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ABSTRACT

Statistical techniques for exploratory analysis of structured
three-way and dynamic network data

by

Shawn Mankad

Advisor: George Michailidis

In this thesis, I develop different techniques for the pattern extraction and visual ex-

ploration of a collection of data matrices. Specifically, I present methods to help home

in on and visualize an underlying structure and its evolution over ordered (e.g., time)

or unordered (e.g., experimental conditions) index sets. The first part of the thesis

introduces a biclustering technique for such three dimensional data arrays. This tech-

nique is capable of discovering potentially overlapping groups of samples and variables

that evolve similarly with respect to a subset of conditions. To facilitate and enhance

visual exploration, I introduce a framework that utilizes kernel smoothing to guide

the estimation of bicluster responses over the array. In the second part of the thesis,

I introduce two matrix factorization models. The first is a data integration model

that decomposes the data into two factors: a basis common to all data matrices, and

a coefficient matrix that varies for each data matrix. The second model is meant for

visual clustering of nodes in dynamic network data, which often contains complex

evolving structure. Hence, this approach is more flexible and additionally lets the

basis evolve for each matrix in the array. Both models utilize a regularization within

x



the framework of non-negative matrix factorization to encourage local smoothness

of the basis and coefficient matrices, which improves interpretability and highlights

the structural patterns underlying the data, while mitigating noise effects. I also

address computational aspects of applying regularized non-negative matrix factor-

ization models to large data arrays by presenting multiple algorithms, including an

approximation algorithm based on alternating least squares.
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CHAPTER I

Introduction and Literature Review

1.1 Overview

An important problem underlying many emerging statistical applications is to dis-

cover how components interact with each other in massive, complex systems, where,

due to technological advances, researchers can collect data over time or in different

conditions at the component level. Given the complex nature of the data, visual

exploration and pattern extraction arguably have increased importance to decision

making processes, and can contribute towards performing a number of critical tasks.

For instance, learning the underlying structure and summarizing its evolution can

be used to compress and organize large sized data. Exploratory and clustering tech-

niques can also facilitate decision making by simplifying the complex structure of the

data and pinpointing important patterns. As an example, in gene expression data,

identifying groups of genes that are co-expressed under different conditions can im-

prove disease diagnosis and further our understanding of gene regulatory networks.

With economic data, uncovering sectors that respond similarly to the ebbs and flows

of the larger economy can improve resource allocation and policy decisions.

In this dissertation, it is assumed the data is structured, that is, I observe many

samples for a number of variables across different time points or experimental con-

ditions. Such data can be organized into three-dimensional (three-way) arrays, with
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the first two dimensions corresponding as usual to samples and variables, respectively,

while the third dimension to time or experimental conditions. This is a reasonable

assumption for many real world problems. For instance, in genomics and economics,

data arrays commonly feature samples (genes or individuals, firms, etc.) on the rows

and covariates on the columns. The third depth dimension corresponds to time, so

that the data array can be conceptualized as a time-series of individual data matrices.

Data arrays in pharmacology commonly feature a third dimension that indexes dose

levels (experimental conditions).

A major challenge in analyzing such data arrays is that the additional dimension

does not allow straight-forward application of most statistical techniques. For in-

stance, consider the following approaches. One may proceed by collapsing the third

dimension and working with a single two dimensional matrix. However, this coarse

graining step masks the finer structure in the data that may be important for certain

analyses. Another option could be to analyze each data matrix independently and

then look for concordant patterns and features. However, this strategy ignores the

additional structure like time or conditions, and it may also be hard to interpret the

results.

This dissertation takes an approach that is between these direct strategies by

utilizing kernel smoothing and regularization for a variety of applications in clustering,

data integration, and visualization of three-dimensional data arrays.

Chapter II of this dissertation introduces a biclustering technique for three-way

data arrays. The main idea is to decompose each data slice into a series of addi-

tive layers that capture the underlying structure of the data. The new technique is

especially useful for discovering and characterizing the evolution through the data

of unknown and potentially overlapping groups of samples and variables. To en-

hance visual exploration and robustness, I introduce an algorithm that utilizes kernel

smoothing to guide the estimation of bicluster responses over the array. I also discuss

2



computational aspects by developing an estimation algorithm, and show it is capable

of handling large size data through numerical experiments.

In Chapter III, I introduce a regularized non-negative matrix factorization model

for a variety of applications in data integration and visualization of three-way data.

The goal is to find low rank representations of the data, where a common basis cap-

tures the most persistent structure, and factors at different times or conditions are

close together if they are in neighboring data slices. This local smoothness is encour-

aged through a penalization framework, where the size and amount of smoothing are

set by the user to influence the analysis.

Chapter IV introduces a variant of the model from Chapter III for visual cluster-

ing of nodes in dynamic network data. Such data often contains complex evolving

structure, and hence, this approach is more flexible and additionally lets the basis

evolve for each matrix in the array. A variant of the regularization and estimation

algorithm from the previous chapter are developed and illustrated on a variety of

synthetic and real world network data sets.

Possible extensions and future work are discussed in Chapter V.

1.2 Non-negative Matrix Factorization

Matrix factorizations have become part of the standard repertoire for pattern

identification and dimension reduction. The most common one is the Singular Value

Decomposition (SVD), which has fundamental connections to principal component

analysis (PCA), multi-dimensional scaling (MDS), among others, and is commonly

applied for such low-rank representations and analyses (Hastie et al., 2001).

The non-negative matrix factorization (NMF) is an alternative that has been

shown to be advantageous for visualization of non-negative data. Non-negative data

commonly occur in networks, as edges commonly correspond to flows, capacity, or

binary relationships. Image and text processing, and other applications in the social

3



sciences also frequently feature non-negative data.

NMF has been successfully employed in a diverse set of areas, including com-

puter vision (Lee and Seung , 1999), environmetrics (Paatero and Tapper , 1994), and

computational biology (Devarajan, 2008). There has been work that explains its

usefulness by posing it as a relaxed version of k-means and other spectral clustering

methods (Ding et al., 2005, 2008). It shares a common algebraic form with SVD,

since both factorizations approximate a given data matrix X ∈ Rn×p with an outer

product

X ≈ UV T , (1.1)

of two matrices U ∈ Rn×K , V ∈ Rp×K for K ≤ min{n, p}. The rank of the approxi-

mation is chosen similarly to other matrix factorizations to obtain a good fit to the

data while achieving interpretability.

The key difference between SVD and NMF are the constraints that are placed

on U and V . SVD imposes a particular geometry on the factorization, so that U

and V can each be viewed as coordinate systems that fit the data. In particular,

each (eigen)vector Ui is perpendicular to every other vector Uj, so that the collection

{U1, ..., UK} forms a lower dimensional orthonormal space that the data can be visu-

alized in. In addition, U satisfies UTU = I (orthonormality constraints). A similar

characterization holds for {V1, ..., VK}. In contrast, with NMF the orthogonality con-

straints are replaced with a restriction of non-negativity of the factorized matrices

(Lee and Seung , 1999, 2001). That is, every element of U and V is greater than or

equal to zero. The geometric characterization of SVD is traded for the enhanced in-

terpretability that comes from strictly additive combinations. For instance, consider

(1.1) in element form Xij =
∑K

k=1 UikVkj. Since each term is non-negative, each term

of the sum can be thought of as the contribution of cluster k to element Xij.

A standard objective function for NMF minimizes the Frobenius distance between

the given data and a lower dimensional reconstruction of it. In particular, the objec-
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tive function is

min
U,V
||X − UV T ||2F such that Uik, Vjk ≥ 0. (1.2)

The optimization problem is a challenging one, since the objective function is

convex in U only or V only, not in both simultaneously. Further, the non-negativity

constraint is not enough to guarantee uniqueness of the factors, so that the esti-

mates are always rescalable (scale invariant). For further discussion on the issue of

identifiability, see Wang and Zhang (2012) and references therein.

The benchmark algorithm for NMF was proposed by Lee and Seung (1999, 2001),

and is known as ‘multiplicative updating’. The algorithm can be viewed as an adap-

tive gradient descent, and was shown to find local minima of the objective function. It

is relatively simple to implement, but can converge slowly due to its linear convergence

rate (Chu et al., 2004). Even though this approach can be slow to converge, especially

as the algorithm approaches a limit point, in practice my extensive numerical work

shows that after a handful of iterations, the algorithm results in visually meaning-

ful factorizations. In Chapters III and IV, a multiplicative updating algorithm and

corresponding convergence results are developed.

There has been work indicating that this class of algorithms converges to less

satisfactory solutions (see Berry et al. (2006),Wang and Zhang (2012) and references

therein). Another popular and more flexible class of NMF algorithms is the alternat-

ing non-negative least squares algorithm (ANLS), first proposed for NMF in Paatero

and Tapper (1994) (see Kim and Park (2008) for a more recent reference). This type

of iterative algorithm exploits the biconvexity of the objective function by holding

one argument fixed at each step and solving for the other using constrained least

squares. The ANLS algorithm will converge to a local minimum of the objective

function, and at a faster convergence rate. However, the cost per iteration is higher

than multiplicative updating. In Chapter III, I discuss some technical challenges of

ANLS and develop an approximation algorithm that has been shown to work well in
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practice.

The methods introduced in Chapters III and IV rely on examining how lower

dimensional matrix representations evolve through the data, and controlling their

evolution using constrained optimization. The constraint strengths that control how

sensitive the matrix representations are to short term fluctuations are set by the user

to steer the analysis. The use of additional constraints in matrix factorizations is a

common technique to reveal additional structure within the data. I refer to this class

of models as penalized matrix factorizations, since usually the constraints are repre-

sented as penalties using the Lagrangian form of an objective function. In penalized

matrix factorizations, the factorized matrices are obtained through minimizing an ob-

jective function that consists of a goodness of fit component and a roughness penalty.

The strength of the penalty is set by the user, where a larger penalty encourages

smoother U and V . Penalized NMF has been explored extensively in previous works

to encourage sparsity or smoothness of the factors (see Berry et al. (2006); Chen and

Cichocki (2005); Hoyer (2002, 2004); Cai et al. (2011) and references therein).

Previous works usually consider a static setting, that is, applying factorization

to a single data matrix. This dissertation uses penalties as a way to extend matrix

factorization to a collection of matrices. Thus, the problem I consider poses additional

modeling challenges, because I observe many matrices, and does not directly fit into

existing approaches due to either the time series component or multiple, correlated

variables at each time point.

Non-negative tensor factorizations are also closely related to Chapters III and IV

(for overviews, see Cichocki and Zdunek (2007); Hazan et al. (2005); Welling and

Weber (2001); Cichocki et al. (2007)). In fact, NMF can be seen as a special case of

non-negative 2-dimensional tensor factorization. As a consequence of the generaliza-

tion, the optimization problems associated with tensor models are usually challenging,

and practical matters like displaying the estimates become nontrivial. Existing tensor
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factorizations differ from Chapter III in terms of the model and regularization frame-

work. For instance, the model in Chapter III uses a common basis. This reduces the

number of estimable parameters and is particularly suitable for data integration. The

regularization framework allows the detection of nonlinear and hidden structures in

the data by encouraging local smoothness. In Chapter IV, I utilize a new penalized

tensor approach to visualization and pattern extraction in dynamic networks.
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CHAPTER II

Biclustering Three-Dimensional Data Arrays with

Plaid Models

2.1 Introduction

A main focus in the literature about clustering has been on partitioning samples

into interpretable groups. However, in many applications it is more realistic to dis-

cover groups of both samples and variables due to the heterogeneity of the data and

number of variables measured. Biclustering provides such flexibility by selecting im-

portant variables and relaxing ‘hard’ partitioning of samples, e.g., allowing samples

to be in more than one cluster, or in none at all; Variables in the cluster can be

defined with respect to only a subset of samples, not necessarily with respect to all

of them. In the context of three-way data, it is natural to define these potentially

overlapping groups of samples and variables (henceforth referred to as biclusters) that

evolve similarly with respect to a subset of conditions.

In this chapter, I introduce bicluster in three-way data by modeling a bicluster’s

evolution through the data using a variety of curve estimation techniques within the

plaid model of Lazzeroni and Owen (2000). For instance, in one application I examine

bilateral trade data between countries in the United Nations over time. As shown

in Figure 2.1, the proposed model can model a global growth curve describing the
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average world trade over time. Given this growth curve (global mean), particular

groups of countries, acting as importers and exporters, with mean trade levels that

change smoothly over time are discovered in the biclusters.

The main idea is to first account for system-wide behavior by modeling the full

data’s mean structure over conditions (or time). Then, detect biclusters that ex-

hibit deviations for some conditions, and estimate each bicluster’s dependence over

conditions using methods from functional data analysis.

There are many benefits of the proposed approach. First, the model helps users

identify and visualize interesting patterns in complex structured data, while incor-

porating knowledge of the underlying generating process. This facilitates data ex-

ploration by displaying different types of curves and characteristics, and ultimately

facilitates information extraction and decision making. Second, it allows for inference

at unobserved conditions, which may be of interest in dose response (Rosenberger

and Haines , 2002) and statistical calibration studies (Osborne, 1991), among others.

Lastly, our algorithmic framework is computationally scalable and easy to implement.

The remainder of this chapter is organized as follows: In the next section, I

briefly review related approaches for similarly structured data; Section 2.3 reviews

the plaid model for static (cross-sectional) data, and the proposed extension for three-

dimensional data. Section 2.4 contains a simulation study of the proposed and ex-

isting techniques. Section 2.5 illustrates the proposed model on gene expression and

economic trade data, and the chapter concludes with a brief discussion in Section 2.6.

2.2 Related Approaches

Problems arising from genomics have motivated the development of many model

based clustering approaches for longitudinal data. For example, curve-based clus-

tering algorithms have been proposed to analyze data from time course microarray

experiments, where thousands of genes are repeatedly measured over time (Luan and

9
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Figure 2.1:
World bilateral trade results using a shape constrained growth curve for
the global mean and time-smoothed bicluster mean effects.
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Li , 2003; Ma et al., 2006). In these approaches, the mean gene expressions are ap-

proximated with a linear combination of spline bases. In Qin and Self (2006) and

Eng et al. (2008), a more parsimonious model is employed that assumes genes in the

same cluster share the same mean and dependence structure over time. By defining

the model at the cluster level, fewer parameters are required to be fitted, resulting in

more stable estimates.

Even with these refinements, model based clustering for longitudinal data tends

to require iterative algorithms for estimation (usually variants of EM) that become

computationally expensive for large data. Moreover, these approaches tend to parti-

tion the samples into disjoint groups, which can mischaracterize finer structure in the

data. Biclustering, a term first used by Cheng and Church (2000) in gene expression

data analysis, provides additional flexibility by allowing samples to be in more than

one cluster, or in none at all. Variables in the bicluster can be defined with respect to

only a subset of samples, not necessarily with respect to all of them; further, biclusters

may evolve with conditions.

Past works on biclustering mostly focus on extracting patterns within a single

(static) data matrix when both the rows and columns are of scientific interest (see

Madeira and Oliveira (2004) for a survey of past works). In this chapter, I extend

the plaid model of Lazzeroni and Owen (2000), which decomposes data into a series

of additive biclusters that capture the underlying structure of the data. Additional

details will be provided in the next section. Turner et al. (2005b) provide an extension

of the plaid model for repeated measures data. We further generalize this approach

to handle data over experimental conditions or time, and interpolation at unobserved

points. Further discussion, including an extensive simulation study involving the

methodology in Turner et al. (2005b), are provided in Section 2.4.

A related approach to biclustering is matrix factorization, which can be extended

to a three-dimensional data arrays with penalized matrix decompositions and tensor
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factorizations. Zou et al. (2006); Witten et al. (2009) and Guo et al. (2010) relax

the orthogonality constraints in singular value decomposition (SVD) and principal

component analysis through l1 and l2 penalties. Extending such factorizations to

three-way data leads to challenging optimizations problems. Further, practical mat-

ters like displaying and interpreting estimates become cumbersome. For instance, an

extension of SVD that approximates each matrix observation with an outer prod-

uct relies on an underlying model that is multiplicative in nature. This causes the

number of parameters to grow rapidly with the number of matrix observations. In

contrast, the proposed approach is built on an additive model that yields interpretable

estimates, and an algorithmic framework that is computationally inexpensive.

2.3 The Plaid Model for Three Dimensional Arrays

This section begins with some background material on the plaid model. In partic-

ular, I introduce an important concept to the plaid model, namely that of a “layer”.

A layer is a canonical matrix matching the dimensions of the given data matrix, with

zeros everywhere except the biclustered elements. In the plaid model, the data is de-

composed into a series of additive layers that capture the underlying structure of the

data. It includes a background layer consisting of all rows and columns to account for

global effects in the data. Subsequent layers, which can overlap, represent additional

effects corresponding to specific rows and columns that exhibit a strong pattern not

explained by previous layers. Formally, the data matrix X can be represented as

Xij = µ0 +
K∑
k=1

θijkrikcjk (2.1)

where µ0 captures the uniform background, and θijk describes the bicluster effects,

with k being a layer index running to K, the number of biclusters. The parameters

rik and cjk are indicator variables denoting bicluster membership for, respectively,
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samples and variables.

There are several modeling choices for the form of θijk, the most common being

θijk = µk + αik + βjk, (2.2)

where each bicluster has a mean, row, and column effect. Hence, each bicluster is

assumed to be the sum of a mean background level plus row and column specific effects

that capture additional structure. If only a mean effect is included, θijk = µk, then

one can write the model as a relaxed Singular Value Decomposition. In particular,

X = UDV , where U and V are binary matrices of rank K with each column denoting

bicluster memberships. D is square diagonal with elements µ1, . . . , µK . If row or

column effects are included, the plaid model cannot be written in the SVD algebraic

form (Lazzeroni and Owen, 2000).

