LIBRA: ACHIEVING EFFICIENT INSTRUCTION-
AND DATA- PARALLEL EXECUTION FOR MOBILE
APPLICATIONS

by

Yongjun Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering)
in The University of Michigan
2013

Doctoral Committee:
Professor Scott A. Mahlke, Chair
Professor Trevor N. Mudge
Professor David Blaauw
Professor Vineet R. Kamat



© Yongjun Park 2013
All Rights Reserved



To my family



ACKNOWLEDGEMENTS

This dissertation would not have been possible without thidance and support of
many people. First, | would like to thank my advisor, ScottHke. His insight, exper-
tise, enthusiasm, and encouragement played a large past suocess in graduate school.
Without his guidance and long endurance, this dissertatmurid not exist.

| would also like to thank my thesis committee members, Rsae Trevor Mudge,
David Blaauw, and Vineet Kamat. They donated their timeyjliag valuable comments
and suggestions that helped me refine my thesis.

The research presented in this dissertation is not the Warkeoperson; | was fortunate
to have the assistance of a number of other students in thei@mCreating Custom
Processors research group. In particular, Hyunchul Paitkeisnost thankful person for
my whole successful graduate student life: research,ngrgapers, and also valuable help
in all aspects of Ann Arbor life. Sangwon Seo also contridwggnificantly, helping me
understand mobile applications, SIMD architectures, atesrof football. Hyoun Kyu Cho
also gave me valuable help on power measurement on SIMD gadere recently, Jason
Jong Kyu Park has been great support in Libra acceleratatedtproject.

In addition to this, | appreciate the opportunity to havekearwith a group of people at

Samsung Advanced Institute of Technology: Sukjin Kim, Kis&won, Jaeun Park, and



Taewook Oh. They provided their framework with advanced iheadpplication bench-
marks which were used everywhere in my thesis, and free food.

| would also like to thank several people in special: Mark \WBlaurav Chadha, and
Anoushe Jamshidi. They helped me improve initial reseadlelas into reasonable and
well-structured products with discussion. | am also sgcgrateful to Shantanu Gupta,
Ganesh Dasika, Amin Ansari, and Shuguang Feng, for encimgrage not to loose my
confidence in research.

Beyond those who helped in technical way, those who offergghging conversation
and moral support were crucial to my graduate school lifenelg: Mehrzad Samadi,
Daya Khudia, Janghaeng Lee, Andrew Lukefahr, Shruti Padbtzay Ankit Sethia, Amir
Hormati, Mojtaba Mehrara, Yuan Lin, Kevin Fan, Griffin Wrigio-Chun Hsu, Jeff Hao,
Davood Salehabadi, and Manjunath Kudlur. | have sharecdesffltomes with these friends,
and have had joyful group lunch meetings, and therfore, mg ih Ann Arbor would not
have been the same without them.

| would like to thank my family for their support, encouragemh, and advice. My
parents, Chanyoung Park and Eunji Byeun, and my brother kiyjounn Park provided their

unconditional love and support throughout this whole pssce



TABLE OF CONTENTS

DEDICATION . . . . e i
ACKNOWLEDGEMENTS . . . . . . e e e iii
LISTOFFIGURES . . . . . . . . e iX
LISTOFTABLES . . . . . . e e e e e e e Xiv
ABSTRACT . . . e XV
CHAPTERS
1 Introduction . . . . . . . . . ... 1
1.1 Compiler Support for Various Accelerator Models . . . . . . . 4
1.1.1 Improving DLP Performance. . . . . ... ... .. .. 4
1.1.2 Improving ILP Performance. . . . . . . ... .. .. .. 5
1.1.3 Improving Task Level Parallelism Performance. . . . . 6
1.2 Design of Future Mobile Accelerators . . . . . .. ... .. .. 6
1.2.1 Finding the Guideline for Developing Future Tiled Airc
tectures . . . . . . . 6
1.2.2 LibraAccelerator. . . . . .. ... ... ... ... ... 7
2 Efficient ILP Realization on Data-parallel Architectures. . . . . . . .. 9
2.1 Introduction. . . . . . . . . .. 9
2.2 Background and Motivation. . . . . . ... ..o 14
2.2.1 Baseline Architecture Overview . . . . .. ... .. .. 14
2.2.2 Analysis of Multimedia Applications. . . . . .. .. .. 15
2.2.3 Beyond Loop-level SIMD Parallelism . . . . ... ... 20
224 Summaryandinsights . . . .. .. ... ........ 21
2.3 Subgraph Level Parallelism. . . . .. ... ... ... ..... 22
231 Overview . . . . . . . 22
2.3.2 Comparison with Superword Level Parallelism. . . . . 26
2.3.3 Challengesand Solutions. . . . ... .......... 28
2.4 CompilerSupport. . . . . . .. 30



241 OVervViewW . . . . . . o o 30

2.4.2 Subgraph Identification . . . . ... .. ... ...... 32
2.4.3 SIMD Lane Assignment. . . . . ... ... ... ... 33
244 CodeGeneration. . . . . .. ... ... ... ... . 37

25 ExperimentalResults . . . .. ... ... ... .. ....... 38
2.5.1 ExperimentalSetup. .. ... .. ... ......... 38
2.5.2 Subgraph Level Parallelism Coverage. . . . . ... .. 39

253 Performance. . . .. .. .. ... ... oL 41
254 EnergyMeasurement. . . ... .. ... .. ... ... 45

26 RelatedWorks . . . . ... ... ... 46

2.7 SUMMANY . . . . e e e e e 48
3 Accelerating Execution using Dynamic Operation Fusion . . . . . . . 50

3.1 Introduction. . . . . .. .. .. ... 50

3.2 Motivation. . . . . . .. 53
3.2.1 Analysis of Multimedia Applications. . . . . .. .. .. 53
3.2.2 Accelerating SequentialCode . . . . . ... ... ... 57

3.3 Dynamic OperationFusion . . . . .. ... .. ... ...... 58
3.3.1 Delay Statistics and Tick Time Unit . . . . ... .. .. 62
3.3.2 BypassNetwork . . .. ... ... ... ......... 64

3.4 CompilerSupport. . . . . ... 65
3.4.1 Edge-centric Modulo Scheduling. . . . ... ... ... 66
3.4.2 Tick-based Scheduling . . . . ... ........... 67
3.4.3 Tick Specific Features. . . . . ... .. ... ... ... 70

3.5 ExperimentalResults . . . .. ... ... ... ......... 73
3.5.1 ExperimentalSetup . . . .. .. .. ... ........ 73
3.5.2 Performance Measurement. . . . . . .. .. ... ... 74
3.5.3 Powerand Energy Measurement . . . . .. ... ... 76
3.5.4 Operating Frequency Optimization. . . . . .. .. ... 77

36 RelatedWork . . . . ... ... . . ... 79
3.6.1 Architecture. . . . . .. ... 79
3.6.2 Compilation Techniques. . . . . ... ... ... .... 80

3.7 Summary . .o e 81
4 Putting ldle Resources to Work on a Composable Accelerator. . . . . 82
4.1 Introduction. . . . . . . . ... 82
4.2 Background and Motivation. . . . .. ... ... ... .. ... 86
4.2.1 Composable Accelerators. . . . ... ... ... .... 86
4.2.2 Stream Graph Modulo Scheduling. . . . .. ... ... 89
4.2.3 Compilation Challenges. . . . . . ... ... ... ... 92

4.3 Compiler Framework. . . . . . .. .. ... .. ... ... 95
4.3.1 Prepass: Static Partitioning. . . . .. ... ... .... 96
4.3.2 CoreAllocation. . . . ... ... ... ... ....... 100
4.3.3 Postpass: Dynamic Partitioning . . . . .. ... .. .. 102

44 ExperimentalResults . . . .. ... ... ... L. 105

Vi



441 ExperimentalSetup. .. .. .. .. .. .. ....... 105

4.4.2 Performance Evaluation. . . . .. ... ... ...... 106
443 StaticPartition . . . . ... ... 0L 107
4.4.4 DynamicPartition . . . . .. ... ... oL 108
45 RelatedWork. . . . . . . . .. . . . 111
4.6 SUMMANY . . . . . o e e e e e e 113
5 Efficient Performance Scaling of Future CGRAs for Mobilepfgations . 114
5.1 Introduction. . . . . . . . ... ... 114
5.2 AnalysisInfrastructure. . . . . . .. .. ... L. 117
5.2.1 Benchmarks Overview . . . .. .. ... ........ 117
5.2.2 ExperimentalSetup . . . ... ... .. ... ...... 120
53 Analysis. . . . .. . ... 121
5.3.1 Question 1: Heterogeneity vs. Homogeneity . . . . . . 121
5.3.2 Question 2: Interconnection Topology. . . . . . . . .. 123
5.3.3 Question 3: Complex PEs vs. SimplePEs . . . . . .. 128
5.3.4 Question 4: SIMD Memory Support. . . . . .. .. .. 131
535 Summaryandinsights. . . . .. ... .......... 135
54 Summary . . ... e e 136
6 Libra: Tailoring SIMD Execution using Heterogeneous Heaick and Dy-
namic Configurability . . . . . . . .. ... ... o 137
6.1 Introduction. . . . . . . . .. . ... 137
6.2 Background and Motivation. . . . . . ... ... L. 141
6.2.1 BenchmarksOverview. . . . .. .. .. ... ...... 141
6.2.2 Baseline Architecture . . . . . .. ... ... ... ... 142
6.2.3 Limitations for Current SIMD Accelerators . . . . . . . 143
6.2.4 Insights for the Traditional SIMD. . . . .. .. .. ... 147
6.3 LibraArchitecture. . . . . ... ... oL 147
6.3.1 Overview . . . . . . . .. 147
6.3.2 Microarchitectural Details. . . . . ... ... ...... 152
6.3.3 ExecutionModel. . . . ... ... ... ......... 157
6.3.4 Improving ILP Performance. . . . . . . .. ... .. .. 161
6.3.5 DecisionFlow . . .. ... ... ... .......... 164
6.4 Experiments. . . . . . .. ... 166
6.4.1 ExperimentalSetup. .. ... .. ... ......... 166
6.4.2 Performance/Energy Evaluation. . . . .. .. .. ... 168
6.4.3 Scalability. . . ... ... ... o o 170
6.4.4 From the Homogeneous SIMD to the Heterogeneous L1
6.4.5 Acceleration Mode Selection. . . . . ... ... .. .. 172
6.4.6 Multi-threading Effectiveness. . . . . . .. ... .. .. 174
6.4.7 Power and Area Measurement. . . . . ... ... ... 175
6.5 RelatedWorks . . . . .. ... .. ... ... 176
6.6 Summary . . . ... 178

Vil



7 Conclusion. . . . . . ..

BIBLIOGRAPHY

viii



Figure
2.1

2.2
2.3
2.4

2.5

2.6

2.7

2.8

LIST OF FIGURES

Scalability of datapaths that exploit instructiondeparallelism (VLIW)
and data-level parallelism (SIMD). Plotted is the relativea as issue width
increases from 1 to 32. Area is broken down into function and register
file &interconnect. . . . . . . ..
A spectrum of the vectorization at different granulast . . . . . . . . ..
Baseline SIMD architecture. . . . . . . ... ... ... .. ...
Scalar execution time distribution at different SIMDuis for three media
applications: the maximum SIMD widths are 1024, 128, andat@] the
SIMD widths, which can be fully utilized for more than 50% exéon
time, are 16, 32, and 8 for AAC, 3D, and H.264 applications. . . . . . .
The SIMD width requirement changes at runtime: The X-@dlicates the
execution clock cycle and the Y-axis is the maximum SIMD Wwidssum-
ing infinite resources. The minimum duration between widimsition is
20 cycles from 311 to 330 for 3D application.. . . . . . ... ... ...
Different SIMD width requirements for each macroblookthe motion
compensation process in H.264 decoder. The informatiomagighed at

FTUNEIME. . . . . .

Different levels of parallelism: (a) an example loosise code, (b) orig-
inal multiple scalar subgraphs utilizing a single SIMD lafe) a vectorized
subgraph using four SIMD lanes, and (d) the opportunity afi@iaSIMD
parallelism inside the vectorized basic block (SIMD landzation: (R1:
16),(R2:8), (R3:4)). . . . . . o
Subgraph level parallelism: (a) identical subgrapbsdentified, and (1, 2,
5,7) and (3, 4, 6) are executed in parallel with one overh@@daxecution
of the graph on two SIMD lane groups, (c) SGLP exploited oumurce
code, (d) high level program flow with three sequential keraed kernel 1
can exploit SGLP, and (e) execution of three kernels with B@&xploration

onkernel 1. . . . . . . .

17



2.9 Superword level parallelism difficulty: (a) (1, 3, 5, Hda(2, 4, 6) are
chosen to execute in parallel and three overheads occsuygeyword level
parallelism exploited output source code, and (c) aversgke cavings of
SLP: Y-bar means ideal savings and it is broken down as oadshand

real savings. . . . . . . .. e e 26
2.10 Architectural modifications: (1) multi-bank memorydaf2) wide SIMD

constantmemoryissupported.. . . . .. ... ... L L. 28
2.11 Compilation flow of the SIMD defragmenter: shaded regiexploit sub-

graphlevel parallelism. . . . .. .. ... ... ... ... .. .. 31

2.12 Subgraph partial order mismatch: when (B0, B1) is amdse=xecute in
different SIMD lanes, (CO, C1) cannot be chosen due to theabarder
mismatch betweenlanes.. . . . . . . ... . L L oL 34

2.13 Ratio of instructions covered by the subgraph levedlpism and static
instructions eliminated for three media applications:igjruction cover-
age, (b) static instruction elimination without inter4aaverheads, and (c)
static instruction elimination with inter-lane overheads. . . . . . . . .. 39

2.14 Example dataflow graphs: (a) FFT: two identical subgsail) Id, i41,
i41, (2) Id, (sub/add), add, sub, st, st), (b) MatMul3x3: tdentical sub-
graphs ((1) add, Id, i32, i32, 132 (2) add, add, st). i41 aritla®: intrinsic
INSTFUCIONS.. . . . . . . e e 40

2.15 Performance comparison of SLP/SGLP without overh@aR/SGLP with
overhead, and ILP for key kernels: FFT, MDCT for AAC, MatMx#4

MatMul3x3 for 3D, and HalfPel, QuarterPel forH.264.. . . . . . . . .. 42
2.16 Average kernel performance comparison of SLP/SGLRowitoverhead,

SLP/SGLP with overhead, and ILP for three application domai. . . . . 43
2.17 Overall performance comparison of SLP/SGLP with osadhand ILP for

three domains on SIMD architectures.. . . . . . . ... ... ... ... 44
2.18 Energy comparison for the SGLP on the 32-wide SIMD #&echire and

ILP on the 4 way 8-wide VLIW architecture.. . . . . .. ... ...... 46
3.1 Overviewofalx4d CGRA. . . . . . . . . . . 51

3.2 Execution time breakdown for three multimedia appiwe (#: number
of basic blocks, execution: number of cycles, percentagecgmt of ex-
ecution cycles). Execution time is broken down into threiegaries: se-
quential are all non-innermost loop regions, loop (reseuace inner-most
loops whose performance is constrained by the availalwlityesources,
and loop (dependency) are inner-most loops whose perfarenencon-
strained by cross-iteration dependences. . . . . . . .. .. ... ... 55
3.3 Example dataflow graphs in AAC: (a) Sequential code, @md.code . . . 56
3.4 Comparison of flow of data through a processing elemeat@GRA: (a)
Operation with register file access, (b) Operation with@gfister file ac-

cess, (c) Flowofdatafor(@)and(b) . . . . . .. ... .. ... .. ... 59
3.5 Combining of FUs for dynamic operation fusion: (a) Taggbgraph, (b)
3FUscombined.. . . . . . ... ... . 60



3.6 Dynamic operation fusion example: (a) dataflow grapheurmbnsider-
ation, (b) target 2x3 CGRA, (c) conventional schedulingt tfesuires 5
cycles, and (d) scheduling with dynamic operation fusiaat tiequires 3

3.7 Delay and tick breakdown for common opcodes.. . . . . . ... .. ..
3.8 Breakdown of opcodes for three target applicatians.. . . . .. .. ...
3.9 Comparison of bypass network implementation detad:béseline net-
work and (b) network that supports dynamic operation fusion. . . . . .
3.10 Hardware overhead of the bypass network. Two forms eflmad are
specified: control bits to control the bypass MUXes and afé¢heobypass
Network.. . . . . .
3.11 Tick-based scheduling example: (a) possible placesmethe tick schedul-
ing space and (b) different longest path delays per ticlsslot. . . . . . .
3.12 Register access regions in a tick schedule: (a) datgflaph, (b) register
read/write regions (shaded) withineachcycle. . . . . . ... ... ...
3.13 Performance evaluation of the baseline and CGRA Egmeashitectures
for three multimedia applications. Performance is brokewrdinto non-
innermost loop regions (sequential), inner-most loopssehmerformance
is constrained by the availability of resources (loop (tgee)) and inner-
most loops whose performance is constrained by crossidardepen-
dences (loop (dependency)). . . . . . . . . . ..o oo
3.14 Power breakdown comparison for the baseline and CGRx#éess archi-
tectures.. . . . . .
3.15 Energy comparison for the baseline and CGRA Expre$étactures. . . .
3.16 Performance comparison of the baseline and CGRA exprekitectures
for different clock periods. Performance is broken dowwo idépendence-
constrained loops (rec), resource-constrained loopg)@ad non-innermost
loops (acyclic)regions.. . . . . . . . . .. ..
4.1 PPA Overview: (a) PPA with 8 cores, (b) Inside a single e&% . . . . .

68

72

77

83

4.2 Example of processor and stage assignment for SGMS axddPieduling. 90
4.3 Example of running a SGMS on multi-core and a modulo sgivegion PPA. 92

4.4 Examples of the runtime overhead: (a) original task lgréip) simple 1x3
PPA, (c) expected ideal schedule with high resource utitima(d) runtime
overhead: stall, reconfiguration time, (e) static panithg with low run-
time overhead, (f) a possible problem of the static partitig: workload
imbalance. . . . . . . ..

4.5 Static Partitioning example: (a) example data flow gréiphphase 0: each
task is assigned to one core, (c) phase 1: the slowest tasts©me more
core to accelerate, (d) phase 2: task E is still the slowekgats two more
cores(5, 7), thus task F loses own core(5), (e) phase 3: msvest task D
is accelerated as getting more core(0) and finally task C anthcore(2)
takes the maximum execution time, (f) execution time edentable , (g)
final core assignment: Dhas 2, Ehas4cores.. . . . . ... ......

Xi



4.6 Core Allocation example: (a) physical placement of sp(k) the slowest

group is placed next to the fastestgroup. . . . . . . .. ... ... ... 102
4.7 Dynamic Partitioning example: (a) coarse-grain pipelising static parti-

tioning, (b) coarse-grain pipeline with final performangrihg process. . 104
4.8 Relative speedup normalized to simple symmetric pamtiig . . . . . . . 106
4.9 stage execution time for aac benchmark: (a) dynamic atetipn vari-

ance on static partitioning, (b) pipeline deadline redarctivith dynamic

partitioning . . . . . . . . e 108
4.10 Stage execution time for 3D benchmark: (a) dynamic edatjpn vari-

ance on static partitioning, (b) pipeline deadline redarctivith dynamic

partitioning . . . . . . . ... e 110
4.11 Stage execution time for H.264 benchmark: dynamidtjmaring is not

applied due to huge dynamicvariance. . . . . . . ... ... ... ... 111
5.1 The computational power trends for social sites in easburce type:texts,

images, audio, video,and CPUs.. . . . . .. .. ... ... ....... 115

5.2 Loop categorization of various benchmarks: The three ipalicate ratio

of execution time in innermost loops, SWPable loops, andi3idble loops119
5.3 Performance degradation and static power consumptiean@GRA at dif-

ferent FU organizations.. . . . . . . . . . .. ... oo 122
5.4 Various interconnection topologies of CGRAs: (a) biasel(b) fixed par-

tition, (c) flexible partition, and (d) a table for executiomodel of loops on

differenttopologies. . . . . . . . . . ... L 124
5.5 Performance comparison of various architectures fatianand gaming
benchmarks. . . . . . . . ... 126

5.6 Performance saturation point distribution at différe& sizes for media

and gaming benchmarks: media benchmarks need relativgtyrhimber

of PEs to be sufficiently accelerated but gaming benchmaelesl small

number of PES.. . . . . . . . . 127
5.7 PE designs with different number of FUs: the number of REse same

as the number of output ports and only shaded FUs supponséilictions

inoptimized PES.. . . . . . . . . . . e 129
5.8 Experimental results on various PEs: (a) relative @eeemergy consump-

tion, (b) relative energy consumption of every loop, andlie) number of

subgraphs. All the FUs support full functionality on unifoPEs, and only

a subset of FUs supports full functionality on optimized PEs . . . . . . 130
5.9 Example CGRAs with different SIMD memory support: (alrfscalar

memory support, (b) two 2x32 SIMD memory support, and (c) 4x@&2

SIMD memory support. . . . . . . . . e e e e 133
5.10 Experimental results with different vector widths) r@ative energy con-

sumption for total memory accesses, and (b) memory ResMbease

when using SIMD memory units with same total bandwidth. . . . . . . 134
6.1 Atraditional 32-lane SIMD accelerator. . . . . . . ... ... ... ... 143

Xil



6.2 Loop categorization: The components of the bar indicatie of execu-

tion time in SWPable loops, low-DLP, and high-DLP SIMDizatbops.

