the system benefit, which is the

long run expected discounted throughput reward minus investment cost: γ ·TH(K)−

PF θF − PCθC .

The notations of this two-loop CONWIP model are summarized in Table 3.2.

3.3.1 Markov Decision Process Formulation

To formulate a MDP model, it is necessary to define the system state variables

first. Let xi be the number of jobs in queue i for i = 1, 2, 3, 4. x1 is the number

of flat blocks in the flat block queue, which includes the block being processed at

workshop 1 or workshop 2. x2 is the number of curved blocks in the curved block

queue, including the block being processed at workshop 2. x3 is the number of flat

blocks at the block buffer, including the block being processed at workshop 3. x4 is
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Notation Description
KF Number of flat block in the System
KC Number of curved block in the System
L Length of the block sequence period

τ(i), i ∈ 1, ..., L Block sequence
θF Capacity of flat block workshop
θC Capacity of flexible curved block workshop
µ11 Processing rate of flat block workshop
µ21 Processing rate of flexible workshop on flat block
µ22 Processing rate of flexible workshop on curved block
µ3 Processing rate of final hull construction rate
γ Reward per block
PF Cost per block per unit of time of flat block workshop
PC Cost per block per unit of time of flexible workshop

Table 3.2: Notations

the number of curved blocks at the block buffer, including the block being processed

at workshop 3. These variables are important in determining the total amount of flat

and curved blocks in the system via the equations, x1 + x3 = KF and x2 + x4 = KC .

Let sj denote the status of workshop j for j = 1, 2, 3. The flexible workshop 2

can work on flat blocks, (where s2 = 1), curved blocks (where s2 = 2), or idle (where

s2 = 0). We assumed that workshop 1 has priority in processing flat blocks (which

means s1 = 1 either x1 > 1 or x1 > 0 and s2 6= 1). s3 denotes the index of block

assembly sequence for workshop 3 (not the type of block that workshop 3 processes).

s3 = 1, 2, ..., L, L is the length of block assemble sequence. s3 indexes the stage of

the block final assembly sequence. τ(s3) represents the block type at stage s3 in

the sequence, where τ(s3) = 1 (a flat block), or τ(s3) = 2 (a curved block). If the

necessary type of block is unavailable, workshop 3 is left idling until one arrives.

The system state is {x1, x2, s2, s3}. x3 and x4 are not necessary for the state since

x1 + x3 = KF and x2 + x4 = KC . The status of s1 also depends on x1 and s2 (where

s1 = 1 either x1 > 1 or x1 > 0 and s2 6= 1). Therefore, {x1, x2, s2, s3} are the

necessary variables to describe this system.
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Optimality Equations

Let Jk(x, s) denote the optimal k-stage cost to go function, and set the terminal

cost function, J0(x, s) = 0. The state space is {0 ≤ x1 ≤ KF , {0 ≤ x2 ≤ KC ,

s2 = 0, 1, 2, and s3 = 1, 2, ..., L.

Some indicator functions are defined as follows: u1 = 11
{
x1 > 1∪(x1 > 0∩s2 6= 1

}
;

u21 = 11
{
s2 = 1 ∩ x1 ≥ 1

}
; u22 = 11

{
s2 = 2 ∩ x2 ≥ 1

}
; u3 = 11

{
τ(s3) = 1 ∩ x3 > 0

}
;

u4 = 11
{
τ(s3) = 2 ∩ x4 > 0

}
. Let Λ denote the uniformization factor and Λ =

θFµ11 + θC ·max{µ21, µ22}+ µ3.

This particular MDP is rather difficult. So for simplicity of exposition, we write

out a problem for the case of total expected β-discounted cases. β is the discount

factor. This MDP with discount factor is more intuitive and can easily be converted

to the average cost case for numerical computation. Our methodology is useful for

finite or infinite horizon total expected discounted cost, or could be extended to the

long run average cost per unit time. Because we do not need a high-fidelity financial

model to gain the high-level insights, the criterion assumed is that the infinite horizon

average cost per unit time. So with an investment cost of PF θF + PCθC per period

and reward of γ · TH(K), the total investment cost and rewards can be compared

on an annual basis. The recursive value function is:
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Jk+1(x1, x2, s2, s3) =
1

Λ

[
(u3 + u4)µ3 · γ − PF θF − PCθC

(3.1)

+ β
{
u21{u1θFµ11Jk(x1 − 1, x2, s2 = 1, s3) + θCµ21Jk(x1 − 1, x2, s2 = 0, s3)

+ (Λ− u1θFµ11 − (u3 + u4)µ3 − θCµ21)Jk(x1, x2, s2 = 1, s3)}

+ u22{u1θFµ11Jk(x1 − 1, x2, s2 = 2, s3) + θCµ22Jk(x1, x2 − 1, s2 = 0, s3)

+ (Λ− u1θFµ11 − (u3 + u4)µ3 − θCµ22)Jk(x1, x2, s2 = 2, s3)}

+ u3µ3Jk(x1 + 1, x2, s2, s3 ⊕ 1) + u4µ3Jk(x1, x2 + 1, s2, s3 ⊕ 1)

+ 11{
x1≥2,x2=0,s2=0

}max{[SERVE 1]u1θFµ11Jk(x1 − 1, x2, s2 = 1, s3)

+ θCµ21Jk(x1 − 1, x2, s2 = 0, s3) + (Λ− u1θFµ11 − (u3 + u4)µ3 − θCµ21)Jk(x1, x2, s2 = 1, s3),

[IDLE]u1θFµ11Jk(x1 − 1, x2, s2 = 0, s3) + (Λ− u1θFµ11 − (u3 + u4)µ3)Jk(x1, x2, s2 = 0, s3)}

+ 11{
x1≤1,x2≥1,s2=0

}max{[SERVE 2]u1θFµ11Jk(x1 − 1, x2, s2 = 2, s3)

+ θCµ22Jk(x1, x2 − 1, s2 = 0, s3) + (Λ− u1θFµ11 − (u3 + u4)µ3 − θCµ22)Jk(x1, x2, s2 = 2, s3),

[IDLE]u1θFµ11Jk(x1 − 1, x2, s2 = 0, s3) + (Λ− u1θFµ11 − (u3 + u4)µ3)Jk(x1, x2, s2 = 0, s3)}

+ 11{
x1≥2,x2≥1,s2=0

}max{[SERVE 1]u1θFµ11Jk(x1 − 1, x2, s2 = 1, s3)

+ θCµ21Jk(x1 − 1, x2, s2 = 0, s3) + (Λ− u1θFµ11 − (u3 + u4)µ3 − θCµ21)Jk(x1, x2, s2 = 1, s3),

[SERVE 2]u1θFµ11Jk(x1 − 1, x2, s2 = 2, s3) + θCµ22Jk(x1, x2 − 1, s2 = 0, s3)

+ (Λ− u1θFµ11 − (u3 + u4)µ3 − θCµ22)Jk(x1, x2, s2 = 2, s3),

[IDLE]u1θFµ11Jk(x1 − 1, x2, s2 = 0, s3) + (Λ− u1θFµ11 − (u3 + u4)µ3)Jk(x1, x2, s2 = 0, s3)}

+ 11{
x1≤1,x2=0,s2=0

}{u1θFµ11Jk(x1 − 1, x2, s2 = 0, s3)

+ (Λ− u1θFµ11 − (u3 + u4)µ3)Jk(x1, x2, s2 = 0, s3)}
}]
.

This recursive value function Jk(x, s) is very complex, mainly due to two unique
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aspects of this model: (1) non-preemption is required in this model, which adds

difficulty, and (2) the MDP model allows idling of the flexible workshop. The non-

preemption was also assumed in the “N” structure queueing network in Chapter II.

This assumption is applied to this CONWIP model for the same reason as that for

the shipbuilding constraint. Allowing idling of the flexible workshop in this MDP is

due to the fact that the flexible workshop is not as efficient as the flat block workshop,

and it may be optimal to idle the flexible workshop under some circumstances.

Using this MDP model, some numerical examples are developed in the next section

to show how to optimally control the flexible workshop.

3.3.2 Control of Flexible Workshop

One major concern in this research is how to control the flexible workshop under

the CONWIP discipline. In the previous section 3.2, the simulation results showed

that the First Come, First Served (FCFS) policy has the best performance. Although

the MDP model is different from the simulation model, since the MDP model has

two CONWIP loops and a simplified block sequence, it can still provide insight into

controlling the flexible workshop under job sequence constraint in the CONWIP

model. A test case was designed to show the structure of the optimal policy to

control the flexible workshop, which is illustrated in Table 3.3.

As shown in Table 3.3, the length of the block sequence period L is 8, with 3

curved blocks and 5 flat blocks. There are normally more flat blocks than curved

blocks in a ship depending on the ship type. NF = 10 and NC = 6, therefore, NF
NF+NC

= fraction of the flat blocks in the sequence. To test the benefit of the flexibility, any

situation of the drydock workshop being the bottleneck is avoid. Otherwise, a lot of

blocks will stay at the block buffer before the final drydock, and the flexibility will

not significantly contribute to the system. Therefore, we let µ3 = θFµ11 + θCµ21, to
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Notation Description Test Value
KF Number of flat block in the System 10
KC Number of curved block in the System 6
L Length of the block sequence period 8

τ(i), i ∈ 1, ..., L Block sequence CFFCFFFC
θF Capacity of flat block workshop 2
θC Capacity of flexible curved block workshop 2
µ11 Processing rate of flat block workshop 3
µ21 Processing rate of flexible workshop on flat block 2
µ22 Processing rate of flexible workshop on curved block 2
µ3 Processing rate of final hull construction rate 10
γ Reward per block 5
PF Cost per block per unit of time of flat block workshop 1
PC Cost per block per unit of time of flexible workshop 1.5

Table 3.3: CONWIP MDP model Test Case

guarantee that the drydock is not the bottleneck.