The estimation procedure is an iterative algorithm based on minimizing the sum

of squares of the data minus the fitted bicluster values. Suppose K − 1 layers have

been estimated in addition to the background layer. The residual data matrix is given

by

Ẑij = Xij − µ̂0 −
K−1∑
k=1

θ̂ijkr̂ikĉjk. (2.3)

The Kth bicluster is found by minimizing the residual sum of squares

min
{θijK ,riK ,cjK}

n∑
i=1

p∑
j=1

(Ẑij − θijKriKcjK)2. (2.4)

Estimates of the bicluster memberships (r̂iK ,ĉjK) are obtained with a numerical

search. When given bicluster memberships, the estimation of the bicluster-specific ef-

fects (θijK) is straightforward, as one can use the usual two-way Analysis of Variance

estimators (Turner et al., 2005a).

First the background layer is fitted, then biclusters are added one at a time until
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no more statistically significant biclusters can be found, as determined by a permu-

tation test. The permutation test relies on resampling the residual data matrix to

approximate the significance of the bicluster. The basic idea is that the data values

are independent of biclusters after permuting the rows and columns. Thus, compar-

ing the candidate bicluster against biclusters obtained after randomizing the data,

allows one to accept a bicluster only if it is significantly larger than what one would

find in noise. More comprehensive discussion on this idea can be found in Lazzeroni

and Owen (2000) and references therein.

I now present the proposed plaid model for three dimensional data arrays. Suppose

I observe {Xm,m = 1, ..,M}, where Xm ∈ Rn×p and the third “depth” dimension

indexed by m corresponds to time, experimental conditions or factors. The data

matrix Xm can be represented as

Xijm = µm0 +
K∑
k=1

θijmkrikcjk. (2.5)

In this model, the same biclustering structure applies to each data slice. In other

words, the row (sample) and column (variable) memberships do not change over m,

and the total number of biclusters K is also the same for different m. These are fairly

strong assumptions and may not be realistic for some real world applications, where

the biclustering structures, including the number of biclusters, varies over time or

under different conditions. However, relax these rigid assumptions can be relaxed by

first partitioning the data over m and then estimating the model in Equation 2.5 on

each partition separately. This type of strategy assumes that biclustering structures

are the same only in adjacent time points or similar conditions. It is also worth noting

that without partitioning, the model in Equation 2.5 lets the bicluster effect vary with

m, so that a bicluster can be effectively absent for some conditions or time points,

allowing the total number of biclusters K to effectively change for different m.
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In the proposed plaid model, the bicluster effect is modeled as

θijmk = fk(m) + αik(m) + βjk(m), (2.6)

where fk(·) is a functional mean effect of the bicluster over conditions. αik(·) and

βjk(·) are row and column effects as before, and to avoid over-parameterization satisfy

constraints
∑

i rikαik(m) =
∑

j cikβik(m) = 0. Thus, the full model is similar to

functional analysis of variance defined at the bicluster level (see Chapter 13 of Ramsay

and Silverman (2005)).

The function f(·) can be modeled using parametric curves, or more general smooth-

ing, shape constrained curves, and so on. Sufficient data is available to make these

complex models practically relevant, since the same mean structure applies to the

entire bicluster. I focus in this chapter on modeling mean functions, since they are

critical in most contexts. Note that in principle, row and column specific effects can

also be modeled with a similar approach. Next, the fitting procedure is discussed,

in which estimates the row and column specific effects without smoothness or other

modeling constraints.

The Kth layer is found by minimizing

min
{θijmk,riK ,cjK}

M∑
m=1

n∑
i=1

p∑
j=1

(Ẑijm − θijmkriKcjK)2, (2.7)

where

Ẑijm = Xijm − µ̂m0 −
K−1∑
k=1

θ̂ijmkr̂ikĉjk. (2.8)

The algorithm is shown in Algorithm II.1. The main idea is to detect biclus-

ters that exhibit deviations in some conditions, and then estimate each bicluster’s

response for every condition. With most data sets, a background layer modeling the

global mean that all samples and variables follow is estimated before searching for
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biclusters. Bicluster effects are estimated sequentially. First, the mean effect is found

by minimizing

min
fK(m)

M∑
m=1

n∑
i=1

p∑
j=1

(Ẑijm − fK(m)r̂iK ĉjK)2, (2.9)

subject to smoothness or other constraints (discussed in Section 2.3.2). Then, if

desired, row and column effects are computed.

Pruning strategies, backfitting, and other heuristics were proposed in Lazzeroni

and Owen (2000) and Turner et al. (2005a) to obtain more interpretable and parsimo-

nious structure. These strategies may also be employed with the proposed framework,

especially if a large number of layers are found that are statistically significant, but

not interpretable. In the data examples below, this does not appear to be an issue.

2.3.1 Implementation Issues

Next, I address issues pertaining to the implementation of Algorithm II.1. Specif-

ically, (i) the permutation test to accept or reject a candidate bicluster, (ii) forming

a candidate bicluster (line 1 of Algorithm II.1).

Permutation test. The standard permutation test is modified to accommodate

structure along m. Matrix observations corresponding to different experimental con-

ditions (or time points) should be permuted separately, so that the evolution over

m is maintained. After permuting the rows and columns of each given matrix, the

standard approaches are followed to compare the candidate bicluster with what one

would expect to find in noise.

I use the sum of squares
∑

i,j,m ricjθ
(m)2
ij as proposed in the original paper (Lazze-

roni and Owen, 2000) to measure the importance of a particular bicluster. The

permutation test is shown in Algorithm II.2, where σ2 is the sum of squares of the

candidate layer, and σ2
nr

is the sum of squares of noise layers r. The permutation test

requires the candidate layer to have more information than the noise layers.
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Algorithm II.1 Plaid model for 3-way data

1: Apply one-way K-means clustering on the rows and columns of each Ẑm to obtain
M biclusters, and combine them to form r̂i, ĉj a candidate bicluster.

2: Estimate f by minimizing equation 2.9.
3: repeat
4: δold =

∑M
m=1

∑n
i=1

∑p
j=1(Ẑijm − f̂K(m)r̂iK ĉjK)2

5: Update row and column memberships:

r̂iK =

{
1,

∑
m,j(Ẑijm − f̂(m)ĉjK)2 <

∑
m,j Ẑ

2
ijm

0, otherwise
(2.10)

ĉjK =

{
1,

∑
m,i(Ẑijm − f̂(m)r̂iK)2 <

∑
m,i Ẑ

2
ijm

0 otherwise
. (2.11)

6: Estimate f by minimizing equation 2.9.
7: δ =

∑M
m=1

∑n
i=1

∑p
j=1(Ẑijm − f̂K(m)r̂iK ĉjK)2

8: until |δ − δold|/δold < convergence threshold
9: Estimate row and column effects, if desired:

αiK(m) = (

p∑
j=1

ĉjK)−1
p∑
j=1

Ẑijmr̂iK ĉjK − f̂(m)r̂iK ĉjK ,m = 1, ...,M (2.12)

βjK(m) = (
n∑
i=1

r̂iK)−1
n∑
i=1

Ẑijmr̂iK ĉjK − f̂(m)r̂iK ĉjK ,m = 1, ...,M. (2.13)

10: Keep or reject {r̂iK ,ĉjK , θ̂ijmk} according to a permutation test.

Algorithm II.2 Permutation test to assess the significance of a candidate layer
{r̂iK ,ĉjK , θ̂ijmk}
1: for r=1,. . . ,R do
2: Compute the residual data matrix Ẑm, including the candidate layer.
3: Permute the rows and columns of each residual data matrix.
4: Estimate a noise layer σ̂nr from the permuted {Ẑm}.
5: end for
6: if σ̂2 > max{σ̂2

n1
, ..., σ̂2

nR
} then

7: Accept candidate layer.
8: else
9: Reject candidate layer.
10: end if
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It is argued in Lazzeroni and Owen (2000) that, since after permuting rows and

columns the data values are independent of row and column labels, the approximate

probability of accepting k or more false biclusters is (R + 1)−k, where R is the total

number of noise biclusters. The authors suggest four or fewer noise biclusters for

each permutation test, though this is highly dependent on the size of the data and

available computing power (costs are proportional to the number of noise biclusters).

Extracting candidate biclusters. There are many possible ways of combining

the M initial candidates to form a final candidate bicluster. I present a numerical

comparison of three different techniques shows that they all lead to similar clustering

results. The three methods are denoted as ‘Average Data’, ‘Majority Vote’, and

‘Similarity’.

Average Data follows the simplest strategy of first averaging data matrices over

m, then applying to the result one-way K-means clustering separately on the rows

and columns to form the candidate bicluster. Majority Vote applies one-way K-means

clustering separately to each of the m data matrices, then takes the rows (columns)

that are clustered most often for the candidate bicluster. Similarity refers to taking

the intersection of the two most overlapping biclusters after applying one-way K-

means clustering separately to each of the m data matrices. I first define a similarity

measure between the biclusters identified at m and m′ as

S(m,m′) =

∑
i,j rimcjmrim′cjm′

min{
∑

i,j rimcjm,
∑

i,j rim′cjm′}
. (2.14)

This measure computes the amount of overlap relative to the size of the smaller biclus-

ter. Finally, to choose the elements of the candidate bicluster, take the intersection

of the two most similar biclusters.

The Majority Vote and Similarity heuristics are more complex, and indeed do a

better job at forming candidate biclusters that exhibit deviations in only some con-
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ditions. In other words, the simpler strategy of Average Data identifies less accurate

candidates since critical information is lost when the three-dimensional data array

is collapsed to two dimensions. However, due to the optimization that follows (lines

3 - 8 in Algorithm 1), the different strategies lead to similar clustering results. Ta-

ble 2.1 shows nearly identical detection and false positive rates for the three different

initialization techniques under two different biclustering simulations (details for the

generating process are provided in Section 2.4.1). Thus, the investigations indicate

that one can follow the simpler and computationally efficient strategy of first averag-

ing data matrices over m, without compromising the overall accuracy of the overall

biclustering procedure.

2.3.2 Modeling the mean effect

I present two simple modeling approaches that facilitate exploratory analysis and

data visualization. The first approach estimates bicluster K’s mean effect with

f̂K(m) = (
n∑
i=1

p∑
j=1

Ẑijmr̂iK ĉjK)/
n∑
i=1

p∑
j=1

r̂iK ĉjK , (2.15)

so that each bicluster mean is modeled by its cross-sectional average at m. This simple

approach is computationally inexpensive, and hence facilitates a quick decomposition

of the data.

The second approach estimates bicluster K’s mean effect with kernel smoothing

to enhance visual interpretation and provide insights into bicluster behavior at un-

observed points. For a potentially unobserved point m′, the mean effect is estimated

with

f̂K(m′) = (
∑
m

W (m)
n∑
i=1

p∑
j=1

Ẑijmr̂iK ĉjK)/
∑
m

W (m), (2.16)

where W (m) = Q((m−m′)/hn), Q(·) the kernel function, and hn the bandwidth. In
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Panel A: Change Point

σ Method
% Bicluster

Detected
% False
Positive

Number
Detected

0.3
Average Data
Majority Vote

Similarity

1.00 (0.00)
1.00 (0.00)
1.00 (0.00)

0.09 (0.03)
0.10 (0.03)
0.07 (0.03)

1.36 (0.06)
1.36 (0.07)
1.20 (0.06)

0.5
Average Data
Majority Vote

Similarity

1.00 (0.00)
1.00 (0.00)
1.00 (0.00)

0.10 (0.03)
0.10 (0.03)
0.09 (0.03)

1.34 (0.07)
1.32 (0.06)
1.31 (0.07)

0.7
Average Data
Majority Vote

Similarity

0.78 (0.03)
0.76 (0.04)
0.73 (0.04)

0.35 (0.04)
0.39 (0.03)
0.35 (0.03)

1.05 (0.08)
0.98 (0.09)
1.03 (0.09)

Panel B: Isotonic Sine

σ Method
% Bicluster

Detected
% False
Positive

Number
Detected

0.3
Average Data
Majority Vote

Similarity

1.00 (0.00)
1.00 (0.00)
1.00 (0.00)

0.06 (0.02)
0.09 (0.02)
0.08 (0.02)

1.12 (0.04)
1.12 (0.04)
1.09 (0.03)

0.5
Average Data
Majority Vote

Similarity

0.99 (0.00)
0.97 (0.00)
0.98 (0.00)

0.08 (0.02)
0.08 (0.02)
0.06 (0.02)

1.14 (0.05)
1.01 (0.04)
1.08 (0.03)

0.7
Average Data
Majority Vote

Similarity

1.00 (0.00)
1.00 (0.00)
1.00 (0.00)

0.10 (0.03)
0.10 (0.03)
0.13 (0.03)

1.12 (0.04)
1.14 (0.04)
1.15 (0.04)

Table 2.1:
Average (standard error) recovery results for the proposed plaid procedure
implemented with different methods of extracting candidate biclusters. %
Bicluster Detected measures the proportion of the single underlying that
was detected. % False Positive measures the proportion of all biclustered
elements that were false positives. Number Detected reports the number
of biclusters detected.

20



m = 1 m = 5 m = 10

Figure 2.2:
The top row shows examples of raw data. The bottom row shows examples
of the filtered data.

my implementation, I employ the triangular kernel

Q(x) = (1− |x|)I{x ∈ (−1, 1)}. (2.17)

The bandwidth hn is chosen by exploring estimates over a range of bandwidths and

selecting the one that emphasizes the structure change most.

A practitioner could follow an iterative strategy that first starts with the cross

sectional averages for the bicluster means for an initial exploration of the data. The

results may then be enhanced by re-estimating with smoothing over a range of band-

widths. Alternatively, if strong evidence for a particular pattern is observed, a para-

metric model may then be postulated for the bicluster mean effects.

2.3.3 An Illustrative Example

The proposed methodology is illustrated with simulated data. In particular, I set

Xm ∈ R100×100, where Xijm ∼ N(10, 1). In other words, the background layer has

constant mean µm0 = 10, and there are four biclusters with structure summarized in

Table 2.2. There are 10 observed slices and the third dimension is sampled uniformly

between 1 and 10 (m = 1, 2, .., 10). The biclusters are fixed over m.

21



Bicluster µmk Size Rows Columns
1 2 + cos(m) 10× 10 10-20 10-20
2 −2I{m > 5} 30× 30 10-40 10-40
3

√
m 5× 15 55-60 60-85

4 −m/4 25× 15 5-30 53-68

Table 2.2: Summary of bicluster structure for the illustrative example.
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Figure 2.3: Estimated bicluster effects for the illustrative example.

The background layer is estimated using a simple cross-sectional mean that varies

along m. The bicluster mean effects are modeled using the two forms discussed above:

(i) cross-sectional averages, and (ii) kernel smoothing.

Figure 2.2 shows examples of the raw and estimated data, and Figure 2.3 shows

the true and estimated biclusters effects. The proposed procedure is able to iden-

tify the correct matrix groups, and then estimate the different expression patterns

accurately. The kernel smoothed version appears more satisfactory for visualization

and interpolation. Though, if the mean structure is over simplified (e.g., smooth too

heavily) features are masked in the reconstruction, as shown in Figure 2.4. In this

example, there is a range of bandwidths that perform well, given the true functional

forms of the biclusters. Using a simple cross-sectional mean recovers the true values

at the observed points accurately.

Figure 2.5 shows competing approaches that directly apply the plaid model or

independent K-means clustering to each data matrix tend to miss the true functions

and biclusters governing the data generation mechanism. On the other hand, the

proposed approach utilizes information from neighboring data matrices to obtain
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Figure 2.4: Bicluster mean effects with different bandwidths.
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Figure 2.5:
Comparison with a direct plaid approach. The dashed line shows results
from the proposed method; the solid line shows results using the plaid
model applied to each data matrix separately.

accurate and interpretable results.

Figure 2.6 plots reconstruction accuracy over each data matrix. A null model that

includes only a global mean and absence of biclusters explains a large amount of vari-

ance. Though more complex models with estimated biclusters are both accurate and

interpretable, it appears the bicluster contribution to explained variance is limited.

This pattern is expected when the global mean is large and biclusters are relatively

small in size. This highlights the fact that biclustering approaches are advantageous

for finding ’needles in a haystack’, and closely related to anomaly detection. Bi-

clustering in these contexts uncovers unusual structure, and facilitates exploratory

analysis and visualization. For instance, the null model has a clear pattern reflect-

ing the missing structure. A cross-sectional mean or light smoothing uncovers the

biclustering structure and maintains a stable reconstruction error.

2.4 Comparing Two Models for Three-way Data

As mentioned in Section 2.2, Turner et al. (2005b) also provide an extension of

the plaid model for replicated longitudinal data. Their postulated model adds a main
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Figure 2.6:
The left panel shows percent of variance explained (1 − ||Xm −
X̂m||2F/||Xm||2F ) for different models. Global mean refers to setting the
estimates to be the cross sectional means without any biclustering. The
right panel provides a zoomed-in version.

time effects to each layer to account for changes in expression levels over time

X
(t)
ij = µ0 + αi0 + βi0 + τ0(t) +

K∑
k=1

(µk + αik + βjk + τk(t))rikcjk + εij. (2.18)

The focus of this model is to detect changes in expression levels over time with τk(t).

In comparison, the proposed model is

Xijm = µm0 +
K∑
k=1

(fk(m) + αik(m) + βjk(m))rikcjk + εijm, (2.19)

where fk(·) is a functional mean effect of the bicluster over conditions, and αik(·)

and βjk(·) are row and column effects that can also be modeled as functions over

conditions.

If fk(m) = µk + τk(m) and fix the row and column effects over m, then the models

are essentially equivalent. However, I will illustrate below that there are situations in

which a simple main time effect is not flexible enough for detection and visualization

of the expression level changes. For instance, (i) if the underlying mean effect has

strong nonlinearities or (ii) if the row and column effects change over conditions, then

the proposed model performs significantly better.
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2.4.1 Simulation Study

I employ the R code provided in the Supplementary material of Turner et al.

(2005b) to test the model in Equation 2.18. Results are reported below for two

different parameter settings. The first, labeled as Turner-1 below, sets the row release

and column release parameters to equal 0.5, the recommended setting in Turner et al.