The ratio of loop execution time over total execution timengicated as a

number aboveeachbar.. . . . . .. ... o 144
6.3 Resource utilization: (a) average ratio of dynamicruttton count of ex-

pensive instructions and ratio of Mem/Mul dominant loojm3,I¢op distri-

bution over ratio of Mem/Mul, and (c) performance degramtatin a SIMD

at different number of Mem/Mul resources. . . . . . . . ... ... L. 145
6.4 Mapping loops to Libra: (a) identify hot loops, (b) fincethvailable DLP

and resource requirement of each expensive operationcactignge the

configuration based on the characteristics of each loop.. . . . . . . .. 148
6.5 Dynamic configurability on a 4-lane heterogeneous SIN#Dg 3 has a

multiplier): (a) a simple high-DLP loop with 1 multiply, (ljerformance

degradation due to stalls during multiply execution, (gji¢al lane forma-

tion removes stalls by instruction pipelining.. . . . . . . ... ... ... 150
6.6 The 32-PE Libra architecture: (a) a 2-cluster Libra beve¢or, (b) a cluster,

(c) an example of a single PE group: PE 1 supports memory tipend

PE 2 supports multiply operation, and (d) execution modes. . . . . . . 153
6.7 Resource sharing support: (a) hardware modificatior® &kd 2 share the

multiplier and PE 1 and 3 share the memory unit, (b) exampie lnody

dataflow graph, and (c) actual schedule: 1-cycle differdreteveen lanes

for resource contention avoidance.. . . . . . . . ... ... .. 160
6.8 Multi-threading support & compiler support: (a) hardevanodification:

shaded components are modified, (b) sequence table in tbadtlwon-

troller, (c) loop buffer, and (d) final multi-threaded schéd . . . . . . . . 164
6.9 Decision flow of the Libra architecture. . . . . . . ... ... ... ... 165
6.10 Performance/Energy comparison of 32-PE Libra/SIMDW architectures:

(a) total loop execution time and (b) energy consumptioththfd data are

normalized to that of a simple in-ordercore.. . . . . .. ... ...... 168
6.11 Scalability of Libra/SIMD/VLIW architectures: the liia architecture is

highly scalable for most of benchmarks, while SIMD and VLIhoot be

scalable for several benchmarks.. . . . . . ... ... ... .. ..... 170
6.12 Performance/energy improvement of the heterogerigbrgsover the same

sized homogeneous SIMD: (a) performance, (b) energy copsom and

(c) power breakdown with five categories: FU, RF, controldpgnemory,

and architecture specific additional logic. . . . . . .. . ... ... ... 171
6.13 Mode selection: (a) execution time distribution atedté#nt logical lanes,

(b) flexible vs. fixed execution. . . . .. .. ... ... L. 173
6.14 Multi-threading effectiveness: (a) performance ioyement for SIMDiz-

able loops, (b) execution time distribution at differergitcal lanes. . . . . 174
6.15 (a) Power/Performance comparison, and (b) power aaltaeakdown of

the 32-PE Libra architecture. . . . . . . . . . . .. ... ... ... 175
6.16 Comparisontopriorwork. . . . . . . . . ... .. .. ... . 176



LIST OF TABLES

Table
4.1 Relative speedup for AAC benchmark (normalized to theegading col-
UMN). . o o e e e e e e e e e e e e e e e 109
4.2 Relative speedup for 3D benchmark (normalized to thegolieg column). 110
4.3 Relative speedup for H.264 benchmark (normalized tptdeeding column)11

Xiv



ABSTRACT

LIBRA: ACHIEVING EFFICIENT INSTRUCTION- AND DATA- PARALLEL

EXECUTION FOR MOBILE APPLICATIONS

by

Yongjun Park

Chair: Scott A. Mahlke

Mobile computing as exemplified by the smart phone has becmategral part of
our daily lives. The next generation of these devices willdogen by providing richer
user experiences and compelling capabilities: higher iieiinmultimedia, 3D graphics,
augmented reality, and voice interfaces. To meet thesesgthed core computing capa-
bilities of the smart phone must be scaled. But, the energlgéis are increasing at a
much lower rate, thus fundamental improvements in comgugiificiency must be gar-
nered. To meet this challenge, computer architects em@ogware accelerators in the
form of SIMD and VLIW. Single-instruction multiple-data If8D) accelerators provide
high degrees of scalability for applications rich in dagael parallelism (DLP). Very long

XV



instruction word (VLIW) accelerators provide moderatelalbgity for applications with
high degrees of instruction-level parallelism (ILP). Uritmately, applications are not so
nicely partitioned into two groups: many applications haeene DLP, but also contain
significant fractions of code with low trip count loops, cdepcontrol/data dependences,
or non-uniform execution behavior for which no DLP exist$iefiefore, a more adaptive
accelerator is required to be able to deploy resources atede@xploit DLP on SIMD
when it's available, but fall back to ILP on the same hardweinen necessary.

In this thesis, we first focus on various compiler solutidmet solve inefficiency prob-
lem in both VLIW and SIMD accelerators. For SIMD accelerata new vectorization
pass, called SIMD Defragmenter, is introduced to uncovedém DLP using subgraph
identification in SIMD accelerators. CGRA express effeglinaccelerates sequential code
regions using a bypass network in VLIW accelerators, ando&®es Recycling lever-
ages stream-graph modulo scheduling technique for sangdoil multiple code regions
in multi-core accelerators.

Second, we explore potential solutions in the context ofife@pplications for scaling
the performance of tiled accelerators in an energy efficieainer: homogeneous versus
heterogeneous functionality, interconnect topologi@spke versus complex processing
elements, and scalar versus vector memory support. We tlogroge the new scalable
multicore accelerator referred to abra for mobile systems, which can support execution
of code regions having both DLP and ILP, as well as hybrid doatibns of the two. We
believe that as industry requires higher performance, tbpgsed flexible accelerator and
compiler support will put more resources to work in order teetnthe performance and
power efficiency requirements.

XVi



CHAPTER 1

Introduction

The mobile devices market, including cell phones, netbpad personal digital assis-
tants, is one of the most highly competitive businesses. cbingputing platforms that go
into these devices must provide ever increasing performaapabilities while maintain-
ing low energy consumption in order to support advancedimatfia and signal process-
ing applications. Application-specific integrated citsuWiASICs) were the most common
solutions for the heavy lifting, performing the most comgputtensive kernels in a high
performance but energy-efficient manner. However, seveatlires push designers to a
more flexible and programmable solution: supporting mldtgpplications or variations of
applications, providing faster time-to-market, and emapblgorithmic changes after the
hardware is constructed.

Traditionally, the design of programmable mobile compgihatforms has focused on
software defined radiol[/, 16, 33, 59, 89. These systems are geared towards wireless
signal processing that contains vast amounts of vectolielge. As a result, wide single-

instruction multiple-data (SIMD) hardware is recognizedha effective strategy to achieve



both high-performance and programmability. SIMD provitiegh efficiency because of
its regular structure, ability to scale lanes, and low aantost. However, mobile com-
puting systems are not limited to wireless signal procesditigh-definition video, audio,
3D graphics, and other forms of media processing are higlevapplications for mobile
terminals. In fact, many believe the quality and types of medipport will be the key
differentiating factors of future mobile terminals.

Such media applications in a mobile environment offer sed#iht challenge than wire-
less signal processing. First, the complexity of media @ssmg algorithms is typically
higher than signal processing. Computation is no longeridatad by simple vectoriz-
able loops. Instead, current media processing algoritmasrere like general-purpose
programs with data-level parallelism (DLP) available stlely and to varying degrees.
Second, significant amounts of control/data dependenciearidle the complexity of me-
dia coding also reduce the fraction of SIMDizable loops.alyn various application do-
mains have totally different amounts of SIMD parallelisms A result, the applications
are more dependent on the instruction-level parallelide®)Ifor performance. Coarse-
grained reconfigurable architectures (CGRA) are a varieit. bV processors that exploit
high degrees of ILP with low cost/energy implementaticins B5, 65, 66, 61, 78]. Loops
are modulo scheduled onto the CGRA to utilize the large nurabesources and achieve
high performancet]s, 72, 73].

To support both ILP- and DLP-rich applications, today’s srpaones simply use mul-
tiple different types of accelerators: a baseband acdeldia DLP and a media accelerator
for ILP. This is because running DLP-rich applications onlWLaccelerators is energy-
inefficient due to massive hardware overhead such as regjistéRF) and interconnect

2



complexity, and running ILP-rich applications on SIMD alerators is also ineffective as
available SIMD resources cannot be fully utilized and a &gl portion of resources
are idle at runtime. However, using multiple solutionsl &titurs three critical problems:
1) static power dissipation and poor area utilization dupresence of multiple separate
hardware accelerators, 2) poor execution efficiency asagtns are typically not solely
ILP or DLP applications, but rather contain hybrid forms afglelism that force some ex-
ecution on mismatched hardware, and 3) higher softwardo@vent costs as applications
must be partitioned and customized to separate accelerator

Based on the above observation, the fundamental sourceeffitiency range from
a mismatch between program characteristics and the tacgetesator, to a heteroge-
neous system which incur multiple idle hardware instandasthe context of program-
architecture mismatch, we first attack current challengefficiently utilizing existing
mobile media accelerators. The specific purpose of thigtaffdo find the potential code
region which will not fully utilize the given resources on adet accelerator, and opti-
mize the region to be favorable to the accelerator. In thesid) three compilation tech-
niques with small architectural modifications for efficianapping of applications onto
three DLP-, ILP-, and task level parallelism-based acetbes are proposed: 1) the SIMD
Defragmenter to uncover hidden DLP that lurks below thess@rin the form of ILP, 2) the
sub-cycle modulo scheduler to effectively acceleratenateconstrained code regions us-
ing a bypass network , and 3) a compilation framework to ma&erapplication throughput
with hybrid resource partitioning of a flexible multi-corgssem.

While these compiler backend optimizations show substhpgrformance improve-
ment with higher resource utilization on existing accelarg architecture-specific op-

3



timizations are likely insufficient for solving the fundantal problem of heterogeneous
systems-multiple idle hardwares, but only improve execugfficiency when some code
region is executed on mismatched hardware. This motivateEsigning of a unified ac-
celerator that can support multiple forms of parallelismdgyamically tuning execution
strategy. Therefore, the second overarching objectivaisfthesis is to design and eval-
uate a mobile unified accelerator with high scalability, ifbdity, and energy efficiency.
To achieve this, we find several reasons why current tileélacators fail to meet future
performance requirements and discuss the feasibilityef ffotential solutions. Based on
these intuitions, we then propose a unified multi-core &caé&br that is capable of cus-
tomizing its execution strategy to the running applicati@ferred to asibra. The above
compiler optimizations can be directly applied to the Liacaelerator since the basic build-

ing blocks of the Libra accelerator can support all threellewof parallelism.

1.1 Compiler Support for Various Accelerator Models

1.1.1 Improving DLP Performance

Single-instruction multiple-data (SIMD) acceleratorsyade an energy-efficient plat-
form to scale the performance of mobile systems while gtiflining post-programmaubility.
The central challenge is translating the parallel resauof¢ghe SIMD hardware into real
application performance. In scientific applications, autic vectorization techniques
have proven quite effective at extracting large levels tddavel parallelism (DLP). How-

ever, vectorization is often much less effective for megipl@ations due to low trip count



loops, complex control flow, and non-uniform execution hébia As a result, SIMD lanes
remain idle due to insufficient DLP.

To attack this problem, Chapt@rproposes a new vectorization pass cafi@iD De-
fragmenterto uncover hidden DLP that lurks below the surface in the fofimstruction-
level parallelism (ILP). The difficulty is managing the dgtacking/unpacking overhead
that can easily exceed the benefits gained through SIMD &recuThe SIMD defrag-
menter overcomes this problem by identifying groups of catityte instructions (sub-
graphs) that can be executed in parallel across the SIMDBslaBg SIMDizing in bulk

at the subgraph level, packing/unpacking overhead is nieith

1.1.2 Improving ILP Performance

Coarse-grained reconfigurable architectures (CGRAs)eptean appealing hardware
platform by providing programmability with the potentiarfhigh computation through-
put, scalability, low cost, and energy efficiency. CGRAséaeen effectively used for
innermost loops that contain an abundant of instructieetlparallelism. Conversely, non-
loop and outer-loop code are latency constrained and doffeatsignificant amounts of
instruction-level parallelism. In these situations, CGRae ineffective as the majority of
the resources remain idle.

In Chapter3, dynamic operation fusiors introduced to enable CGRASs to effectively
accelerate latency-constrained code regions. Dynami@bpe fusion is enabled through
the combination of a small bypass network added betweerifumgnits in a conventional

CGRA and a sub-cycle modulo scheduler to automaticallytilempportunities for fusion.



1.1.3 Improving Task Level Parallelism Performance

To handle complexities of media applications, composabtelarators such as the
Polymorphic Pipeline Arrayor PPA, present an appealing hardware platform by adding
a degree of hardware configurability over existing CGRAs.rddare resources can be
both statically as well as dynamically partitioned amongaering tasks to maximize exe-
cution efficiency. However, an effective compilation frameek is essential to partition and
assign resources to make intelligent use of the availalvtb\zae.

In Chapte#, a compilation framework is introduced that maximizes aggpion through-
put with hybrid resource partitioning of a PPA system. $taartitioning handles part of
the resource assignment, but this is followed up by dynarartitppning to identify idle

resources and put them to useesource recycling

1.2 Design of Future Mobile Accelerators

1.2.1 Finding the Guideline for Developing Future Tiled Architectures

Tiled multi-core architectures are an appealing hardw&&tgsm for mobile systems
by providing programmability with the potential for highroputational throughput, low
cost, and energy efficiency. Unfortunately, current tilechdectures fail to meet future
performance requirements due to their inability to scalmpBy increasing the size of the
array is too expensive in terms of power and area.

In Chapterb, we first perform a deep analysis of several mobile appboatirom the

domains of multimedia and gaming. We then explore potestltions in the context of



these applications for scaling the array performance imarngy efficient manner: homoge-
neous versus heterogeneous functionality, interconogcldgies, simple versus complex

processing elements, and scalar versus vector memory isuppo

1.2.2 Libra Accelerator

To design a mobile unified accelerator, we start from tradél SIMD accelerators be-
cause they offer the combination of high performance ancelogrgy consumption through
low control and interconnect overhead. However, SIMD agegbrs are not a panacea.
Many applications lack sufficient vector parallelism toeetively utilize a large number
of SIMD lanes. Further, the use of symmetric hardware laeadd to low utilization and
high static power dissipation as SIMD width is scaled. Toredsd these inefficiencies,
chapter6 focuses on breaking two traditional rules of SIMD procegsimmogeneity and
static configuration. Theéibra accelerator increases SIMD utility by blurring the divide
between vector and instruction parallelism to supportiefiicexecution of a wider range
of loops, and it increases hardware utilization throughube of heterogeneous hardware
across the SIMD lanes.

In Libra, multiple small cores enable the SIMD executiondgploiting DLP and, when
there is a high degree of ILP within a loop, a larger core canrbated by merging small
cores. With this flexible execution model, different levefgarallelism can be exploited
with a single piece of hardware. For example, Libra can ebecsas a wide-SIMD datapath
and also Libra behaves as a VLIW accelerator. Libra also@tppmixed-mode execution

where the fraction of ILP and DLP is configured. Libra corsist an array of simple



processing elements (PESs) that are tightly interconndmexiscalar operand network and
a shared memory similar to a CGRA{]. Groups of four PEs form cores that are normally
driven by a single instruction stream. Each core can behave lauilding block for a
SIMD processor (e.g., cores behave as SIMD lanes) or a CGR}A @res behave as a
cluster of function units in the VLIW-style CGRA). Cores feee dense interconnection
between the PEs, while sparse interconnection is avaikadass cores to provide better
cost and energy scalability. The compiler maps 1 or moreddojibra by combining and

configuring clusters of cores to efficiently exploit the daBie DLP and ILP.



CHAPTER 2

Efficient ILP Realization on Data-parallel Architectures

2.1 Introduction

The number of worldwide mobile phones in use exceeded fivi@iiin 2010 and is
expected to continue to grow. The computing platforms tlwaingo these and other mo-
bile devices must provide ever increasing performancehibijixes while maintaining low
energy consumption in order to support advanced multimealiesignal processing appli-
cations. Application-specific integrated circuits (AS)@gere the most common solutions
for the heavy lifting, performing the most compute inteledternels in a high performance
but energy-efficient manner. However, new demands pushmes toward a more flexible
and programmable solution: supporting multiple applaagior variations of applications,
providing faster time-to-market, and enabling algoritbrohanges after the hardware is
constructed.

Processors that exploit instruction-level parallelisioP(l provide the highest degree

of computing flexibility. Modern smart phones employ a onezGHal-issue superscalar



mmm Function Unit CRegister File & Interconnect on VLIW
mmRegister File & Interconnect on SIMD -=Total(VLIW)
80 —=Total(SIMD)

N

(%]
o

a
o

Relative Area
N
o

\

\

-
o o

1 2 4 8 16 32
Issue width

Figure 2.1. Scalability of datapaths that exploit instruction-level parallelism (VLIW) and
data-level parallelism (SIMD). Plotted is the relative are as issue width increases from 1 to

32. Area is broken down into function unit and register file & interconnect.

ARM as an application processor. Higher performance digitmal processors are also
available such as the 8-issue TIC6x. However, the scatalofilLP processors is inher-
ently limited by register file (RF) and interconnect comas shown in Figure2.l
Single-instruction multiple-data (SIMD) acceleratorvédong been used in the desktop
space for high performance multimedia and graphics funatity. But, their combination
of scalable performance, energy efficiency, and prograniityatmake them ideal for mo-
bile systems as welll[7, 16, 33, 59, 89]. Figure2.1shows that the area of SIMD datapaths
scale almost linearly with issue width. Power follows a $amirend B9]. SIMD architec-
tures provide high efficiency because of their regular stmeg ability to scale lanes, and
low control overhead.

The difficult challenge with SIMD is programming. The applion developer or com-

10


defragmenter/fig/arch_scalability.eps

piler must find and extract sufficient data-level paraltel{®LP) to efficiently make use of
the parallel hardware. Automatic loop vectorization is aydar approach and is available
in a variety of commercial compilers including offeringsrin Intel, IBM, and PGI. Appli-
cations that resemble classic scientific computing (regifacture, large trip count loops,
and few data dependences) perform well on most SIMD ardhites.

However, mobile applications are not limited to these typespplications. High-
definition video, audio, 3D graphics, and other forms of raqatiocessing are high value
applications for mobile devices. These applications cwito grow in complexity and re-
semble scientific applications less and less. Computagion ionger dominated by simple
vectorizable loops. Instead, current media processirayi#thgns behave more like general-
purpose programs with DLP available selectively and toivargdegrees in different loops.
Also, significant amounts of control flow are present to hartle complexity of media
coding and limits the available DLP. The overall affect iatttoop-level DLP is less preva-
lent and less efficient to exploit in media algorithms. Duedhese application-specific
complexities, available SIMD resources cannot be fulljize¢d and a substantial portion
of resources are idle at runtime. Tall&/{] reports that only 1-4% performance improve-
ment exists when scaling the SIMD components from 2-way taa$ on the MediaBench
suite p4]. Thus, an improved approach beyond simple loop level tieghes is necessary
in order to effectively use wide SIMD resources.

To supplement the insufficient degree of DLP from traditimegtorization, superword-
level parallelism (SLP)4Z] can be applied. SLP is a short SIMD parallelism between iso-
morphic instructions within a basic block. As shown in Fig@r2, SLP can cover more
code regions as compared to loop-level vectorization lsx&LP can be performed in

11



Vectorization granularity

Coarser rressssEsssEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES IS Finer
Level Loop Subgraph Superword
Group of ,
Scope Loop body instructions Instruction
Vectorization High Middle Small
advantage
Coverage Small High High

Figure 2.2: A spectrum of the vectorization at different granularities.

non-loop regions, in loops having cross-iteration depands, and in outer loops. For
vectorizable loops, traditional vectorization is preéefbecause SLP misses loop-specific
optimization opportunitiesd/]. The weakness of SLP is that the vectorization scope is
too fine, resulting in a high overhead of getting data intckeddormat that is suitable for
SIMD execution. Often, this packing overhead can exceetehefits of parallel execution
on the SIMD hardware. In addition, SLP is performed with aalsrope that commonly
misses opportunities for vectorization when a large nurob&omorphic instructions ex-
ist.

To address the limitations of SLP, we introduce a coarsel lefvvectorization within
basic blocks, referred to &ubgraph Level Parallelism (SGLRJGLP refers to the paral-
lelism between subgraphs (groups of instructions) hawdegtical operators and dataflow
inside a basic block: parallel subgraphs that can execgtgher on separate data. SGLP
has two major advantages that allow it more opportunitietovert ILP to DLP: 1) data
rearrangement and packing overhead can be minimized bysmieding the data flow in-
side the subgraph, 2) natural functional symmetries thigt @éx media applications (e.g.,

a sliding window of data long which computation is performedn be exposed to enable

12


defragmenter/fig/granularity_table.eps

vectorization of larger groups of instructions. The netites SGLP leads to a combination
of more SIMD execution opportunities and fewer instrucsialedicated to data reorgani-
zation and inter-lane data movement.

This chapter presents the design of a supplemental veatianizpass referred to as the
SIMD Defragmenter|t automatically identifies and extracts SGLP from veaed loops
and orchestrates parallel execution of subgraphs withrmim overhead using unused
resources. In the SIMD Defragmenter, a loop is first vectatiasing traditional vector-
ization techniques. Then, vectorizable subgraphs ardifeehbased on the availability of
unused lanes in the hardware. The compiler then allocatesuihgraphs to unused SIMD
resources to minimize inter-lane data movement. Finaly 8IMD operations for SGLP
are emitted and operations for inter-lane movements arechdtiere necessary. Small ar-
chitectural features are provided to enhance the appligadi SGLP and the configuration
is statically generated during compilation.

