
LIBRA: ACHIEVING EFFICIENT INSTRUCTION-

AND DATA- PARALLEL EXECUTION FOR MOBILE

APPLICATIONS

by

Yongjun Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
2013

Doctoral Committee:
Professor Scott A. Mahlke, Chair
Professor Trevor N. Mudge
Professor David Blaauw
Professor Vineet R. Kamat

c© Yongjun Park 2013
All Rights Reserved

To my family

ii

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance and support of

many people. First, I would like to thank my advisor, Scott Mahlke. His insight, exper-

tise, enthusiasm, and encouragement played a large part in my success in graduate school.

Without his guidance and long endurance, this dissertationwould not exist.

I would also like to thank my thesis committee members, Professor Trevor Mudge,

David Blaauw, and Vineet Kamat. They donated their time, providing valuable comments

and suggestions that helped me refine my thesis.

The research presented in this dissertation is not the work of one person; I was fortunate

to have the assistance of a number of other students in the Compilers Creating Custom

Processors research group. In particular, Hyunchul Park isthe most thankful person for

my whole successful graduate student life: research, writing papers, and also valuable help

in all aspects of Ann Arbor life. Sangwon Seo also contributed significantly, helping me

understand mobile applications, SIMD architectures, and rules of football. Hyoun Kyu Cho

also gave me valuable help on power measurement on SIMD papers. More recently, Jason

Jong Kyu Park has been great support in Libra accelerator related project.

In addition to this, I appreciate the opportunity to have worked with a group of people at

Samsung Advanced Institute of Technology: Sukjin Kim, Kiseok Kwon, Jaeun Park, and

iii

Taewook Oh. They provided their framework with advanced mobile application bench-

marks which were used everywhere in my thesis, and free food.

I would also like to thank several people in special: Mark Woh, Gaurav Chadha, and

Anoushe Jamshidi. They helped me improve initial research ideas into reasonable and

well-structured products with discussion. I am also specially grateful to Shantanu Gupta,

Ganesh Dasika, Amin Ansari, and Shuguang Feng, for encouraging me not to loose my

confidence in research.

Beyond those who helped in technical way, those who offered engaging conversation

and moral support were crucial to my graduate school life, namely: Mehrzad Samadi,

Daya Khudia, Janghaeng Lee, Andrew Lukefahr, Shruti Padmanabha, Ankit Sethia, Amir

Hormati, Mojtaba Mehrara, Yuan Lin, Kevin Fan, Griffin Wright, Po-Chun Hsu, Jeff Hao,

Davood Salehabadi, and Manjunath Kudlur. I have shared offices, homes with these friends,

and have had joyful group lunch meetings, and therfore, my time in Ann Arbor would not

have been the same without them.

I would like to thank my family for their support, encouragement, and advice. My

parents, Chanyoung Park and Eunji Byeun, and my brother Myoungjun Park provided their

unconditional love and support throughout this whole process.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiv

ABSTRACT . xv

CHAPTERS

1 Introduction . 1
1.1 Compiler Support for Various Accelerator Models. 4

1.1.1 Improving DLP Performance. 4
1.1.2 Improving ILP Performance. 5
1.1.3 Improving Task Level Parallelism Performance. 6

1.2 Design of Future Mobile Accelerators. 6
1.2.1 Finding the Guideline for Developing Future Tiled Archi-

tectures . 6
1.2.2 Libra Accelerator. 7

2 Efficient ILP Realization on Data-parallel Architectures. 9
2.1 Introduction . 9
2.2 Background and Motivation. 14

2.2.1 Baseline Architecture Overview. 14
2.2.2 Analysis of Multimedia Applications. 15
2.2.3 Beyond Loop-level SIMD Parallelism. 20
2.2.4 Summary and Insights. 21

2.3 Subgraph Level Parallelism. 22
2.3.1 Overview . 22
2.3.2 Comparison with Superword Level Parallelism. 26
2.3.3 Challenges and Solutions. 28

2.4 Compiler Support. 30

v

2.4.1 Overview . 30
2.4.2 Subgraph Identification. 32
2.4.3 SIMD Lane Assignment. 33
2.4.4 Code Generation. 37

2.5 Experimental Results. 38
2.5.1 Experimental Setup. 38
2.5.2 Subgraph Level Parallelism Coverage. 39
2.5.3 Performance. 41
2.5.4 Energy Measurement. 45

2.6 Related Works. 46
2.7 Summary . 48

3 Accelerating Execution using Dynamic Operation Fusion. 50
3.1 Introduction . 50
3.2 Motivation . 53

3.2.1 Analysis of Multimedia Applications. 53
3.2.2 Accelerating Sequential Code. 57

3.3 Dynamic Operation Fusion. 58
3.3.1 Delay Statistics and Tick Time Unit. 62
3.3.2 Bypass Network. 64

3.4 Compiler Support. 65
3.4.1 Edge-centric Modulo Scheduling. 66
3.4.2 Tick-based Scheduling. 67
3.4.3 Tick Specific Features.. 70

3.5 Experimental Results. 73
3.5.1 Experimental Setup. 73
3.5.2 Performance Measurement. 74
3.5.3 Power and Energy Measurement. 76
3.5.4 Operating Frequency Optimization. 77

3.6 Related Work . 79
3.6.1 Architecture. 79
3.6.2 Compilation Techniques. 80

3.7 Summary . 81

4 Putting Idle Resources to Work on a Composable Accelerator. 82
4.1 Introduction . 82
4.2 Background and Motivation. 86

4.2.1 Composable Accelerators. 86
4.2.2 Stream Graph Modulo Scheduling. 89
4.2.3 Compilation Challenges. 92

4.3 Compiler Framework. 95
4.3.1 Prepass: Static Partitioning. 96
4.3.2 Core Allocation. 100
4.3.3 Postpass: Dynamic Partitioning. 102

4.4 Experimental Results. 105

vi

4.4.1 Experimental Setup. 105
4.4.2 Performance Evaluation. 106
4.4.3 Static Partition. 107
4.4.4 Dynamic Partition. 108

4.5 Related Work . 111
4.6 Summary . 113

5 Efficient Performance Scaling of Future CGRAs for Mobile Applications . 114
5.1 Introduction . 114
5.2 Analysis Infrastructure . 117

5.2.1 Benchmarks Overview. 117
5.2.2 Experimental Setup. 120

5.3 Analysis . 121
5.3.1 Question 1: Heterogeneity vs. Homogeneity. 121
5.3.2 Question 2: Interconnection Topology. 123
5.3.3 Question 3: Complex PEs vs. Simple PEs. 128
5.3.4 Question 4: SIMD Memory Support. 131
5.3.5 Summary and Insights. 135

5.4 Summary . 136

6 Libra: Tailoring SIMD Execution using Heterogeneous Hardware and Dy-
namic Configurability . 137

6.1 Introduction . 137
6.2 Background and Motivation. 141

6.2.1 Benchmarks Overview. 141
6.2.2 Baseline Architecture. 142
6.2.3 Limitations for Current SIMD Accelerators. 143
6.2.4 Insights for the Traditional SIMD. 147

6.3 Libra Architecture. 147
6.3.1 Overview . 147
6.3.2 Microarchitectural Details. 152
6.3.3 Execution Model . 157
6.3.4 Improving ILP Performance. 161
6.3.5 Decision Flow. 164

6.4 Experiments. 166
6.4.1 Experimental Setup. 166
6.4.2 Performance/Energy Evaluation. 168
6.4.3 Scalability. 170
6.4.4 From the Homogeneous SIMD to the Heterogeneous Libra172
6.4.5 Acceleration Mode Selection. 172
6.4.6 Multi-threading Effectiveness. 174
6.4.7 Power and Area Measurement. 175

6.5 Related Works. 176
6.6 Summary . 178

vii

7 Conclusion . 180

BIBLIOGRAPHY . 183

viii

LIST OF FIGURES

Figure
2.1 Scalability of datapaths that exploit instruction-level parallelism (VLIW)

and data-level parallelism (SIMD). Plotted is the relativearea as issue width
increases from 1 to 32. Area is broken down into function unitand register
file & interconnect. 10

2.2 A spectrum of the vectorization at different granularities. 12
2.3 Baseline SIMD architecture.. 15
2.4 Scalar execution time distribution at different SIMD widths for three media

applications: the maximum SIMD widths are 1024, 128, and 16,and the
SIMD widths, which can be fully utilized for more than 50% execution
time, are 16, 32, and 8 for AAC, 3D, and H.264 applications.. 17

2.5 The SIMD width requirement changes at runtime: The X-axis indicates the
execution clock cycle and the Y-axis is the maximum SIMD width assum-
ing infinite resources. The minimum duration between width transition is
20 cycles from 311 to 330 for 3D application.. 18

2.6 Different SIMD width requirements for each macroblock in the motion
compensation process in H.264 decoder. The information is provided at
runtime. 19

2.7 Different levels of parallelism: (a) an example loop’s source code, (b) orig-
inal multiple scalar subgraphs utilizing a single SIMD lane, (c) a vectorized
subgraph using four SIMD lanes, and (d) the opportunity of partial SIMD
parallelism inside the vectorized basic block (SIMD lane utilization: (R1:
16), (R2: 8), (R3: 4)) . 20

2.8 Subgraph level parallelism: (a) identical subgraphs are identified, and (1, 2,
5, 7) and (3, 4, 6) are executed in parallel with one overhead,(b) execution
of the graph on two SIMD lane groups, (c) SGLP exploited output source
code, (d) high level program flow with three sequential kernels and kernel 1
can exploit SGLP, and (e) execution of three kernels with SGLP exploration
on kernel 1. 23

ix

2.9 Superword level parallelism difficulty: (a) (1, 3, 5, 7) and (2, 4, 6) are
chosen to execute in parallel and three overheads occur, (b)superword level
parallelism exploited output source code, and (c) average cycle savings of
SLP: Y-bar means ideal savings and it is broken down as overheads and
real savings. 26

2.10 Architectural modifications: (1) multi-bank memory and (2) wide SIMD
constant memory is supported.. 28

2.11 Compilation flow of the SIMD defragmenter: shaded regions exploit sub-
graph level parallelism.. 31

2.12 Subgraph partial order mismatch: when (B0, B1) is chosen to execute in
different SIMD lanes, (C0, C1) cannot be chosen due to the partial order
mismatch between lanes.. 34

2.13 Ratio of instructions covered by the subgraph level parallelism and static
instructions eliminated for three media applications: (a)instruction cover-
age, (b) static instruction elimination without inter-lane overheads, and (c)
static instruction elimination with inter-lane overheads. 39

2.14 Example dataflow graphs: (a) FFT: two identical subgraphs ((1) ld, i41,
i41, (2) ld, (sub/add), add, sub, st, st), (b) MatMul3x3: twoidentical sub-
graphs ((1) add, ld, i32 , i32, i32 (2) add, add, st). i41 and i32 are intrinsic
instructions.. 40

2.15 Performance comparison of SLP/SGLP without overhead,SLP/SGLP with
overhead, and ILP for key kernels: FFT, MDCT for AAC, MatMul4x4,
MatMul3x3 for 3D, and HalfPel, QuarterPel for H.264.. 42

2.16 Average kernel performance comparison of SLP/SGLP without overhead,
SLP/SGLP with overhead, and ILP for three application domains. 43

2.17 Overall performance comparison of SLP/SGLP with overhead and ILP for
three domains on SIMD architectures.. 44

2.18 Energy comparison for the SGLP on the 32-wide SIMD architecture and
ILP on the 4 way 8-wide VLIW architecture.. 46

3.1 Overview of a4x4 CGRA. 51
3.2 Execution time breakdown for three multimedia applications (#: number

of basic blocks, execution: number of cycles, percentage: percent of ex-
ecution cycles). Execution time is broken down into three categories: se-
quential are all non-innermost loop regions, loop (resource) are inner-most
loops whose performance is constrained by the availabilityof resources,
and loop (dependency) are inner-most loops whose performance is con-
strained by cross-iteration dependences.. 55

3.3 Example dataflow graphs in AAC: (a) Sequential code, (b) Loop code . . . 56
3.4 Comparison of flow of data through a processing element ina CGRA: (a)

Operation with register file access, (b) Operation without register file ac-
cess, (c) Flow of data for (a) and (b). 59

3.5 Combining of FUs for dynamic operation fusion: (a) Target subgraph, (b)
3 FUs combined. 60

x

3.6 Dynamic operation fusion example: (a) dataflow graph under consider-
ation, (b) target 2x3 CGRA, (c) conventional scheduling that requires 5
cycles, and (d) scheduling with dynamic operation fusion that requires 3
cycles. 61

3.7 Delay and tick breakdown for common opcodes.. 62
3.8 Breakdown of opcodes for three target applications.. 63
3.9 Comparison of bypass network implementation details: (a) baseline net-

work and (b) network that supports dynamic operation fusion. 64
3.10 Hardware overhead of the bypass network. Two forms of overhead are

specified: control bits to control the bypass MUXes and area of the bypass
network. 65

3.11 Tick-based scheduling example: (a) possible placements in the tick schedul-
ing space and (b) different longest path delays per tick slots. 68

3.12 Register access regions in a tick schedule: (a) dataflowgraph, (b) register
read/write regions (shaded) within each cycle.. 72

3.13 Performance evaluation of the baseline and CGRA Express architectures
for three multimedia applications. Performance is broken down into non-
innermost loop regions (sequential), inner-most loops whose performance
is constrained by the availability of resources (loop (resource)) and inner-
most loops whose performance is constrained by cross-iteration depen-
dences (loop (dependency)).. 75

3.14 Power breakdown comparison for the baseline and CGRA Express archi-
tectures. 76

3.15 Energy comparison for the baseline and CGRA Express architectures. . . . 77
3.16 Performance comparison of the baseline and CGRA express architectures

for different clock periods. Performance is broken down into dependence-
constrained loops (rec), resource-constrained loops (loop) and non-innermost
loops (acyclic) regions.. 78

4.1 PPA Overview: (a) PPA with 8 cores, (b) Inside a single PPAcore 83
4.2 Example of processor and stage assignment for SGMS and PPA scheduling. 90
4.3 Example of running a SGMS on multi-core and a modulo scheduling on PPA. 92
4.4 Examples of the runtime overhead: (a) original task graph, (b) simple 1x3

PPA, (c) expected ideal schedule with high resource utilization, (d) runtime
overhead: stall, reconfiguration time, (e) static partitioning with low run-
time overhead, (f) a possible problem of the static partitioning: workload
imbalance.. 93

4.5 Static Partitioning example: (a) example data flow graph, (b) phase 0: each
task is assigned to one core, (c) phase 1: the slowest task E gets one more
core to accelerate, (d) phase 2: task E is still the slowest and gets two more
cores(5, 7), thus task F loses own core(5), (e) phase 3: new slowest task D
is accelerated as getting more core(0) and finally task C withone core(2)
takes the maximum execution time, (f) execution time estimate table , (g)
final core assignment: D has 2, E has 4 cores.. 99

xi

4.6 Core Allocation example: (a) physical placement of cores, (b) the slowest
group is placed next to the fastest group.. 102

4.7 Dynamic Partitioning example: (a) coarse-grain pipeline using static parti-
tioning, (b) coarse-grain pipeline with final performance tuning process . . 104

4.8 Relative speedup normalized to simple symmetric partitioning 106
4.9 stage execution time for aac benchmark: (a) dynamic computation vari-

ance on static partitioning, (b) pipeline deadline reduction with dynamic
partitioning . 108

4.10 Stage execution time for 3D benchmark: (a) dynamic computation vari-
ance on static partitioning, (b) pipeline deadline reduction with dynamic
partitioning . 110

4.11 Stage execution time for H.264 benchmark: dynamic partitioning is not
applied due to huge dynamic variance.. 111

5.1 The computational power trends for social sites in each resource type:texts,
images, audio, video, and CPUs.. 115

5.2 Loop categorization of various benchmarks: The three bars indicate ratio
of execution time in innermost loops, SWPable loops, and SIMDizable loops.119

5.3 Performance degradation and static power consumption on a CGRA at dif-
ferent FU organizations.. 122

5.4 Various interconnection topologies of CGRAs: (a) baseline, (b) fixed par-
tition, (c) flexible partition, and (d) a table for executionmodel of loops on
different topologies.. 124

5.5 Performance comparison of various architectures for media and gaming
benchmarks.. 126

5.6 Performance saturation point distribution at different PE sizes for media
and gaming benchmarks: media benchmarks need relatively high number
of PEs to be sufficiently accelerated but gaming benchmarks need small
number of PEs. 127

5.7 PE designs with different number of FUs: the number of RFsis the same
as the number of output ports and only shaded FUs support all instructions
in optimized PEs.. 129

5.8 Experimental results on various PEs: (a) relative average energy consump-
tion, (b) relative energy consumption of every loop, and (c)the number of
subgraphs. All the FUs support full functionality on uniform PEs, and only
a subset of FUs supports full functionality on optimized PEs. 130

5.9 Example CGRAs with different SIMD memory support: (a) four scalar
memory support, (b) two 2x32 SIMD memory support, and (c) one4x32
SIMD memory support.. 133

5.10 Experimental results with different vector widths: (a) relative energy con-
sumption for total memory accesses, and (b) memory ResMII increase
when using SIMD memory units with same total bandwidth.. 134

6.1 A traditional 32-lane SIMD accelerator.. 143

xii

6.2 Loop categorization: The components of the bar indicateratio of execu-
tion time in SWPable loops, low-DLP, and high-DLP SIMDizable loops.
The ratio of loop execution time over total execution time isindicated as a
number above each bar.. 144

6.3 Resource utilization: (a) average ratio of dynamic instruction count of ex-
pensive instructions and ratio of Mem/Mul dominant loops, (b) loop distri-
bution over ratio of Mem/Mul, and (c) performance degradation on a SIMD
at different number of Mem/Mul resources.. 145

6.4 Mapping loops to Libra: (a) identify hot loops, (b) find the available DLP
and resource requirement of each expensive operation, and (c) change the
configuration based on the characteristics of each loop.. 148

6.5 Dynamic configurability on a 4-lane heterogeneous SIMD (lane 3 has a
multiplier): (a) a simple high-DLP loop with 1 multiply, (b)performance
degradation due to stalls during multiply execution, (c) logical lane forma-
tion removes stalls by instruction pipelining.. 150

6.6 The 32-PE Libra architecture: (a) a 2-cluster Libra accelerator, (b) a cluster,
(c) an example of a single PE group: PE 1 supports memory operation and
PE 2 supports multiply operation, and (d) execution modes.. 153

6.7 Resource sharing support: (a) hardware modification: PE0 and 2 share the
multiplier and PE 1 and 3 share the memory unit, (b) example loop body
dataflow graph, and (c) actual schedule: 1-cycle differencebetween lanes
for resource contention avoidance.. 160

6.8 Multi-threading support & compiler support: (a) hardware modification:
shaded components are modified, (b) sequence table in the thread con-
troller, (c) loop buffer, and (d) final multi-threaded schedule. 164

6.9 Decision flow of the Libra architecture.. 165
6.10 Performance/Energy comparison of 32-PE Libra/SIMD/VLIW architectures:

(a) total loop execution time and (b) energy consumption. All the data are
normalized to that of a simple in-order core.. 168

6.11 Scalability of Libra/SIMD/VLIW architectures: the Libra architecture is
highly scalable for most of benchmarks, while SIMD and VLIW cannot be
scalable for several benchmarks.. 170

6.12 Performance/energy improvement of the heterogeneousLibra over the same
sized homogeneous SIMD: (a) performance, (b) energy consumption, and
(c) power breakdown with five categories: FU, RF, control logic, memory,
and architecture specific additional logic.. 171

6.13 Mode selection: (a) execution time distribution at different logical lanes,
(b) flexible vs. fixed execution. 173

6.14 Multi-threading effectiveness: (a) performance improvement for SIMDiz-
able loops, (b) execution time distribution at different logical lanes. 174

6.15 (a) Power/Performance comparison, and (b) power and area breakdown of
the 32-PE Libra architecture.. 175

6.16 Comparison to prior work. 176

xiii

LIST OF TABLES

Table
4.1 Relative speedup for AAC benchmark (normalized to the preceding col-

umn). 109
4.2 Relative speedup for 3D benchmark (normalized to the preceding column). 110
4.3 Relative speedup for H.264 benchmark (normalized to thepreceding column).111

xiv

ABSTRACT

LIBRA: ACHIEVING EFFICIENT INSTRUCTION- AND DATA- PARALLEL

EXECUTION FOR MOBILE APPLICATIONS

by

Yongjun Park

Chair: Scott A. Mahlke

Mobile computing as exemplified by the smart phone has becomean integral part of

our daily lives. The next generation of these devices will bedriven by providing richer

user experiences and compelling capabilities: higher definition multimedia, 3D graphics,

augmented reality, and voice interfaces. To meet these goals, the core computing capa-

bilities of the smart phone must be scaled. But, the energy budgets are increasing at a

much lower rate, thus fundamental improvements in computing efficiency must be gar-

nered. To meet this challenge, computer architects employ hardware accelerators in the

form of SIMD and VLIW. Single-instruction multiple-data (SIMD) accelerators provide

high degrees of scalability for applications rich in data-level parallelism (DLP). Very long

xv

instruction word (VLIW) accelerators provide moderate scalability for applications with

high degrees of instruction-level parallelism (ILP). Unfortunately, applications are not so

nicely partitioned into two groups: many applications havesome DLP, but also contain

significant fractions of code with low trip count loops, complex control/data dependences,

or non-uniform execution behavior for which no DLP exists. Therefore, a more adaptive

accelerator is required to be able to deploy resources as needed: exploit DLP on SIMD

when it’s available, but fall back to ILP on the same hardwarewhen necessary.

In this thesis, we first focus on various compiler solutions that solve inefficiency prob-

lem in both VLIW and SIMD accelerators. For SIMD accelerators, a new vectorization

pass, called SIMD Defragmenter, is introduced to uncover hidden DLP using subgraph

identification in SIMD accelerators. CGRA express effectively accelerates sequential code

regions using a bypass network in VLIW accelerators, and Resource Recycling lever-

ages stream-graph modulo scheduling technique for scheduling of multiple code regions

in multi-core accelerators.

Second, we explore potential solutions in the context of mobile applications for scaling

the performance of tiled accelerators in an energy efficientmanner: homogeneous versus

heterogeneous functionality, interconnect topologies, simple versus complex processing

elements, and scalar versus vector memory support. We then propose the new scalable

multicore accelerator referred to asLibra for mobile systems, which can support execution

of code regions having both DLP and ILP, as well as hybrid combinations of the two. We

believe that as industry requires higher performance, the proposed flexible accelerator and

compiler support will put more resources to work in order to meet the performance and

power efficiency requirements.

xvi

CHAPTER 1

Introduction

The mobile devices market, including cell phones, netbooks, and personal digital assis-

tants, is one of the most highly competitive businesses. Thecomputing platforms that go

into these devices must provide ever increasing performance capabilities while maintain-

ing low energy consumption in order to support advanced multimedia and signal process-

ing applications. Application-specific integrated circuits (ASICs) were the most common

solutions for the heavy lifting, performing the most compute intensive kernels in a high

performance but energy-efficient manner. However, severalfeatures push designers to a

more flexible and programmable solution: supporting multiple applications or variations of

applications, providing faster time-to-market, and enabling algorithmic changes after the

hardware is constructed.

Traditionally, the design of programmable mobile computing platforms has focused on

software defined radio [17, 16, 33, 59, 89]. These systems are geared towards wireless

signal processing that contains vast amounts of vector parallelism. As a result, wide single-

instruction multiple-data (SIMD) hardware is recognized as an effective strategy to achieve

1

both high-performance and programmability. SIMD provideshigh efficiency because of

its regular structure, ability to scale lanes, and low control cost. However, mobile com-

puting systems are not limited to wireless signal processing. High-definition video, audio,

3D graphics, and other forms of media processing are high value applications for mobile

terminals. In fact, many believe the quality and types of media support will be the key

differentiating factors of future mobile terminals.

Such media applications in a mobile environment offer a different challenge than wire-

less signal processing. First, the complexity of media processing algorithms is typically

higher than signal processing. Computation is no longer dominated by simple vectoriz-

able loops. Instead, current media processing algorithms are more like general-purpose

programs with data-level parallelism (DLP) available selectively and to varying degrees.

Second, significant amounts of control/data dependencies to handle the complexity of me-

dia coding also reduce the fraction of SIMDizable loops. Finally, various application do-

mains have totally different amounts of SIMD parallelism. As a result, the applications

are more dependent on the instruction-level parallelism (ILP) for performance. Coarse-

grained reconfigurable architectures (CGRA) are a variant of VLIW processors that exploit

high degrees of ILP with low cost/energy implementations [61, 85, 65, 66, 61, 78]. Loops

are modulo scheduled onto the CGRA to utilize the large number of resources and achieve

high performance [65, 72, 73].

To support both ILP- and DLP-rich applications, today’s smart phones simply use mul-

tiple different types of accelerators: a baseband accelerator for DLP and a media accelerator

for ILP. This is because running DLP-rich applications on VLIW accelerators is energy-

inefficient due to massive hardware overhead such as register file (RF) and interconnect

2

complexity, and running ILP-rich applications on SIMD accelerators is also ineffective as

available SIMD resources cannot be fully utilized and a substantial portion of resources

are idle at runtime. However, using multiple solutions still incurs three critical problems:

1) static power dissipation and poor area utilization due topresence of multiple separate

hardware accelerators, 2) poor execution efficiency as applications are typically not solely

ILP or DLP applications, but rather contain hybrid forms of parallelism that force some ex-

ecution on mismatched hardware, and 3) higher software development costs as applications

must be partitioned and customized to separate accelerators.

Based on the above observation, the fundamental sources of inefficiency range from

a mismatch between program characteristics and the target accelerator, to a heteroge-

neous system which incur multiple idle hardware instances.In the context of program-

architecture mismatch, we first attack current challenges for efficiently utilizing existing

mobile media accelerators. The specific purpose of this effort is to find the potential code

region which will not fully utilize the given resources on a target accelerator, and opti-

mize the region to be favorable to the accelerator. In this thesis, three compilation tech-

niques with small architectural modifications for efficientmapping of applications onto

three DLP-, ILP-, and task level parallelism-based accelerators are proposed: 1) the SIMD

Defragmenter to uncover hidden DLP that lurks below the surface in the form of ILP, 2) the

sub-cycle modulo scheduler to effectively accelerate latency-constrained code regions us-

ing a bypass network , and 3) a compilation framework to maximize application throughput

with hybrid resource partitioning of a flexible multi-core system.

While these compiler backend optimizations show substantial performance improve-

ment with higher resource utilization on existing accelerators, architecture-specific op-

3

timizations are likely insufficient for solving the fundamental problem of heterogeneous

systems-multiple idle hardwares, but only improve execution efficiency when some code

region is executed on mismatched hardware. This motivates adesigning of a unified ac-

celerator that can support multiple forms of parallelism bydynamically tuning execution

strategy. Therefore, the second overarching objective of this thesis is to design and eval-

uate a mobile unified accelerator with high scalability, flexibility, and energy efficiency.

To achieve this, we find several reasons why current tiled accelerators fail to meet future

performance requirements and discuss the feasibility of their potential solutions. Based on

these intuitions, we then propose a unified multi-core accelerator that is capable of cus-

tomizing its execution strategy to the running application, referred to asLibra. The above

compiler optimizations can be directly applied to the Libraaccelerator since the basic build-

ing blocks of the Libra accelerator can support all three levels of parallelism.

1.1 Compiler Support for Various Accelerator Models

1.1.1 Improving DLP Performance

Single-instruction multiple-data (SIMD) accelerators provide an energy-efficient plat-

form to scale the performance of mobile systems while still retaining post-programmability.

The central challenge is translating the parallel resources of the SIMD hardware into real

application performance. In scientific applications, automatic vectorization techniques

have proven quite effective at extracting large levels of data-level parallelism (DLP). How-

ever, vectorization is often much less effective for media applications due to low trip count

4

loops, complex control flow, and non-uniform execution behavior. As a result, SIMD lanes

remain idle due to insufficient DLP.

To attack this problem, Chapter2 proposes a new vectorization pass calledSIMD De-

fragmenterto uncover hidden DLP that lurks below the surface in the formof instruction-

level parallelism (ILP). The difficulty is managing the datapacking/unpacking overhead

that can easily exceed the benefits gained through SIMD execution. The SIMD defrag-

menter overcomes this problem by identifying groups of compatible instructions (sub-

graphs) that can be executed in parallel across the SIMD lanes. By SIMDizing in bulk

at the subgraph level, packing/unpacking overhead is minimized.

1.1.2 Improving ILP Performance

Coarse-grained reconfigurable architectures (CGRAs) present an appealing hardware

platform by providing programmability with the potential for high computation through-

put, scalability, low cost, and energy efficiency. CGRAs have been effectively used for

innermost loops that contain an abundant of instruction-level parallelism. Conversely, non-

loop and outer-loop code are latency constrained and do not offer significant amounts of

instruction-level parallelism. In these situations, CGRAs are ineffective as the majority of

the resources remain idle.

In Chapter3, dynamic operation fusionis introduced to enable CGRAs to effectively

accelerate latency-constrained code regions. Dynamic operation fusion is enabled through

the combination of a small bypass network added between function units in a conventional

CGRA and a sub-cycle modulo scheduler to automatically identify opportunities for fusion.

5

1.1.3 Improving Task Level Parallelism Performance

To handle complexities of media applications, composable accelerators such as the

Polymorphic Pipeline Array, or PPA, present an appealing hardware platform by adding

a degree of hardware configurability over existing CGRAs. Hardware resources can be

both statically as well as dynamically partitioned among executing tasks to maximize exe-

cution efficiency. However, an effective compilation framework is essential to partition and

assign resources to make intelligent use of the available hardware.

In Chapter4, a compilation framework is introduced that maximizes application through-

put with hybrid resource partitioning of a PPA system. Static partitioning handles part of

the resource assignment, but this is followed up by dynamic partitioning to identify idle

resources and put them to use –resource recycling.

1.2 Design of Future Mobile Accelerators

1.2.1 Finding the Guideline for Developing Future Tiled Architectures

Tiled multi-core architectures are an appealing hardware platform for mobile systems

by providing programmability with the potential for high computational throughput, low

cost, and energy efficiency. Unfortunately, current tiled architectures fail to meet future

performance requirements due to their inability to scale. Simply increasing the size of the

array is too expensive in terms of power and area.

In Chapter5, we first perform a deep analysis of several mobile applications from the

domains of multimedia and gaming. We then explore potentialsolutions in the context of

6

these applications for scaling the array performance in an energy efficient manner: homoge-

neous versus heterogeneous functionality, interconnect topologies, simple versus complex

processing elements, and scalar versus vector memory support.

1.2.2 Libra Accelerator

To design a mobile unified accelerator, we start from traditional SIMD accelerators be-

cause they offer the combination of high performance and lowenergy consumption through

low control and interconnect overhead. However, SIMD accelerators are not a panacea.

Many applications lack sufficient vector parallelism to effectively utilize a large number

of SIMD lanes. Further, the use of symmetric hardware lanes leads to low utilization and

high static power dissipation as SIMD width is scaled. To address these inefficiencies,

chapter6 focuses on breaking two traditional rules of SIMD processing: homogeneity and

static configuration. TheLibra accelerator increases SIMD utility by blurring the divide

between vector and instruction parallelism to support efficient execution of a wider range

of loops, and it increases hardware utilization through theuse of heterogeneous hardware

across the SIMD lanes.

In Libra, multiple small cores enable the SIMD execution forexploiting DLP and, when

there is a high degree of ILP within a loop, a larger core can becreated by merging small

cores. With this flexible execution model, different levelsof parallelism can be exploited

with a single piece of hardware. For example, Libra can execute as a wide-SIMD datapath

and also Libra behaves as a VLIW accelerator. Libra also supports mixed-mode execution

where the fraction of ILP and DLP is configured. Libra consists of an array of simple

7

processing elements (PEs) that are tightly interconnectedby a scalar operand network and

a shared memory similar to a CGRA [66]. Groups of four PEs form cores that are normally

driven by a single instruction stream. Each core can behave as a building block for a

SIMD processor (e.g., cores behave as SIMD lanes) or a CGRA (e.g., cores behave as a

cluster of function units in the VLIW-style CGRA). Cores feature dense interconnection

between the PEs, while sparse interconnection is availableacross cores to provide better

cost and energy scalability. The compiler maps 1 or more loops to Libra by combining and

configuring clusters of cores to efficiently exploit the available DLP and ILP.

8

CHAPTER 2

Efficient ILP Realization on Data-parallel Architectures

2.1 Introduction

The number of worldwide mobile phones in use exceeded five billion in 2010 and is

expected to continue to grow. The computing platforms that go into these and other mo-

bile devices must provide ever increasing performance capabilities while maintaining low

energy consumption in order to support advanced multimediaand signal processing appli-

cations. Application-specific integrated circuits (ASICs) were the most common solutions

for the heavy lifting, performing the most compute intensive kernels in a high performance

but energy-efficient manner. However, new demands push designers toward a more flexible

and programmable solution: supporting multiple applications or variations of applications,

providing faster time-to-market, and enabling algorithmic changes after the hardware is

constructed.

Processors that exploit instruction-level parallelism (ILP) provide the highest degree

of computing flexibility. Modern smart phones employ a one GHz dual-issue superscalar

9

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32

R
e

la
ti

v
e

 A
re

a

Issue width

Function Unit Register File & Interconnect on VLIW
Register File & Interconnect on SIMD Total(VLIW)
Total(SIMD)

Figure 2.1: Scalability of datapaths that exploit instruction-level parallelism (VLIW) and

data-level parallelism (SIMD). Plotted is the relative area as issue width increases from 1 to

32. Area is broken down into function unit and register file & interconnect.

ARM as an application processor. Higher performance digital signal processors are also

available such as the 8-issue TIC6x. However, the scalability of ILP processors is inher-

ently limited by register file (RF) and interconnect complexity as shown in Figure2.1.

Single-instruction multiple-data (SIMD) accelerators have long been used in the desktop

space for high performance multimedia and graphics functionality. But, their combination

of scalable performance, energy efficiency, and programmability make them ideal for mo-

bile systems as well [17, 16, 33, 59, 89]. Figure2.1shows that the area of SIMD datapaths

scale almost linearly with issue width. Power follows a similar trend [89]. SIMD architec-

tures provide high efficiency because of their regular structure, ability to scale lanes, and

low control overhead.

The difficult challenge with SIMD is programming. The application developer or com-

10

defragmenter/fig/arch_scalability.eps

piler must find and extract sufficient data-level parallelism (DLP) to efficiently make use of

the parallel hardware. Automatic loop vectorization is a popular approach and is available

in a variety of commercial compilers including offerings from Intel, IBM, and PGI. Appli-

cations that resemble classic scientific computing (regular structure, large trip count loops,

and few data dependences) perform well on most SIMD architectures.

However, mobile applications are not limited to these typesof applications. High-

definition video, audio, 3D graphics, and other forms of media processing are high value

applications for mobile devices. These applications continue to grow in complexity and re-

semble scientific applications less and less. Computation is no longer dominated by simple

vectorizable loops. Instead, current media processing algorithms behave more like general-

purpose programs with DLP available selectively and to varying degrees in different loops.

Also, significant amounts of control flow are present to handle the complexity of media

coding and limits the available DLP. The overall affect is that loop-level DLP is less preva-

lent and less efficient to exploit in media algorithms. Due tothese application-specific

complexities, available SIMD resources cannot be fully utilized and a substantial portion

of resources are idle at runtime. Talla [84] reports that only 1-4% performance improve-

ment exists when scaling the SIMD components from 2-way to 16-way on the MediaBench

suite [54]. Thus, an improved approach beyond simple loop level techniques is necessary

in order to effectively use wide SIMD resources.

To supplement the insufficient degree of DLP from traditional vectorization, superword-

level parallelism (SLP) [52] can be applied. SLP is a short SIMD parallelism between iso-

morphic instructions within a basic block. As shown in Figure 2.2, SLP can cover more

code regions as compared to loop-level vectorization because SLP can be performed in

11

Level Loop Subgraph Superword

Scope Loop body
Group of

instructions
Instruction

Vectorization

advantage
High Middle Small

Coverage Small High High

Vectorization granularity

FinerCoarser

Figure 2.2: A spectrum of the vectorization at different granularities.

non-loop regions, in loops having cross-iteration dependences, and in outer loops. For

vectorizable loops, traditional vectorization is preferred because SLP misses loop-specific

optimization opportunities [67]. The weakness of SLP is that the vectorization scope is

too fine, resulting in a high overhead of getting data into packed format that is suitable for

SIMD execution. Often, this packing overhead can exceed thebenefits of parallel execution

on the SIMD hardware. In addition, SLP is performed with a local scope that commonly

misses opportunities for vectorization when a large numberof isomorphic instructions ex-

ist.