(2005b). However at times, this results in no detected biclusters. Thus, even though

it is not recommended in Turner et al. (2005b), I also present results from setting the

row release and column release parameters to equal 0.1. These results are labeled as

Turner-2.

Nonlinear Mean Effects. Let Xm ∈ R100×100, where Xijm ∼ N(0, σ). Rows 20

through 30 and columns 20 through 30 form a single bicluster, where the mean effect

follows the functions described below. The design space m is the [0, 1] interval, with

20 uniformly spaced points.

In one simulation setting, the bicluster mean exhibits a change-point according to

f1(m) = I{m > 0.75}. In the second simulation setting, the bicluster mean follows

an isotonic sine function f1(m) = (1/40) sin(6πm) + 1/4 + (1/2)m+ (1/4)m2, shown

in the left panel of Figure 2.7. The critical features of the isotonic sine function are

that it is non-decreasing in m and has local oscillations.

Results, averaged over 1000 replications, in Table 2.3 show that for both mean

functions and at most noise levels, the proposed procedure has better success at iden-

tifying the bicluster. The recommended model of Turner et al. (2005b) struggles to

detect the single underlying bicluster in the change point case, and for σ > 0.3 in the

isotonic sine case. Lower row and column release parameters improve results, though

the final setting may be unrealistic and difficult to tune with real data. The more

general and proposed model improves the ability to detect the underlying structure,

though with more falsely biclustered matrix elements. The false positive rate could

be reduced by utilizing a permutation test with additional noise layers.
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Figure 2.7:
The left panel shows for the first simulation setting the true bicluster mean
effect, which follows the isotonic sine function. The right panel shows for
the second simulation setting the curves that comprise the bicluster effect,
where the oscillations are controlled by row effects.

The local smoothing that the proposed procedure accommodates improves the

estimate, especially at higher noise levels, as shown in Figure 2.8 for the isotonic

sine case. The isotonic property and wiggly nature of the function are preserved in

the kernel smoothed fits, but not the simpler cross-sectional means of the recovered

bicluster. Estimates of τtk are not shown in the figure, because the R code provided

in the Supplementary material of Turner et al. (2005b) does not output it. However,

τ̂tk would suffer in higher noise settings, just as the cross-sectional mean estimates do

in Figure 2.8.

m-varying Row/Columns Effects. Let Xm ∈ R100×100, where Xijm ∼ N(0, σ).

Rows 20 through 30 and columns 20 through 30 form a single bicluster. The mean
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Panel A: Change Point

σ Method
% Bicluster

Detected
% False
Positive

Number
Detected

0.3
Turner-1
Turner-2

Proposed Plaid

0.00 (0.00)
0.62 (0.02)
1.00 (0.00)

- (-)
0.00 (0.00)
0.06 (0.02)

0.00 (0.00)
1.27 (0.05)
1.09 (0.03)

0.5
Turner-1
Turner-2

Proposed Plaid

0.00 (0.00)
0.06 (0.01)
0.99 (0.00)

- (-)
0.04 (0.01)
0.08 (0.03)

0.00 (0.00)
0.77 (0.07)
1.11 (0.04)

0.7
Turner-1
Turner-2

Proposed Plaid

0.00 (0.00)
0.00 (0.00)
0.88 (0.03)

- (-)
- (-)

0.35 (0.03)

0.00 (0.00)
0.00 (0.00)
1.07 (0.07)

Panel B: Isotonic Sine

σ Method
% Bicluster

Detected
% False
Positive

Number
Detected

0.3
Turner-1
Turner-2

Proposed Plaid

0.99 (0.00)
1.00 (0.00)
1.00 (0.00)

0.00 (0.00)
0.00 (0.00)
0.09 (0.03)

1.00 (0.00)
1.01 (0.01)
1.13 (0.04)

0.5
Turner-1
Turner-2

Proposed Plaid

0.01 (0.02)
1.00 (0.00)
1.00 (0.00)

0.00 (0.00)
0.00 (0.00)
0.10 (0.03)

0.15 (0.04)
1.00 (0.00)
1.10 (0.03)

0.7
Turner-1
Turner-2

Proposed Plaid

0.00 (0.00)
0.87 (0.03)
1.00 (0.00)

- (-)
0.00 (0.00)
0.11 (0.03)

0.00 (0.00)
0.91 (0.04)
1.14 (0.04)

Table 2.3:
Average (standard errors) recovery results under the two different m-
varying mean effect scenarios. % Bicluster Detected measures the pro-
portion of the single underlying that was detected. % False Positive mea-
sures the proportion of all biclustered elements that were false positives.
Number Detected reports the number of biclusters detected.
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Figure 2.8:
The estimated mean function from the proposed procedure under different
noise levels for the isotonic sine case.

and row effects follow

f1(m) = 1/4 +m/2 + (1/4) ∗m2 (2.20)

αi1(m) = (1/40) sin(6πmi). (2.21)

There are no column effects. The bicluster effects are similar to an isotonic sine

function, where the amount of oscillation is controlled by the row. The different

bicluster effects,including the different row effects, are shown in the right panel of

Figure 2.7. The design space m is again the [0, 1] interval, with 20 uniformly spaced

points.

Results in Table 2.4 show that the recommended model of Turner et al. (2005b)

struggles to detect the single underlying bicluster in higher noise settings. Again

tuning the row and column release parameters improves results, though when σ = 0.7

Turner-2 also struggles to detect the bicluster. Even if the structure is correctly

estimated, the model in Turner et al. (2005b) will provide estimates that are more

sensitive to noise and misspecified. As in the previous example, Figure 2.9 shows

the proposed model is able to take advantage of the well-known benefits of local

smoothing, resulting in estimates that are interpretable and accurate.
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σ Method
% Bicluster

Detected
% False
Positive

Number
Detected

0.3
Turner-1
Turner-2

Proposed Plaid

0.99 (0.00)
1.00 (0.00)
1.00 (0.00)

0.00 (0.00)
0.00 (0.00)
0.07 (0.04)

1.00 (0.00)
1.00 (0.00)
1.20 (0.04)

0.5
Turner-1
Turner-2

Proposed Plaid

0.02 (0.00)
1.00 (0.00)
1.00 (0.00)

0.00 (0.00)
0.00 (0.00)
0.09 (0.03)

0.29 (0.04)
1.00 (0.00)
1.17 (0.04)

0.7
Turner-1
Turner-2

Proposed Plaid

0.00 (0.00)
0.66 (0.04)
1.00 (0.00)

- (-)
0.00 (0.00)
0.11 (0.03)

0.00 (0.00)
0.78 (0.04)
1.17 (0.04)

Table 2.4:
Average (standard error) recovery results under m-varying mean and row
effect scenarios. % Bicluster Detected measures the proportion of the single
underlying that was detected. % False Positive measures the proportion of
all biclustered elements that were false positives. Number Detected reports
the number of biclusters detected.

Panel A: Mean Effects

Panel B: Row Effects

Figure 2.9:
The top panel shows the estimated mean function, the second panel shows
an estimated row effect for a single row.
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Panel A: Estimates with smooth mean functions

Panel B: Estimates with smooth mean and row functions

Figure 2.10:
The Panel A shows all mean and row effects estimates without any
smoothing, and Panel B shows corresponding smoothed estimates.

To illustrate the general framework, the bottom panel of Figure 2.9 shows smooth

row effect estimates, which were estimated again with kernel smoothing

α̂iK(m) = (
∑
m

W (m)(

p∑
j=1

ĉjK)−1
p∑
j=1

(Ẑijm − f(m))riKcjK)/
∑
m

W (m), (2.22)

instead of Equation 2.12 in Algorithm II.1. Figure 2.10 contains estimates for all row

effects in the bicluster, and shows that smoothing both mean and row effects improve

interpretability, especially in high noise settings.
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2.5 Applications

2.5.1 Interpolating gene expression biclusters

Time course gene expression data may be modeled as a discrete sampling from

continuous processes over time. The aim is to identify groups of co-regulated genes

with respect to a subset of samples, and estimate the underlying, evolving processes.

T-cell data. I illustrate the proposed model by smoothing genetic regulatory

activations using the time-course gene expression data of Rangel et al. (2004) on T-

cell activation. The activation of T-cells are a central event in the generation of an

immune response.

The data is available in the R package Genenet (Schafer et al. (2006)), and consists

of 44 gene expression samples of 58 genes, measured over 10 time points. In this study,

the gene activity levels are measured at t = 0, 2, 4, 6, 8, 18, 24, 32, 48, 72 hours after

stimulation.
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Figure 2.11: Background layer for T-cell data.

The background layer, shown in Figure 2.11, was estimated using a cross-sectional
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Figure 2.12:
Percent of variance explained (1 − ||Xm − X̂m||2F/||Xm||2F ) for different
models for the T-cell data.

mean that varies with time. The global mean is fairly stable, and does not provide

evidence for more complex models, e.g., smoothing. Figure 2.12 shows, much like

the illustrative example, that the global mean captures a large amount of variance

and biclusters have limited contribution. The additional biclustering highlights small

groups of samples and genes that exhibit unusual behavior.

I model each bicluster with row (sample) specific effects (fk(m)+αik(m)). Biclus-

ters were chosen until the stopping criterion was met using three noise layers. Forcing

the algorithm to recover additional biclusters found ones with minuscule mean effects

that were uninterpretable.

Figure 2.13 contrasts the kernel smoothed with cross-sectional mean effects. The

kernel smoothed version indicates an inflection point for bicluster 3 around t = 48,

while both types of mean functions shows that bicluster 1 reaches a local minimum

and biclusters 2 peaks around that time. In other words, 48 hours after stimulation

may be a point of interest for further biological analysis.
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Figure 2.13: Estimated bicluster mean effects on T-cell activation.

Table 2.5 shows that 30 genes were identified in 3 biclusters, with a number of

common genes in the first two biclusters (FYB,ZNFN1A1,CTNNB1,SKIIP,IL2RG).

These key genes are consistent with the results of the state space model in Rangel et al.

(2004), and are likely high in the hierarchy of events downstream of cell activation.

For example, many of the genes common among the first two biclusters are located

in close proximity to FYB, which is known to be an important molecule in T-cell

systems.

2.5.2 Time-varying Community Detection in Weighted and Directed Graph

Sequences

There has been tremendous interest in community discovery within networked

systems, including biological, social and technological networks, where groups of

nodes (vertices) feature relatively dense within group connectivity and sparser be-

34



Bicluster # Samples # Genes Effect Downstream Genes
1 10 9 + LCK,RPS6KA1,EGR1,SOD1

2 10 12 − CD69,MAP2K4,ITGAM,ID3,GATA3,
CYP19,JUNB

3 10 14 −
CCNG1,CLU,IL4R,SCYA2,PDE4B,PIG3,
IRAK1,MYD88,RBL2,C3X1,IFNAR1,
CIR,MAP3K8,IL3RA

Table 2.5:
Bicluster summary statistics for T-cell data. ‘Downstream genes’ identifies
genes that are unique to each bicluster.

tween group connections (Newman, 2010; Newman et al., 2006). Due to advances in

data collection technologies, it is becoming increasingly common to study patterns of

behavior within a time series of networks (Li et al., 2011; Gong et al., 2011). The

analysis of such data is challenging, since time dependent changes may simultaneously

affect network topology and node/edge features. Moreover, many existing analysis

tools are arguably only compatible with networks of binary relations. In this section, I

apply the proposed model to extract communities (biclusters), whose similarity moves

beyond dense clumps of connected nodes by utilizing information over time within a

sequence of weighted and directed networks.

A network can be equivalently represented using an adjacency matrix, which is a

square matrix of size n, where n is the number of nodes and the i, j element is zero

if there is no edge between node i and node j. In this setting, {X(t)} are now square

matrices observed over time. Instead of the sample-variable interpretation to the

rows-columns, each row and column now corresponds to a node on the graph. Thus,

a bicluster on the adjacency matrix corresponds to a densely connected subgraph.

The proposed plaid model extracts potentially overlapping subgraphs and estimates

their strength over time. Next, I apply the model on global trade flow data to identify

groups of countries with interesting growth patterns.

World trade data. The data consists of annual, total bilateral trade flows

between all two hundred countries in the United Nations from 1975-2000 (Feenstra
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et al., 2004) and is available at http://cid.econ.ucdavis.edu/. Thus, I observe a

dynamic, weighted graph at 26 time points, where each directional edge denotes the

total value of exports from one country to another. Since trade flows can differ in size

by orders of magnitude, I work with trade values that are expressed in log nominal

dollars. The i, j element of each data matrix corresponds to the amount country i

exported to country j. Then, the rows of each bicluster identify a set of exporting

countries, and the columns identify corresponding importers.

Often economic output and trade are modeled with growth curves intended to

capture the idea that continued innovation results in constant economic expansion

(Rodriguez and Rodrik , 2001; Bernanke and Rogoff , 2001). Hence, in the context of

bilateral trade data, I estimate for the global mean a growth curve that characterizes

world trade over time. To avoid the well-known issue of choosing a particular form

out of many possible growth curve models, the global mean is modeled with isotonic

regression (IR), which can be used to overcome errors that occur from parametric

growth models. For times {ti}Ti=1 and corresponding bilateral trades {Yi}Ti=1, the IR

estimate fI(·) is given by

fI(x) =


f ?1 if x ∈ [a, t1],

f ?i if x ∈ [ti, ti+1), i = 1, 2, · · · , T − 1,

f ?T if x ∈ [tT , b] ,

(2.23)

where

{f ?i }Ti=1 = arg min
f1≤f2≤...≤fT

T∑
i=1

(Yi − fi)2.

This minimizer exists uniquely and has a geometric characterization as the slope

of the greatest convex minorant. The pool adjacent violators algorithm is used for

computation of the IR estimate (see, for example, de Leeuw et al. (2009); Robertson

et al. (1988)). Since the global mean covers all trades, there are n2 − n trade flows
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(responses) at each time t. The IR estimate results in an increasing function to the

set of bilateral trades over times t.

Smoothing the isotonic regression estimate (SIR) facilitates visual interpretability

and has been shown to achieve better asymptotic rates (see Mukerjee (1988) and

references therein). Specifically, the SIR estimate for observed {ti, Yi}Ti=1 is given by

fIs(x) =
T∑
i=1

W (ti)fI(ti)/
T∑
i=1

W (ti) (2.24)

where W (ti) = Q((ti−x)/hn), Q(·) the kernel function, and hn the bandwidth. SIR is

an appropriate alternative to parametric growth curves, since for log-concave kernels

the estimate mIs is non-decreasing (see Remark 2.1 in Mukerjee (1988)).

As with the bicluster mean effects, I employ the triangular kernel and choose the

bandwidth by visual inspection. Row and column specific effects are also included for

each bicluster to account for country-specific effects resulting from political events,

climate, military interventions, among others, that are not captured in the data. A

stopping criterion with three noise layers is utilized.

The estimation results are shown in Figure 2.1. The world trade growth curve

(global mean), estimated with SIR, shows that economic growth expanded heavily in

the late 1980’s and 1990’s. The first bicluster represents additional growth patterns

excluding notably China. The second bicluster identifies imports from the former

Soviet Union. The dip around 1989 corresponds with the fall of the former Soviet

Union. Bicluster 4 recovers the growing economic strength of east Asian countries

and the so-called ’Asian miracles’: countries in east Asia that experienced persistent

and rapid economic growth in the 1990’s (Stiglitz , 1996; Nelson and Pack , 1998).

The mean effects are smooth functions that are visually interpretable and provide

reasonable estimates between time points. Moreover, a naive approach may become

overly focused on global changes. The proposed approach recovers biclusters from
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Figure 2.14:
Percent of variance explained for different models for the world trade
data..

the data after removing the world growth curve.

For a closer inspection of the data, the terms αik(m) and βjk(m) identify the

countries that are most important to each bicluster. Figure 2.15 shows estimates of

fk(m) +αik(m) and fk(m) +βjk(m) for each country in bicluster 4, where the largest

exporters include the so-called Asian miracles, in addition to the USA and some

European countries. The corresponding group of importers are more heterogeneous,

with the largest importers consisting of Russia and eastern European countries.

Figure 2.14 shows that the biclusters substantially improve the percent of variance

explained. Moreover, a moderate amount of smoothing achieves the highest accuracy,

while also improving interpretability of the bicluster mean effects. Table 2.6 shows the

proposed plaid procedure outperforms competing approaches in this respect, including

matrix factorizations.

Figure 2.16 shows the estimated import and export levels without the global mean.

These statistics can be computed with row and column sums of the estimated data
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Proposed Plaid Direct SVD Joint SVD Direct Plaid
% Variance Explained 58.3 40.7 31.1 25.6

Table 2.6:
% Variance Explained of different approaches for world trade data. ‘Direct’
denotes applying Singular Value Decomposition or the plaid model to each
data matrix separately. Joint SVD uses a common basis (Xt = UV T

t ). The
first 10 components are kept in the matrix factorizations.

after subtracting the global mean. These figures denote the trade performance of each

country relative to global growth, and helps answer whether a country was trading

at higher levels than expected during global recessions/booms. For example, the

estimated export levels show the relative decline of US and rise of Chinese exporting.

In 2000, Russian exports and Indian imports underperformed the global market. In

general, African and Central American nations tend to follow the global trend.

Now that we have seen the benefits of the plaid model to exploratory and visual

analysis, the reader may wonder if similar information can be extracted by inspecting

heatmaps of the raw data. Shown in Figure 8 of the Supplementary material, displays

of the raw data do convey the strongest patterns, such as the rise of Chinese exporting

by the year 2000. However, insights about a country’s trade status relative to the

underlying time-varying mean are difficult to gain by displaying the raw data.