This work offers the following three contributions:

e An analysis of the difficulties of putting SIMD resources tbagent use across three
mobile media applications (MPEG4 audio decoding, MPEG4widecoding, and

3D graphics rendering).

e The introduction of SGLP that can efficiently exploit unusgi#D resources on

already vectorized code.

e A compilation framework for SGLP that identifies isomorpkidgraphs and selects

a mapping strategy to minimize data reorganization ovethea

13



2.2 Background and Motivation

In this section, we examine the current limitations of SIMiohatectures based on an

analysis of the following three widely used multimedia apgtions:

e AAC decoder: MPEG4 audio decoding, low complexity profile
e H.264 decoder: MPEGA4 video decoding, baseline profile, gcif

e 3D: 3D graphics rendering

We then analyze why the well-known solutions are not as #ffeas expected. Finally,
we discuss several potential approaches to overcome tlgenecks and increase the

utilization of existing resources.

2.2.1 Baseline Architecture Overview

A basic SIMD architecture that is based on SODA)][(Figure 2.3) is used as the
baseline architecture. This architecture has both SIMD tarmdscalar datapaths. The
SIMD pipeline consists of a multiple-way datapath whereheasay has an arithmetic unit
working in parallel. Each datapath has a two read-portswaite-port, a 16 entry register
file, and one ALU with a multiplier. The number of ways in theV® pipeline can vary
depending on the characteristics of target applicatiohgs. SIMD Shuffle Network (SSN)
is implemented to support intra-processor data movemerg.s€alar pipeline consists of
one 16-bit datapath and supports the application’s contrdé. The AGU pipeline handles
DMA (Direct Memory Access) transfers and memory addressutations for both scalar
and SIMD pipelines.

14



SIMD Pipeline
L1 —
Program
Memory
1
Controller
— > ¢
B SSN
SIMD SIMD (SIMD
Memory RF g SIMD FU Shuffle
Network)
) > ¢
DMA
)
Scalar '—'| Scalar Pipeline |
) Memor
Main Buffery — AGU Pipeline |
Processor

Figure 2.3: Baseline SIMD architecture.

2.2.2 Analysis of Multimedia Applications

SIMD architectures provides an energy-efficient means eteting multimedia appli-
cations. However, it is difficult to determine the optimahmer of SIMD lanes because
the number depends on the algorithms that constitute thkleaat. In this analysis, we
first categorize the innermost loops of three applicatiobs different groups according to
their vector width. Then, two types of SIMD width variance &tentified and the practical

difficulties of finding the optimal SIMD width and achievinggh utilization are discussed.

15


defragmenter/fig/conventional_simd.eps

2.2.2.1 SIMD Width Characterization

Multimedia applications typically have many compute irsige kernels that are in the
form of nested loops. Among these kernels, we analyze thiabl@DLP of the innermost
loops and find the maximum natural vector width which is achlde. Based on the Intel

Compiler 41], the rules to be selected as a vectorizable innermost lsopsafollows:

The loop must contain straight-line code. No jumps or brasg¢chut predicated

assignments, are allowed only when the performance degwada negligible.

The loop must be countable and there must be no data-depgendieconditions.

Backward loop-carried dependencies are not allowed.

All memory transfers must have same strides over iteration.

If a loop satisfies the above four conditions, the minimurraiien count is set to the

vector width of the loop.

2.2.2.2 SIMD Width Variance

Figure 2.4 shows how many different natural vector widths reside inttiree target
benchmarks. The execution time breakdown between loopadndifferent vector widths
are shown in Figur@.4. The three pie charts show the distribution of scalar exectime
spent in innermost loops at various SIMD widths for threeliappions. From Figure.4,
we can see that there are many different vector widths iresadé application, hence it is
quite difficult to determine the optimal SIMD width even fare@application. For example,
to define 16 as the SIMD width for H.264 is not desirable beedbs maximum vector

16



64 128
512

| 1024 1
1
29 32 2 16
128
16 \ 2
64l —38 8
AAC 3D H.264

Figure 2.4. Scalar execution time distribution at different SIMD widths for three media appli-
cations: the maximum SIMD widths are 1024, 128, and 16, and #SIMD widths, which can
be fully utilized for more than 50% execution time, are 16, 32 and 8 for AAC, 3D, and H.264

applications.

width is 16 but the execution time ratio of loops with vectadth of 16 is just 42% and
some SIMD lanes are wasted for the remaining time. On ther didwed, four is also not
desired because the execution time of the loops with a wititbuw is not dominant with
substantial execution occurring in loops having larger Bliidths. Similarly, AAC and
3D applications cannot set the number of SIMD lanes as themmar vector width due to
the waste of resources, nor dominant vector width due toathvgperformance. Therefore,
effectively supporting multiple SIMD widths is required take advantage of the SIMD
architectures.

Dynamic power gating is one of the most successful energngaechniques for the
resource waste problem. Each SIMD lane can be selectivelgfttrom the power rails
when the lane is not utilized using a MOSFET switch. This tegbe is attractive because
it is effective for dynamic power saving and also has positmpact on leakage power

savings. Although dynamic power gating achieves high gngagings, the relatively high

17


defragmenter/fig/simd_width_distribution.eps

256

128
64 | l
_C O rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr1 11
£ 1 101 201 301 401
s ‘s (30
a 3D
S 96
5 64
T 32
'.GC_.; O rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 11
5 1 101 201 301 401

1
;] L LI

0]

1 101 201 301 401 Cycle

Figure 2.5: The SIMD width requirement changes at runtime: The X-axis indicates the execu-
tion clock cycle and the Y-axis is the maximum SIMD width assming infinite resources. The

minimum duration between width transition is 20 cycles from 311 to 330 for 3D application.

overhead when changing modes prevents current SIMD acttitss from applying it]5].
Even applying simple dynamic power gating techniqu&s B9, 62] is not effective since

at least a few microseconds are required to compensate e po/off energy overhead
in current technologies. Figu25 shows the SIMD width requirement changes over the
runtime for three applications. The x-axis is the time stdon®00 cycles when the SIMD
architecture supports infinite DLP and the y-axis is the r@t8IMD width that achieves
the best performance. As shown, power gating cannot evepeasate the transition en-
ergy overhead because of frequent power mode transitiahgwess than 200 cycles (1
us at 200 Mhz) based on the different SIMD width requirementsrédver, power gating
comes with about 8% area overhead due to the header/foater gate switch implemen-

tation. Therefore, power gating is hard to integrate intwent SIMD architectures.

18


defragmenter/fig/simd_width_variance.eps

How to perform motion
compensation for each macroblock?

NS

[1 (16X16 blkj [2 16X8 bIk [2 8X16 blk] [4 8X8 blk) ] [8 8X4 blk)] o o

SIMD Width: 16 16 4

16 (4X4 blk)

Figure 2.6: Different SIMD width requirements for each macroblock in the motion compen-

sation process in H.264 decoder. The information is providgat runtime.

Thread-level Parallelism (TLP) for SIMD architectures h&s been proposed to solve
the temporal resource waste due to the small amount of BOP TLP supports running
multiple threads that work on separate data on a wide SIMOhimaavhen the SIMD width
is small. By exploiting two kinds of parallelism, the SIMDnles can be maximally utilized
but the realization of TLP’s potential in SIMD architectareas some critical limitations.
First, TLP might not be fully exploited if parallel threadave different instruction flow.
The motion compensation process for the H.264 decoder idl&km@vn example of this
case. Figur.6shows the various configurations of the motion compensatiocess for
one macroblock. In this figure, the configuration of each mwilalack is different so that
SIMD specific restriction, which needs to execute the samiuntion stream across the
lanes, prohibits executing multiple processes in paralteh though the process has high
TLP. Second, TLP cannot handle input-dependent control fleer example, conditions
to choose the macro block configuration in Fig@ré are decided from input header data
hence TLP cannot be considered in the compilation phasallfifLP generally requires

more memory pressure. As a result, TLP looks appealing leuactual implementation of

19


defragmenter/fig/motion_comp.eps

t= 4 \
=0y a[0] b[0] c[0]d[0]e[0] f[0] g[0] h{O]
0 00 pQ pQg oo

1: For (it = 0; It < 4; it++) {
2: i=al[it] + b[it];
3: j=cfit] + dlit];
4: k= e[it] + f[it];
5: | =g[it] + h[it];
6
7
8
9:

Vectorized
basic block level
SIMDization

Loop level
SIMDization

I m=i+j;
cn=k+|;
o resultfitf =m +n;

}

i
R Viresull______ _

SIMD Resource

SIMD Resource

_ G
Dboooooooooooooo (OOO00o0000000000 |
w /l I

il
it
NS >
N

0 15 0 15 0o RS R2 R1 15

(a) (b) (c) (d)

Figure 2.7: Different levels of parallelism: (a) an exampleloop’s source code, (b) original
multiple scalar subgraphs utilizing a single SIMD lane, (c)a vectorized subgraph using four
SIMD lanes, and (d) the opportunity of partial SIMD parallel ism inside the vectorized basic

block (SIMD lane utilization: (R1: 16), (R2: 8), (R3: 4))

it is complicated.
The analysis reveals the difficulty of implementing commolusons in the real world.
To further improve resource utilization, it is necessarfind a way to exploit other forms

of parallelism.

2.2.3 Beyond Loop-level SIMD Parallelism

Most kernels have some degree of DLP, which can be easilyoreet using loop
unrolling. An interesting question is how to find extra pkel@m when the degree of
DLP is smaller than the degree supported in the architectuoe this question, the next
opportunity can be found inside the vectorized basic bl@bken if the basic block is not
fully vectorizable, some parts inside the block can be wezztd as a restricted form of ILP.

Compared to ILP, DLP requires two more conditions: 1) th&utdions should perform the

20


defragmenter/fig/partial_simd_opp.eps

same work and 2) data flow should also be in the same form. fidrerg@arallel instructions
with the same opcode can be executed together in a SIMD acthiie. Figure.7 shows
examples of additional SIMD parallelism inside the veaed basic block for our three
applications. Figur@.7 (a) is a vectorizable loop to generate the sum of eight inptda d
arrays. (b) shows the unrolled dataflow graph (DFG) that @aexecuted in only one lane
when assuming a 16-way SIMD datapath. This loop can thendtenzed as shown in (c)
and four lanes can be assigned as the trip count of the loogtiiut2 lanes are idle. In
this case, another opportunity for partial SIMD parallelisan be found inside the basic
block as illustrated in (d). Four ADD instructions in the ‘Ré&gion are able to execute
together with 16 degrees of parallelism, two ADD instrueian the ‘R2’ region can also
execute together using eight lanes. Based on the applicatialysis, more than 50% of

total instructions have at least one parallel identicatrutdion.

2.2.4 Summary and Insights

The analysis of these three applications provides sevesajltits. First, resource uti-
lization of a wide SIMD architecture is low because multin@eapplications have various
degrees of SIMD parallelism, and current solutions are ffeteve due to the high dy-
namic variance and the unpredictability. Second, ILP &gk vectorized basic block can
be converted to DLP in many cases. Therefore, additionsigh& MD parallelism can be
added when the DLP is insufficient.

A major challenge is how to minimize the data movement actiosgifferent SIMD

lanes. For loop-level DLP, inter-lane data movement doésaopen, whereas partial DLP

21



has a large number of such movements due to each part haviagedt levels of DLP,
causing the amount of the occupied SIMD lanes to change @ibrein such a manner that
the data packing/unpacking/reorganizing process hapjpegsently. For example, two
data movements across the lane need to be done when exgpfmatitial SIMD parallelism
in Figure2.7(d): 1) 'R1’ to 'R2’: After the 16-wide instruction, half ohie data in lanes 9
to 15 should move to 0 to 8, and 2) 'R2’ to 'R3’: After the 8-withsstruction, half of the
data in lanes 4 to 7 should move to 0 to 3. Therefore, we canjgs/evo total instructions
due to the data movement even if we save four instructionsaotiap SIMD parallelism.
The conclusion is that minimizing inter-lane data movera&nthe key challenge in getting

benefits from partial SIMD parallelism.

2.3 Subgraph Level Parallelism

This section describes a new vectorization technique. V8eifitroduce some new
terminologies and discuss its effectiveness in contrasther related techniques. An ex-
ecution model using SGLP is then proposed on the conventrada SIMD architecture.

Finally, we list practical challenges to exploit this p&easm and suggest proper solutions.

2.3.1 Overview

Subgraph level parallelism is defined as SIMD parallelistwbenidenticalsubgraphs
which 1) have an isomorphic form of dataflow with SIMDizablgeoations and 2) have
no dependencies on each other inside the basic block. Ttalgdsm is detected through

the identical subgraph search inside the whole dataflowhggapacted from a basic block.

22



SIND Lae

Via] VIb] Vic] VId] Vel VIfl Vig] VIh] o (YY) )
N 7 = 1: [i:k] = [a[0:3]:e[0:3]] + [b[0:3]:f[0:3]];
1
< S11allal|6]|8 )
% 5 g 2: [j:I] = [c[0:3]:9[0:3]] + [d[0:3]:h[0:3]];
— £
Y I s 3: [m:n] = [ik] + [j:1];
— T 4 Y Yan I
o
T 2 § [ 4: [n:0] = shuffle1([m,n], [0,0]);
o =
o 2L
§ ! = 5: [result[0:3]:0] = [m:n] + [n:0];
0
Inter-lane move T Time
Gain: 3, 4, 6
Viresul] Overhead: 1 move
(a) (b) (c)

SIMD Lane

Kernel 1

Kernel 0
SIMD width: 8

Lane 4 ~7

Program Flow

2]

=

5%

s 3

§&

;:N

o]
Lane 0 ~3

o =~ NMNW MO O

Gain: A1, C1 Time
Overhead: A1->B, C1->D

(d) (e)

Figure 2.8: Subgraph level parallelism: (a) identical subgaphs are identified, and (1, 2, 5,
7) and (3, 4, 6) are executed in parallel with one overhead, Jlexecution of the graph on two
SIMD lane groups, (c) SGLP exploited output source code, (dhigh level program flow with

three sequential kernels and kernel 1 can exploit SGLP, ands) execution of three kernels with

SGLP exploration on kernel 1.

These identical subgraphs can be executed in parallel ifotheof a sequence of SIMD
instructions inside the subgraph. There are two major adgas when searching packing

opportunities at the subgraph level:

e Packing steering: SGLP minimizes the overall data reorganization overhead be
cause the data movements between instructions inside aaglbgre automatically
captured and assigned to one SIMD lane, and the alignmehtsehetween sub-

graphs is performed over a global scope. This benefit becomes apparent when

23


defragmenter/fig/sglp_thesis.eps

converting ILP to DLP in the low-DLP region such as loop-llexectorized or scalar
code because the subgraph guides the instruction packdigetions that reduce or
keep constant the amount of conversion overheads when thkéngeaopportunities
are not restricted by the memory alignment so that the numbpossible packing

combinations increase.

e High packing gain: Converting ILP to DLP is not common because it is hard to
expect that the data reorganization process will providrigh gain to compensate
for its performance loss due to the expensive nature. Hoyélve considerable
instruction savings of subgraph packing gives more chattcgsarantee a positive

net performance gain in spite of the substantial amount effeads.

Figure2.8illustrates an example of SGLP realization. Using the ven¢ol basic block
from Figure2.7, Figure2.8(a) identifies two identical subgraphs of (1, 2, 5) and (3,4, 6
due to the same dataflow and same operations with no depeesleBach corresponding
instruction of two subgraphs is packed together and exddatparallel. Figure2.8(b)
shows the actual execution model using an 8-way SIMD datagi2de to the insufficient
degree of DLP for the original innermost loop from Fig@r&a), SGLP is applied and two
isomorphic subgraphs are identified from the 4-wide vezgarbasic block (Figur2.ga)).
From these two subgraphs, (3, 4, 6) is chosen to be executihe innused lanes. As a
result, instructions (1, 2, 5, 7) and (3, 4, 6) are executddne 0-3 and 4-7 as shown in
Figure2.8(b). In addition to this, one cycle of overhead is incurredrtove the output
data of instruction 6 to lane 0-3. FiguBed(c) is the pseudo code exploiting both SIMD

parallelism and SGLP. In this program, parallel instruasian the isomorphic subgraphs

24



are packed together and data movement is enabled tshtifleinstruction, which moves
data using the shuffle network in Figu2e3. ShuffleO extracts the left column data of two
input vectors and Shufflel extracts the right column datavofibput vectors.
Figure2.8(d) and (e) illustrate the high-level execution model oktharadigm. The
example scenario is three consecutive kernels havingeiftenatural SIMD widths (ker-
nel 0:8, kernel 1:4, kernel 2:8) are executed on an 8-way Skiihitecture. Kernel 0
and 2 are executed only using SIMD parallelism by loop umglWithout any inter-lane
overhead. However, the natural SIMD width of kernel 1 is demghan the architecture
allows, so SGLP is exploited as shown in (d). The SGLP comfiitds two groups of two
isomorphic subgraphs as (A0, Al) and (CO, C1) and offloadsstvbgraphs of A1 and C1
onto lanes 4-7. As a result, the whole program can improvédia¢ performance by the
execution time of A1 and C1 as shown in (e) with some overhéashired by this sce-
nario, the total speedup achieved by SGLP over the curretution model is derived as
the following equation when executimgdifferent kernels withiv invocations, which have
t normal execution time,,,;,, execution time can be saved by subgraph offloadingcand

inter-lane movement overhead.

im0 (t(k) x iv(k))
w0 ((t(k) = tugp(k) + ov(k)) x iv(k))

Based on Equatior2(1), the performance gain can be maximized when a program has

Speedup =

(2.1)

a high number of invocations on kernels with a small degreBIld?, a high degree of
SGLP and a small overhead. Therefore, an SGLP compiler rieedsrease the number

of instructions covered by identical subgraphs with minimater-lane overhead. The key

25



| Lane 0 ~3 | | Lane 4 ~7 |

Via] Vib] Vie] V[d] Vie] VIfl Vig] Vih] 1: [i4] = [a[0:3]:c[0:3]] + [b[0:3]:d[0:3]];

2: [k:] = [e[0:3]:g[0:3]] + [[0:3]:h[0:3]];

(" 3: [i:K] = shuffle0([1i], [k.I]); )
(" 4: [ = shuffle1 (1], [k ]); )

5: [m:n] = [i:k] + [i:1];

(" 6: [n:0] = shuffle([m.n], [0,0]); )

7: [result[0:3]:0] = [m:n] + [n:0];

V[result]

(a) (b)

0.7
0.6
0.5 —
0.4 =
0.3 H H ]

(AAC) (3D ) (H.264) (Avg )

0.2 H H H [

01 H | —

SLP saving (Cycle)
]

2 3 4 2 3 4 2 3 4 2 3 4
OSLP overhead @OSLP (real) # of ways

()

Figure 2.9: Superword level parallelism difficulty: (a) (1,3, 5, 7) and (2, 4, 6) are chosen to
execute in parallel and three overheads occur, (b) superwdrlevel parallelism exploited output
source code, and (c) average cycle savings of SLP: Y-bar meaitleal savings and it is broken

down as overheads and real savings.

algorithm to achieve this goal is explained in sect?of

2.3.2 Comparison with Superword Level Parallelism

Superword level parallelisn®b}] is the most similar paradigm to our work with respect
to searching potential parallelism inside the basic bloBkcause SLP focuses on short
SIMD instructions, isomorphic instructions are only calesed and thus they cannot han-

dle inter-lane data movement. This problem is often igndechuse the overhead of data

26


defragmenter/fig/sglp_comp.eps

movement inside the vector is fairly small in a narrow SIMDmgonent, however, it usu-
ally induces high performance degradation in a wider SIMbhponent £2]. In addition
to this, the local scope of superword level parallelism maydoled into selecting packing
instructions when a large number of isomorphic instructiexists.

Figure2.9shows the result of exploiting superword parallelism fraguiFe2.7 (a). For
a fair comparison, we relax the memory alignment constr@int52] so that all memory
instructions can be packed. As the compiler searches tihgoigihic instructions in pro-
gram order with local scope, instructions are packed as)(1(324), (5, 6). Then lanes
0-3 execute (1, 3, 5, 7) and lanes 4-7 execute (2, 4, 6) as shofigure2.9 (a). Even
though total instruction savings are the same as SGLP , #inesd also increases to three
instructions (Figur.9(b)). Therefore, there is no performance gain even in thislldpa-
sic block, and when the block becomes more complex the dhgoicannot ensure a good
result.

Based on the above consideration, we analyze the cost &f tivesheads for the vector-
ized kernels of three media applications. FigRrg(c) shows average cycle savings when
applying SLP at different SIMD ways from two to four compatedhe original schedule
on the baseline processor. The Y-bar shows the ideal saagsysning the SIMD overhead
is free, and each bar is broken down by SLP overhead and n@afjsaThe SLP overhead
is calculated assuming all the data rearrangement inginsctake one cycle. The results
give two major insights: 1) SLP, the well-known SIMDizatitechnique used inside the
basic block, can ideally deliver a fair amount of perform@anhancement and is also scal-
able as the number of ways increases, and 2) large SIMD caesh&f more than 50% of
ideal savings hinder the effectiveness of SLP and make Sk&hbscalable as the over-

27



SIMD Pipeline Constant
Mem
L1
Program Bank | |— ) —)
Memory 0 )
1
Controller )
Ba1nk N
SSN
s |8 SIMD FU (SIMD
RF g Shuffle
Bank Network)
2 ) |
DMA
Bank
3 — —|  [——
| =N
Scalar || Scalar Pipeline |
Main Memory —
Processor Buffer — AGU F’llpe“ne |

Figure 2.10: Architectural modifications: (1) multi-bank memory and (2) wide SIMD constant

memory is supported.

heads also grow dramatically at wider ways. The actual padiace gain will be worse in

a real situation because many SIMD overhead instructidesrteore than an single cycle
with current technology. Sectio®.5 shows how much SGLP improves performance by
both increasing the ideal savings and decreasing the aagshehen compared to SLP. In

addition to this, we also show how much ILP can be convertedSGLP.

2.3.3 Challenges and Solutions

As discussed, SGLP introduces more potential parallelisinhés many principal chal-
lenges to make this paradigm feasible. We list the four majchitectural challenges

and suggest possible solutions with architectural or campnodifications. Simple ar-

28


defragmenter/fig/architectural_modification.eps

chitectural changes are proposed as shown in Figur@and compilation challenges are

addressed in Sectidh4.