To address the limitations of SLP, we introduce a coarser level of vectorization within

basic blocks, referred to asSubgraph Level Parallelism (SGLP). SGLP refers to the paral-

lelism between subgraphs (groups of instructions) having identical operators and dataflow

inside a basic block: parallel subgraphs that can execute together on separate data. SGLP

has two major advantages that allow it more opportunities toconvert ILP to DLP: 1) data

rearrangement and packing overhead can be minimized by encapsulating the data flow in-

side the subgraph, 2) natural functional symmetries that exist in media applications (e.g.,

a sliding window of data long which computation is performed) can be exposed to enable

12

defragmenter/fig/granularity_table.eps

vectorization of larger groups of instructions. The net result is SGLP leads to a combination

of more SIMD execution opportunities and fewer instructions dedicated to data reorgani-

zation and inter-lane data movement.

This chapter presents the design of a supplemental vectorization pass referred to as the

SIMD Defragmenter. It automatically identifies and extracts SGLP from vectorized loops

and orchestrates parallel execution of subgraphs with minimum overhead using unused

resources. In the SIMD Defragmenter, a loop is first vectorized using traditional vector-

ization techniques. Then, vectorizable subgraphs are identified based on the availability of

unused lanes in the hardware. The compiler then allocates the subgraphs to unused SIMD

resources to minimize inter-lane data movement. Finally, new SIMD operations for SGLP

are emitted and operations for inter-lane movements are added where necessary. Small ar-

chitectural features are provided to enhance the applicability of SGLP and the configuration

is statically generated during compilation.

This work offers the following three contributions:

• An analysis of the difficulties of putting SIMD resources to efficient use across three

mobile media applications (MPEG4 audio decoding, MPEG4 video decoding, and

3D graphics rendering).

• The introduction of SGLP that can efficiently exploit unusedSIMD resources on

already vectorized code.

• A compilation framework for SGLP that identifies isomorphicsubgraphs and selects

a mapping strategy to minimize data reorganization overhead.

13

2.2 Background and Motivation

In this section, we examine the current limitations of SIMD architectures based on an

analysis of the following three widely used multimedia applications:

• AAC decoder: MPEG4 audio decoding, low complexity profile

• H.264 decoder: MPEG4 video decoding, baseline profile, qcif

• 3D: 3D graphics rendering

We then analyze why the well-known solutions are not as effective as expected. Finally,

we discuss several potential approaches to overcome these bottlenecks and increase the

utilization of existing resources.

2.2.1 Baseline Architecture Overview

A basic SIMD architecture that is based on SODA [59] (Figure 2.3) is used as the

baseline architecture. This architecture has both SIMD andtwo scalar datapaths. The

SIMD pipeline consists of a multiple-way datapath where each way has an arithmetic unit

working in parallel. Each datapath has a two read-ports, onewrite-port, a 16 entry register

file, and one ALU with a multiplier. The number of ways in the SIMD pipeline can vary

depending on the characteristics of target applications. The SIMD Shuffle Network (SSN)

is implemented to support intra-processor data movement. The scalar pipeline consists of

one 16-bit datapath and supports the application’s controlcode. The AGU pipeline handles

DMA (Direct Memory Access) transfers and memory address calculations for both scalar

and SIMD pipelines.

14

Scalar Pipeline

AGU Pipeline

Scalar

Memory

Buffer

SIMD

Memory

SIMD

RF
SIMD FU

SSN

(SIMD

Shuffle

Network)

B

U

S

DMA

Controller

L1

Program

Memory

SIMD Pipeline

Main

Processor

Figure 2.3: Baseline SIMD architecture.

2.2.2 Analysis of Multimedia Applications

SIMD architectures provides an energy-efficient means of executing multimedia appli-

cations. However, it is difficult to determine the optimal number of SIMD lanes because

the number depends on the algorithms that constitute the workload. In this analysis, we

first categorize the innermost loops of three applications into different groups according to

their vector width. Then, two types of SIMD width variance are identified and the practical

difficulties of finding the optimal SIMD width and achieving high utilization are discussed.

15

defragmenter/fig/conventional_simd.eps

2.2.2.1 SIMD Width Characterization

Multimedia applications typically have many compute intensive kernels that are in the

form of nested loops. Among these kernels, we analyze the available DLP of the innermost

loops and find the maximum natural vector width which is achievable. Based on the Intel

Compiler [41], the rules to be selected as a vectorizable innermost loop are as follows:

• The loop must contain straight-line code. No jumps or branches, but predicated

assignments, are allowed only when the performance degradation is negligible.

• The loop must be countable and there must be no data-dependent exit conditions.

• Backward loop-carried dependencies are not allowed.

• All memory transfers must have same strides over iteration.

If a loop satisfies the above four conditions, the minimum iteration count is set to the

vector width of the loop.

2.2.2.2 SIMD Width Variance

Figure2.4 shows how many different natural vector widths reside in thethree target

benchmarks. The execution time breakdown between loops having different vector widths

are shown in Figure2.4. The three pie charts show the distribution of scalar execution time

spent in innermost loops at various SIMD widths for three applications. From Figure2.4,

we can see that there are many different vector widths insideeach application, hence it is

quite difficult to determine the optimal SIMD width even for one application. For example,

to define 16 as the SIMD width for H.264 is not desirable because the maximum vector

16

AAC 3D H.264

1

2

8

16
32

64

128

256

512

1024 1

2

8

32

64 128

1

2

4

8

16

Figure 2.4: Scalar execution time distribution at different SIMD widths for three media appli-

cations: the maximum SIMD widths are 1024, 128, and 16, and the SIMD widths, which can

be fully utilized for more than 50% execution time, are 16, 32, and 8 for AAC, 3D, and H.264

applications.

width is 16 but the execution time ratio of loops with vector width of 16 is just 42% and

some SIMD lanes are wasted for the remaining time. On the other hand, four is also not

desired because the execution time of the loops with a width of four is not dominant with

substantial execution occurring in loops having larger SIMD widths. Similarly, AAC and

3D applications cannot set the number of SIMD lanes as the maximum vector width due to

the waste of resources, nor dominant vector width due to the low performance. Therefore,

effectively supporting multiple SIMD widths is required totake advantage of the SIMD

architectures.

Dynamic power gating is one of the most successful energy saving techniques for the

resource waste problem. Each SIMD lane can be selectively cut off from the power rails

when the lane is not utilized using a MOSFET switch. This technique is attractive because

it is effective for dynamic power saving and also has positive impact on leakage power

savings. Although dynamic power gating achieves high energy savings, the relatively high

17

defragmenter/fig/simd_width_distribution.eps

0

4

8

12

16

1 101 201 301 401

0

64

128

192

256

1 101 201 301 401

0

32

64

96

128

1 101 201 301 401

H.264

AAC

3D
P

o
te

n
ti
a

l
S

IM
D

W
id

th

Cycle

Figure 2.5: The SIMD width requirement changes at runtime: The X-axis indicates the execu-

tion clock cycle and the Y-axis is the maximum SIMD width assuming infinite resources. The

minimum duration between width transition is 20 cycles from311 to 330 for 3D application.

overhead when changing modes prevents current SIMD architectures from applying it [75].

Even applying simple dynamic power gating techniques [63, 39, 62] is not effective since

at least a few microseconds are required to compensate the power on/off energy overhead

in current technologies. Figure2.5 shows the SIMD width requirement changes over the

runtime for three applications. The x-axis is the time stampfor 500 cycles when the SIMD

architecture supports infinite DLP and the y-axis is the natural SIMD width that achieves

the best performance. As shown, power gating cannot even compensate the transition en-

ergy overhead because of frequent power mode transitions within less than 200 cycles (1

µs at 200 Mhz) based on the different SIMD width requirements. Moreover, power gating

comes with about 8% area overhead due to the header/footer power gate switch implemen-

tation. Therefore, power gating is hard to integrate into current SIMD architectures.

18

defragmenter/fig/simd_width_variance.eps

1 (16X16 blk) 2 (16X8 blk) 4 (8X8 blk)2 (8X16 blk) 8 (8X4 blk) 16 (4X4 blk)

SIMD Width:

How to perform motion

compensation for each macroblock?

16 16 8 8 8 4

Figure 2.6: Different SIMD width requirements for each macroblock in the motion compen-

sation process in H.264 decoder. The information is provided at runtime.

Thread-level Parallelism (TLP) for SIMD architectures hasalso been proposed to solve

the temporal resource waste due to the small amount of DLP [90]. TLP supports running

multiple threads that work on separate data on a wide SIMD machine when the SIMD width

is small. By exploiting two kinds of parallelism, the SIMD lanes can be maximally utilized

but the realization of TLP’s potential in SIMD architectures has some critical limitations.

First, TLP might not be fully exploited if parallel threads have different instruction flow.

The motion compensation process for the H.264 decoder is a well-known example of this

case. Figure2.6shows the various configurations of the motion compensationprocess for

one macroblock. In this figure, the configuration of each macroblock is different so that

SIMD specific restriction, which needs to execute the same instruction stream across the

lanes, prohibits executing multiple processes in paralleleven though the process has high

TLP. Second, TLP cannot handle input-dependent control flow. For example, conditions

to choose the macro block configuration in Figure2.6 are decided from input header data

hence TLP cannot be considered in the compilation phase. Finally, TLP generally requires

more memory pressure. As a result, TLP looks appealing but the actual implementation of

19

defragmenter/fig/motion_comp.eps

1: For (it = 0; It < 4; it++) {

2: i = a[it] + b[it];

3: j = c[it] + d[it];

4: k = e[it] + f[it];

5: l = g[it] + h[it];

6: m = i + j;

7: n = k + l;

8: result[it] = m + n;

9: }

+ +

+

+ +

+

+

a[0] e[0]d[0]c[0]b[0] f[0] g[0] h[0]

i

result[0]

nm

k lj

it = 0
it = 1
it = 2

it = 3

+ +

+

+ +

+

+

V[a] V[e]V[d]V[c]V[b] V[f] V[g] V[h]

i

V[result]

nm

k lj

+

+

+

V[a:c:e:g] V[b:d:f:h]

i:k

V[result]

nm

j:l

(a) (b) (c) (d)

SIMD Resource

Loop level

SIMDization

SIMD Resource
SIMD Resource

Vectorized

basic block level

SIMDization

R1

R2

R3

R1R2R30 15 0 15 0 15

Figure 2.7: Different levels of parallelism: (a) an exampleloop’s source code, (b) original

multiple scalar subgraphs utilizing a single SIMD lane, (c)a vectorized subgraph using four

SIMD lanes, and (d) the opportunity of partial SIMD parallel ism inside the vectorized basic

block (SIMD lane utilization: (R1: 16), (R2: 8), (R3: 4))

it is complicated.

The analysis reveals the difficulty of implementing common solutions in the real world.

To further improve resource utilization, it is necessary tofind a way to exploit other forms

of parallelism.

2.2.3 Beyond Loop-level SIMD Parallelism

Most kernels have some degree of DLP, which can be easily vectorized using loop

unrolling. An interesting question is how to find extra parallelism when the degree of

DLP is smaller than the degree supported in the architecture. For this question, the next

opportunity can be found inside the vectorized basic block.Even if the basic block is not

fully vectorizable, some parts inside the block can be vectorized as a restricted form of ILP.

Compared to ILP, DLP requires two more conditions: 1) the instructions should perform the

20

defragmenter/fig/partial_simd_opp.eps

same work and 2) data flow should also be in the same form. Therefore, parallel instructions

with the same opcode can be executed together in a SIMD architecture. Figure2.7shows

examples of additional SIMD parallelism inside the vectorized basic block for our three

applications. Figure2.7 (a) is a vectorizable loop to generate the sum of eight input data

arrays. (b) shows the unrolled dataflow graph (DFG) that can be executed in only one lane

when assuming a 16-way SIMD datapath. This loop can then be vectorized as shown in (c)

and four lanes can be assigned as the trip count of the loop butstill 12 lanes are idle. In

this case, another opportunity for partial SIMD parallelism can be found inside the basic

block as illustrated in (d). Four ADD instructions in the ‘R1’ region are able to execute

together with 16 degrees of parallelism, two ADD instructions in the ‘R2’ region can also

execute together using eight lanes. Based on the application analysis, more than 50% of

total instructions have at least one parallel identical instruction.

2.2.4 Summary and Insights

The analysis of these three applications provides several insights. First, resource uti-

lization of a wide SIMD architecture is low because multimedia applications have various

degrees of SIMD parallelism, and current solutions are not effective due to the high dy-

namic variance and the unpredictability. Second, ILP inside the vectorized basic block can

be converted to DLP in many cases. Therefore, additional partial SIMD parallelism can be

added when the DLP is insufficient.

A major challenge is how to minimize the data movement acrossthe different SIMD

lanes. For loop-level DLP, inter-lane data movement does not happen, whereas partial DLP

21

has a large number of such movements due to each part having different levels of DLP,

causing the amount of the occupied SIMD lanes to change at runtime in such a manner that

the data packing/unpacking/reorganizing process happensfrequently. For example, two

data movements across the lane need to be done when exploiting partial SIMD parallelism

in Figure2.7(d): 1) ’R1’ to ’R2’: After the 16-wide instruction, half of the data in lanes 9

to 15 should move to 0 to 8, and 2) ’R2’ to ’R3’: After the 8-wideinstruction, half of the

data in lanes 4 to 7 should move to 0 to 3. Therefore, we can savejust two total instructions

due to the data movement even if we save four instructions on partial SIMD parallelism.

The conclusion is that minimizing inter-lane data movements is the key challenge in getting

benefits from partial SIMD parallelism.

2.3 Subgraph Level Parallelism

This section describes a new vectorization technique. We first introduce some new

terminologies and discuss its effectiveness in contrast toother related techniques. An ex-

ecution model using SGLP is then proposed on the conventional wide SIMD architecture.

Finally, we list practical challenges to exploit this parallelism and suggest proper solutions.

2.3.1 Overview

Subgraph level parallelism is defined as SIMD parallelism betweenidenticalsubgraphs

which 1) have an isomorphic form of dataflow with SIMDizable operations and 2) have

no dependencies on each other inside the basic block. This parallelism is detected through

the identical subgraph search inside the whole dataflow graph extracted from a basic block.

22

1 2

5

3 4

6

7

V[a] V[e]V[d]V[c]V[b] V[f] V[g] V[h]

i

V[result]

nm

k lj

Lane 0 ~ 3 Lane 4 ~ 7

Inter-lane move

0

1

2

3

4

5

6

7

SIMD Lane

Time

L
a

n
e

0
~

3
L

a
n

e
4

~
7

(a) (b)

Subgraph 1
Subgraph 2

1: [i:k] = [a[0:3]:e[0:3]] + [b[0:3]:f[0:3]];

2: [j:l] = [c[0:3]:g[0:3]] + [d[0:3]:h[0:3]];

3: [m:n] = [i:k] + [j:l];

4: [n:0] = shuffle1([m,n], [0,0]);

5: [result[0:3]:0] = [m:n] + [n:0];

(c)

Kernel 0

SIMD width: 8

Kernel 1

SIMD width: 4

Kernel 2

SIMD width: 8

A0 A1

B

C1

D

E

C0

P
ro

g
ra

m
F

lo
w

(d)

0

1

2

3

4

5

6

7

SIMD Lane

Time

L
a

n
e

0
~

3
L

a
n

e
4

~
7

(e)

Kernel 1

Gain: 3, 4, 6

Overhead: 1 move

Gain: A1, C1

Overhead: A1->B, C1->D

1

3

2

4

5

6

In
te

r-
la

n
e

D
a

ta
m

o
v
e

m
e

n
t

7

K
e

rn
e

l
0

A
0

A
1

B C
0

C
1

D E

K
e

rn
e

l
2

Figure 2.8: Subgraph level parallelism: (a) identical subgraphs are identified, and (1, 2, 5,

7) and (3, 4, 6) are executed in parallel with one overhead, (b) execution of the graph on two

SIMD lane groups, (c) SGLP exploited output source code, (d)high level program flow with

three sequential kernels and kernel 1 can exploit SGLP, and (e) execution of three kernels with

SGLP exploration on kernel 1.

These identical subgraphs can be executed in parallel in theform of a sequence of SIMD

instructions inside the subgraph. There are two major advantages when searching packing

opportunities at the subgraph level:

• Packing steering: SGLP minimizes the overall data reorganization overhead be-

cause the data movements between instructions inside a subgraph are automatically

captured and assigned to one SIMD lane, and the alignment analysis between sub-

graphs is performed over a global scope. This benefit becomesmore apparent when

23

defragmenter/fig/sglp_thesis.eps

converting ILP to DLP in the low-DLP region such as loop-level vectorized or scalar

code because the subgraph guides the instruction packing indirections that reduce or

keep constant the amount of conversion overheads when the packing opportunities

are not restricted by the memory alignment so that the numberof possible packing

combinations increase.

• High packing gain: Converting ILP to DLP is not common because it is hard to

expect that the data reorganization process will provide enough gain to compensate

for its performance loss due to the expensive nature. However, the considerable

instruction savings of subgraph packing gives more chancesto guarantee a positive

net performance gain in spite of the substantial amount of overheads.

Figure2.8illustrates an example of SGLP realization. Using the vectorized basic block

from Figure2.7, Figure2.8(a) identifies two identical subgraphs of (1, 2, 5) and (3, 4, 6)

due to the same dataflow and same operations with no dependencies. Each corresponding

instruction of two subgraphs is packed together and executed in parallel. Figure2.8(b)

shows the actual execution model using an 8-way SIMD datapath. Due to the insufficient

degree of DLP for the original innermost loop from Figure2.7(a), SGLP is applied and two

isomorphic subgraphs are identified from the 4-wide vectorized basic block (Figure2.8(a)).

From these two subgraphs, (3, 4, 6) is chosen to be executed inthe unused lanes. As a

result, instructions (1, 2, 5, 7) and (3, 4, 6) are executed inlane 0-3 and 4-7 as shown in

Figure2.8(b). In addition to this, one cycle of overhead is incurred tomove the output

data of instruction 6 to lane 0-3. Figure2.8(c) is the pseudo code exploiting both SIMD

parallelism and SGLP. In this program, parallel instructions in the isomorphic subgraphs

24

are packed together and data movement is enabled by theshuffleinstruction, which moves

data using the shuffle network in Figure2.3. Shuffle0 extracts the left column data of two

input vectors and Shuffle1 extracts the right column data of two input vectors.

Figure2.8(d) and (e) illustrate the high-level execution model of this paradigm. The

example scenario is three consecutive kernels having different natural SIMD widths (ker-

nel 0:8, kernel 1:4, kernel 2:8) are executed on an 8-way SIMDarchitecture. Kernel 0

and 2 are executed only using SIMD parallelism by loop unrolling without any inter-lane

overhead. However, the natural SIMD width of kernel 1 is smaller than the architecture

allows, so SGLP is exploited as shown in (d). The SGLP compiler finds two groups of two

isomorphic subgraphs as (A0, A1) and (C0, C1) and offloads twosubgraphs of A1 and C1

onto lanes 4-7. As a result, the whole program can improve thetotal performance by the

execution time of A1 and C1 as shown in (e) with some overhead.Inspired by this sce-

nario, the total speedup achieved by SGLP over the current execution model is derived as

the following equation when executingn different kernels withiv invocations, which have

t normal execution time,tsglp execution time can be saved by subgraph offloading andov

inter-lane movement overhead.

Speedup =

∑n−1
k=0

(t(k)× iv(k))
∑n−1

k=0
((t(k)− tsglp(k) + ov(k))× iv(k))

(2.1)

Based on Equation (2.1), the performance gain can be maximized when a program has

a high number of invocations on kernels with a small degree ofDLP, a high degree of

SGLP and a small overhead. Therefore, an SGLP compiler needsto increase the number

of instructions covered by identical subgraphs with minimum inter-lane overhead. The key

25

1 2

5

3 4

6

7

V[a] V[e]V[d]V[c]V[b] V[f] V[g] V[h]

i

V[result]

nm

k lj

Lane 0 ~ 3 Lane 4 ~ 7

Inter-lane move

(a) (b)

1: [i:j] = [a[0:3]:c[0:3]] + [b[0:3]:d[0:3]];

2: [k:l] = [e[0:3]:g[0:3]] + [f[0:3]:h[0:3]];

3: [i:k] = shuffle0([I,j], [k,l]);

4: [j,l] = shuffle1([I,j], [k,l]);

5: [m:n] = [i:k] + [j:l];

6: [n:0] = shuffle1([m,n], [0,0]);

7: [result[0:3]:0] = [m:n] + [n:0];

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 3 4 2 3 4 2 3 4 2 3 4

SLP overhead SLP (real)

AAC 3D H.264 Avg

S
L
P

s
a
v
in

g
(C

y
c
le

)

(c)

of ways

Figure 2.9: Superword level parallelism difficulty: (a) (1, 3, 5, 7) and (2, 4, 6) are chosen to

execute in parallel and three overheads occur, (b) superword level parallelism exploited output

source code, and (c) average cycle savings of SLP: Y-bar means ideal savings and it is broken

down as overheads and real savings.

algorithm to achieve this goal is explained in section2.4.

2.3.2 Comparison with Superword Level Parallelism

Superword level parallelism [52] is the most similar paradigm to our work with respect

to searching potential parallelism inside the basic block.Because SLP focuses on short

SIMD instructions, isomorphic instructions are only considered and thus they cannot han-

dle inter-lane data movement. This problem is often ignoredbecause the overhead of data

26

defragmenter/fig/sglp_comp.eps

movement inside the vector is fairly small in a narrow SIMD component, however, it usu-

ally induces high performance degradation in a wider SIMD component [52]. In addition

to this, the local scope of superword level parallelism may be fooled into selecting packing

instructions when a large number of isomorphic instructions exists.

Figure2.9shows the result of exploiting superword parallelism from Figure2.7(a). For

a fair comparison, we relax the memory alignment constraintof [52] so that all memory

instructions can be packed. As the compiler searches the isomorphic instructions in pro-

gram order with local scope, instructions are packed as (1, 2), (3, 4), (5, 6). Then lanes

0-3 execute (1, 3, 5, 7) and lanes 4-7 execute (2, 4, 6) as shownin Figure2.9 (a). Even

though total instruction savings are the same as SGLP , the overhead also increases to three

instructions (Figure2.9(b)). Therefore, there is no performance gain even in this small ba-

sic block, and when the block becomes more complex the algorithm cannot ensure a good

result.

Based on the above consideration, we analyze the cost of these overheads for the vector-

ized kernels of three media applications. Figure2.9(c) shows average cycle savings when

applying SLP at different SIMD ways from two to four comparedto the original schedule

on the baseline processor. The Y-bar shows the ideal savingsassuming the SIMD overhead

is free, and each bar is broken down by SLP overhead and real savings. The SLP overhead

is calculated assuming all the data rearrangement instructions take one cycle. The results

give two major insights: 1) SLP, the well-known SIMDizationtechnique used inside the

basic block, can ideally deliver a fair amount of performance enhancement and is also scal-

able as the number of ways increases, and 2) large SIMD overheads of more than 50% of

ideal savings hinder the effectiveness of SLP and make SLP barely scalable as the over-

27

Scalar Pipeline

AGU Pipeline

Scalar

Memory

Buffer

SIMD

RF
SIMD FU

SSN

(SIMD

Shuffle

Network)

B

U

S

DMA

Controller

L1

Program

Memory

SIMD Pipeline

Bank

0

Bank

1

Bank

2

Bank

3

Constant

Mem

Main

Processor

Figure 2.10: Architectural modifications: (1) multi-bank memory and (2) wide SIMD constant

memory is supported.

heads also grow dramatically at wider ways. The actual performance gain will be worse in

a real situation because many SIMD overhead instructions take more than an single cycle

with current technology. Section2.5 shows how much SGLP improves performance by

both increasing the ideal savings and decreasing the overheads when compared to SLP. In

addition to this, we also show how much ILP can be converted into SGLP.

2.3.3 Challenges and Solutions

As discussed, SGLP introduces more potential parallelism but has many principal chal-

lenges to make this paradigm feasible. We list the four majorarchitectural challenges

and suggest possible solutions with architectural or compiler modifications. Simple ar-

28

defragmenter/fig/architectural_modification.eps

chitectural changes are proposed as shown in Figure2.10and compilation challenges are

addressed in Section2.4.

Control flow: Because SGLP is basically exploited within the basic block,control flow

is not a big issue. Furthermore, as scalar pipelines are primarily responsible for handling

control flow, SGLP generally does not need to consider control flow. However, basic blocks

are sometimes merged using if-conversion with predication. Even in this case, SGLP is not

affected because predication also can be detected in the identical subgraph identification

process.

Instruction flow: When multiple SIMD lane groups execute some task in parallel,

all the instructions are not covered as subgraphs, and some SIMD lane groups may not

be enabled because the number of identical subgraphs is smaller than the number of SIMD

lane groups. Therefore, the main SIMD lane group is necessary to cover all the instructions.

Register flow: First, data movement across or inside the SIMD lane groups can be

supported by single-cycle shuffle instructions using a shuffle network. Second, although

multiple SIMD lane groups execute the same instructions, their actual register names are

different. Therefore, the compiler must handle register renaming, which packs multiple

parallel short registers into a wide register. In addition to this, some instructions covered

by multiple identical subgraphs may have different immediate values, and therefore the

architecture must provide a way to support wide constant values in a cycle because it is

impossible to supply multiple values in a cycle. Therefore,a small constant value memory

can be added. The compiler then automatically generates thewide constants from multiple

immediate values. The application study shows that these cases rarely exist, and thus the

29

overhead incurred is trivial.

Memory flow: If identical subgraphs have memory instructions, the references of the

instructions may be different, and thus the architecture must provide a smart memory pack-

ing mechanism such as gather-scatter operation.

The possible architectural modification is to replace the SIMD scratchpad memory from

one wide memory to a short width multiple bank memory. This change is required to re-

lax the memory alignment constraint. The most critical reason why the basic block typi-

cally has high ILP but low DLP is that the architecture does not support unaligned mem-

ory access [52]. By supporting unaligned memory packing/unpacking from DMA using

the multi-bank memory, more memory instructions can be executed in parallel. One key

point is that multi-addressing is only allowed for Memory-DMA communications, while

the SIMD pipeline views the memory as a single bank. Another key point is that the number

of banks depends on the ratio of the number of memory instructions to normal instructions

because the address calculations are the responsibility ofthe AGU pipeline and they are

not scalable, thus the performance of the AGU may be the limiting factor.

2.4 Compiler Support

2.4.1 Overview

In this section, we describe the compiler support for SGLP. Taking the concept of sub-

graph identification [29], we developed a SGLP scheduler that can support both simple

30

Compiler Front-end

Loop-unrolling &

Vectorization

Dataflow Generation

Subgraph Identification

SIMD Lane Assignment

Code Generation

IR

Hardware Information

C
o

m
p

ile
r

B
a
c
k
e

n
d

IR Code

Loop-level

Vectorized

IR

Dataflow

Graph

Identical

Subgraphs

Lane-assigned

Subgraphs

More

Opportunity?

Vectorized

IR Code

Yes

No

Figure 2.11: Compilation flow of the SIMD defragmenter: shaded regions exploit subgraph

level parallelism.

loop-level DLP and SGLP for wide SIMD components. The systemflow is shown in Fig-

ure2.11. Applications are run through a front-end compiler, producing generic Intermedi-

ate Representation (IR), which is unscheduled and uses virtual registers. The compiler also

gets high-level machine specific information, including the number of SIMD lanes, and

supported inter-lane movement instructions. Given the IR and hardware information, the

compiler performs loop-level vectorization on the selected SIMDizable loops. The com-

piler then exploits SGLP if the SIMD parallelism is insufficient. After generating the DFG,

the compiler iteratively discovers identical subgraphs inthe DFG and assigns the subgraphs

to unused SIMD lanes until no more SGLP opportunities exist.Finally, the compiler gen-

31

defragmenter/fig/system_flow.eps

erates the final vectorized IR.

2.4.2 Subgraph Identification

First, identical subgraphs are extracted from the given DFG. The compiler sets the

maximum number of identical subgraphs as the available degree of SGLP. The compiler

then iteratively searches the groups of identical subgraphs having some number of instances

from maximum number down to two (the minimum degree). Heuristic discovery [29],

which picks the seed node and grows the nodes, is used for DFG exploration. Exploration

starts by examining each node in the DFG and using it as the seed for a candidate identical

subgraph. The algorithm attempts to find the largest candidate subgraphs withn identical

instances within the given DFG, wheren is the degree of SGLP. If, however, the algorithm

identifiesm identical instances of a candidate subgraph, wherem > n, only n instances

are saved and the nodes from the remainingm−n instances are “discarded” and “re-used”

in the next exploration phase. This of course assumes that the current candidate subgraph

could not be grown further while still ensuring thatn instances could still be identified. If

all the identical subgraphs with the target number of instances,n, are found, the compiler

decreases the target number by one and starts the subgraph search again.

Additional conditions for the general subgraph search are that 1) the corresponding op-

erations from each subgraph should be identical, 2) live values and immediate values should

also be taken into consideration, and 3) inter-subgraph dependencies should not exist. Con-

dition 1) enables the corresponding instructions inside the subgraphs to be packed into one

opcode, and condition 2) enables packing whole operands of the instructions. Live values

32

and immediate values are not generally considered in commonsubgraph pattern matching,

but the SGLP compiler must take them into account because only same type of operands

can be packed for SGLP. The last condition ensures that the subgraphs are parallelizable.

2.4.3 SIMD Lane Assignment

Once all possible groups of identical subgraphs are identified, the compiler selects the

subgraphs to be packed and assigns them to SIMD lane groups. Instructions included

in remaining subgraph groups lose the subgraph informationand are reused in the next

subgraph identification process. The objectives of SIMD lane assignment process are two-

fold: 1) pack maximum number of instructions with minimum inter-lane data movement,

and 2) ensure packed groups of instructions can be executed safely in parallel without any

dependence violation. To achieve these goals, the compilerconsiders three kinds of criteria:

gain, partial order, and affinity.

The gain of the subgraph is the most critical criteria and is largely calculated by the size

of the subgraph. Larger subgraphs can provide higher performance with less overheads as

more dataflow can be covered. The memory packing overhead is also accounted for in the

gain if it incurs performance degradation. The compiler tries to assign subgraphs to specific

SIMD lanes based on decreasing order of the gain.

The partial order between subgraphs inside the SIMD lane group is the next most crit-

ical issue. When assigning new identical subgraphs to different SIMD lane groups, the

partial order of the subgraphs inside the SIMD lanes may be different across the SIMD

lanes because identical subgraphs are only parallel with each other and the relations with

33

Conflict!

A0 A1

B0

B1
C0

C1

D
0

1

2

3

4

5

6

7

SIMD Lane

Time

L
a
n
e

0
~

3
L
a
n
e

4
~

7

A
0

A
1

C
0

B
0

B
1

C
1

D

Figure 2.12: Subgraph partial order mismatch: when (B0, B1)is chosen to execute in different

SIMD lanes, (C0, C1) cannot be chosen due to the partial ordermismatch between lanes.

other subgraph groups are not considered. If the relation between different subgraphs in

some lane groups is different from the relations in other lane groups, the corresponding

subgraphs cannot be executed in parallel. Figure2.12shows a simple example case of this

kind of conflict. From a vectorized basic block having 3 groups of identical subgraphs with

(A0, A1), (B0, B1), and (C0, C1), (A0, A1) and (B0, B1) are chosen to be parallelized us-

ing the two SIMD lane groups. After this assignment, C0 and C1cannot execute in parallel

through two SIMD lane groups because C0 must execute before B0 in the lane group 0-3

but C1 must execute after B1 in the lane group 4-7.

As the inter-lane data movement overheads inside the subgraphs are already solved by

subgraph identification, the next objective is to minimize the overheads between different

subgraphs. Typically, a subgraph is related to multiple other subgraphs, so the compiler

must consider which combination of subgraphs can minimize the overall overhead. To

address this issue, anaffinity costwas introduced inspired by previous works [72, 73]. The

affinity value for a pair of subgraphs reflects their proximity in the DFG. When a group

34

defragmenter/fig/conflict.eps

of identical subgraphs is chosen to be parallelized, each lane group is assigned an affinity

cost depending on how close the subgraph candidate is to any already placed subgraphs

that have high affinity with the candidate. This gives preference for assigning a subgraph

in the same lane group as other subgraphs it is likely to communicate with thus reducing

inter-lane data movements.

affinity(A,B) =
∑

a∈nodes A

(

max dist
∑

d=1

2max dist−d × ((Ncons(a, B, d) (2.2)

+Nprods(a, B, d))× C0 + (Ncom cons(a, B, d) +Ncom prods(a, B, d))× C1)))

, where C0 >> C1

Equation (2.2) calculates the affinity between two subgraphs A and B. The value is de-

termined by four different relations between nodes inside Aand B: producer, consumer,

common consumer, and common producer relations. Producer/consumer relation means

that nodes in A have direct/indirect producer-consumer/consumer-producer relations to

nodes in B. Common producer/consumer relations mean that nodes in A and nodes in

B have common producer/consumer relations. The former two relations have explicit data

movement between subgraphs but the latter relations just imply that they may have some

data movements when merging or diverging. Therefore, we putmore weight on the former

two relations (C0 >> C1). Nodes withinmaxdist are used, whereN refers to the number

of nodes in subgraph A that have a relationship with a node in subgraph B at a distanced.

The distance is the number of nodes to reach the target node.

Algorithm 1 shows how the SIMD lane assignment works. The inputs are the list of

identical subgraph groups (IdSubGroups), dataflow graph (G) and the current list of SIMD

35

Algorithm 1 SIMD Lane Assignment

Input: IdSubGroups, G, SIMDGroups

Output: SIMDGroups

{ Assign subgraphs into the appropriate SIMD lane group.}

1: SortSubGraphGroupsByGain(IdSubGroups);

2: while HasGroup(IdSubGroups) do

3: curSubGroup← Pop(IdSubGroups);

4: while HasGroup(curSubGroup) do

5: curSubGraph← Pop(curSubGroup);

6: curSIMDGroup←

findSIMDGroupByMaxAffinity(SIMDGroups, curSubGraph);

7: curSIMDGroup→ addSubGraph(curSubGraph);

8: end while

9: if (!PartialOrderCheck(SIMDGroups)) then

10: Restore(SIMDGroups);

11: end if

12: end while

{ If no more updates, find the main lane group and assign remaining nodes.}

13: if (!IsUpdated(SIMDGroups)) then

14: curSIMDGroup←

findSIMDGroupByMaxOverhead(SIMDGroups);

15: curSIMDGroup→ addRemainingNodes(G);

16: SetMainSIMDGroup(curSIMDGroup);

17: end if

36

lane groups (SIMDGroups). The output is the list of SIMD lane groups with new subgraph

assignment (SIMDGroups). The algorithm starts by sorting theIdSubGroupsby subgraph

gain because we place the top priority on the gain of subgraph. Based on the sorted order

of the list, the while loop assigns the subgraphs on the appropriate SIMD lane group. Lines

3-8 take one identical subgraph group and assign each of the subgraphs onto the SIMD

lane group having the maximum affinity. Lines 9-11 perform the partial order check for all

the SIMD lane groups and, if some conflicts occur, the latest update is cancelled. When no

more subgraphs are assigned to the initialSIMDGroups, the compiler decides not to try the

subgraph identification process again using the remaining nodes, sets the SIMD lane group

with the maximum overhead as the main lane group, and assignsuncovered nodes of DFG

to the main lane group in order to minimize the total overhead.

2.4.4 Code Generation

The compiler generates new vectorized IR from the lane assignment and inter-lane

movement information from the previous process. When the compiler meets instructions

covered by the identical subgraphs, the compiler gathers each parallel operand and converts

them into one long register by remapping, a short immediate,or a wide constant. When a

wide constant exists, the compiler generates the data and saves it to the constant memory.

Shuffle instructions are also added if the compiler detects inter-lane data movement.

37

2.5 Experimental Results

2.5.1 Experimental Setup

To evaluate the availability and performance of SGLP, 144 loop kernels, varying in size

from 4 to 142 operations, are extracted from three media applications in the embedded do-

main (AAC decoder, 3D graphics, and H.264 decoder). The iteration count per invocation

of the kernels varies from 1 to 1024, and the natural SIMD widths are decided by the con-

ditions discussed in Section2.2.2.1and memory dependence checks are performed using

profile information. The IMPACT compiler [71] is used as the frontend compiler and both

SGLP and SLP [52] are implemented in the backend compiler using a SODA-style[60]

wide vector instruction set. The inter-lane move is performed using a single-cycle delay

shuffle instruction, supporting data rearrangement in the SIMD RF as indicated by the per-

mutation pattern similar to vperm (VMX) or vecperm (AltiVec [82]). We also allow some

similar instructions (e.g. add/sub) to be packed as common vector architectures allow this.