2.6 Conclusion

As with other exploratory and visualization tools, plaid models are sensitive to the

scaling of the data. For instance, if investigating annual world trade values that are

expressed in nominal dollars instead of log-nominal dollars, then results are dominated

by the United States, because that country has by far the largest variance. Just as

in principal components analysis and many other multivariate methods, the analyst

should make a decision on standardizing observations based on what aspect of the

data is of interest. Similarly, the results can change in response to the algorithm and
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Figure 2.15:
The left panel shows fk(m) + αik(m) for k = 4, identifying the im-
porters that are affected most under bicluster 4. The right panel shows
fk(m) + βjk(m), identifying exporting countries are affected most under
the bicluster. Figures are created using code from Peng (2008).

model parameterization. For example, a greater number of overlapping biclusters

are typically discovered when utilizing just a mean effect for the T-cell data. Many

of the genes reported above are biclustered in either bicluster specification, and are

consistent with the previous findings of Rangel et al. (2004). The main results I

present in the numerical work above are consistently found in repeated analyses of

the data, thus supporting the notion that they are not noise artifacts.

Runtimes are also provided in Table 2.7, where I add noisy columns to the illus-

trative example’s data generating process to investigate the performance of the model

when the number of samples and variables are each in the order of thousands. Though

smoothing does add computational cost, the algorithms can produce estimates in a

practically useful amount of time for data sets with thousands of rows and columns.
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Figure 2.16:
Heatmaps of estimated import and export levels without the global
mean.

Illustrative
Illustrative

(extra Columns)
Illustrative

(extra Rows/Columns)
T-cell World Trade

Cross-sectional 1.7 12.8 203.9 1.8 17.2
Kernel Smoothed 13.0 60.5 769.4 4.6 103.6
Turner-2 1.2 17.2 332.5 0.72 12.1
Dimensions 100× 100× 10 100× 1000× 10 1000× 1000× 10 58× 58× 10 200× 200× 27

Table 2.7:
Average runtimes (seconds) on a Linux netbook with 4GB Ram and 1.7
GHz AMD Athlon Neo K125 Processor. The number of layers is fixed
at five with bicluster means given by their cross-sectional mean or kernel
smoothed.
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Figure 2.17: Heatmaps of raw import and export levels.
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CHAPTER III

Integrative Analysis of Three-Dimensional Data

Arrays with Non-negative Matrix Factorization

3.1 Introduction

As mentioned in Chapter I, it is increasingly common to collect data over time or

in different conditions on components of a large, complex system. A challenging, yet

important task in this context is to separate stable from dynamic structure, followed

by visualizations that communicate the results and help improve decision making.

The goal of this chapter is to utilize a regularization within the framework of non-

negative matrix factorization for such data integration tasks. I introduce a model that

identifies stable structure by integrating the matrix observations through a common

basis. After computing the matrix factorization, the basis and factors can be used to

represent, respectively, the stable and dynamic patterns in the data.

Next, I note some aspects of the proposed model. The proposed factorization is a

general one, where the depth dimension can correspond to time, experimental condi-

tion, dose level, or geographic location. Moreover, other knowledge such as grouping

structure on the features (columns), label information on the samples (rows), etc.,

can be accommodated when constructing the smoothing penalty. Thus, in addition

to data integration, the model in this chapter can also utilized for clustering and

43



semi-supervised learning in sets of data matrices.

The remainder of this chapter is organized as follows: I describe the proposed

approach in the next section and present the core algorithms with convergence results

in Section 3.3. In Section 3.4, I provide a systematic and theoretically sound approach

to parameter selection, including a statistically consistency cross validation procedure

for selecting the approximation rank. The approach is illustrated on real-world data

sets derived from citation networks and trade data in Section 3.5. I close the chapter

with a short discussion in Section 3.6.

3.2 Integrative NMF for Data Arrays

Given a collection of data matrices {Xm ∈ Rn×p
+ ,m = 1, . . . ,M}, the goal is to

produce a sequence of smooth, low rank factors for data representation and pattern

discovery. The first component of the proposed objective function is

min
U≥0,{Vm≥0}

M∑
m=1

||Xm − UV T
m ||2F . (3.1)

The basis U captures information common in all data slices, and the coefficient ma-

trices {Vm} vary by the third dimension (time/experimental condition). A common

basis allows the model to integrate information from all data matrices and mitigate

the influence of transient patterns.

The local smoothness of Vm is a fundamental concern to reduce noise effects,

and maintain the interpretability and effectiveness of visual representations. I add a

regularization term to encourage smoothness that penalizes changes in V depending

on the distance between adjacent data slices. The penalty strength is controlled by

a weighting function W (·, ·). I also add an optional group penalty that controls the
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fluctuations of a given group within the factors. The objective function becomes

min
U≥0,{Vm≥0}

M∑
m=1

||Xm − UV T
m ||2F (3.2)

+
M∑

m,m̃=1

W (m, m̃)||Vm − Vm̃||2F

+ λg

T∑
m=1

Tr(V T
mLmVm),

where Lm corresponds to the Laplacian of a graph induced by pairwise group relations.

Without prior knowledge of group structure, λg is set to zero so that the penalty is

optional. Otherwise if such groupings are known, larger values of λg more strongly

encourage groups to evolve similarly in Vt. The weight function W (q, m̃) can take

a variety of shapes. For instance, Cai et al. (2011) investigate weights given by the

heat kernel, which has fundamental connections to the Laplace-Beltrami operator on

differentiable functions on manifolds. Gaussian weighting, triangular kernels, uniform

kernels, among many others, have been proposed and extensively studied in the vast

literature on kernel methods. The weight function is discussed further in Section

3.4.1.

This objective function can be written succinctly as follows

min
U≥0,{Vm≥0}

M∑
m=1

||Xm − UV T
m ||2F + Tr(V TLV ), (3.3)

where V = [V1, V2, ..., VM ]T . The smoothing matrix L is constructed as a function of

the penalty weights. It can be seen that the smoothing matrix corresponds to the

Laplacian of a graph (network) with a node for each column in each data matrix.

The graph Laplacian matrix is defined as

L = D −W , (3.4)
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where D is a diagonal degree matrix whose (j,j) entry is
∑

i(W)ij and W is an

adjacency matrix. An overview of its properties can be found in Chung (1997) and

references therein. The representation in (3.3) is a consequence of the following fact

established in Chapter 1 of Chung (1997): For every vector f ,

fTLf =
1

2

∑
i∼j

(W)ij(fi − fj)2, (3.5)

where i ∼ j denotes node i and j are connected by an edge.

Next, I will discuss the form of the regularization graph. Some additional notation

is introduced to simplify the presentation. Let double subscripts identify submatrices

for the smoothing matrix L, and its components D andW . For example,Wkj denotes

the square submatrix corresponding to edges from data matrix k to data matrix j.

The structure for W is shown next. The same block structure applies to L and D.

W =



W11 . ... W1M

. W22 ... .

. . ... .

. . ... .

WM1 . ... WMM


, (3.6)

where Wmm̃ is a square submatrix. The weighted adjacency matrix underlying the

regularization graph has the following form

Wmm̃ =


W (m, m̃) · I if m 6= m̃,

λgAm if m = m̃,

(3.7)

where I is the identity matrix and Am is the adjacency matrix of the graph induced

by the given groups. Thus, the full graph and hence Laplacian smoothing matrix

have a highly structured, sparse form. With the weighting functions described above,
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‘nearby’ data have a larger effect on the current factor; this effect decreases as the

distance between the data matrices grows.

The form of L given in (3.7) enforces and enhances similarity between adjacent

data slices. However, in other contexts L would take different forms. For example,

factorial experimental designs, which are common throughout the social and health

sciences, correspond to tree structures. Other particular graph forms have a one-to-

one correspondence with different experimental designs. Moreover, additional knowl-

edge, such as group or label information, can be accommodated through additional

graph structure.

Lastly, I briefly discuss another approach that addresses higher order array struc-

ture is non-negative tensor factorizations (Cichocki et al., 2009; Hazan et al., 2005;

Welling and Weber , 2001), where both the U and V vary by condition or time

(Xm ≈ UmV
T
m ). This type of model is introduced in Chapter IV and is more robust

to sharp changes in the data. The model in this chapter uses a global basis, which

assumes there is common information across data slices and can struggle with large

structural changes. However, NMF is already an under-constrained model and addi-

tionally allowing U to vary would make it massively under-constrained. Moreover,

due to the multiplicative nature and rotational indeterminancy, it becomes challeng-

ing without a common basis to compare factors across conditions. An even more

complex regularization would be required to control the factor evolutions through the

data. In contrast, utilizing a common basis provides parsimony, and more efficiently

facilitates visualization, analysis and interpretation.

3.2.1 Illustrative Example

Before discussing algorithmic issues, I illustrate the model with simulated data. In

particular, I set Xm ∈ R100×100, where (Xm)ij ∼ N (10, 1). There are three embedded
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m = 1 m = 50 m = 51 m = 100

Figure 3.1: Examples of Raw Data for the illustrative example.

submatrices with evolving mean structures:

µ1(m) = 10 +
2.5(m− 30)√
1 + (m− 30)2

(3.8)

µ2(m) = 10− 3I{m > 50} (3.9)

µ3(m) = 10 +
√
m. (3.10)

The first submatrix is composed of rows 80 to 100 and columns from 23 to 37. The

second submatrix is square and is composed of rows/columns 10 to 20. The third

submatrix contains rows 50 to 65 and columns 70 to 75. There are 100 observed data

matrices and the third dimension is sampled uniformly between 1 and 100, that is,

m = 1, 2, .., 100. Figure 3.1 shows examples of the input data.

I will use this data to compare three models:

1. The direct model applies classical NMF to each data slice separately: Xm ≈

UmV
T
m .

2. Common U applies NMF to each data slice with a common basis: Xm ≈ UV T
m .

3. Common U with penalty applies the proposed NMF model by minimizing

(3.3).

For each model, I fit a series of rank one approximations to facilitate visualization

of the factorizations. The factors are plotted as time-series in Figure 3.2. First,
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Direct Common U Common U w/Penalty

Figure 3.2:
Estimates for the illustrative example under different model specifications.
The first row shows estimates for V . Each line (trajectory) corresponds
to a column in the data. The second row shows estimates of U . The
colors identify the true columns/rows that belong to the submatrices.
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all three models do a reasonable job at representing the columns comprising the

submatrices. However, without smoothness penalties the cluster memberships and

trajectories are difficult to identify. The second row shows a user would encounter

additional difficulty in identifying the rows of the submatrices with the naive model.

It is easier to identify row memberships with the other models. Altogether, the

smoothed version appears more satisfactory, as the main structural and functional

patterns underlying the data are clearly represented.

3.3 Algorithms

3.3.1 Multiplicative Updating

One can derive multiplicative updating rules similar to those discussed in Lee and

Seung (1999, 2001) by following the standard argument of forming the Lagrangian

and deriving the corresponding KKT conditions.

The objective function in (3.3) can be written as

O =
M∑
m=1

Tr(Xm − UVm)(Xm − UVm)T (3.11)

+ Tr[V1, V2, ..., Vm]L[V1, V2, ..., Vm]T

=
M∑
m=1

{Tr(XmX
T
m)− 2Tr(XmVmU

T ) (3.12)

+ Tr(UV T
mVmU

T )}

+ Tr[V1, V2, ..., Vm]L[V1, V2, ..., Vm]T
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To enforce the non-negativity constraints, consider the Lagrangian

L =
M∑
m=1

{Tr(XmX
T
m)− 2Tr(XmVmU

T ) (3.13)

+ Tr(UV T
mVmU

T )}

+ Tr[V1, V2, ..., Vm]L[V1, V2, ..., Vm]T

+ Tr(ΦUT ) + Tr(ΨV T ),

where Φ,Ψ are Lagrange multipliers.

I get the following KKT optimality conditions by setting ∂L
∂U

= ∂L
∂Vm

= 0.

− 2
M∑
m=1

XmVm + 2
M∑
m=1

UV T
mVm = Φ (3.14)

−2XT
mU + 2VmU

TU + 2
M∑
j=1

LmjVj = Ψ. (3.15)

Then, the KKT complimentary slackness conditions yield

(−2
M∑
m=1

XmVm + 2
M∑
m=1

UV T
mVm)ij(U)ij = 0 (3.16)

(−2XT
mU + 2VmU

TU + 2
M∑
j=1

LmjVj)ij(Vm)ij = 0. (3.17)

These relations lead to the following multiplicative update rules

(U)ij ← (U)ij

∑M
m=1(XmVm)ij∑M
m=1(UV

T
mVm)ij

(3.18)

(Vm)ij ← (Vm)ij
(XT

mU +
∑M

j=1WmjVj)ij

(VmUTU +DmmVm)ij
, (3.19)

where I use the fact that L = D −W , and Djm = 0 for all j 6= m.

The algorithm for NMF is shown in Algorithm III.1.

I establish the following result for the updating algorithm.
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Algorithm III.1 Multiplicative Updating for Integrative NMF

1: Construct the smoothing matrix, L = D −W
2: Initialize U, {Vm} as a dense, positive random matrices
3: repeat
4: Set

(U)ij ← (U)ij

∑M
m=1(XmVm)ij∑M
m=1(UV

T
mVm)ij

5: for m=1..M do
6: Set Vm

(Vm)ij ← (Vm)ij
(XT

mU +
∑M

j=1WmjVj)ij

(VmUTU +DmmVm)ij

7: end for
8: until Convergence

Theorem III.1. The objective function in (3.3) is non-increasing under the multi-

plicative updates rules.

A proof is given in the Appendix 3.7. The argument makes use of auxiliary

functions and is similar to the one used by Lee and Seung (1999, 2001). Minor

modifications provided by Lin (2007) can be employed to guarantee convergence to

a stationary point.

3.3.2 Alternating Least Squares

As mentioned in the Introduction, it has been suggested that this class of algo-

rithms converges to less satisfactory solutions due to the fact that any element that

is zero must remain zero in subsequent updates. Thus, the algorithm can get ’stuck’

on a particular fixed point. Another more flexible class of NMF algorithm is the

alternating non-negative least squares algorithm (ANLS).

To develop an alternating least squares algorithm for the model, I first obtain the
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partial derivatives of Equation 3.3. The objective function can be written as

O = ||X − UV T ||2F + Tr(V TLV ) (3.20)

= Tr(XXT )− 2Tr(XV UT ) (3.21)

+ Tr(UV TV UT ) + Tr(V TLV ).

Taking partial derivatives

∂O
∂U

= −2XV + 2UV TV (3.22)

∂O
∂V

= −2XTU + 2V UTU + 2LV, (3.23)

and solving respectively for U and V after setting equal to zero yields update relations

for the algorithm. In particular, U can be solved for using the usual least squares

estimator

U = XV (V TV )−1 (3.24)

or using active set methods to solve subject to non-negativity (see Kim and Park

(2008)).

Setting ∂O
∂V

equal to zero and isolating V yields

V UTU + LV = XTU. (3.25)

Hence, updating V requires solving an important matrix equation called Sylvester’s

equation, which is of the form

V A+BV = C, (3.26)

where A = UTU is K × K, B = L is n × n, C = XTU is n × K and V is solved

for. A classical algorithm for the numerical solution of Sylvester’s equation is the

53



Bartels-Stewart algorithm, which transforms A and B into Hessenberg form, then

solves the resulting system via back-substitution Bartels and Stewart (1972); Golub

et al. (1979). This leads to Algorithm III.2.

Algorithm III.2 Alternating Least Squares for Integrative NMF

1: Construct the smoothing matrix, L = D −W
2: Initialize V = [V1, . . . , VQ] as a dense, positive random matrices
3: repeat
4: Set U = XV (V TV )−1

5: Set all negative elements in U to 0
6: Solve for V using Bartels-Stewart in

V UTU + LV = XTU
7: Set all negative values in V to 0
8: until Convergence

Projection steps are included in the algorithm because the Bartels-Stewart ap-

proach solves Sylvester’s equation without non-negativity constraints. To my knowl-

edge, a procedure to find the constrained solution is an open problem and technically

challenging.

Berry et al. (2006) propose an NMF algorithm for such an unconstrained solution

that employs projection steps to enforce non-negativity (henceforth referred to as

ALS). While there exists numerical support for approximate ALS algorithms, conver-

gence theory is lacking, since, for instance, projecting onto the non-negative orthant

could increase the objective value. This would negate the non-increasing update

theorem presented in the Appendix for multiplicative updating.

The computational cost of Bartels-Stewart for solving Equation 3.26 is conserva-

tively estimated in the original paper (Bartels and Stewart , 1972) to beO(K3+(nT )3).

The cost per iteration of multiplicative updating is O(n2KT ). Thus, the cost per it-

eration for the ALS algorithm is higher. On the other hand, the overall convergence

rate is quadratic, which is faster than that of multiplicative updating. Multiplicative

updating attains a linear convergence rate and can be especially slow near limit points

Chu et al. (2004).
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3.4 Parameter Selection

3.4.1 Choosing the Weight Function

I use a weight function that is proportional to the triangular kernel, since it results

in sparse smoothing matrices, and gives larger weight to nearby slices:

W (m, m̃) =
λ

hm
K(

m− m̃
hm

), (3.27)

K(x) = (1− |x|)I{x ∈ (−1, 1)}, (3.28)

where λ controls the strength of the penalty, and hm (the bandwidth) is a parameter

used to adjust the penalty to the scale of the data.

The bandwidth controls the number of neighboring matrices to average over.

Larger values of hm mean that the model has more memory, so it incorporates more

points for estimation. This risks missing sharper changes in the data and only de-

tecting the most persistent patterns. On the other hand, small values of hm make the

fitting more sensitive to sharp changes, but increase variance due to smaller number

of observations. I find setting hm to include the closest two or three data matrices

is sufficient for the data considered in this chapter. Larger values could be used in

noisier settings to smooth results.

The selection of λ is again highly contextual. If the goal is visual exploration of

the data, it can be satisfactory to choose the penalty strength subjectively by eye.

This involves looking at several estimates over a range of strengths and selecting the

one that emphasizes the structure most. For other purposes, such as clustering or

prediction, the cross validation based approach discussed below can be extended to

select λ in addition to the estimation rank.
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3.4.2 Choosing the Estimation Rank

For visualization, lower rank (≤ 3) representations are preferred for practical

reasons. Figures similar to Figure 3.2 can be constructed to visualize the underlying

dynamic structure in the data.