Control flow: Because SGLP is basically exploited within the basic blooktrol flow
is not a big issue. Furthermore, as scalar pipelines areapifjnresponsible for handling
control flow, SGLP generally does not need to consider cofitre. However, basic blocks
are sometimes merged using if-conversion with predicattven in this case, SGLP is not
affected because predication also can be detected in théadesubgraph identification
process.

Instruction flow: When multiple SIMD lane groups execute some task in parallel
all the instructions are not covered as subgraphs, and stkhie Bne groups may not
be enabled because the number of identical subgraphs ikesithaln the number of SIMD
lane groups. Therefore, the main SIMD lane group is necg$saover all the instructions.

Register flow: First, data movement across or inside the SIMD lane groupsbea
supported by single-cycle shuffle instructions using a feaetwork. Second, although
multiple SIMD lane groups execute the same instructiorsy tictual register names are
different. Therefore, the compiler must handle registaansing, which packs multiple
parallel short registers into a wide register. In additioriis, some instructions covered
by multiple identical subgraphs may have different immtaiaalues, and therefore the
architecture must provide a way to support wide constantegln a cycle because it is
impossible to supply multiple values in a cycle. Therefaremall constant value memory
can be added. The compiler then automatically generatesitteeconstants from multiple

immediate values. The application study shows that thesescarely exist, and thus the

29



overhead incurred is trivial.
Memory flow: If identical subgraphs have memory instructions, the sxfees of the
instructions may be different, and thus the architecturstmprovide a smart memory pack-

ing mechanism such as gather-scatter operation.

The possible architectural modification is to replace thid[3kcratchpad memory from
one wide memory to a short width multiple bank memory. Thiarge is required to re-
lax the memory alignment constraint. The most critical osaghy the basic block typi-
cally has high ILP but low DLP is that the architecture doessupport unaligned mem-
ory accessi”Z. By supporting unaligned memory packing/unpacking frodA using
the multi-bank memory, more memory instructions can be @eecin parallel. One key
point is that multi-addressing is only allowed for Memory¥&. communications, while
the SIMD pipeline views the memory as a single bank. Anotlegrdoint is that the number
of banks depends on the ratio of the number of memory instnsto normal instructions
because the address calculations are the responsibilihecAGU pipeline and they are

not scalable, thus the performance of the AGU may be theitighfactor.

2.4 Compiler Support

2.4.1 Overview

In this section, we describe the compiler support for SGlaRiflg the concept of sub-

graph identification 9], we developed a SGLP scheduler that can support both simple

30



Lane-assigned
Subgraphs

Compiler Front-end Hardware Information
IR Code
(T T T A \
\ Loop-unrolling & :
: Vectorization B I
| Loop-level !
| # Vectorized :
: IR |
| Dataflow Generation | !
! |
: 4>¢ Dataflow |
o | Graph :
S ! L |
% ! Subgraph Identification |« .
8 |
m : ‘ Identical :
o | Subgraphs |
= | |
g' | SIMD Lane Assignment = |
3 .
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! T
! |
! ]

Vectorized
IR Code

Figure 2.11: Compilation flow of the SIMD defragmenter: shaded regions exploit subgraph

level parallelism.

loop-level DLP and SGLP for wide SIMD components. The sysfiem is shown in Fig-
ure2.11 Applications are run through a front-end compiler, pradggeneric Intermedi-
ate Representation (IR), which is unscheduled and usesl/idgisters. The compiler also
gets high-level machine specific information, including tiumber of SIMD lanes, and
supported inter-lane movement instructions. Given ther® l@ardware information, the
compiler performs loop-level vectorization on the seldc&MDizable loops. The com-
piler then exploits SGLP if the SIMD parallelism is insuféait. After generating the DFG,
the compiler iteratively discovers identical subgraphthaDFG and assigns the subgraphs

to unused SIMD lanes until no more SGLP opportunities e¥istally, the compiler gen-

31


defragmenter/fig/system_flow.eps

erates the final vectorized IR.

2.4.2 Subgraph Identification

First, identical subgraphs are extracted from the given DF& compiler sets the
maximum number of identical subgraphs as the availableegegt SGLP. The compiler
then iteratively searches the groups of identical subgrapking some number of instances
from maximum number down to two (the minimum degree). Hewridiscovery P9,
which picks the seed node and grows the nodes, is used for RpiGration. Exploration
starts by examining each node in the DFG and using it as tlitfeea candidate identical
subgraph. The algorithm attempts to find the largest catalslegbgraphs with identical
instances within the given DFG, whetas the degree of SGLP. If, however, the algorithm
identifiesm identical instances of a candidate subgraph, where n, only n instances
are saved and the nodes from the remaining n instances are “discarded” and “re-used”
in the next exploration phase. This of course assumes taatuiitent candidate subgraph
could not be grown further while still ensuring thatnstances could still be identified. If
all the identical subgraphs with the target number of ins¢am, are found, the compiler
decreases the target number by one and starts the subgeaph again.

Additional conditions for the general subgraph searchtzael) the corresponding op-
erations from each subgraph should be identical, 2) liveesahnd immediate values should
also be taken into consideration, and 3) inter-subgrapbr#gncies should not exist. Con-
dition 1) enables the corresponding instructions insigestibgraphs to be packed into one

opcode, and condition 2) enables packing whole operandseahstructions. Live values

32



and immediate values are not generally considered in consulograph pattern matching,
but the SGLP compiler must take them into account becaugesanhe type of operands

can be packed for SGLP. The last condition ensures that tiggaphs are parallelizable.

2.4.3 SIMD Lane Assignment

Once all possible groups of identical subgraphs are idedtithe compiler selects the
subgraphs to be packed and assigns them to SIMD lane groms$rudtions included
in remaining subgraph groups lose the subgraph informati@hare reused in the next
subgraph identification process. The objectives of SIM2 lassignment process are two-
fold: 1) pack maximum number of instructions with minimunteinrlane data movement,
and 2) ensure packed groups of instructions can be execafielg 81 parallel without any
dependence violation. To achieve these goals, the contpitesiders three kinds of criteria:
gain, partial order, and affinity.

The gain of the subgraph is the most critical criteria andiigely calculated by the size
of the subgraph. Larger subgraphs can provide higher padioce with less overheads as
more dataflow can be covered. The memory packing overhedsbisecounted for in the
gain if it incurs performance degradation. The compile&dto assign subgraphs to specific
SIMD lanes based on decreasing order of the gain.

The partial order between subgraphs inside the SIMD lanemi®the next most crit-
ical issue. When assigning new identical subgraphs tordifteSIMD lane groups, the
partial order of the subgraphs inside the SIMD lanes may fierdnt across the SIMD

lanes because identical subgraphs are only parallel with ether and the relations with

33



SIMD Lane 4

A1

A0
COo

(3@

\ ’ Lane 0~ 3 ‘ l ’ Lane 4 ~7 ‘ |
{

Figure 2.12: Subgraph partial order mismatch: when (B0, B1)s chosen to execute in different

SIMD lanes, (C0, C1) cannot be chosen due to the partial ordemismatch between lanes.

other subgraph groups are not considered. If the relatibmdsn different subgraphs in
some lane groups is different from the relations in othee lgroups, the corresponding
subgraphs cannot be executed in parallel. FiQui@shows a simple example case of this
kind of conflict. From a vectorized basic block having 3 greopidentical subgraphs with
(A0, Al), (BO, B1), and (CO, C1), (A0, Al) and (BO, B1) are chngo be parallelized us-
ing the two SIMD lane groups. After this assignment, CO ana&inot execute in parallel
through two SIMD lane groups because CO must execute befoia Bie lane group 0-3
but C1 must execute after B1 in the lane group 4-7.

As the inter-lane data movement overheads inside the spigee already solved by
subgraph identification, the next objective is to minimize bverheads between different
subgraphs. Typically, a subgraph is related to multipleepotubgraphs, so the compiler
must consider which combination of subgraphs can minintizedverall overhead. To
address this issue, affinity costwas introduced inspired by previous works[ 73]. The

affinity value for a pair of subgraphs reflects their proximit the DFG. When a group

34


defragmenter/fig/conflict.eps

of identical subgraphs is chosen to be parallelized, eawh daoup is assigned an affinity
cost depending on how close the subgraph candidate is toleeadg placed subgraphs
that have high affinity with the candidate. This gives prefiee for assigning a subgraph
in the same lane group as other subgraphs it is likely to comzate with thus reducing

inter-lane data movements.

mazx._dist

af finity(A,B) = > (Y 2" ((Nogs(a, B, d) (2.2)

a€nodes_A d=1

+ Nprods(aa B, d)) X C(O + (Ncom_cons(a'a B, d) + Ncom_prods(a'a B, d)) X Cl)))

,where Cy>> (4

Equation 2.2) calculates the affinity between two subgraphs A and B. Theevia de-
termined by four different relations between nodes insidan&l B: producer, consumer,
common consumer, and common producer relations. Prodoosumer relation means
that nodes in A have direct/indirect producer-consumesuamer-producer relations to
nodes in B. Common producer/consumer relations mean trggsnm A and nodes in
B have common producer/consumer relations. The former éladions have explicit data
movement between subgraphs but the latter relations jydyithat they may have some
data movements when merging or diverging. Therefore, wenaue weight on the former
two relations (', >> (). Nodes withinmaz,;; are used, wheré&/ refers to the number
of nodes in subgraph A that have a relationship with a nodelgaph B at a distancé
The distance is the number of nodes to reach the target node.

Algorithm 1 shows how the SIMD lane assignment works. The inputs areighefi
identical subgraph group&lSubGroupy dataflow graph@) and the current list of SIMD

35



Algorithm 1 SIMD Lane Assignment

Input: 1dSubGroupsG, SIMDGroups
Output: SIMDGroups
{ Assign subgraphs into the appropriate SIMD lane grpup.
Sort SubGr aphGr oupsBy Gai n(IdSubGroupk
while Has Gr oup(ldSubGroupysdo
curSubGroup— Pop(ldSubGroups
while Has G oup(curSubGroupdo

curSubGraph— Pop(curSubGroujy

o a9 h w DN R

curSIMDGroup«+—
fi ndSI MDG oupBy MaxAf fi ni t y(SIMDGroupscurSubGraplh

7: curSIMDGroup— addSubGr aph(curSubGraply

o

end while

9: if ('Parti al Or der Check(SIMDGroup3) then

10: Rest or e(SIMDGroups;
11: end if
12: end while

{ If no more updates, find the main lane group and assign rentaitodes}
13: if (!l sUpdat ed(SIMDGroup3) then
14: curSIMDGroup+—
f i ndSI MDG oupByMaxOver head(SIMDGroup$;
15: curSIMDGroup— addRenai ni ngNodes(G);
16: Set Mai nSI MDGr oup(curSIMDGroup);

17: endif

36



lane groups$IMDGroup$. The output is the list of SIMD lane groups with new subgraph
assignment§IMDGroup3. The algorithm starts by sorting theéSubGroupsy subgraph
gain because we place the top priority on the gain of subgrBpked on the sorted order
of the list, the while loop assigns the subgraphs on the gpiate SIMD lane group. Lines
3-8 take one identical subgraph group and assign each ofuthggraphs onto the SIMD
lane group having the maximum affinity. Lines 9-11 perform prartial order check for all
the SIMD lane groups and, if some conflicts occur, the latpdate is cancelled. When no
more subgraphs are assigned to the inBiAIDGroups the compiler decides not to try the
subgraph identification process again using the remairodgs, sets the SIMD lane group
with the maximum overhead as the main lane group, and assigiavered nodes of DFG

to the main lane group in order to minimize the total overhead

2.4.4 Code Generation

The compiler generates new vectorized IR from the lane assggt and inter-lane
movement information from the previous process. When tmepiler meets instructions
covered by the identical subgraphs, the compiler gathetsgarallel operand and converts
them into one long register by remapping, a short immedatea,wide constant. When a
wide constant exists, the compiler generates the data aed gao the constant memory.

Shuffle instructions are also added if the compiler detetes-lane data movement.

37



2.5 Experimental Results

2.5.1 Experimental Setup

To evaluate the availability and performance of SGLP, 144 lkernels, varying in size
from 4 to 142 operations, are extracted from three mediacifns in the embedded do-
main (AAC decoder, 3D graphics, and H.264 decoder). Thatitar count per invocation
of the kernels varies from 1 to 1024, and the natural SIMD ksdire decided by the con-
ditions discussed in Sectidh2.2.1and memory dependence checks are performed using
profile information. The IMPACT compiler/[1] is used as the frontend compiler and both
SGLP and SLP4Z] are implemented in the backend compiler using a SODA-dtyi$
wide vector instruction set. The inter-lane move is perfednusing a single-cycle delay
shuffle instruction, supporting data rearrangement in tMDERF as indicated by the per-
mutation pattern similar to vperm (VMX) or vgeerm (AltiVec [32]). We also allow some
similar instructions (e.g. add/sub) to be packed as comrmaotov architectures allow this.
The vectorizable kernels are automatically vectorizeddmplunrolling and the evalua-
tion is performed using the loop-level vectorized basicklorhe wide SIMD architecture
as discussed in Sectidh2.1is used as the baseline architecture. The number of SIMD
resources can vary from 16 to 64, while the number of memonik$are limited to four.

Our experiments do not apply SGLP more than 4-way. Two maisaes for this are:

1) the degree of ILP, the theoretical maximum gain of SGLRastly smaller than four,
and 2) only computation instructions can be SIMDized, aeddfore the decreased ratio of
computation to memory instructions causes the performemioe constrained by the AGU
pipeline.

38



g 02 o3 @4

E gr—

¢ 0.8

Q

o

5 06 -

=

S

£ 04 -

£

o

o -

il 0.2

=

©

© 0 T T

AAC 3D H.264
(a)
1 1

_?_3 9 02 way SLP 2 way SGLP 03 way SLP 02 way SLP B2 way SGLP o3 way SLP
_E s m3 way SGLP =4 way SLP m4 way SGLP m3 way SGLP @4 way SLP w4 way SGLP
1S

© 909090900000
S NWw s N ®©

Ratio of instructions eliminated
=

AAC 3D H.264

(b) (c)

Figure 2.13: Ratio of instructions covered by the subgraphdvel parallelism and static instruc-
tions eliminated for three media applications: (a) instrudion coverage, (b) static instruction
elimination without inter-lane overheads, and (c) static hstruction elimination with inter-lane

overheads.

2.5.2 Subgraph Level Parallelism Coverage

We first calculate the percentage of instructions coverdddaytical subgraphs in order
to gauge the availability of subgraph level parallelismorrthe vectorized basic blocks
of kernels, we found identical subgraphs ranging from 2-veag-way. The coverage is
calculated as the number of instructions covered by theticlrsubgraphs. The results
for three applications are shown in Fig@rd 3(a) For H.264 and AAC, a large percentage
of instructions is covered by identical subgraphs becaigde degrees of parallelism still

exists even inside the vectorized basic block. Even thoughFScovers relatively small

39


defragmenter/fig/coverage.eps
defragmenter/fig/instruction_saving1.eps
defragmenter/fig/instruction_saving2.eps

DI
(1) (swp) \\\ - ‘\
5t 5

(@) (b)

Figure 2.14: Example dataflow graphs: (a) FFT: two identicalsubgraphs ((1) Id, i41, i41, (2)
Id, (sub/add), add, sub, st, st), (b) MatMul3x3: two identi@al subgraphs ((1) add, Id, i32 , i32,

i32 (2) add, add, st). i41 and i32 are intrinsic instructions

amount of instructions, more than 50% of instructions in3Beapplication are still cov-
ered. Compared to other applications, the 3D applicatianehamaller degree of SIMD
opportunity due to each instruction having a small numbegrapéllel instructions with the
same operation.

The interesting point here is that the coverage of the 3-wayAAC and H.264 appli-
cations is smaller than the 2- and 4-way. This is because dabatiow graphs have a tree
structure and therefore 2 and 4 way are well matched but 3fwguently misses some in-
structions when dataflow merges. For example, a dataflovhgrigie FFT kernel is likely
parallelizable in a 4-way, and thus 3-way exploration carfimal the profitable identical
subgraphs in the one remaining flow as shown in Figuid(a)

Figure2.13(b)and Figure2.13(c)show the ratio of static instructions eliminated from
the vectorized basic block when applying SGLP and SLP. Tiifiguaration is expressed

as: (numbeof_simdizationways) way (technique). Figuiz13(b)shows the result with-

40


defragmenter/fig/fft.eps
defragmenter/fig/mat33.eps

out overhead (number of shuffle instructions) and the peéagenof savings has the trend
similar to that of the SGLP coverage. An interesting quesischow the SGLP can elim-
inate more instructions than the SLP even though both tgaesi have a fair amount of
gains. This is because 1) SLP frequently makes the wrongidecamong various packing
opportunities and 2) SLP cannot vectorize pure scalar cpdgs When considering the
inter-lane data movement overhead as shown in Figurg(c) SLP performs dramatically
worse than the ideal condition due to many shuffle instrastid®®dn the other hand, SGLP
was found to still deliver consistent amounts of instructeliminations by smart data-
movement control. Based on the application complexity,6d4.and 3D have a notable

degradation of savings, whereas AAC is rarely affected byotrerhead.

2.5.3 Performance

Inspired by the promising result of finding abundant oppattes for SGLP in the vec-
torized basic block, we compared the performance of SGLPtio 8LP and ILP. Perfor-
mances of SGLP and SLP are measured as the schedule lengththeHesrnel is mapped
a (a degree of loop-level vectorization the number of ways)-wide SIMD architecture.
As SGLP is the restricted form of ILP, the ILP result can beutjttt of as the theoretical
upper bound. The performance of ILP is measured as the siehledgth when the kernel
is scheduled in the same sized fully-connected VLIW maclhia&ng a central register
file. For example, if an example kernel is loop-level veced by 16 and 2-way SGLP
is applied, the corresponding ILP performance is calcdlateen an ideal 32-wide VLIW

machine executes unrolled scalar code.

41



OSLP @ SGLP O SLP w/ overhead B SGLP w/ overhead =|_P

339
T 3
e
%2.5
s 2fod il
Wl
111 1
2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

# of ways

Figure 2.15: Performance comparison of SLP/SGLP without ogrhead, SLP/SGLP with over-
head, and ILP for key kernels: FFT, MDCT for AAC, MatMul4x4, M atMul3x3 for 3D, and

HalfPel, QuarterPel for H.264.

Figure2.15and2.16show the individual performance enhancement results afisii
known kernels and geometric mean of gains for each apmitatiThe target ways are
shown on the X-axis, relative performance normalized tootiginal vectorized kernel on
the Y-axis. The following techniques are examined and shasva bar form: SLP and
SGLP with zero-cycle data-movement latency (SLP and SGhR)SLP and SGLP with
single-cycle data-movement latency (SLP and SGLP w/ oeethd he ILP results are also
shown as a short horizontal form and the vertical line inisahe performance difference
between ideal ILP and loop-level vectorization combinethyeractical SGLP. From these
two graphs, substantial amounts of speedups exist in betl chses and are similarly
scalable as ILP. In addition to this, gains from SGLP in realations are also mostly
prominent and scalable without large overhead increasedaer ways. In contrast, SLP
with overhead has a large performance degradation due tontinense inter-lane data-
movements, and increasing overheads on wider ways makeelylszalable.

Unlike most cases, a few kernels showed negligible perfoo@amprovements while

42


defragmenter/fig/kernel_ex.eps

OSLP OSGLP OSLP w/overhead BSGLP w/ overhead =ILP

2.6

§2.4 (_Aac ) (3 ) ((H264 ) o (Ag )
= |
§2.§ =
o
1.8 [
o T -
q>)1.6 T .
= i T 1
51.4 1
00:31.2 -

1 = T T " T T

2 3 4 2 3 4 2 3 4 2 3 4

# of ways

Figure 2.16: Average kernel performance comparison of SLFSGLP without overhead,

SLP/SGLP with overhead, and ILP for three application domans.

applying SGLP, namely FFT in AAC and 3x3 matrix multiplicatiin 3D. These are due
to the specific characteristics of each dataflow graph.,ssshown in Figur@.14(a) the
FFT kernel can have two subgraphs without inter-lane dateements in the 2-way case.
In the 4-way case, each subgraph for the 2-way case is spht more with only two data
movements such as (i4% add) and (i41~ sub). In the 3-way case, three of the subgraphs
for the 4-way case are identified and a remaining subgrapmotdoe effectively executed
in multi-lane, which has a high data-movement overhead. Aesalt, the gain of 3-way
SGLP is worse than that of 2-way SGLP including overheadso®#® the 3x3 matrix
multiplication can be split into three subgraphs as showrigure2.14(b) and therefore
a considerable increasing in overheads when applying 48@lyP hinder it from fully
exploiting the benefits.

As shown in Figure€.16 on average, SGLP without and with overheads achieve rela-
tive performance improvements of 1.42x, 1.36x at 2-wayl1,.6.47x at 3-way, and 1.84x,

1.66x at 4-way. In addition to this, SGLP with overheads aisavides 18-40% more per-

43


defragmenter/fig/Execution_time.eps

OSLP w/overhead ®BSGLP w/ overhead =ILP

Q ;2 (Aac ) (o ) (H284 ) (Ag )
C . -
©
c 24 -
S T
%2.2
x 2
2 1.8 -
© 1.6 -
& 1.4 - T

1.2 -

1 .

16 32 64 16 32 64 16 32 64 16 32 64
# of SIMD lanes

Figure 2.17: Overall performance comparison of SLP/SGLP wth overhead and ILP for three

domains on SIMD architectures.

formance improvement over baseline compared to SLP witlsdh®e resources. The per-
formance difference between SGLP and SLP increases asdmpliwider ways. Finally,
a comparison with ILP suggests that SGLP is a cheap and pavseifition to accelerate
performance, considering that SGLP only requires minimduditeonal hardware while a
wide fully-connected VLIW architecture is impractical.