The vectorizable kernels are automatically vectorized by loop unrolling and the evalua-

tion is performed using the loop-level vectorized basic block. The wide SIMD architecture

as discussed in Section2.2.1 is used as the baseline architecture. The number of SIMD

resources can vary from 16 to 64, while the number of memory banks are limited to four.

Our experiments do not apply SGLP more than 4-way. Two main reasons for this are:

1) the degree of ILP, the theoretical maximum gain of SGLP, ismostly smaller than four,

and 2) only computation instructions can be SIMDized, and therefore the decreased ratio of

computation to memory instructions causes the performanceto be constrained by the AGU

pipeline.

38

0

0.2

0.4

0.6

0.8

1

AAC 3D H.264

2 3 4

R
a
ti
o

o
f
in

s
tr

u
c
ti
o
n

c
o
v
e
ra

g
e

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AAC 3D H.264

2 way SLP 2 way SGLP 3 way SLP

3 way SGLP 4 way SLP 4 way SGLP

R
a
ti
o
 o

f
in

s
tr

u
c
ti
o
n
s
 e

lim
in

a
te

d

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AAC 3D H.264

2 way SLP 2 way SGLP 3 way SLP

3 way SGLP 4 way SLP 4 way SGLP

R
a
ti
o
 o

f
in

s
tr

u
c
ti
o
n
s
 e

lim
in

a
te

d

(c)

Figure 2.13: Ratio of instructions covered by the subgraph level parallelism and static instruc-

tions eliminated for three media applications: (a) instruction coverage, (b) static instruction

elimination without inter-lane overheads, and (c) static instruction elimination with inter-lane

overheads.

2.5.2 Subgraph Level Parallelism Coverage

We first calculate the percentage of instructions covered byidentical subgraphs in order

to gauge the availability of subgraph level parallelism. From the vectorized basic blocks

of kernels, we found identical subgraphs ranging from 2-wayto 4-way. The coverage is

calculated as the number of instructions covered by the identical subgraphs. The results

for three applications are shown in Figure2.13(a). For H.264 and AAC, a large percentage

of instructions is covered by identical subgraphs because high degrees of parallelism still

exists even inside the vectorized basic block. Even though SGLP covers relatively small

39

defragmenter/fig/coverage.eps
defragmenter/fig/instruction_saving1.eps
defragmenter/fig/instruction_saving2.eps

ld

i41 i41

ld

i41 i41

sub add

add subadd sub

ld ld

st stst st

ld

i41 i41

ld

i41 i41

sub add

add subadd sub

ld ld

st stst st

(a)

mul

add add

add

add

ld

i32 i32 i32

ld

i32 i32 i32 ld

i32 i32 i32add

add

st

add

add

st

add

add

st

(b)

Figure 2.14: Example dataflow graphs: (a) FFT: two identicalsubgraphs ((1) ld, i41, i41, (2)

ld, (sub/add), add, sub, st, st), (b) MatMul3x3: two identical subgraphs ((1) add, ld, i32 , i32,

i32 (2) add, add, st). i41 and i32 are intrinsic instructions.

amount of instructions, more than 50% of instructions in the3D application are still cov-

ered. Compared to other applications, the 3D application has a smaller degree of SIMD

opportunity due to each instruction having a small number ofparallel instructions with the

same operation.

The interesting point here is that the coverage of the 3-way for AAC and H.264 appli-

cations is smaller than the 2- and 4-way. This is because mostdataflow graphs have a tree

structure and therefore 2 and 4 way are well matched but 3-wayfrequently misses some in-

structions when dataflow merges. For example, a dataflow graph of the FFT kernel is likely

parallelizable in a 4-way, and thus 3-way exploration cannot find the profitable identical

subgraphs in the one remaining flow as shown in Figure2.14(a).

Figure2.13(b)and Figure2.13(c)show the ratio of static instructions eliminated from

the vectorized basic block when applying SGLP and SLP. The configuration is expressed

as: (numberof simdizationways) way (technique). Figure2.13(b)shows the result with-

40

defragmenter/fig/fft.eps
defragmenter/fig/mat33.eps

out overhead (number of shuffle instructions) and the percentage of savings has the trend

similar to that of the SGLP coverage. An interesting question is how the SGLP can elim-

inate more instructions than the SLP even though both techniques have a fair amount of

gains. This is because 1) SLP frequently makes the wrong decision among various packing

opportunities and 2) SLP cannot vectorize pure scalar codes[15]. When considering the

inter-lane data movement overhead as shown in Figure2.13(c), SLP performs dramatically

worse than the ideal condition due to many shuffle instructions. On the other hand, SGLP

was found to still deliver consistent amounts of instruction eliminations by smart data-

movement control. Based on the application complexity, H.264 and 3D have a notable

degradation of savings, whereas AAC is rarely affected by the overhead.

2.5.3 Performance

Inspired by the promising result of finding abundant opportunities for SGLP in the vec-

torized basic block, we compared the performance of SGLP to both SLP and ILP. Perfor-

mances of SGLP and SLP are measured as the schedule length when the kernel is mapped

a (a degree of loop-level vectorization× the number of ways)-wide SIMD architecture.

As SGLP is the restricted form of ILP, the ILP result can be thought of as the theoretical

upper bound. The performance of ILP is measured as the schedule length when the kernel

is scheduled in the same sized fully-connected VLIW machinehaving a central register

file. For example, if an example kernel is loop-level vectorized by 16 and 2-way SGLP

is applied, the corresponding ILP performance is calculated when an ideal 32-wide VLIW

machine executes unrolled scalar code.

41

FFT MDCT MatMul4x4 MatMul3x3 HalfPel QuarterPel

R
e
la

ti
v
e

P
e
rf

o
rm

a
n
c
e

of ways

1

1.5

2

2.5

3

3.5

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

SLP SGLP SLP w/ overhead SGLP w/ overhead ILP

Figure 2.15: Performance comparison of SLP/SGLP without overhead, SLP/SGLP with over-

head, and ILP for key kernels: FFT, MDCT for AAC, MatMul4x4, M atMul3x3 for 3D, and

HalfPel, QuarterPel for H.264.

Figure2.15and2.16show the individual performance enhancement results of sixwell-

known kernels and geometric mean of gains for each application. The target ways are

shown on the X-axis, relative performance normalized to theoriginal vectorized kernel on

the Y-axis. The following techniques are examined and shownas a bar form: SLP and

SGLP with zero-cycle data-movement latency (SLP and SGLP) and SLP and SGLP with

single-cycle data-movement latency (SLP and SGLP w/ overhead). The ILP results are also

shown as a short horizontal form and the vertical line indicates the performance difference

between ideal ILP and loop-level vectorization combined with practical SGLP. From these

two graphs, substantial amounts of speedups exist in both ideal cases and are similarly

scalable as ILP. In addition to this, gains from SGLP in real situations are also mostly

prominent and scalable without large overhead increases onwider ways. In contrast, SLP

with overhead has a large performance degradation due to theimmense inter-lane data-

movements, and increasing overheads on wider ways make it barely scalable.

Unlike most cases, a few kernels showed negligible performance improvements while

42

defragmenter/fig/kernel_ex.eps

AAC 3D H.264 Avg

R
e
la

ti
v
e

P
e
rf

o
rm

a
n
c
e

of ways

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2 3 4 2 3 4 2 3 4 2 3 4

SLP SGLP SLP w/ overhead SGLP w/ overhead ILP

Figure 2.16: Average kernel performance comparison of SLP/SGLP without overhead,

SLP/SGLP with overhead, and ILP for three application domains.

applying SGLP, namely FFT in AAC and 3x3 matrix multiplication in 3D. These are due

to the specific characteristics of each dataflow graph. First, as shown in Figure2.14(a), the

FFT kernel can have two subgraphs without inter-lane data movements in the 2-way case.

In the 4-way case, each subgraph for the 2-way case is split once more with only two data

movements such as (i41→ add) and (i41→ sub). In the 3-way case, three of the subgraphs

for the 4-way case are identified and a remaining subgraph cannot be effectively executed

in multi-lane, which has a high data-movement overhead. As aresult, the gain of 3-way

SGLP is worse than that of 2-way SGLP including overheads. Second, the 3x3 matrix

multiplication can be split into three subgraphs as shown inFigure2.14(b), and therefore

a considerable increasing in overheads when applying 4-waySGLP hinder it from fully

exploiting the benefits.

As shown in Figure2.16, on average, SGLP without and with overheads achieve rela-

tive performance improvements of 1.42x, 1.36x at 2-way, 1.61x, 1.47x at 3-way, and 1.84x,

1.66x at 4-way. In addition to this, SGLP with overheads alsoprovides 18-40% more per-

43

defragmenter/fig/Execution_time.eps

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

16 32 64 16 32 64 16 32 64 16 32 64

SLP w/ overhead SGLP w/ overhead ILP

AAC 3D H.264 Avg
R

e
la

ti
v
e

P
e
rf

o
rm

a
n
c
e

of SIMD lanes

Figure 2.17: Overall performance comparison of SLP/SGLP with overhead and ILP for three

domains on SIMD architectures.

formance improvement over baseline compared to SLP with thesame resources. The per-

formance difference between SGLP and SLP increases as applied on wider ways. Finally,

a comparison with ILP suggests that SGLP is a cheap and powerful solution to accelerate

performance, considering that SGLP only requires minimum additional hardware while a

wide fully-connected VLIW architecture is impractical.

Based on the schedule results for kernels, we execute three applications on three wide

SIMD architectures having 16, 32, and 64 lanes. When the original SIMD width of the

kernel is equal or larger than the width of the architecture,SGLP or SLP is not exploited.

Only when the current SIMD width of the kernel is insufficientto fully use the architec-

ture, the available amount of SGLP, up to 4-way, is exploited. For example, 4-way SGLP

is exploited if a kernel is 4-wide vectorized on the 16 way architecture and 2-way when

8-wide vectorized. The final performance is also compared totraditional ILP in the equiva-

lent VLIW architecture and SLP. The results are provided in Figure2.17with considerable

44

defragmenter/fig/perf.eps

performance gains. The X-axis shows the number of SIMD laneson the wide SIMD archi-

tecture and the Y-axis shows speedup relative to the simple SIMD execution time on the

baseline architecture. The two bars of each application represent the runtime speedup of

real SLP and SGLP with overheads. In a similar ways from previous Figures, ILP results

are also provided. For all the applications, real SGLP stillshows notable performance gain

by utilizing more SIMD resources with smart overhead control. As we discussed in Sec-

tion 2.2.2.2, kernels having smaller than 16 SIMD width are accelerated by SGLP when

using 16 wide architecture, and AAC and H.264 have high gainsdue to the high execution

time ratio of such kernels, which are more than 50% of their total execution time. As the

architecture size becomes larger, the performance is saturated at some point because SGLP

is constrained by maximum degree of 4. The key observation isthat the real performance

gain of SGLP is also fairly scalable due to the fact that the performance gain successfully

compensates for the increased overheads different from SLP. Finally, on average, SGLP

with overhead can have 1.61x, 1.73x, and 1.76x speedups at 16, 32, and 64 wide SIMD

architectures while SLP only achieves 1.24x, 1.28x, and 1.29x speedups.

2.5.4 Energy Measurement

To evaluate the energy savings of SGLP in the real world, we measured total energy

consumption for running H.264 to determine the effectiveness of SGLP. We used a 32-

wide SIMD architecture for SGLP, and a practical 4-way VLIW,in which each datapath

supports 8-wide SIMD instructions for ILP and an 8 read-ports, 4 write-port 8-wide SIMD

RF. Both architectures are generated in RTL Verilog for a 200MHz target frequency, then

45

SGLP @ 32-wide SIMD ILP @ 4 way 8-wide VLIW ratio

power (mW) 54.40 93.17 58.39%

cycle(million) 13.07 10.77 121.36%

energy (mJ) 3.55 5.02 70.86%

Figure 2.18: Energy comparison for the SGLP on the 32-wide SIMD architecture and ILP on

the 4 way 8-wide VLIW architecture.

synthesized with the Synopsys Design Compiler and PhysicalCompiler using IBM 65nm

standard cell library with typical operating conditions. PrimeTime PX is used to measure

power consumption. Instead of measuring power for every cycle, average activity of each

component was monitored. Figure2.18 shows that the SGLP is 30% more energy effi-

cient than ILP. Even though the performance of SGLP is slightly lower, the high power

overheads of VLIW implementation, such as those introducedby a multi-port register file

and a complex interconnect, dominate the results. The powernumber for constant memory

is also considered based on the standby power and read power extracted from the SRAM

compiler. The constant memory power overhead is trivial because the standby power is

roughly 1/250 of read power and the wide constant values are rarely read. The access

timing is also smaller than 5 ns (i.e., 200 MHz), hence data can be read in one cycle.

2.6 Related Works

Most prior work in automatic vectorization are performed onthe loop-level [68, 10]

and some of the techniques have already been implemented on commercial compilers such

as the Intel Compiler [41]. These types of vectorization are usually exploited by loop

unrolling. Our SGLP vectorization starts after simple loop-level vectorization, and thus it

46

defragmenter/fig/power.eps

is an orthogonal approach and can be helpful to enhance the overall performance of our

compiler framework by finding more loop-level DLP. SGLP tries to identify opportunities

for parallelism within the vectorized basic block.

Superword-level parallelism [52] is the closest related work but this work is hard to

apply to long vector architectures as discussed in Section2.3. To improve this technique,

some research [83, 53] focuses on smart memory control such as increasing contiguous

memory instructions and decreasing memory accesses. Thereare two key differences be-

tween SGLP and SLP: 1) SGLP tries to minimize the SIMD overheads in the scope of

dataflow graph analysis, whereas most approaches do in the scope of memory manage-

ment, and 2) we focus on finding groups of instructions to guarantee sufficient gain over

the overheads but others usually focus on decreasing the overheads. Unroll-and-jam with

SLP [68] is the most similar work and we can get 30% higher performance on average due

to SLP being less effective when applied to scalar code.

Another key contribution of this work is the ability to minimize the interaction be-

tween the SIMD lanes. This scheme is highly related to the research in the area of clus-

tering [24, 37, 23, 9]. However, general clustering techniques for VLIW machines focus

on load balancing and critical path search, and thus cannot handle dataflow and instruction

mismatches between clusters.

Subgraph exploration for finding identical subgraphs is also a well-known research

area [29, 25, 26, 28] but the goal of these works is mostly to generate custom accelerators

for the subgraphs. We introduce a new algorithm for orchestrating sets of subgraphs at a

high-level for SIMDization on existing architectures.

AnySp [90] or SCALE [49], which exploit multiple forms of parallelism, are also

47

similar to this work. AnySp integrated DLP and TLP, and SCALEexploits both vector

parallelism and TLP. However, they need substantial architectural changes like multiple

AGUs, flexible functional units, and swizzle networks in AnySp, or additional multiple

fetch unit, special inter-cluster network, and Atomic Instruction Block (AIB) cache in

SCALE. However, we can provide SGLP with two minimal hardware modifications (a

small wide-constant memory and banked memory access) that incur very little overhead.

2.7 Summary

The popularity of mobile computing platforms has led to the development of feature-

packed devices that support a wide range of software applications with high single-thread

performance and power efficiency requirements. To efficiently achieve both objectives,

embedding SIMD components is an attractive solution, However, utilization of SIMD re-

sources is a major limiting factor for adopting such a scheme. In response, we propose an

efficient vectorization framework, called theSIMD defragmenter, to enhance the through-

put by maximizing SIMD utilization. TheSIMD defragmenterframework first performs

simple loop-level vectorization, then tries to find more DLPwithin the vectorized basic

block using subgraph level parallelism (SGLP). To achieve this, partially parallelizable

subgraphs are identified inside the basic block, which are offloaded to the unused SIMD

lanes while minimizing the number of inter-lane data movements. We introduce a new way

to orchestrate the partially parallel subgraphs, which is implemented in our SGLP com-

piler. The SGLP compiler is able to effectively assign the SIMD lanes for each subgraph

based on the relations between subgraphs. On a 16-wide SIMD processor, SGLP obtains

48

an average 62% speedup over traditional vectorization techniques, with a maximum gain of

2x. In comparison to superword-level parallelism, the well-known basic block level vector-

ization technique, SGLP achieves an average 30% speedup. Webelieve as SIMD, or more

general data-parallel, accelerators become more commonplace, new techniques to put these

resources to work across a wide spectrum of applications will be essential.

49

CHAPTER 3

Accelerating Execution using Dynamic Operation Fusion

3.1 Introduction

The embedded computing systems that power today’s mobile devices demand both high

performance and energy efficiency to support various high-end applications such as audio

and video decoding, 3D graphics, and signal processing. Traditionally, application-specific

hardware in the form of ASICs is used on the compute-intensive kernels to meet these de-

mands. However, the increasing convergence of different functionalities combined with

high non-recurring costs involved in designing ASICs have pushed designers towards more

flexible solutions that are post-programmable. Coarse-grained reconfigurable architectures

(CGRA) are becoming attractive alternatives because they offer large raw computation ca-

pabilities with low cost/energy implementations [61, 85, 65]. Example CGRA systems that

target wireless signal processing and multimedia are ADRES[66], MorphoSys [61], and

Silicon Hive [78].

CGRAs generally consist of an array of a large number of function units (FUs) inter-

50

Central Register File

FU4 FU5 FU6 FU7

FU0 FU1 FU2 FU3

FU8 FU9 FU10 FU11

FU14 FU15FU12 FU13

Mem

Config Register

FileFU

Register

To Neighbors

Central Register File

From Neighbors or

Figure 3.1: Overview of a4x4 CGRA.

connected by a mesh style network, as shown in Figure3.1. Register files are distributed

throughout the CGRA to hold temporary values and are accessible only by a small subset of

the FUs. The FUs can execute common integer operations, including addition, subtraction,

and multiplication. In contrast to FPGAs, CGRAs sacrifice gate-level reconfigurability

to achieve hardware efficiency. Thus, CGRAs have short reconfiguration time, low delay

characteristics, and low power consumption.

While CGRAs are fully programmable, an effective compiler is essential for achieving

efficient execution. The primary challenge is instruction scheduling wherein applications

are mapped in time and space across the array. However, scheduling is challenging due

to the sparse connectivity and distributed register files. On CGRAs, dedicated routing re-

sources are not provided. Rather, FUs serve as either compute or routing resources at a

given time. Therefore, the scheduler must manage the computation, flow, and storage of

operands across the array to effectively map applications onto CGRAs. Compilers gener-

ally focus on mapping compute-intensive innermost loops onto the array. Early work fo-

51

cgraexpress/fig/cgra.eps

cused on exploiting instruction-level parallelism [57, 21]. However, these approaches could

not make efficient use of the available resources due to limited ILP, thus more recent re-

search focuses on exploiting loop-level parallelism through modulo scheduling [65, 72, 73].

CGRA research has generally focused exclusively on efficiency for throughput-constrained

innermost loops. However, real-world media applications consist of more than highly par-

allel inner loops. Specifically, substantial fractions of time are spent in non-loop or outer

loop code, as well as recurrence dominated innermost loops.Traditional CGRAs do not

handle suchlatency-constrainedcode segments in an effective manner as they have no

mechanisms to accelerate dataflow graphs that are narrow andsequential. In fact, the ma-

jority of the resources sit idle in such situations.

This chapter proposes a new technique referred to asdynamic operation fusionto ac-

celerate latency-constrained code segments on CGRAs. The core idea is to dynamically

configure the existing processing elements of a CGRA into small acyclic subgraph accel-

erators. Each cycle, any FU can be fused with multiple of its neighbors to create an ac-

celerator capable of executing a small computation subgraph in a single cycle. In essence,

small configurable compute accelerators are realized on thearray to accelerate sequential

code [26]. The necessary hardware extensions for a conventional CGRA are quite simple

– an inter-FU bypass network is added between neighboring FUs in the array using a few

multiplexors. The compiler scheduler automatically identifies opportunities to accelerate

subgraphs by managing the scheduling process at the sub-cycle granularity. The net result

is that the usefulness of CGRAs is extended beyond highly parallel loops to effectively

operate in latency-constrained code regions.

The contributions of this chapter are as follows:

52

• An analysis of common media applications to understand the limitations presented

by latency constraints.

• CGRA design that supports dynamic operation fusing.

• A compiler scheduler that automatically identifies opportunities for dynamic fusion.

• An evaluation of dynamic operation fusion across a set of media applications.

3.2 Motivation

3.2.1 Analysis of Multimedia Applications

To understand the effectiveness and limitations of traditional CGRAs, we examine the

characteristics of commonly used multimedia applications. In mobile environments, three

of the most widely used multimedia applications are: audio decoding, video decoding and

3D graphics acceleration. We first identify the characteristics of each application, and

verify the importance of enhancing performance in latency-constrained code.

3.2.1.1 Baseline Architecture

In this work, ADRES[66] is used for the baseline CGRA architecture. This architecture

consists of 16 FUs interconnected by a mesh style network. Register files are associated

with each FU to store temporary values. The FUs can execute common integer operations.

The architecture has two operation modes: one is CGRA array mode and the other is VLIW

processor mode. In CGRA array mode, all 16 computing resources are available and loop-

level parallelism is exploited by software pipelining compute-intensive innermost loops.

53

The baseline architecture is also able to function as a VLIW processor to execute sequential

and outer loop code. The four FUs in the first row and the central register file support

VLIW functionality, while the other components are de-activated. This type of architecture

provides high performance by eliminating huge communication overhead to transfer live

values between host processor and the array as well as a multi-issue VLIW for non-loop

code that is more powerful than a traditional general-purpose processor used as the host

(e.g., an ARM-9).

3.2.1.2 Application analysis

Code of general applications can be categorized into sequential and loop regions. Se-

quential regions often perform control flow for decision making and handle setup for the

compute-intensive loops by transferring live values between loops. Loop regions execute

iterative work like calculating pixel data on graphic application. Multimedia applications

typically have many compute intensive kernels that are in the form of nested loops. Soft-

ware pipelining, which can increase the throughput of the innermost nest by overlapping

the executions of different iterations, can decrease run time of this type of loops tremen-

dously. In this section, we first decompose applications into various region types. The

applications consist of :

• AAC decoder: MPEG4 audio decoding

• H.264 decoder: MPEG4 video decoding

• 3D: 3D graphics rendering accelerator

54

Figure 3.2: Execution time breakdown for three multimedia applications (#: number of basic

blocks, execution: number of cycles, percentage: percent of execution cycles). Execution

time is broken down into three categories: sequential are all non-innermost loop regions,

loop (resource) are inner-most loops whose performance is constrained by the availability of

resources, and loop (dependency) are inner-most loops whose performance is constrained by

cross-iteration dependences.

For our benchmarks, we analyzed the relative importance of sequential and loop re-

gions by analyzing the execution time spent in each. Loops were also categorized loops as

their performance was most constrained by resources or cross-iteration data dependences.

This grouping provides more precise insights because the characteristics of dependence-

constrained loops are more similar to sequential code rather than resource-constrained

loops. Performance of the sequential regions was determined by scheduling those onto

the VLIW subset of the ADRES CGRA (a 4-wide VLIW) [66]. Modulo scheduling, an

efficient software pipelining technique that exploits looplevel parallelism by overlapping

the execution of different iterations [79], was used to compute the run time of loop regions

executing on the 4x4 ADRES CGRA.

Figure3.2presents the execution time breakdown for each benchmark. Software pipelin-

ing can successfully reduce the execution time of loop regions, making it less than 50% of

the total execution time. To further improve the overall performance, it is clear that im-

proving the performance of sequential code regions is critical since they are taking more

55

cgraexpress/fig/app_stat.eps

(a) (b)

Figure 3.3: Example dataflow graphs in AAC: (a) Sequential code, (b) Loop code

than 60% of the total execution time.

To get a better understanding of the structure of the code in both the acyclic and loop re-

gions, consider the dataflow graphs in Figure3.3from the AAC benchmark. Figure3.3(a) is

a data flow graph of a sequential region that performs some control flow between compute-

intensive loops and has many data dependences between instructions. Generally, this type

of sequential code doesn’t have a large number of instructions so providing abundant com-

pute resource does not improve performance. Decreasing thedependence length through a

chain of instructions is the only solution to accelerate such code. Figure3.3(b) is an exam-

ple of dependence-constrained loop. This loop also has a small number of instructions with

long chains of sequential dependences. This type of code is also hard to overlap iterations

by software pipelining because last instruction on each iteration has data dependence with

the first instruction of the next iteration, and the next loopcannot start execution before

56

cgraexpress/fig/sequential.eps

finishing the execution of the prior loop.

3.2.2 Accelerating Sequential Code

Most prior research in CGRA has focused on improving the performance of innermost

loops through intelligent parallelization or software pipelining techniques. However, none

are effective at enhancing the performance of sequential code regions, which occupy a

significant fraction of total execution time as demonstrated in Figure3.2. In this work,

we take a circuit-level approach to attack the problem of improving the performance of

sequential and dependence-constrained loops on CGRAs.

One obvious approach to improve performance of all region types is to increase the

clock frequency of the CGRA. However, this approach increases power consumption a

large amount due to additional pipeline registers and higher voltage needed to operate the

CGRA. Rather, our approach is to exploit the slack cycle-time to accomplish more work

in a single clock cycle when the critical timing paths are notexercised through the CGRA.

In this manner, multiple arithmetic operations can be “chained” together when the critical

timing paths are not exercised to accomplish more work in a single cycle.

Configurable compute accelerator (CCA) [26] is one related research based on this con-

cept. CCA is also designed to execute a number of sequential instructions on fixed clock

period in a general purpose processor. The clock period of a general purpose processor

is larger than that of CGRA and the depth of maximum sequentialized instruction is quite

large. However, this type of accelerator cannot cover all the subgraphs because of fixed

numbers of input/output ports and limitations of subgraph depth. Expression-grained re-

57

configurable architectures [19] are proposed to solve these problems but they still cannot

cover all the cases. In addition to coverage problem, low utilization of FUs is another criti-

cal drawback on this type of research. They put abundant resources to obtain high subgraph

coverage on fixed hardware hence utilization of each individual FU becomes low. Thus, a

more efficient strategy is required to enable the acceleration of sequential subgraphs with-

out adding significant cost or power to a baseline CGRA.

3.3 Dynamic Operation Fusion

In this section, we propose dynamic operation fusion that can accelerate the execution

of sequential code regions by executing multiple operations in a single cycle. The basic

idea is explained first and the opportunities for dynamic operation fusion in multimedia

applications is shown. Lastly, the hardware support is discussed.

The basic idea of operation fusion stems from the observation that the clock period

of a CGRA is determined by the worst case delay (critical pathdelay) in the architecture.

When the clock period is not fully utilized, the slack can be used to execute the successive

operation if the delay fits into the slack.

The critical path of a CGRA usually consists of: register fileread, longest execution

in a FU, and write back to register file, as shown in Figure3.4(a). While register file ac-

cess is required for every operation in conventional architectures, CGRAs have distributed

interconnect across the array that can directly transfer operands between FUs. When an

operation is executed without a register file access throughthe interconnect, it does not

fully utilize the clock period and there is significant slackleft. For example, the ADD op-

58

ADD

RF[0]

RF[2]

RF[1]

ADD

SUB

LSL

SUB

(a) (c)(b)

ADDADD
ADDAD

(b)
(a)

Figure 3.4: Comparison of flow of data through a processing element in a CGRA: (a) Opera-

tion with register file access, (b) Operation without register file access, (c) Flow of data for (a)

and (b)

eration in Figure3.4(b) reads the operands from its neighboring FUs and transfers its result

directly to another FU. If the time slack is bigger than the delay of the successive operation

LSL, both ADD and LSL can be executed in the same clock period.As previously men-

tioned, vertical collapsing of dependent operations is similar to the CCA [26]. In CCA, the

subgraphs with simple operations (i.e., arithmetic, logical) are identified either at compile

time [25] or at run-time [26]. The execution of the subgraphs are offloaded to a specially

designed accelerator that can collapse the execution of multiple operations into a single

cycle.

Instead of using dedicated hardware as in CCA, we propose dynamic operation fusion

that utilizes existing resources in a CGRA to collapse the dependent operations into a sin-

gle cycle. Since there are a large number of FUs in a CGRA, a subset of them can be

combined dynamically at run-time and execute dependent operations in a single cycle. A

simple modification to the hardware can allow dynamic merging of FUs for operation fu-

sion; providing an interconnect between FUs that bypasses the output registers. Figure3.5

59

cgraexpress/fig/hardware.eps

ADD

src1

out

src0

ADD

src1

out

src0

LSR

src1

out

src0

ADD

MUL LD

ADD

512

LSR

10

ADD

ADD

512

LSR

10DD

512

10

A B

Out

BA

ADD

src1

out

src0

10

D ADD

src1

out

src0

D

LSR

src1

out

src0

S

FU0 FU1

FU2

(a) (b)

Figure 3.5: Combining of FUs for dynamic operation fusion: (a) Target subgraph, (b) 3 FUs

combined.

shows the additional interconnect from the combinational output of an FU to the input of

its neighboring FUs. Here, three FUs on the right are serially merged together to execute

the three dependent operations on the left (ADD - ADD - LSR) ina single cycle. So,

the execution time of the sequential code region can potentially be reduced with dynamic

operation fusion, while the hardware overhead is minimal.

Dynamic operation fusion has the following benefits over theCCA approach with a

dedicated accelerator:

• Minimal hardware overhead utilizing the existing resources.

• Multiple subgraphs can be executed simultaneously when resources are available.

• Dynamic merging of FUs allow exploiting various shapes of the subgraphs.

We will compare the schedule results using dynamic operation fusion with traditional

scheduling for a CGRA with the example shown in Figure3.6. The dataflow graph on the

60

cgraexpress/fig/bypass.eps

3

512

ADD(2)

SUB(0)

LSR(3)

ADD(1)

LSL(4)

ADD(5)

RF[2]

RF[0] RF[1]20 12

(a)

(b)

Register file

(c)

Register file

(d)

Register file

Figure 3.6: Dynamic operation fusion example: (a) dataflow graph under consideration, (b)

target 2x3 CGRA, (c) conventional scheduling that requires5 cycles, and (d) scheduling with

dynamic operation fusion that requires 3 cycles.

left contains a series of dependent operations that read operands from register files and store

the result back into them. It is mapped onto a hypothetical 2x3 CGRA in Figure3.6(b).

The conventional approach will generate a schedule shown inFigure3.6(c), where the total

execution time is 5 cycles. Because of the serial data dependences, the utilization of the

FUs is quite low.

Figure3.6(d) shows how the execution of the dataflow graph can be accelerated with

dynamic operation fusion. Here, we assume that one registerfile access and two arithmetic

operations can fit into the clock period. More detailed studies on the comparison between

the clock period and operation latencies are provided in thefollowing section. With the

bypass network, two sets of back-to-back operations are collapsed into the same cycle as

61

cgraexpress/fig/dof.eps

Group Opcode Delay(ns) Tick (1=0.25ns)

Multi cycle op MUL, LD, ST 1.65 7

Arith ADD, SUB 1.74 7

Shift LSL, LSR, ASR 1.36 6

Comp EQ, NE, LT 0.93 4

Logic AND, OR, XOR 0.73 3

RF Read 0.91 4

RF Write 0.70 3

Figure 3.7: Delay and tick breakdown for common opcodes.

shown in the schedule. At cycle 0, FU 0 and FU 3 are merged together to execute back-

to-back operations 0 and 2 in an single cycle. In the same fashion, operations 3 and 4 are

collapsed into cycle 1 on FU 4 and FU 5. Operation 5 cannot be scheduled at cycle 1 since

it stores the result into the register file. By applying dynamic operation fusion, the total

execution time is reduced by 2 cycles over the conventional approach.

3.3.1 Delay Statistics and Tick Time Unit

As shown in the previous section, dynamic operation fusion is an effective approach

to accelerate the execution of sequential code region. However, the feasibility of dynamic

operation fusion depends on the hardware characteristics of the underlying architecture.

Dynamic operation fusion can be applied only if there is enough slack in a clock period

to execute multiple operations. So, we investigated the delay characteristics of our CGRA

design in a real implementation. Figure3.7 shows the delay information when the clock

period is 3.5 ns. The delays are computed with Synopsis Design Compiler and Physical

Compiler using the IBM 90nm standard cell library in typicalcondition. The delay here

62

cgraexpress/fig/tick_table.eps

Tick aac (%) 3d (%) h.264 (%)

Multi cycle 2419 (31) 17077 (34.5) 11579 (30.7)

Arith 2018 (26) 12339 (25) 11075 (29.3)

Shift 370 (4.7) 1165 (2.3) 2086 (5.5)

Comp 506 (6.5) 2788 (5.6) 1923 (5.1)

Logic 2492 (32) 15919 (32.2) 11024 (29.2)

Figure 3.8: Breakdown of opcodes for three target applications.

includes the delay of input MUXes for each unit. In this table, single cycle operations are

categorized based on their execution time. For multi-cycleoperations, the delays of the last

stage is shown in the table. The execution time of all instructions are smaller than half of

a clock period. Logical operations show the minimal delay and four of them can be fused

together into a single cycle. On average, two sequential operations can be collapsed. The

opportunities for dynamic operation fusion maximizes whenthere are a large number of

operations with a small delay. As in Figure3.8, there are a large portion of comparison and

logic operations, which suggests that dynamic operation fusion can potentially improve the

sequential code performance in multimedia applications.

Since multiple operations can be mapped into a single cycle,we need a smaller time

unit than the traditional clock cycle used by compiler schedulers. We propose a new time

unit called atick, a small time unit based on the actual hardware delay information. The

unit delay of one tick is set by the actual latency of the smallest logic component, normally

a small MUX. With the tick unit, the clock period and the delays of other hardware com-

ponents can be converted into tick numbers. Every logic component on CGRAs has their

own tick information and the information is used for dynamicoperation fusion scheduling.

63

cgraexpress/fig/op_stat.eps

src0 const src1 route

pred

FU

out1out0pout1pout0

(a) (b)

src0 const src1 route

pred

FU

out1out0pout1pout0

Figure 3.9: Comparison of bypass network implementation details: (a) baseline network and

(b) network that supports dynamic operation fusion.

Tick information based on IBM 90nm library is shown in the last column of Figure3.7.

3.3.2 Bypass Network

Figure3.9 shows the real implementation of the bypass network with some practical

considerations. Figure3.9(a) is the original FU on the baseline architecture. Each FU has

three source MUXes for predicate and data inputs. In addition to this, each FU has one

additional MUX to increase the routing bandwidth of the array. Four predicate, compute,

and routing outputs are generated from the FU and connected to other FUs through regis-

ters. Bypass connections between FUs are implemented by adding a small two-input MUX

to two data outputs (Figure3.9 (b)). The MUX has both an FU output and register output

as inputs and one of these signals is chosen by the select signal of the MUX every cycle.

This type of MUX is selected to minimize the additional area and delay cost to the base-

line architecture. As FU and register outputs are shared, the bandwidth is restricted but the

hardware overhead can be reduced by minimizing change of thebaseline architecture. An

64

cgraexpress/fig/bypass_fu.eps

Figure 3.10: Hardware overhead of the bypass network. Two forms of overhead are specified:

control bits to control the bypass MUXes and area of the bypass network.

additional 32 control bits and 32 MUXes with 33644um2 area are required and the costs

are 3.8% and 2.3% overhead (Figure3.10).

3.4 Compiler Support

In this section, we describe the compiler support for dynamic operation fusion using the

bypass network in CGRA Express. Taking the concept of edge-centric modulo scheduling

(EMS) [73], we developed a scheduler that can support both sequentialand loop code

regions for CGRAs. We enhanced the original algorithm with the ability to place multiple

operations in a single cycle without incurring the structural hazard of the resources. The

concept of tick slot in Section3.3.1 is introduced into the scheduler and scheduling is

performed on a tick basis rather than a conventional cycle-based manner.

First, we will briefly introduce the EMS framework and then describe the basic concepts

of tick-based scheduling. Finally, we will provide the added features to attack the problems

specific to tick-based scheduling.

65

cgraexpress/fig/overhead.eps

3.4.1 Edge-centric Modulo Scheduling

The most distinctive feature of the EMS is that it takes routing of values as the first-

class objective. The routing of operands is often ignored intraditional schedulers since it

can be guaranteed by the centralized resources (i.e., central register file) of a traditional

VLIW processor. Any value generated by a producer can be routed to its consumers by

putting the operand into the central register file. However,the distributed interconnect and

register files in CGRAs require the compiler to orchestrate the communications between

producers and consumers explicitly. The modulo constraintthat must be observed to create

a correct modulo schedule allows only a limited available slots for each resource, making

the routing of operands on the array even harder.

For this reason, EMS constructs the schedule by routing the edges in a dataflow graph,

rather than placing the nodes. This approach allows both performance gain and compilation

time reduction over the traditional node-centric approach. The following are the major

features of the EMS that differentiate it from conventionalschedulers.