For the goal of clustering, the rank should be equal to the number of underlying

groups. Then, (U)ik(Vm)kj can be interpreted as the contribution of the k − th

cluster to the data element (Xm)ij. The rank can be ascertained by examining the

accuracy of the reconstruction as a function of rank. However, this tends to rely on

subjective judgments and overfit the given data. Cross validation based approaches

are theoretically preferable and follow the same intuition.

The idea behind cross validation is to use random subsets of the data from each

data slice to fit the model, and another subset from each data slice to assess accuracy.

Different values of K are then cycled over and the one that corresponds to the lowest

test error is chosen.

Due to the data structure, I employ two-dimensional cross validation. Two-

dimensional refers to the selection of submatrices for the training and test data.

Special care is taken to ensure that the same rows and columns are held out of every

data slice, and the dimensions of the training and test sets are identical.

The hold out pattern divides the rows into k groups, the columns into l groups,

then uses the corresponding kl submatrices to fit and test the model. In each sub-

matrix, the given row and column group identifies a held out submatrix that is used

as test data, while the remaining cells are used for training. The algorithm is shown

in Algorithm III.3. The notation in the algorithm uses Il and IJ as index sets to

identify submatrices in the each data matrix.

I then cycle over different values of K to choose the one that minimizes average

test error. Consistency results are developed in Perry and Owen (2009) to provide

theoretical foundations for this approach.
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Algorithm III.3 Cross-validation for choosing the approximation rank

1: Form row holdout set: Il ⊂ {1, .., n}
2: Form column holdout set: IJ =⊂ {1, .., p}
3: Set

(Ũ , Ṽm) = arg min
U,Vm≥0

∑
m

||(Xm)−Il,−IJ − UV T
m ||2F

4: Set
Ŭ = arg min

U≥0

∑
m

||(Xm)Il,−IJ − UṼ T
m ||2F

5: Set
V̆m = arg min

V≥0

∑
m

||(Xm)−Il,IJ − ŨV T
m ||2F

6: Set
ˆ(Xm)Il,IJ = Ŭ V̆ T

m

7: Compute Test error

Test Error =
∑
m

||(Xm)Il,IJ − ˆ(Xm)Il,IJ ||
2
F

3.5 Applications

3.5.1 World Trade Data

I use the model to extract and compare decompositions of global trade for dif-

ferent types of goods. The data consists of bilateral trade flows between 202 coun-

tries from 1980 to 2000 (Feenstra et al., 2004) and is available at http://cid.econ.

ucdavis.edu/. The raw data contains annual trade values classified into approxi-

mately one thousand categories according to the Standard International Trade Clas-

sification (SITC) codes. We aggregate SITC codes to construct the following trade

types.

1. Agriculture includes trade with SITC codes mentioning rice, wheat, fish, meat,

milk, butter, fruits, or vegetables in its description.

2. Ore includes iron, copper, aluminum, nickel, copper, lead, zinc, tin, manganese,
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Figure 3.3:
Average test errors obtained by cross validation with 5 partitions of row
and column sets (25 submatrices in each data matrix). The vertical line
identifies the minimum.
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and other concentrates of base and precious metals.

3. Petroleum includes trade with SITC codes mentioning petroleum or oils in its

description.

4. Coal includes trade with SITC codes mentioning coal, lignite or peat in its

description.

5. Natural Gas includes trade with SITC codes mentioning natural gas in its

description.

6. Alcohol includes general alcoholic beverages, spirits, liqueurs, beer, wine, and

other fermented beverages.

Thus, we observe six separate data series over 21 time points, where each i, j entry

in a data matrix denotes the exports from country i to country j. Since trade flows

can differ in size by orders of magnitude, we work with values that are expressed in

nominal log dollars.

I apply the model for a number of tasks. First, the basis vectors in U decom-

pose the data arrays into interpretable parts by integrating over all time points in a

systematic way. In context, basis vectors are useful for identifying countries that rep-

resent the most persistent driving forces in global trade. For more detailed analysis,

the time-varying expressions (Vt) can be examined to capture dynamics.

The number of components for each data array are chosen according to cross

validation, as shown in Figure 3.3. The figures seem reasonable, except perhaps

natural gas, where the average test error is near zero and the shape of the plot is

irregular. As shown in the Appendix 3.7, a single component yields a very accurate

reconstruction of the natural gas data. Four to five components yields a nearly perfect

reconstruction. Hence, the choice of five components from cross validation seems

reasonable, but a smaller number could suffice. Altogether, the six data arrays are

processed using between three and eight components.
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Figure 3.4 shows the basis vectors learned for each set of goods. Coal, natural gas,

and alcohol appear to be commonly driven by the United States, Russia, Australia,

and parts of Europe, since they former and latter due to their level industrialization

are net importers, while the other two are significant net exporters. In contrast, Agri-

culture, ore, and petroleum are more diversified markets, with all continents showing

presence. The ore bases show Australia, Brazil, and South Africa as important to

each component, due to their exporting strength on the basis of their vast deposits.

The United States, due to its importing, appears weakly in all three components. The

petroleum bases shows the importance of Saudi Arabia, Iran, Venezuela, Columbia,

Libya, Algeria and Morocco to the market. These countries largely appear only in

the petroleum bases, indicating that oil represents their main tradable good.

Countries in southeast Asia, such as China, South Korea and Singapore, that

experienced rapid growth in the 1990’s (see Stiglitz (1996); Nelson and Pack (1998))

are not readily observed in the learned bases. Their absence is due to the fact that

U combines information from all times to highlight the most persistent countries.

Another contributing factor for China’s absence is that for the years 1988 - 2000,

the raw data feature export values that were adjusted (lowered) to account for Chi-

nese goods that are re-exported through Hong Kong (see page 5 of Feenstra et al.

(2004)). As a result, the import value from Hong Kong increases, while the the export

value from China decreases by the same amount. We anticipate that with additional

data from 2001 and beyond, China’s influence in particular would grow enormously.

Nonetheless, the time-varying expressions (Vt) capture dynamic behavior and many

of the Asian countries discussed above are more visible in them.

Figure 3.5 displays the estimated expressions (Vt) as time series. The top coun-

tries’ expressions reflect global economic growth. The curves appear roughly sigmoid

shaped and are consistent with economic models that utilize sigmoid shaped curves

to model global trade and economic growth (Rodriguez and Rodrik , 2001; Bernanke
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Agriculture Ore Petroleum Coal Natural Gas Alcohol

Figure 3.4: Basis vectors learned from the world trade data arrays.
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Agriculture Ore Petroleum Coal Natural Gas Alcohol
Number

Components
7 3 8 3 5 5

% Var. Explained
(Penalty)

74.0 54.6 66.7 49.8 36.1 70.1

% Var. Explained
(no Penalty)

75.3 57.1 68.0 57.6 78.5 71.1

Table 3.1:
Summary statistics for the decompositions. The penalized fit corresponds
to λ = 1000, with hm = 2 years. Percent of Variance Explained is defined
as 1− ||X − Û V̂ T ||F/||X||F .

and Rogoff , 2001).

Figures in the Appendix show the expressions without any penalty projected onto

a world map. The main pattern conveyed is that countries in North and South Amer-

ica, Australia, and South Africa increased their coal trade levels over time. However,

a closer inspection shows some strange features. For instance, India and Libya appear

active only in 1990. Similarly, Russia appears only in year 2000. The third compo-

nent even indicates a persistent decreasing trend in trade levels throughout Europe

and other parts of the world. These features are not consistent with growth (sigmoid

shaped) curve models.

Employing the smoothness penalty, as in Figure 3.6, removes the unwanted fea-

tures while still conveying the main pattern of growth in North and South America,

Australia, and South Africa. The odd change point-like behavior is smoothed out,

and global growth appears to trend upwards for most countries. Additional figures

in the Appendix show the factors over larger penalty strengths.

Table 3.1 compares the NMF model with and without penalties. We find that

adding smoothness penalties causes a minor loss in reconstruction accuracy. The only

large drop was for natural gas, which may indicate that factors were over-smoothed.

Nonetheless, it appears that the benefits of smoothing outweigh the small average

loss in reconstruction accuracy.
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Agriculture Ore Petroleum

Coal Natural Gas Alcohol

Figure 3.5:
Smooth expressions (sum of Vt components) learned from the data arrays.
Each grey line represents a country, the bold line shows the mean of the
top 20 countries.

Lastly, we note that growth curves are commonly derived from multidimensional

time-series to facilitate decision making in many applications in a diverse set of sci-

entific fields (Pan et al., 2002). For instance, logistic curves have been used to model

cellular growth rates (Airoldi et al., 2009) and specie population levels (Fath et al.,

2004). Thus, the smoothing encouraged with the proposed model should be useful

for analyzing data collected in many areas.

3.5.2 arXiv Citations

Citation networks, composed of references (edges) between documents (nodes),

have a long history of study in bibliometrics, going back to de Solla Price (1965),

where it was posited that in the world of research “success breeds success”, that

is, a popular research article is more likely to be referenced than less cited ones.

Accordingly, citation networks have been shown to feature heavy-tailed degree dis-
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λ = 1000 1980 1990 2000

Comp. 1

Comp. 2

Comp. 3

Figure 3.6:
Time-varying expression vectors (Vt) learned from the Coal data array,
with hm = 2 years and λ = 1000. Three years of estimates are shown
instead of all years due to space constraints.

tributions (Clauset et al., 2009). Other works, such as Girvan and Newman (2002b),

find grouping structure that correspond to research topic and methodology. Yet,

these and most other empirical studies of citation networks treat the graph object as

static, even though network structure can evolve over time as documents are created

and content focus shifts.

Recently, as data collection technologies have improved, researchers have begun

to investigate citation graphs as dynamic objects. Leskovec et al. (2005) find that

growth patterns in citation networks feature some surprising empirical characteristics.

In particular, the number of references grows faster, becomes more dense, and exhibits

a shrinking diameter over time – all empirical patterns that challenge the dynamical

assumptions of preferential attachment models (Barabsi and Albert , 1999; Newman

et al., 2006). Leicht et al. (2007) find that the relevance of document communities

rise and fall as content focus and semantics shift within a corpus of US Supreme

Court opinions. As such, a remaining and important goal is to characterize the time-

varying complexity of citation networks in terms of the number and different types
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Jan 1995 Jan 1998 Jan 2000

Figure 3.7:
Graph layouts of the raw data at three different time points. Due to the
size of the networks, it quickly becomes difficult to discern paper (node)
properties.

of evolutions that papers follow in such data.

We investigate a sequence of monthly citation networks from October 1993 to

December 2002 for the e-print service arXiv. We find that existing techniques are

better suited for characterizing global changes to network topology and inadequate for

uncovering and representing paper dynamics. The proposed regularized non-negative

matrix factorization is utilized that captures the different life-cycles of research articles

through interpretable visual representations. For example, we discover the rapid and

sustained rise in popularity of fundamental papers, as well as the more common

dynamics of lower impact articles. Further, the results allow us to infer the growth

of an important research topic in theoretical physics, followed by a shift to other

problems as the first topic matures.

The citation networks we analyze are from the e-print service arXiv for the ‘high

energy physics theory’ section. The data covers papers from October 1993 to Decem-

ber 2002, and was originally provided as part of the 2003 KDD Cup (Gehrke et al.,

2003).

The data is organized into monthly networks. In particular, if paper i cites paper

j, then the graph contains a directed edge from i to j. Citations to or from papers
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Figure 3.8:
The kink near near Jan 2000 indicates sudden, rapid growth. The network
statistics also indicate the average length of bibliographies increased over
time (Leskovec et al., 2005). The top-left plot is on a log-log scale.

outside the dataset are not included. Edges are aggregated, that is, the graph for a

given month will contain all edges from the beginning of the data up to, and including,

the current month. Altogether, there are 22750 papers (nodes) with 176602 edges over

112 months. Graph layouts are shown in Figure 3.7, where we see that even when

considering a single time point, it quickly becomes difficult to discern paper (node)

properties due to the large network size. Thus, the data requires network statistics

and other analytical tools to extract structure and infer dynamics in the network

sequence.

Figure 3.8 shows a noticeable kink in the network statistics around the year 2000,

after which the network grew faster. This pattern is commonly attributed to papers

that reference other works before the start of the observation period (see Leskovec

et al. (2005)). As we move away from the beginning of the data, papers primarily

reference other papers belonging to the data set. To better understand the dynamics

underlying the citation networks, in the next section we discuss and apply several

popular methodologies.

We discuss next popular approaches to extracting structure and inferring dynamics

within a sequence of networks. Specifically, we address (i) animated network drawings,

(ii) network statistic time-series, and (iii) a likelihood-based approach to extracting

communities. We note that the two latter approaches are applied to a citation network
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of US Supreme Court opinions in Leicht et al. (2007).

3.5.2.1 Animated Layouts

There are two main extensions of the graph drawing techniques that were used

to create Figure 3.7. The first and most popular extension relies on animation. The

alternative is to view all time periods simultaneously using a matrix of images. With

either technique, the main challenge is to preserve the overall shape and attributes

of the network, so that nodes are moved as little as possible between time steps to

facilitate readability.

However the data features 112 time points and is challenging for either approach if

the user is interested in detailed analysis. Ghani et al. (2012) find that the effective-

ness of animation is strongly predicted by node speed and target separation. Thus,

there exists a bottleneck stemming from the analyst’s cognitive load, as the analyst

must remember patterns over a large time span or time points must be traversed

quickly increasing node speed. Screen space acts as a bottleneck with a matrix of

images. A pure visualization approach is unsuitable for the data, since it contains

both a large number of nodes and time points.

3.5.2.2 Connectivity Scores

Uncovering community structure by maximizing the modularity function is a

widely adopted method (Newman, 2006b). The idea behind the modularity func-

tion is to measure, when given group assignments, whether a larger than expected

number of edges exist within each group. In practice, maximizing the modularity over

all possible partitions is NP hard. Approximate solutions are obtained by first using

the leading eigenvector of the so-called modularity matrix to split the network into

two, and then repeatedly dividing the network in two until the modularity decreases.

Following the analysis in Leicht et al. (2007), I partition the fully formed citation
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network when t = 112 using the approximate modularity solution described above.

The optimal number of groups is over two hundred. However, there are only four

meaningful groups of papers, as the other groups contain only a handful of papers.

The left panel of Figure 3.9 shows the degree of each paper over time, colored by the

modularity group assignment. From the plot I can see a number of possible different

time profiles, none of which are clearly captured in the modularity groupings. This

finding is in contrast to the investigation in Leicht et al. (2007), which used different

citation network data. The modularity approach finds groups of papers that are

specifically linked together by edges, e.g., the temporal profile of each paper is not

utilized, so that the groups are interpretable from a static connectivity point of view

only.

I now compute the authority measure proposed by Kleinberg (1999), which de-

rives a measure of importance from considering incoming edges only. Utilizing edge

direction is useful in citation networks, since a paper that is cited by many other

important papers is likely to be an authoritative one. The measure is computed with

the leading eigenvector of XTX, where X is the asymmetric adjacency matrix corre-

sponding to the directed citation network. The right panel of Figure 3.9 shows the

average age of the most influential papers. Consistent with the other results, there is

a drop in the average age around the year 2000 indicating perhaps a shift in current

research topics. Similar to the modularity clustering, the temporal aspect of the data

is not utilized when computing the authority scores. As a result, there are artificial

numerical fluctuations in the authority scores before the drop.

3.5.2.3 Mixture Model

I apply the mixture model in Leicht et al. (2007) to extract groups of papers

according to their common temporal citation profiles. To briefly summarize, the

model consists of two main sets of parameters. First, a set of time profiles for each
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Figure 3.9:
The left panel shows the degree of each node over all time points, colored
by modularity groupings. The groupings are not interpretable in terms
of the time-profile of each paper. The right panel shows the average age
in months of the top authority paper over time.

group that represents the probability that a citation received in a given group is

made during time t. The second parameter set consists of the probabilities that a

randomly chosen document belongs to each group. Following standard derivations,

an EM algorithm is utilized for estimation.

Figure 3.10 shows the time-profiles over different numbers of groups. Comparing

against the degree plot in Figure 3.9, the temporal profiles are reasonable. One can

clearly see at least two groups, one that grows slowly from the beginning of the

observational period and another that experiences rapid growth starting just before

the year 2000.

3.5.2.4 A Unifying Framework for Node-level Analysis

The results above show that the authority scores of Kleinberg (1999) and the

mixture model of Leicht et al. (2007) are useful. Combined, they can in principle be

used to identify important papers, as well as characterize the data in terms of the
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Figure 3.10:
Time-profiles for each group based on the mixture model of Leicht et al.
(2007).

number and types of different groups in the data.

However, the authority scores were computed separately at each time point creat-

ing irregularities in the time-series. Further, it is difficult to systematically combine

them with the mixture results, which is required in order to identify particular papers

and their interesting trajectories.

The proposed non-negative matrix factorization combines both approaches in a

principled fashion by discovering groups of papers according to their trajectories in

the data, while also providing time-series that are closely related to authority scores

for each paper. Specifically, in a network setting, the U vectors score nodes by their

“interestingness”, or distance from the average outgoing connectivity. The Vt vectors

yield similar scores based on incoming connections. Together, U and Vt are useful for

highlighting nodes by their importance to connectivity. Moreover, due to the non-

negativity constraint, it is straightforward to interpret the estimates. For instance,∑
k(Vt)kj measures the total authority of paper j, and (U)ik(Vt)kj can be interpreted

as the contribution of the kth cluster to the edge (Xt)ij. Thus, I characterize the

time-varying complexity of the data in terms of the number and different types of

authority evolutions that papers follow in such data.

I choose the parameters by following heuristics of varying parameters over a grid
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of values and comparing results. Additional details and figures are given in the

Appendix that show factors over different parameterizations. The results presented

here use low rank embeddings and small smoothness penalties to obtain interpretable

visual representations of the evolving structure within high energy physics theory.