Structure of Optimal Control Policy

The first problem we investigated is that which block, a flat block or a curved

block, should be assigned to the flexible workshop when it is available. Figure 3.14

presents the structure of the optimal control policy in the test case in Table 3.3.

The x-axis is x1, the number of flat blocks at block assembly process, where x1 ∈

0, 1, ..., NF , and the y-axis is x2, the number of curved blocks at block assembly

process, where x2 ∈ 0, 1, ..., NC . There are three control actions for the flexible

workshop: “0” which means the flexible workshop is idle; “1” which means the flexible

workshop is working on a flat block; or “2” which means the flexible workshop is

working on a curved block.

When x1 ≤ 1 and x2 = 0, there are no blocks available for the flexible workshop,

since only flat blocks are assigned to the flat block workshop. The control policy of

the flexible workshop also depends on the stage of the sequence. There are 8 stages in

the sequence and the sequence is “CFFCFFFC”. Only four cases of the first 4 stages

are presented here to show that the control policy greatly depends on the sequence
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(a) τ(1) = 2 (b) τ(2) = 1

(c) τ(3) = 1 (d) τ(4) = 2

Figure 3.14: Optimal Control Policy of Flexible Workshop

stage. The other four cases of the later stages are not illustrated here since they

have similar policy structure. The first 4 stages block sequence is “CFFC”. Figure

3.14 (a) shows a case where the drydock is at sequence stage 1 and τ(1) = 2, i.e., the

drydock needs a curved block. Figure 3.14(b) shows a case where the drydock is at

sequence stage 2 and τ(2) = 1, i.e. the drydock needs a flat block. Figure 3.14 (c)

presents a case where the drydock is at sequence stage 3 and τ(3) = 1, and Figure

3.14(d) shows a case where the drydock is at sequence stage 4 and τ(4) = 2.

The results in Figure 3.14 show that the structure of the optimal control policy is

a threshold type policy. When x2 is smaller than a threshold, it is more favorable to

assign flat block to the flexible workshop; otherwise, it is optimal to assign curved
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block to the flexible workshop. Figure 3.14 (a), (c), and (d) show that when x2 = 0,

it is optimal to idle the flexible workshop until x1 >= 3. This is because, in this case,

the flexible workshop is not as efficient as the flat block workshop, and in order to

avoid starving the flat block workshop, the flexible workshop must remain idle until

there are enough flat blocks for both workshops.

Figure 3.14 also indicates that there is idling of the flexible workshop when τ(i) =

2. The reason for this is that when the final drydock currently needs a curved block,

it is more cost effective to keep the flexible workshop available for curved blocks

instead of processing a flat block. However, in the case of Figure 3.14 (b), it is not

optimal to idle the flexible workshop and it should assist the flat block workshop to

process the flat block anytime when flat blocks are waiting in the queue. This is due

to the fact that τ(2) = 1, the drydock needs a flat block instead of curved block.

The different results for these two cases demonstrate how the sequence constraints

affect the control policy.

Impact of Change of Block Sequence

To test how the change of block sequence impacts on the control policy structure,

another sequence “FFCCCFFF” is tested in the MDP model. The percentage of

flat blocks and curved blocks remain the same, 5 curved blocks and 3 flat blocks.

The difference between two sequences are that the sequence “CFFCFFFC” has all

the curved blocks separately distributed in the sequence, while the sequence “FFC-

CCFFF” has all curved blocks together in the middle.

Figure 3.15 illustrates the first 4 stages of the control policy, which is “FFCC”.

As compared to Figure 3.14 (c) and (d), Figure 3.15 (c) and (d) show that it is

optimal to idle more of the flexible workshop when τ(i) = 2. This is because with

the sequence “FFCCCFFF”, the final drydock needs three curved blocks in a row and
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the optimal control policy will then keep the flexible workshop available to process

curved blocks.

(a) τ(1) = 1 (b) τ(2) = 1

(c) τ(3) = 2 (d) τ(4) = 2

Figure 3.15: Optimal Control Policy for Sequence “FFCCCFFF”

This test case demonstrates that for the same number of curved blocks and flat

blocks in a sequence period, different sequences will result in a different optimal

control policy. Therefore, it is essential to design and plan an efficient block erection

sequence, which may also improve the system performance.

Impact of Change of Capacity

Another interesting relationship to investigate is how the change of capacity im-

pacts the optimal control policy. Figure 3.16 (a) shows the same test case in Table

3.3 with τ(1) = 2 and θC = 2, while Figure 3.16 (b) shows the test case where the
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capacity of the flexible workshop θC increased to 4.

(a) Capacity of Flexible Workshop θC = 2 (b) Capacity of Flexible Workshop θC = 4

Figure 3.16: Optimal Control Policy: Impact of Change of Capacity

Figure 3.16 (b) shows that when the flexible workshop has greater capacity, more

flat blocks should be assigned to the flexible workshop to maximize the system profit.

This also allows for less idling of the flexible workshop in Figure 3.16 (b), and ratio-

nalizes why, with more capacity, the flexible workshop can process flat blocks with

a sufficient speed without delaying the curved blocks. The average profit per unit

time is 1.997 when θC = 2, and it is 2.045 when θC = 4, which is larger than the

case where the capacity of flexibility θC = 2. These results show that, with greater

capacity of the flexible workshop, it can assist to produce more flat blocks and also

increase the average profit in most cases. More test cases of how change of capacity

impacts on the system profit will be presented in the next section.

3.3.3 Capacity Planning of Flexibility

This section focuses on how to invest and plan for the capacity of flexibility to

achieve the maximum benefit from the flexibility resource. The previous research

of flexibility has been focusing on controlling the flexible workshop at the execution

level. It is a new approach to investigate the methodology of capacity planning of
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flexibility at the strategic level. Additionally, it can also provide valuable information

for shipyards and other manufacturing and service industries who are interested in

investing on the flexibility.

Research related to the flexibility capacity planning at the strategic level mostly

lies in the structural design of flexibility. [16] provided a comprehensive survey on

the agile workforce and designed a performance matrix to evaluate the flexibility at

the strategic level. They also developed a framework to guide the selection of the

flexible architecture and worker coordination policy. [19] focused on a strategic-level

issues of developing a method to quantify the ability of a flexible system to respond

to the variability, only based on the structure of the flexibility.

The particular problem of capacity planning for flexibility in our model is how to

design the capacity for the flexible resource in the “N” structure queueing network

under the CONWIP release policy. Specifically, θF is the capacity of the flat block

workshop, and θC is the capacity of the flexible workshop. After setting the capacity

of θF , the optimal capacity of flexible workshop θ∗C must then be determined.

To quantify the benefit of flexibility, it is necessary to develop the MDP model

for the inflexible system as a benchmark. Therefore, a MDP model of the inflexible

system is presented in the next section.

Inflexible System

The MDP formulation for the inflexible system is much simpler than the flexible

system, since there is no control needed for the curved block workshop. The system

state is {x1, x2, s3}. u1 = 11
{
x1 >= 1

}
; u2 = 11

{
x2 >= 1

}
; u3 = 11

{
τ(s3) = 1 ∩ x3 >

0
}

; u4 = 11
{
τ(s3) = 2 ∩ x4 > 0

}
. Let Λ denote the uniformization factor and

Λ = θFµ11 + θCµ22 + µ3. The recursive value function is as follows:
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Jk+1(x1, x2, s3) =
1

Λ

[
(u3 + u4)µ3 · γ − PF θF − PCθC(3.2)

+ β
{
u1θFµ11Jk(x1 − 1, x2, s3)

+ u2θCµ22Jk(x1, x2 − 1, s3)

+ u3µ3Jk(x1 + 1, x2, s3 ⊕ 1) + u4µ3Jk(x1, x2 + 1, s3 ⊕ 1)

+ (Λ− u1θFµ11 − u2θCµ22 − (u3 + u4)µ3)Jk(x1, x2, s3)
}]
.

No Budget Limit

It is a challenging problem to determine the optimal capacity investment of flexi-

bility θ∗C given the capacity of θF , and quantify the benefit of flexibility analytically.

Therefore, some numerical examples are presented here to reference. The same test

case for the optimal policy structure is used for the capacity-planning problem in

Table 3.4. Based on this test case, the MDP model is used to search for the θ∗C from

1 to 8, given that θF is equals to 1 and 2.

Notation Test Value
KF 10
KC 6
L 8

τ(i), i ∈ 1, ..., L CFFCFFFC
µ11 3
µ21 2
µ22 2
µ3 10
γ 5
PF 1
PC 1.5

Table 3.4: Flexibility Capacity Planning Test Case

Figure 3.17 presents the average profit of the flexible system with change of ca-

pacity θC . The y-axis is the average profit. The x-axis is the value of θC , from

{1, 1.2, 1.4, ..., 8}. Figure 3.17 (a) shows that when θF = 1, the optimal capacity of
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flexibility θ∗C ≈ 1.6. It shows a fast profit growth from θC = 1 to 1.6, then decreases

slowly. Figure 3.17 (b) illustrates that when θF = 2, the optimal capacity of flexibil-

ity θ∗C ≈ 3.2. It shows a fast profit growth from θC = 1 to 3.2, then maintain a high

profit value.