• No explicit backtracking. With the distributed interconnect and abundant computa-

tion resources, the scheduling space for CGRAs can get quitelarge and the compila-

tion time can be a critical issue. To reduce the compilation time, EMS does not have a

backtracking mechanism. Especially for CGRAs, it is hard tomake forward progress

with backtracking since placing and unplacing of operations usually involves multi-

ple resources for routing. Therefore, routing decisions are made just once.

• Proactive prevention of routing failures. To compensate for the lack of backtrack-

ing, EMS proactively avoids routing failures using probabilistic cost metrics. Before

66

routing an edge, the probabilities of the future usages of scheduling slots are calcu-

lated. By avoiding the slots with high probabilities, routing failures can be effectively

prevented.

• Recursive routing calls for critical components.Some components in a dataflow

graph require more cautious scheduling since they can easily make the scheduling

fail. One good example is a recurrence cycle. To meet the timing constraints of

the recurrence cycles, traditional schedulers usually treat them with highest priority.

Additionally, EMS schedules the edges in a critical component altogether by routing

them recursively. When an edge in a recurrence cycle is routed, it only finalizes the

routing only if all other edges in the component are successfully routed in recursive

calls. This recursive routing provides an implicit form of backtracking for scheduling

critical components.

3.4.2 Tick-based Scheduling

To enable the scheduler to place back-to-back operations inthe same cycle, it needs to

keep track of where the operations are placed at the precision of ticks. Figure3.11(a) shows

the scheduling space for tick-based scheduling where each cycle is divided into multiple

ticks. For illustration purposes, register file access timeis ignored. The number of ticks

in a cycle is determined by the frequency of the target architecture and is given as input to

the scheduler. Here, operations are placed into tick slots,and the resource management is

still done on a cycle basis; only one operation is allowed to be placed in a cycle for each

resource.

67

cy
cl

e

FU 0 FU 1 FU 2 FU 3ti
ck

0

1

2

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

A

B

G

H

F

E

C

D

cy
cl

e

ti
ck

0

1

2

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

A

B

C

A

B

C

5 ticks 9 ticks

(a) (b)

Figure 3.11: Tick-based scheduling example: (a) possible placements in the tick scheduling

space and (b) different longest path delays per tick slots.

To manage the cycle and tick times together, we definedSTimewhich is a pair,(cycle,

tick). STimeis used for two purposes: schedule time unit , and delay of resources and

operations. For example, the input time of operation A in Figure 3.11(a) is scheduled at

(0, 0) and its delay is (0, 2). For multi-cycle delays of pipelined operations,STimehas

an additional field ofinit tick making it a tuple of(cycle, tick, inittick). init tick indicates

the number of ticks required to process the operation at the first pipeline stage. The load

operation E shown in Figure3.11(a) has a delay of (2, 3, 2). While the load operation will

have a delay of 3 cycles in a traditional approach, it requires 2 ticks and 3 ticks for the

first and last stages, respectively. Therefore, the pipelined operations can also participate

in dynamic operation fusion.

Figure3.11(a) shows some possible placements of operations in tick-based scheduling.

Operations A and B are scheduled in the same cycle using the bypass network. However,

since the resources are managed in cycles, only one operation can be mapped on a resource

68

cgraexpress/fig/tick_slot.eps

in a single cycle. So, it is illegal to place back-to-back operations C and D in the same

resource/cycle. Also, an operation cannot be mapped acrossthe clock boundary unless it

has a multi-cycle delay. When there is not enough tick slots in a given cycle, the scheduler

delays the operation to the next cycle as shown with operations G and H.

Operator Overloading We replaced all the time/delay units in the EMS with ourSTime

unit, while keeping the basic structure of the scheduler. So, the changes applied to the

original scheduler are minimized. The basic arithmetic operators such as +, -, *, / were

overloaded in a way that thecycle field increases/decreases as thetick field crosses the

cycle boundary. Often times, a delay is added or subtracted to a schedule time to create

another schedule time. For example, the output time of operation B in Figure3.11(a) can

be calculated by adding the delay (0, 3) to the output time of operation A (0, 1).

However, there are two things to consider when a delay is applied to a schedule time.

First, the clock boundary constraint should be checked so that the operation is not placed

across the boundary. Also, when adding a multi-cycle delay to a schedule time, the resulting

time should be adjusted along the clock boundary since multi-cycle operations should be

aligned with the clock boundaries. Basically, the time gap between the output time of the

producer and the consumer needs to be added to get the output time of the consumer. The

equation below shows how the addition is performed between aschedule time and a delay.

numticks denotes the number of tick slots in a single cycle.T is the schedule time and

D is the delay. When adding a delay to a schedule time, the timing constraint is checked

by looking atinit tick of the delay (Equation3.1). When it passes the timing constraint,

the delay is added using the overloaded operator ’+’. For multi-cycle delays, the time is

converted to its floor to align the resulting time along the clock boundary (Equation3.2).

69

After performing the addition, Equation3.3 checks if the performed addition violates the

clock boundary constraint.

if(D.cycle > 0) num ticks− T.tick >= D.init tick (3.1)

add(T,D) = (D.cycle > 0)?(T.cycle, 0) +D : T +D (3.2)

check(T,D) = (add(T,D).cycle− T.cycle == D.cycle) (3.3)

3.4.3 Tick Specific Features.

By introducing the newSTimeunit, we could minimize the modifications applied to

the original EMS. However, there are some features that needto be adapted to efficiently

perform tick-based scheduling. Three major features are explained in this section.

ASAP/ALAP time calculations. In schedulers, ASAP and ALAP times are used to

estimate how early/late an operation can be placed without destroying timing dependences

between operations. The ASAP time of an operation C can be calculated by Equation3.4.

p denotes an placed predecessor ofC andd(x, y)is the longest path delay betweenx andy.

ASAP (C) = MAX(time(p) + d(p, C)) (3.4)

Basically, the scheduler looks at all the already-placed predecessors in the dataflow

graph and adds the longest delay between the predecessor andthe current operation, and

picks the maximum time. In cycle-based scheduling, the longest delay stays constant

70

no matter which cycle the predecessor is placed. However, intick-based scheduling,

the longest delay changes depending on which tick slot the predecessor is placed. Fig-

ure3.11(b) shows an example of the different delays between operation A and C. Here, we

assume that A is already placed and B and C are not. Since the operations cannot be sched-

uled across the clock boundaries, the delays are different between the two cases. Therefore,

the tick-based scheduler calculates the longest delay of two operations for each producer’s

tick slot in a cycle.

Identifying Subgraphs. To find the opportunities for dynamic operation fusion, the

scheduler takes a greedy approach for finding the target subgraphs. When an operation is

placed, the scheduler looks at its neighboring operations in the dataflow graph and checks

the timing constraints to see if they can fit into the same cycle using the bypass network. If

there is an opportunity for fusion, the scheduler recurses on the routing of an edge between

the two back-to-back operations. The use of the bypass network is encouraged in routing

by giving a penalty when the cycle is increased during the routing. The router will visit the

available slots in the same cycle first using the bypass network. However, this can result in

wasting FU slots just for routing since the bypass network connects neighboring FUs. For

this reason, we only allow the use of the bypass network when back-to-back operations can

be placed in neighboring FUs.

Register Access Region.Even though the register access time was ignored in Fig-

ure 3.11, the register read and write times need to be considered in reality. The shaded

regions in the scheduling space in Figure3.12 display the register access region. Here,

we assume the register read and write time is 1 tick. For each cycle, the first tick slot is

called the register read region and the last tick slot is called the register write region. When

71

cy
cl

e

FU 0 FU 1 FU 2 FU 3ti
ck

0

1

2

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

read

read

read

write

write

write

B

E

C

F
G

B

FE

C

G

A

H

I

D

(a) (b)

1

2 3
4

Figure 3.12: Register access regions in a tick schedule: (a)dataflow graph, (b) register

read/write regions (shaded) within each cycle.

operations are placed in these regions, they cannot access register files due to timing con-

straints. For example, operation B’s output is placed at (0,4) slot and it can only route its

value to neighboring FUs through the FU’s output register. Therefore, routing flexibility is

greatly limited for operation B. When all the neighboring FUs are occupied, the scheduling

will fail since there is no backtracking mechanism. To avoidthis situation, our scheduler

performs recursive calls for routing edges when an operation is placed in the register access

region. Figure3.12(a) shows an example dataflow graph. When operation B is placed at

cycle 0 as shown in the figure, its output is placed in the register write region. Therefore,

the scheduler makes sure that all the edges coming out from operation B are successfully

routed before finalizing the placement. Therefore, it recurses on the routing of two edges

(E and F). When operation F is placed in cycle 1, the scheduleralso recurses on the edge

to operation C since F is placed in the register read region. The numbers shown in the

figure denote the order of routing call of each edge. Since theoperations E, F, and G are

72

cgraexpress/fig/reg_region.eps

not placed in the register write region, they can store values into the register files. So,

the scheduler does not proceed with routing the outgoing edges from them. When all the

edges with solid lines in Figure3.12(a) are successfully routed, the scheduler finalizes the

placement of operation B.

3.5 Experimental Results

3.5.1 Experimental Setup

Target Architecture Two CGRA architectures are used to evaluate the performance

of dynamic operation fusion. The baseline architecture is the 4×4 heterogeneous CGRA

shown in Figure3.1. Four FUs are able to perform load/store instructions to access the data

memory and 6 FUs support 2-cycle pipelined multiply. A 64-entry central register file with

6 read and 3 write ports and sixteen 8-entry local register files exist in the array. Only four

FUs on the first row have direct access to the central registerfile and other FUs must use

data buses to access the central register file. Local register files with one read and one write

port are placed similar to the FUs and each register file can bewritten by FUs in diagonal

directions. There is also one 64-entry predicate register file with four read and four write

ports. The CGRA Express architecture has the same architectural shape except the addition

of the bypass network.

Target Applications All the sequential and loop code are taken from three application

domains: audio decoding (aac), video decoding (h.264) and 3D graphics (3d). The sequen-

tial code regions are mapped using VLIW mode of the array and loop code regions are

73

mapped using CGRA mode of the array. Performance is evaluated by the overall execution

time.

Power/Area MeasurementsBoth the baseline and CGRA Express architectures are

generated in RTL Verilog and synthesized with the Synopsys design compiler and Physical

compiler using IBM 90nm standard cell library in typical operation conditions. Synopsys

PrimeTime PX is used to measure power consumption. The SRAM memory power was

calculated using SRAM model generated by the Artisan MemoryCompiler. The target

frequency of both baseline and the CGRA Express architectures are 200MHz.

3.5.2 Performance Measurement

In order to illustrate the effectiveness of dynamic operation fusion, performance of the

three benchmarks is compared on the baseline CGRA and CGRA Express. In sequential

code regions, run-time is measured by the schedule length multiplied by the frequency of

execution. The run-time of the loop code regions is calculated by multiplying the Initiation

Interval (II) achieved by EMS and the loop trip count. II means the interval between suc-

cessive iterations thus II is the indicator of throughput inmodulo scheduling. The results

of this experiment are shown in Figure3.13. The numbers in the table show the execution

time in millions of cycles and perf.ratio is the ratio of execution time on CGRA express

over the baseline.

Overall, dynamic operation fusion achieves 7-17% reduction in execution time over the

baseline. This is a promising result because the hardware overhead is about 3% as discussed

in Section 3. More specifically, most of the performance improvements are due to the

74

seqential loop(resource) loop(dependency) total

baseline express perf. ratio baseline express perf. ratio baseline express perf. ratio baseline express perf. ratio

aac 42.64 36.47 85.53% 17.40 15.75 90.51% 0.32 0.24 75.34% 60.36 52.46 86.91%

h.264 44.77 39.29 87.75% 23.80 24.70 103.78% 0.58 0.29 50.01% 69.15 64.28 92.95%

3d 77.82 60.05 77.16% 74.70 65.94 88.28% 4.29 4.22 98.32% 156.81 130.22 83.04%

Figure 3.13: Performance evaluation of the baseline and CGRA Express architectures for

three multimedia applications. Performance is broken downinto non-innermost loop re-

gions (sequential), inner-most loops whose performance isconstrained by the availability of

resources (loop (resource)) and inner-most loops whose performance is constrained by cross-

iteration dependences (loop (dependency)).

schedule length reduction in sequential code regions, which was expected since dynamic

operation fusion collapses the series of operations into a single cycle.

However, we could also observe a good amount of reduction in resource-constrained

loops. This is primarily due to the additional bypass network. The additional connection

doubles the number of reachable slots from an FU. With the bypass network, an FU can ac-

cess its neighboring FUs results in the same cycle as well as in the next cycle. This gives the

scheduler more flexibility and improves the throughput of the resource constrained loops.

Also, when a loop has small trip count, schedule length will be more dominant than the II

for run time, hence dynamic operation fusion can improve performance. The dependence-

constrained loops show up to 50% reduction in execution time. This was expected since

the throughput of these loops was mainly limited by the critical path of a single iteration,

which can be efficiently reduced by dynamic operation fusion.

75

cgraexpress/fig/exp_1.eps

298.26 mW 306.78 mW

sram

47%

fu

23%

central rf

10%

local rf

16%

route

3%

Baseline

sram

48%

fu

23%

central rf

10%

local rf

15%

route

3%

CGRA Express

Figure 3.14: Power breakdown comparison for the baseline and CGRA Express architectures.

3.5.3 Power and Energy Measurement

The instantaneous power consumption of CGRA Express architecture is seemingly

higher than that of baseline architecture due to additionalhardware overhead. However,

the bypass network implementation can also decrease the total run time. Since there is

such trade off between power and run time, we measured total energy consumption for

running complete applications to determine the effectiveness of dynamic operation fusion.

Overall power consumption and the breakdowns of both architectures for 3D are shown

in Figure3.14. Overall, average power consumption on the CGRA Express architecture

is 3.1% higher than the baseline architecture. Compared to the baseline architecture, the

power increase observed for the datapath is smaller than theincrease in the SRAM for con-

trol signals. The bypass network adds just a small amount of combinational logic (MUXes)

on the baseline architecture, hence the overall effect is quite small. On other hand, adding

control signals is more critical for power consumption on CGRAs because all the control

signals must be read every cycle. Therefore, overall power overhead for adding bypass

network is trivial but careful consideration is necessary due to the additional number of

76

cgraexpress/fig/power_pi.eps

Figure 3.15: Energy comparison for the baseline and CGRA Express architectures.

control signals.

An interesting result can be found on total energy consumption comparison between

both architectures. Figure3.15shows that the CGRA Express architecture is 15% more

energy efficient than the baseline architecture. Even though average power consumption of

the new architecture is slightly higher, the decrease in application run time dominates the

results.

3.5.4 Operating Frequency Optimization

As discussed in prior experiments, dynamic operation fusion can decrease total run

time by decreasing number of cycles in fixed clock period. However, measuring total run

time on various clock periods will be another interesting question with dynamic operation

fusion. With different clock periods, total run time is calculated by multiplying the number

of cycles and the clock period. If clock period is large, moreoperations can be chained

into a single cycle. But, these gains must offset the losses in performance due to a reduced

clock rate. We can expect some optimal smallest run time exists as the clock period is

swept that represents the sweetspot of a fast clock rate while permitting some degree of

chaining. Figure3.16shows the total run time of the three applications with various clock

periods in nanoseconds.

77

cgraexpress/fig/energy.eps

baseline

(5ns)

express

(5ns)

express

(7.5ns)

express

(10ns)

rec 0.0016 0.0012 0.0018 0.0024

loop 0.0870 0.0787 0.1106 0.1475

acyclic 0.2132 0.1823 0.2719 0.3623

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

ru
n

m

e
(S

e
c)

AAC

baseline

(5ns)

express

(5ns)

express

(7.5ns)

express

(10ns)

rec 0.0029 0.0015 0.0029 0.0024

loop 0.1190 0.1235 0.1808 0.2433

acyclic 0.2238 0.1964 0.2913 0.3518

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

ru
n

m

e
(S

e
c)

H.264

baseline

(5ns)

express

(5ns)

express

(7.5ns)

express

(10ns)

rec 0.0215 0.0211 0.0317 0.0422

loop 0.3735 0.3297 0.5006 0.6630

acyclic 0.3891 0.3003 0.4198 0.5728

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

ru
n

m

e
(S

e
c)

3D

Figure 3.16: Performance comparison of the baseline and CGRA express architectures for

different clock periods. Performance is broken down into dependence-constrained loops (rec),

resource-constrained loops (loop) and non-innermost loops (acyclic) regions.

Dynamic operation fusion works efficiently at 5ns compared to traditional scheduling

but expanding the clock period to more than 5ns achieves no additional performance im-

provement. As the clock period becomes longer, sequential code regions require fewer

cycles to execute and their characteristics start to resemble loop code regions. This be-

havior occurs because just 4 FUs are used for executing sequential code regions. With the

most aggressive fusion, the dependences of 4 successive instructions are collapsed which

basically eliminates all dependences that can constrain performance and converts the code

region into a resource constrained one. Moreover, the number in sequentially dependent

instructions before a memory instruction is encountered istypically smaller than 4, thus

there are limited opportunities for fusion. As a result, using a clock period of 7.5ns results

in 50% increase of total run time because there is no additional reduction of the number

of clock cycles due to dynamic operation fusion (beyond those saw at 5ns), but the clock

period is 50% larger.

78

cgraexpress/fig/sat.eps

3.6 Related Work

3.6.1 Architecture

Many CGRA-based systems have been proposed in various papers and some of the

models have been implemented. Each design has different scalability, performance, and

compilability. ADRES [64] is the most well-known CGRA system with an 8x8 mesh of

processing elements with central and local register file. Aswe mentioned prior sections,

ADRES also supports CGRA array mode as well as VLIW mode usingcentral register

file and FUs on the top row. MorphoSys [61] is another famous example of 8x8 grid

with a more sophisticated interconnect network. In MorphoSys, each node has an ALU

and a small local register file. RAW architecture is more general system which node is

small MIPS processor with memory, registers, and a processor pipeline. PipeRench [34]

and RaPid [31] are also 1-D architectures have similar concept to CGRAs. In PipeRench,

each processing elements are arranged in stripes to supportpipelining. RaPid has a lot of

heterogeneous elements (ALUs and registers), which can be connected by reconfigurable

interconnection.

The results of recent research about general architecture exploration on CGRAs are

also promising. Kim [48] focussed on the power consumption for configuration memory

and proposed spatial and temporal mapping with pipelining.Moreover, Kim [47] proposed

different approach based on data flow graph of applications.

Research on instruction set customization with configurable compute accelerator (CCA)

is also closely related to this research. Clark [25] studied how to create efficient CCA based

on sub graph modulation and improved the idea to virtualizedexecution accelerator [27].

79

Hormati [38] also studied CCA to be more faster and smaller. Lastly, Bonzini[19] adopt

the CGRA idea to CCA and diminish disadvantages of CCA, such as logic depth limitation

and low coverage.

3.6.2 Compilation Techniques

As dealing with sparse connectivity and distributed register file is huge challenge on

compiler, many techniques have been proposed for compilingCGRAs. Lee [56] proposed

a schedule approach for a generic CGRA, which generates pipeline schedules for innermost

loop. Park [72] also worked on innermost loop, but they focussed on loop level parallelism

while Lee worked on instruction level parallelism. Park’s work is more similar to Mei at

al [65]’s work on modulo scheduling.

Research on CGRA scheduling is partially similar to the research on VLIW machine

scheduling. As clustered VLIW machines are also spatial architecture, many compilation

techniques on VLIW can be adopted to CGRAs. However, VLIW machine does not have

routing issues related to sparse interconnection network hence some modification is neces-

sary to support CGRA.

On this chapter, we introduce some cost function about actual delay of synthesized

hardware (MUX, Adder, Shifter). This concept is similar to the research about module

mapping and placement on FPGA area. Callahan [21] performed datapath module place-

ment simultaneously with the mapping using area and delay cost. They used the area and

delay cost to minimize both area and delay on FPGA. We also adopt the delay cost to

increase utilization of FUs on pre-defined clock period.

80

3.7 Summary

This work proposes dynamic operation fusion, an effective approach to accelerate se-

quential code regions on CGRAs. As scheduling techniques for loops have been developed,

the run-time for loops decreases by large factors as the compiler is able to make effective

use of the abundance of resources available in a CGRA. However, the side effect is that

sequential code region become more and more of the overall performance bottleneck as

these regions have limited instruction-level parallelism. We introduce two key concepts to

execute sequential code region faster. First, a bypass network is implemented to support

dynamic operation fusing wherein existing function units on a CGRA are configured to ex-

ecute back-to-back operations in a single cycle using any available slack in the cycle time.

A simple hardware extension in the form of an additional connection between neighboring

function units and a bypass MUX are required. Second, the compiler scheduler automati-

cally identifies opportunities for dynamic fusion based on sub-units of clock cycles, called

ticks. Overall, dynamic operation fusion reduces total application run-time by 7-17% and

total energy by 15% on a 4x4 CGRA.

81

CHAPTER 4

Putting Idle Resources to Work on a Composable

Accelerator

4.1 Introduction

The mobile devices market, including cell phones, netbooks, and personal digital as-

sistants, is one of the most highly competitive businesses.The computing platforms that

go into these devices must support ever increasing performance capabilities while main-

taining low energy consumption. Advanced multimedia and signal processing applications

are key drivers. Traditionally, application-specific integrated circuits (ASICs) were used

for the heavy lifting to perform the most compute intensive kernels in a high performance

but energy-efficient manner. However, several features push designers to a more flexible

and programmable solution: supporting multiple applications or variations of applications,

providing faster time-to-market, and enabling algorithmic changes after the hardware is

constructed.

For wireless signal processing, programmable designs thatexploit high degrees of

82

PE PE

PE PE

Core 0

MEM

Arbiter

PE PE

PE PE

Core 2

PE PE

PE PE

Core 1

PE PE

PE PE

Core 3

MEM MEM MEM

PE PE

PE PE

Core 4

MEM

Arbiter

PE PE

PE PE

Core 6

PE PE

PE PE

Core 5

PE PE

PE PE

Core 7

MEM MEM MEM

(a) (b)

FU 0 RF 0

I-CACHE
Loop

Buffer

FU 1 RF 1

PE 0 PE 1

FU 2 RF 2 FU 3 RF 3

PE 2 PE 3

Core 5

RF 1

RF 3

RF 0 RF 1

Loop

Buffer

Loop

Buffer

V-

Control

pred

RF

Figure 4.1: PPA Overview: (a) PPA with 8 cores, (b) Inside a single PPA core

single-instruction multiple-data (SIMD) parallelism have emerged to challenge ASICs [17,

16, 33, 59, 89]. While these solutions suffice for wireless signal processing, multimedia

applications contain more complex data dependence patterns and frequent control flow for

which wide-SIMD is inefficient. Thus, a different approach is necessary.

Polymorphic pipeline arrays(PPAs) are attractive alternatives for accelerating multi-

media applications because the hardware is more flexible andcan accelerate the code in

multiple ways [74]. Coarse-grain pipeline parallelism is exploited by concurrently exe-

cuting filters in streaming applications [35, 36, 50], as well as fine-grain instruction level

parallelism is also found by modulo scheduling innermost loops [79]. A PPA is a gener-

alization of a coarse-grain reconfigurable architecture (CGRA) shown in Figure4.1 [66].

It consists of an array of simple processing elements (PEs) that are tightly interconnected

by a scalar operand network and a shared memory. Groups of four PEs form cores that are

driven by a single instruction stream. These cores can execute tasks (filters in a streaming

application) independently or neighboring cores can be coalesced to execute loops with

83

recycling/fig/ppa.eps

high degrees of fine-grain parallelism. The use of a regular interconnection fabric allows

the core boundaries to be blurred, thereby allowing the hardware to be customized differ-

ently for each application.

While PPAs provide the opportunity for hardware customization, an effective compiler

is necessary to configure the hardware to maximize application performance. In this work,

we adopt the stream programming paradigm. Stream programming is generally based on

synchronous dataflow wherein the application is represented as a directed graph (stream

graph) where each node represents an actor and each arc represents the flow of data [55].

The number of data samples produced and consumed by each nodeare specified a priori.

For this work, we focus on stream-style C code where a programis represented as a set

of autonomous actors (also called filters) that operate on data and communicate through

first-in first-out data channels [87]. During program execution, actors fire repeatedly in a

periodic schedule [36]. Each actor has a separate instruction stream and an independent

address space, thus all dependences between actors are madeexplicit through the com-

munication channels. Compilers can leverage these characteristics to plan and orchestrate

parallel execution.

Given a streaming application, the primary challenge is to perform resource allocation

and assignment so as to achieve maximum throughput. More specifically, a PPA compila-

tion framework must not only partition filters across the available cores, but also aggregate

cores together into core-groups to jointly execute the assigned filters. Larger core-groups

are effective for long-running filters because higher levels of fine-grain parallelism can be

exploited. By modulo scheduling across more resources, higher performance is achieved.

However, selecting large core-groups reduces the overall number of groups and hence the

84

amount of coarse-grain pipeline parallelism that can be exploited. Greedily speeding up a

small portion of the application often results in poor overall performance. Thus, an intelli-

gent compiler must achieve a balance.

In this chapter, the goal is to solve the joint filter assignment and core aggregation

problem for mapping streaming applications onto a PPA. We start by defining the main

scheduling constraints on PPA architectures, and propose anew compilation process to

solve the difficulties. In this framework, we adapt the key concept from the stream graph

modulo scheduling algorithm for coarse-grain parallelism[50]. The main difference is that

parallel composition of the each filter is not performed withsplit-joins, but by modulo

scheduling across larger core-groups. With this change, the PPA compiler can be used for

more generic code by removing the restrictions of static data rates on stream programming

languages like StreamIt [87]. Edge-centric modulo scheduling (EMS) [73], which focuses

on routing of values between functional units, is used as themodulo scheduling technique

for exploiting fine-grain parallelism.

The compilation process consists of three steps. First, filters are assigned to virtual

cores using static partitioning and an approximate load balancing algorithm. Next, core

allocation is performed to map the virtual cores to the physical cores considering core loca-

tions and the inter-filter communication patterns. Finally, fine-grain dynamic partitioning

is performed to identify and recycle under-utilized resources.

This work offers the following three contributions:

• An analysis of the scheduling difficulties for composable accelerators such as the

PPA.

85

• A compilation framework for jointly partitioning streaming applications across hard-

ware resources and selecting resource aggregations that jointly exploit coarse-grain

parallelism between filters and fine-grain parallelism within filters.

• An efficient resource borrowing technique is proposed to reduce the execution time

of the largest coarse-grain pipeline stage by borrowing resources from underutilized

stages.

4.2 Background and Motivation

4.2.1 Composable Accelerators

As chip multiprocessors (CMPs) have become commonplace in today’s desktop envi-

ronment, their importance is growing rapidly in the mobile environment. The disparity

between the granularity of parallelism in workloads and thegranularity of processing cores

inspired a flexible execution model that allows the aggregation of small cores to create

larger logical cores [44],[42].

Composable acceleratorsare multi-core accelerator designs that incorporate this flexi-

ble execution model in embedded systems. Multiple small cores enable the parallel execu-

tion of individual tasks, exploiting task level parallelism. Additionally, when there is a high

degree of parallelism within a task, such as loop level parallelism or instruction level par-

allelism, a larger core can be created by merging small cores. With this flexible execution

model, different levels of parallelism can be exploited with a single piece of hardware.

Our specific compilation target is thePolymorphic Pipeline Array(PPA) shown in Fig-

86

ure 4.1. A PPA is a composable accelerator for embedded systems thatcan exploit both

the fine-grain parallelism found in innermost loops and the pipeline parallelism found in

streaming applications. A PPA consists of multiple simple cores that are tightly coupled

to neighboring cores in a mesh-style interconnect. A PPA with 8 cores is shown in Fig-

ure4.1(a). There are a total of 32 processing elements (PEs) in thisPPA, each containing

one function unit (FU) and a register file (RF). Four PEs are combined to create a core that

can execute its own instruction stream. Each core has its ownscratch pad memory and

column buses connect 4 PEs to a memory access arbiter that provides sharing of scratch

pad memories among the cores.

The detailed diagram of a single PPA core is shown in Figure4.1(b). Each PE contains

a 32-bit FU and a 16 entry register file. PEs are connected to a mesh-style interconnect.

The distributed nature of PPA provides low power consumption and hardware cost making

it an attractive solution for embedded systems. The mesh interconnect also connects the

neighboring PEs in different PPA cores. This allows fast inter-core communication for

mapping compute intensive loop nests across multiple cores. A detailed description of PPA

cores can be found in [74].

4.2.1.1 Supporting Different Levels of Parallelism

The major feature of the PPA is its ability to exploit both fine-grain and coarse-grain

pipeline parallelism. Since each PPA core can process its own instruction stream, coarse-

grain parallelism can be exploited for streaming applications. The communication between

pipeline stages can be efficiently supported with DMA connections between cores. Abun-

dant fine-grain parallelism within a pipeline stage can alsobe exploited by aggregating

87

multiple cores to form a larger logical core allowing for maximized resource utilization.

This is efficient since the PPA provides fast inter-core communication using a mesh-style

interconnect.

4.2.1.2 Virtualization

One of the major characteristics of a PPA is virtualized execution of software pipelined

loops [74]. Virtualized modulo scheduling generates a unified schedule that can be mapped

onto different target sub-arrays of the PPA. At runtime, thePPA cores are dynamically

merged to create larger logical cores based on the resource availability. With virtualization

support, tasks can execute on different sized cores withoutrescheduling, improving the

overall performance when the resource requirement in the workloads varies dynamically

during execution [74]. However, there are some limitations of virtualization ona PPA,

such as sub-optimality of the unified schedules and runtime overhead for virtualization.

4.2.1.3 Partitioning Schemes

Static Partitioning. The PPA array can be partitioned statically based on the re-

source requirement of each coarse-grain pipeline stage. Static partitioning has its benefit

in achieving high quality schedules, but it cannot adapt to dynamically changing resource

availability. When an application has a large variation in execution pattern, static partition-

ing can either result in low utilization of resources, or maynot be able to fully accelerate

the application when there are not enough resources available.

Dynamic Partitioning. Coarse-grain pipeline stages in multimedia applications have

different execution patterns, resulting in fluctuating resource requirements. Dynamic par-

88

titioning can come in handy with the presence of dynamic variation of resource require-

ments. The partitioning of the PPA array can change during runtime on demand. For

a single pipeline stage, a single core can be assigned to an acyclic region of code, but

more resources can be assigned to the compute intensive loopkernels to exploit fine-grain

parallelism. Dynamic partitioning assumes the sharing of resources between neighboring

pipeline stages. The resources sitting idle in one stage canbe utilized by neighboring stages

through resource borrowing. So, it is not guaranteed that the required resource is available

at all times in dynamic partitioning. When the required resource is not available, the stage

stalls and waits for the resource. Virtualization can avoidstalls due to resource contention

by generating a schedule that can be modified easily at runtime to run on different number

of resources.

4.2.2 Stream Graph Modulo Scheduling

This work presents a compiler technique specifically for composable accelerators based

on stream graph modulo scheduling, or SGMS [50]. SGMS is a modulo scheduling algo-

rithm for mapping streaming applications onto multicore systems. Modulo scheduling is

traditionally a form of software pipelining applied at the instruction level to find a valid

schedule for a loop such that the interval between successive iterations (initiation interval,

or II) is minimized [79]. SGMS is the same technique on a coarse-grain stream graph to

pipeline the actors across multiple cores. The objective isto maximize concurrent execu-

tion of actors while hiding communication overhead to minimize stalls.

SGMS consists of two steps: 1) integrated fission and processor assignment and 2) stage

89

A

B

C

E

5

40

5

5

A

B1 C

S

J

B2

E

5

20

2

2

20
5

5

A

B1

C

S

J

B2

E

Memory transfer

Stage 0

Stage 1

Stage 2

Proc 1 Proc 2

(a) Original stream graph (b) SGMS processor assignment

(d) SGMS stage assignment

20/20

Proc 1 Proc 2

(c) PPA processor assignment

D 5 D
5

A

B
C

E

5

5

5

D 5

A

B

C

E

Stage 0

Stage 1

Stage 2

(e) PPA stage assignment

D D

Memory transfer

Memory transfer

Memory transfer

Figure 4.2: Example of processor and stage assignment for SGMS and PPA scheduling.

assignment. The first step is to assign actors to each processor with maximum load balance

using an integer linear program formulation. Stateless data actors are replicated and fissed

to achieve even work distribution. In stage assignment, thecompiler decides a pipeline

stage for each actor at runtime. The optimization process inthis stage is to maximally hide

inter-processor communication latency and not to violate data dependences.

Even though this work adapts the basic concept of the SGMS, task scheduling in PPAs

is different in several aspects. First, the PPA scheduler isproposed using legacy C code,

hence it has less restrictions than SGMS using streaming languages such as StreamIt. For

90

recycling/fig/codegen.eps

example, SGMS can exploit parallelism for only stateless actors, but modulo scheduling

also can be applied to stateful actors. In addition, PPAs do not incur fission overhead

(split, join) to assign multiple cores due to the tightly coupled inter-core scalar network for

aggregation.

Figure4.2 shows the differences between SGMS and PPA scheduling. Given an ex-

ample stream graph (Figure4.2(a)), all actors are assumed data parallel. When SGMS

schedules the graph on 2 processors (Figure4.2(b)), the resultant II is 32 because the slow-

est node B is fissed once and corresponding split-join overhead is incurred. Figure4.2(c)

is the resultant schedule for the PPA, enabling the processor assignment to achieve an II of

30 as node B is accelerated by core aggregation without overhead. Finally, Figure4.2(e)

shows the stage assignments for PPA schedule in which the entire node B is executed in

stage 0 within 20 time units by using both cores.

Figure4.3 shows the execution timeline of both SGMS and PPA schedules.The main

difference between the two schedules is the locations of node B: it is split into two indepen-

dent pieces using SGMS on a multicore and with the PPA it is executed as a whole by aggre-

gating the resources of both core 1 and 2. Note that with the PPA, node B must be scheduled

at the same time on both cores in order to exploit resource aggregation. Another interesting

point is that since tightly-coupled memory system in the PPAprovides lightweight memory

synchronization mechanism, scheduling is more tolerable to high memory transfer.

91

Borrowing

Core2

Borrowing

Core2

Borrowing

Core2

E

A

B

A

B

A

B

B

(b) Execution timeline(PPA)

T
im

e

A
S

B1

A
S

B1

SPE1

to SPE2

A
S

B1

B2

J

C

SPE1

to SPE2

A
S

B1

SPE2

to SPE1 B2

J

C

SPE1

to SPE2

A
S

B1

SPE2

to SPE1

E

B2

J

C

SPE1

to SPE2

SPE1 MEM SPE2 MEM

(a) Execution timeline(SGMS)

T
im

e

D

D

D

C

D

B

C

D

B

CORE1 CORE2

Borrowing

Core2

A

B B

Borrowing

Core2

A

B

C

D

B

Core1 to Core2

MEM

Core1 to Core2

Core1 to Core2

Core1 to Core2

Core2 to Core1

Core2 to Core1

Figure 4.3: Example of running a SGMS on multi-core and a modulo scheduling on PPA.

4.2.3 Compilation Challenges

Efficient scheduling for composable accelerators is now emerging as an interesting, and

challenging problem due to the high degree of freedom in boththe hardware and software.

Some factors that make scheduling difficult are:

Resource Requirement Variance:The optimal resource requirement for efficient par-

allelism depends on the task-specific characteristics. Forexample, cyclic code regions

can be accelerated efficiently by appropriating more resources, but the performance of

acyclic code with sequential dependences cannot be improved by supplying additional re-

sources [77]. Assuming worst-case requirements for all code segments leads to either over-

provisioned designs to achieve a desired performance or under-performance for a fixed

92

recycling/fig/example_ppa.eps

B

A

C

D

(a) (b)

Memory

Core0 Core1 Core2

(c) (f)(d) (e)

Core 0

T
im

e

Core 2Core 1

A C

DB

Deadline

Core 0

T
im

e

Core 2Core 1

A

C

D

B

Deadline

Core 0

T
im

e

Core 2Core 1

A

C

D
B

Deadline

Core 0

T
im

e

Core 2Core 1

A

C

D

B

Deadline

Resource

Conflict

Reconfiguration

Load imbalance

A B C D

of Core 1 2 2 1

Time 1 1 1 1

A B C D

of Core 1 2 2 1

Time 1 1 2 2

A B C D

of Core 1 2 2 1

Time 1 1 2 2

A B C D

of Core 1 2 2 1

Time 3 1 2 2

Figure 4.4: Examples of the runtime overhead: (a) original task graph, (b) simple 1x3 PPA,

(c) expected ideal schedule with high resource utilization, (d) runtime overhead: stall, recon-

figuration time, (e) static partitioning with low runtime ov erhead, (f) a possible problem of the

static partitioning: workload imbalance.

design.