Figure 3.11 shows the Vt estimates using a series of two-dimensional approxima-

tions (K = 2). These time-varying factors are used to display the evolving impact of

scientific articles. The paper trajectories are smoothed effectively and the important

ones are highlighted by employing the penalty. Each component corresponds to a

separate group in the data. With the exception of the highly popular outlier, the first

component contains papers that mostly peak in their popularity by 1998. In other

words, citations to these papers slowed dramatically around 1998, while research fo-

cus shifted to other topics and articles. The outlier continued to be cited throughout

the data. The second component captures papers from 1998 onwards. Similarly, a

small number of articles achieve massive impact.

The top papers from both Vt components are identified in Tables 3.2 and 3.3.

Most of these articles are about an extension of string theory called M-theory, which

was first proposed in 1995 and led to new research in theoretical physics. It appears

from the degree and citation counts that these papers were central to the develop of

the theory. Notably, Witten is credited with naming M-theory, and appears often in

the tables.

The results above show that existing methods discover similar patterns. How-

ever, authority scores do not utilize any temporal information creating difficulties in

interpretation. The mixture approach does not provide a systematic way to iden-

tify important papers and trajectories that led each group. The proposed NMF is

able to bridge the gap, by grouping papers according to their trajectories, while also

providing temporal curves for each paper that are closely related to authority scores.

71



Vt Estimates (Evolving Paper Impact Scores)
1st Component 2nd Component Sum of Components

Citation Network Layouts
I II III

IV V

Figure 3.11:
The top panel shows estimates of Vt for the arXiv data with λ = 4, hm =
3 months. Each line corresponds to a paper (node) in the data. The
bottom panel shows graph layouts of the raw data colored by the relative
contribution of Vt components with the node size proportional to the sum
of components. The dominant paper in the first component is identified
with a rectangle in the graph layouts in periods I,II,III.
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Title Authors In-Degree Out-Degree
# citations
(Google)

Heterotic and Type I Horava and Witten 783 18 2265
String Dynamics
from Eleven Dimensions

Five-branes And M - Witten 169 15 249
Theory On An Orbifold

D-Branes and Topological Bershadsky, 271 15 457
Field Theories et. al

Lectures on Superstring and Schwarz 274 68 483
M Theory Dualities

Type IIB Superstrings, Hanany and Witten 437 20 809
BPS Monopoles,

And Three-Dimensional
Gauge Dynamics

Table 3.2:
The top 5 papers from the first component. # citations counts all refer-
ences to the work, including by works outside of the data. These counts
are obtained by Google.

Title Authors In-Degree Out-Degree
# citations
(Google)

The Large N Limit Maldacena 1059 2 9928
of Superconformal Field

Theories and Supergravity
Anti De Sitter Witten 766 2 6467

Space And Holography
Gauge Theory Klebanov and 708 0 5592

Correlators from Non- Polyakov
Critical String Theory

Large N Field Theories, Aharony, et. al 446 74 3131
String Theory
and Gravity

String Theory and Seiberg and Witten 796 12 3624
Noncommutative Geometry

Table 3.3: The top 5 papers from the second component.
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Data Rows Columns Time Points
Runtime
(server)

Runtime
(netbook)

Illustrative Example 100 100 100 0.47 3.09
1000 100 100 1.27 8.85
10000 100 100 3.78 34.63
100 1000 100 6.80 36.35
100 10000 100 73.60 423.95
100 100 1000 6.62 36.86
100 100 10000 76.27 440.22

arXiv 22750 22750 112 35.67 240.10
World Trade 212 212 21 2.00 5.70

Table 3.4:
Runtimes (seconds) in MATLAB for rank 1 NMFs from a University of
Michigan dedicated computing server and a Linux netbook with 4GB Ram
and 1.7 GHz AMD Athlon Neo K125 Processor. Mild temporal smoothing
via the triangular kernel is utilized, with no group penalty.

3.6 Conclusion

Scalability (tens of thousands of rows, columns, and depth) is a highly desirable

property. Since parameters have been through a grid search, the reader may wonder

about the computational costs. As shown in Table 3.4, the factorizations are com-

puted in a reasonable amount of time even on a modestly endowed computer. Further,

the model achieves smoothness with a relatively small amount of penalization. As a

consequence, the estimation algorithms are efficient.

An interesting application area not investigated in this work appears to be heav-

iest element searches. Li et al. (2011) propose a tensor-based framework for directed

graphs called ‘recurrent heavy subgraph’ search. The goal is to identify the most

common, largest weighted communities in biological networks observed over different

experimental conditions. However the tensor-based framework requires solving a non-

convex, continuous optimization as an approximate solution to an intractable discrete

problem. The proposed approach should be easier to implement and computationally

less demanding. Moreover, the proposed model and algorithm provides a systematic

way of integrating information across data to find the ‘heaviest elements’.
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There are several questions to be investigated in future work. First, the approxi-

mation rank, penalty strength and scale (K,λ, hm) can be chosen by cross validation

for smaller/moderately sized data sets. However, this is not satisfactory for large data

sets, due to its computational cost. Theoretical guidelines for choosing the penalty,

especially in large sized problems, remain to be developed. Second, I present a mul-

tiplicative updating, which is very similar to the original algorithm proposed by Lee

and Seung (2001). Another popular and more flexible class of NMF algorithm is the

alternating non-negative least squares algorithm (ANLS). A constrained solution to

the classical Sylvester’s equation is required to implement an ANLS algorithm with

the proposed regularization framework. Such a solution seems a useful area of future

work, but technically challenging.

3.7 Appendix

3.7.1 Multiplicative Updating

We establish the following Theorem III.1 by following an argument similar to the

ones made by Lee and Seung (1999, 2001).

Concatenate {Xm} as

X = [X1, X2, ..., XM ]. (3.29)

Write {Vm} in a similar manner.

The proposed objective function can then be written as

O = ||X − UV T ||2F + Tr(V TLV ). (3.30)

The argument makes use of an auxiliary function. We begin with the definition

of auxiliary function.
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Definition III.2. G(h,h’) is an auxiliary function for F(h) if the conditions

G(h, h′) ≥ F (h), G(h, h) = F (h) (3.31)

are satisfied.

Lemma III.3. If G is an auxiliary function, then F is nonincreasing under the update

ht+1 = argminhG(h, ht) (3.32)

Proof.

F (ht+1) ≤ G(ht+1, ht) ≤ G(ht, ht) = F (ht) (3.33)

Since the second term of the objective function is only related to V , we have

exactly the same update formula for U as in the original NMF. Thus, we can use the

standard convergence proof of NMF for the U update step. Now we will show that

the update rules presented in the main text are exactly the update in (3.32) with a

proper auxiliary function.

Considering any element Vab in V , we use Fab to denote the part of the objective

function, which is only relevant to Vab. It is easy to check that

F ′ab = (
∂O
∂V

)ab = −2XTU + 2V UTU + 2LV (3.34)

F ′′ab = 2UTU + 2L. (3.35)

Since our update is essentially element wise, it is sufficient to show that each Fab

is nonincreasing under the V update step.
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Lemma III.4. Function G(v, V
(i)
ab ) is an auxiliary function for Fab, where

G(v, V
(i)
ab ) = Fab(V

(i)
ab ) + F ′ab(V

(i)
ab )(v − V (i)

ab ) (3.36)

+
(VmU

TU)ab + (DVm)ab

V
(i)
ab

(v − V (i)
ab )2.

Proof. Since G(v, v) = Fab(v) is obvious, we need only to show that G(v, V
(i)
ab ) ≥

Fab(v). We compare with the Taylor series expansion of Fab(v).

Fab(v) = Fab(V
(i)
ab ) + F ′ab(V

(i)
ab )(v − V (i)

ab ) + F ′′ab
(v − V (i)

ab )2

2
(3.37)

Comparison with (3.36) shows that G(v, V
(i)
ab ) ≥ Fab(v) is equivalent to

(V UTU)ab + (DV )ab

V
(i)
ab

≥ (UTU)bb + (L)aa. (3.38)

We have

(V UTU)ab =
k∑
l=1

v
(i)
al (UTU)lb ≥ V

(i)
ab (UTU)bb (3.39)

which implies that

(V UTU)ab ≥ (UTU)bb. (3.40)

Then

(DV )ab =
n∑
j=1

Dajv
(i)
jb ≥ DaaV

(i)
ab (3.41)

≥ (D −W )aaV
(i)
ab = LaaV

(i)
ab (3.42)

Thus, we have shown that G(v, V
(i)
ab ) ≥ Fab(v).

We can now demonstrate the convergence of Theorem III.1:

Proof of Theorem III.1. Replacing G(v, V
(i)
ab ) in (3.32) by (3.36) results in the update
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1st Component 2nd Component Sum of Components

Figure 3.12:
Fitted values for Vt for the arXiv data with no penalty. Each line corre-
sponds to a paper (node) in the data.

rule:

V
(i+1)
ab = V

(i)
ab − V

(i)
ab

F ′ab(V
(i)
ab )

2(V UTU)ab + 2λ(DV )ab
(3.43)

= V
(i)
ab

(XTU)ab + (WV )ab
(V UTU)ab + (DV )ab

(3.44)

Since (3.36) is an auxiliary function, Fab is nonincreasing under this update rule.

3.7.2 arXiv Citations

Figure 3.12 shows the expression values (Vt) with no penalty framework. The over-

all pattern is the same as the smoothed components presented in the main text. The

smooth curves help facilitate information extraction and is visually more satisfactory.

Figure 3.13 shows the expression values (Vt) with a bandwidth that is too small.

The components appear numerically unstable, with local wiggles. Moreover, the first

component features values that are minuscule.

3.7.3 World Trade Data

Figure 3.14 shows the reconstruction error by rank. As expected, adding addi-

tional components yields more accurate approximations. As mentioned in the main
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1st Component 2nd Component Sum of Components

Figure 3.13:
Fitted values for Vt for the arXiv data with hM = 2 months instead of
three (as presented in the main text).

text, a small number of components yield a very accurate reconstruction of the natu-

ral gas data. Four to five components yields a nearly perfect reconstruction. Hence,

the choice of five components from cross validation may be on the high side.

Figure 3.15 shows the time-varying expressions (Vt) with no penalties. The factors

show some unrealistic patterns. For example, Russia appears only in year 2000, and

India and Libya appear active only in 1990. The third component even indicates a

persistent decreasing trend in trade levels throughout Europe and other parts of the

world. These unwanted features are removed by employing the smoothness penalties,

as shown in the main text.

Figure 3.16 shows the time-varying expressions (Vt) with a very large smoothness

penalty. The factors become unstable, effectively collapsing into a single dimension.

Further, the large smoothness penalty forces the factors to be constant and similar

to the sum of basis vectors learned in U .

79



●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

5 10 15 20

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
10

00
00

11
00

00

Approximation Rank

R
ec

on
st

ru
ct

io
n 

E
rr

or

Agriculture
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ●

5 10 15 20

25
00

0
30

00
0

35
00

0
40

00
0

Approximation Rank

R
ec

on
st

ru
ct

io
n 

E
rr

or

Ore
●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ●

5 10 15 20

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

Approximation Rank

R
ec

on
st

ru
ct

io
n 

E
rr

or

Petroleum

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●

5 10 15 20

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0

Approximation Rank

R
ec

on
st

ru
ct

io
n 

E
rr

or

Coal
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0
10

20
30

40

Approximation Rank

R
ec

on
st

ru
ct

io
n 

E
rr

or

Natural Gas
●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●

5 10 15 20

20
00

0
25

00
0

30
00

0

Approximation Rank

R
ec

on
st

ru
ct

io
n 

E
rr

or

Alcohol

Figure 3.14: Average reconstruction errors as a function of rank.

No Penalty 1980 1990 2000

Comp. 1

Comp. 2

Comp. 3

Figure 3.15:
Time-varying expression vectors (Vt) learned from the Coal data array
with no penalty.
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λ = 10000 1980 1990 2000

Comp. 1

Comp. 2

Comp. 3

Figure 3.16:
Time-varying expression vectors (Vt) learned from the Coal data array,
with hM = 2 months and λ = 10000.
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CHAPTER IV

Structural and Functional Discovery in Dynamic

Networks with Non-negative Matrix Factorization

4.1 Introduction

Due to advances in data collection technologies, it is becoming increasingly com-

mon to study time series of networks. An important research question is how to

discover the underlying structure and dynamics in time-varying networked systems.

In this chapter, I propose a new matrix factorization-based approach for community

discovery and visual exploration within potentially weighted and directed network

time-series. Next, I review and discuss this chapter in relation to popular approaches

for analyzing a sequence of networks.

There have been many important contributions, extensively reviewed in Fienberg

(2012); Goldenberg et al. (2009), from the fields of physics, computer science and

statistics for community detection in network time-series. The basic goal of commu-

nity detection is to extract groups of nodes that feature relatively dense within group

connectivity and sparser between group connections (Girvan and Newman, 2002a;

Ball et al., 2011). A common strategy is to embed the graphs in low-dimensional

latent spaces, then in a second stage extracting community structure from the latent

spaces. For instance, Leicht et al. (2007) use latent variables to capture groups of
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papers that evolve similarly in citation network data. Sarkar and Moore (2005) ex-

tend to the dynamic setting a popular latent space model for static data (Hoff et al.,

2002) by utilizing smoothness constraints to preserve the coordinates of the nodes

in the latent space over time. This chapter also utilizes a similar low-dimensional

embedding strategy. A key difference between this chapter and Sarkar and Moore

(2005) is that community membership itself is subject to smoothness conditions in our

approach, hence removing the need for a two stage procedure. This type of unified ap-

proach was first proposed in Facetnet (Lin et al., 2008), a method based on a variant

of non-negative matrix factorization (NMF) (Lee and Seung , 1999) for overlapping

(soft) community detection in evolving and undirected graphs. In this chapter, I de-

velop an alternative to Facetnet by proposing a different underlying NMF model and

set of constraints for soft community detection. This chapter is also in contrast to

previous works that use temporal smoothness constraints for non-overlapping (hard)

community detection (Sun et al., 2007), estimating time-varying network structure

from covariate information (Kolar et al., 2010), predicting network (link) structure

(Richard et al., 2012), or anomaly detection (Asur et al., 2009; Raginsky et al., 2012).

A sequence of non-negative factorizations discovers overlapping community struc-

ture, where node participation within each community is quantified and time-varying.

Other works that consider a single network cross-section have shown advantages of

NMF for community detection (Psorakis et al., 2011; Wang et al., 2011). In addition

to a quantification of how strongly each node participates in each community, NMF

does not suffer from the drawbacks of modularity optimization methods, such as the

resolution limit (Fortunato and Barthlemy , 2007).

I also use the NMF to transform the time series of networks to a time-series for each

node, which can be used to create an alternative to graph drawings for visualization

of node dynamics. Much of the visualization literature aims to enhance static graph

drawing methods with animations that move nodes (vertices) as little as possible
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between time steps to facilitate readability (Frishman and Tal , 2008). However, the

reliability of these methods rely on the human ability to perceive and remember

changes (Archambault et al., 2011). Moreover, experiments have discovered that the

effectiveness of dynamic layouts are strongly predicted by node speed and target

separation (Ghani et al., 2012). Thus, dynamic graph drawings encounter difficulties

when faced with a large number of time points, larger graphs that feature abrupt,

non-smooth changes, or if the user is interested in detailed analysis, especially at the

individual node level (see Section 3.2 of von Landserber et al. (2010), von Landesberger

et al. (2011); Yi et al. (2010)). On the other hand, static displays facilitate detailed

analysis and avoid difficulties associated with animated layouts. This highlights a

main advantage our NMF model, namely creating static displays of node evolutions.

The remainder of this chapter is organized as follows: in the next section, I in-

troduce a model for static network data in Section 4.2, followed by an extension for

dynamic networks in Section 4.3. We then test the matrix factorization model on

several synthetic and real-world data sets in Section 4.4. In Section 4.5, I close the

chapter with a brief discussion.

4.2 NMF for Network Cross-sections

The most common factorization is the Singular Value Decomposition (SVD),

which has important connections to community detection, graph drawing, and ar-

eas of statistics and signal processing (Hastie et al., 2001). For instance in classical

spectral layout, the coordinates of each node are given by the SVD of graph related

matrices, and can be calculated efficiently using algorithms in Koren (2005); Brandes

et al. (2006). Recently, there has been extensive interest in spectral clustering (Rohe

and Yu, 2012; Rohe et al., 2011; Chung , 1997), which aims to discover community

structure in eigenvectors of the graph Laplacian matrix. The method proposed in this

paper is similar in spirit, as it also relies on low rank approximations to adjacency
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matrices (instead of Laplacian matrices). However, we search for low-rank approxi-

mations that satisfy different (relaxed) constraints than orthonormality, namely, that

the approximating decompositions are composed of non-negative entries. Such factor-

izations, referred to as NMF, have been shown to be advantageous for visualization of

non-negative data (Lee and Seung , 1999, 2001; Paatero and Tapper , 1994; Devarajan,

2008). Non-negativity is typically satisfied with networks, as edges commonly corre-

spond to flows, capacity, or binary relationships, and hence are non-negative. NMF

solutions do not have simple expressions in terms of eigenvectors. They can, however,

be efficiently computed by formulating the problem as one of penalized optimization,

and using modern gradient-descent algorithms. Recently, theoretical connections be-

tween NMF and important problems in data mining have been developed (Ding et al.,

2005, 2008), and accordingly, NMF has been proposed for overlapping community de-

tection on static (Psorakis et al., 2011; Wang et al., 2011) and dynamic (Lin et al.,

2008) networks .