Based on the schedule results for kernels, we execute thpdieations on three wide
SIMD architectures having 16, 32, and 64 lanes. When thenali¢sIMD width of the
kernel is equal or larger than the width of the architect&®|LP or SLP is not exploited.
Only when the current SIMD width of the kernel is insufficigatfully use the architec-
ture, the available amount of SGLP, up to 4-way, is exploitear example, 4-way SGLP
is exploited if a kernel is 4-wide vectorized on the 16 wayh#@exrture and 2-way when
8-wide vectorized. The final performance is also comparachthtional ILP in the equiva-

lent VLIW architecture and SLP. The results are providediguFe2.17with considerable

44


defragmenter/fig/perf.eps

performance gains. The X-axis shows the number of SIMD landke wide SIMD archi-
tecture and the Y-axis shows speedup relative to the sinipM® &xecution time on the
baseline architecture. The two bars of each applicatioresgmt the runtime speedup of
real SLP and SGLP with overheads. In a similar ways from previFigures, ILP results
are also provided. For all the applications, real SGLP silws notable performance gain
by utilizing more SIMD resources with smart overhead cdntAs we discussed in Sec-
tion 2.2.2.2 kernels having smaller than 16 SIMD width are accelerate@GLP when
using 16 wide architecture, and AAC and H.264 have high gadiresto the high execution
time ratio of such kernels, which are more than 50% of thealtexecution time. As the
architecture size becomes larger, the performance issdatliat some point because SGLP
is constrained by maximum degree of 4. The key observatitmaisthe real performance
gain of SGLP is also fairly scalable due to the fact that thégoeance gain successfully
compensates for the increased overheads different from Bh&lly, on average, SGLP
with overhead can have 1.61x, 1.73x, and 1.76x speedups, 821@nd 64 wide SIMD

architectures while SLP only achieves 1.24x, 1.28x, anéXlspeedups.

2.5.4 Energy Measurement

To evaluate the energy savings of SGLP in the real world, wasoed total energy
consumption for running H.264 to determine the effectissnef SGLP. We used a 32-
wide SIMD architecture for SGLP, and a practical 4-way VLIWwhich each datapath
supports 8-wide SIMD instructions for ILP and an 8 read-pottwrite-port 8-wide SIMD

RF. Both architectures are generated in RTL Verilog for a RIBr target frequency, then

45



SGLP @ 32-wide SIMD |ILP @ 4 way 8-wide VLIW| ratio
power (mW) 54.40 93.17 58.39%
cycle(million) 13.07 10.77 121.36%
energy (mJ) 3.55 5.02 70.86%

Figure 2.18: Energy comparison for the SGLP on the 32-wide 31D architecture and ILP on

the 4 way 8-wide VLIW architecture.

synthesized with the Synopsys Design Compiler and Phy6icaipiler using IBM 65nm
standard cell library with typical operating conditionginReTime PX is used to measure
power consumption. Instead of measuring power for everiecywverage activity of each
component was monitored. FiguPel8shows that the SGLP is 30% more energy effi-
cient than ILP. Even though the performance of SGLP is diidbtver, the high power
overheads of VLIW implementation, such as those introduoged multi-port register file
and a complex interconnect, dominate the results. The powaber for constant memory
is also considered based on the standby power and read pxrirected from the SRAM
compiler. The constant memory power overhead is triviabbse the standby power is
roughly 1/250 of read power and the wide constant valuesamdyrread. The access

timing is also smaller than 5 ns (i.e., 200 MHz), hence datebsaread in one cycle.

2.6 Related Works

Most prior work in automatic vectorization are performedtba loop-level {8, 10]
and some of the techniques have already been implementedhanercial compilers such
as the Intel Compiler41]. These types of vectorization are usually exploited byploo

unrolling. Our SGLP vectorization starts after simple ldepel vectorization, and thus it

46


defragmenter/fig/power.eps

is an orthogonal approach and can be helpful to enhance #ralbperformance of our
compiler framework by finding more loop-level DLP. SGLP &t identify opportunities
for parallelism within the vectorized basic block.

Superword-level parallelisni}] is the closest related work but this work is hard to
apply to long vector architectures as discussed in Se@ti@nTo improve this technique,
some research3p, 53] focuses on smart memory control such as increasing canigu
memory instructions and decreasing memory accesses. areteo key differences be-
tween SGLP and SLP: 1) SGLP tries to minimize the SIMD ovedkaa the scope of
dataflow graph analysis, whereas most approaches do in tipe £ memory manage-
ment, and 2) we focus on finding groups of instructions to guoi@e sufficient gain over
the overheads but others usually focus on decreasing thbeads. Unroll-and-jam with
SLP [68] is the most similar work and we can get 30% higher perforreantaverage due
to SLP being less effective when applied to scalar code.

Another key contribution of this work is the ability to minine the interaction be-
tween the SIMD lanes. This scheme is highly related to theamreh in the area of clus-
tering [24, 37, 23, 9]. However, general clustering techniques for VLIW mackihecus
on load balancing and critical path search, and thus caramatlé dataflow and instruction
mismatches between clusters.

Subgraph exploration for finding identical subgraphs i® @swell-known research
area P9, 25, 26, 2¢] but the goal of these works is mostly to generate customl@eters
for the subgraphs. We introduce a new algorithm for orchésty sets of subgraphs at a
high-level for SIMDization on existing architectures.

AnySp [20] or SCALE [49], which exploit multiple forms of parallelism, are also

a7



similar to this work. AnySp integrated DLP and TLP, and SCA&#ploits both vector
parallelism and TLP. However, they need substantial achital changes like multiple
AGUs, flexible functional units, and swizzle networks in Ap; or additional multiple
fetch unit, special inter-cluster network, and Atomic tastion Block (AIB) cache in

SCALE. However, we can provide SGLP with two minimal hardevanodifications (a

small wide-constant memory and banked memory accesshitiatvery little overhead.

2.7 Summary

The popularity of mobile computing platforms has led to teeelopment of feature-
packed devices that support a wide range of software apiplisawith high single-thread
performance and power efficiency requirements. To effityesthieve both objectives,
embedding SIMD components is an attractive solution, Harewtilization of SIMD re-
sources is a major limiting factor for adopting such a schelmeesponse, we propose an
efficient vectorization framework, called tis#MD defragmenterto enhance the through-
put by maximizing SIMD utilization. Th&IMD defragmenteframework first performs
simple loop-level vectorization, then tries to find more DwRhin the vectorized basic
block using subgraph level parallelism (SGLP). To achidvs, tpartially parallelizable
subgraphs are identified inside the basic block, which dteaafed to the unused SIMD
lanes while minimizing the number of inter-lane data movets€eWe introduce a new way
to orchestrate the partially parallel subgraphs, whichmplemented in our SGLP com-
piler. The SGLP compiler is able to effectively assign th&iBllanes for each subgraph

based on the relations between subgraphs. On a 16-wide Stvliegsor, SGLP obtains

48



an average 62% speedup over traditional vectorizatiomiqaks, with a maximum gain of
2x. In comparison to superword-level parallelism, the vkelbwn basic block level vector-
ization technique, SGLP achieves an average 30% speedupeli#ee as SIMD, or more
general data-parallel, accelerators become more commopiew techniques to put these

resources to work across a wide spectrum of applicationdeiéssential.

49



CHAPTER 3

Accelerating Execution using Dynamic Operation Fusion

3.1 Introduction

The embedded computing systems that power today’s mohileekedemand both high
performance and energy efficiency to support various highapplications such as audio
and video decoding, 3D graphics, and signal processinglitioaally, application-specific
hardware in the form of ASICs is used on the compute-intensarnels to meet these de-
mands. However, the increasing convergence of differemttfonalities combined with
high non-recurring costs involved in designing ASICs hawshed designers towards more
flexible solutions that are post-programmable. Coarsevgdareconfigurable architectures
(CGRA) are becoming attractive alternatives because tfieylarge raw computation ca-
pabilities with low cost/energy implementatioris| 85, 65]. Example CGRA systems that
target wireless signal processing and multimedia are ADRES MorphoSys (1], and
Silicon Hive [79].

CGRAs generally consist of an array of a large number of fonainits (FUs) inter-

50



Central Register File From Neighbors or

Central Register File
A A A
< 4 «f <
FUO [«r> FU1 <> FU2 [«r» FU3
< < € 4 .
FUA4 [« FUS5 [« FU6 ¢ FU7 Register
; ; ; ¥ Mem FU File
<« 4 4 <4
FUS8 [« FU9 «»FU10<>FU11 v
¢ ¢ ¢ : Register
¢ K- [ %
FU12<«*>FU13<«*>FU14<«>FU15 )
To Neighbors

Figure 3.1: Overview of a4x4 CGRA.

connected by a mesh style network, as shown in Fi§ute Register files are distributed
throughout the CGRA to hold temporary values and are addessily by a small subset of
the FUs. The FUs can execute common integer operationaging addition, subtraction,
and multiplication. In contrast to FPGAs, CGRAs sacrificéegavel reconfigurability
to achieve hardware efficiency. Thus, CGRAs have short fegpmation time, low delay
characteristics, and low power consumption.

While CGRAs are fully programmable, an effective compiteessential for achieving
efficient execution. The primary challenge is instructichexduling wherein applications
are mapped in time and space across the array. However,sicties challenging due
to the sparse connectivity and distributed register files.GBGRAS, dedicated routing re-
sources are not provided. Rather, FUs serve as either cengpubuting resources at a
given time. Therefore, the scheduler must manage the catipuoit flow, and storage of
operands across the array to effectively map applicatiots 6GRAs. Compilers gener-

ally focus on mapping compute-intensive innermost loops ¢ime array. Early work fo-

51


cgraexpress/fig/cgra.eps

cused on exploiting instruction-level parallelisay[ 21]. However, these approaches could
not make efficient use of the available resources due toduniitP, thus more recent re-
search focuses on exploiting loop-level parallelism tigtoonodulo schedulingsf, 72, 73].

CGRA research has generally focused exclusively on effgiéar throughput-constrained
innermost loops. However, real-world media applicatiomsstst of more than highly par-
allel inner loops. Specifically, substantial fractions iofi¢ are spent in non-loop or outer
loop code, as well as recurrence dominated innermost lodplitional CGRAS do not
handle sucHatency-constrainedode segments in an effective manner as they have no
mechanisms to accelerate dataflow graphs that are narrogeguential. In fact, the ma-
jority of the resources sit idle in such situations.

This chapter proposes a new technique referred tbyaamic operation fusioto ac-
celerate latency-constrained code segments on CGRASs. dreddea is to dynamically
configure the existing processing elements of a CGRA intdlsaogclic subgraph accel-
erators. Each cycle, any FU can be fused with multiple of é@iglmbors to create an ac-
celerator capable of executing a small computation sulbgrap single cycle. In essence,
small configurable compute accelerators are realized oartlag to accelerate sequential
code pP6]. The necessary hardware extensions for a conventional AC&R quite simple
—an inter-FU bypass network is added between neighborirgjifrthe array using a few
multiplexors. The compiler scheduler automatically idigd opportunities to accelerate
subgraphs by managing the scheduling process at the sidbgranularity. The net result
is that the usefulness of CGRAs is extended beyond highlgllehatoops to effectively
operate in latency-constrained code regions.

The contributions of this chapter are as follows:

52



An analysis of common media applications to understandithiéaltions presented

by latency constraints.

CGRA design that supports dynamic operation fusing.

A compiler scheduler that automatically identifies oppoities for dynamic fusion.

An evaluation of dynamic operation fusion across a set ofisn@plplications.

3.2 Motivation

3.2.1 Analysis of Multimedia Applications

To understand the effectiveness and limitations of tradél CGRAS, we examine the
characteristics of commonly used multimedia applicatidnsnobile environments, three
of the most widely used multimedia applications are: au@icodling, video decoding and
3D graphics acceleration. We first identify the charactiegsof each application, and

verify the importance of enhancing performance in latecogystrained code.

3.2.1.1 Baseline Architecture

In this work, ADRES[6] is used for the baseline CGRA architecture. This architect
consists of 16 FUs interconnected by a mesh style networkjiske files are associated
with each FU to store temporary values. The FUs can execuatencm integer operations.
The architecture has two operation modes: one is CGRA araalerand the other is VLIW
processor mode. In CGRA array mode, all 16 computing regsuaice available and loop-
level parallelism is exploited by software pipelining camg-intensive innermost loops.

53



The baseline architecture is also able to function as a VLiv¢@ssor to execute sequential
and outer loop code. The four FUs in the first row and the cerggister file support
VLIW functionality, while the other components are de-aated. This type of architecture
provides high performance by eliminating huge communicativerhead to transfer live
values between host processor and the array as well as aissuk VLIW for non-loop
code that is more powerful than a traditional general-pseporocessor used as the host

(e.g., an ARM-9).

3.2.1.2 Application analysis

Code of general applications can be categorized into sé@uand loop regions. Se-
guential regions often perform control flow for decision nmakand handle setup for the
compute-intensive loops by transferring live values betwops. Loop regions execute
iterative work like calculating pixel data on graphic applion. Multimedia applications
typically have many compute intensive kernels that are enfthm of nested loops. Soft-
ware pipelining, which can increase the throughput of tlreimost nest by overlapping
the executions of different iterations, can decrease me tf this type of loops tremen-
dously. In this section, we first decompose applications \rdrious region types. The

applications consist of :

e AAC decoder: MPEG4 audio decoding

e H.264 decoder: MPEG4 video decoding

e 3D: 3D graphics rendering accelerator

54



sequential region loop (resource) loop(dependency) total
# | execution |percentage| # execution [percentage| # [execution|percentage # execution
aac 218 42.6M 71 34 17.1M 28 2 0.3M 0.53 254 60.0M
h.264 | 639 44.8M 65 78 23.2M 33 1 0.6M 0.84 718 68.6M
3d 752 77.8M 51 82 70.4M 46 13 4.3M 2.81 847 152.5M

Figure 3.2: Execution time breakdown for three multimedia goplications (#: number of basic
blocks, execution: number of cycles, percentage: percentf @xecution cycles). Execution
time is broken down into three categories: sequential are &lnon-innermost loop regions,
loop (resource) are inner-most loops whose performance ignostrained by the availability of

resources, and loop (dependency) are inner-most loops wheperformance is constrained by

cross-iteration dependences.

For our benchmarks, we analyzed the relative importance@fiential and loop re-
gions by analyzing the execution time spent in each. Loope a#so categorized loops as
their performance was most constrained by resources cs-tiersition data dependences.
This grouping provides more precise insights because theacteristics of dependence-
constrained loops are more similar to sequential code rdtten resource-constrained
loops. Performance of the sequential regions was detedrbgescheduling those onto
the VLIW subset of the ADRES CGRA (a 4-wide VLIW})§]. Modulo scheduling, an
efficient software pipelining technique that exploits |depel parallelism by overlapping
the execution of different iterations ], was used to compute the run time of loop regions
executing on the 4x4 ADRES CGRA.

Figure3.2presents the execution time breakdown for each benchmaftw&e pipelin-
ing can successfully reduce the execution time of loop regimaking it less than 50% of
the total execution time. To further improve the overallfpanance, it is clear that im-

proving the performance of sequential code regions iscatisince they are taking more

55


cgraexpress/fig/app_stat.eps

633 reg_bidir(2)

606 sub
/

/
\
\
] 1 \
/\
/ \ .
‘wu\/“\ ‘33\4 (15) m w)‘ ‘28 ub_uf
‘ /
‘zz m 15 ns)L 20 sLi(9) ‘69 reg_sink(24) /|70 3om
67 reg_sic| | 17 add(7) / \ 445i(22) | | 31 add(2)| | 4010i(17)

(a)

Figure 3.3: Example dataflow graphs in AAC: (a) Sequential cde, (b) Loop code

than 60% of the total execution time.

To get a better understanding of the structure of the codetimthe acyclic and loop re-
gions, consider the dataflow graphs in Fig8r&from the AAC benchmark. Figui@3(a) is
a data flow graph of a sequential region that performs somieaidlow between compute-
intensive loops and has many data dependences betwearciitsis. Generally, this type
of sequential code doesn’t have a large number of instnugso providing abundant com-
pute resource does not improve performance. Decreasirdeffendence length through a
chain of instructions is the only solution to acceleratenstmde. Figure3.3(b) is an exam-
ple of dependence-constrained loop. This loop also has ksamaber of instructions with
long chains of sequential dependences. This type of codsdshard to overlap iterations
by software pipelining because last instruction on eadfatiten has data dependence with

the first instruction of the next iteration, and the next lmamnot start execution before

56


cgraexpress/fig/sequential.eps

finishing the execution of the prior loop.

3.2.2 Accelerating Sequential Code

Most prior research in CGRA has focused on improving theqoarénce of innermost
loops through intelligent parallelization or software gliping techniques. However, none
are effective at enhancing the performance of sequent@ cegions, which occupy a
significant fraction of total execution time as demonsttate Figure3.2 In this work,
we take a circuit-level approach to attack the problem ofrowmg the performance of
sequential and dependence-constrained loops on CGRAs.

One obvious approach to improve performance of all regigesyis to increase the
clock frequency of the CGRA. However, this approach incesgsower consumption a
large amount due to additional pipeline registers and higbkage needed to operate the
CGRA. Rather, our approach is to exploit the slack cyclestimaccomplish more work
in a single clock cycle when the critical timing paths are exgrcised through the CGRA.
In this manner, multiple arithmetic operations can be “obdr’ together when the critical
timing paths are not exercised to accomplish more work imglsicycle.

Configurable compute accelerator (CCA}]is one related research based on this con-
cept. CCA is also designed to execute a number of sequemsialictions on fixed clock
period in a general purpose processor. The clock period @nergl purpose processor
is larger than that of CGRA and the depth of maximum sequiegdhinstruction is quite
large. However, this type of accelerator cannot cover alghbgraphs because of fixed

numbers of input/output ports and limitations of subgrapptt. Expression-grained re-

57



configurable architectures J] are proposed to solve these problems but they still cannot
cover all the cases. In addition to coverage problem, lolization of FUs is another criti-

cal drawback on this type of research. They put abundantiress to obtain high subgraph
coverage on fixed hardware hence utilization of each indaliéFU becomes low. Thus, a
more efficient strategy is required to enable the accetarati sequential subgraphs with-

out adding significant cost or power to a baseline CGRA.

3.3 Dynamic Operation Fusion

In this section, we propose dynamic operation fusion thatazaelerate the execution
of sequential code regions by executing multiple operatiomna single cycle. The basic
idea is explained first and the opportunities for dynamicrafien fusion in multimedia
applications is shown. Lastly, the hardware support isudised.

The basic idea of operation fusion stems from the obsenvaltiat the clock period
of a CGRA is determined by the worst case delay (critical pigtlay) in the architecture.
When the clock period is not fully utilized, the slack can Isedito execute the successive
operation if the delay fits into the slack.

The critical path of a CGRA usually consists of: register féad, longest execution
in a FU, and write back to register file, as shown in FigBia). While register file ac-
cess is required for every operation in conventional aechifres, CGRAs have distributed
interconnect across the array that can directly transferaqs between FUs. When an
operation is executed without a register file access thrahghnterconnect, it does not

fully utilize the clock period and there is significant sldek. For example, the ADD op-

58



From Neighbors

To Neighbors

(@) (b) ()

Figure 3.4: Comparison of flow of data through a processing @ment in a CGRA: (a) Opera-
tion with register file access, (b) Operation without regisér file access, (c) Flow of data for (a)

and (b)

eration in Figure8.4(b) reads the operands from its neighboring FUs and trasm#eresult
directly to another FU. If the time slack is bigger than thiag®f the successive operation
LSL, both ADD and LSL can be executed in the same clock perfgipreviously men-
tioned, vertical collapsing of dependent operations islaimo the CCA p6]. In CCA, the
subgraphs with simple operations (i.e., arithmetic, lafiare identified either at compile
time [25] or at run-time P6]. The execution of the subgraphs are offloaded to a specially
designed accelerator that can collapse the execution dipfeubperations into a single
cycle.

Instead of using dedicated hardware as in CCA, we proposandignoperation fusion
that utilizes existing resources in a CGRA to collapse theddent operations into a sin-
gle cycle. Since there are a large number of FUs in a CGRA, aetudf them can be
combined dynamically at run-time and execute dependematipes in a single cycle. A
simple modification to the hardware can allow dynamic meygihFUs for operation fu-

sion; providing an interconnect between FUs that bypassesutput registers. Figufe5

59


cgraexpress/fig/hardware.eps

Out

()

Figure 3.5: Combining of FUs for dynamic operation fusion: @) Target subgraph, (b) 3 FUs

combined.

shows the additional interconnect from the combinationgpot of an FU to the input of
its neighboring FUs. Here, three FUs on the right are sgrialtrged together to execute
the three dependent operations on the left (ADD - ADD - LSRaisingle cycle. So,
the execution time of the sequential code region can paignbe reduced with dynamic
operation fusion, while the hardware overhead is minimal.

Dynamic operation fusion has the following benefits over @@A approach with a

dedicated accelerator:

e Minimal hardware overhead utilizing the existing resostce

e Multiple subgraphs can be executed simultaneously wheruress are available.

e Dynamic merging of FUs allow exploiting various shapes efskbgraphs.

We will compare the schedule results using dynamic opardtision with traditional
scheduling for a CGRA with the example shown in Fig8ré The dataflow graph on the

60


cgraexpress/fig/bypass.eps

Time | FUO | FU1 | FU2 | FU3 | FU4 | FU5

Time | FUO | FU1 | Fu2 | Fus | Fu4 | Fus OPO[OP1T

0 oPO [ OP1 op2
P 2 1 oP3

oP3 OP4

oP4
0P 5 2 oP 5

RF

sl | =

-
h
i

Figure 3.6: Dynamic operation fusion example: (a) dataflow gaph under consideration, (b)
target 2x3 CGRA, (c) conventional scheduling that requires$ cycles, and (d) scheduling with

dynamic operation fusion that requires 3 cycles.

left contains a series of dependent operations that readiogefrom register files and store
the result back into them. It is mapped onto a hypothetic&8l @GRA in Figure3.6(b).
The conventional approach will generate a schedule showigure3.6(c), where the total
execution time is 5 cycles. Because of the serial data depeed, the utilization of the
FUs is quite low.