Execution Time Variance: Composable accelerators typically have multiple tasks run-

ning in parallel, and they usually have complex dependences. Thus, it is hard to predict

the resource usage pattern and accommodate the optimal execution of multiple instruction

streams.

Geometry: In CMPs, full connectivity between processors is often provided. However,

in a low-cost accelerator, the interconnect is much more sparse and merging cores should

be performed in a connectivity-aware manner.

To illustrate these difficulties, Figure4.4 shows some simple, but frequently occur-

ring examples that result in resources being wasted. The simple dataflow graph (DFG) in

Figure4.4(a) is being scheduled on a simple composable architecture (Figure4.4(b)). As-

suming the optimal resource requirements of each node(A, B,C, D) is 1, 2, 2 and 1 cores

with the same execution time, the expected schedule is similar to Figure4.4(c). However,

even though the optimal number of cores is assigned, the different amounts of work in each

93

recycling/fig/motivation.eps

node results in different execution times. On top of that, ifC and D have long execution

time, node B cannot start execution at the completion of taskA, but must wait until the exe-

cution of node C is finished because of resource conflicts (Figure4.4(d)). Another potential

source of resource waste occurs when changing the core assignment. In Figure4.4(d), task

D is delayed by the reconfiguration time even though enough resources are available.

Static partitioning of the cores can potentially eliminatethese problems, such as stalls

and reconfiguration overhead (Figure4.4(e)). Static partitioning means the core aggre-

gation is not changed at runtime and each task is assigned to asuitable merged core. In

this scheme, task A is not preferred to be executed in core group (1, 2) because the best

resource requirement for A is one core. If A is assigned to 2 cores, resources cannot be

utilized sufficiently. However, the workload of each core may not be balanced well because

we categorized all the tasks based on optimum resource requirements (Figure4.4(f)). To

minimize this side effect, a final performance tuning phase is performed using dynamic

partitioning of cores. For example, task D can be changed to run using 3 cores after final

tuning because all the other resources remain idle. Additionally, we also propose a core

reallocation mechanism to avoid geometry-based runtime overhead.

In this work, our work is focused on finding the optimal partitioning of cores for a given

task graph rather than changing the task graph itself. Although modifying the task graph is

also a common load balancing strategy, it usually cannot be applied well to the graph itself

without changing the source code due to the memory and control dependences.

94

4.3 Compiler Framework

In this section, we describe our new compilation framework based on the insights dis-

cussed in the previous section. The purpose of this framework is to achieve the highest

throughput by minimizing stalls due to resource contentionand reconfiguration processes.

The compilation process consists of three different stages: prepass static partitioning, core

allocation, and postpass dynamic partitioning. Prepass heuristically fuses virtual (no ge-

ometry information) PPA cores to accommodate larger pipeline stages based on the profile

workload information with static partitioning. Core allocation maps the virtual cores onto

physical cores, avoiding failures that occur when cores in same group are not connected

together. Postpass performs final performance tuning to reduce the completion time of

bottleneck pipeline stages by exploiting resource borrowing.

All compilation steps are performed at compile time. Virtualization is not considered

in this framework because of performance overheads, both onthe hardware and compiler

sides. For the hardware, a virtualization controller has execution time overhead for check-

ing the resource availability of the neighbor cores. In addition to this, virtualized modulo

schedule also has some performance degradation as it generates only one schedule to sup-

port various core configurations [74]. Despite these performance overheads, virtualization

can improve the overall performance in specific situations,such as when running an ap-

plication on a small number of resources or running an application with huge dynamic

variance [74]. However, we just generate one schedule per stage and disable virtualization

even when using dynamic partitioning to evaluate the real effectiveness of this strategy.

95

4.3.1 Prepass: Static Partitioning

As we discussed in Section4.2.3, the goal of this compilation stage is to minimize idle

and reconfiguration time between tasks and to create high quality schedules that maximize

resource utilization in order to minimize execution time ofassigned work. To achieve this

goal, we propose resource grouping using static partitioning. This section describes our

method for effectively grouping tasks requiring similar number of cores. The performance

improvement achieved by this stage mainly comes from recognizing the huge variance be-

tween the optimal resource requirements and execution times of each task. The key idea is

to categorize all tasks into some number of available resource combinations, enabling high

utilization and assigning the different portions of composable cores based on this informa-

tion. This method basically enables all the tasks to use the resources efficiently, achieving

high throughput. This stage also performs coarse load balancing because the throughput

of the program depends on the slowest pipeline stage. Therefore, imbalance between core

groups leads to performance degradation even if all the tasks execute efficiently. Load bal-

ancing is also performed in the postpass step after identifying the optimal static partition

with maximum resource utilization.

Algorithm 2 shows how the optimal core groupings (to support the assigned tasks) are

identified to exploit fine-grain parallelism effectively. The general idea is to heuristically

assign more cores to larger tasks based on the execution timeestimate. However, assign-

ing too many resources to larger cores may not be the best solution because performance

enhancement depends on the task-specific characteristics and may result in missed opportu-

nities to accelerate other tasks, given a limited number of cores. Therefore, aquality factor

96

Algorithm 2 Prepass: Static Partitioning Algorithm

Input: G:(V, E), #virtualCores, balance, quality

1: groups← PartitionGraph(G, #virtualCores);

2: while true do

3: SortGroupsByExecTime(groups);

{ Find task groups with max and min execution time estimate.}

4: maxTaskGroup← MaxExecTimeTaskGroup(groups);

5: numCores← NumRequiredCoresToExpand(maxTaskGroup);

6: minTaskGroups← FindContractTaskGroups(groups, numCores);

{ Generate candidate for new task groups.}

7: maxTaskGroupCand← ExpandGroup(maxTaskGroup);

8: minTaskGroupCand← ContractGroup(minTaskGroups);

{ Test the availability of the new task groups.}

9: if (ExecTime(maxTaskGroupCand) > ExecTime(maxTaskGroup) ∗ quality || ExecTime(maxTaskGroupCand) <

ExecTime(minTaskGroupCand)) then

10: Finish;

11: end if

{ Update task groups.}

12: Remove(maxTaskGroup, minTaskGroups);

13: Add(maxTaskGroupCand, minTaskGroupCand);

14: if (ExecTime(maxTaskGroupCand) < ExecTime(minTaskGroupCand) ∗ balance|| timeOut) then

15: Finish;

16: end if

17: end while

97

is introduced to define the minimum performance gain that must be achieved to justify the

assignment of additional cores.

Algorithm 2 starts from assigning one core to each task (Line 1). If the number of

tasks is larger than the number of cores, tasks are grouped bythe total execution time es-

timate(ExecTime). Based on this initial assignment of one core to each task group, the

while loop in Algorithm2 identifies the optimal number of cores per task group. Line 3-6

finds the task groups with the maximum ExecTime(maxTaskGroup), and minimum Exec-

Time(minTaskGroups). maxTaskGroupis the candidate for receiving more cores to enable

faster execution whileminTaskGroupswill potentially lose cores. The number of task

groups inminTaskGroupsvaries because number of additional cores, formaxTaskGroupto

be the larger fused core, are set by the current assigned coretopology ofmaxTaskGroup

(Line 5) and the minimum ExecTime task group may not have enough number of cores

to give. In this case, an additional second minimum ExecTimetask group is required. If

currentmaxTaskGrouphas 1 core with 1x1 configuration, just 1 more core is requiredto be

1x2 or 2x1 array-style fused core. However, if current configuration ofmaxTaskGroupis

1x2 with 2 cores, 2 more cores are required to expand because 1x3 or 3x1 array-style core

group is not allowed and next available core configuration is2x2, 1x4, or 4x1 with 4 cores

on current PPA. Moreover, an additional task group may be required to subsume the tasks

from the minimum task group if the minimum workload group loses all its assigned cores.

Then, line 7-8 creates the candidates of new maximum and minimum task groups given

the new core assignments.ExpandGroup is the function formaxTaskGroupto get more

cores to accelerate execution andContractGroup is to take cores fromminTaskGroups.

Line 9-11 checks the benefit of these new resource assignments and determines whether

98

A

B

C

E

10

326

466

86

D

246

F10

Input

output

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Filter 1 Core 2 Cores 4 Cores

A 10

B 86

C 246

D 326 200

E 466 350 200

F 10

Task Group Virtual Core

A, B, F 1

C 2

D 0, 3

E 4, 5, 6, 7

A
B

D

C

T
im
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

E

F

A
B

D

C

T
im
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

E

F

E

Expand

Expand Expand

Move

Deadline : 466

New deadline : 350

10

10

A

B

DC

T
im
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

F

A
B

D

C

T
im
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

E

F

E E E

E EE ED

Expand

Move

New deadline : 326

Final deadline : 246

20

106

Figure 4.5: Static Partitioning example: (a) example data flow graph, (b) phase 0: each task

is assigned to one core, (c) phase 1: the slowest task E gets one more core to accelerate, (d)

phase 2: task E is still the slowest and gets two more cores(5,7), thus task F loses own core(5),

(e) phase 3: new slowest task D is accelerated as getting morecore(0) and finally task C with

one core(2) takes the maximum execution time, (f) executiontime estimate table , (g) final core

assignment: D has 2, E has 4 cores.

new combinations are updated. First, the new ExecTime estimate ofmaxTaskGroupCand

should be less than some relative ratio of the original ExecTime(example quality factor

= 0.9), meaning that the performance gain should be at least 10%. Also, the ExecTime

estimates of theminTaskGroupsCandshould not become a new bottleneck. Line 12-13

updates the changes to the core assignment and this process is repeated until the load im-

balance is less than the balance factor or the task group combination does not change within

the defined timeout period.

Figure4.5 shows an example of the prepass static partitioning algorithm. An original

task graph (Figure4.5(a)) with 6 nodes is mapped onto a PPA with 8 cores. The original

graph only has 6 nodes and each node is initially scheduled using 1 core. The annotated

numbers show the ExecTime estimate for each node. The prepass algorithm performs

99

recycling/fig/preproc.eps

ExecTime estimation of the partitions then tries to appropriate more cores to the heavier

workloads to balance the task groups. More specifically, node E is maxTaskGroupand

gets 1 additional core because 2 cores are idle (Figure4.5 (c) Phase 1). Then, node E is

selected again asmaxTaskGroupbecause the reduced ExecTime is still the highest at 350.

In this case, an idle core and another core is selected to accelerate node E. As a result,

node E is scheduled with 4 cores. Since node F lost all its assigned cores, it is merged

into another task group with minimum ExecTime estimate, node A(Figure4.5 (d) Phase

2). maxTaskGroupthen becomes the task group with node D and is accelerated by taking

one more core from nodes A and F. Again, nodes A and F lost all the cores and are merged

into node B(Phase 3). At Figure4.5 (c) Phase 3, the process is finished since it meets the

balance condition (example balance factor 2.5) and 8 cores are divided as 4 task groups

with different core numbers (Figure4.5(e)).

4.3.2 Core Allocation

After static partitioning, the number of PPA cores assignedto each task group is known,

but their relative positions on the PPA array is not determined yet. Core allocation maps vir-

tual PPA cores assigned to task groups onto the physical structure of the PPA. As discussed

in Section4.2.3, most composable accelerators, including PPA, provide limited intercon-

nects. The fast scalar network connecting adjacent cores inPPA can be utilized to exploit

fine-grain parallelism. So, cores assigned to the same task group are placed next to each

other. Core allocation also attempts to place cores assigned to task groups with maximum

ExecTime next to the cores with minimum ExecTime. This is to increase the opportuni-

100

ties for dynamic partitioning in postpass. With dynamic partitioning, idling resources can

also be loaned to the neighboring task groups, further increasing the resource utilization.

Algorithm 3 shows the process for core allocation. First, all the task groups are sorted

by ExecTime estimates. In each attempt, themaxTaskGroupand theminTaskGroupsare

identified(lines 3 - 5) with Prepass-similar process, and they are placed closely on the PPA

array to enable sharing cores at runtime(lines 6 and 7). Continuing the example from the

prior section, Figure4.6shows the core allocation results and the slowest task group(C) is

assigned the core next to the core reserved for the fastest task group (A, B, F).

Algorithm 3 Core Allocation: Physical Core Mapping

Input: groups, #physicalCores

Output: phyTaskGroups

1: SortGroupsByExecTime(groups);

2: while HasGroup(groups) do

3: maxTaskGroup← MaxExecTimeTaskGroup(groups);

4: numCores← NumRequiredCoresToExpand(maxTaskGroup);

5: minTaskGroups← MinExecTimeTaskGroups(groups, numCores);

{ Assign physical cores.}

6: SetPhysicalCores(maxTaskGroup);

7: SetPhysicalCores(minTaskGroups);

{ Update task groups.}

8: Remove(maxTaskGroup, minTaskGroups, groups);

9: AddTo(maxTaskGroup, minTaskGroups, phyTaskGroups);

10: end while

101

(a) (b)

0

1

2

3

4

5

6

7

A B F

C
D E

Physical Core 0 1 2 3 4 5 6 7

Virtual Core 1 2 0 3 4 5 6 7

Filter A B F C D D E E E E

Low workload high workload

Figure 4.6: Core Allocation example: (a) physical placement of cores, (b) the slowest group is

placed next to the fastest group.

4.3.3 Postpass: Dynamic Partitioning

In this section, we propose the final performance acceleration process: dynamically

adjusting the resource assignment of the bottleneck task groups. The basic concept is to

accelerate the slowest stage by dynamically acquiring the idle resources of neighboring

cores at runtime. While the static partitioning achieves a good load balancing of PPA

cores, workload variation still exists leaving some time slack for cores assigned to lightly

loaded task groups. The idle time of cores can be exploited byneighboring cores using

dynamic partitioning proposed in this section.

Algorithm 4 begins the optimization process by constructing the group adjacency in-

formation map (Line 1). The compiler automatically identifies which group is physically

adjacent based on the PPA core connection information. Then, it identifies the slowest task

groups and tries to find physically connected task groups. Among these task groups, the

task group with the lowest ExecTime estimates is selected (Line 4-7). Line 8 calculates the

performance estimate when dynamic partitioning is enabledbetween these groups. In this

process, only tasks from the maximum ExecTime task group areallowed to execute with

dynamically varying resources. The other task groups are restricted to their initial static

102

recycling/fig/corealloc.eps

Algorithm 4 Postpass: Dynamic Partition Algorithm

Input: phyTaskGroups, sharing

1: adjMap← ConstructAdjacentMap(phyTaskGroups);

2: while true do

3: SortGroupsByExecTime(phyTaskGroups);

{ Find task groups with max and min execution time estimate.}

4: maxTaskGroup← MaxExecTimeTaskGroup(phyTaskGroups);

5: nextMaxTaskGroup← NextMaxExecTimeTaskGroup(nextMaxTaskGroup);

6: numCores← NumRequiredCoresToExpand(maxTaskGroup);

7: minTaskGroups← MinExecTimeAdjacentGroups(phyTaskGroups, numCores, adjMap);

{ Test the availability of dynamic partitioning of shared execution.}

8: newMaxTaskGroupExecTime, newMinTaskGroupsExecTime

← EstimateExecTimeSharing(maxTaskGroup, minTaskGroups,

sharing);

9: if (newMaxTaskGroupExecTime< ExecTime(maxTaskGroup)

&& newMinTaskGroupsExecTIme< ExecTime(maxTaskGroup)) then

10: UpdateSharing(maxTaskGroup, minTaskGroups, groups);

11: end if

12: if (newMaxTaskGroupExecTime> ExecTime(nextMaxTaskGroup)) then

13: Finish;

14: end if

15: end while

resource assignments. This is to limit dynamic resource assignment only to the perfor-

mance limiting groups to minimize the reconfiguration overhead. The compiler identifies

resource-constrained loop nests in themaxTaskGroupthat can further exploit fine-grain

parallelism with the extra resources. Then, the compiler gradually changes the resource

assignment for the loop nests, until the ExecTime estimate of the minTaskGroupsreaches

a performance threshold. This threshold is set to the relative ExecTime of the second lim-

103

(a)

(b)

T
im
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

deadline : 246

ED

C

A

B

F

200200

246

106

T
im
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

original deadline : 246

ED

C0A

B

F

200200200197

C1

C3

C2

C4

new deadline : 200

Figure 4.7: Dynamic Partitioning example: (a) coarse-grain pipeline using static partitioning,

(b) coarse-grain pipeline with final performance tuning process

iting group (nextMaxTaskGroup). Thesharingcoefficient is introduced to determine the

threshold and it depends on the application characteristics (dynamic variance) for each task

at runtime. For example, a stage execution time of AAC fluctuates between 150k and 200k

cycles [74], and the coefficient will be smaller than 0.75 considering dynamic overhead.

Line 9-11 updates the new assignment if there is any performance gain with the resource

sharing. This process will finish if the new ExecTime is stilllarger than the ExecTime of

thenextMaxTaskGroup. Another key point of this process is that thequality factoris not

considered in this phase because the objective of this process is to accelerate the pipeline

limiting stage using marginal resources.

An example of the postpass optimization is shown in Figure4.7. In this example, the

104

recycling/fig/postproc.eps

slowest task group(C) and the fastest task groups (A, B, F) are placed next to each other

after the core allocation step in Figure4.7 (a). The compiler identifies five candidate loop

nests in task group C, and two of them are rescheduled using the additional resources(cores

0 and 1). The final result in Figure4.7(b) shows that the pipeline deadline decreases from

246 to 200 cycles, achieving 20% performance gain for this stage. The overall resource

utilization is improved by recycling the wasted resources of core 0 between cycle 106 to

197.

4.4 Experimental Results

This section presents the results of the experimental evaluation of proposed high-level

compilation techniques. We first present a brief explanation of the target architecture and

benchmark applications. Performance measurement for prepass and postpass processes is

explained based on the experimental environment describedbelow.

4.4.1 Experimental Setup

Target Architecture PPAs are used to evaluate the performance of the compilation

techniques. The PPA has 8 cores in the form of a 2×4 array as shown in Figure4.1.

Virtualization controller is disabled to evaluate the realperformance of the compilation

strategy. For the experiments using less than 8 cores, PPA ispartitioned into two parts and

the unused partition is disabled.

Target Applications and fine-grain parallelismTo evaluate the performance, we used

three application domains: audio decoding (aac), video decoding (h.264) and 3D graphics

105

0

0.5

1

1.5

2

2.5

3

4 5 6 7 8

R
e
la
ti
v
e

 s
p
e
e
d
u
p

of Cores

AAC

symmetric smart static dynamic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 5 6 7 8

R
e
la
ti
v
e

 S
p
e
e
d
u
p

of Cores

3D

symmetric smart static dynamic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4 5 6 7 8

R
e
la
ti
v
e

 S
p
e
e
d
u
p

of Cores

H.264

symmetric smart static dynamic

Figure 4.8: Relative speedup normalized to simple symmetric partitioning

(3d). All software-pipelineable loops from these applications are taken and scheduled using

edge-centric modulo scheduling with all available partitions. Topology of the core groups

are also considered. For example, 2x1 and 1x2 core groups with 2 cores are individually

scheduled. Performance is evaluated using the overall execution time.

For coarse-grain pipelining, three applications are splitinto multiple tasks that com-

municate in a feed-forward fashion and without any inter-iteration dependencies contained

within a single task. Each task is able to have both loops and acyclic blocks of code. Based

on the control and data dependency restrictions, aac, 3D, h.264 have 10, 5, and 3 tasks on

experiments.

4.4.2 Performance Evaluation

Figure4.8shows the relative speedup obtained by various partitioning algorithms on 4

to 8 cores. Symmetric partition means that each task is scheduled using the same number

of cores. If the number of tasks is smaller than the number of cores, the cores are divided

by the number of tasks and each task has its own partition. If the tasks are more than the

cores, the overall application is split by the number of cores and each task group is exe-

106

recycling/fig/performance.eps

cuted using one core. Smart partitioning means manually divided static partition based on

the application characteristics. For example, tasks containing substantial portion of loops

are executed on a large core group to exploit fine-grain parallelism and the others are run on

only one core. Static partitioning represents the execution result when the program runs on

an automatically divided partition with prepass. In dynamic partitioning, the program exe-

cutes on the same partition with static partitioning and dynamic reconfiguration is applied

as well.

4.4.3 Static Partition

As shown in Figure4.8, smart partitioning always outperforms symmetric partitioning

by a significant amount because most of the loop-intensive task groups are accelerated us-

ing fine-grained pipelining. The promising point is that manual partitioning cannot achieve

better throughput than our static partitioning algorithm,and the speedup of static parti-

tioning on aac benchmark is always better than smart partitioning. As other benchmarks

have small number of tasks, 3 and 5, manually partitioning with traditional load balanc-

ing algorithm can achieve the same speedup as with using the same partitioning with the

result of prepass. However, if the application can be split into multiple subsets of tasks,

our prepass optimization is able to minimize the performance degradation induced by low

quality schedule, stall, and reconfiguration overhead. Note that tasks cannot be divided for

perfect load balancing because memory and control dependences on the program prevent

tasks from being partitioned from the middle. Despite theseinherent difficulties, our algo-

rithm successfully finds the throughput limiting tasks and accelerates them. On an 8-core

107

(a) (b)

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

1 0 0 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Cy
cl
es

Ite ra tio n

g ro u p 0 g ro u p 1 g ro u p 2

g ro u p 3 g ro u p 4 d ea d lin e

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

1 0 0 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Cy
cl
es

Ite ra tio n

g ro u p 0 g ro u p 1

g ro u p 2 g ro u p 3

g ro u p 4 n e w d e a d lin e

sta t ic d e a d lin e

Figure 4.9: stage execution time for aac benchmark: (a) dynamic computation variance on

static partitioning, (b) pipeline deadline reduction with dynamic partitioning

PPA, static partitioning allows 2.44x, 1.66x and 1.66x speedup over symmetric partitioning.

4.4.4 Dynamic Partition

AAC Figure4.8 shows that postpass with dynamic partitioning is effectivewhen the

number of cores are 5 and 8 but the gain is small, 1.7% and 2.8%,respectively. This is

because the task group with the largest execution time on AACapplication consists of a

large amount of sequential code and a small portion of the software-pipelineable code. In

prepass, this huge sequential task cannot reserve enough cores because of the low quality

schedule and remains the performance bottleneck. This taskis then accelerated by sharing

its neighbors’ resources during postpass since it doesn’t need to meet the quality factor

any more, hence the final performance is slightly enhanced byusing the neighbor’s idle

resource.

Runtime observations of the real execution on both static partitioning and dynamic par-

titioning are shown in Figure4.9. Figure4.9(a) shows that task group 4 is the performance

bottleneck over time and execution times of task group 0 and 2are small. Core allocation

108

recycling/fig/aac_thesis.eps

Cores Perf (smart) Perf (static) Perf (dyn) Overall

4 1.79 1.05 1 1.87

5 1.73 1.05 1.02 1.83

6 2.29 1.05 1 2.41

7 2.30 1.06 1 2.44

8 2.30 1.06 1.03 2.50

Table 4.1: Relative speedup for AAC benchmark (normalized to the preceding column).

process places the cores, assigned to these three task groups, next to each other and group

4 gets some performance gain as shown in Figure4.9 (b). Despite the small performance

gain of group 4, 0 and 2 have substantial runtime overhead because these groups should

share the low quality schedule.

3D Rendering3D rendering application has 5 tasks, two with small acycliccode and

three with big software-pipelineable code. Dynamic partitioning increases the throughput

by a large amount for all the cases because three huge tasks, which are easy to accelerate

by fine-grain parallelism, have similar workload and quality of the schedule is still high

when sharing the resources at runtime. The performance gainis up to 11.5% compared to

static partitioning, just with reusing idle resources. Figure4.10shows how dynamic recon-

figuration efficiently decreases the execution time of the slowest task group. On iteration

19-23, task 4 takes up to 60000 cycles to render 3D images and this work is finished in

50000 cycles by resource borrowing from task 0 and 1. After dynamic performance tun-

ing, execution time on task 0 and 1 increases a large amount tohelp task 4 finish early on

iteration 19-23.

H.264For H.264 benchmark, dynamic reconfiguration is not enabledbecause execution

109

(a) (b)

0

10000

20000

30000

40000

50000

60000

70000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

C
y
c
le
s

Iteration

group 0 group 1

group 2 group 3

group 4 new deadline

original deadline

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9

Cy
le
s

I te ra t io n

g r o u p 0 g r o u p 1

g r o u p 2 g r o u p 3

g r o u p 4 d e a d l in e

Figure 4.10: Stage execution time for 3D benchmark: (a) dynamic computation variance on

static partitioning, (b) pipeline deadline reduction with dynamic partitioning

Cores Perf (smart) Perf (static) Perf (dyn) Overall

4 1 1.23 1.02 1.25

5 1.23 1.01 1.11 1.38

6 1.25 1.09 1.11 1.52

7 1.35 1.22 0.99 1.65

8 1.66 1 1.03 1.72

Table 4.2: Relative speedup for 3D benchmark (normalized tothe preceding column).

time of the performance limiting task group fluctuates too widely and is sometimes even

smaller than the fastest task group. Therefore, the compiler decides not to adapt dynamic

partitioning because runtime overheads of the fastest stage are much bigger than the gains

of the limiting task and the overheads may adversely affect the final performance as the

fastest task becomes the slowest. Figure4.11shows that execution time changes by a huge

amount and sometimes is even lower than the fastest task. In this case, the compiler does

not allow dynamic reuse of the neighbor resources because adopting dynamic partitioning

is optional.

110

recycling/fig/3d_thesis.eps

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

C
y
cl
e
s

Iteration

group 0 group 1 group 2 deadline

Figure 4.11: Stage execution time for H.264 benchmark: dynamic partitioning is not applied

due to huge dynamic variance.

Cores Perf (smart) Perf (static) Perf (dyn) Overall

4 1 1.22 1 1.22

5 1.22 1 1 1.22

6 1.23 1.25 1 1.54

7 1.54 1 1 1.54

8 1.53 1.08 1 1.66

Table 4.3: Relative speedup for H.264 benchmark (normalized to the preceding column).

4.5 Related Work

Architectures: Combining cores to create a bigger logical core is relatively a new

technique, recently proposed by Core fusion [42] and Composable Lightweight Proces-

sors [44]. Core Fusion is a CMP architecture that can dynamically allocate independent

cores together for a single thread execution maintaining ISA compatibility. CLPs also al-

lows dynamic allocation of cores to form a larger and powerful single-threaded processors.

It also keeps the binary compatibility for the special EDGE ISA. The major difference be-

tween [42] and [44] is the target environment. PPA is designed to exploit single thread

performance in mobile environments where power consumption and hardware cost is a

111

recycling/fig/avc.eps

first-class constraint. The building blocks of PPA are simple in-order cores similar to clus-

tered VLIW processors [91]. Also, the statically controlled point-to-point interconnect

provides a fast inter-core communication, allowing PPA to exploit fine grain pipeline par-

allelism efficiently for multimedia applications.

The PE level view of PPA is similar to Coarse-Grained Reconfigurable Architectures.

ADRES [65] is a reconfigurable architecture where PEs are connected toa mesh-style in-

terconnect. Modulo scheduling using simulated annealing is employed to exploit fine grain

pipeline parallelism of nested loops. The top row in the array behaves as a VLIW processor

with a multi-ported central register file. However, the non software pipelineable region of

the application can only utilize the VLIW part of the array. So, it cannot pipeline the appli-

cation in a coarser granularity as PPA. With identical resources, PPA outperforms our best

approximation of ADRES by 1.43x. PipeRench [34] is a 1-D architecture in which process-

ing elements are arranged in stripes to facilitate pipelining, but it has a fixed configuration

of resource partitioning for pipelining while PPA can partition the array differently as to the

characteristics of the target application. RaPiD [31] is another CGRA that consists of het-

erogeneous elements (ALUs and registers) in a 1-D layout, connected by a reconfigurable

interconnection network.

Exploiting Parallelism: Exploiting coarse-grained pipeline parallelism is one of the

most attractive approaches to accelerate single thread performance as multicore architec-

tures enter the mainstream. Even this type of parallelism has many advantages compared

to other types of parallelism, adapting in real situation isdifficult because of program-

inherent data dependences [86]. To overcome this difficulty, [86] has proposed a dynamic

analysis tool to extract a stream graph from legacy C code in order to give a programmer

112

hints for manual parallelization. [86] also tries load balancing by changing a program but

this work’s focus is more on compile time optimization for given program. [36] and [50]

are similar to this work to exploit coarse-grained pipelineparallelism but the paralleliza-

tion mechanism is limited only to stateless components as using StreamIt language. Our

work also considers composable architecture specific features such as resource conflict and

reconfiguration overhead whereas these works targeted fixedmulti-core solutions(RAW ar-

chitectures [57] and Cell processors [40]). Resource borrowing on dynamic partition is a

similar concept to Work stealing [18] but our approach is performed in more fine-grained

level, not thread level.

4.6 Summary

The popularity of mobile computing platforms has led to the development of feature

packed devices that support a wide range of software applications, ranging from high-

definition audio and video to high-end 3D graphics. However,the variable resource re-

quirements and complex data/control flow of these workloadslimit the applicability of

traditional acceleration techniques. In response, this work proposes a novel, efficient com-

pilation framework to enhance the throughput by maximizingresource utilization of a com-

posable accelerator called a polymorphic pipeline array. The compilation consists of three

phases: static partitioning into task groups, physical core allocation, and dynamic parti-

tioning to reclaim idle resources to accelerate performance bottlenecks. The experimental

results show that static partitioning achieves up to 2.44x speedup, with dynamic partition-

ing achieving even greater success in certain benchmarks.

113

CHAPTER 5

Efficient Performance Scaling of Future CGRAs for

Mobile Applications

5.1 Introduction

The embedded systems that power today’s mobile devices demand both high perfor-

mance and energy efficiency in order to support the various applications, such as audio

and video decoding, 3D graphics, and signal processing. Traditionally, application-specific

hardware in the form of ASICs is used on the compute-intensive kernels to simultane-

ously meet tight performance/energy requirements. However, the increasing convergence

of different functionalities combined with high non-recurring costs involved in designing

ASICs have pushed designers towards more flexible solutionsthat are post-programmable.

Coarse-grained reconfigurable architectures (CGRAs) are becoming attractive alternatives

because they offer large raw computation capabilities withlow cost/energy implementa-

tions [61, 85, 65]. Example CGRA systems that target wireless signal processing and

multimedia are ADRES [66], MorphoSys [61], and Silicon Hive [78].

114

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2009 2010 2011 2012 2013 2014 2015

In
c
re

m
e
n

ta
l
c
o

m
p

u
ta

ti
o

n
a
l
p

o
w

e
r

(e
x

p
e

c
te

d
)

Year

CPU

Texts

Images

Audio

Video

Figure 5.1: The computational power trends for social sitesin each resource type:texts, im-

ages, audio, video, and CPUs.

CGRAs generally consist of an array of a large number of function units (FUs) intercon-

nected by a mesh style network, as shown in Chapter3.2.1.1. Register files are distributed

throughout the CGRA to hold temporary values and are accessible only by a small subset

of the FUs. The FUs can execute common integer operations, including addition, sub-

traction, and multiplication. CGRA resources are fully managed in software to maintain

high energy efficiency. In contrast to FPGAs, CGRAs sacrificegate-level reconfigurability

to achieve hardware efficiency. Thus, CGRAs have short reconfiguration time, low delay

characteristics, and low power consumption.

Even though CGRAs can meet the performance requirements of many of today’s ap-

plications, future computational demands of mobile applications are predicted to increase

exponentially [22]. Figure5.1depicts the trends in computational requirements for several

media processing domains (text, image, audio and video) along with the projected perfor-

115

cgrascaling/fig/trend.eps

mance gains of CPUs based on technology scaling based on datafrom [22]. This projection

shows clearly that hardware scaling alone will be quickly out distanced by the performance

requirements of all these domains. Further, simple hardware replication will not solve this

problem as the power budgets for mobile devices are not increasing at a fast rate.

Previous works on CGRAs show that considerable performanceimprovements are pos-

sible by applying various techniques such as exploiting multiple types of parallelism [74,

45] or generating complex processing elements (PEs) [13]. However, these only consider

features in isolation and fail to consider other issues including the topology and memory

subsystem.

In this chapter, we perform a deep study to help the engineersdesign future CGRAs to

meet future computation requirements while maintaining a tight power budget. We con-

sider the following four key questions for scaling the performance of CGRAs:

1. How effective is heterogeneous functionality at increasing efficiency?

2. For the same number of processing elements (PEs), what areefficient interconnection

topologies?

3. For power efficiency, can a complex PE be helpful compared to a simple PE?

4. For the memory interface, how useful is the introduction of vector memory operation

support?

This work does not propose the best optimized CGRAs or new features. The goal of

this work is to investigate these factors and their feasibility in the view of performance and

power efficiency. We consequently place emphasis on finding the potential for architectural

116

features and CGRA organization. For the first question, we show that heterogeneous FUs

are indeed effective at reducing area and power at a small loss of performance. Second,

we demonstrate that recent fixed multi-core solutions are often restricted by the application

characteristics and a flexible solution with an advanced compilation technique is required.

Third, we investigate whether complex PEs are indeed energyefficient. We show that

CGRAs with complex PEs can improve performance with small additional energy con-

sumption. Lastly, we examine the effect of vector memory operation support and conclude

that it is helpful due to the high degrees of spatial localityfound in media and gaming

applications.

This chapter is organized as follows. Section5.2 provides the background informa-

tion on CGRAs, target applications, and simulation tool-chain. Section5.3 presents the

experimental methodologies, results, and discussions on four considerations. Section5.4

concludes this chapter.

5.2 Analysis Infrastructure

This section introduces target benchmarks and the analysisinfrastructure. ADRES [66]

is used for the baseline CGRA accelerator as introduced in Chapter3.2.1.1.

5.2.1 Benchmarks Overview

Two major classes of mobile benchmarks are used for this application analysis. The

benchmarks consist of:

117

• Media benchmark: Three key mobile media applications are selected: AAC decoder

(MPEG4 audio decoding, low complexity profile), H.264 decoder (MPEG4 video

decoding, baseline profile, qcif) [43], and 3D (3D graphics rendering) [3]. These

benchmarks are optimized for DSPs in the production-quality level and a large por-

tion of the loops have a high potential degree of ILP and are software pipelinable.

• Game physics benchmark: Three common kernels are extractedfrom mobile gam-

ing applications [2]. First, lineOfSight plays an important role of separatingvisible

objects and non-visible objects. Sound effects, collisiondetection and other func-

tions involving linear equations often exploit convolution and the conjugate gradient

method. The three kernels mostly consist of high DLP loops.

5.2.1.1 Loop Characterization

Applications typically have many compute intensive kernels that are in the form of

nested loops. Among these kernels, we analyze the availableILP and DLP of the in-

nermost loops and find the maximum natural vector width whichis achievable. To extract

maximum degree of ILP, we found theSoftware pipelinableinnermost loops to which mod-

ulo scheduling can be applied: 1) counted loop, 2) no subroutine call, and 3) no multiple

exits/backedges. Control flows inside the innermost loops are solved by the if-conversion

compiler technique. Among the software pipelinable (SWPable) innermost loops, we also

identify theSIMDizableinnermost loops which can utilize DLP. Based on the Intel Com-

piler [41], the rules to be selected as a SIMDizable innermost loop areas follows:

118

0

0.2

0.4

0.6

0.8

1

a
a

c

3
d

h
.2

6
4

A
v
g

c
o
n
ju

g
a
te

c
o
n
v
o
lu

ti
o
n

lin
e
O

fS
ig

h
t

A
v
g

Media benchmark Game benchmark

E
x
e
c
u

ti
o

n
 t

im
e
 r

a
ti

o

innermost swpable simd

Figure 5.2: Loop categorization of various benchmarks: Thethree bars indicate ratio of exe-

cution time in innermost loops, SWPable loops, and SIMDizable loops.

• The loop must contain straight-line code. No jumps or branches, but predicated

assignments, are allowed only when the performance degradation is ignorable.

• The loop must be countable and there must be no data-dependent exit conditions.

• Backward loop-carried dependencies are not allowed.

• All memory transfers must have same strides over iteration.

If a loop satisfies the above four conditions, the minimum iteration count is set to the

maximum available SIMD width.

Figure 5.2 shows relative execution time of innermost loops, SWPable loops, and

SIMDizable loops to total execution time on a simple 1-issueARM processor. On aver-

age, there is a substantial amount of time spent on either or both SWPable and SIMDizable

loops. More specifically, the media benchmark is originallyoptimized to maximize the por-

tion of SWPable loops, but it also has high ratio of SIMDizable loops. The gaming physics

benchmarks have higher levels of data parallelism. Resultsin Figure5.2 confirm that not

119

cgrascaling/fig/simd_opportunity.eps

only different applications have different characteristics, but also different innermost loops

in a single application can have different characteristics. In addition to this, we can have

another opportunity to improve the overall performance if we have additional mechanism

to support DLP.