(a) Capacity of Flat Block Workshop θF = 1 (b) Capacity of Flat Block Workshop θF = 2

Figure 3.17: Flexible System: Average Profit with Change of θC

Figure 3.17 (a) and (b) demonstrate there exist the optimal capacity of flexibility

θ∗C , but the profit function may not be concave or convex in θC . Figure 3.17 (b)

shows that when the capacity of the flat block workshop θF is large, a much larger

capacity of the flexible resource can be useful.

(a) Capacity of Flat Block Workshop θF = 1 (b) Capacity of Flat Block Workshop θF = 2

Figure 3.18: Inflexible System: Average Profit with Change of θC

Figure 3.18 presents the average profit of the inflexible system with change of
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capacity θC . Figure 3.18 (a) shows that when θF = 1, θC < 1 is optimal, and

the average profit of the inflexible system decreases as the capacity of the curved

block workshop increases. Figure 3.18 (b) illustrates that when θF = 2, the optimal

capacity for the curved block workshop is also 2. These results indicate that when

there is no flexibility in the system, the capacity for each workshop should be balanced

based on the workload for each workshop.

Next, the performance of the flexible system and inflexible system will be com-

pared. Let pf denote the average profit of flexible system, and pi denote the average

profit of the inflexible system. The percentage improvement by flexibility G is defined

as follows:

(3.3) G =
pf − pi

pi
· 100%.

Figure 3.19 illustrates the the percent improvement as a result of flexibility when

θF = 2. The percent improvement increases as the flexible capacity increases, since

after the point of θF = 2, the profit of the inflexible system decreases as the flexibility

capacity increases.

Figure 3.19: Percentage Improvement by Flexibility
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The numerical study above shows that there exists the optimal flexible capacity θ∗C

given value of θF , and that the profit of the system remains stable with a reasonable

expansion of the flexible resource with a large inflexible resource capacity θF .

For the future research, it is useful to seek the optimal capacity θ∗F and θ∗C when

there is a limited budget, and study how the change of block sequence, CONWIP

levels KF and KC impacts the capacity design.

3.4 Conclusion and Future Work

In this chapter, a Constant Work In Process (CONWIP) release policy is intro-

duced to the strategic level of the flexible block assembly process. The “N” structure

queueing networks for the block assembly process remains in this CONWIP model.

The final drydock workshop is required to follow a one-dimensional block sequence,

which makes the model very difficult to analyze. Two research problems are tar-

geted in the model: (1) how to control the flexible workshop to maximize the system

throughput under CONWIP release policy; (2) how to plan the capacity of flexible

resource for the parallel partial flexible workshop.

The discrete-event simulation model was developed to provide insight of the com-

plex CONWIP shipbuilding system. The simulation results show that the flexibility

can significantly reduce the ship completion time and increase the drydock utiliza-

tion, while reducing the block buffer size for the final erection process. For the control

of the flexible workshop, the FCFS policy shows the best performance among all the

test policies.

A two-loop CONWIP model formulated using Markov Decision Processes is de-

veloped to search for the structure of optimal policy in order to control the flexible

workshop, and also provide the strategy for the flexibility capacity planning. Based
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on the numerical study of the MDP model, the structure of the optimal control pol-

icy is a threshold type policy, which depends on the system dynamics, the CONWIP

level, the block sequence, and the capacity of each workshop. The numerical study

of the capacity-planning for the flexibility shows that (1) the flexibility can improve

the system profit, and (2) the system remains high profit with extra capacity of the

flexible resource.

There remains many unsolved problems for the future research with this CONWIP

model. The numerical study of the optimal control policy shows a very complex

structure of the optimal policy. We are aiming to develop a heuristic which can

cooperate the block sequence constraint and also current system states. For the

capacity-planning of the flexible resource, seeking the optimal capacity θ∗F and θ∗C for

both dedicated workshop and flexible workshop is very useful for flexible production

system design and investment. Another interesting research topic of the control

of the flexible resource is to decompose the planning and scheduling so that local

optimization control of flexibility is aligned with system performance. The simulation

shows that the optimal control policy for the open “N” structure queueing network

performs sub-optimal in the closed “N” structure queueing network. Developing a

control policy which can achieve high performance in both execution level control

(minimize the holding cost for jobs at current workshop) and the global system

control (maximize the system throughput) will derive an easier implementation and

simplify the execution level control.



CHAPTER IV

Two-Stage Queueing Network for Outfitting Planning and
Control

4.1 Introduction

Chapter II and III focused on improving the efficiency and robustness of hull con-

struction in shipbuilding. Outfitting, as another important processes in shipbuilding,

represents as much as 50% of the cost of the ship and up to 50% of ship construc-

tion time in many instances [13]. The complexity of outfitting planning and the

lack of intelligent control methodologies of outfitting processes currently in existence

indicates that there are many opportunities to create new models for ship outfitting

processes and, therefore, enhance overall shipbuilding performance.

4.1.1 Existing Outfitting Obstacles

Outfitting refers to the process of fabrication and installation of non-structural

components. Outfitting planning is a very complex process, mainly because (1) out-

fitting processes occur at various stages in ship production; (2) there are dramatic

time and cost differences of processing the same outfitting work at different stages;

and (3) many aspects of an outfitting schedule must be integrated into the hull

construction schedule. Many instances in shipyards show that the outfitting pro-

cess delays the entire ship production system due to the disturbances by unexpected

89
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delays, system variations, capacity limitations, and technological constraints. Con-

temporary outfitting planning relies heavily on previous experiences of shipbuilders.

Our goal therefore is to develop an analytical model to support outfitting decision

making and to provide a system methodology and control of outfitting planning.

To develop a model that captures the main feature of the outfitting process and

also can be used to analyze the system and achieve the effect planning and control

methodology, we must first understand the outfitting process.

4.1.2 Outfitting Process

Ship production literature describes three stages within the ship outfitting process:

on-unit, on-block, and on-board outfitting. On-unit refers to the assembly of an

interim product consisting of only outfit materials, independent of hull structure.

Examples include the pump room flat unit, fuel oil purifier unit, etc. On-block refers

to the installation of outfit components or units on any structural subassembly or

block prior to its erection on the ways. Outfitting on-block is more complex than

on-unit, since it requires careful coordination between block assembly (steel work)

and outfitting activities, and it may impact the duration of a block’s occupation of

an assembly area [13]. Therefore, outfitting can be delayed to next stage due to the

tight schedule of block assembly. The third process, on-board, refers to the assembly

of outfitting during hull erection and after launching. Working conditions in a hull

are not ideal because of factors such as difficult access, limited space to work, and

difficult work positions (e.g., overhead welding) [13]. It takes longer time and more

cost to perform outfitting after hull construction.

On-unit outfitting frequently enhances safety and reduces labor, allowing more

time and energy to be allocated to outfitting on-block and on-board. For the same

amount of outfitting work, a task requiring one labor hour during the on-unit stage
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will require approximately three hours at the on-block stage and eight hours at

the on-board stage. The labor ratio of 1:3:8 may vary based on ship type and

shipyard, but discrepancies in productivity remain. To minimize the task time and

cost for outfitting work, it is essential that outfitting work be completed as early

as possible. However, problems including system disruptions and variations, poor

scheduling of hull construction and other outfitting equipment and materials delays,

capacity limitations, technical infeasibility, and inefficiency in managing an effective

system production rate, make it nearly impossible to develop an ideal outfitting plan

in shipbuilding. Scheduling of the outfitting processes is therefore complex and a

difficult topic for research.

4.1.3 State of The Art: Research on Ship Outfitting Planning

In the past, there has been little operations research in the area of ship outfitting.

Some early production research on ship outfitting includes [18], [12], and [13]. [12]

describes the planning and execution of pre-outfitting in structural assemblies. [13]

clearly discusses and analyzes current outfitting problems, and uses a deterministic

activity network model to formulate the outfitting planning problem. A mixed integer

programming model of outfitting with sequence constraints was developed to address

this outfitting planning problem. More recent research on the scheduling of the

outfitting process has been conducted in [37], which provides a methodology that

can automatically generate an outfitting sequence and planning.

All these studies only consider the deterministic processing time of the outfit-

ting process and provide static outfitting planning. Approaches such as these will

fail when dealing with common problems in shipbuilding, such as demand change

during production and high variability in processing time. Therefore, we must inves-

tigate the outfitting problem with variability and develop a control policy that can
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change dynamically according to the stage of the shipbuilding system. Our research

on outfitting planning includes (1) an analytical approach at the strategic-planning

level that provides outfitting work break-down strategy; and (2) a dynamic model

approach at the tactical planning level to control the outfitting activities based on

current system situation.

4.2 Strategic Level Model: An Open Queueing Network Model

The first problem we addressed is how to distribute the outfitting work to different

stages. There are generally four stages of ship hull construction, as pictured below

in Figure 4.1. Outfitting activities can be performed during or after any stages of

the hull construction and it is more cost effective to process outfitting in the early

stage.

Figure 4.1: Hull Construction Processes

The number of stages in this model is simplified into two in our study. Specifically,

stage 1 represents the general assembly process associated with block construction,

while stage 2 represents the grand block construction. There are three tasks in this

model: sub-assembly work (S), grand block assembly work (A), and outfitting work

(O). Task S can only be processed at stage 1 and task A can be only processed at

stage 2. Task O can either be processed at stage 1 or stage 2. Figure 4.2 illustrates

the two stage outfitting model.

The decision of processing outfitting work at stage 1 or stage 2 is made by an

independent and identically distributed (i.i.d.) sequence of Bernoulli (α) trials, in-
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Figure 4.2: Strategic Two-stage Outfitting Model

dependent of all else, which randomly selects the task O to be performed at stage 1

or stage 2. The goal is to find the optimal value of α under any circumstances, which

provides the control information needed to determine the percentage of outfitting

workload distributed at each stage. Once the optimal value α is decided, α does not

change over time during the process.