Figure 3.6(d) shows how the execution of the dataflow graph can be aeatetewith
dynamic operation fusion. Here, we assume that one regjistaccess and two arithmetic
operations can fit into the clock period. More detailed stadin the comparison between
the clock period and operation latencies are provided ifdhewing section. With the

bypass network, two sets of back-to-back operations ateps#d into the same cycle as

61


cgraexpress/fig/dof.eps

Group Opcode Delay(ns) | Tick (1=0.25ns)
Multi cycle op MUL, LD, ST .65 7
Arith ADD, SUB 1.74 7
Shift LSL, LSR,ASR 1.36 6
Comp EQ,NE LT 0.93 4
Logic AND, OR, XOR 0.73 3
RF Read 0.91 4
RF Write 0.70 3

Figure 3.7: Delay and tick breakdown for common opcodes.

shown in the schedule. At cycle 0, FU 0 and FU 3 are mergedhegéb execute back-
to-back operations 0 and 2 in an single cycle. In the samediasbperations 3 and 4 are
collapsed into cycle 1 on FU 4 and FU 5. Operation 5 cannot bedided at cycle 1 since
it stores the result into the register file. By applying dyimawperation fusion, the total

execution time is reduced by 2 cycles over the conventigoaiaach.

3.3.1 Delay Statistics and Tick Time Unit

As shown in the previous section, dynamic operation fussoan effective approach
to accelerate the execution of sequential code region. Menvthe feasibility of dynamic
operation fusion depends on the hardware characteristittseeaunderlying architecture.
Dynamic operation fusion can be applied only if there is gfoslack in a clock period
to execute multiple operations. So, we investigated thaydeharacteristics of our CGRA
design in a real implementation. Figu8e7 shows the delay information when the clock
period is 3.5 ns. The delays are computed with Synopsis Dé&amnpiler and Physical

Compiler using the IBM 90nm standard cell library in typicaindition. The delay here

62


cgraexpress/fig/tick_table.eps

Tick aac (%) 3d (%) h.264 (%)
Multi cycle 2419 (31) 17077 (345) | 11579 (30.7)
Arith 2018 (26) 12339 (25) 11075 (29.3)
Shift 370 (4.7) 1165 (2.3) 2086 (5.5)
Comp 506 (6.5) 2788 (5.6) 1923 (5.1)
Logic 2492 (32) 15919 (322) | 11024 (29.2)

Figure 3.8: Breakdown of opcodes for three target applicatns.

includes the delay of input MUXes for each unit. In this talsiegle cycle operations are
categorized based on their execution time. For multi-cgplerations, the delays of the last
stage is shown in the table. The execution time of all insitpns are smaller than half of
a clock period. Logical operations show the minimal delag four of them can be fused
together into a single cycle. On average, two sequentiaiadipas can be collapsed. The
opportunities for dynamic operation fusion maximizes whiegre are a large number of
operations with a small delay. As in FiguseB, there are a large portion of comparison and
logic operations, which suggests that dynamic operatisiofucan potentially improve the
sequential code performance in multimedia applications.

Since multiple operations can be mapped into a single cyseneed a smaller time
unit than the traditional clock cycle used by compiler salies. We propose a new time
unit called atick, a small time unit based on the actual hardware delay infoomaThe
unit delay of one tick is set by the actual latency of the sesallogic component, normally
a small MUX. With the tick unit, the clock period and the dedayf other hardware com-
ponents can be converted into tick numbers. Every logic @rapt on CGRAs has their

own tick information and the information is used for dynamperation fusion scheduling.

63


cgraexpress/fig/op_stat.eps

src0 const srcl route src0 const srcl route

d oma LUl
@M @ I I

FU
‘ Register ‘ ‘ Register ‘ ‘
‘ Regiiter ‘ ‘ Regiter ‘ ‘ Reglister ‘ \/ 2 \/
pout0 poutl out0 outl poutd poutl

(a)

Figure 3.9: Comparison of bypass network implementation d&ils: (a) baseline network and

(b) network that supports dynamic operation fusion.

Tick information based on IBM 90nm library is shown in thetleslumn of Figure3.7.

3.3.2 Bypass Network

Figure 3.9 shows the real implementation of the bypass network withespractical
considerations. Figurg.9(a) is the original FU on the baseline architecture. Each &8 h
three source MUXes for predicate and data inputs. In additiothis, each FU has one
additional MUX to increase the routing bandwidth of the wrrBour predicate, compute,
and routing outputs are generated from the FU and connecteithér FUs through regis-
ters. Bypass connections between FUs are implemented lryggaldmall two-input MUX
to two data outputs (Figur@.9 (b)). The MUX has both an FU output and register output
as inputs and one of these signals is chosen by the seleet sigihe MUX every cycle.
This type of MUX is selected to minimize the additional areal @elay cost to the base-
line architecture. As FU and register outputs are sharedyamdwidth is restricted but the

hardware overhead can be reduced by minimizing change diabeline architecture. An

64


cgraexpress/fig/bypass_fu.eps

baseline | modified |overhead(%)
control bit 845 877 3.8
area (mm~”2) 1.447 1.48 2.3

Figure 3.10: Hardware overhead of the bypass network. Two fans of overhead are specified:

control bits to control the bypass MUXes and area of the bypasnetwork.

additional 32 control bits and 32 MUXes with 3364#.> area are required and the costs

are 3.8% and 2.3% overhead (Fig3r&0.

3.4 Compiler Support

In this section, we describe the compiler support for dymaspieration fusion using the
bypass network in CGRA Express. Taking the concept of edgéric modulo scheduling
(EMS) [73], we developed a scheduler that can support both sequemtialoop code
regions for CGRAs. We enhanced the original algorithm whi ability to place multiple
operations in a single cycle without incurring the struaturazard of the resources. The
concept of tick slot in Sectio®.3.1is introduced into the scheduler and scheduling is
performed on a tick basis rather than a conventional cyated manner.

First, we will briefly introduce the EMS framework and thersdebe the basic concepts
of tick-based scheduling. Finally, we will provide the addeatures to attack the problems

specific to tick-based scheduling.

65


cgraexpress/fig/overhead.eps

3.4.1 Edge-centric Modulo Scheduling

The most distinctive feature of the EMS is that it takes mogitbf values as the first-
class objective. The routing of operands is often ignoreaditional schedulers since it
can be guaranteed by the centralized resources (i.e. ateagister file) of a traditional
VLIW processor. Any value generated by a producer can besdotat its consumers by
putting the operand into the central register file. Howetrer,distributed interconnect and
register files in CGRASs require the compiler to orchestragedommunications between
producers and consumers explicitly. The modulo constthattmust be observed to create
a correct modulo schedule allows only a limited availabtgsstor each resource, making
the routing of operands on the array even harder.

For this reason, EMS constructs the schedule by routingdge<in a dataflow graph,
rather than placing the nodes. This approach allows botbimeance gain and compilation
time reduction over the traditional node-centric approadhe following are the major

features of the EMS that differentiate it from conventiosehedulers.

¢ No explicit backtracking. With the distributed interconnect and abundant computa-
tion resources, the scheduling space for CGRAs can getlquite and the compila-
tion time can be a critical issue. To reduce the compilaiimef EMS does not have a
backtracking mechanism. Especially for CGRAS, it is hamhtike forward progress
with backtracking since placing and unplacing of operatiosually involves multi-

ple resources for routing. Therefore, routing decisioesaade just once.

e Proactive prevention of routing failures. To compensate for the lack of backtrack-
ing, EMS proactively avoids routing failures using probiahic cost metrics. Before

66



routing an edge, the probabilities of the future usages lnéduling slots are calcu-
lated. By avoiding the slots with high probabilities, ragifailures can be effectively

prevented.

e Recursive routing calls for critical components. Some components in a dataflow
graph require more cautious scheduling since they canyeaasike the scheduling
fail. One good example is a recurrence cycle. To meet thengrabnstraints of
the recurrence cycles, traditional schedulers usualat treem with highest priority.
Additionally, EMS schedules the edges in a critical compdmdtogether by routing
them recursively. When an edge in a recurrence cycle isdoittenly finalizes the
routing only if all other edges in the component are succilgsfouted in recursive
calls. This recursive routing provides an implicit form @fditracking for scheduling

critical components.

3.4.2 Tick-based Scheduling

To enable the scheduler to place back-to-back operatiotieisame cycle, it needs to
keep track of where the operations are placed at the pra@s$iicks. Figure3.11(a) shows
the scheduling space for tick-based scheduling where gadé s divided into multiple
ticks. For illustration purposes, register file access timmgnored. The number of ticks
in a cycle is determined by the frequency of the target aechire and is given as input to
the scheduler. Here, operations are placed into tick shois the resource management is
still done on a cycle basis; only one operation is allowedd@laced in a cycle for each

resource.

67



FUO FU1 FU 2 FU3 5 ticks 9 ticks

(A)
(A)

cycle
cycle

o
o

B

="

AW N R OoOldw N R oswn R o tick
AW N R O|Mw N R O EwN R of tick

(a) (b)

Figure 3.11: Tick-based scheduling example: (a) possibledgrements in the tick scheduling

space and (b) different longest path delays per tick slots.

To manage the cycle and tick times together, we defi@idhewhich is a pair(cycle,
tick). STimeis used for two purposes: schedule time unit , and delay afurees and
operations. For example, the input time of operation A inukgg.11(a) is scheduled at
(0, 0) and its delay is (0, 2). For multi-cycle delays of pipetl operationsSTimehas
an additional field ofnit_tick making it a tuple ofcycle, tick, inittick). init_tick indicates
the number of ticks required to process the operation at tbefipeline stage. The load
operation E shown in Figur@ 11(a) has a delay of (2, 3, 2). While the load operation will
have a delay of 3 cycles in a traditional approach, it requtdicks and 3 ticks for the
first and last stages, respectively. Therefore, the pipdlmperations can also participate
in dynamic operation fusion.

Figure3.11(a) shows some possible placements of operations in tiskebacheduling.
Operations A and B are scheduled in the same cycle using theesbynetwork. However,

since the resources are managed in cycles, only one opecaiicbe mapped on a resource

68


cgraexpress/fig/tick_slot.eps

in a single cycle. So, it is illegal to place back-to-back rpiens C and D in the same
resource/cycle. Also, an operation cannot be mapped attresgock boundary unless it
has a multi-cycle delay. When there is not enough tick stotsgiven cycle, the scheduler
delays the operation to the next cycle as shown with operaiti®and H.

Operator Overloading We replaced all the time/delay units in the EMS with &Jime
unit, while keeping the basic structure of the scheduler, tB® changes applied to the
original scheduler are minimized. The basic arithmeticraes such as +, -, *, / were
overloaded in a way that theycle field increases/decreases as tiok field crosses the
cycle boundary. Often times, a delay is added or subtractedschedule time to create
another schedule time. For example, the output time of ¢iper8 in Figure3.11(a) can
be calculated by adding the delay (0, 3) to the output timepefation A (0, 1).

However, there are two things to consider when a delay isegppb a schedule time.
First, the clock boundary constraint should be checked abthie operation is not placed
across the boundary. Also, when adding a multi-cycle delaystchedule time, the resulting
time should be adjusted along the clock boundary since roytfie operations should be
aligned with the clock boundaries. Basically, the time gapeen the output time of the
producer and the consumer needs to be added to get the duipuiftthe consumer. The
equation below shows how the addition is performed betweshadule time and a delay.
numcticks denotes the number of tick slots in a single cycleis the schedule time and
D is the delay. When adding a delay to a schedule time, the dgimamstraint is checked
by looking atinit_tick of the delay (Equatio3.1). When it passes the timing constraint,
the delay is added using the overloaded operator '+'. Fottiroytle delays, the time is

converted to its floor to align the resulting time along theckl boundary (EquatioB.2).

69



After performing the addition, Equatid®3 checks if the performed addition violates the

clock boundary constraint.

if(D.cycle > 0) num_ticks — T.tick >= D.init_tick (3.1)
add(T, D) = (D.cycle > 0)?(T.cycle,0) + D : T + D (3.2)
check(T, D) = (add(T, D).cycle — T.cycle == D.cycle) (3.3)

3.4.3 Tick Specific Features.

By introducing the newSTimeunit, we could minimize the modifications applied to
the original EMS. However, there are some features that teebd adapted to efficiently
perform tick-based scheduling. Three major features gotamed in this section.

ASAP/ALAP time calculations. In schedulers, ASAP and ALAP times are used to
estimate how early/late an operation can be placed withestralying timing dependences
between operations. The ASAP time of an operation C can loeleé¢d by Equatio.4.

p denotes an placed predecessoCa@ndd(X, y)is the longest path delay betweeandy.

ASAP(C) = MAX (time(p) + d(p, C)) (3.4)

Basically, the scheduler looks at all the already-placesti@cessors in the dataflow
graph and adds the longest delay between the predecesstireaagrrent operation, and

picks the maximum time. In cycle-based scheduling, the dshglelay stays constant

70



no matter which cycle the predecessor is placed. Howevetickabased scheduling,
the longest delay changes depending on which tick slot tedgmessor is placed. Fig-
ure3.11(b) shows an example of the different delays between operaétiand C. Here, we
assume that A is already placed and B and C are not. Since énatmms cannot be sched-
uled across the clock boundaries, the delays are diffeedniden the two cases. Therefore,
the tick-based scheduler calculates the longest delaymbfwerations for each producer’s
tick slotin a cycle.

Identifying Subgraphs. To find the opportunities for dynamic operation fusion, the
scheduler takes a greedy approach for finding the targetrapbg. WWhen an operation is
placed, the scheduler looks at its neighboring operatiotise dataflow graph and checks
the timing constraints to see if they can fit into the sameecysing the bypass network. If
there is an opportunity for fusion, the scheduler recursee routing of an edge between
the two back-to-back operations. The use of the bypass nlet&@ncouraged in routing
by giving a penalty when the cycle is increased during thémgu The router will visit the
available slots in the same cycle first using the bypass n&twtowever, this can result in
wasting FU slots just for routing since the bypass networkheats neighboring FUs. For
this reason, we only allow the use of the bypass network whek-b-back operations can
be placed in neighboring FUs.

Register Access Region.Even though the register access time was ignored in Fig-
ure 3.11, the register read and write times need to be consideredcalityre The shaded
regions in the scheduling space in Fig@d2 display the register access region. Here,
we assume the register read and write time is 1 tick. For egcle,cthe first tick slot is
called the register read region and the last tick slot iedathe register write region. When

71



)
S 2 FUO FU1 FU2 FU3
-0 read
1
0 2
3 B C
L4 2 3 write
o 1 I {4 read
1 e | F
1 2 l ) G
F 3
L4 write
) l E read
1
2 2
3
4 write

(a) (b)

Figure 3.12: Register access regions in a tick schedule: (aataflow graph, (b) register

read/write regions (shaded) within each cycle.

operations are placed in these regions, they cannot aagisser files due to timing con-
straints. For example, operation B’s output is placed a8)@lot and it can only route its
value to neighboring FUs through the FU'’s output registéeréfore, routing flexibility is
greatly limited for operation B. When all the neighboringg-&re occupied, the scheduling
will fail since there is no backtracking mechanism. To aubig situation, our scheduler
performs recursive calls for routing edges when an operaiplaced in the register access
region. Figure3.1Xa) shows an example dataflow graph. When operation B is ghlate
cycle 0 as shown in the figure, its output is placed in the tegisrite region. Therefore,
the scheduler makes sure that all the edges coming out frematipn B are successfully
routed before finalizing the placement. Therefore, it reesron the routing of two edges
(E and F). When operation F is placed in cycle 1, the schedigerrecurses on the edge
to operation C since F is placed in the register read regidme Mumbers shown in the

figure denote the order of routing call of each edge. Sincegeeations E, F, and G are

72


cgraexpress/fig/reg_region.eps

not placed in the register write region, they can store \&in& the register files. So,
the scheduler does not proceed with routing the outgoingeéfiom them. When all the
edges with solid lines in Figuré.12a) are successfully routed, the scheduler finalizes the

placement of operation B.

3.5 Experimental Results

3.5.1 Experimental Setup

Target Architecture Two CGRA architectures are used to evaluate the performance
of dynamic operation fusion. The baseline architecturéés4x4 heterogeneous CGRA
shown in Figure8.1 Four FUs are able to perform load/store instructions tessthe data
memory and 6 FUs support 2-cycle pipelined multiply. A 64rgrentral register file with
6 read and 3 write ports and sixteen 8-entry local registes giist in the array. Only four
FUs on the first row have direct access to the central reditgeand other FUs must use
data buses to access the central register file. Local re§jlstewith one read and one write
port are placed similar to the FUs and each register file camriteen by FUs in diagonal
directions. There is also one 64-entry predicate regideendith four read and four write
ports. The CGRA Express architecture has the same aralidéshape except the addition
of the bypass network.

Target Applications All the sequential and loop code are taken from three aptjdica
domains: audio decoding (aac), video decoding (h.264) &ngr8phics (3d). The sequen-

tial code regions are mapped using VLIW mode of the array aog ctode regions are

73



mapped using CGRA mode of the array. Performance is evalbgtthe overall execution
time.

Power/Area MeasurementsBoth the baseline and CGRA Express architectures are
generated in RTL Verilog and synthesized with the Synopsgsyh compiler and Physical
compiler using IBM 90nm standard cell library in typical oggon conditions. Synopsys
PrimeTime PX is used to measure power consumption. The SRAkhany power was
calculated using SRAM model generated by the Artisan Men@oynpiler. The target

frequency of both baseline and the CGRA Express architestare 200MHz.

3.5.2 Performance Measurement

In order to illustrate the effectiveness of dynamic operafusion, performance of the
three benchmarks is compared on the baseline CGRA and CGRAeEX In sequential
code regions, run-time is measured by the schedule lengltipired by the frequency of
execution. The run-time of the loop code regions is caledl&ty multiplying the Initiation
Interval (II) achieved by EMS and the loop trip count. Il medhe interval between suc-
cessive iterations thus Il is the indicator of throughpuirniadulo scheduling. The results
of this experiment are shown in FiguBel3 The numbers in the table show the execution
time in millions of cycles and perf.ratio is the ratio of enéion time on CGRA express
over the baseline.

Overall, dynamic operation fusion achieves 7-17% redadhaexecution time over the
baseline. Thisis a promising result because the hardwarbead is about 3% as discussed

in Section 3. More specifically, most of the performance iowements are due to the

74



segential loop(resource) loop(dependency) total

baseline _|express perf. ratio _|baseline _|express perf. ratio |baseline express perf. ratio|baseline express _|perf. ratio
aac 42.64 36.47 85.53% 17.40 15.75] 90.51% 0.32 0.24 75.34% 60.36 52.46 | 86.91%
h.264 44.77 39.29 87.75% 23.80 2470 | 103.78% 0.58 0.29 50.01% 69.15 64.28 | 92.95%
3d 77.82 60.05 77.16% 74.70 65.94 | 88.28% 4.29 4.22 98.32% 156.81 130.22 | 83.04%

Figure 3.13: Performance evaluation of the baseline and CGR Express architectures for
three multimedia applications. Performance is broken downinto non-innermost loop re-
gions (sequential), inner-most loops whose performance @nstrained by the availability of
resources (loop (resource)) and inner-most loops whose germance is constrained by cross-

iteration dependences (loop (dependency)).

schedule length reduction in sequential code regions,wivis expected since dynamic
operation fusion collapses the series of operations intogiescycle.

However, we could also observe a good amount of reductiorsource-constrained
loops. This is primarily due to the additional bypass netwdrhe additional connection
doubles the number of reachable slots from an FU. With tha®ypetwork, an FU can ac-
cess its neighboring FUs results in the same cycle as wellthg inext cycle. This gives the
scheduler more flexibility and improves the throughput @ tésource constrained loops.
Also, when a loop has small trip count, schedule length vélhiore dominant than the II
for run time, hence dynamic operation fusion can improvégoerance. The dependence-
constrained loops show up to 50% reduction in execution.tifrtés was expected since
the throughput of these loops was mainly limited by the @aitpath of a single iteration,

which can be efficiently reduced by dynamic operation fusion

75


cgraexpress/fig/exp_1.eps

Baseline CGRA Express

route
3%

route

local rf local rf 3%

central
10%

298.26 mW 306.78 mW

Figure 3.14: Power breakdown comparison for the baseline athCGRA Express architectures.

3.5.3 Power and Energy Measurement

The instantaneous power consumption of CGRA Express aatbre is seemingly
higher than that of baseline architecture due to additibaatiware overhead. However,
the bypass network implementation can also decrease thlertwt time. Since there is
such trade off between power and run time, we measured to&fye consumption for
running complete applications to determine the effectasrof dynamic operation fusion.

Overall power consumption and the breakdowns of both achites for 3D are shown
in Figure3.14 Overall, average power consumption on the CGRA Expredstacture
is 3.1% higher than the baseline architecture. Compareletdaseline architecture, the
power increase observed for the datapath is smaller thandrease in the SRAM for con-
trol signals. The bypass network adds just a small amourdrabinational logic (MUXes)
on the baseline architecture, hence the overall effectite gmall. On other hand, adding
control signals is more critical for power consumption onRX3 because all the control
signals must be read every cycle. Therefore, overall powerhead for adding bypass
network is trivial but careful consideration is necessang tb the additional number of

76


cgraexpress/fig/power_pi.eps

baseline | express ratio
power (mW) 298.26 306.78 102.86%
# of cycles (million)| 156.81 130.22 83.04%
energy (mJ) 233.85 199.74 85.42%

Figure 3.15: Energy comparison for the baseline and CGRA Expess architectures.

control signals.

An interesting result can be found on total energy conswnptomparison between
both architectures. Figur@15shows that the CGRA Express architecture is 15% more
energy efficient than the baseline architecture. Even thewgrage power consumption of
the new architecture is slightly higher, the decrease idiggmpon run time dominates the

results.