5.2.2 Experimental Setup

Target Applications As discussed in Section5.2.1, the evaluation is conducted for

subsets of two domains. The top 10 loops having higher execution time are selected for

gaming benchmark, and 144 loop kernels, varying in size from4 to 142 operations, are

extracted from the media benchmark because ratio of total execution time of top 10 loops

is too small.

Compilation and Simulation The IMPACT compiler [71] is used as the frontend com-

piler. Edge-centric modulo scheduling (EMS) [73]-based modulo scheduler is implemented

in the backend compiler on the ADRES [66] framework.

Power/Area MeasurementsVarious CGRA templates are generated in RTL Verilog,

synthesized with the Synopsys design compiler, and place-and-routed with the Cadence

Encounter using IBM 65nm standard cell library in typical operating conditions with 1.0

operating voltage. Synopsys PrimeTime PX is used to measurepower consumption. The

Artisan Memory Compiler and RF Compiler are used to determine the power of memory

operation using a 1.2 operating voltage. The target frequencies of the systems are 200MHz.

120

5.3 Analysis

In this section, we describe the key issues on scaling CGRAs,then set up the method-

ology in order to collect meaningful results for each factor. Finally, we analyze the experi-

mental results and suggest several recommendations for thefactors.

5.3.1 Question 1: Heterogeneity vs. Homogeneity

5.3.1.1 Overview

In common CGRAs, the use of heterogeneous FUs (mix of simple integer FUs and

complex FUs) is considered as an apparent architectural choice since complex function-

ality such as multiply and divide operations requires high area and static power overhead

but the utilization of them is often disproportionally lower than simple integer operations.

For example, only 2.2% and 1.3% of the total dynamic instructions are multiplications and

divisions in the H.264 video decoding application [11]. However, most architectural explo-

ration on CGRAs has been focused on the interconnect topology and the array size [20, 51].

In this section, we examine the performance effect of heterogeneous FUs over homoge-

neous FUs.

5.3.1.2 Methodology

Based on the 16-PE homogeneous baseline CGRA (Section??), we decrease the num-

ber of FUs supporting whole functionalities. In the baseline CGRA, all FUs support all

the functionalities: simple integer operations, complex operations (multiply, divide), and

memory operations. Then we decrease the total number of somemajor functionalities.

121

(a) (b)

0

0.2

0.4

0.6

0.8

1

R
e
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

Media

0

0.2

0.4

0.6

0.8

1

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e Game

0

0.2

0.4

0.6

0.8

1

S
ta

ti
c

 P
o

w
e

r

(c)

Figure 5.3: Performance degradation and static power consumption on a CGRA at different

FU organizations.

First, we limit the number of FUs supporting complex operations from 8 to 1 (mulN):

only a subset of all 16 FUs supports complex operations and all FUs support all other oper-

ations. Second, we also limit the number of memory operations (memN). Lastly, we limit

the number of FUs that supports both complex and memory operations (expN). For these

architectures, the total execution time is used as a metric.

5.3.1.3 Result and Discussion

Figure5.3illustrates the performance degradation as the number of expensive units de-

crease on a 16-PE CGRA accelerator. Each bar shows the relative performance normalized

to that of the homogeneous baseline CGRA. From this graph, the amounts of performance

degradation are not as substantial as the area/static powerbenefits when reducing expen-

sive units in both benchmarks. This is because the performance is normally constrained

not by the expensive operations but by the simple integer instructions. Among complex

and memory operations, the performance degradation depends much more on memory op-

erations. If we set 80% of the baseline performance as the minimum performance target,

we can decrease the number of both complex and memory units byup to 75% with high

122

cgrascaling/fig/hetero_result.eps

area/power benefits.

5.3.2 Question 2: Interconnection Topology

5.3.2.1 Overview

To enhance the overall performance, increasing total number of PEs is the simplest

method to use. However, the key problem is the utilization ofthe PEs. As discussed

in PPA [74], the performance saturates at some point if we simply increase the size of

the CGRA due to the routing overhead and the lack of enough number of instructions

inside the loopbody. The routing overhead is more critical because CGRAs do not provide

a multi-ported, centralized register file and the operands must be explicitly routed using

decentralized resources, often PEs. The number of instructions inside the loopbody can be

increased by loop unrolling, but it will be also limited withincreasing routing overhead.

Clustering is the common interconnection topology for the performance saturation

problem [6, 58]. A large number of PEs are split into smaller partitions andeach subset

of PEs works separately. In this system, loops are scheduledtargeting one partition (clus-

ter) and executed in multiple partitions, where iteration counts are divided by the number

of partitions. An interesting question at this point is how to find the optimal number of

partitions and PEs inside each partition. In this section, we examine various types of in-

terconnection topologies, including clustering, and map media and gaming benchmarks on

CGRAs. We then introduce a reasonable strategy for scaling performance.

123

DLP loop Non-DLP loop

Baseline Schedule on

all the PEs

Execute on

all the PEs

Schedule on

all the PEs

Execute on

all the PEs

Fixed

partition

(M x L)

Schedule on

one partition

Execute on

M partition

Schedule on

one partition

Execute on

one partition

Flexible

mapping

Schedule on

one partition

Execute on

M partition

(M can vary)

Schedule on

all the PEs

Execute on

all the PEs

(a)

(b)

(c)

(d)

Baseline

Fixed partition

Flexible mapping

Figure 5.4: Various interconnection topologies of CGRAs: (a) baseline, (b) fixed partition, (c)

flexible partition, and (d) a table for execution model of loops on different topologies.

5.3.2.2 Methodology

To assess the impact of clustering as the size increases, we took all the SWPable loops

in media and gaming benchmarks. Three different styles of CGRA architectures are imple-

mented for design space exploration. Each style of architecture also has six variations of

PE number: 4, 8, 16, 32, 64, and 128. The detailed explanationof the architecture styles is

as follows:

• N: Baseline architecture (Figure5.4(a)). The architecture consists of all the PEs, and

the structure is the same as the architecture explained in Section ??. As shown in

Figure5.4(d), both DLP and non-DLP loops are scheduled targeting whole PEs.

• MxL : Fixed partition (Figure5.4(b)). N PEs are physically split into M partitions(2 ≤

M ≤ 8), then L (N/M) PEs consist of each partition. Both kinds of loops are sched-

uled targeting one partition. Non-DLP loops are executed inone partition due to the

124

cgrascaling/fig/flexible_method.eps

inter-iteration dependencies, and DLP loops are executed in M partitions and each

iteration count is divided by M (Figure5.4(d)).

• N flex: Flexible partition (Figure5.4(c)). Based on a baseline architecture, the num-

ber of partitions can be dynamically changed from 1 to 8. Therefore, non-DLP loops

are scheduled targeting whole PEs and executed on whole PEs.For DLP loops, the

schedule of each loop is generated targeting the best partition and executed in parallel

on each partition for smaller iteration counts (divided by the number of partitions).

To determine the effects of differing architectural features, the measurements of perfor-

mance and the performance saturation point distribution ofloops were obtained.

5.3.2.3 Result and Discussion

Figure 5.5 shows the performance results of above architecture types as the CGRA

size increases. The X-axis on these graphs shows the architecture templates, and the Y-axis

shows the average performance of media and gaming applications. Each performance result

is normalized to when each application is mapped onto the 4-PE baseline architecture.

Here, we can notice that the throughput saturates as we increase the size of the baseline

architecture. For media and gaming benchmarks, the performance does not increase that

much beyond the size of 32 PEs and 16 PEs, respectively. This is because the average size

of innermost loops on gaming benchmarks is smaller than thaton media benchmarks.

For fixed partition, the performance is often worse than the corresponding size baseline

architecture on small sizes, but it scales well on large sizes. For media benchmarks, a high

number of partitions does not always show the best performance among various same size

125

0

2

4

6

8

10

12

4
4
_

fl
e
x 8

2
x

4
8
_

fl
e
x

1
6

2
x

8
4

x
4

1
6
_

fl
e
x

3
2

2
x

1
6

4
x

8
8

x
4

3
2
_

fl
e
x

6
4

2
x

3
2

4
x

1
6

8
x

8
6
4
_

fl
e
x

1
2

8
2

x
6

4
4

x
3

2
8

x
1

6
1
2
8
_

fl
e
x

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e

Architecture

Media

0

2

4

6

8

10

4

4
_

fl
e
x 8

2
x

4

8
_

fl
e
x

1
6

2
x

8

4
x

4

1
6
_

fl
e
x

3
2

2
x

1
6

4
x

8

8
x

4

3
2
_

fl
e
x

6
4

2
x

3
2

4
x

1
6

8
x

8

6
4
_

fl
e
x

1
2

8

2
x

6
4

4
x

3
2

8
x

1
6

1
2
8
_

fl
e
x

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e

Architecture

Game

Figure 5.5: Performance comparison of various architectures for media and gaming bench-

marks.

architectures because the degree of DLP is not high for DLP loops and the performance of

non-DLP loops is higher on larger partition size. Differentfrom media, gaming benchmarks

always show the best performance on the highest number of partitions. This is because most

of the loops are small data-parallel loops with high iteration counts. Figure5.6explains this

difference well. Two pie charts in Figure5.6show loop distribution at different saturation

points for two domain benchmarks. From this figure, we can seethat high portion of loops

in media benchmarks needs more than 32 PEs for full acceleration, hence the performance

is often limited by the small size of a partition. Conversely, more partitions are much

helpful for performance improvement on gaming benchmarks as most of the loops have the

126

cgrascaling/fig/flex.eps

Media Game

4
3%

8
11%

16
11%

32
48%

64
22%

128
5% 4

11%

8
45%

16
22%

32
11%

64
11%

Figure 5.6: Performance saturation point distribution at different PE sizes for media and

gaming benchmarks: media benchmarks need relatively high number of PEs to be sufficiently

accelerated but gaming benchmarks need small number of PEs.

small saturation points less than 16.

Though fixed partitioning shows decent performance gain, itis hard to say that the

application is fully accelerated. This is because the best structure highly varies over loops

inside a a benchmark and also across multiple benchmarks. Therefore, we also test a unified

architecture to support flexible mapping (n flex). As shown in Figure5.5, the flexible

architecture always shows the best performance and retainsscalability even in large size as

all the loops can be executed on the best partition guided by the results on Figure5.6.

These results reveal the difficulty of performance scaling with common solutions in the

real world. To further improve the single threaded performance, it is necessary to find a

mechanism to flexibly change the partition adaptive to the loop characteristics. The flexible

mapping without physical array partitioning will also be highly favorable to other research

for improving the multi-threaded performance such as PPA [74] and MT-ADRES [6], while

our flexible partitioning scheme is completely orthogonal to multi-threading of CGRAs.

127

cgrascaling/fig/saturation.eps

5.3.3 Question 3: Complex PEs vs. Simple PEs

5.3.3.1 Overview

Interconnection topology has been a primary considerationfor scaling CGRAs because

most CGRAs consist of multiple simple PEs, which include oneFU and one RF. Recently,

CGRAs with more complex PEs, consisting of multiple FUs and RFs, are also introduced in

order to improve performance [13, 14, 12]. Construction of CGRAs with complex PEs has

several key advantages over conventional CGRAs. First, sparse interconnection between

PEs provides better cost and energy scalability with minimum performance loss due to the

dense interconnection inside PEs. Second, the number of RFscan decrease as mapping

multiple instructions inside a PE can reduce RF accesses by directly consuming tempo-

rary values generated inside a PE. Third, back-to-back instructions can be chained without

pipeline registers, hence execution can be faster. Lastly,heterogeneity inside PEs can be

implemented while retaining PE-level homogeneity.

Despite these advantages, adopting complex PE scheme is still questionable because it

is hard to attain full utilization of resources inside the PEs. In this section, we focus on the

energy consumption instead of resource utilization. We investigate whether complex-PE

based CGRAs can consume less or comparable energy, then showthat the energy overhead

is not critical in some cases. We believe that this evaluation will help developers consider

complex PE based design as one of possible options.

128

(a) (b) (c) (d) (e) (f)

Register file

Simple integer

@ optimized

Simple integer

+ Complex

@optimized

Figure 5.7: PE designs with different number of FUs: the number of RFs is the same as the

number of output ports and only shaded FUs support all instructions in optimized PEs.

5.3.3.2 Methodology

Figure5.7demonstrates the structure of complex PEs varying the number of FUs from

one to six. The number of RFs depends on the number of output ports. For all the PE

structures, two kinds of designs are considered: uniform and optimized. In a uniform PE,

all the FUs support all the functionalities including both simple integer operations (add,

sub, and logic) and complex operations (mul, div), while only shaded FUs support complex

operations for an optimized PE.

To estimate the energy consumption on different PE styles, we map all the loops on to

those PEs by taking the concept of subgraph identification [25, 26]. Briefly, the compiler

generates the dataflow graph (DFG) of each loopbody, and discovers all the subgraphs

(groups of instructions) which can be mapped onto the targetPE. Each remaining node is

regarded as a subgraph with one instruction.

Based on the above data, estimated energy consumption of a loop is calculated as

Pactive×Nsubgraph. Pactive andNsubgraph refer to the power consumption when a PE is active

and the number of subgraphs, and inactive PEs are assumed to be dynamically power-gated.

129

cgrascaling/fig/compPE.eps

(a) (b) (c)

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

R
e
la

ti
v
e
 e

n
e
rg

y
 c

o
n

s
u

m
p

ti
o

n

of FUs per PE

Media uniform

Media optimized

Game uniform

Game optimized

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

R
e
la

ti
v
e
 n

u
m

b
e
r

o
f

s
u

b
g

ra
p

h
s

of FUs per PE

Media uniform Media optimized

Game uniform Game optimized

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6

R
e
la

ti
v
e
 e

n
e
rg

y
 c

o
n

s
u

m
p

ti
o

n

of FUs per PE

Figure 5.8: Experimental results on various PEs: (a) relative average energy consumption,

(b) relative energy consumption of every loop, and (c) the number of subgraphs. All the FUs

support full functionality on uniform PEs, and only a subsetof FUs supports full functionality

on optimized PEs.

5.3.3.3 Result and Discussion

The average energy consumption of loops on media and gaming benchmarks are shown

in Figure5.8(a). The target PEs are shown on the X-axis, and relative energy consumption

normalized to the one-FU PE (Figure5.7(a)) on the Y-axis. The following results are ex-

amined and shown as a line form: averages of energy consumptions of all loops included in

media and gaming benchmarks targeting uniform PEs (Media uniform and Game uniform),

and those targeting optimized PEs(Media optimized and Gameoptimized). Figure5.8(b)

shows the energy consumption of all loops on both benchmarkstargeting only optimized

PEs. Figure5.8(c) shows the relative number of mapped subgraphs, and each line shows

the average of relative numbers of subgraphs normalized to the one-FU PE.

From Figure5.8(a), even though the utilization is always lower at more complex PEs,

the energy increase is not as substantial as FU number increases. This is because the power

consumption of each PE is not directly proportional to the number of FUs due to smaller

number of RFs and pipeline registers. As shown in Figure5.8(b), some loops consume

130

cgrascaling/fig/PE_vary.eps

less energy on 2- or 3-FU PE CGRAs by high resource utilization. For media benchmarks,

complex PEs are well utilized as shown in Figure5.8(c), and energy consumption can be

highly saved when using optimized PE structure because the applications have low ratio of

complex operations(Figure5.8(a)). Conversely, execution of gaming benchmarks at com-

plex PE architectures shows more relative energy consumption than media benchmarks

because the number of subgraphs does not highly decrease formore complex PE architec-

tures (Figure5.8(a)). Moreover, the performance degradation from a uniformPE structure

to a optimized PE structure is high because game applications have a high portion of com-

plex operations such as multiplication/division but an optimized PE structure has smaller

number of these FUs (Figure5.8(c)).

The interesting point here is that we may allow some degree ofenergy overhead because

of several reasons: 1) at same operating frequency, complexPE structure is faster than the

one-FU PE structure, and 2) routing overhead can be reduced as the number of subgraphs

decreases (Figure5.8(c)). Therefore, if we decide that 50% energy overhead can beal-

lowed, complex PEs with 2 and 3 FUs can also be considered as the proper solution in

addition to the simple PE(Figure5.8(a)).

5.3.4 Question 4: SIMD Memory Support

5.3.4.1 Overview

In addition to the previous consideration about the size of PEs, supporting SIMD mem-

ory operation by adding a vector unit into a PE is also introduced by some recent CGRAs.

For example, ADRES system supports special intrinsic instructions that allow SIMD oper-

131

ations [64, 6]. Similar to Section5.3.3, supporting SIMD memory operations on PEs has

several noticeable advantages such as less fetching power and less number of instructions

over simple scalar memory operations.

However, current designers often hesitate to add the SIMD capability into CGRAs due

to the uncertainty of high potential degree of DLP. In this section, we investigate the fre-

quency of spatial reuse of wide vector data on the mobile benchmarks, and then show that

SIMD functionality is worthwhile to adopt in some range withslight overhead due to the

domain specific characteristics.

Though there are several previous research about the memorystructure and scheduling

algorithm on CGRAs, most of the research focuses on the performance improvement on

scalar memory-based system such as reducing memory conflicts on multi-bank scratchpad

local memory [46]. We further examine the availability of SIMD memory-basedsystem

for high efficiency.

5.3.4.2 Methodology

To prove the effectiveness of SIMD memory support, we consider SIMD memory units

from 1 to 16 vector length in the view of the energy consumption and the performance. For

the energy consumption, we first get the memory reference footprints during sixteen itera-

tions for each loop. Based on the footprints, we find the required number of vector instruc-

tions for each SIMD memory unit(Naccess). We also measure the power consumption of

the SRAM per memory access (Paccess) from the datasheet generated by memory compiler.

We then estimate the total energy consumption of memory accesses byPaccess ×Naccess.

Additionally, the performance effect of SIMD memory units is also examined. We mea-

132

sure the performance effect by substituting scalar memory units into SIMD memory units

while keeping the same total bandwidth. For instance, when we set the total bandwidth

as 4x32 bits, we test 16-PE CGRAs with four 32-bit scalar memory units (Figure5.9(a)),

two 2x32 vector memory units (Figure5.9(b)), and one 4x32 vector memory unit (Fig-

ure5.9(c)).

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Mem

Mem

Mem

Mem

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

2x32 Mem 2x32 Mem

2-way vector operation support

(a) (b)

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

4x32 Mem

4-way vector operation support

(c)

Figure 5.9: Example CGRAs with different SIMD memory support: (a) four scalar memory

support, (b) two 2x32 SIMD memory support, and (c) one 4x32 SIMD memory support.

For performance metric, we use the resource-constrained lower bound (ResMII) of

memory resources:Naccess (number of memory instructions)/NMunit (number of mem-

ory units). This is because the performance of a loop, which modulo scheduling is applied

to, is generally determined by the initiation interval (II)when the number of iterations

is large [73, 79]. The goal of the modulo scheduling is to minimize the II by MII, and

therefore, if ResMII of memory resources is larger than MII of original architecture, the

performance of the loop can be thought as to be affected.

133

cgrascaling/fig/vector_support.eps

(a) (b)

0

2

4

6

8

10

12

14

1 2 4 8 16

Vector width

Relative # of access

Relative power per access

Relative total energy

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

1 2 4 8 16

Vector width
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16

N
o

rm
a
li
z
e
d

 R
e
s
M

II
 f

o
r

m
e
m

o
ry

Vector width

16x32

8x32

4x32

2x32

Figure 5.10: Experimental results with different vector widths: (a) relative energy consump-

tion for total memory accesses, and (b) memory ResMII increase when using SIMD memory

units with same total bandwidth.

5.3.4.3 Result and Discussion

Figure 5.10(a) shows the average energy consumption of loops over varying vector

widths of memory units. X-axis shows the vector widths of memory units, the number of

memory accesses, the power consumption per memory access, and the total energy con-

sumption are shown as a line form, and these are normalized tothe scalar memory unit

(vector width = 1). In the left graph of Figure5.10(a), though power consumption for one

memory access highly increase at longer vector width, the total energy consumption main-

tains a similar level to that of a scalar memory unit by virtueof a high degree of spatial

locality in memory accesses on mobile benchmarks. The enlarged graph on the right side

shows that total energy consumption can be even lower than a scalar vector unit in the case

of a 2-way vector unit. This is because most of loaded data areused without additional

loads and the vector load consumes less power than multiple scalar loads.

The performance effect of using vector memory units is shownin Figure5.10(b). The

four lines indicate the average memory ResMII of all loops when changing the vector width

134

cgrascaling/fig/mem_energy.eps

while retaining same bandwidth. Each ResMII data is normalized to the MII targeting the

16-PE CGRA with scalar memory units. This graph shows the gradual growth of mem-

ory ResMII but they are always less than the actual MII, and therefore, the performance

degradation does not exist.

These data show that adopting vector instructions is not as harmful as a common myth

in the view of energy consumption and performance, hence developers should consider

SIMD capability for designing a future mobile CGRA.

5.3.5 Summary and Insights

The analysis of these four considerations provides severalinsights. First, using hetero-

geneous FU organization is highly effective in reality and the ratio of expensive resources

can be tuned by performance degradation. Second, even though the current fixed partition-

ing scheme is fairly effective over the baseline for performance scaling, the high variance

of loops inside and across applications prevents it from further achieving the performance

gain. Therefore, flexible partitioning should be supportedby both architectural and com-

piler modifications. Third, a complex PE structure can be oneof the attractive options for

further improving performance because complex PE can be more energy efficient even in

lower resource utilization. Lastly, the characteristics of mobile benchmarks can make the

wide SIMD memory support from an aggressive solution into a realistic solution.

135

5.4 Summary

The mobile applications have been rapidly developed so thatthe future mobile devices

need to provide high single-thread performance within limited power budget. CGRAs are

known as one of the prominent solutions to achieve these needs, but the potential for the

scalability of CGRAs are not thoroughly investigated yet. In this work, we perform a deep

analysis on several key considerations when scaling: heterogeneity, interconnection topol-

ogy, complexity of PEs, and SIMD memory support. The study shows us that CGRAs

have high potential of performance improvement with high efficiency and some key fac-

tors, which are easy to overlook, should also be considered for designing CGRAs. We be-

lieve that these insights will be key advices for improving future applications (more DLP),

compilers (support flexible mapping), and architectures (complex PEs and SIMD memory

units).

136

CHAPTER 6

Libra: Tailoring SIMD Execution using Heterogeneous

Hardware and Dynamic Configurability

6.1 Introduction

The mobile devices market, including cell phones, netbooks, and personal digital assis-

tants, is one of the most highly competitive businesses. Thecomputing platforms that go

into these devices must provide ever increasing performance capabilities while maintaining

low energy consumption in order to support advanced multimedia and signal processing ap-

plications. Application-specific integrated circuits (ASICs) are the most common solutions

for meeting these requirements, performing the most compute-intensive kernels in a high

performance but energy-efficient manner. However, severalfeatures push designers to a

more flexible and programmable solution: supporting multiple applications or variations of

applications, providing faster time-to-market, and enabling algorithmic changes after the

hardware is constructed.

Processors that exploit instruction-level parallelism (ILP) provide the highest degree

137

of computing flexibility. Modern smart phones employ a one GHz dual-issue superscalar

ARM as an application processor. Higher performance digital signal processors are also

available such as the 8-issue TI C6x. However, ILP processors have scalability limits in-

cluding many-ported register files (RFs) and complex interconnects. Alternately, single-

instruction multiple-data (SIMD) accelerators provide high efficiency because of their reg-

ular structure, ability to scale lanes, and low control logic overhead. They have long been

used in the desktop space for high performance multimedia and graphics functionality. But,

their combination of scalable performance, energy efficiency, and programmability make

them ideal for mobile systems [80, 17, 59, 90].

In order to fully utilize the SIMD hardware, it is necessary for the programmer or

compiler to extract sufficient data-level parallelism (DLP). Automatic loop vectorization

is available in a variety of commercial compilers includingofferings from Intel, IBM, and

PGI. Classic scientific computing (regular structure, large trip count loops, and few data

dependences) are naturally well-matched to SIMD accelerators. But, in many respects, the

mobile terminal has become a general-purpose computer. Thus, like the desktop, only a

small percentage of mobile applications look like classic scientific computing. The com-

putation is not dominated by simple vectorizable loops, butby loops containing significant

numbers of control and data dependences to handle the complexity of modern multimedia

standards. As a result, applications have varying amounts of vector parallelism ranging

from none to some to large amounts. The net effect is that SIMDhardware goes unused for

a large fraction of application execution and thus cannot becounted on to provide signifi-

cant performance gains.

A second but inter-related problem with SIMD computing is low hardware utilization

138

even when vector loops are executed. The use of homogeneous hardware (e.g, identical

lanes) is one of the best advantages of SIMD datapaths by reducing design cost and com-

plexity. But, the utilization of the most complex components of a SIMD lane is often

disproportionally lower than the simple components. For example, the H.264 video de-

coding application is dominated by simple integer operations (adds, subtracts, shifts) and

an average of only 2.2% and 1.3% of the total dynamic instructions are multiplies and di-

vides [11]. This is not an outlying data point, most multimedia and visual computing appli-

cations have small fractions of multiply, divide and other expensive operators. For 128-bit

SIMD (4 lanes), such utilization rates may not matter, but asSIMD widths are scaled to

increase performance to 1024 bits (32 lanes) or more, the problem becomes serious due to

poor area utilization and high static power dissipation.

To attack these problems, we propose a customizable SIMD accelerator that is capable

of tailoring its execution strategy to the running application, referred to as theLibra. Libra

employs two key concepts,heterogeneityanddynamic configurability, to achieve broader

applicability and better energy efficiency than traditional SIMD accelerators. Heterogene-

ity allows lanes to have different functionalities and better match functional capabilities

with expected operator distributions. Dynamic configurability enables lane resource to ex-

ecute as a traditional SIMD processor, be re-purposed to behave as a clustered VLIW pro-

cessor, or combinations in between. Dynamic configurability also enables efficient sharing

of expensive resources between lanes (e.g., multipliers) by interleaving independent in-

structions with each lane’s expensive instruction so as to hide resource contention. Libra

consists of an array of simple processing elements (PEs) that are tightly interconnected by

a scalar operand network. Groups of four PEs form PE groups that are normally driven by a

139

single instruction stream. Each group can behave as a building block for a SIMD processor

(e.g., PEs behave as SIMD lanes) or a VLIW processor (e.g., PEs behave as a cluster of

function units). The compiler maps 1 or more loops to the Libra accelerator by combining

and configuring clusters of PE groups to efficiently exploit the available DLP and ILP.

This chapter offers the following three contributions:

• An in-depth analysis of the available ILP/DLP parallelism and its variability in three

representative mobile application domains: computer vision applications, commer-

cial media applications optimized in industry level, and game physics engine appli-

cations.

• The design of a unified loop accelerator that can effectivelysupport future mobile

applications with varying performance requirements and characteristics. To achieve

this objective, we offer three key features:

1. Scalability: Libra can meet high performance requirements by simply increas-

ing the number of clusters, whereas most current accelerators suffer from poor

scalability.

2. Configurable performance: Libra can dynamically tune theILP/DLP-support

capability in order to successfully support ILP-intensive, DLP-intensive, and

ILP/DLP-mixed applications, as well as tolerate performance degradation due

to its heterogeneity.

3. Energy efficiency: Simple hardware implementation achieves high energy-efficiency

with competitive performance.

140

• A light-weight design and organization of a configurable processing element for sup-

porting simple latency hiding techniques and sharing expensive resources.

6.2 Background and Motivation

In this section, we examine the limitations of traditional SIMD accelerators based on

an analysis of various mobile applications. We first introduce the target benchmarks and

the baseline architecture, and find two main sources of inefficiencies in SIMD accelerators.

We then propose high-level solutions to overcome these challenges that facilitate designing

efficient hardware and maximizing the utilization of existing resources.

6.2.1 Benchmarks Overview

Three classes of mobile benchmarks are used for this application analysis that contain

varying degrees of vector parallelism. The benchmarks consist of:

• Vision benchmark: We evaluated a subset of the SD-VBS benchmark suite [88] for

mobile vision applications. As these benchmarks are not originally optimized for a

specific target architecture, we manually modified these benchmarks to increase the

opportunities for efficient execution with function inlining and loop unrolling. All

the benchmarks are functionally verified on QCIF1 input data sizes, which is widely

used on mobile devices.
1We used QCIF (176x144) image size for uniformity of benchmarks, and the similar trend appears on

higher resolution images.

141

• Media benchmark: Three mobile media applications are selected: AAC decoder

(MPEG4 audio decoding, low complexity profile), H.264 decoder (MPEG4 video

decoding, baseline profile, qcif) [43], and 3D (3D graphics rendering) [3]. These

benchmarks are optimized for DSPs in the production-quality level and a large por-

tion of the loops have a high potential degree of ILP and are software pipelinable.

• Game physics benchmark: Three common kernels are extractedfrom mobile game

applications [2]. First, lineOfSight plays an important role of separatingvisible

objects and non-visible objects. Sound effects, collisiondetection and other func-

tions involving linear equations often exploit convolution and the conjugate gradient

method. The three kernels mostly consist of high DLP loops.

6.2.2 Baseline Architecture

A SIMD architecture that is based on SODA [59] is used as the baseline SIMD acceler-

ator. This architecture has both SIMD and scalar datapaths.The SIMD pipeline consists of

a multiple-lane datapath where each lane has an arithmetic unit working in parallel. Each

datapath has two read-ports, one write-port, a 16 entry register file, and one ALU with a

multiplier. The number of lanes in the SIMD pipeline can varydepending on the charac-

teristics of the target applications. The SIMD Shuffle Network (SSN) is implemented to

support intra-processor data movement. The scalar pipeline consists of one 32-bit datapath

and supports the application’s control code. The scalar pipeline also handles DMA (Direct

Memory Access) transfers.

142

Scalar Pipeline

Scalar

Memory

Buffer

Bank

7

Bank

0

Bank

1

Bank

2

Bank

3

Bank

4

C

R

O

S

S

B

A

R

RF 0

Swizzle

Network

DMA

Controller

L1

Program

Memory

RF 4

RF 3

RF 1

RF 2

RF 31

RF 30

RF 28

RF 29

FU 0

FU 4

FU 3

FU 1

FU 2

FU 31

FU 30

FU 28

FU 29

Figure 6.1: A traditional 32-lane SIMD accelerator.

6.2.3 Limitations for Current SIMD Accelerators

6.2.3.1 Loop Characterization

Applications typically have many compute intensive kernels that are in the form of

nested loops. Among these kernels, we analyze the availableILP and DLP of the inner-

most loops and find the maximum natural vector width that is achievable. To extract the

maximum degree of ILP, we found theSoftware pipelinableinnermost loops: 1) counted

loop, 2) no subroutine call, and 3) no multiple exits/backedges. Control flows inside the in-

nermost loops are solved using if-conversion. Among the software pipelinable (SWPable)

innermost loops, we also identify theSIMDizableinnermost loops which can utilize DLP.

We apply the conditions used by the Intel compiler [41] to determine if a loop is SIMDiz-

able and the minimum iteration count is set to the maximum available SIMD width (natural

SIMD width).

143

libra/fig/conventional_simd.eps

0%

20%

40%

60%

80%

100%

d
is

p
a
ri
ty

lo
c
a
liz

a
ti
o
n

s
ti
tc

h

s
v
m

tr
a
c
k
in

g

A
v
g

a
a

c

3
d

h
.2

6
4

A
v
g

c
o

n
ju

g
a

te

c
o
n
v
o
lu

ti
o
n

lin
e
O

fS
ig

h
t

A
v
g

Vision Media Game Physics

E
x
e
c
u

ti
o

n
 t

im
e
 r

a
ti

o

high-DLP low-DLP SWPable

0.99 0.83 0.74 0.86 0.87 0.86 0.58 0.85 0.70 0.71 1.00 1.00 1.00 1.00

Figure 6.2: Loop categorization: The components of the bar indicate ratio of execution time in

SWPable loops, low-DLP, and high-DLP SIMDizable loops. Theratio of loop execution time

over total execution time is indicated as a number above eachbar.

6.2.3.2 SIMD Width Variance over Loops

Figure6.2shows the relative execution time of SWPable loops and SIMDizable loops

to total execution time on a simple 1-issue ARM processor. Aswe use a 16-lane SIMD

processor for this experiment, SIMDizable loops with natural SIMD width smaller than

16 are categorized into low-DLP loops. On average, there is asubstantial amount of time

(87%) spent on SWPable or SIMDizable loops as expected. An interesting question here is

how many applications are not well-matched to a wide SIMD accelerator. Unfortunately,

4 of 11 applications are highly dependent on SWPable and low-DLP loops, which means

that not all the lanes can be utilized. For example, traditional SIMD cannot decrease the

execution time of an AAC application more than 60% of the total loop execution time be-

cause around 40% of the time is spent on SWPable loops. In general, the game physics

benchmarks have high levels of data parallelism, vision benchmarks have modest data par-

allelism, and media benchmarks have low degrees of data parallelism. Results in Figure6.2

144

libra/fig/simd_opportunity.eps

Vision Media Game Total

Avg ratio(MEM) 0.44 0.26 0.27 0.32

Avg ratio(MUL) 0.15 0.10 0.22 0.16

ratio of MEM loop 0.93 0.36 0.33 0.54

ratio of Mul loop 0 0.04 0 0.01

(b) (c)(a)

0

0.2

0.4

0.6

0.8

1

Vision Media Game

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e

Performance degradation
@16-way SIMD

16

8

4

2

1
0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

M
u

l
R

a
ti

o

Mem ratio

Loop distribution

lack of Mem units

lack of Mul units

Figure 6.3: Resource utilization: (a) average ratio of dynamic instruction count of expen-

sive instructions and ratio of Mem/Mul dominant loops, (b) loop distribution over ratio of

Mem/Mul, and (c) performance degradation on a SIMD at different number of Mem/Mul

resources.

confirm that a simple SIMD accelerator cannot effectively support the range of mobile ap-

plications. Even with a perfect support for DLP, SWPable andlow-DLP loop execution

result in low utilization of SIMD resources. Therefore, further consideration is required to

fully utilize the SIMD resources on the execution of non-fully SIMDizable loops.

6.2.3.3 Resource Utilization Variance

To maximize the total utilization of computation resources, the number of each re-

source should be decided based on the average fraction of dynamic instructions. While

current CPUs solve these challenges by out-of-order execution of parallel instructions on

multiple execution units, current SIMD architectures cannot solve this problem due to its

homogeneous nature: the datapath of each SIMD lane has the same functionalities, even for

expensive units such as memory and multiply units. These characteristics are unfavorable

in terms of efficiency because not all execution units are active every cycle, and expensive

units are much less utilized (an average of only 32% for a memory unit and 16% for a mul-

145

libra/fig/op_stat.eps

tiply unit (Figure6.3(a))). A traditional solution for this problem is to turn offthe unused

resources by clock/input gating, but this solution does noteliminate leakage power. Power

gating is unlikely a practical solution because idle periods for expensive units tend to be

relatively short.

Another challenge is the diversity of instruction distribution across/inside applications.

Even if we are somehow able to place a specific number of each execution unit based on

average fraction, careful consideration is also required because the fraction varies greatly.

In Figure6.3(a), for example, the ratio of multiply instruction varies from 10% to 22%

across three application domains. We also define a loop to be memory/multiplication de-

pendent if the fraction of memory/multiplication instructions are more than 33% of the

total instructions. Figure6.3(b) shows a distribution of the loops according to the ratio

of memory/multiply instructions. Based on Figure6.3(a) and (b), more than 54% of the

loops in the three benchmark sets highly depend on the memoryinstructions, and therefore,

normal ALU functional units can be idle due to the memory operation bottleneck if only

33% of memory resources exist. On the contrary, multiplication is not the critical perfor-

mance bottleneck if 33% of multiplication resources exist because only 1% of the loops

are multiplication dependent. As a result, the high diversity in the instruction distribution

will make most loops to not be effectively accelerated due tothe lack of enough resources,

or to waste resources due to the excess resources, if the SIMDaccelerator simply allocate

resources based on specific rules such as average fraction orone per four lanes.

146

6.2.4 Insights for the Traditional SIMD

Based on the application analysis, we found several fundamental sources of SIMD inef-

ficiency. First, a traditional wide SIMD accelerator may be over-designed since the overall

performance will be saturated at some point and limited by non-high-DLP loops where the

SIMD accelerator is poorly utilized. Second, lane uniformity makes the SIMD datapath

inefficient due to over-provisioning expensive resources.Third, the high variation in the

resource requirements of loops makes the problem more difficult than simple sharing of

expensive resources would accomplish. A central challengehere is how to decrease over-

provided resources on traditional SIMD accelerators and toovercome the inflexibility in

order to more effectively utilize the hardware.