With NMF a given adjacency matrix is approximated with an outer product that

is estimated through the following minimization

min
U≥0,V≥0

||A− UV T ||2F , (4.1)

where A is the n × n adjacency matrix, and U and V are both n × K matrices

with elements in R+. The rank or dimension of the approximation K corresponds

to the number of communities, and is chosen to obtain a good fit to the data while

achieving interpretability. An interesting fact about NMF is that the estimates are

always rescalable (scale invariant). For example, one can multiply U by some constant

c and V by 1/c to obtain different U, V estimates without changing their product

UV T . Thus, as seen by the rotational indeterminancy and multiplicative nature of

the factorization, NMF is an under-constrained model.
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It is, however, straightforward to interpret the estimates due to non-negativity.

For instance, (U)ik(V )jk can be interpreted as the contribution of the kth cluster to the

edge (A)ij. In other words, the expected interaction (Â)ij =
∑K

k=1(U)ik(V )jk between

nodes i and j is the result of their mutual participation in the same communities

(Psorakis et al., 2011). Such an edge decomposition can then be used to assign

nodes to communities. For instance, one can proceed by first assigning all edges

to the community with largest relative contribution. Then, nodes are assigned to

communities according to the proportion of its edges that belong to each community.

Note that with an NMF-based methodology, the adjacency matrix can be weighted

(non-negatively), a potentially appealing feature since many existing analysis tools

are arguably only compatible with networks of binary relations.

Though it is not explicitly controlled, standard NMF tends to estimate sparse

components. Beyond the additional interpretability that sparsity provides, I find

further motivation to encourage sparsity of the NMF estimate when working with

networks. For instance, suppose (A)ij=0 for some i, j, that is, there is an absense of

an edge between nodes i and j. In the low rank approximation there is no guarentee

that (Â)ij = 0, though one expects it to be near zero. A straightforward way to force

(Â)ij exactly to zero is by anchoring (U)ik = (V )jk = 0 for all k, and estimating

the remaining elements of U and V by the algorithm provided below (see Buja et al.

(2008) for a similar strategy for multidimensional scaling). However, anchoring is

not appropriate with repeated or sequential observations, as an edge can appear and

disappear due to noise. Keeping in mind the extension to sequences of networks in

the next section, I instead encourage sparsity in the form of an l1 penalty.

The factorized matrices are obtained through minimizing an objective function

that consists of a goodness of fit component and a roughness penalty

min
U≥0,V≥0

||A− UV T ||2F + λs

K∑
k=1

||Vk||1, (4.2)
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where the parameter λs ≥ 0. The strength of the penalty is set by the user to steer

the analysis, where a larger penalty encourages sparser V . Adding penalties to NMF

is a common strategy, since they not only improve interpretability, but often improve

numerical stability of the estimation by making the NMF optimization less under-

constrained. Berry et al. (2006); Chen and Cichocki (2005); Hoyer (2002, 2004); Cai

et al. (2011) and references therein review important penalized NMF models (see Zou

et al. (2006); Witten et al. (2009); Guo et al. (2010) for similar approaches with SVD).

An advantage of an NMF-based approach is that it is easy to modify for particular

datasets. For example, a similar l1 penalty can be included on U if the rowspace

(typically out-going edges) are of interest.

The estimation algorithm I present is similar to the benchmark algorithm for NMF,

known as ‘multiplicative updating’ (Lee and Seung , 1999, 2001). The algorithm can

be viewed as an adaptive gradient descent. It is relatively simple to implement, but

can converge slowly due to its linear convergence rate (Chu et al., 2004). In practice

I find that after a handful of iterations, the algorithm results in visually meaningful

factorizations. The estimation algorithm for the penalized NMF in Eq. 4.2 is studied

in Hoyer (2002) and Hoyer (2004), and the main derivation steps I present next follow

these works.

First, to enforce the non-negativity constraints, consider the Lagrangian

L = ||A− UV T ||2F + λs

K∑
k=1

||Vk||1 (4.3)

+ Tr(ΦUT ) + Tr(ΨV T ),

where Φ,Ψ are Lagrange multipliers.

To develop a modern gradient descent algorithm, I employ the following Karush-

Kuhn-Tucker (KKT) optimality conditions, which provide necessary conditions for a

local minimum (Boyd and Vandenberghe, 2004). The KKT optimality conditions are
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obtained by setting ∂L
∂U

= ∂L
∂V

= 0.

Φ = −2AV + 2UV TV (4.4)

Ψ = −2ATU + 2V UTU + 2λs. (4.5)

Then, the KKT complimentary slackness conditions yield

0 = (−2AV + 2UV TV )ij(U)ij (4.6)

0 = (−2ATU + 2V UTU + 2λs)ij(V )ij, (4.7)

which, after some algebraic manipulation, lead to the multiplicative update rules

shown in Algo. IV.1. The algorithm has some notable theoretical properties. Specifi-

cally, each iteration of the algorithm will produce estimates that reduce the objective

function value, e.g., the estimates improve at each iteration. Minor modifications

provided in Lin (2007) can be employed to guarantee convergence to a stationary

point.

Algorithm IV.1 Sparse NMF

1: Set constant λs
2: Initialize {U, V } as dense, positive random matrices
3: repeat
4: Set

(U)ij ← (U)ij
(AV )ij

(UV TV )ij

5: Set

(V )ij ← (V )ij
(ATU)ij

(V UTU)ij + λs

6: until Convergence

Lastly, note that when the observed graph is undirected, due to symmetry of the

adjacency matrix the factorization can be written as

A ≈ UΛUT , (4.8)
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where Λ is a non-negative diagonal matrix. This is the underlying model investigated

in Facetnet (Lin et al., 2008), with additional constraints on U to satisfy an underly-

ing probabilistic interpretation. The objective function considered in Lin et al. (2008)

was also based on relative entropy or KL-divergence. I find that such symmetric NMF

models are far more sensitive to additional constraints than its general counterpart,

especially when dealing with sequences of networks as in the next section. Symmetric

NMF has less flexibility, since additional constraints strongly influence the reconstruc-

tion accuracy of the estimation. On the other hand, without imposing symmetry, as

V changes, U compensates (and vice versa) in order for the final product to repro-

duce the data as best as possible. Thus, for tasks of visualization of node evolution

and community extraction in dynamic networks, I do not impose symmetry on the

factorization.

4.2.1 Illustrative Examples

4.2.1.1 Community Discovery on a Toy Example

I compare the following methods on a toy example shown in Fig. 4.1.

1. Leading eigenvector (modularity) based community discovery (Newman, 2006a)

2. Spectral clustering (Rohe et al., 2011)

3. Clique percolation (Palla et al., 2005) for overlapping community discovery

4. Classical NMF (Eq. 4.1)

5. Sparse NMF (Eq. 4.2)

The results of the alternative methodologies are provided in Fig. 4.2, where even

on this toy example, there is disagreement in the recovered community structure. The

leading eigenvector solution differs slightly from that of spectral clustering. Taken

together, one may suspect a soft partitioning would result in overlap between the green
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Figure 4.1: An undirected network with 19 nodes.
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Figure 4.2: Results using alternative community discovery methods.

and red communities. Yet, clique percolation finds overlap between the blue and red

communities. Classical NMF finds overlap between all three communities, quantifies

the amount of overlap (denoted by the pie chart on each node), and decomposes each

edge by community (colored as a mixture of red, green and blue). Fig. 4.3 shows that

sparse NMF finds a cleaner structure compared to classical NMF. In particular, the

sparse NMF solution has less overlap (mixing) between the three groups, while still

quantifying community contribution to nodes and edges.
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Figure 4.3:
Results from applying sparse NMF (Algo. IV.1) with λs = 5. Nodes and
edges are colored to denote the relative contribution of each community.

4.2.1.2 Rank One Factorizations

I show in the experiments (Section 4.4) that a sequence of rank one matrix fac-

torizations can be the basis for informative displays of time-varying node importance

to connectivity. To provide some intuition as to why such a rank one factorization is

informative, consider Fig. 4.4, which shows graph structures, corresponding NMFs,

and Kleinberg’s authority and hub scores (Kleinberg , 1999). Authority and hub scores

are computed by the leading eigenvector of ATA and AAT , respectively. Subject to

rescaling of the NMF estimates, the results are identical. In fact, by the Perron-

Frobenius theorem (see Chapter 8 of Meyer (2000)), the rank one NMF solution is

always a rescaled version of authority and hub scores. This provides a natural in-

terpretation for the rank one NMF. For instance, the U vector on the Star Network

highlights the hub node. The V vector show that all peripheral nodes are equal in

terms of their authority (incoming connections), and that the central node has no

incoming connections. NMF vectors of the Ring Network show each node with an

equal score for incoming (authority) and outgoing (hub) connectivity. The fact that
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Star Network Ring Network

Adjacency
Matrix


0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
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0 0 0 0 0
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U, V
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Figure 4.4:

Rank 1 NMF without penalization and Kleinberg’s authority/hub scores
(Kleinberg , 1999).
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U contains larger elements than V is arbitrary. However, the assignment of equal

values within U and V shows each node is equally important to interconnectivity.

4.3 Model for Dynamic Networks

Given a time series of networks {Gt = (Vt, Et)}Tt=1 with corresponding adjacency

matrices {At}Tt=1, the goal is to produce a sequence of low rank matrix factorizations

{Ut, Vt}Tt=1.

To extend the factorization from the previous section to the temporal setting, I

impose a smoothness constraint on the basis Ut. This constraint forces new commu-

nity structure to be similar to previous time points. Since individual node time-series

given by Ut are visually smooth, time plots for each node become informative and

provide an alternative to graph drawings for visualizing node dynamics. Moreover,

time plots are static displays, which facilitate detailed analysis and avoid difficulties

associated with animated layouts when given a large number of time points or nodes.

The objective function becomes

min
{Ut≥0,Vt≥0}Tt=1

T∑
t=1

||At − UtV T
t ||2F (4.9)

+ λt

T∑
t=1

t+W
2∑

t̃=t−W
2

||Ut − Ut̃||2F

+ λs

T∑
t=1

K∑
k=1

||Vt,k||1,

where W is a small integer representing a time window. The parameters λt, λs and W

are set by the user to steer the analysis.

The interpretations of Ut, Vt extend naturally from the previous section, so that,

for instance,
∑

k(Vt)kj measures the importance of node j (typically corresponding to

incoming edges), and (Ut)ik(Vt)jk/
∑K

k=1(Ut)ik(Vt)jk to measure the relative contribu-
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tion of each community to each i, j edge. In principle, the edge decomposition can

be used to assign nodes to communities as discussed in the last section. However,

this approach can be unsatisfactory due to unstable community assignments. As al-

ternative method is to assign communities in terms of Ut, which ensures the stability

of the community structure through time. Specifically, measuring the contribution

of node i to each community with the relative magnitude of the ith element of each

dimension of Ut, e.g., (Ut)ik/
∑K

k=1(Ut)ik.

I can follow similar steps as in the last section to derive a gradient descent es-

timation algorithm. First, to enforce the non-negativity constraints, consider the

Lagrangian

L =
T∑
t=1

||At − UtV T
t ||2F (4.10)

+ λt

T∑
t=1

t+W
2∑

t̃=t−W
2

||Ut − Ut̃||2F

+ λs

T∑
t=1

n∑
i=1

K∑
j=1

|Vt(i, j)|

+
T∑
t=1

Tr(ΦtU
T
t ) +

T∑
t=1

Tr(ΨtV
T
t ),

where Φt,Ψt are Lagrange multipliers.

The following KKT optimality conditions are obtained by setting ∂L
∂Ut

= ∂L
∂Vt

= 0.

Φt = −2AtVt + 2UtV
T
t Vt − 2λt

t−1∑
t̃=t−W

2

Ut̃ (4.11)

− 2λt

t+W
2∑

t̃=t+1

Ut̃ + 2WλtUt

Ψt = −2ATt Ut + 2VtU
T
t Ut + 2λs. (4.12)
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Then, the KKT complimentary slackness conditions yield

0 = (−2AtVt + 2UtV
T
t Vt − 2λt

t−1∑
t̃=t−W

2

Ut̃)ij(Ut)ij (4.13)

+ (−2λt

t+W
2∑

t̃=t+1

Ut̃ + 2WλtUt)ij(Ut)ij

0 = (−2ATt Ut + 2VtU
T
t Ut + 2λs)ij(Vt)ij, (4.14)

which after some algebra leads to the algorithm provided in Algo. IV.2. The the-

oretical properties are also the same as in the previous section. Most notably, the

estimates of Ut and Vt will improve at each iteration with respect to Eq. 4.9.

Algorithm IV.2 NMF with temporal and sparsity penalties

1: Set constants λt, λs,W .
2: Initialize {Ut}, {Vt} as dense, positive random matrices.
3: repeat
4: for t=1..T do
5: Set

(Ut)ij ← (Ut)ij
(AtVt+λt

∑t−1

t̃=t−W
2

Ut̃+λt
∑t+W

2
t̃=t+1

Ut̃)ij

(UtV T
t Vt+WλtUt)ij

.

6: Set

(Vt)ij ← (Vt)ij
(ATt Ut)ij

(VtUT
t Ut)ij + λs

.

7: end for
8: until Convergence

4.3.1 Parameter Selection

I briefly discuss the important practical matter of choosing K, the inner rank of

the matrix factorization.

For the goal of clustering, the rank should be equal to the number of underlying

groups. The rank can be ascertained by examining the accuracy of the reconstruction

as a function of rank. However, this tends to rely on subjective judgments and overfit

the given data. Cross validation based approaches are theoretically preferable and
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follow the same intuition.

The idea behind cross validation is to use random subsets of the data from each

data slice to fit the model, and another subset from each data slice to assess accuracy.

Different values of K are then cycled over and the one that corresponds to the lowest

test error is chosen.

Due to the data structure, I employ two-dimensional cross validation. Two-

dimensional refers to the selection of submatrices for our training and test data.

Special care is taken to ensure that the same rows and columns are held out of every

data slice, and the dimensions of the training and test sets are identical.

The hold out pattern divides the rows into k groups, the columns into l groups,

then uses the corresponding kl submatrices to fit and test the model. In each sub-

matrix, the given row and column group identifies a held out submatrix that is used

as test data, while the remaining cells are used for training. The algorithm is shown

in Algo. IV.3. The notation in the algorithm uses Il and IJ as index sets to identify

submatrices in the each data matrix.

One can then cycle over different values of K to choose the one that minimizes av-

erage test error. Fig. 4.5 shows that this procedure correctly identifies 3 communities

for the toy example. Consistency results are developed in Perry and Owen (2009) to

provide theoretical foundations for this approach.

In principle the cross validation procedure can be used to select the penalties λt, λs

and the time window W . However, considering the scale of many modern network

datasets, this would require too much computing time. Instead I typically choose the

penalties by hand to emphasize readability and interpretability of the results, keeping

in mind that if either penalty is set too large then the estimation results in degenerate

solutions. For instance, the algorithm suffers from numerical instabilities when λs is

too large, since all Vt elements are zero. If λt is set to an extremely large number,

then Ut will be approximately constant for all time periods, so the effective model is
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Algorithm IV.3 Cross-validation for choosing the number of communities (rank)

1: Form row holdout set: Il ⊂ {1, .., n}
2: Form column holdout set: IJ =⊂ {1, .., n}
3: Set

(Ũt, Ṽt) = arg min
Ut,Vt≥0

∑
t

||(At)−Il,−IJ − UtV T
t ||2F

4: Set
Ŭt = arg min

Ut≥0

∑
t

||(At)Il,−IJ − UtṼ T
t ||2F

5: Set
V̆t = arg min

Vt≥0

∑
t

||(At)−Il,IJ − ŨtV T
t ||2F

6: Set
ˆ(At)Il,IJ = ŬtV̆

T
t

7: Compute Test error

Test Error =
∑
t

||(At)Il,IJ − ˆ(At)Il,IJ ||
2
F

●

●

●
●

●

●

●

●

A
vg

 T
es

t E
rr

or

Inner Rank
1 2 3 4 5 6 7 8

20
22

24
26

28
30

Figure 4.5:
Cross validation indicates 3 communities (rank 3) features the lowest
average test error for the toy example.
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At ≈ UV T
t , e.g., the community structure is fixed for all observations.

The parameter, W , controls the number of neighboring time steps to locally av-

erage. Larger values of W mean that the model has more memory so it incorporates

more time points for estimation. This risks missing sharper changes in the data and

only detecting the most persistent patterns. On the other hand, small values of W

make the fitting more sensitive to sharp changes, but increase short term fluctuations

due to smaller number of observations. I set W = 2 (looking one time period ahead

and before) for all presented experiments. Larger values could be used in very noisy

settings to further smooth results.

4.4 Applications

In this section I test the model on both synthetic and real-world examples. The

synthetic networks allow us to validate the model’s ability to highlight known com-

munity structure and node evolution, while the real examples exhibit the model’s

performance under practical conditions.

4.4.1 Synthetic Networks

4.4.1.1 Catalano Communication Network

The first example utilizes the Catalano social network, which was part of the

Visual Analytics Science and Technology (VAST) 2008 challenge (vas, 2008). The

synthetic data consists of 400 unique cell phone IDs over a ten day period. Alto-

gether, there are 9834 phone records with the following fields: calling phone identifier,

receiving phone identifier, date, time of day, call duration, and cell tower closest to

the call origin. The purpose of the challenge was to characterize the social structure

over time for a fictitious, controversial socio-political movement. In particular, the

challenge requires identifying five key individuals that organize activities and com-
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Figure 4.6:
The cell phone network from a day using a force directed layout algorithm
in igraph. Node 200 is colored black.
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Figure 4.7:
Choosing K for the Catalano communications network. The left panel
shows the average residual sum of squares, and the right panel shows the
average test error obtained via cross validation (5 × 5 fold) for different
the approximation ranks. Cross validation indicates that 5 communities
is optimal.
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Figure 4.8:
The raw (top row) and filtered Catalano networks (bottom row) colored
by the Ut community structure. A force directed layout in igraph was
used to create this embedding. Nodes are colored by soft partitioning via
the penalized NMF.
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munications for the network; a hint was given to challenge participants that node 200

is one of the persons of interest.