3.5.4 Operating Frequency Optimization

As discussed in prior experiments, dynamic operation fugsian decrease total run
time by decreasing number of cycles in fixed clock period. E\®v, measuring total run
time on various clock periods will be another interestingstion with dynamic operation
fusion. With different clock periods, total run time is callated by multiplying the number
of cycles and the clock period. If clock period is large, moperations can be chained
into a single cycle. But, these gains must offset the losspsiformance due to a reduced
clock rate. We can expect some optimal smallest run timesexass the clock period is
swept that represents the sweetspot of a fast clock rate \pkiimitting some degree of
chaining. Figure3.16shows the total run time of the three applications with uasiolock

periods in nanoseconds.

77


cgraexpress/fig/energy.eps

AAC H.264 3D

0.6000 0.7000 1.4000
p—

0.5000 R 0.6000 — 1.2000 —

0.5000 — 1.0000 —

0.4000 —

0.4000 —1 — 0.8000 —1 —
0.3000

0.3000 0.6000

run time(Sec)
run time(Sec)
run time(Sec)

0.2000
0.2000 0.4000 —1
0.1000 0.1000 0.2000
0.0000 0.0000 0.0000
baseline | express | express | express baseline | express | express | express baseline | express | express | express
(5ns) (5ns) (7.5ns) (10ns) (5ns) (5ns) (7.5ns) (10ns) (5ns) (5ns) (7.5ns) (10ns)
Mrec 0.0016 0.0012 0.0018 0.0024 Mrec 0.0029 0.0015 0.0029 0.0024 Mrec 0.0215 0.0211 0.0317 0.0422
loop 0.0870 0.0787 0.1106 0.1475 loop 0.1190 0.1235 0.1808 0.2433 loop 0.3735 0.3297 0.5006 0.6630
m acyclic 0.2132 0.1823 0.2719 0.3623 m acyclic 0.2238 0.1964 0.2913 0.3518 m acyclic 0.3891 0.3003 0.4198 0.5728

Figure 3.16: Performance comparison of the baseline and CGR express architectures for
different clock periods. Performance is broken down into d@endence-constrained loops (rec),

resource-constrained loops (loop) and non-innermost logp(acyclic) regions.

Dynamic operation fusion works efficiently at 5ns compar@traditional scheduling
but expanding the clock period to more than 5ns achieves divi@ual performance im-
provement. As the clock period becomes longer, sequeriidé cegions require fewer
cycles to execute and their characteristics start to reketnbp code regions. This be-
havior occurs because just 4 FUs are used for executing segjusode regions. With the
most aggressive fusion, the dependences of 4 successiugciians are collapsed which
basically eliminates all dependences that can constraforpgance and converts the code
region into a resource constrained one. Moreover, the numksequentially dependent
instructions before a memory instruction is encounteregpgally smaller than 4, thus
there are limited opportunities for fusion. As a resultngsa clock period of 7.5ns results
in 50% increase of total run time because there is no additi@duction of the number
of clock cycles due to dynamic operation fusion (beyond ¢hemsn at 5ns), but the clock

period is 50% larger.

78


cgraexpress/fig/sat.eps

3.6 Related Work

3.6.1 Architecture

Many CGRA-based systems have been proposed in variousspapdrsome of the
models have been implemented. Each design has differelaibdity, performance, and
compilability. ADRES [4] is the most well-known CGRA system with an 8x8 mesh of
processing elements with central and local register file wAsnentioned prior sections,
ADRES also supports CGRA array mode as well as VLIW mode usergral register
file and FUs on the top row. MorphoSy&]] is another famous example of 8x8 grid
with a more sophisticated interconnect network. In Morpfg®ach node has an ALU
and a small local register file. RAW architecture is more gaingystem which node is
small MIPS processor with memory, registers, and a procgspeline. PipeRench3[]
and RaPid }1] are also 1-D architectures have similar concept to CGRASRipeRench,
each processing elements are arranged in stripes to syppelining. RaPid has a lot of
heterogeneous elements (ALUs and registers), which cawoeected by reconfigurable
interconnection.

The results of recent research about general architeckpleration on CGRAs are
also promising. Kim 48] focussed on the power consumption for configuration memory
and proposed spatial and temporal mapping with pipelinihgreover, Kim {1 7] proposed
different approach based on data flow graph of applications.

Research on instruction set customization with configerabmpute accelerator (CCA)
is also closely related to this research. Clai] [studied how to create efficient CCA based

on sub graph modulation and improved the idea to virtualezeztution acceleratof]].

79



Hormati [38] also studied CCA to be more faster and smaller. Lastly, Bopzd] adopt
the CGRA idea to CCA and diminish disadvantages of CCA, ssdbgic depth limitation

and low coverage.

3.6.2 Compilation Techniques

As dealing with sparse connectivity and distributed regisite is huge challenge on
compiler, many techniques have been proposed for compi@&RAs. Lee H6] proposed
a schedule approach for a generic CGRA, which generatebr@pehedules for innermost
loop. Park [ 2] also worked on innermost loop, but they focussed on looellgarallelism
while Lee worked on instruction level parallelism. Park'srkwis more similar to Mei at
al [65)'s work on modulo scheduling.

Research on CGRA scheduling is partially similar to the aese on VLIW machine
scheduling. As clustered VLIW machines are also spatidligecture, many compilation
techniques on VLIW can be adopted to CGRAs. However, VLIW e does not have
routing issues related to sparse interconnection netwemkdésome modification is neces-
sary to support CGRA.

On this chapter, we introduce some cost function about hdelay of synthesized
hardware (MUX, Adder, Shifter). This concept is similar teetresearch about module
mapping and placement on FPGA area. Callalzah performed datapath module place-
ment simultaneously with the mapping using area and delsty ddvey used the area and
delay cost to minimize both area and delay on FPGA. We alsptatie delay cost to

increase utilization of FUs on pre-defined clock period.

80



3.7 Summary

This work proposes dynamic operation fusion, an effectpgr@ach to accelerate se-
guential code regions on CGRAs. As scheduling techniqudedps have been developed,
the run-time for loops decreases by large factors as the ilemipable to make effective
use of the abundance of resources available in a CGRA. Howieeside effect is that
sequential code region become more and more of the overddirpgnce bottleneck as
these regions have limited instruction-level parallelidife introduce two key concepts to
execute sequential code region faster. First, a bypassoneis implemented to support
dynamic operation fusing wherein existing function unitssotCGRA are configured to ex-
ecute back-to-back operations in a single cycle using aayadle slack in the cycle time.
A simple hardware extension in the form of an additional @mtion between neighboring
function units and a bypass MUX are required. Second, thepdenscheduler automati-
cally identifies opportunities for dynamic fusion based oh-sinits of clock cycles, called
ticks. Overall, dynamic operation fusion reduces totalligapon run-time by 7-17% and

total energy by 15% on a 4x4 CGRA.

81



CHAPTER 4

Putting Idle Resources to Work on a Composable

Accelerator

4.1 Introduction

The mobile devices market, including cell phones, netbpaksd personal digital as-
sistants, is one of the most highly competitive busines$ég. computing platforms that
go into these devices must support ever increasing perfurenaapabilities while main-
taining low energy consumption. Advanced multimedia agdai processing applications
are key drivers. Traditionally, application-specific igitated circuits (ASICs) were used
for the heavy lifting to perform the most compute intensieertels in a high performance
but energy-efficient manner. However, several featureb pasigners to a more flexible
and programmable solution: supporting multiple applaagior variations of applications,
providing faster time-to-market, and enabling algoritbrohanges after the hardware is
constructed.

For wireless signal processing, programmable designsetkaibit high degrees of

82



Core 0 Core 1 Core 4 Core 5 Core 5
PES—PEN PE — PE - PE — PE - PE — PE

pred V-

RF || Control
PE — PE - PE — PE - PE +— PE - PE — PE Loop I
Buffer PEO PE1

k2 3

I-CACHE

:Co eZZ :Core3: Core 6 Care 7,
PE +— PE - PE — PE - PE +— PE PE +— PE |

FU O--|RF O FU 1--RF 1

RF1 :
PE — PE —— PE 4 PE +— PE = PE ~— PE = PE PE2 PE3

FU 2|~/ RF 2 FU 3+ RF 3

Arbiter Arbiter t 3
x x | | | | x { RF 3 <ot

RFO RF1  Loop
Buffer

MEM MEM MEM MEM MEM MEM MEM MEM

(a) (b)

Figure 4.1: PPA Overview: (a) PPA with 8 cores, (b) Inside a sigle PPA core

single-instruction multiple-data (SIMD) parallelism lee@merged to challenge ASICs/]
16, 33, 59, 89). While these solutions suffice for wireless signal prosegsmultimedia
applications contain more complex data dependence pai@chfrequent control flow for
which wide-SIMD is inefficient. Thus, a different approasecessary.

Polymorphic pipeline array$PPAs) are attractive alternatives for accelerating multi
media applications because the hardware is more flexiblecandiccelerate the code in
multiple ways [/4]. Coarse-grain pipeline parallelism is exploited by camently exe-
cuting filters in streaming applications, 36, 50], as well as fine-grain instruction level
parallelism is also found by modulo scheduling innermospk|[79). A PPA is a gener-
alization of a coarse-grain reconfigurable architectut@ R8) shown in Figuret.1[66].

It consists of an array of simple processing elements (Rtas)are tightly interconnected
by a scalar operand network and a shared memory. GroupsroPtsiform cores that are
driven by a single instruction stream. These cores can éxeasks (filters in a streaming

application) independently or neighboring cores can béescad to execute loops with

83


recycling/fig/ppa.eps

high degrees of fine-grain parallelism. The use of a reguk@r¢onnection fabric allows
the core boundaries to be blurred, thereby allowing thevkarel to be customized differ-
ently for each application.

While PPAs provide the opportunity for hardware custoniggtan effective compiler
is necessary to configure the hardware to maximize appicggrformance. In this work,
we adopt the stream programming paradigm. Stream progmagnisigenerally based on
synchronous dataflow wherein the application is repregeasea directed graph (stream
graph) where each node represents an actor and each arser@gréhe flow of datasp.
The number of data samples produced and consumed by eaclargsieecified a priori.
For this work, we focus on stream-style C code where a progsampresented as a set
of autonomous actors (also called filters) that operate ¢a alad communicate through
first-in first-out data channel$]]. During program execution, actors fire repeatedly in a
periodic scheduled6]. Each actor has a separate instruction stream and an indepe
address space, thus all dependences between actors areexpdidie through the com-
munication channels. Compilers can leverage these cleaisiats to plan and orchestrate
parallel execution.

Given a streaming application, the primary challenge iseidqm resource allocation
and assignment so as to achieve maximum throughput. Moc#ispdy, a PPA compila-
tion framework must not only partition filters across theikalde cores, but also aggregate
cores together into core-groups to jointly execute thegaesl filters. Larger core-groups
are effective for long-running filters because higher Iswlfine-grain parallelism can be
exploited. By modulo scheduling across more resourcesehigerformance is achieved.
However, selecting large core-groups reduces the ovaraiber of groups and hence the

84



amount of coarse-grain pipeline parallelism that can béogea. Greedily speeding up a
small portion of the application often results in poor oWigrarformance. Thus, an intelli-
gent compiler must achieve a balance.

In this chapter, the goal is to solve the joint filter assignimend core aggregation
problem for mapping streaming applications onto a PPA. Vae sty defining the main
scheduling constraints on PPA architectures, and propasavacompilation process to
solve the difficulties. In this framework, we adapt the kepa@ept from the stream graph
modulo scheduling algorithm for coarse-grain paralleljsii]. The main difference is that
parallel composition of the each filter is not performed wsflit-joins, but by modulo
scheduling across larger core-groups. With this changelPBA compiler can be used for
more generic code by removing the restrictions of statia daties on stream programming
languages like Streamlg[]. Edge-centric modulo scheduling (EMS)J, which focuses
on routing of values between functional units, is used asrtbéulo scheduling technique
for exploiting fine-grain parallelism.

The compilation process consists of three steps. Firstrdilare assigned to virtual
cores using static partitioning and an approximate loadruahg algorithm. Next, core
allocation is performed to map the virtual cores to the ptslsiores considering core loca-
tions and the inter-filter communication patterns. Findilye-grain dynamic partitioning
is performed to identify and recycle under-utilized resms:

This work offers the following three contributions:

e An analysis of the scheduling difficulties for composableederators such as the

PPA.

85



e A compilation framework for jointly partitioning streangrapplications across hard-
ware resources and selecting resource aggregations thidy gxploit coarse-grain

parallelism between filters and fine-grain parallelism witfiters.

e An efficient resource borrowing technique is proposed tacedhe execution time
of the largest coarse-grain pipeline stage by borrowinguess from underutilized

stages.

4.2 Background and Motivation

4.2.1 Composable Accelerators

As chip multiprocessors (CMPs) have become commonplaaadisyts desktop envi-
ronment, their importance is growing rapidly in the mobitesieonment. The disparity
between the granularity of parallelism in workloads andgtanularity of processing cores
inspired a flexible execution model that allows the aggiegabf small cores to create
larger logical cores44],[47].

Composable acceleratoese multi-core accelerator designs that incorporate ts-fl
ble execution model in embedded systems. Multiple smaé<enable the parallel execu-
tion of individual tasks, exploiting task level paralletis Additionally, when there is a high
degree of parallelism within a task, such as loop level pelrain or instruction level par-
allelism, a larger core can be created by merging small cokéth this flexible execution
model, different levels of parallelism can be exploitedhatsingle piece of hardware.

Our specific compilation target is tiRolymorphic Pipeline ArrayPPA) shown in Fig-

86



ured4.l. A PPA is a composable accelerator for embedded systemsdhatxploit both
the fine-grain parallelism found in innermost loops and tipelme parallelism found in
streaming applications. A PPA consists of multiple simplees that are tightly coupled
to neighboring cores in a mesh-style interconnect. A PPA Witores is shown in Fig-
ure4.1(a). There are a total of 32 processing elements (PESs) irPfPdg each containing
one function unit (FU) and a register file (RF). Four PEs aralmioed to create a core that
can execute its own instruction stream. Each core has itssonatch pad memory and
column buses connect 4 PEs to a memory access arbiter thadgssharing of scratch
pad memories among the cores.

The detailed diagram of a single PPA core is shown in Figutfh). Each PE contains
a 32-bit FU and a 16 entry register file. PEs are connected teshstyle interconnect.
The distributed nature of PPA provides low power consunmpiod hardware cost making
it an attractive solution for embedded systems. The mesndonnect also connects the
neighboring PEs in different PPA cores. This allows fasémtiore communication for
mapping compute intensive loop nests across multiple cérdgtailed description of PPA

cores can be found inf].

4.2.1.1 Supporting Different Levels of Parallelism

The major feature of the PPA is its ability to exploit both figiain and coarse-grain
pipeline parallelism. Since each PPA core can process itsiastruction stream, coarse-
grain parallelism can be exploited for streaming applaragi The communication between
pipeline stages can be efficiently supported with DMA conioes between cores. Abun-

dant fine-grain parallelism within a pipeline stage can dscexploited by aggregating

87



multiple cores to form a larger logical core allowing for nraikzed resource utilization.
This is efficient since the PPA provides fast inter-core camitation using a mesh-style

interconnect.

4.2.1.2 Virtualization

One of the major characteristics of a PPA is virtualized akiea of software pipelined
loops [74]. Virtualized modulo scheduling generates a unified scleethat can be mapped
onto different target sub-arrays of the PPA. At runtime, BRA cores are dynamically
merged to create larger logical cores based on the resouaialality. With virtualization
support, tasks can execute on different sized cores wittesaheduling, improving the
overall performance when the resource requirement in thé&laads varies dynamically
during execution 74]. However, there are some limitations of virtualization ariPPA,

such as sub-optimality of the unified schedules and runtiveeh®ad for virtualization.

4.2.1.3 Partitioning Schemes

Static Partitioning. The PPA array can be partitioned statically based on the re-
source requirement of each coarse-grain pipeline stageic artitioning has its benefit
in achieving high quality schedules, but it cannot adaptyteadnically changing resource
availability. When an application has a large variationdaeaition pattern, static partition-
ing can either result in low utilization of resources, or nmg be able to fully accelerate
the application when there are not enough resources alailab

Dynamic Partitioning. Coarse-grain pipeline stages in multimedia applicatianseh

different execution patterns, resulting in fluctuatingo@se requirements. Dynamic par-

88



titioning can come in handy with the presence of dynamicatam of resource require-
ments. The partitioning of the PPA array can change durimgime on demand. For
a single pipeline stage, a single core can be assigned toyaficaegion of code, but
more resources can be assigned to the compute intensiv&éoogls to exploit fine-grain
parallelism. Dynamic partitioning assumes the sharingesburces between neighboring
pipeline stages. The resources sitting idle in one stagbeaitilized by neighboring stages
through resource borrowing. So, it is not guaranteed tleatefuired resource is available
at all times in dynamic partitioning. When the required rese is not available, the stage
stalls and waits for the resource. Virtualization can awtalls due to resource contention
by generating a schedule that can be modified easily at rertbrmun on different number

of resources.

4.2.2 Stream Graph Modulo Scheduling

This work presents a compiler technique specifically for posable accelerators based
on stream graph modulo schedulingr SGMS [0]. SGMS is a modulo scheduling algo-
rithm for mapping streaming applications onto multicoreteyns. Modulo scheduling is
traditionally a form of software pipelining applied at thestruction level to find a valid
schedule for a loop such that the interval between sucaegsiations (initiation interval,
or Il) is minimized [/9. SGMS is the same technique on a coarse-grain stream goaph t
pipeline the actors across multiple cores. The objectite lmaximize concurrent execu-
tion of actors while hiding communication overhead to miiziestalls.

SGMS consists of two steps: 1) integrated fission and procassignment and 2) stage

89



[ Jproc1 [Jproc2 [ Jproc1 [Jproc2

(a) Original stream graph  (b) SGMS processor assignment (c) PPA processor assignment

Stage O

° Stage 0

@ \
\ @ © =

Stage 1

oo
G Stage 2 Stage 2
(d) SGMS stage assignment (e) PPA stage assignment

Figure 4.2: Example of processor and stage assignment for 3@ and PPA scheduling.

assignment. The first step is to assign actors to each paroggh maximum load balance

using an integer linear program formulation. Statelesa dators are replicated and fissed

to achieve even work distribution. In stage assignmentctmapiler decides a pipeline

stage for each actor at runtime. The optimization procefssrstage is to maximally hide

inter-processor communication latency and not to violate dependences.

Even though this work adapts the basic concept of the SGME stzheduling in PPAs

is different in several aspects. First, the PPA schedulpraposed using legacy C code,

hence it has less restrictions than SGMS using streamingyiéages such as Streamlt. For

90


recycling/fig/codegen.eps

example, SGMS can exploit parallelism for only statelegsra¢c but modulo scheduling
also can be applied to stateful actors. In addition, PPAs atarrcur fission overhead
(split, join) to assign multiple cores due to the tightly pted inter-core scalar network for
aggregation.

Figure 4.2 shows the differences between SGMS and PPA scheduling.nGiveex-
ample stream graph (Figu#e2(a)), all actors are assumed data parallel. When SGMS
schedules the graph on 2 processors (Figu2)), the resultant Il is 32 because the slow-
est node B is fissed once and corresponding split-join oaerieincurred. Figurd.2(c)
is the resultant schedule for the PPA, enabling the processignment to achieve an Il of
30 as node B is accelerated by core aggregation without eadrhFinally, Figuret.2(e)
shows the stage assignments for PPA schedule in which tire eotle B is executed in
stage 0 within 20 time units by using both cores.

Figure4.3 shows the execution timeline of both SGMS and PPA schediiles.main
difference between the two schedules is the locations o Bodt is split into two indepen-
dent pieces using SGMS on a multicore and with the PPA it isieel as a whole by aggre-
gating the resources of both core 1 and 2. Note that with tiAe IRltle B must be scheduled
at the same time on both cores in order to exploit resourceeggjon. Another interesting
point s that since tightly-coupled memory system in the PR#vides lightweight memory

synchronization mechanism, scheduling is more tolerablegh memory transfer.

91



& A
S T 1 \
! Borrowing 4
' B B i
@ B1 ) : Core2 :
£ el L1 ;
= [
2 A Corel to Core2
s SPE1 e N
to SPE2 ! 8 Borrowing B 1
v B1 L 2 Core2 ]
A 7
A A © Corel to Core2
S 82 SPE1 i N
(CSHEZ 1 8 Borrowing B |
B1 1 Core2 ]
1 R ;
& D
D —
R
A A © Corel to Core2
spe2 Y ! /===
- to SPEL 82 SPE1 ! ) % [ core2 to Coret
to SPE2 h B Borrowing B 1
! Core2 :
Bl 7 N )
© D
D ____
— A C Corel to Core2
? SPE2 SPE1 I‘ \: Core2 to Corel
Borrowing
to SPE1 B2 to SPE2 ! B P B E
'
\ .
- - E b
c ____
3 D
SPE1 MEM SPE2 MEM
(a) Execution timeline(SGMS) (b) Execution timeline(PPA)

Figure 4.3: Example of running a SGMS on multi-core and a modip scheduling on PPA.

4.2.3 Compilation Challenges

Efficient scheduling for composable accelerators is nowgimg as an interesting, and
challenging problem due to the high degree of freedom in tigthardware and software.
Some factors that make scheduling difficult are:

Resource Requirement VarianceThe optimal resource requirement for efficient par-
allelism depends on the task-specific characteristics. ekample, cyclic code regions
can be accelerated efficiently by appropriating more ressyrbut the performance of
acyclic code with sequential dependences cannot be imgioysupplying additional re-
sources|7]. Assuming worst-case requirements for all code segmeatsito either over-

provisioned designs to achieve a desired performance ogrypetformance for a fixed

92


recycling/fig/example_ppa.eps

Core 0 Core 1 Core 2 Core 0 Core 1 Core 2 Core 0 Core 1 Core 2 Core 0 Core 1 Core 2

g
IS C
A
n Deadline E]

Deadline

Memory | k
Core0t— Corel +— Core2
Deadline

Time
'

@
E] I
Time
I
Time
[Zl '
I I

Load imbalance

Deadline
[ [ABICID] [ [ABICID] [ TA[BICID] [ [ABICID]
(a) (b) (c) (d) (e) (f)

Figure 4.4: Examples of the runtime overhead: (a) original &sk graph, (b) simple 1x3 PPA,
(c) expected ideal schedule with high resource utilization(d) runtime overhead: stall, recon-
figuration time, (e) static partitioning with low runtime ov erhead, (f) a possible problem of the

static partitioning: workload imbalance.

design.