6.3 Libra Architecture

6.3.1 Overview

The Libra accelerator presented here is a unified accelerator for mobile applications that

allows flexible execution of loops by customizing the configuration adaptive to their key

characteristics. The Libra accelerator is based on traditional SIMD accelerators and has

several important extensions for providing both high energy-efficiency and performance

improvement. First, Libra is composed of a non-uniform lanestructure for power effi-

ciency: only a subset of lanes has expensive but infrequently used execution units. Fur-

thermore, dynamic configurability of logical lanes helps Libra in executing a target loop

in an efficient manner with high utilization. In Libra, a group of logical lanes is executed

147

(a) Program (b) Loop characterization

SIMD Resource
0 15

high DLP, no MulHot Loops

low DLP, no Mul

high DLP, Mul

(c) Dynamic lane mapping

no DLP, Mul

Expensive PE

Basic PE

Figure 6.4: Mapping loops to Libra: (a) identify hot loops, (b) find the available DLP and

resource requirement of each expensive operation, and (c) change the configuration based on

the characteristics of each loop.

in a SIMD manner, where the logical lane is configured by a group of processing ele-

ments (PEs). DLP is exploited in the form of parallel execution of logical lanes, and ILP

is exploited inside each logical lane in a way that each PE execute different operations.

Therefore, Libra is able to flexibly tune the ILP/DLP-support capability by changing the

logical lane configuration.

Figure6.4 shows a conceptual view of the execution of Libra. First, several hot loops

are identified as candidates to be accelerated utilizing theLibra architecture(Figure6.4(a)).

Second, software-pipelinable loops are selected, and the DLP availability is also deter-

mined as discussed in Section6.2.3.1(Figure6.4(b)). In this step, several additional key

characteristics such as the amount of potential ILP in the loopbody and the ratio of expen-

sive instructions are also considered. Finally, a best matched logical lane configuration for

148

libra/fig/concept.eps

each loop is chosen by the compiler (Figure6.4(c)). In Figure6.4, we assume a 16-lane

heterogeneous SIMD including 12 basic and 4 expensive PEs. Based on this, each PE

constitutes one logical lane for full DLP support to executehigh-DLP loops having only

simple instructions, intermediate numbers of PEs form eachlogical lane for ILP/DLP hy-

brid execution to support low-DLP loops or expensive operation-intensive loops, and one

large logical lane for full ILP execution is configured for non-DLP loops. Note that fully

exploiting SIMD parallelism does not always outperform exploiting ILP on heterogeneous

structures. Section6.3.1.1and 6.3.1.2explain the core concept of Libra in detail with

evidence of its effectiveness.

6.3.1.1 Heterogeneity

Heterogeneous lane organization, based on average fraction of resource utilization, is

required in order to enhance power efficiency: all the lanes support simple integer oper-

ations and only a subset of the lanes support expensive operations. When an expensive

instruction is fetched, the accelerator stalls until this subset of lanes generates results for

all lanes, then resumes execution. This structure deliversa high level of power efficiency

due to the expensive resource removal, but significant performance degradation will occur

when executing expensive operation-intensive code. Figure 6.3(c) illustrates the perfor-

mance degradation as the number of multiplier/memory unitsdecreases on a 16-lane SIMD

accelerator. Each bar shows the relative performance normalized to that of the homoge-

neous SIMD when each heterogeneous SIMD has specific number of expensive resources.

From this graph, substantial amounts of performance degradation exist in vision and game

benchmark because they are highly dependent on expensive operations and incur a number

149

0 1 2 3
PE

T
im

e

Lane0

IP
C

=
2
.2

9

A0n A0n+1 A0n+2 A0n+3

Lane1 Lane2 Lane3

A1n A1n+1 A1n+2 A1n+3

A2n A2n+1 A2n+2 A2n+3

M3n

M3n+1

M3n+2

M3n+3

S
ta

ll

0 1 2 3 PE

T
im

e

Lane 0

IP
C

=
4

A0n

A1n

A2n

M3n

0 1

2

3

high DLP, 1 Mul

ADD

MUL

ADD

ADD
A0n+1

A1n+1

A2n+1

A0n+2

A1n+2A0n+3

A1n-1

A2n-1

M3n-1

A2n-2

M3n-2

M3n-3

(a) Example loop (b) Simple resource sharing (c) Logical lane mapping

Figure 6.5: Dynamic configurability on a 4-lane heterogeneous SIMD (lane 3 has a multiplier):

(a) a simple high-DLP loop with 1 multiply, (b) performance degradation due to stalls during

multiply execution, (c) logical lane formation removes stalls by instruction pipelining.

of stalls to handle these operations. However, media benchmarks are not highly affected by

the proportion of these expensive resources because the performance is already constrained

by low DLP.

6.3.1.2 Dynamic Configurability

Dynamic configurability of lanes helps the heterogeneous SIMD accelerator in dealing

with the aforementioned problems. One logical lane can consist of one PE for highly

SIMDizable loops with no expensive instructions, and also consist of multiple PEs for

non/low-SIMDizable loops or loops having expensive instructions. The resulting SIMD

width is decided by the number of logical lanes and each logical lane executes the same

instruction stream in lockstep. Inside a logical lane, ILP is exploited to use multiple lanes

in parallel, and therefore it can efficiently distribute instructions between simple lanes and

expensive lanes.

150

libra/fig/sharing_example.eps

The effectiveness of dynamic lane mapping can be explained by the simple following

performance equation. In the equation, we compare the totalperformance of the simple

SIMD and the Libra SIMD by the metric of IPC (instruction per cycle). The IPC of SIMD

can be calculated by the multiplication of IPC of one lane (IPClane) and the minimum of

the number of PEs (NSIMD) and the available degree of DLP (NDLP) of the target loop

(Equation (6.1)). Similarly, the IPC of Libra can be the multiplication of IPC of one logical

lane (IPClogical lane), consisting ofm PEs, and the minimum of the number of logical lanes

(NSIMD

m
) and the degree of DLP of the loop (Equation (6.2)). Therefore, when executing

non/low-DLP loops, Libra can easily outperform the basic SIMD because it only requires

better performance of a logical lane than that of a PE, and it is always true as a logical

lane exploits ILP with multiple PEs inside(Equation (6.3)). Dynamic configurability is

also able to address the performance degradation problem onthe heterogeneous SIMD.

When executing high-DLP loops, Libra outperforms SIMD whenthe IPC of a logical lane

is higher than that ofm PEs. Although the ILP performance is normally inferior to DLP

performance because of its dependences and complexity, Libra can frequently be better due

to the heterogeneity. Figure6.5(a), (b) and (c) shows the superiority of Libra. Figure6.5(b)

and (c) show the execution of a simple high-DLP loop having a multiply instruction on

both the simple SIMD and Libra which have one multiplier on the PE 3. In this example,

the IPC of SIMD is less than the IPC of Libra when one large logical lane is configured due

to a number of stalls.

151

IPCSIMD = min(NSIMD, NDLP)× IPClane (6.1)

IPCLibra = min(
NSIMD

m
,NDLP)× IPClogical lane (6.2)

IPCLibra > IPCSIMD,

when

IPClogical lane > IPClane, if NSIMD

m
> NDLP

IPClogical lane > m× IPClane, if NSIMD

m
< NDLP

(6.3)

6.3.2 Microarchitectural Details

The Libra architecture with eight PE groups (32 PEs) is shownin Figure6.6(a). Differ-

ently from the traditional SIMD, the Libra datapath consists of 2 groups of clusters, which

can be configured to create logical SIMD lanes of 2, 4, 8, and 16PEs based on the loop

characteristics. Each of the clusters is composed of 4 PE groups. The SIMD controller

performs the role of managing the logical lane status to exploit SIMD parallelism, while

the thread controller manages the ILP-exploiting method inside the logical lane. Each PE

group contains 4 PEs. Each of the PEs has an FU and a register file, which can be thought

as one lane of the traditional SIMD. Only one of the PEs in a PE group has a multiplier

while another has a memory unit. Differently from the traditional SIMD, each PE group

also has two kinds of reconfigurable interconnects inside and across PE groups in order to

achieve flexible configuration of logical lanes.

Key features of Libra architectures are as follows:

Scalability: The resources are fully distributed including FUs, register files, and inter-

152

Bank

7

Bank

0

Bank

1

Bank

2

Bank

3

Bank

4 C
ro

s
s
b
a
r

RF 0

S
w

iz
z
le

N
e
tw

o
rk

RF 15

RF 14

RF 1

FU 0

FU 15

FU 14

FU 1

Loop Configuration buffer

RF

(4n)

FU

(4n)

Int

RF

(4n+1)

FU

(4n+1)

Int+Mem

RF

(4n+2)

FU

(4n+2)

Int+Mul

RF

(4n+3)

FU

(4n+3)

Int

4x8

Crossbar

(4(n-1))

(4(n+1))

(4(n-1)+1)

(4(n+1)+1)

(4(n-1)+2)

(4(n+1)+2)

(4(n-1)+3)

(4(n+1)+3)

Loop Config.

PE Group N

RF 16

RF 31

RF 30

RF 17

FU 16

FU 31

FU 30

FU 17
In

tr
a

-g
ro

u
p

C
o

n
fi

g
u

ra
b

le
In

te
rc

o
n

n
e
c
t

In
te

r-
g

ro
u

p
C

o
n

fi
g

u
ra

b
le

In
te

rc
o

n
n

e
c
t

Cluster 1

Cluster 0 Cluster 0

SIMD

controller

Thread

controller

RF index bits Intra-group

Interconnect

Index bits

Opcode Inter-group

Interconnect

Index bits

RF 2 FU 2

RF 3 FU 3

RF 0 FU 0

RF 1 FU 1

RF 6 FU 6

RF 7 FU 7

RF 4 FU 4

RF 5 FU 5

RF 10 FU 10

RF 11 FU 11

RF 8 FU 8

RF 9 FU 9

RF 14 FU 14

RF 15 FU 15

RF 12 FU 12

RF 13 FU 13

G
ro

u
p

0
G

ro
u

p
1

G
ro

u
p

2
G

ro
u

p
3

PE (4n)

PE (4n+1)

PE (4n+2)

PE (4n+3)

Cluster ClusterCluster Cluster

(a) (b) (c)

(d)

Full ILP Hybrid Hybrid Full DLP

Intra-group

Interconnect

Inter-group

Interconnect

Out

Out

Out

Out

P
ro

v
id

e
a

lo
o

p
s

c
h

e
d

u
le

L
o

o
p

e
x
e

c
u

ti
o

n
c

o
n

tr
o

l

Group 0

Group 1

Group 2

Group 3

Instruction Cache SIMD controller Thread controller

Figure 6.6: The 32-PE Libra architecture: (a) a 2-cluster Libra accelerator, (b) a cluster, (c) an

example of a single PE group: PE 1 supports memory operation and PE 2 supports multiply

operation, and (d) execution modes.

connections. PE groups have dense interconnections insidebut each PE group is sparsely

connected with neighbors. As a result, area and power costs increase approximately pro-

portional to the number of resources, which makes Libra as scalable as a simple SIMD.

Polymorphic Lane Organization: PE groups can be aggregated to form a larger log-

ical lane in order to exploit the existing ILP inside the loopbody, or be split into multiple

small logical lanes in order to exploit DLP over loop iterations.

Resource Sharing:In heterogeneity, the major challenge is how to determine the num-

ber of expensive resources and how to efficiently share them between logical lanes when

153

libra/fig/libra_arch_thesis.eps

necessary. To flexibly handle this, we place the expensive resources based on the aver-

age utilization and provide a sharing mechanism between them in two categories. A more

detailed description is provided in Section6.3.3.3.

Simple Multi-threading Mechanism: Even though a logical lane provides a number

of parallel resources, efficient use of the available resources is limited due to the low ILP of

the loopbody. Therefore, we extended the ILP into loop-level parallelism through modulo

scheduling [73]. Modulo scheduling generally provides a decent performance improvement

by parallelizing instructions over loop iterations and hiding long latency between back-to-

back instructions. However, several Libra specific features, such as SIMD capability and

fully-distributed nature, diminish the effectiveness of modulo scheduling. To compensate

for this, simple static multi-threading with list scheduling is proposed in Section6.3.4.

6.3.2.1 PE Group

A detailed illustration of a single Libra PE group is provided in Figure6.6(c). A PE

group consists of four PEs each with a 32-bit FU and a 16-entryregister file with 2-read/1-

write ports (write ports can be added to support threading).Integer arithmetic operations

are supported in all four FUs but multiply and memory operations are available in only

one FU per PE group (PE1 for memory and PE 2 for multiplicationin Figure 6.6(c)).

The FUs inside are modified to connect with each other with a dense 4x8 full crossbar

network for passing data between the FUs without writing back to the RF. This allows the

PE groups to exploit ILP in a distributed nature. In order to retain scalability, the Libra

architecture has a simple and fully distributed across-PE group interconnect. Only FUs

are connected between the corresponding neighbors in adjacent PE groups. In addition to

154

these components, a loop configuration buffer is added to store instructions for modulo/list

scheduled loops. The buffer is a small SRAM that saves the configuration information

including instructions, register addresses and interconnect index bits of the current loop.

The interconnect between the loop buffer and SIMD/Thread controllers in the cluster is

used to transfer instructions for executing loops. The hardware components and execution

mechanism for SIMD/ILP support is explained in detail in Sections6.3.3and 6.3.4.

6.3.2.2 Cluster

A cluster is a high-level basic unit that consists of four PE groups and several additional

features for flexible loop execution support: the SIMD controller and the thread controller.

The SIMD controller is a small controller to manage the logical lane organization inside

the cluster, including the number of logical lanes and the SIMD width of memory transfer.

It receives the information from the instruction cache. In addition, the SIMD controller

also gets the configuration for one logical lane from the instruction cache and transfers it

to each PE group. A thread controller is responsible for executing loops. It also gets the

information about which mode is selected from the instruction cache and orchestrates the

loop execution. When modulo scheduling is selected, it justexecutes the loop sequentially,

and, when multi-threading is selected, it executes the loopin the order of the thread se-

quence table. The information is statically set during compile time and is fetched from

the instruction cache. Multiple clusters can execute one large loop or can execute multiple

parallel loops separately.

155

6.3.2.3 Configuration Process

Loop execution of Libra can be divided into two stages: configuration and execution.

Configuration stage is forming logical lanes and sending configuration bits to all the loop

buffers of each PE-group. For every loop, the instruction cache contains both logical lane

organization information and configuration bits for one logical lane. The SIMD controller

gets these information from the instruction cache and then sends the configuration bits to

the loop buffers of the PE groups based on the logical lane configuration. The thread con-

troller also gets the information about the execution mode and sequence table, if required,

from the instruction cache. This process takes 3-5 cycles onaverage before the loop buffer

receives the configuration bits for the first cycle and the time varies depending on the size of

the logical lane. The thread controller starts the execution when the first cycle configuration

is ready on all the loop buffers.

6.3.2.4 Memory Support

The memory operation of the Libra system needs support for both scalar and SIMD

memory access. For scalar memory access, the local memory has the same number of

banks as the number of total memory units. For SIMD access, the local memory also needs

to support contiguous access across all logical lanes in parallel. Therefore, for the 32-PE

Libra system, a 64kB local memory is used, consisting of 8 memory banks where each

bank is a 2-wide SIMD containing 1024 32-bit entries. As shown in Section6.2.3.1, all

memory transfers have the same strides over iterations in SIMDizable loops. Therefore,

when several logical lanes execute the same instructions for SIMDized loops, a single ad-

156

dress calculation followed by a wide memory operation is performed. The data is then

distributed to different logical lanes. Multiple memory units inside a logical lane need to

generate their own memory addresses. The SIMD width of each access and the number of

different addresses are determined by the logical lane configuration, which is saved in the

SIMD controller.

6.3.2.5 Communication with a Host Processor

The Libra architecture is a co-processor similar to a GPU andinterfaces with a host

processor such as ARM using memory. The data transfer is performed through a standard

AMBA bus along with a DMA.

6.3.3 Execution Model

This section describes the three different execution modesof the Libra architecture,

which are full ILP, hybrid, and full DLP modes. We first explain how each mode operates

and then provide proof of how the three modes can effectivelysupport different kinds of

loops. The example provided assumes a four-PE group clusteras shown in Figure6.6(d).

6.3.3.1 Full ILP Mode

In this mode, the Libra architecture decides to use all the PEs as one large logical lane.

The SIMD controller spreads different configuration informations into the loop buffer of

each PE group. The execution mechanism is the same as the loopacceleration technique of

common VLIW solutions but the performance might be slightlyworse than previous solu-

tions because the Libra architecture sacrifices both centralized resources and dense across-

157

PE group interconnects. Applications which have a high proportion of non-SIMDizable

loops mostly utilize this mode for acceleration.

6.3.3.2 Hybrid Mode

When a loop is SIMDizable, a cluster has the possibility of either having several small

logical lanes or forming a large logical lane. In this case, the Libra architecture may choose

to use a hybrid mode with a cluster having at least two logicallanes, each having at least one

PE group. With smaller logical lanes, the performance usually increases since SIMDization

provides an opportunity to increase performance by the sameamount as the degree of DLP.

Also the routing overhead decreases with small logical lanes, further boosting performance.

Figure6.6(d) also has two examples of hybrid mode execution. The SIMD controller dis-

tributes the same configuration information and live valuesto the loop buffer and RFs of

each logical lane. When a loop lacks sufficient level of DLP orhas a moderate proportion

of expensive resources, hybrid mode can achieve the best performance.

6.3.3.3 Full DLP Mode

When a loop is highly data-parallel but has a low degree of ILP, the resources (PEs)

cannot be effectively utilized because the degree of ILP in the loop cannot meet the min-

imum degree of the PE group. To compensate for the lack of ILP,the Libra architecture

supports separation of PE groups, forming two smaller logical lanes. As a result, SIMD

parallelism can make up for insufficient ILP in the loops (also in Figure6.6(d)). Hence,

a cluster has a total of eight logical lanes executing in lockstep. Distinct from loops with

a small number of instructions, loops with unbalanced resource usage can also be well

158

matched to a full DLP mode, unlike the hybrid mode. As mentioned in Section6.2.3.3, the

hybrid mode cannot fully utilize resources in a PE group since performance of loops with

a high proportion of memory operations are constrained by the memory unit.

The major challenge in full DLP mode is determining how to share expensive resources

between two small logical lanes in a PE group. The first category for resource sharing is

expensive but infrequently used functionalities such as the multiply operation. As shown

in Figure6.3(a), the average ratio of multiply is as low as 16% and only 1% of loops are

multiply-dominant, and therefore simple sharing between two half-PE groups does not in-

cur performance degradation. The second category is frequently used functionalities such

as memory operations as shown in Figure6.3(a). These instructions are already a perfor-

mance bottleneck and simple sharing cannot enhance the overall performance. Therefore,

this shared resource should lead to double the performance in a lightweight manner.

We accomplish these requirements using simple hardware modifications as shown in

Figure6.7(a). One PE group is mapped into two small logical lanes with (PE 0, PE 1) and

(PE 2, PE 3). Based on the application analysis, only PE2 supports multiply operations and

PE 1 supports memory operations. To ensure that both logicallanes support all functionali-

ties, PE 0 and PE 2 share the multiplier and PE 1 and PE 3 share the memory unit. To share

the multiplier, PE 0 connects input and output ports to the multiplier of PE 2. A memory

controller in PE 1 is shared with PE 3 in a different manner. When the memory controller

receives a memory operation command, only PE1 communicateswith the memory with

double bandwidth and send/receives the data of PE 3 through abypass logic.

To execute the same instructions in both logical lanes usingthe above modifications,

the following processes are required:

159

src0 src1
FU 2

ALUShifter
Mul

src0 src1
FU 0

ALUShifter

src0 src1
FU 1

ALUShifter Mem

src2

src0 src1
FU 3

ALUShifter Data

bypass

M
e

m
o

ry

Address

Data

2x bandwidth

Data

Logical lane 0

Logical Lane 0

A B

C

D

E

A0
B0

C0

D0

E0

A1
B1

C1

D1
E1

Load Load

Mul

Add

Store

cycle

1

2

3

4

5

6

7

8

9

10

(C1)

PE0 PE1 PE2 PE3

(a)

(b) (c)

Resource Conflict:

Can t schedule

multiply

instruction

A0 A1 in
B0 B1 in A1 in

B1 in

A1, B1 data bypass

Logical lane 1

Logical Lane 1

Figure 6.7: Resource sharing support: (a) hardware modification: PE 0 and 2 share the mul-

tiplier and PE 1 and 3 share the memory unit, (b) example loop body dataflow graph, and (c)

actual schedule: 1-cycle difference between lanes for resource contention avoidance.

• The compiler must not schedule multiply instructions in a row, because the multiplier

needs a spare cycle after the cycle in which the multiply instruction is scheduled in

order to handle the operation of the other logical lane. However, other instructions

can be placed since they have no resource or writeback contention. Memory in-

structions can be scheduled without any restrictions as thehardware supports double

bandwidth.

• The SIMD controller has the instruction configuration only for one logical lane. The

controller transfers the same configuration into the loop buffer of both logical lanes

with one-cycle difference to avoid resource contention.

160

libra/fig/resource_sharing_thesis.eps

Figure6.7(b) is an example of a full DLP mode execution. For a simple dataflow graph

of the loop body, the latency of the load and multiply operations are set to 4 and 2. Due to

the small size and high memory dependent characteristic of the loop body, a full DLP mode

is selected and each PE group is separated into two logical lanes. Identical schedules based

on two PEs are transferred into the loop buffer in the PE groupwith one cycle difference

between logical lane 0 and logical lane 1 (see Figure6.7(c)). Different memory operations

can execute in the same cycle as shown in cycle 2 but differentmultiply instructions cannot

be scheduled at cycle 7 because logical lane 1 needs to use themultiplier in that cycle.

6.3.4 Improving ILP Performance

Although modulo scheduling has proven to be an effective solution to exploit ILP over

loops, it is not always the best solution because 1) originaliteration count is divided by DLP

capability, and therefore, the smaller iteration count maynot compensate for the prolog and

epilog overheads even in moderate DLP loops [79] and 2) sparse interconnection between

PEs and no centralized RFs make the quality of the schedule worse. As a result, we suggest

supporting list scheduling [7] of the loop body as another option to exploit ILP. When either

there is not much total ILP in the loop, or the hardware cannotbenefit from increased ILP,

list scheduling can outperform modulo scheduling since it does not incur the overhead of

modulo scheduling: handling modulo information such as staging predicates.

The remaining problem of adapting list scheduling to hide idle cycles comes from long

latency instructions such as multiply and memory operations. To solve this problem, we

propose a simple multi-threading scheme with fast context switching. Assuming the Libra

161

architecture supports two threads, a loop with large numberof iterations is divided into two

threads with identical loops with half number of iterations. The two threads are then exe-

cuted on the same logical lane. To make the scheme simple, a switch of running threads is

allowed only when all the PEs are idle. Each thread has its ownregister file space divided

by the number of threads, similar to what a GPU does, and therefore no context change

overhead exists. The schedule with multiple threads is statically decided at compile time.

The multi-threading technique is simple but highly effective and is a realistic solution be-

cause of the following two reasons: 1) low register pressure: loops with small number of

instructions have a small amount of data to save in the register file and list scheduling does

not require additional register overhead, and 2) a high chance of hiding latency: this tech-

nique is applied only to SIMDizable loops executing on smalllogical lanes, thus increasing

the probability that all FUs are idle.

Although multi-threading looks promising, the Libra architecture faces a number of

challenges in reality. There are three essential challenges and we present the lightweight

solutions incorporated in the Libra architecture:

Context Saving:The fully distributed nature of Libra allows temporal data to be saved

in the register files as well as the output buffer in order to directly transfer the data between

FUs. As a result, the output buffer data of each thread shouldalso be saved in addition

to the register files. The register file is divided into the same number of threads. The

parts are then addressed by the thread ID. However, the output buffer is originally a simple

flip-flop without addressing support. Therefore, it is substituted by ann-entry register file

addressed by thread ID(n: the number of threads supported). The output data can thus

remain unchanged when another thread is executed.

162

Writeback Contention Avoidance: Handling multi-latency instructions is not a simple

problem if the output data from a multi-latency instructionis generated when the other

thread is executing. To solve this problem, multi-latency FUs need to save the thread ID

when the input is issued and be connected to the output buffer(small register file) with

an additional port addressed by the original input thread ID. Since only a single additional

port is required for multiple FUs with the same latency, the overhead is negligible. For the

Libra architecture, only two ports are added to the whole PE group to support a multiplier

and a memory controller.

Code Bloat: Since multiple threads are scheduled at compile time, the loop buffer of

each PE group needs to contain the entire schedule information of all threads for each cycle.

This causes the code bloat problem, requiring an increased loop buffer size which incurs

a power overhead. However, an important observation to point out is that the schedules

of different threads are essentially the same, just with different execution times. We can,

therefore, solve the problem by 1) saving the schedule configuration of only one thread and

2) adding a simple sequence table which contains a thread ID and the corresponding loop

buffer address pointing to the actual schedule configuration. The thread controller contains

the basic information for supporting multi-threading and the sequence table.

Figure6.8shows an illustration of the Libra architecture with an emphasis on modified

features(shaded components) to support multi-threading,assuming that the architecture

supports execution of two threads. The loop buffer containsconfiguration information for

only one thread as shown in Figure6.8(c). Therefore, its size is the same as when one thread

is executed. The thread controller in the cluster has a tiny sequence table containing the

actual thread ID and the address of the configuration saved inthe loop buffer. Figure6.8(b)

163

Thread Controller

RF

loop buffer

Schedule time

Thread Id

src0 src1
FU 2

ALUShifter
Mul

Out

Thread Id
Thread Id-added

schedule

PE 2

Group

Cluster

(a) (b) (c) (d)

Cycle Thread Id
Loop buffer

address

0 0 0

1 0 1

2 1 0

3 1 1

4 0 3

5 0 4

6 0 5

7 1 3

8 1 4

9 1 5

Original

Cycle

Original

Configuration

0 A

1 B

2 NOP

3 C

4 D

5 E

Cycle
Thread-aware

configuration

0 A0

1 B0

2 A1

3 B1

4 C0

5 D0

6 E0

7 C1

8 D1

9 E1

Figure 6.8: Multi-threading support & compiler support: (a) hardware modification: shaded

components are modified, (b) sequence table in the thread controller, (c) loop buffer, and (d)

final multi-threaded schedule.

depicts an example sequence table for two thread execution.Since two threads are executed

in this example, the space of RF is divided by two and the output buffer is a 2-entry register

file. By reading the sequence table from cycle 0 to cycle 9, thethread controller transfers the

thread ID and loop buffer address for each cycle to the loop buffer. From this information,

the loop buffer generates the final configuration by reading the appropriate configuration

and adding a thread ID to the register file address (see Figure6.8(d)). The multiplier gets

the thread ID and has a separate data bus due to the multi-latency functionality. When the

original configuration B has the multiply operation for FU 2,the result data from thread

0 and B configuration can be stored in the output buffer at cycle 2 without any writeback

contention.

6.3.5 Decision Flow

In order to maximize the performance and resource utilization, the Libra architecture

depends on an intelligent selection of the configuration between the number of logical lanes

164

libra/fig/multi_thr.eps

Compiler Front-end

Generic C

program

Resource allocation

Modulo

scheduling

List scheduling

w/ multi-threading

Code Generation

Executable

Loop-specific

optimization

Compiler

Back-end

Classifying the loop

Hardware

Information

Determine

SIMDizability

Set SIMD mode

Set ILP mode

Profile

Information

Figure 6.9: Decision flow of the Libra architecture.

and the size of each logical lane. The system flow is shown in Figure6.9. Applications

run through a front-end compiler, producing a generic Intermediate Representation (IR),

which is unscheduled and uses virtual registers. The compiler also has a high-level machine

specific information, including the number of resources, size of register files, the size of

a cluster, and the number of supported micro-threads. In addition to this, the compiler

needs to have profile information about the iteration countsof loops and memory alias

information. Given the IR, hardware and profile information, the compiler categorizes

loops into two basic types: SWPable and SIMDizable loops. The compiler then decides

the logical lane configuration of a cluster for each loop (resource allocation). If a loop

is not SIMDizable but only SWPable, the entire cluster is assigned to the loop. If a loop

is proved as SIMDizable, the compiler finds the best configuration based on the provided

information such as average iteration count, instruction and dependency information of the

loop. Briefly speaking, the compiler tries to fully exploit SIMD parallelism by securing the

165

libra/fig/decision_proc.eps

maximum number of logical lanes without performance degradation due to the instruction

imbalance. However, it also performs broad design space explorations by changing the

number of logical lanes. This is because 1) sometimes the effectiveness of DLP is not clear

when the divided trip count is small and the instruction number is not too small, and 2)

the scheduler uses a heuristic way to generate the modulo schedule. After deciding the

lane configuration, the compiler chooses the method to exploit ILP inside the logical lane.

Finally, the compiler performs modulo scheduling or list scheduling. It then generates the

final schedule and the configuration information.

6.4 Experiments

6.4.1 Experimental Setup

Target Architecture To evaluate the effectiveness of the Libra architecture, three ex-

ample implementations with different sizes are used: 16 (one cluster, four PE groups),

32 (two clusters), and 64 (four clusters) PEs. Four FUs per cluster are able to perform

load/store instructions to access the data memory with four-cycle latency while another

four FUs support two-cycle pipelined multiply instructions. The Libra is compared against

two other accelerators in our experiment. We generate 4(cluster)×4(PE), 8×4, and 16×4

heterogeneous VLIWs having the same organization of PEs as corresponding Libra archi-

tectures. The wide SIMD architecture as discussed in Section 6.2.2is used and the number

of SIMD resources can vary from 16 to 64, having the same heterogeneous FU structure.

166

Target Applications As discussed in Section6.2.1, the evaluation is conducted for

subsets of three domains. Max 20 top loops having a high execution time are selected for

vision and game physics benchmarks, and 144 loop kernels, varying in size from 4 to 142

operations, are extracted from the media benchmark becausethe ratio of execution time to

the total execution time of the top 20 loops is too small. Highnumber of loops in the media

benchmarks and several major loops in the vision benchmarkshave conditional statements,

while the gaming benchmarks do not have them. In order to eliminate all internal branches,

we applied if-conversion for these loops.

Compilation and Simulation The industrial tool chain developed by SAIT [5] is used

for compilation and simulation of Libra. The IMPACT compiler [71] is used as the fron-

tend compiler. Basic list scheduler [7], edge-centric modulo scheduling (EMS) [73]-based

modulo scheduler, and simple loop-level SIMDization scheduler using a SODA-style [59]

wide vector instruction set are implemented in the backend compiler. Based on the original

modulo scheduler, we developed a scheduler that can supportboth flexible execution of Li-

bra and list scheduling with static multi-threading technique. The performance is generated

by the cycle-accurate code schedule of loops, accounting for the configuration overhead.

Performance MeasurementFor fair comparison, both list scheduling and modulo

scheduling are applied and the better performing schedule is picked for the SIMD accel-

erator. For VLIW, loop unrolling is applied when a loopbody size is too small and its

resources may not be fully utilized. Multi-threading technique of Libra is also not applied

for a fair comparison of the performance of the three architectures. This issue is discussed

in Section6.4.6.

167

0.53

(a)

(b)

10.814.7 8.8
10.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

disparity localization stitch svm tracking AAC 3D H.264 lineOfSight convolution conjugate

Vision Media Game Physics

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

SWPable (non-SIMDizable) SIMDizable

0

0.05

0.1

0.15

0.2

0.25

0.3

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

Vision Media Game
Physics

Avg

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

0
1
2
3
4
5
6
7
8
9

10

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

disparity localization stitch svm tracking AAC 3D H.264 lineOfSight convolution conjugate

Vision Media Game Physics Avg

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

Figure 6.10: Performance/Energy comparison of 32-PE Libra/SIMD/VLIW architectures: (a)

total loop execution time and (b) energy consumption. All the data are normalized to that of

a simple in-order core.

Power/Area MeasurementsAll architectures are generated in RTL Verilog, synthe-

sized with the Synopsys design compiler, and place-and-routed with the Cadence En-

counter using IBM SOI 45nm regular Vt standard cell library in slow operating conditions

with a 0.81V operating voltage. Synopsys PrimeTime PX is used to measure the power

consumption based on the utilization. The Artisan Memory Compiler is used to determine

the area and the power of the memory operation using a 0.81 Volts operating voltage. The

target frequency of Libra is 500MHz2 similar to the latest mobile GPUs.

6.4.2 Performance/Energy Evaluation

We compared the performance of a 32-PE Libra architecture with identically sized

VLIW (8×4) and SIMD(32-wide) architectures. Performance results are measured as the

total loop execution time when each loop is scheduled by the method the target architecture

2The FO4 delay of this process is about 13ps.

168

libra/fig/exectime_energy.eps

supports. Figure6.10(a) shows a plot comparing the performance of the three architectures

normalized to the simple 1-issue inorder core. For individual benchmarks, the graph also

indicates the fraction of two different loop categories: SIMDizable and SWPable loops.

For benchmarks with a high ratio of non-SIMDizable loops such as stitch, AAC, and

lineOfSight, SIMD shows severe performance degradation, whereas VLIW and Libra show

a fair performance improvement. Libra outperforms even VLIW because it can accelerate

SIMDizable regions more efficiently. On the other hand, boththe SIMD and Libra deliver

a substantial performance improvement for benchmarks withmostly SIMDizable loops,

while VLIW suffers. The Libra also shows better performancethan SIMD because it ef-

fectively accelerates applications having low-SIMDizable loops (3D, H.264) and its ILP

capability also helps Libra to adequately tolerate the lackof expensive resources for high-

SIMDizable loops (convolution, conjugate). Overall, Libra shows the best performance in

all benchmarks except H.264 benchmark. This is because of the slightly lower performance

gain on SWPable regions due to its distributed nature. Amongaverage result of each do-

main, performance gain of Libra is the highest on game physics. As a result, Libra shows

a performance gain of 2.04x and 1.38x over SIMD and VLIW, respectively.

Despite using the same amount of computation resources, performance-only compari-

son may not be fair due to the different interconnection strategies among the architectures.

An energy comparison may yield a better comparison considering both performance and

hardware overhead. Figure6.10(b) shows the energy consumption of three architectures

and the results are also normalized to the 1-issue core. Thisgraph shows a similar trend

to Figure6.10(a). On average, even though SIMD added extra logics for handling sharing

resources (Figure6.5(b)), VLIW shows 16% more power consumption because of bigger

169

0

5

10

15

20

25

30

35

40

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

disparity localization stitch svm tracking Avg

Vision

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

0
2
4
6
8

10
12
14
16
18
20

16 32 64 16 32 64 16 32 64 16 32 64

AAC 3D H.264 Avg

Media

0
5

10
15
20
25
30
35
40
45
50

16 32 64 16 32 64 16 32 64 16 32 64

lineOfSight convolution conjugate Avg

Game Physics

0

5

10

15

20

25

16 32 64

Average

Figure 6.11: Scalability of Libra/SIMD/VLIW architecture s: the Libra architecture is highly

scalable for most of benchmarks, while SIMD and VLIW cannot be scalable for several bench-

marks.

RFs and complex control logics, and Libra shows 20% more power consumption due to

more interconnects and Libra-specific overhead such as a loop-buffer and a thread con-

troller. Based on these power differences, the Libra saves 38% and 19% energy compared

to SIMD and VLIW, respectively3. As a result, the Libra architecture shows a fair amount

of performance improvement in addition to high energy efficiency by providing a more

suitable acceleration scheme for each loop.

6.4.3 Scalability

Figure6.11shows the performance of each architecture normalized to a 1-issue core

for different sizes across three benchmark domains. The number of PEs varying from 16 to

64 are shown on the X-axis. The results show high scalabilityof the Libra architecture in

all benchmark domains.

In the vision and game domain benchmarks, applications are not specially optimized

3Figure6.10(b) does not mean that a simple 1-issue core is 3x energy efficient than Libra because the

performances are different. For a performance-equivalentcomparison, Libra is much more efficient than the

simple core.

170

libra/fig/libra_scalability.eps

to the SIMD-style architecture, but the performance is highly scalable as the number of

PEs increases because most loops are simple and highly SIMDizable. Only the stitch is

barely scalable because the application is mostly sequential as the dominating loop has

only a small number of iterations. In the media domain, the Libra accelerator performance

also fairly increases as it scales to more PEs. Compared to other architectures, VLIW

performance results are frequently saturated because modulo scheduling of a big size loop-

body(often unrolled) on a large number of PEs is too complex to exploit ILP, while Libra

solves this problem by scheduling a small loopbody in a smalllogical lane and applying

the same schedule to multiple logical lanes. The SIMD results are also constrained by

lack of expensive resources and program complexity. To summarize, the Libra architecture

can increase its performance with larger resources when theapplication has enough total

ILP/DLP parallelism.