4.2.1 Model Formulation

The purpose of this outfitting model is to find the optimal α to minimize expected

system cycle time. First, a mathematical model must be formulated in order to

discover a closed-form equation of the expected system cycle time CT (α), the CT (α)

equation can be used to calculate the the optimal α.

This model was devised as a queueing system to model the variability in out-

fitting processing time. Queueing systems are composed of an arrival process, a

service/production process, and a queue (buffer). There is a single server queue in

each stage. A G/G/1 queue is defined as a queueing system with a general distri-

bution of arrival process, a general distribution of processing time, and one server.

This model utilizes a general distribution for the arrival process and production pro-

cessing time at stage 1 and stage 2, and assumes that the buffers before each stage
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are infinite. Therefore, this model can be defined as a two-stage tandem G/G/1

queue. Processing rate and coefficient of variation (CV) are used to describe the

general distributions. The CV is defined as the ratio of the standard deviation σ to

the mean 1/µ. Table 4.1 defines each variables of the outfitting model:

α Bernoulli (α), the percentage of outfitting done at stage 1
λ Interarrival rate
µS Processing rate of task S
µO1 Processing rate of task O at stage 1
µA Processing rate of task A
µO2 Processing rate of task O at stage 2
Ca1 Coefficient of variation of arrival
CS Coefficient of variation of task S processing time
CO1 Coefficient of variation of task O at stage 1 processing time
CA Coefficient of variation of task A processing time
CO2 Coefficient of variation of task O at stage 2 processing time

Table 4.1: Notation for Outfitting Model

4.2.2 Analytical Results

Kingman’s Approximation can be applied to formulate the closed-form solution

of CT (α). For any G/G/1 queue, four values must be provided to find the average

waiting time in the queue with Kingman’s Approximation [21]: (1) ca, CV of arrival

process; (2) ce, CV of processing time; (3) u, the server utilization; (4) te, the mean

processing time. CTq(G/G/1) is the average waiting time of a G/G/1 queue and

defined as follows:

CTq(G/G/1) = (
c2
a + c2

e

2
)(

u

1− u
)te(4.1)

Since the model can be approximated as two tandem G/G/1 queues, Kingman’s

equation can be applied to estimate the system cycle time by providing values for

CT 1
q (α) and CT 2

q (α). CT (α) is the expected total cycle time, which depends on the

value of α. CT 1
q (α) is the expected waiting time in the queue at stage 1. CT 2

q (α)

is the expected waiting time in the queue at stage 2. CT 1
q (α) and CT 2

q (α) are
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approximated by Kingman’s equation.

The expected system cycle time equals to the expected processing time plus the

expected waiting time. First, the expected processing time at each stage must be

calculated. 1
µ1

is the expected processing time at stage 1, which is:

1

µ1

=
1

µS
+

α

µO1

,(4.2)

1
µ2

is the expected processing time at stage 2, which is:

1

µ2

=
1

µA
+

1− α
µO2

,(4.3)

Therefore, the expected system cycle time is as follows:

CT (α) = CT 1
q (α) +

1

µ1

+ CT 2
q (α) +

1

µ2

.(4.4)

By Kingman’s equation, the waiting time in the queue at stage 1 is:

CT 1
q (α) = (

c2
a1 + c2

e1

2
)(

λ/µ1

1− λ/µ1

)
1

µ1

,(4.5)

Using probability theory, the CV of the processing time in stage 1 is:

c2
e1 =

c2
Sµ

2
O1 + αc2

O1µ
2
S + α(1− α)µ2

S

(µO1 + αµS)2
,(4.6)

For stage 2, the arrival process in stage 2 is the departure process of stage 1. The

CV of the arrival process in stage 2 is:

c2
a2 = c2

d1 = (
λ

µ1

)2c2
e1 + (1− (

λ

µ1

)2)c2
a1,(4.7)

The CV of the processing time of stage 2 is:

c2
e2 =

c2
Aµ

2
O2 + (1− α)c2

O2µ
2
S + α(1− α)µ2

A

(µO2 + (1− α)µA)2
,(4.8)

By Kingman’s equation, the waiting time in the queue at stage 2 is:

CT 2
q (α) = (

c2
a2 + c2

e2

2
)(

λ/µ2

1− λ/µ2

)
1

µ2

.(4.9)
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Equation (4.4) is the closed-form solution for the expected system cycle time

CT (α), which can be calculated using equation (4.2), (4.3), (4.5), (4.11), (4.10),

(4.8),(4.9).

4.2.3 Numerical Study

For the numerical study, a series of test cases were designed and calculated to

demonstrate how the closed-form equation can provide useful information concerning

how to distribute outfitting work at each stage in shipbuilding. Let α∗ denote the

optimal α that minimizes the total expected system cycle time CT (α):

α∗ = min
α∈[0,1]

CT (α)(4.10)

Three test-suites were developed in this section to evaluate the system. Test-suite

1 compares the deterministic system with the stochastic system, while test-suite 2

focuses on system performance at different processing times and fixed variations.

Additionally, test-suite 3 analyzes how this variation impacts the system’s perfor-

mance.

Test-suite 1: Deterministic vs. Stochastic

Test-suite 1 consists of two cases, and was designed to test how varying processing

time may impact overall system performance. The defined variables of test-suite 1

are provided in Table 4.2.

In case 1, µS = µA = 5, µO1 > µO2, and all of the coefficient of variations are set

equal to zero, which corresponds to no variation in the system, with processing times

being deterministic. This is an ideal case where µO1 > µO2, consequently allowing for

the completion outfitting work at stage 1 to be more efficient. Therefore, α∗ should

be 1, which means processing all the outfitting at stage 1. This test case correlates
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Cases 1 2
λ 1 1
µS 5 5
µO1 4 4
µA 5 5
µO2 3 3
Ca1 0 1
CS 0 4
CO1 0 2.5
CA 0 4
CO2 0 2.5

Table 4.2: Test-suite 1

with the ”best” practice in modern shipbuilding; completing all outfitting as early

as possible.

Figure 4.3 depicts two cases in Table 4.2, where α ∈ (0, 1) is on the x-axis while

CT (α), the expected system cycle time, is on the y-axis. The results in this graph

show that α∗ = 1, and the optimal expected system cycle time is CT ∗(α) = 0.65.

One may also identify trends from this graph, such as how the expected system

cycle time CT (α) decrease as α increases. In reality, the function CT (α) is expected

to linearly decrease as α increases since the model is deterministic. However, this

graph shows that a quadratic term exists in CT (α). The reason for this is that

the coefficient of variation of processing time is not zero due to the Bernoulli trials.

The CV of processing times and arrival times at stage 2 are not zero. These CV of

processing times can be calculated by equation (4.11), (4.10), and (4.8) as follows:

c2
e1 =

α(1− α)µ2
S

(µO1 + αµS)2
,(4.11)

c2
a2 = (

λ

µ1

)2c2
e1,(4.12)

c2
e2 =

α(1− α)µ2
A

(µO2 + (1− α)µA)2
.(4.13)

Table 4.2 shows that the coefficient of variations is not zero in case 2, correspond-
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ing to a stochastic system. Fig.4.3 (b) shows the optimal percentage α∗ is equal to

0.770, and the system expected cycle time is CT ∗(α) = 2.18. As compared to case

1, the value of α∗ in case 2 decreased from 1 to 0.770, indicating that, although the

processing time of outfitting at stage 2 is longer, it is still more favorable to process

some outfitting work at stage 2, instead of processing all the outfitting work at stage

1. The system cycle time is also increased from 0.65 to 2.18 by just adding variation.

(a) Case 1: α∗ = 1 (b) Case 2: α∗ = 0.770

Figure 4.3: Test Suite 1

Test-suite 2: Change of Processing Rate

Test-suite 2 in Table 4.3 was designed to show how changing the processing rate

impacts the optimal percentage value α∗ and the system cycle time. For the cases

where µS ≥ µA and µO1 ≥ µO2 , the model showed that α∗ → 1 for most cases. The

cases presented here are of special interest because they diverge from this observed

trend.

In case 3, µS is decreased from 5 to 3, and µS < µA, which means the sub-

assembly work at stage 1 takes longer time than the block assembly at stage 2, and

the outfitting work at stage 2 takes longer than at stage 1, i.e. µO1 > µO2 . Therefore,

the value of α∗ is not trivial and difficult to estimate.

Figure 4.4 case 3 shows that α∗ = 0.423 and CT ∗(α) = 3.77, indicating that
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Cases 3 4
λ 1 1
µS 3 3
µO1 4 4
µA 5 5
µO2 3 2
Ca1 1 1
CS 4 4
CO1 2.5 2.5
CA 4 4
CO2 2.5 2.5

Table 4.3: Test-suite 2

when the sub-assembly work at stage 1 is not efficient, more outfitting work must be

processed at stage 2. Case 4 is more similar to results actually found in the shipyard,

where µO2 = 2 and CO2 = 4, which means the outfitting at stage 2 is very inefficient

with high variation. Figure 4.4 case 4 shows that α∗ = 0.772 and CT ∗(α) = 4.13. It

can be concluded that (1) when the processing rate of outfitting at stage 2 decreases,

more outfitting at stage 1 should be processed; and (2) although the sub-assembly

at stage 1 is not as efficient as grand block assembly at stage 2, more outfitting work

should be processed at stage 1.

(a) Case 3: α∗ = 0.423 (b) Case 4: α∗ = 0.772

Figure 4.4: Test Suite 2



100

Test-suite 3: Change of Variation

Test-suite 3 in Table 4.4 and Table 4.5 was created to investigate how varying the

processing time impacts the optimal percentage value α∗ and the system cycle time.