I use the first seven days of data to illustrate our methodology, since there is a

strong change in the connection patterns from day 8-10 for node 200 (see vas (2008);

Shaverdian et al. (2009) and references therein). Directed networks are constructed

daily by drawing an edge from the caller to the receiver. Fig. 4.6 shows an example

of one day’s network. The graph is too cluttered to visually identify leaders of the

network or get a sense of the network structure.

I fit a sequence of rank 5 NMFs, as identified in Fig. 4.7 through cross validation,

with a large temporal penalty to highlight the most persistent interactions. Fig. 4.8

shows two sets of graph drawings for three days (due to space limitations), with the

nodes colored according to their community membership. The first row shows the

graph constructed directly from the data, while the second row shows graph drawings

of the fitted model Â = UtV
T
t . The clustering results applied to the raw data are not

interpretable, as the data is simply too cluttered. However, the persons of interest

and the hierarchical structure of the communication network are clearly shown when

considering the fitted networks. One can visually identify that node 200 consistently

relays information to his neighbors (1,2,3,5), who disseminate information to their

respective subordinates. Nodes higher up on the organizational hierarchy tend to

belong to multiple communities, presumably since they disseminate information to

different groups of subordinates.

Fig. 4.9 shows the results of applying Facetnet (Lin et al., 2008), an alternative

NMF methodology for dynamic overlapping community detection. Facetnet applies

an underlying model with less flexibility resulting in poor reconstructions of the data,

as seen in the fitted networks. I also collapse the data into a single network snapshot

in order to apply static clustering algorithms. First, an edge is kept only if it was

observed more than Threshold days. Then, spectral clustering and clique percolation
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Figure 4.9:
Results of applying the Facetnet factorization Lin et al. (2008) with a
prior weight of λ = 0.8. The raw (top row) and filtered Catalano networks
(bottom row) colored by the Facetnet factorization.
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Figure 4.10:
The first and second rows apply static clustering methods to the col-
lapsed data (averaging over time). All alternative methods struggle to
identify the key individuals or hierarchical organizational structure.
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are applied to the resultant network snapshot. All alternative methods struggle,

as the data is too ‘hairball’ like. On the other hand, the fitted penalized NMF

model provides a unified framework to filter the network and visualize community

structure. VAST never officially released correct answers for the challenge. However,

our analysis closely matches winning entries (Shen and Ma, 2008; Ye et al., 2009;

Shaverdian et al., 2009). Treating the conclusions of the entries as ground truth,

I have provided a simple workflow that uncovers patterns in the data that are not

directly obtainable with traditional methods.

4.4.1.2 Preferential Attachment Process

In this simulation, nodes attach according to a preferential attachment model

(Newman et al., 2006; Barabsi and Albert , 1999) until 10000 nodes have ’attached’ to

the embedding. I observe this growing process at 100 uniformly spaced time points.

Thus, at each time point 100 new nodes attach to the graph. I use source code from a

networks MATLAB toolbox (Bounova, 2011) that generates preferential attachment

graphs according to the standard model.

In the preferential attachment model, Π(i), which represents the probability that

a new node connects to node i, depends on node i’s degree. Specifically,

Π(i) ∝ di (4.15)

where di is the degree of the ith node. This generating framework leads to networks

whose asymptotic degree distribution follows a power-law distribution with parameter

γ = 3. Graphs with heavy-tailed degree distributions are commonly observed in a

variety of areas, such as the Internet, protein interactions, citation networks, among

others (Clauset et al., 2009).

In practice, an analyst would not know that the data comes from a preferential
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(a) No penalties

(b) λt = 50, λs = 5

(c) λt = 100, λs = 5

Figure 4.11:
Fitted values for U and V over time for the preferential attachment sim-
ulation. The left column shows a time plot of Ut over different parameter
values. Each line corresponds to a node on the graph. The right column
identifies the nonzero elements of Vt. Each row corresponds to a node
on the graph and time varies along the horizontal axis.
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attachment process. In which case, an exploratory analysis may include inspecting

the network sequence on a set of standard metrics (degree, transitivity, centrality,

etc.), graph drawings, as well as community detection approaches. A sequence of

one-dimensional (K = 1) penalized NMFs can serve as the basis for a complimentary

exploratory tool that helps uncover different connectivity patterns and evolution in

the data. In particular, due to the smoothness penalty, time plots in Ut for each node

become useful for uncovering the number and types of node evolutions in the data.

Similarly, heatmaps or displays of the sparsity pattern of Vt are useful to identify

when nodes/groups become significantly active.

Since preferential attachment networks have been extensively studied, I show only

the NMF-based displays. Fig. 4.11 shows important (hub) nodes that distinct tra-

jectories that indicate their increasing importance to the network over time. The

Vt sparsity features a pseudo-upper triangular form. This corresponds to the node

attachment order and reflects that nodes permanently attach after connecting to the

network. Such displays can be created quickly and can help the process of identifying

interesting nodes, formulating research questions, and so on.

Also shown in Fig. 4.11 is that penalization is important to the usefulness and

interpretability of the displays. For instance, without a temporal penalty, the time

plots emphasize only the highest degree node. With appropriate penalties, an analyst

can visually identify the different hub nodes.

4.4.2 Real Networks

4.4.2.1 arXiv Citations

I investigate the citation network data analyzed in the previous chapter (Section

3.5.2), provided as part of the 2003 KDD Cup (Gehrke et al., 2003).

To review the data, the graphs are from the e-print service arXiv for the ‘high

energy physics theory’ section. It covers papers in the period from October 1993 to
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December 2002, and is organized into monthly networks. In particular, if paper i

cites paper j, then the graph contains a directed edge from i to j. Any citations to

or from papers outside the dataset are not included. Following convention, edges are

aggregated, that is, the citation graph for a given month will contain all citations

from the beginning of the data up to, and including, the current month. Altogether,

there are 22750 nodes (papers) with 176602 edges (references) over 112 months.

Section 3.5.2 contains an analysis of the data using existing tools, including net-

work drawings, network statistic time-series, and a likelihood-based mixture model

for extracting communities.

To visualize how nodes in the network evolved, Fig. 4.12 displays results from

the matrix factorization model using a sequence of one-dimensional approximations

(K = 1). The adjacency matrix is constructed so that Ut scores nodes by their impor-

tance to the average incoming connections, and (Ut)1j measures the time-varying au-

thority of paper j. Vt yields similar scores based on outgoing connections. As observed

with the preferential attachment experiment, the paper trajectories are smoothed ef-

fectively and important dynamics are highlighted by employing penalties. Specifically,

there are two important periods in the data. The first period covers 1996-1999, and

featured papers mostly on an extension of string theory called M-theory. M-theory

was first proposed in 1995 and led to new research in theoretical physics. A number

of scientists, including Witten, Sen and Polchinski, were important to the historical

development of the theory, and as seen in Tables 4.1 and Table 4.2, our NMF ap-

proach identifies these important authors and their works. From 1999-2000 the rate

of citations to these papers tended to decrease, while focus shifted to other topics and

subfields that M-theory gave rise to. These citation patterns are reflected in the bold

and dashed trajectories in Fig. 4.12. The displays of Vt sparsity show that papers

do not appear uniformly throughout time. Instead as other network statistics show,

papers ‘attach’ at a faster rate around year 2000.
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No Penalty λs = 1 λs = 5 λs = 10

Figure 4.12:
Fitted values for Ut and Vt for the arXiv data with λt = 5. Each light
gray line corresponds to a paper (node) on the graph. The bold lines
show the average of the 10 papers with highest average Û from 1996-1999,
and 2000 onwards (dashed). Each row in the heatmaps corresponds to
a paper and time varies along the horizontal axis.
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I provide comparisons in the last chapter with the alternative methodologies uti-

lized in Leicht et al. (2007) to investigate dynamic citation network from the US

Supreme Court. First, I applied the leading eigenvector modularity-based method for

community discovery (Newman, 2006a) to the fully formed citation network (t = 112).

The second alternative methodology is a mixture model in Leicht et al. (2007) to ex-

tract groups of papers according to their common temporal citation profiles.

The left panel of Fig. 3.9 shows the degree of each paper over time, colored by the

leading eigenvector community assignments. The optimal number of groups is over

two hundred. There are four large groups of papers, with the other groups containing

only a handful of papers. This approach does not utilize the temporal profile of each

paper, and as a consequence the groups are interpretable from a static connectivity

point of view only.

Fig. 3.10 shows reasonable time-profiles from the mixture model. One group

grows slowly from the beginning of the observational period, while the other group

experiences rapid growth starting around the year 2000. These results compliment

the NMF-based Fig. 4.12, and together provide a robust methodology to identify

important papers, as well as characterize the data in terms of the number and types

of different nodes/groups in the data.

4.4.2.2 Global Trade Flows

In this example, I analyze a subset of the data from Chapter II (Section 2.5), con-

sisting of annual bilateral trade flows between 164 countries from 1980-1997 (Feenstra

et al., 2004). Thus, I observe a dynamic, weighted graph at 18 time points, where

each directional edge denotes the total value of exports from one country to another.

Again since trade flows can differ in size by orders of magnitude, I work with trade

values that are expressed in log dollars.

I fit a sequence of rank 6 NMFs, as identified in Fig. 4.13 through cross validation,
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Title Authors In-Degree Out-Degree
# citations
(Google)

Heterotic and Type Horava and Witten 783 18 2334
I String Dynamics from
Eleven Dimensions

Five-branes And M Witten 169 15 251
-Theory On An
Orbifold

Type IIB Superstrings, Hanany and Witten 437 20 844
BPS Monopoles, And Three-
Dimensional Gauge Dynamics

D-Branes and Bershadsky, et al. 271 15 463
Topological Field Theories

Lectures on Superstring Schwarz 247 68 534
and M Theory Dualities

D-Strings on D-Manifolds Bershadsky et al. 172 22 247
String Theory Dynamics Witten 263 0 2263

In Various Dimensions
Branes, Fluxes and Ganor, et al. 184 16 243

Duality in M(atrix)-Theory
M(atrix)-Theory

Dirichlet-Branes and Polchinski 370 0 2592
Ramond-Ramond Charges

Matrix Description of Seiberg 208 30 353
M-theory on T 5 and T 5/Z2

Table 4.1:
The top 10 papers with highest average Û from 1996-1999. # Citations
counts all references to the work, including by papers outside of the data.
These counts obtained via Google.
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Title Authors In-Degree Out-Degree
# citations
(Google)

The Large N Limit Maldacena 1059 2 10697
of Superconformal Field
Theories and Supergravity

Anti De Sitter Witten 766 2 6956
Space And Holography

Gauge Theory Correlators Gubser et al. 708 0 6004
from Non-Critical
String Theory

String Theory and Seiberg and Witten 796 12 3833
Noncommutative Geometry

Large N Field Theories, Aharony et a. 446 74 3354
String Theory and Gravity

An Alternative to Randall and Sundrum 733 0 5693
Compactification

Noncommutative Geometry and Connes et al. 512 3 1810
Matrix Theory:
Compactification on Tori

M Theory as a Banks et al. 414 0 2460
Matrix Model:
a Conjecture

D-branes and the Douglas and Hull 296 2 866
Noncommutative Torus

Dirichlet-Branes and Polchinski 370 0 2592
Ramond-Ramond Charges

Table 4.2: The top 10 papers with highest average Û from 2000 onwards.
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Figure 4.13:
Choosing K for World Trade Data. The left panel shows the average
residual sum of squares. The right panel shows the average test error
obtained via cross validation for different number of partitions. Cross
validation consistently indicates 6 communities (K = 6) as optimal.

and display the network based on fitted trade flows (Ât = UtV
T
t ) in Fig. 4.14. Only

three years (1980, 1990, 1997) are shown due to space constraints.

All countries belong to more than one community, which reflects the intercon-

nected nature of the global economy. However, there are countries, primarily from

African and Central America, that are dominated by a single community or belong

to only a subset of the six communities. For instance, in 1997, Ecuador, Venezuela

and Panama only connect with the USA and hence, belong mostly to the green com-

munity. These countries tend to have monolithic economies.

There are also interesting findings that correspond with historical events. For

instance, in 1980 there is a strong community (circled in the figure) consisting of

countries aligned with the former USSR, which acted as a hub. However by 1990,

this community has dissolved, and is reflected in the edge and node colorings of these

countries (more diversified trading relationships). In 1990, countries in Asia that

experienced persistent and rapid economic growth in the 1990’s (Stiglitz , 1996; Nelson
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1980 1990 1997

Figure 4.14:
World trade networks over time, where countries are colored correspond-
ing to their membership in 6 communities. Edges are colored by the
community with largest relative contribution. The bottom row shows
the same network drawing without labels.

and Pack , 1998) move closer to the center of the trading network with membership

in all communities.

4.5 Discussion

The main idea behind the approach presented in this paper is to abstract the

network sequence to a sequence of lower dimensional spaces using matrix factoriza-

tions for visual exploration, community detection and structural discovery. Next, I

highlight some of the strengths and weaknesses of this approach.
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Table 4.3:
Average runtimes for the penalized NMF with temporal and sparsity penal-
ties. The computational time scales approximately linearly with the num-
ber of time points and nodes.

Data Nodes Time Points Runtime (seconds)
Catalano 400 7 0.29

World Trade 164 18 0.51
Preferential Attachment 10000 100 39.45

arXiv Citations 22750 112 60.64

4.5.1 Strengths

An important benefit is the versatility and scalability of matrix factorization

model. Table 4.3 shows runtimes for all experiments. The computational cost is low

enough to use in combination with other analysis and visualization tools. Moreover,

the penalized NMF approach is compatible with both binary and weighted networks.

Using the model as a basis for an exploratory visual tool can help users uncover

different connectivity patterns and evolution in the data. The estimates of Ut and Vt

can be used for community discovery or a ranking of nodes based on their importance

to connectivity for subsequent analysis. Displays of the factorizations can provide a

sense of the data complexity, namely the types and number of node evolutions.

4.5.2 Weaknesses

The optimal choice of tuning parameters (λt, λs) is dependent on perception and

how the edge weights are scaled. This can limit the benefits of the proposed approach

when given multiple datasets.

Time plots and heatmaps to visualize each factor yield limited information about

global topology. For example, one can see from Figs. 4.11 and 4.12 that there are

dominant nodes, but in principle, there could be many topologies that feature dom-

inant nodes. One cannot say for sure without additional analysis that the networks

follow a particular connectivity model. Thus, combining the matrix factorization
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model in this article with existing analysis and visualization tools can provide a more

comprehensive analysis of the data.

4.5.3 Future Work

An important area of exploration would be to systematically compare penalized

versions of NMF and SVD. In this chapter I chose to focus on NMF, since I find the

corresponding displays preferable in terms of interpretability. This is generally consis-

tent with existing literature on matrix factorization. However, SVD of graph related

matrices have deep connections to classical spectral layout and problems in commu-

nity detection. There may be classes of graph topologies and particular visualization

goals under which SVD is preferable.

There could also be other types and combinations of penalties that are useful in

visualization and detection of graph structure. For instance, depending on the precise

meaning of a directional edge, one may desire both smoothness and sparsity for Ut,

Vt or both factors. Nonetheless, variants on the penalty structure will result in mod-

els that require roughly the same computational costs. Thus, this chapter provides

evidence that penalized matrix factorization models are promising for structural and

functional discovery in dynamic networks.
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CHAPTER V

Concluding Remarks and Future Work

In this thesis, I consider several approaches to the challenging tasks of visualization

and pattern discovery in three-way data. Difficulties that arise in this area commonly

result from the complexity, high dimension and heterogeneity of the data. Each

chapter in the thesis introduced methods to help overcome such difficulties for the

tasks of clustering, data integration, visualization and data representation.

A commonality between all three chapters is the local smoothness of the under-

lying patterns, which is encouraged in the estimation through kernel smoothing and

regularization. Numerical work in the dissertation shows that smoothing improves

statistical power and informativeness of displays when there are strong nonlinearities

underlying the data and/or large noise levels.

As with other exploratory and visualization tools, the different models are sensi-

tive to the scaling of the data. For instance, if investigating annual world trade values

that are expressed in nominal dollars instead of log nominal dollars, then results are

dominated by the United States, because that country has by far the largest variance.

Just as in principal component analysis and many other multivariate methods, the

analyst should make a decision on standardizing observations based on what aspect

of the data is of interest. Similarly, the results can change in response to the algo-

rithm and model parameterization. Yet, the main results in the numerical work are
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consistently found in repeated analyses of the data and show significant overlap be-

tween the different models, thus supporting the notion that the results are not noise

artifacts. For instance, many common articles are identified as important using the

data integration model of Chapter III and the functional community detection model

of Chapter IV. With world trade data, Chapters II and IV discover similar changes to

grouping structure resulting from historical events, like the fall of the former Soviet

Union.

Thoughout this dissertation, the data is assumed to be structured {Xm ∈ Rn×p}Mm=1.

A more general problem would be to consider {Xm ∈ Rnm×p}Mm=1. This data structure

can be found, for example, in multicorpus document-term data, where nm denotes the

number of documents in each of the M different corpora (e.g., Wall Street Journal

vs. The Financial Times vs. Bloomberg), with p terms appearing in all documents.

Minimizing an objective function, such as

min
{Um≥0,Vm≥0}

M∑
m=1

||Xm − UmV T
m ||2F (5.1)

+ λ1

M∑
m,m̃=1

||Vm − Vm̃||2F + λ2

M∑
m=1

K∑
j=1

||Vm(, j)||1,

would allow us to uncover and visualize the perspectives within the different corpora.

In considering the more general data structure, there are also potential applications in

discovering weighted communities within biological networks observed over different

experimental conditions (see Li et al. (2011) for further discussion).

Finally, it is important to note that is increasingly common to measure different

types of data. For instance, it is a challenging and important problem in many modern

applications to combine information from network and traditional node (sample) ×

variable data matrices. The creation of sophisticated tools for representation and

integration of such data has the potential to reveal the nature of interactions among

components and hence, improve decision making in complex environments.
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