(a) (b) (c)

1

1.2

1.4

1.6

1.8

2

16 32 64

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

Resource

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64

R
e
la

ti
v
e
 E

n
e
rg

y

Resource

0

0.2

0.4

0.6

0.8

1

1.2

homogeneous
SIMD

heterogeneous
Libra

R
e
la

ti
v
e
 p

o
w

e
r

Extra D-mem Control RF FU

Figure 6.12: Performance/energy improvement of the heterogeneous Libra over the same

sized homogeneous SIMD: (a) performance, (b) energy consumption, and (c) power break-

down with five categories: FU, RF, control logic, memory, andarchitecture specific additional

logic.

171

libra/fig/power_efficiency.eps

6.4.4 From the Homogeneous SIMD to the Heterogeneous Libra

Section6.4.2and 6.4.3evaluate three different architectures consisting of the same

computation resources. The key question here is how much Libra surpasses the traditional

SIMD architecture. To answer this question, we compared theperformance and energy

consumption of the heterogeneous Libra and the homogeneousSIMD. The heterogeneous

Libra has a quarter of memory/multiply resources and the homogeneous SIMD has the

same number of memory/multiply resources as the total number PEs. Figure6.12shows the

average of relative performance and energy consumption of Libra over SIMD for different

sizes. In terms of performance, Libra outperforms SIMD and the difference increases in

proportion to the size (Figure6.12(a)). This is because 1) the lack of expensive resources

can be effectively compensated for by forming logical lanesand 2) the lane utilization of

the traditional SIMD is lower for a larger size due to the program characteristics.

In terms of the energy consumption, Libra still shows similar results as its performance

improvement because significantly less computational units can reduce the overall power

overheads, and the result is better on larger size. For example, the 32-PE heterogeneous

Libra consumes 11% more power than the same size homogeneousSIMD due to 12%

power savings on FUs with 23% overheads (Figure6.12(c)). On average, Libra shows

101%, 71%, and 56% energy consumption compared to the traditional SIMD.

6.4.5 Acceleration Mode Selection

Our experiments so far have focused on the overall performance of the Libra architec-

ture compared to other architectures, showing considerable performance enhancement. In

172

this section, we evaluate the effectiveness of flexible lanemapping to answer the question if

Libra really needs to provide various intermediate sizes oflogical lanes between SIMD and

VLIW. Figure 6.13(a) shows the execution time distribution at different logical lane sizes

for the three application domains on the 16, 32, and 64-PE Libra. On average, all available

modes are used for considerable fraction of time and no dominating logical lane size exists,

which proves the effectiveness of flexible lane mapping. Furthermore, the lane sizes are se-

lected adaptive to the domain characteristics. For vision benchmarks, 2-PE small sized

logical lane is dominant because most loops are small and memory operation dominant. In

media benchmarks, large logical lanes are used for a high fraction of the execution because

of lack of DLP. Game physics uses a 4-PE logical lane in substantial fraction to execute

high-DLP loops with some ILP. Figure6.13(b) compares the normalized performance of

Libra to that when only one specific logical lane configuration is allowed to execute bench-

marks. The results of this graph further prove the effectiveness of flexibility by showing

that any fixed mode execution cannot win over the flexible execution.

(a) (b)

0%

20%

40%

60%

80%

100%

16 32 64 16 32 64 16 32 64 16 32 64

Vision Media Game
Physics

Avg

2 4 8 16 32 64

0

5

10

15

20

25

30

16 32 64 16 32 64 16 32 64 16 32 64

Vision Media Game
Physics

Avg

N
o

rm
a
li

z
e
d

 P
e
rf

o
rm

a
n

c
e

Libra 2 4 8

16 32 64

Figure 6.13: Mode selection: (a) execution time distribution at different logical lanes, (b)

flexible vs. fixed execution.

173

libra/fig/mode.eps

6.4.6 Multi-threading Effectiveness

As discussed in Section6.3.4, a simple multi-threading functionality is added to Libra.

In this section, we evaluate the effectiveness of this functionality. Figure6.14(a) shows the

performance improvement on SIMDizable loops only, since this technique can be only ap-

plied to SIMDizable loops. On average, a performance gain of12-16% is achieved, and this

is up to 28% more effective in vision benchmarks because the majority of loops are small

and multi-threading is most effective in small size logicallane mapping. Figure6.14(b)

shows the execution time distribution for different logical lane sizes when multi-threading

is applied. Compared to Figure6.13(a), a substantial amount of 2 and 4-PE logical lane ex-

ecution is substituted with multi-threading. Overall, multi-threading is effective for small

logical lanes when executing SIMDizable loops.

0%

20%

40%

60%

80%

100%

16 32 64 16 32 64 16 32 64 16 32 64

Vision Media Game
Physics

Avg

64_thr 32_thr 16_thr 8_thr 4_thr 2_thr
64 32 16 8 4 2

1

1.05

1.1

1.15

1.2

1.25

1.3

163264 163264 163264 163264

Vision Media Game
Physics

Avg

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e

(a) (b)

Figure 6.14: Multi-threading effectiveness: (a) performance improvement for SIMDizable

loops, (b) execution time distribution at different logical lanes.

174

libra/fig/thr_result.eps

(a) (b)

Component Power(mW) Ratio(%) Area(um^2) Ratio(%)

SIMD FUs 131.3 26.7% 341909 17.1%

SIMD RFs 180.2 36.6% 405963 20.3%

SIMD Pipeline + Routing

+ Scalar Pipeline
115.5 23.5% 117721 5.9%

Instruction Control

(SIMD controller + Loop buffer)
56.0 11.4% 471984 23.6%

Thread controller 3.2 0.7% 37714 1.9%

D-mem (64kB) 5.9 1.2% 626550 31.3%

Total 492.2 100.0% 2001840 100.0%
0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700

P
e

rf
o

rm
a

n
c

e
 (

M
IP

S
)

Power (mW)

Tensilica

Diamond

Core

Libra:

11.18 MIPS/mW

TI C6x

ARM11 XScale

Figure 6.15: (a) Power/Performance comparison, and (b) power and area breakdown of the

32-PE Libra architecture.

6.4.7 Power and Area Measurement

We measured the average power when the 32-PE Libra architecture executes the H.264

benchmark at 500 MHz. A power and an area consumption breakdown for various com-

ponents that are part of the architecture are shown in Figure6.15(b). Compared to the

normal SIMD, the power consumption of the routing logic is larger due to its dynamic

configurability, but FU power is smaller due to the smaller number of expensive units. A

SIMD controller and four loop buffers, and a thread controller are added to a cluster. The

power consumption of a SIMD controller and four loop buffersis substantial because the

loop buffer is implemented as 64-entry wide two-port SRAM and the data is read every-

cycle. In addition to this, the thread controller also consumes 0.7% of total power because

the sequence table is a 256 entry 8 bit two-port SRAM. The total area of the 32-PE Libra

architecture is 2.0 mm2.

Based on the power and performance data, we compared the efficiency of Libra to

other architectures using data shown in [32]. Based on Figure6.15(a), the Libra archi-

tecture achieves 11.18 MIPs/mW and most of the other well-known solutions show lower

175

libra/fig/power_thesis.eps

efficiency. The Tensilica Diamond Core is slightly more efficient than the Libra architec-

ture, but the actual performance is not enough to successfully execute compute-intensive

media applications.

6.5 Related Works

Many previous works have focused on accelerators to addressthe challenges of improv-

ing computing efficiency. Some exploit only one type of parallelism and others introduce

some flexibility to support more than one type of parallelism. Figure6.16compares and

shows the major differences between Libra and prior works.

ILP DLP Heterogenity
Configurable

Performance
Scalability

Power

Efficiency

SIMD No High No No High High

GPU Low High Limited No High Low

Embedded GPU Low High Limited No High High

ILP Accelerator ADRES High No Yes No Low High

DLP + ILP Accelerator Imagine High High Yes No High Low

AnySP Low High No Limited High High

SIMD-Morph High High No Limited Low High

TRIPS, SCALE High High Yes Yes High Medium

Libra High High Yes Yes High High

DLP Accelerator

Flexible Accelerator

Figure 6.16: Comparison to prior work

Accelerators for multimedia usually focus on one type of parallelism without adaptive

configuration. Conventional SIMD [17, 59] only supports DLP and misses the opportunity

of improving performance with other form of parallelism. ByAmdahl’s law, low-DLP

regions quickly become the bottleneck of applications. Conventional SIMD also wastes

expensive resources due to imbalanced utilization. While the latest GPUs [70, 69] support

the limited level of heterogeneity and embedded GPUs such asQualcomm Adreno [4] and

176

libra/fig/relwork_table.eps

ARM Mali [1] are power-efficient, GPUs have the same fundamental weakness as other

data-parallel accelerators.

ILP accelerators, such as ADRES [64], tackle the problem in another way by exploiting

ILP with the help of modulo scheduling. Even though it has high scalability by providing

distributed architecture, the throughput quickly saturates as the number of resources in-

creases due to the scheduling difficulty as shown in PPA [74]. Hybrid accelerators such

as the Stanford Imagine [8] use the VLIW-SIMD scheme but the fixed configuration fre-

quently incurs a lack or waste of resources.

Recently, several architectures have tried to embrace flexibility in a conventional SIMD

accelerator in order to support multiple application domains with different characteristics.

AnySP [90] targets mobile applications such as 4G wireless communication and high-

definition video coding. AnySP achieves the goal efficientlyby simply chaining two SIMD

lanes and supporting limited thread level parallelism, butunderutilization in low-DLP loops

is still inevitable due to the lack of general policy to support ILP. SIMD-Morph [30] em-

ploys subgraph matching to accelerate sequential code region. Despite their fair perfor-

mance gain, their simple ILP/DLP mode transition policy cannot adaptively adjust the de-

gree of ILP and DLP inside a specific code region. For example,it is impossible to fully

utilize the SIMD-Morph for a low-DLP code region since an insufficient degree of DLP

cannot be supplemented by ILP exploitation, while Libra can. In addition, they are still

homogeneous SIMD, and therefore, cannot improve utilization and power efficiency.

TRIPS [81] and SCALE [49] are also similar to this work. TRIPS integrates ILP,

DLP and TLP, and SCALE exploits both vector parallelism and TLP. They are targeting

more the desktop/server space, and therefore, need expensive architectural features such as

177

inter-cluster networks, additional multiple fetch units,and specialized caches for general-

ity. However, Libra focuses on more efficient execution of loops with minimal hardware

modifications.

Avoiding resource contention of expensive instructions bypipelined execution is also

introduced in an instruction-systolic array architecture[76]. However, systolic execution

may incur severe performance degradation on high number of PEs because of the pipelining

delay, while Libra limits sharing only between two logical lanes in full DLP mode.

6.6 Summary

The popularity of mobile computing platforms has led to the development of feature-

packed devices that support a wide range of software applications with high single-thread

performance and power efficiency requirements. To efficiently achieve both objectives,

SIMD-based architectures are currently proposed. However, the SIMD is not able to effi-

ciently support a wide range of mobile applications due to several limiting factors: limited

availability of high trip count vector loops and the homogeneous nature of the hardware.

To enhance the applicability of SIMD and improve its inherent energy efficiency, we break

two long-standing traditions of SIMD design: identical lanes and static configuration. The

Libra accelerator adapts the SIMD lane resources to target application. The Libra archi-

tecture customizes the lane configuration based on the loop structure from many resource-

constrained logical lanes for highly data-parallel loops,to a modest number of lanes with

moderate resources, up to a single resource-rich logical lane that is effectively a multiclus-

ter VLIW. A 32-PE Libra system achieves an average 1.58x speedup over the traditional

178

SIMD system, and the gain becomes higher as the number of PEs increases. Through a

judicious mechanism to share expensive resources, Libra also achieves a 29% reduction in

energy compared to the SIMD system. We believe that as industry requires higher perfor-

mance with high energy efficiency, the proposed scalable architecture puts more resources

to work in order to meet this demand.

179

CHAPTER 7

Conclusion

The Libra accelerator is a unified loop accelerator that can effectively support future

mobile applications with varying performance requirements and characteristics. Libra can

dynamically tune ILP/DLP-support capabilities in order tosuccessfully support ILP-only,

DLP-only, and ILP/DLP-mixed applications. Also, Libra’s simple hardware implementa-

tion and its distributed nature achieve high energy-efficiency with competitive performance

at a high degree of scalability which other current accelerators hardly realize.

In this work, a number of compiler optimizations are presented for execution models

supported in the Libra accelerator. There are several crucial performance bottlenecks in

exploiting ILP, DLP, and Task-level parallelism in currentaccelerator models. Thus, three

compilation techniques are proposed to enhance the qualityof schedules over the traditional

approach.

The SIMD Defragmenter successfully increases the DLP coverage by finding potential

DLP opportunities from the code written in the form of ILP. The data packing/unpacking

overhead can be overcome by SIMDizing in groups of parallel compatible instructions

180

(subgraphs) to maximize SIMD gain. On a 16-lane SIMD execution, experimental results

show that SIMD defragmentation achieves a 1.6x mean speedupover traditional loop vec-

torization and a 31% gain over prior research approaches forconverting ILP to DLP.

Dynamic operation fusion is proposed to enable a CGRA model to effectively accelerate

latency-constrained code regions such as non-loop, outer-loop, and recurrence-constrained

loop code. Dynamic operation fusion is enabled through the combination of a small bypass

network added between functional units in a conventional CGRA and a sub-cycle modulo

scheduler to automatically identify opportunities for fusion. Results show that dynamic op-

eration fusion reduced total application run-time by up to 17% on a 4x4 CGRA execution.

Based on the previous compilation optimizations, a high level compilation framework

is introduced that maximizes application throughput with hybrid resource partitioning of

a dynamic multicore accelerator based on the stream graph modulo scheduling algorithm.

Static partitioning handles part of the resource assignment, but this is followed up by dy-

namic partitioning to identify idle resources and put them to use. Experimental results

show that real-time media applications can take advantage of the static and dynamic con-

figurability of the PPA system for increased throughput.

While these optimizations attack the major performance bottlenecks of various acceler-

ation models, using multiple solutions still incurs three critical problems: static power/area

overhead, low execution efficiency due to the application complexity, and higher software

development costs. In response, we decided to propose a new unified accelerator for mo-

bile applications. To achieve this, we find four key issues for future accelerators: homoge-

neous versus heterogeneous functionality, interconnect topologies, simple versus complex

processing elements, and scalar versus vector memory support. Then, the proper future

181

directions for those issues are proposed based on deep application analysis.

Under the guidance of the above study, we propose the Libra accelerator, an acceler-

ator that allows flexible execution of loops by customizing the configuration and adapt-

ing resources to the underlying characteristics of the application. Libra achieves the goal

using datapath heterogeneity and dynamic configurability.First, Libra is composed of a

non-uniform lane structure for power efficiency: only a subset of lanes have expensive but

infrequently used execution units. Transparent sharing mechanisms provide the appearance

of uniformity. Second, dynamic configurability repartitions resources to match execution

patterns at run-time to maintain high utilization. In Libra, a group of logical lanes is exe-

cuted as SIMD, while the lane itself is composed of a group of processing elements (PEs)

similar to a CGRA. DLP is exploited in the form of parallel execution across the logical

lanes, and ILP is exploited inside each logical lane. In essence, Libra provides a spectrum

of resource configurations from a large number of skinny lanes for executing code with

high levels of DLP to a small number of fat lanes for code with low levels of DLP. Experi-

mental results show that 32-PE Libra outperforms the traditional SIMD system by average

of 1.58x, and the performance is linearly scalable as the size increases.

To conclude, we believe that a unified accelerator substratewould eliminate major prob-

lems from which today’s mobile computing platforms with multiple accelerators on a chip

suffer. However, the unified accelerator must support a diverse set of applications, loops,

and acyclic code regions to be performance competitive. Thearchitectural and compiler

solutions presented in this dissertation provide an important step towards the future unified

mobile solution.

182

BIBLIOGRAPHY

183

BIBLIOGRAPHY

[1] ARM Mali Graphics Hardware
- http://www.arm.com/products/multimedia/mali-graphics-hardware/.177

[2] Cuda toolkit. - http://developer.nvidia.com/cuda-toolkit. 118, 142

[3] Glbenchmark - http://www.glbenchmark.com/.118, 142

[4] Qualcomm Adreno
- http://www.qualcomm.com/solutions/multimedia/graphics/. 176

[5] Samsung advanced institute of technology
- http://www.sait.samsung.co.kr/.167

[6] T. V. Aa, M. Palkovic, M. Hartmann, P. Raghavan, A. Dejonghe, and L. V. der Perre.
A multi-threaded coarse-grained array processor for wireless baseband. InProc. of
the 2011 IEEE Symposium on Application Specific Processors, pages 102–107, June
2011.123, 127, 132

[7] T. Adam, K. Chandy, and J. Dickson. A comparison of list schedules for parallel
processing systems.Communications of the ACM, 17(12):685–690, Dec. 1974.161,
167

[8] J. H. Ahn et al. Evaluating the Imagine stream architecture. InProc. of the 31st Annual
International Symposium on Computer Architecture, pages 14–25, June 2004.177

[9] A. Aletà, J. Codina, J. Sánchez, and A. González. Graph-partitioning based instruc-
tion scheduling for clustered processors. InProc. of the 34th Annual International
Symposium on Microarchitecture, pages 150–159, Dec. 2001.47

[10] R. Allen and K. Kennedy. Optimizing compilers for modern architectures: A
dependence-based approach. Morgan Kaufmann Publishers Inc., 2002.46

[11] M. Alvarez, E. Salami, A. Ramirez, and M. Valero. A performance characterization
of high definition digital video decoding using h.264/avc. In 2005 IEEE International
Symposium on Workload Characterization, pages 24–33, Oct. 2005.121, 139

184

[12] G. Ansaloni, P. Bonzini, and L. Pozzi. Design and architectural exploration of
expression-grained reconfigurable arrays. InProc. of the 2008 IEEE Symposium on
Application Specific Processors, pages 26–33, June 2008.128

[13] G. Ansaloni, P. Bonzini, and L. Pozzi. Egra: A coarse grained reconfigurable archi-
tectural template.IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
19(6):1062–1074, June 2011.116, 128

[14] G. Ansaloni, L. Pozzi, K. Tanimura, and N. Dutt. Slack-aware scheduling on coarse
grained reconfigurable arrays. InProc. of the 2011 Design, Automation and Test in
Europe, 2011.128

[15] R. Barik, J. Zhao, and V. Sarkar. Efficient Selection of Vector Instructions Using
Dynamic Programming. InProc. of the 43rd Annual International Symposium on
Microarchitecture, Dec. 2010.41

[16] K. Berkel, F. Heinle, P. Meuwissen, K. Moerman, and M. Weiss. Vector processing as
an enabler for software-defined radio in handheld devices.EURASIP Journal Applied
Signal Processing, 2005(1):2613–2625, 2005.1, 10, 83

[17] H. Bluethgen, C. Grassmann, W. Raab, and U. Ramacher. A programmable platform
for software-defined radio. InIntl. Symposium on System-on-a-Chip, pages 15–20,
Nov. 2003.1, 10, 83, 138, 176

[18] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work
stealing.Journal of the ACM, 46(5):720–748, 1999.113

[19] P. Bonzini, G. Ansaloni, and L. Pozzi. Compiling custominstructions onto
expression-grained reconfigurable architectures. InProc. of the 2008 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pages
51–59, Oct. 2008.58, 80

[20] F. Bouwens, M. Berekovic, B. D. Sutter, and G. Gaydadjiev. Architecture enhance-
ments for the ADRES coarse-grained reconfigurable array. InProc. of the 2008 Inter-
national Conference on High Performance Embedded Architectures and Compilers,
pages 66–81, Jan. 2008.121

[21] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp architecture and C compiler.
IEEE Computer, 33(4):62–69, Apr. 2000.52, 80

[22] C. Canali, M. Colajanni, and R. Lancellotti. Performance evolution performance
evolution.Internet Computing Magazine, IEEE, 13(2):60–68, Mar. 2009.115, 116

[23] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register files for VLIWs: A pre-
liminary analysis of tradeoffs. InProc. of the 25th Annual International Symposium
on Microarchitecture, pages 103–114, Dec. 1992.47

185

[24] M. Chu, K. Fan, and S. Mahlke. Region-based hierarchical operation partitioning for
multicluster processors. InProc. of the SIGPLAN ’03 Conference on Programming
Language Design and Implementation, pages 300–311, June 2003.47

[25] N. Clark et al. Application-specific processing on a general-purpose core via trans-
parent instruction set customization. InProc. of the 37th Annual International Sym-
posium on Microarchitecture, pages 30–40, Dec. 2004.47, 59, 79, 129

[26] N. Clark et al. An architecture framework for transparent instruction set customization
in embedded processors. InProc. of the 32nd Annual International Symposium on
Computer Architecture, pages 272–283, June 2005.47, 52, 57, 59, 129

[27] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized execution accelerator for
loops. InProc. of the 35th Annual International Symposium on Computer Architec-
ture, pages 389–400, June 2008.79

[28] N. Clark, A. Hormati, S. Mahlke, and S. Yehia. Scalable subgraph mapping for acyclic
computation accelerators. InProc. of the 2006 International Conference on Compil-
ers, Architecture, and Synthesis for Embedded Systems, pages 147–157, Oct. 2006.
47

[29] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration through automated in-
struction set customization. InProc. of the 36th Annual International Symposium on
Microarchitecture, pages 129–140, Dec. 2003.30, 32, 47

[30] G. Dasika, M. Woh, S. Seo, N. Clark, T. Mudge, and S. Mahlke. Mighty-morphing
power-simd. InProc. of the 2010 International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems, Oct. 2010.177

[31] C. Ebeling et al. Mapping applications to the RaPiD configurable architecture. In
Proc. of the 5th IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, pages 106–115, Apr. 1997.79, 112

[32] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging thecomputation gap between
programmable processors and hardwired accelerators. InProc. of the 15th Interna-
tional Symposium on High-Performance Computer Architecture, pages 313–322, Feb.
2009.175

[33] J. Glossner, E. Hokenek, and M. Moudgill. The sandbridge sandblaster communica-
tions processor. InProc. of the 2004 Workshop on Application Specific Processors,
pages 53–58, Sept. 2004.1, 10, 83

[34] S. Goldstein et al. PipeRench: A coprocessor for streaming multimedia accelera-
tion. InProc. of the 26th Annual International Symposium on Computer Architecture,
pages 28–39, June 1999.79, 112

186

[35] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. Meli, A. Lamb, C. Leger, J. Wong,
H. Hoffmann, D. Maze, and S. Amarasinghe. A stream compiler for communication-
exposed architectures. InTenth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 291–303, Oct. 2002.83

[36] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. In14th International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
151–162, 2006.83, 84, 113

[37] J. Hiser, S. Carr, and P. Sweany. Global register partitioning. In Proc. of the 9th In-
ternational Conference on Parallel Architectures and Compilation Techniques, pages
13–23, Oct. 2000.47

[38] A. Hormati et al. Exploiting narrow accelerators with data-centric subgraph mapping.
In Proc. of the 2007 International Symposium on Code Generation and Optimization,
pages 341–353, Mar. 2007.80

[39] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose. Mi-
croarchitectural techniques for power gating of executionunits. InProc. of the 2004
International Symposium on Low Power Electronics and Design, pages 32–37, Aug.
2004.18

[40] IBM. Cell Broadband Engine Architecture, Mar. 2006.113

[41] Intel. Intel compiler, 2009. software.intel.com/en-us/intel-compilers/.16, 46, 118,
143

[42] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core fusion: Accommodating
software diversity in chip multiprocessors. InProc. of the 34th Annual International
Symposium on Computer Architecture, pages 186–197, 2007.86, 111

[43] H. Kalva. The H.264 video coding standard.IEEE MultiMedia, 13(4):86–90, 2006.
118, 142

[44] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan,D. Gulati, D. Burger,
and S. W. Keckler. Composable lightweight processors. InProc. of the 40th Annual
International Symposium on Microarchitecture, pages 381–393, Dec. 2007.86, 111

[45] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi. Resource sharing and pipelining in
coarse-grained reconfigurable architecture for domain-specific optimization. InProc.
of the 2005 Design, Automation and Test in Europe, pages 12–17, Mar. 2005.116

[46] Y. Kim, J. Lee, A. Shricastava, and Y. Paek. Memory access optimization in compi-
lation for coarse-grained reconfigurable architectures.ACM Transactions on Design
Automation of Electronic Systems, 16(4), Oct. 2011.132

187

[47] Y. Kim and R. N. Mahapatra. A new array fabric for coarse-grained reconfigurable
architecture. InProc. of the 34th Euromicro Conference, pages 584–591, Sept. 2008.
79

[48] Y. Kim, I. Park, K. Choi, and Y. Paek. Power-conscious configuration cache structure
and code mapping for coarse-grained reconfigurable architecture. InProc. of the 2006
International Symposium on Low Power Electronics and Design, Oct. 2006.79

[49] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and
K. Asanovic. The vector-thread architecture. InProc. of the 31st Annual Interna-
tional Symposium on Computer Architecture, 2004.47, 177

[50] M. Kudlur and S. Mahlke. Orchestrating the execution ofstream programs on multi-
core platforms. InProc. of the SIGPLAN ’08 Conference on Programming Language
Design and Implementation, pages 114–124, June 2008.83, 85, 89, 113

[51] A. Lambrechts, P. Raghavan, M. Jayapala, F. Catthoor, and D. Verkest. Energy-aware
interconnect optimization for a coarse grained reconfigurable processor. InProc. of
the 2008 International Conference on VLSI Design, pages 201–207, Jan. 2008.121

[52] S. Larsen and S. Amarasinghe. Exploiting superword level parallelism with multi-
media instruction sets. InProc. of the SIGPLAN ’00 Conference on Programming
Language Design and Implementation, pages 145–156, June 2000.11, 26, 27, 30, 38,
47

[53] S. Larsen and S. Amarasinghe. Increasing and detectingmemory address congru-
ence. InProc. of the 11th International Conference on Parallel Architectures and
Compilation Techniques, pages 18–29, Sept. 2002.47

[54] C. Lee, M. Potkonjak, and W. Mangione-Smith. MediaBench: A tool for evaluat-
ing and synthesizing multimedia and communications systems. In Proc. of the 30th
Annual International Symposium on Microarchitecture, pages 330–335, 1997.11

[55] E. Lee and D. Messerschmitt. Synchronous data flow.Proceedings of the IEEE,
75(9):1235–1245, 1987.84

[56] J. Lee, K. Choi, and N. Dutt. Compilation approach for coarse-grained reconfigurable
architectures.IEEE Journal of Design & Test of Computers, 20(1):26–33, Jan. 2003.
80

[57] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amarasinghe.
Space-time scheduling of instruction-level parallelism on a RAW machine. InEighth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 46–57, Oct. 1998.52, 113

[58] W.-J. Lee, S.-H. Lee, J.-H. Nah, J.-W. Kim, Y. Shin, J. Lee, and S.-Y. Jung. Sgrt: A
scalable mobile gpu architecture based on ray tracing, 2012. 123

188

[59] Y. Lin et al. Soda: A low-power architecture for software radio. InProc. of the
33rd Annual International Symposium on Computer Architecture, pages 89–101, June
2006.1, 10, 14, 83, 138, 142, 167, 176

[60] Y. Lin et al. Soda: A high-performance dsp architecturefor software-defined radio.
IEEE Micro, 27(1):114–123, Jan. 2007.38

[61] G. Lu et al. The MorphoSys parallel reconfigurable system. In Proc. of the 5th
International Euro-Par Conference, pages 727–734, 1999.2, 50, 79, 114

[62] A. Lungu, P. Bose, A. Buyuktosunoglu, and D. J. Sorin. Dynamic power gating with
quality guarantees. InProc. of the 2009 International Symposium on Low Power
Electronics and Design, pages 377–382, Aug. 2009.18

[63] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram.A case for guarded
power gating for multi-core processors. InProc. of the 17th International Symposium
on High-Performance Computer Architecture, Feb. 2011.18

[64] B. Mei et al. ADRES: An architecture with tightly coupled vliw processor and coarse-
grained reconfigurable matrix. InProc. of the 2003 International Conference on Field
Programmable Logic and Applications, pages 61–70, Aug. 2003.79, 132, 177

[65] B. Mei et al. Exploiting loop-level parallelism on coarse-grained reconfigurable ar-
chitectures using modulo scheduling. InProc. of the 2003 Design, Automation and
Test in Europe, pages 296–301, Mar. 2003.2, 50, 52, 80, 112, 114

[66] B. Mei, A. Lambrechts, J. Y. Mignolet, D. Verkest, and R.Lauwereins. Architecure
exploration for a reconfigurable architecture template. InProc. of the 2005 Design,
Automation and Test in Europe, pages 90–101, Mar. 2005.2, 8, 50, 53, 55, 83, 114,
117, 120

[67] D. Nuzman et al. Vapor simd: Auto-vectorize once, run everywhere. InProc. of the
2011 International Symposium on Code Generation and Optimization, pages 151–
160, Apr. 2011.12

[68] D. Nuzman and A. Zaks. Outer-loop vectorization - revisited for short simd archi-
tectures. InProc. of the 17th International Conference on Parallel Architectures and
Compilation Techniques, pages 2–11, 2008.46, 47

[69] NVIDIA. NVIDIAs Next Generation CUDA Compute Architecture:
Fermi. http://www.nvidia.com/content/PDF/fermiwhite papers/
NVIDIA Fermi ComputeArchitectureWhitepaper.pdf.176

[70] NVIDIA. GeForce GTX 200 GPU architectural overview, 2008.
http://www.nvidia.com/docs/IO/55506/GeForceGTX 200 GPU TechnicalBrief.pdf.
176

[71] OpenIMPACT. The OpenIMPACT IA-64 compiler, 2005.
http://gelato.uiuc.edu/.38, 120, 167

189

[72] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graph embedding: Mapping
applications onto coarse-grained reconfigurable architectures. InProc. of the 2006
International Conference on Compilers, Architecture, andSynthesis for Embedded
Systems, pages 136–146, Oct. 2006.2, 34, 52, 80

[73] H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H. seok Kim. Edge-centric modulo
scheduling for coarse-grained reconfigurable architectures. InProc. of the 17th In-
ternational Conference on Parallel Architectures and Compilation Techniques, pages
166–176, Oct. 2008.2, 34, 52, 65, 85, 120, 133, 154, 167

[74] H. Park, Y. Park, and S. Mahlke. Polymorphic pipeline array: A flexible multicore
accelerator with virtualized execution for mobile multimedia applications. InProc.
of the 42nd Annual International Symposium on Microarchitecture, pages 370–380,
Dec. 2009.83, 87, 88, 95, 104, 116, 123, 127, 177

[75] J. Park, D. Shin, N. Chang, and M. Pedram. Accurate modeling and calculation of
delay and energy overheads of dynamic voltage scaling in modern high-performance
microprocessors. InProc. of the 2010 International Symposium on Low Power Elec-
tronics and Design, pages 419–424, Aug. 2010.18

[76] J. Park, H. Yang, G. Park, S. Kim, and C. C. Weems. An instruction-systolic pro-
grammable shader architecture for multi-threaded 3d graphics processing.Journal of
Parallel and Distributed Computing, 70(11):1110–1118, 2010.178

[77] Y. Park, H. Park, and S. Mahlke. Cgra express: Accelerating execution using dy-
namic operation fusion. InProc. of the 2009 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pages 271–280, Oct. 2009.92

[78] M. Quax, J. Huisken, and J. Meerbergen. A scalable implementation of a reconfig-
urable WCDMA RAKE receiver. InProc. of the 2004 Design, Automation and Test
in Europe, pages 230–235, Mar. 2004.2, 50, 114

[79] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining loops.
In Proc. of the 27th Annual International Symposium on Microarchitecture, pages
63–74, Nov. 1994.55, 83, 89, 133, 161

[80] R. M. Russell. The CRAY-1 computer system.Communications of the ACM,
21(1):63–72, Jan. 1978.138

[81] K. Sankaralingam et al. Exploiting ILP, TLP, and DLP using polymorphism in the
TRIPS architecture. InProc. of the 30th Annual International Symposium on Com-
puter Architecture, pages 422–433, June 2003.177

[82] F. Semiconductor. Altivec, 2009. www.freescale.com/altivec.38

[83] J. Shin, J. Chame, and M. W. Hall. Compiler-controlled caching in superword register
files for multimedia extension architectures. InProc. of the 11th International Con-
ference on Parallel Architectures and Compilation Techniques, pages 45–55, 2005.
47

190

[84] D. Talla, L. K. John, and D. Burger. Bottlenecks in multimedia processing with simd
style extensions and architectural enhancements.IEEE Transactions on Computers,
52(8):1015–1031, 2003.11

[85] M. B. Taylor et al. The Raw microprocessor: A computational fabric for software
circuits and general purpose programs.IEEE Micro, 22(2):25–35, 2002.2, 50, 114

[86] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploit-
ing coarse-grained pipeline parallelism in c programs. InProc. of the 40th Annual
International Symposium on Microarchitecture, Dec. 2007.112, 113

[87] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for streaming
applications. InProc. of the 2002 International Conference on Compiler Construc-
tion, pages 179–196, 2002.84, 85

[88] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. L. S. Garcia, S. Belongie, and M. B.
Taylor. SD-VBS: The san diego vision benchmark suite. In2009 IEEE International
Symposium on Workload Characterization, pages 55–64, Oct. 2009.141

[89] M. Woh et al. From SODA to scotch: The evolution of a wireless baseband processor.
In Proc. of the 41st Annual International Symposium on Microarchitecture, pages
152–163, Nov. 2008.1, 10, 83

[90] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner. AnySP: Any-
time Anywhere Anyway Signal Processing. InProc. of the 36th Annual International
Symposium on Computer Architecture, pages 128–139, June 2009.19, 47, 138, 177

[91] H. Zhong, K. Fan, S. Mahlke, and M. Schlansker. A distributed control path architec-
ture for VLIW processors. InProc. of the 14th International Conference on Parallel
Architectures and Compilation Techniques, pages 197–206, Sept. 2005.112

191

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Compiler Support for Various Accelerator Models
	Improving DLP Performance
	Improving ILP Performance
	Improving Task Level Parallelism Performance

	Design of Future Mobile Accelerators
	Finding the Guideline for Developing Future Tiled Architectures
	Libra Accelerator

	Efficient ILP Realization on Data-parallel Architectures
	Introduction
	Background and Motivation
	Baseline Architecture Overview
	Analysis of Multimedia Applications
	Beyond Loop-level SIMD Parallelism
	Summary and Insights

	Subgraph Level Parallelism
	Overview
	Comparison with Superword Level Parallelism
	Challenges and Solutions

	Compiler Support
	Overview
	Subgraph Identification
	SIMD Lane Assignment
	Code Generation

	Experimental Results
	Experimental Setup
	Subgraph Level Parallelism Coverage
	Performance
	Energy Measurement

	Related Works
	Summary

	Accelerating Execution using Dynamic Operation Fusion
	Introduction
	Motivation
	Analysis of Multimedia Applications
	Accelerating Sequential Code

	Dynamic Operation Fusion
	Delay Statistics and Tick Time Unit
	Bypass Network

	Compiler Support
	Edge-centric Modulo Scheduling
	Tick-based Scheduling
	Tick Specific Features.

	Experimental Results
	Experimental Setup
	Performance Measurement
	Power and Energy Measurement
	Operating Frequency Optimization

	Related Work
	Architecture
	Compilation Techniques

	Summary

	Putting Idle Resources to Work on a Composable Accelerator
	Introduction
	Background and Motivation
	Composable Accelerators
	Stream Graph Modulo Scheduling
	Compilation Challenges

	Compiler Framework
	Prepass: Static Partitioning
	Core Allocation
	Postpass: Dynamic Partitioning

	Experimental Results
	Experimental Setup
	Performance Evaluation
	Static Partition
	Dynamic Partition

	Related Work
	Summary

	Efficient Performance Scaling of Future CGRAs for Mobile Applications
	Introduction
	Analysis Infrastructure
	Benchmarks Overview
	Experimental Setup

	Analysis
	Question 1: Heterogeneity vs. Homogeneity
	Question 2: Interconnection Topology
	Question 3: Complex PEs vs. Simple PEs
	Question 4: SIMD Memory Support
	Summary and Insights

	Summary

	Libra: Tailoring SIMD Execution using Heterogeneous Hardware and Dynamic Configurability
	Introduction
	Background and Motivation
	Benchmarks Overview
	Baseline Architecture
	Limitations for Current SIMD Accelerators
	Insights for the Traditional SIMD

	Libra Architecture
	Overview
	Microarchitectural Details
	Execution Model
	Improving ILP Performance
	Decision Flow

	Experiments
	Experimental Setup
	Performance/Energy Evaluation
	Scalability
	From the Homogeneous SIMD to the Heterogeneous Libra
	Acceleration Mode Selection
	Multi-threading Effectiveness
	Power and Area Measurement

	Related Works
	Summary

	Conclusion
	BIBLIOGRAPHY