Table 4.4 shows the fixed system processing rates. µS = µA = 5, and µO1 = 2µO2,

i.e. the processing time of outfitting work at stage 1 is two times faster than the

processing time of outfitting work at stage 2.

λ 1
µS 5
µO1 4
µA 5
µO2 2

Table 4.4: Test-suite 3: Processing Rate

Table 4.5 illustrates six test cases with different variation combinations:

Cases 5 6 7 8 9 10
Ca1 1 1 1 1 1 1
CS 1 10 1 1 1 1
CO1 1 1 1 3 1 10
CA 1 1 10 1 1 1
CO2 1 1 1 1 3 1

Table 4.5: Test-suite 3

Table4.6 summarizes the numerical results of the optimal percentage value α∗ and

system cycle time CT ∗(α) for each test case.

Cases 5 6 7 8 9 10
α∗ 1 0.670 1 0.589 1 0

CT ∗(α) 0.975 4.51 3.45 1.345 0.975 1.55

Table 4.6: Test-suite 3 Results

Case 5 is designed to have the equal CV for each processing time. This case also

works as a benchmark for other test cases with different CV values. The numerical

results show that the optimal percentage is α∗ = 1 and that the system expected

cycle time is CT ∗(α) = 0.975. Because µO1 = µO2, with the same CV for processing

time, it is optimal to process all the outfitting work at stage 1.
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In case 6, CS is increased from 1 to 10, which means the variation of sub-assembly

work at stage 1 is very large. The numerical results show that the optimal percentage

is α∗ = 0.67 and the system expected cycle time is CT ∗(α) = 4.51. α∗ decreases

from 1 to 0.67 due to the increase of the CV of task S. It is more favorable to process

some outfitting work at stage 2 when the variation of sub-assembly work at stage

1 is very large. This will provide more ”slack time” for the workshop at stage 1 to

work on the sub-assembly work. The system expected cycle time CT ∗(α) increases

from 0.975 to 4.51, demonstrating that, by only increasing the variation of processing

time, one can increase the system cycle time significantly.

In case 7, CA is increased from 1 to 10, therefore the variation of grand block

assembly work at stage 2 is very large. Under these circumstances, the optimal per-

centage is α∗ = 1 and the system expected cycle time is CT ∗(α) = 3.45. α∗ remains

in 1 because both processing time and variation of processing time of processing out-

fitting work at stage 2 are larger than the processing time and variation of processing

outfitting work at stage 1.

In case 8, CO1 is increased from 1 to 3, which means the variation of processing

outfitting work at stage 1 is large. The numerical result shows that the optimal

percentage here is α∗ = 0.589 and the system expected cycle time is CT ∗(α) = 1.345.

α∗ is sensitive with the change of CO1. With larger variation of processing outfitting

work at stage 1, it is optimal to process more outfitting work at stage 2.

In case 9, CO2 is increased from 1 to 3, which means the variation of processing

outfitting work at stage 2 is very large. The numerical result shows that the optimal

percentage is α∗ = 1 and the system expected cycle time is CT ∗(α) = 0.975. α∗ = 1

because the processing time and variation of outfitting at stage 2 is large. Therefore,

it is optimal to never process outfitting at stage 2. CT ∗(α) = 0.975 is the same as
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the CT ∗(α) in case 5. This is because that there is no outfitting being processed at

stage 2. Therefore, the value of CO2 is not involved in calculating CT ∗(α).

Case 10 is an extreme case. CO1 = 10, i.e. the variation of processing outfitting

work at stage 1 is very large. The optimal percentage is α∗ = 0 and the system

expected cycle time is CT ∗(α) = 1.55. Figure 4.5 shows that the system expected

cycle time CT ∗(α) almost linearly increases with α. This extreme case shows that

when the variation of the outfitting processing time at stage 1 is very large, the

optimal control is achieved by never processing any outfitting at stage 1.

Figure 4.5: Case 10: α∗ = 0

Using the close-form equation, the optimal percentage of total outfitting work

processed at each stage can be calculated under any scenario. Each test-suite al-

lowed for definitive conclusions to be drawn. Test-suite 1 showed that the variation

of processing time significantly impacts the system performance. It is specifically sig-

nificant to note that, although the processing time of outfitting at stage 2 is greater

than the processing time at stage 1, it is most favorable to distribute some outfit-

ting work at stage 2, instead of processing all of the outfitting work at stage 1 with

variation in the system. Test-suite 2 results indicated that it is optimal to process

more outfitting at stage 2 when the sub-assembly work at stage 1 is slow. Test-suite
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3 showed that when the variation of processing time at stage 1 is large, it is optimal

to process more outfitting at stage 2. It also showed that CT (α) is more sensitive

to changes of the CV values in outfitting time than the changes of the CV values

in sub-assembly processing time at stage 1 and grand block assembly time at stage

2. This information can be very useful for the strategic level management, and to

compare how close the current system control of outfitting is to the optimal plan-

ning results. This model also provides a quantitative understanding of the impact of

variation in the ship production system.

Although this open queueing model provides the percentage of outfitting work that

should be distributed at each stage, there is no control involved and it is still unknown

when to do outfitting for each block at the execution level. In the next section, a

dynamic closed queueing model formulated using a Markov Decision Process (MDP)

will be presented. This MDP model provides more precise optimal control policies

with system dynamics.

4.3 Execution Level Model: A Closed Queueing Network Model

A dynamic queueing model is developed in this section to search for an efficient

control policy which can allocate the outfitting work according to the system states.

Similar to the open queueing model described in the previous section, there are three

tasks within the closed queueing network model: sub-assembly work (S), grand block

assembly work (A), and outfitting work (O). Task S can only be processed at stage 1

and task A can be only processed at stage 2, while task O can either be processed at

stage 1 or stage 2. The main difference between this dynamic model and the static

model in the previous section is that there are infinite workshops at the second stage.

There are two reasons it is necessary to allow for infinite workshops at the second
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stage: (1) in the shipbuilding process, a structurally finished block will be moved to

next stage immediately and human labor is quite flexible to complete work; and (2)

from the modeling perspective, infinite workshops at the second stage prohibits block

buffer queueing after the first stage. Therefore, the model does not need to record

the block sequence released from stage 1. This will simplify the model significantly,

especially for the MDP model (with memoryless property). Instead of Bernoulli

trials, which was utilized in the static model, the action at stage 1 can be controlled

in this model. Figure 4.6 illustrates

Figure 4.6: Two Stage Outfitting Model

The processing times for all the tasks are exponential distributed. The processing

rates of task S and task A are µS and µA. The processing rate of sub-assembly

work plus outfitting work at stage 1 is µSO, and the processing rate of grand block

assembly work plus outfitting work at stage 2 is µAO. CSO is the cost per unit time

of the outfitting work being processed in the first stage, and CAO is the cost per

unit time of the outfitting work being processed in the second stage. γ is the reward

rate of the finished block. The entire system is under CONWIP release policy with

CONWIP level K. The objective is to effectively allocate the outfitting work to
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minimize the long run average cost.

4.3.1 Literature Review

A similar model with three tasks and a two-stage queueing network under CON-

WIP job release policy has been studied in [9]. They consider a problem with optimal

work sharing between two adjacent workers, each of whom processes a fixed task in

addition to their shared tasks, and uses a MDP model that develops a threshold

worksharing policy which can improve the system throughput and lower the WIP

level.

Much work has been done in the field of CONWIP systems. In [25] they consider

two station lines with exponential processing times and use Markov chain models to

demonstrate the effectiveness of the Shortest Processing Time first (SPT) type of

policies. In [10] they study a CONWIP system with two cross-trained workers and

characterize an optimal worker-to-task assignment policy, which is a Fixed before

shared principle prioritizing serving the fixed task. [27] introduces a new canonical

model of zone-based cross-training workers and develops a methodology to employ it

in U-shaped CONWIP lines. [3] consider a two-stage dynamic line balancing model

under partial cross-training and define the trade-off between investing in Work-In-

Process (WIP) and investing in workers.

The difference in our work is that there is infinite work capacity at second stage,

and the outfitting work is agile to perform at either stage, but with different pro-

cessing times and costs. The objective also considers the throughput reward. It is

challenging to design an effective control policy to balance the production cost and

the system throughput at same time. In the next section, a Markov Decision Process

is developed to analyze the system and structure the optimal control policy.
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4.3.2 Markov Decision Process Formulation

Defining the system state is the first step to formulate a MDP model. The state

variables are {nS, nSO}. nS is the number of blocks that only have steel work at the

second stage. nSO is the number of blocks that have both steel work and outfitting

work at the second stage. Let Λ denote uniformization factor and Λ = µS + KµA.

The objective is to minimize the long run average cost per stage. Let Jk+1(nS, nSO)

denote the optimal k-stage cost to go function, and set the terminal cost function,

Jk+1(nS, nSO) = 0.

Jk+1(nS, nSO) =
1

Λ
[11{

nS≥1
}nSµAO(−γ + Jk(nS − 1, nSO))

(4.14)

+ 11{
nSO≥1

}nSOµA(−γ + Jk(nS, nSO − 1))

+ 11{
nS+nSO<K

}min{µSO[CSO + Jk(nS, nSO + 1)] + (µS − µSO)Jk(nS, nSO)),

µS[CAO + Jk(nS + 1, nSO)]}

+ (Λ− 11{
nS≥1

}nSµAO − 11{
nSO≥1

}nSOµA − 11{
nS+nSO<K

}µS)Jk(nS, nSO)].

In the value iteration (4.14), the first term and second term denote the job

throughput (or departure) from the second stage. Indicator function 11
{
nS ≥ 1

}
provides the constraint that there is at least one block without outfitting at the sec-

ond stage, and that the probability of finishing the block is nSµAO
Λ

. The 11
{
nSO ≥ 1

}
indicator function provides the constraint that there is at least one block with outfit-

ting at the second stage, and that the probability of finishing the block is nSOµA
Λ

. γ is

the reward rate of the finished block. In this study, γ is negative since the objective

is to minimize the cost.

The third term in this function is the decision term, which determines whether
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to process outfitting at stage 1 or stage 2, to minimize the cost per stage. Indicator

function 11
{
nS + nSO < K

}
provides the constraint that there is at least one block

at stage 1 (nS + nSO indicate the total number of blocks at stage 2). The last term

is the uniformization term.

4.3.3 Numerical Examples

To gain insight into the structure of the optimal control policy, a set of illustrative

numerical examples that is based on the MDP formulation is presented in Table 4.7.

The CONWIP level K is 10 for all test cases.

Cases 1 2 3 4 5 6 7 8
K 10 10 10 10 10 10 10 10
CAO 1 1 1 1 2 2 2 1
CSO 1 1 1 1 2 2 1 2
γ 2 2 2 2 1 1 1 1
µS 5 5 5 5 5 5 5 5
µSO 2.5 3.5 2.5 2.5 3.75 3.75 3 3
µA 1 1 1 1 0.5 0.5 1 1
µAO 0.1 0.1 0.01 0.75 0.375 0.35 0.5 0.5

Table 4.7: Numerical Example Test Cases

Figure 4.7 illustrates the numerical results of test cases 1 and 2. The x-axis is nS,

the number of blocks without outfitting at second stage, and the y-axis is nSO, the

number of blocks with outfitting at the second stage. In this figure, “1” denotes that

the optimal action at that particular state is processing outfitting at stage 1, while

“2” denotes that the optimal action at that particular state is completing outfitting

at stage 2. “0” wound denote the infeasible states since nS + nSO < K, and is

therefore not found here.

Cases 1 through 4 are cases where γ > min{CSO, CAO}, when the system has a

larger reward on throughput, and the optimal control policy aims to improve the

system’s efficiency. In case 1, µS = 5, µSO = 2.5, µA = 1, and µAO = 0.1, which

satisfy the constraint 1
µAO
− 1

µA
> 1

µSO
− 1

µS
, i.e. the outfitting at the second stage
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(a) Case 1 (b) Case 2

Figure 4.7: Outfitting MDP Numerical Example 1: γ > min{CSO, CAO}

takes more time. Figure 4.7 (a) shows that when nS and nSO are smaller than a

certain threshold, outfitting should be completed at stage 2. In all other cases, it is

more favorable to complete outfitting at stage 1. Logically, when nS and nSO are

small, there are not many blocks at the second stage, and it is not efficient to idle the

workshops (or workers) at second stage. Therefore, it is optimal to process outfitting

at the second stage when when nS and nSO are small. When there is a sufficient

amount of jobs at the second stage, it is more favorable to process outfitting at first

stage since the single workshop at first stage is more efficient with outfitting work.

For case 2, µSO increases from 2.5 to 3.5, which indicates the process of outfitting at

first stage is more efficient. Figure 4.7 (b) shows that the optimal control will assign

more outfitting work to stage 1 and less outfitting work to stage 2.

In case 3, the processing rate of outfitting at second stage, µAO, is set to be

decreased from 0.1 to 0.01. Figure 4.8 (a) shows the scenario where outfitting is only

processed at the second stage, when nS = 0 and nSO is smaller than a threshold.

Most outfitting work should be processed at stage 1. In case 4, µAO increases from 0.1
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(a) Case 3 (b) Case 4

Figure 4.8: Outfitting MDP Numerical Example 2: γ > min{CSO, CAO}

to 0.75. Figure 4.8 (b) demonstrates a scenario where all outfitting processing occurs

at stage 2. Although processing outfitting at the second stage is less efficient than

processing outfitting at first stage, it is still optimal to complete all of the outfitting

at the second stage because there are infinite workshops at the second stage and the

capacity is much larger than stage 1. Therefore, to maximize the system throughput

(since γ > min{CSO, CAO}), it is optimal to use all the capacity at second stage.

Case 5 and 6 are the cases where γ < min{CSO, CAO}, i.e. the throughput reward

is smaller than the cost for each block. Therefore, the optimal control policy will

focus on minimizing the cost instead of throughput. Case 5 is depicted in Figure 4.9

(a) and shows an “opposite” threshold control policy as compared to case 1: when nS

and nSO are smaller than a threshold, outfitting should be processed at the first stage,

and when nS and nSO are greater than a threshold, outfitting should be processed

at the second stage. In case 6, the processing rate of outfitting at second stage, µAO,

decreases from 0.375 to 0.35. Figure 4.9 (b) shows that there is more outfitting being

processed at the second stage. This seems counterintuitive since processing outfitting
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(a) Case 5 (b) Case 6

Figure 4.9: Outfitting MDP Numerical Example 3: γ < min{CSO, CAO}

at the second stage is less efficient than in case 5, there should be less outfitting work

processed at the second stage. However, because γ < min{CSO, CAO}, the optimal

control policy from MDP will slow down the system’s throughput and minimize the

cost from CSO and CAO.

(a) Case 7 (b) Case 8

Figure 4.10: Outfitting MDP Numerical Example 4: Change of CSO and CAO

Case 7 and 8 exemplify the impact of changing CSO and CAO on the optimal
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control policy. In case 7, CAO = 2, CSO = 1, and γ = 1, which indicates that it

costs more to process outfitting at the second stage. Figure 4.10 (a) shows that it

is optimal to process all the outfitting work at stage 1. In case 8, CAO = 1 and

CSO = 2, which indicates it costs more to process outfitting at first stage (which

is in the actual shipyard, but this case is sued solely to show how cost can impact

the optimal control policy). Figure 4.10 (b) shows that it is optimal to process all

the outfitting work at stage 2. Case 7 and 8 show that CSO and CAO play a very

important role in the control of allocating outfitting work to the most beneficial

stages.

The numerical study shows that the optimal threshold policy is very complex. In

the next section, we use the Mean Value Analysis to analyze the model and gain

some insight for the optimal control policy structure.

4.4 A Static Model for Mean Value Analysis

CONWIP models can be analyzed by using a technique known as Mean Value

Analysis (MVA). MVA calculates the mean queue size, mean waiting times, and

throughput in a closed queueing network by utilizing a product-form solution. MVA

is specifically used here in order to provide an approximate model for further un-

derstanding the system behave under different circumstances. One difference from

the dynamic model is that instead of controlling the outfitting activities at the first

stage, an independent and identically distributed (i.i.d.) sequence of Bernoulli(α)

is used to randomly select the outfitting work to be processed at stage1 or stage 2.

This is because that applying Mean Value Analysis requires a clear defined static

queueing structure and it is very difficult to solve the dynamic queueing model using

MVA. Figure 4.11 illustrates this static queueing model using Bernoulli(α) to select
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the outfitting work.

Figure 4.11: Mean Value Analysis Model

π1 and π2 are used to demonstrate the equilibrium distribution of stage 1 and

stage 2. π1 = π2 = 1 since this is a tandem, two stage closed queue that requires

all jobs going through stage 1 to also go through stage 2. µ1 and µ2 are the average

processing rates at stage 1 and stage 2 when K = 1, where 1
µ1

= α 1
µSO

+ (1− α) 1
µAO

and 1
µ2

= α 1
µA

+ (1− α) 1
µAO

. Wi(n) is the average job waiting time at stage i with n

jobs in the system. Li(n) is the average queue length at stage i with n jobs in the

system. λi(n) is the throughput rate at stage i with n jobs in the system.

4.4.1 Recursive Function and Iteration

When K = 1, the average waiting time at stage i is:

Wi(1) =
1

µi
, i = 1, 2(4.15)

The average throughout rate at stage i is:

λi(1) =
1

π1W1(n) + π2W2(n)
, i = 1, 2(4.16)

Based on Little’s Law, the average queue length is as follows:

Li(1) = λi(1)Wi(1), i = 1, 2(4.17)
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For K = n, the recursive equations are as follows:

W1(n) = (L1(n− 1) + 1)
1

µ1

(4.18)

W2(n) =
1

µ2

(4.19)

λi(1) =
n

π1W1(n) + π2W2(n)
, i = 1, 2(4.20)

Li(n) = λi(n)Wi(n), i = 1, 2(4.21)

The objective to minimize the long run average cost and the cost function is:

(αCSO + (1− α)CAO − γ)λ(α,K)(4.22)

The goal is to find the optimal α∗ that minimizes the cost function. In the next

section, some numerical examples will be presented to evaluate the performance of

this MVA model.

4.4.2 Numerical Example

The test-suite detailed in Table 4.8 is designed to provide some comprehension

behind how the change of CONWIP level K and various system dynamics may impact

the optimal α∗.

K 3, 5, 10
CAO 1
CSO 1
γ 3
µS 5
µSO 3
µA 5
µAO 2.5 ∼ 0.1

Table 4.8: MVA Test-Suite

Figure 4.12 represents the numerical example. The y axis in this graph is the

value of α∗, the optimal fraction of outfitting work to be processed at stage 1. The
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x axis is the value of µAO. µAO decreases from 2.5 to 0.1, indicating that it will

take longer to process outfitting work at stage 2. When µAO is large, α∗ = 0, which

shows that it is optimal to process all the outfitting work at stage 2. When µAO

is small, α∗ = 1, which means it is optimal to process all the outfitting work at

stage 1 when processing outfitting at stage 2 takes too long. α∗ increases when µAO

decreases indicating that when the process of outfitting work at stage 2 is becoming

less efficient, more outfitting work should be processed at stage 1.

The difference lines show that when K increases, less outfitting work should be

processed at stage 1 and more outfitting work will be processed at stage 2. It is

because the capacity of stage 1 is one and the capacity of stage 2 is infinite. Therefore,

when CONWIP level K increases, more outfitting work assigned to stage 2 can reduce

the congestion at stage 1, while maintaining a high system throughput.

Figure 4.12: MVA Numerical Example

The numerical example shows a very reasonable behavior of the static model ana-

lyzed by MVA. The purpose of developing the MVA model is to use the information
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provided by this MVA model and design an effective policy to control the dynamic

model. Therefore, it is necessary to compare the performance between the MVA

model and MDP model and analyze the difference system behavior.

4.4.3 MVA vs MDP

To compare the performance between the dynamic model and static model, the

absolute percentage optimality gap is applied as the performance matrix. Let Z(α∗)

denote the optimal cost of MVA, and λ∗ denote the optimal cost from the MDP. The

absolute percentage optimality gap |G| is defined as follows:

(4.23) |G| = |Z(α∗)− λ∗

λ∗
| · 100%.

We use the same test-suite as described in Table 4.8 to compare the optimal cost

from both the MVA and MDP models. Figure 4.13 illustrates the optimal cost of

MVA and MDP with the CONWIP level K = 3.

Figure 4.13: MVA vs MDP: K = 3

Figure 4.13 shows that the optimal cost from the MDP model is always smaller or

equal to the optimal cost from the MVA model, which indicates the dynamic model
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has better performance. The graph also illustrates that when α∗ = 0 or α∗ = 1, the

absolute percentage optimality gap |G| is equal or close to 0. α∗ = 0 indicates that

it is optimal to process all outfitting work at stage 2, while α∗ = 1 indicates that it

is optimal to process all outfitting work at stage 1. The optimal control policy from

MDP model matches the output from MVA model, which shows that when α∗ = 0,

the optimal policy is a strict priority policy that process all the outfitting work at

stage 2, while when α∗ = 1, the optimal policy is to process all the outfitting work at

stage 1. Therefore, when α∗ = 0 or α∗ = 1, the performance of MVA model (static

model) and MDP model (dynamic model) are the same. When 0 < α∗ < 1, MDP

mode has a better performance than the MVA model since the optimal cost from

MDP model is smaller. The largest absolute percentage optimality gap |G| is when

α∗ ≈ 0.5, where |G| = 5.53%. Therefore, when 0 < α∗ < 1, the system is under

the most complex circumstances and it is necessary to utilize the dynamic model to

provide an optimal control policy based on the system dynamic.

Figure 4.14: MVA vs MDP: K = 10

Figure 4.14 illustrates the cost of the MVA model and the MDP model when the
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CONWIP level K = 10. The absolute percentage optimality gap |G| decreases when

the CONWIP level K increases. When there are more jobs in the system, it is less

sensitive to the “mistake” made by the random decision from Bernoulli trial in the

MVA model, since more jobs in the systems, less chance to idle the workshops at both

stage 1 and stage 2. Therefore, the performance of the MVA model is approaching

the efficiency of the MDP model when the number of jobs K increases in the system.

The numerical study above shows that the MVA model is a good approximation

of the MDP model, and the information provided by the MVA model should be

valuable for designing the heuristic for controlling the dynamic model. In the next

section, a regression based threshold policy is designed using both information from

the MVA model and the MDP model.

4.5 A Regression Based Threshold Policy

In this section, the goal is to develop a heuristic which is effective in controlling

the outfitting activities and also simple to implement.

4.5.1 Conditions for Threshold Policy Type

Based on a large test-suite, the structure of the optimal control policy is a thresh-

old type policy and there exist two types. Let n∗S(nSO) and n∗SO(nS) denote the

optimal threshold for nS and nSO. The type 1 threshold policy, shown in Figure 4.15

(a), illustrates that when nS ≤ n∗S(nSO) and nSO ≤ n∗SO(nS), it is best to process

outfitting at stage 2; otherwise, process outfitting at stage 1. The type 2 threshold

policy in Figure 4.15 (b) indicates that when nS ≤ n∗S(nSO) and nSO ≤ n∗SO(nS),

outfitting should be completed at stage 1; otherwise, process outfitting at stage 2.

The type 1 and type 2 threshold policies shows a completely opposite policy struc-

tures, and the question remains discovering what the ideal conditions for each type
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(a) Type 1 Threshold Policy (b) Type 2 Threshold Policy

Figure 4.15: Threshold Policy Types

of policy are. Based on the results of a large test-suite which includes more than

10,000 cases, the conditions for type 1 and type 2 policies are as follows:

1. When γ = min{CSO, CAO}, the optimal cost of the MDP model λ∗ → 0 and the

optimal cost of MVA model Z(α∗) = 0 for most cases as well. The optimal control

policies are strict priority policies that process outfitting at stage 1 when CAO ≥ CSO,

and complete outfitting at stage 2 otherwise.

2. When γ > min{CSO, CAO}, the optimal cost of the MDP model λ∗ < 0. The

optimal control policies are type 1 threshold policy (including the strict priority poli-

cies).

3. When γ < min{CSO, CAO}, the optimal cost of teh MDP model λ∗ > 0. The opti-

mal control policies are type 2 threshold policy (including the strict priority policies).

The condition γ > min{CSO, CAO} indicates that the reward for each block is

larger than the cost for each block. This condition is reasonable, since the production

line should be profitable. Therefore, the focus is to deign a threshold policy under
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the condition γ > min{CSO, CAO}, which is the condition for the type 1 threshold

policy.

4.5.2 The Regression Model

Instead of having n∗S(nSO) and n∗SO(nS) for each nS and nSO, a simplified heuristic

is designed to capture the main features of the optimal threshold policy. Figure 4.16

shows the structure of this heuristic. This threshold policy has two variables n∗S and

n∗SO, which are the intercepts for the threshold line. When nS is smaller than the

threshold line, outfitting is processed at stage 2; otherwise, outfitting is processed

at stage 1. This is an approximation of the optimal threshold policy, and shows

that the performance of this heuristic is very close to optimal. The optimal policy,

based on a test-suite with approximately 2,000 cases, is only 0.03% better than this

heuristic’s performance. However, it is challenging to search for the n∗S and n∗SO.

Figure 4.16: Type 1 Threshold Policy Regression Model

A regression model is developed to approximate the threshold intercepts n∗S and

n∗SO. Let ñ∗S and ñ∗SO denote the threshold intercepts approximated by the regres-

sion model. Figure 4.17 shows that the regression model uses the information from
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both the MVA model and MDP model. There are four predictors from the MVA

model: (1) α∗, the optimal percentage of outfitting work processed at stage 1; (2)

n̄S, the average number of blocks without outfitting at stage 2; (3) n̄SO, the average

number of blocks with outfitting at stage 2; and (4) λ, the system throughput of the

static model. K,CAO, CSO, γ, µS, µSO, µA, µAO are the system parameters from the

MDP model. Some second-order terms of system dynamics are also included, such

as ln(K),
√
K,CAOµS, CSOµSO, γµA, γµAO. In total there are 16 predictors. For-

ward Stepwise Selection is applied to select the significant predictors amount the 16

predictors.

Figure 4.17: Regression Structure

Data Selection for the Regression Model

Discovering how to design a test-suite to collect data for the regression model

is essential. In our test-suite, CONWIP level K is divided into small groups for

each regression equations to make the regression model more accurate Table 4.10

represents the test-suite for the regression when K ∈ 5, 6, 7, 8, 9, 10. This test-suite
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satisfies the constraints that µS > µSO and µA > µAO. Only the test cases that

satisfy the constraints were selected: (1) 1
µAO
− 1

µA
> 1

µSO
− 1

µS
, the outfitting at

second stage takes longer time; (2) γ > min{CSO, CAO}, reward for each block is

larger than the minimum cost. This test-suite provides 13,824 test cases.

K 5, 6, 7, 8, 9, 10
CSO 5
CAO (0.5, 1, 2, 4)× CSO

γ (1, 2, 4)× CSO

µS 1, 2, 5
µSO (0.75, 0.5, 0.1, 0.01)× µS

µA (1.5, 1, 0.5, 0.1)× µS

µAO (0.75, 0.5, 0.1, 0.01)× µA

Table 4.9: Regression Test-Suite

Half of the test-suite is randomly selected from Table 4.10 and ran through both

the MDP model and MVA model to collect the data for the regression. The other

half of the test-suite is used to test the performance of the regression threshold pol-

icy. Forward Stepwise Selection selected the significant predictors and the regression

equation of ñ∗S and ñ∗SO for K ∈ 5, 6, 7, 8, 9, 10 are as follows:

ñ∗S =3.982− 4.614α∗ + 0.6761K − 0.0829CAO + 0.1627n̄S + 0.00308γµA − 0.313µSO

(4.24)

+ 0.1579 ¯nSO + 0.126µS + 0.015γ − 1.69 ln(K) + 0.062λ

ñ∗SO =2.201− 4.246α∗ + 0.5103K − 0.1421CAO + 0.0418γ + 0.01404γµA − 0.049γµAO

− 0.309µSO + 0.212 ¯nSO + 0.133n̄S + 0.422µAO + 0.1µA − 0.0022CAOµS

Forward Stepwise Selection selected 11 predictors for the regression equation of ñ∗S

with an R2 value of 88.19%, while 12 predictors have been selected for the regression

equation of ñ∗SO with an R2 value of 81.05%. The most significant factor for both

equations is α∗. This is an interesting result, since α∗ is calculated by the static model
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using Mean Value Analysis; however, it is able to capture the feature of the nonlinear

queueing dynamics properly. If α∗ is the only variable used as the predictor, the R2

value is 76.98% for ñ∗S and 63.29% for ñ∗SO. K is the second most significant factor

in the regression equations.

It may be preferable in application to use some simpler regression equations with

less predictors. If α∗ and K are the only predictors in the regression, the R2 value

is 84.21% for ñ∗S and 71.10% for ñ∗SO. The equations are as follows:

ñ∗S =2.897− 5.973α∗ + 0.4945K(4.25)

ñ∗SO =2.811− 5.792α∗ + 0.5514K

Equation (4.25) is much simpler than equations (4.24) in terms of number of

predictors. The simpler regression equations provide alternatives when it is applied

in the real world given different circumstances. In this thesis, equations (4.24) are

applied to obtain the thresholds, since they have the most accurate approximations.

Performance of Regression Model

The heuristic is tested in the MDP model using the threshold level provided by

equations (4.24). A test-suite in Table 4.10 is designed to test the performance of

the regression threshold policy.

K 6
CAO 5
CSO 5
γ 10
µS 5
µSO 3
µA 5
µAO 2.5 ∼ 0.1

Table 4.10: Regression Test-Suite
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Figure 4.18 shows the optimal costs of the MVA model, optimal cost of the MDP

model, and the cost of the MDP model under control of the regression threshold

policy. The y axis in this figure is the cost and the x axis is the µAO. The performance

of the MDP model under control of the regression threshold policy is always better

or equal to the performance of the MVA model. When µAO is large, where α∗ = 0,

the performance of the optimal MDP model, MVA model, and the dynamic model

under control of regression threshold policy is the same (or very close). When µAO

decreases, the cost difference between the model and MVA model increases. This is

also the circumstances where the regression threshold policy performs better than

the MVA model. The performance of the regression threshold policy is very close to

the performance of the optimal control policy.

Figure 4.18: MVA, MDP, and Regression Comparison: K = 6
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4.5.3 Design of the Heuristic

The previous test case shows that the performance of the MVA model matches the

performance of the MDP model when α∗ = 0 or α∗ = 1 and the regression threshold

policy greatly improves the performance of the MVA model when 0 < α∗ < 1.

Therefore, a heuristic is designed to combine both the MVA model and Regression

Threshold policy as in Figure 4.19.

Figure 4.19: Heuristic Design

The algorithm of this heuristic is:

(1) Run the MVA model and calculate the value of α∗.

(2) If α∗ = 1, process all the outfitting at stage 1. If α∗ = 0, process all the outfitting

at stage 2,

(3) If 0 < α∗ < 1, apply Regression Threshold Policy.

The absolute percentage optimality gap is utilized as the performance matrix.

Let ZH denote the cost of the dynamic system under control of the heuristic, and λ∗

denote the optimal cost from the MDP. The absolute percentage optimality gap |G|

is defined as follows:

(4.26) |G| = |Z
H − λ∗

λ∗
| · 100%.
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The other half of the test-suite in Table 4.10 aims to test the performance of this

heuristic. Table 4.11 presents the absolute percentage error of the performance of the

Heuristic (a combination of the Regression Threshold Policy and Mean Value Anal-

ysis), the Regression Threshold Policy, and Mean Value Analysis. The numerical

results show that this heuristic has the best performance with the mean of abso-

lute percentage error 0.79%. The mean absolute percentage error is 4.6% when the

system is only under control of Regression Threshold Policy. The mean of absolute

percentage error is 1.2% from the Mean Value Analysis model. The Heuristic has

the best performance and very close to optimal.

Policy Mean Std. Dev. Max Min
Heuristic 0.79% 2.59% 27.38% 0

Regression Threshold 4.6% 12.69% 198.9% 0
Mean Value Analysis 1.2% 3.31% 18.64% 0

Table 4.11: Heuristic, Regression Threshold, and Mean Value Analysis Comparison in Percentage
Error

4.6 Conclusion and Future Work

The objective of this chapter is to improve the outfitting scheduling to make

shipbuilding processes more efficient. The outfitting process is a very complex process

to plan and control. Ideally, it is more cost effective and also time efficient to finish

outfitting work in the early stages. However, due to the disturbances by unexpected

delays and capacity limitations, outfitting work is frequently delayed. The problem

is determining how much outfitting work can be delayed and how to distribute the

outfitting work at each stage to keep the system productive.

At strategic level, a static open two-stage queueing model of outfitting is developed

to provide information on how to optimally distribute the outfitting work at each

stage in the shipbuilding process. This approach is particularly beneficial when there
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is capacity misalignment which cannot be changed in the short term. A closed form

equation for system cycle time is provided in this paper by applying Kingman’s

equation from the queueing theory. Using the closed form equation, the optimal

percentage of total outfitting work processed at each stage can be calculated given

any scenario.

Although the static open queueing model provides the percentage value of outfit-

ting work that should be distributed at each stage, there is no control involved and

it is still unknown when to complete outfitting for each block in the execution level.

Therefore, at the execution level, a dynamic closed queueing model is formulated and

analyzed using a Markov Decision Process (MDP) and Mean Value Analysis (MVA).

To simplify the model, we assume the capacity at stage 2 is infinite. The control

actions are to processing outfitting work at stage 1 or stage 2. There is cost asso-

ciated with each decision as well. To include the throughput as part the objective

as well, we introduced the reward for each throughput. The MDP formulation can

provide the optimal cost and optimal control policy (given any state, the optimal

action) numerically. The optimal control policy is a threshold type. However, due

to the complexity of the MDP formulation, it is very hard to find any closed-form

solution to calculate the threshold level dynamically.

To gain more insight into the dynamic system, Mean Value Analysis (MVA) is

used to analyze the static version of the model. Instead of dynamic control, we use

Bernoulli trials with parameter (α) again in this model as a approximation. This

model maintains the same system dynamics and cost. The main objective is to find

the optimal α∗ that minimizes the average cost. Mean Value Analysis can provide

the information of optimal α∗, and also other system features, including the average

waiting time, the average queue length, and the throughput at each station. We use
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the information provided by the static model and also the value of system parameters

to search a regression based threshold policy. The Regression Threshold has better

performance when 0 < α∗ < 1, and the static model can provide more accurate

conditions for strict priority rule (when α∗ = 0 or 1). Therefore, the heuristic is

designed to combine both Regression Threshold Policy and Mean Value Analysis.

The test shows that the performance of the heuristic is very close to the optimal.



CHAPTER V

Conclusions

The U.S. shipbuilding industry requires new production methodologies to reduce

cost and, once again, become a leading competitor in the international shipbuild-

ing industry. This research specifically introduces operational flexibility and Con-

stant Work in Process (CONWIP) concepts to analyze the systems and optimize key

performance measures such as cost, throughput, work in process, and cycle time.

Additionally, efficient and robust dynamic control heuristics are designed to control

the new flexible queueing network models in this research. These objectives are

achieved through use of queueing theory, stochastic control, statistical analysis, and

simulation. The models and major results in this research include:

1. An innovative flexible block assembly system that does not require expanding

resource capacities. When examined under simulation, this model showed significant

reduction in variation of block assembly time. In addition, an effective policy was

developed to control flexible work station to minimize holding cost.

2. The development of a closed queueing network for the hull construction under

control of CONWIP discipline and simulations showed 13% to 28% improvement on

the system throughput by flexibility. CONWIP discipline enhanced the planning

system with easier implementation and more robust control than current MRP sys-

128
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tem. This model also provided a capacity planning strategy for the flexible resource

in shipyard.

3. The design of a stochastic model for the scheduling and planning of the ship

outfitting processes, which provided (1) the improved outfitting planning information

at strategic level; (2) a dynamic control policy with quick response to system delays

and variations.

The theoretical contributions of the work lie in designing and controlling the new

flexible queueing network problems. Chapter II investigated the control of the “N”

structure network with no preemption allowed. The “N” structure network is a

simple model with partial flexibility, but dynamic control of “N” problem is difficult

to obtain and still an unresolved area of research. The non-preemption assumption

in this model causes it to be more complicated to control. In this research, we

developed a threshold policy to control the non-preemptive “N” queueing network,

and the numerical study shows the performance of this model is very close to optimal.

Chapter III introduces the CONWIP release policy to the “N” structure queueing

network. Within this model, there is a job sequence constraint for the final workshop

at the execution level which makes the control policy more complicated. However,

the flexibility resource is more valuable and beneficial for the system with the job

sequence constraint, since the flexibility can provide a more robust control which can

allocate job dynamically according to the job sequence constraint. In Chapter III,

the capacity-planning strategy of flexibility of “N” structure is also explored. An

MDP model is formulated to analyze the optimal capacity plan, and the numerical

results show that the flexible system has a greater average profit than the inflexible

system, and the system with a larger capacity of flexibility maintains a high profit.

For future research, we plan to continue the flexibility capacity planning research.
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The previous research has developed approaches that focus on local optimization

of flexibility at execution level. However, it is also essential to identify ways to

decompose the planning and scheduling so that local optimization is aligned with

system performance for the control of flexibility at strategic level.

Another interesting research area is Global Shipbuilding Supply Chain Manage-

ment (SCM). Shipbuilding is a very unique manufacturing industry and has tremen-

dous opportunities to improve the system performance using SCM. We also can

introduce flexible suppliers or outsourcing agents to improve the supply chain’s sta-

bility, and to mitigate the risk of system disruptions due to the natural or various

other uncontrollable disasters, in order to enhance the entire shipbuilding industry

worldwide.
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