Execution Time Variance: Composable accelerators typically have multiple tasks run
ning in parallel, and they usually have complex dependentésss, it is hard to predict
the resource usage pattern and accommodate the optimaitiexeof multiple instruction
streams.

Geometry: In CMPs, full connectivity between processors is often pted. However,
in a low-cost accelerator, the interconnect is much moresgpand merging cores should
be performed in a connectivity-aware manner.

To illustrate these difficulties, Figuré.4 shows some simple, but frequently occur-
ring examples that result in resources being wasted. Thelsidataflow graph (DFG) in
Figure4.4(a) is being scheduled on a simple composable architedtigare4.4(b)). As-
suming the optimal resource requirements of each node(&, B) is 1, 2, 2 and 1 cores
with the same execution time, the expected schedule isasitailFigured.4(c). However,

even though the optimal number of cores is assigned, therdiff amounts of work in each

93


recycling/fig/motivation.eps

node results in different execution times. On top of tha€ &nd D have long execution
time, node B cannot start execution at the completion of fdgdlut must wait until the exe-
cution of node C is finished because of resource conflictai(Eig4(d)). Another potential
source of resource waste occurs when changing the corenasang. In Figuret.4(d), task
D is delayed by the reconfiguration time even though enougppurees are available.

Static partitioning of the cores can potentially elimintiiese problems, such as stalls
and reconfiguration overhead (Figutel(e)). Static partitioning means the core aggre-
gation is not changed at runtime and each task is assignedudadle merged core. In
this scheme, task A is not preferred to be executed in conepgfb, 2) because the best
resource requirement for A is one core. If A is assigned tor2garesources cannot be
utilized sufficiently. However, the workload of each coreymat be balanced well because
we categorized all the tasks based on optimum resourcereaaemts (Figure.4(f)). To
minimize this side effect, a final performance tuning phaspdrformed using dynamic
partitioning of cores. For example, task D can be changednaising 3 cores after final
tuning because all the other resources remain idle. Additlp, we also propose a core
reallocation mechanism to avoid geometry-based runtineegh@ad.

In this work, our work is focused on finding the optimal paotiing of cores for a given
task graph rather than changing the task graph itself. Ajhanodifying the task graph is
also a common load balancing strategy, it usually cannoppbead well to the graph itself

without changing the source code due to the memory and datgpendences.

94



4.3 Compiler Framework

In this section, we describe our new compilation framewakdal on the insights dis-
cussed in the previous section. The purpose of this framewaio achieve the highest
throughput by minimizing stalls due to resource contendéind reconfiguration processes.
The compilation process consists of three different stagepass static partitioning, core
allocation, and postpass dynamic partitioning. Prepasssteally fuses virtual (no ge-
ometry information) PPA cores to accommodate larger pipedtages based on the profile
workload information with static partitioning. Core albtcon maps the virtual cores onto
physical cores, avoiding failures that occur when coresames group are not connected
together. Postpass performs final performance tuning toceethe completion time of
bottleneck pipeline stages by exploiting resource bonmgwi

All compilation steps are performed at compile time. Vitization is not considered
in this framework because of performance overheads, bothehardware and compiler
sides. For the hardware, a virtualization controller hascakon time overhead for check-
ing the resource availability of the neighbor cores. In &ddito this, virtualized modulo
schedule also has some performance degradation as it teserdy one schedule to sup-
port various core configurations4]. Despite these performance overheads, virtualization
can improve the overall performance in specific situatiagh as when running an ap-
plication on a small number of resources or running an apfdino with huge dynamic
variance [4]. However, we just generate one schedule per stage andeligetoalization

even when using dynamic partitioning to evaluate the rdat@¥eness of this strategy.

95



4.3.1 Prepass: Static Partitioning

As we discussed in Sectigh2.3 the goal of this compilation stage is to minimize idle
and reconfiguration time between tasks and to create higitygsehedules that maximize
resource utilization in order to minimize execution timeassigned work. To achieve this
goal, we propose resource grouping using static partigniThis section describes our
method for effectively grouping tasks requiring similanmoer of cores. The performance
improvement achieved by this stage mainly comes from rezognthe huge variance be-
tween the optimal resource requirements and executiorstoheach task. The key idea is
to categorize all tasks into some number of available resocwmbinations, enabling high
utilization and assigning the different portions of comgale cores based on this informa-
tion. This method basically enables all the tasks to usedabeurces efficiently, achieving
high throughput. This stage also performs coarse load biagrbecause the throughput
of the program depends on the slowest pipeline stage. Tdretembalance between core
groups leads to performance degradation even if all thestasicute efficiently. Load bal-
ancing is also performed in the postpass step after idemgifihe optimal static partition
with maximum resource utilization.

Algorithm 2 shows how the optimal core groupings (to support the asditasks) are
identified to exploit fine-grain parallelism effectivelyh& general idea is to heuristically
assign more cores to larger tasks based on the executioresitimeate. However, assign-
ing too many resources to larger cores may not be the besiwohecause performance
enhancement depends on the task-specific characteristicasay result in missed opportu-

nities to accelerate other tasks, given a limited numbeo< Therefore, quality factor

96



Algorithm 2 Prepass: Static Partitioning Algorithm
Input: G:(V, E), #virtualCores balance, quality

1: groups« Partiti onG aph(G, #virtualCores;
2: while true do

3: Sort Gr oupsByExecTi nme(groups;

{ Find task groups with max and min execution time estimjte.
4. maxTaskGroup— MaxExecTi neTaskG oup(groups;
5: numCores— NunRequi r edCor esToExpand(maxTaskGroup

6: minTaskGroups— Fi ndCont r act TaskGr oups(groups, numCorgs

{ Generate candidate for new task groups.
7. maxTaskGroupCand- ExpandG oup(maxTaskGroup

8: minTaskGroupCand- Cont r act Gr oup(minTaskGroups

{ Test the availability of the new task groups.
9: if (ExecTi ne(maxTaskGroupCand> ExecTi me(maxTaskGroup * quality || ExecTi me(maxTaskGroupCand<
ExecTi ne(minTaskGroupCanjl then
10: Finish;

11: end if
{ Update task groupk.
12: Renov e (maxTaskGroupminTaskGroups

13: Add(maxTaskGroupCananinTaskGroupCanj

14: if (ExecTi me(maxTaskGroupCarnd ExecTi me(minTaskGroupCarnd« balance|| timeOuj then

15: Finish;
16: end if
17: end while

97



is introduced to define the minimum performance gain thattineschieved to justify the
assignment of additional cores.

Algorithm 2 starts from assigning one core to each task (Line 1). If thmber of
tasks is larger than the number of cores, tasks are group#tekiptal execution time es-
timateExecTi nme). Based on this initial assignment of one core to each taskmrthe
while loop in Algorithm2 identifies the optimal number of cores per task group. Lirge 3-
finds the task groups with the maximum ExecTimeakTaskGroup and minimum Exec-
Time(minTaskGroups maxTaskGroujs the candidate for receiving more cores to enable
faster execution whileninTaskGroupswill potentially lose cores. The number of task
groups inminTaskGroupsaries because number of additional coresnfiexTaskGroupo
be the larger fused core, are set by the current assignedamrgy of maxTaskGroup
(Line 5) and the minimum ExecTime task group may not have ghawmber of cores
to give. In this case, an additional second minimum ExecTis& group is required. If
currentmaxTaskGroupas 1 core with 1x1 configuration, just 1 more core is requiodze
1x2 or 2x1 array-style fused core. However, if current canfiion of maxTaskGroujs
1x2 with 2 cores, 2 more cores are required to expand beca3sar Bx1 array-style core
group is not allowed and next available core configuratid2xi®, 1x4, or 4x1 with 4 cores
on current PPA. Moreover, an additional task group may beired to subsume the tasks
from the minimum task group if the minimum workload groupdssll its assigned cores.
Then, line 7-8 creates the candidates of new maximum andmwaimi task groups given
the new core assignment&xpandG oup is the function fomaxTaskGroupo get more
cores to accelerate execution &uaht r act Gr oup is to take cores frorminTaskGroups

Line 9-11 checks the benefit of these new resource assigeraadtdetermines whether

98



CORED  COREL CORE2 CORE3 CORE4 CORES CORE6  CORE7 COREO  COREL ~CORE2 CORE3 CORE4 CORES CORE6  CORE7

Input

A 5 F 4 10 H Filter 1Core | 2Cores | 4Cores
I
w@) ¢ ‘—/ ¢ ! g A 10
5 D i F W\ Move »
Expand_..* Lo B 86
E |F==="~ AN
86 ’1
o ._Eip_arld__-‘ i ; New deadline : 326 ¢ 246
D 326 200
(O L Deadline :466 E 466 350 200
® (b) (d) F 10
326
COREO  CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7 COREO  CORE1 CORE2 CORE3 CORE4 CORES CORE6  CORE7 (f)
O Y I O s 2
"“ > B R : N 10 Task Group Virtual Core
g Y c 50 (MBI R [ ¢
5 \ D L1 [F--2 i - £ ABF 1
\ . B H = >
w0 () N e Expand | | Expand 106 c )
~M_O;e_-— ‘ Finaldeadline: 246 D 0,3
output — i3 d
New deadline : 350 E 4567

(a) (c) (e) (9)

Figure 4.5: Static Partitioning example: (a) example data fhw graph, (b) phase 0: each task
is assigned to one core, (c) phase 1. the slowest task E get®anore core to accelerate, (d)
phase 2: task E is still the slowest and gets two more cores(B), thus task F loses own core(5),
(e) phase 3: new slowest task D is accelerated as getting ma@re(0) and finally task C with

one core(2) takes the maximum execution time, (f) executidime estimate table , (g) final core

assignment: D has 2, E has 4 cores.

new combinations are updated. First, the new ExecTime atiofmaxTaskGroupCand
should be less than some relative ratio of the original Exaeexample quality factor
= 0.9), meaning that the performance gain should be at least 100, fhe ExecTime
estimates of theninTaskGroupsCanghould not become a new bottleneck. Line 12-13
updates the changes to the core assignment and this precegeated until the load im-
balance is less than the balance factor or the task groupinatidn does not change within
the defined timeout period.

Figure4.5 shows an example of the prepass static partitioning algoritAn original
task graph (Figurd.5a)) with 6 nodes is mapped onto a PPA with 8 cores. The ofligina
graph only has 6 nodes and each node is initially scheduled dscore. The annotated

numbers show the ExecTime estimate for each node. The prepgarithm performs

99


recycling/fig/preproc.eps

ExecTime estimation of the partitions then tries to appeiprmore cores to the heavier
workloads to balance the task groups. More specificallyengds maxTaskGrou@and
gets 1 additional core because 2 cores are idle (Figuréc) Phase 1). Then, node E is
selected again avaxTaskGroupecause the reduced ExecTime is still the highest at 350.
In this case, an idle core and another core is selected tdeaatmnode E. As a result,
node E is scheduled with 4 cores. Since node F lost all itgasdicores, it is merged
into another task group with minimum ExecTime estimate,end@igure4.5 (d) Phase

2). maxTaskGrouphen becomes the task group with node D and is accelerateakingt
one more core from nodes A and F. Again, nodes A and F lostetdnes and are merged
into node B(Phase 3). At Figure5 (c) Phase 3, the process is finished since it meets the
balance condition (example balance factor 2.5) and 8 caresdligided as 4 task groups

with different core numbers (Figure5 (e)).

4.3.2 Core Allocation

After static partitioning, the number of PPA cores assigioezhch task group is known,
but their relative positions on the PPA array is not deteediyet. Core allocation maps vir-
tual PPA cores assigned to task groups onto the physicatsteuof the PPA. As discussed
in Section4.2.3 most composable accelerators, including PPA, providéduinintercon-
nects. The fast scalar network connecting adjacent core®incan be utilized to exploit
fine-grain parallelism. So, cores assigned to the same taslp@re placed next to each
other. Core allocation also attempts to place cores assignask groups with maximum

ExecTime next to the cores with minimum ExecTime. This isncréase the opportuni-

100



ties for dynamic partitioning in postpass. With dynamictpianing, idling resources can
also be loaned to the neighboring task groups, further asing the resource utilization.
Algorithm 3 shows the process for core allocation. First, all the taskigs are sorted
by ExecTime estimates. In each attempt, th@xTaskGrou@and theminTaskGroupsre
identified(lines 3 - 5) with Prepass-similar process, amy tire placed closely on the PPA
array to enable sharing cores at runtime(lines 6 and 7). iQ@ng the example from the
prior section, Figurd.6shows the core allocation results and the slowest task d@uis

assigned the core next to the core reserved for the fassésgitaup (A, B, F).

Algorithm 3 Core Allocation: Physical Core Mapping
Input: groups #physicalCores

Output: phyTaskGroups
1: Sort GroupsByExecTi ne(groups;
2: while HasGr oup(groups do
3: maxTaskGroup— MaxExecTi neTaskG oup(groups;
4: numCores— NunRequi r edCor esToExpand(maxTaskGroup

5. minTaskGroups— M nExecTi neTaskGr oups(groups, numCorgs

{ Assign physical core$.
6: Set Physi cal Cor es(maxTaskGroup

7: Set Physi cal Cor es(minTaskGroups

{ Update task groupk.
8: Renpve(maxTaskGroupminTaskGroupsgroups;
9: AddTo(maxTaskGroupminTaskGroupsphyTaskGroups

10: end while

101



ABF Physical Core | 0 112]34(5|6/7
[OMZM“ME;} vitwalCore  [1 |[2]0[3]4]5]6]7
D
{(1:}(3]{5]77} Filter ABFJCDDEEEE
7
Low workload high workload
(a) (b)

Figure 4.6: Core Allocation example: (a) physical placemerof cores, (b) the slowest group is

placed next to the fastest group.

4.3.3 Postpass: Dynamic Partitioning

In this section, we propose the final performance accetargirocess: dynamically
adjusting the resource assignment of the bottleneck taslpgr The basic concept is to
accelerate the slowest stage by dynamically acquiringdleeresources of neighboring
cores at runtime. While the static partitioning achievesoadyload balancing of PPA
cores, workload variation still exists leaving some timacklfor cores assigned to lightly
loaded task groups. The idle time of cores can be exploiteddighboring cores using
dynamic partitioning proposed in this section.

Algorithm 4 begins the optimization process by constructing the graljacancy in-
formation map (Line 1). The compiler automatically idemsfiwhich group is physically
adjacent based on the PPA core connection information. , Thidentifies the slowest task
groups and tries to find physically connected task groupsorgrthese task groups, the
task group with the lowest ExecTime estimates is selectew(4-7). Line 8 calculates the
performance estimate when dynamic partitioning is enabétdieen these groups. In this
process, only tasks from the maximum ExecTime task grouléomeed to execute with

dynamically varying resources. The other task groups aticeed to their initial static

102


recycling/fig/corealloc.eps

Algorithm 4 Postpass: Dynamic Partition Algorithm

Input: phyTaskGroupssharing

1: adjMap+« Const r uct Adj acent Map(phyTaskGroups

2: whiletruedo

3: Sor t G oupsByExecTi nme(phyTaskGroups
{ Find task groups with max and min execution time estimhte.
4. maxTaskGroup— MaxExecTi neTaskG oup(phyTaskGroups
5: nextMaxTaskGroup— Next MaxExecTi meTask G oup(nextMaxTaskGroyp
6: numCores— NunRequi r edCor esToExpand(maxTaskGroup
7. minTaskGroups— M nExecTi neAdj acent Gr oups(phyTaskGroups, numCores, adjMap
{ Test the availability of dynamic partitioning of shared exton.}
8: newMaxTaskGroupExecTimeewMinTaskGroupsExecTime
« Esti mat eExecTi meShar i ng(maxTaskGrougminTaskGroups
sharing;
9: if (newMaxTaskGroupExecTime ExecTi me(maxTaskGroup
& & newMinTaskGroupsExecTIme ExecTi me(maxTaskGrou)) then
10: Updat eShar i ng(maxTaskGroupminTaskGroupsgroups;
11: end if
12: if (newMaxTaskGroupExecTime ExecTi nme(nextMaxTaskGroup then
13: Finish;
14: end if
15: end while

resource assignments. This is to limit dynamic resourcegymsent only to the perfor-

mance limiting groups to minimize the reconfiguration oeath. The compiler identifies

resource-constrained loop nests in thaxTaskGroughat can further exploit fine-grain

parallelism with the extra resources. Then, the compiladgally changes the resource

assignment for the loop nests, until the ExecTime estimateeominTaskGroupseaches

a performance threshold. This threshold is set to the vel&kecTime of the second lim-

103



COREO CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

"
A \

Time

F
106

200

246 deadline: 246

(a)
COREO CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7
:'/m o)

=B

F

d

Time

H

g
g

c4 )/
197 200 200 200 newdeadline: 200

originaldeadline : 246
(b)

Figure 4.7: Dynamic Partitioning example: (a) coarse-gram pipeline using static partitioning,

(b) coarse-grain pipeline with final performance tuning process

iting group fextMaxTaskGroup The sharing coefficient is introduced to determine the
threshold and it depends on the application charactesi@inamic variance) for each task
at runtime. For example, a stage execution time of AAC fluetsibetween 150k and 200k
cycles [7/4], and the coefficient will be smaller than 0.75 consideriggamic overhead.
Line 9-11 updates the new assignment if there is any perfocegain with the resource
sharing. This process will finish if the new ExecTime is daliger than the ExecTime of
the nextMaxTaskGroupAnother key point of this process is that theality factoris not
considered in this phase because the objective of this gsasdo accelerate the pipeline
limiting stage using marginal resources.

An example of the postpass optimization is shown in Figli#® In this example, the

104


recycling/fig/postproc.eps

slowest task group(C) and the fastest task groups (A, B, &phkced next to each other
after the core allocation step in Figude/ (a). The compiler identifies five candidate loop
nests in task group C, and two of them are rescheduled userapidiitional resources(cores
0 and 1). The final result in Figuee7(b) shows that the pipeline deadline decreases from
246 to 200 cycles, achieving 20% performance gain for tlagest The overall resource
utilization is improved by recycling the wasted resourcksare 0 between cycle 106 to

197.

4.4 Experimental Results

This section presents the results of the experimental atialuof proposed high-level
compilation techniques. We first present a brief explamatibthe target architecture and
benchmark applications. Performance measurement foapsegnd postpass processes is

explained based on the experimental environment descoiéled.

4.4.1 Experimental Setup

Target Architecture PPAs are used to evaluate the performance of the compilation
techniques. The PPA has 8 cores in the form ofxal Zarray as shown in Figuré.l
Virtualization controller is disabled to evaluate the rpalformance of the compilation
strategy. For the experiments using less than 8 cores, Pp¥tisioned into two parts and
the unused partition is disabled.

Target Applications and fine-grain parallelism To evaluate the performance, we used

three application domains: audio decoding (aac), videodieg (h.264) and 3D graphics

105



AAC 3D H.264

B symmetric B smart W static W dynamic W symmetric Wsmart W static W dynamic

B symmetric Wsmart W static W dynamic

#of Cores #of Cores #of Cores

Figure 4.8: Relative speedup normalized to simple symmetipartitioning

(3d). All software-pipelineable loops from these appiizas are taken and scheduled using
edge-centric modulo scheduling with all available patis. Topology of the core groups
are also considered. For example, 2x1 and 1x2 core groups2nibres are individually
scheduled. Performance is evaluated using the overalu@redime.

For coarse-grain pipelining, three applications are spta multiple tasks that com-
municate in a feed-forward fashion and without any interation dependencies contained
within a single task. Each task is able to have both loops anclia blocks of code. Based
on the control and data dependency restrictions, aac, 2B4tave 10, 5, and 3 tasks on

experiments.

4.4.2 Performance Evaluation

Figure4.8 shows the relative speedup obtained by various partitgpaigorithms on 4
to 8 cores. Symmetric partition means that each task is sébedsing the same number
of cores. If the number of tasks is smaller than the numbepr#s; the cores are divided
by the number of tasks and each task has its own partitiomelfasks are more than the

cores, the overall application is split by the number of saaad each task group is exe-

106


recycling/fig/performance.eps

cuted using one core. Smart partitioning means manualigelivstatic partition based on
the application characteristics. For example, tasks aantasubstantial portion of loops
are executed on a large core group to exploit fine-grain ledisath and the others are run on
only one core. Static partitioning represents the exenugsult when the program runs on
an automatically divided partition with prepass. In dynagartitioning, the program exe-
cutes on the same partition with static partitioning andaagit reconfiguration is applied

as well.

4.4.3 Static Partition

As shown in Figuret.8, smart partitioning always outperforms symmetric patiing
by a significant amount because most of the loop-intensskedeoups are accelerated us-
ing fine-grained pipelining. The promising point is that mahpartitioning cannot achieve
better throughput than our static partitioning algorithand the speedup of static parti-
tioning on aac benchmark is always better than smart mariitg. As other benchmarks
have small number of tasks, 3 and 5, manually partitioninty wiaditional load balanc-
ing algorithm can achieve the same speedup as with usingathe partitioning with the
result of prepass. However, if the application can be sptd multiple subsets of tasks,
our prepass optimization is able to minimize the perforneashegradation induced by low
quality schedule, stall, and reconfiguration overheadeNlwt tasks cannot be divided for
perfect load balancing because memory and control depeadam the program prevent
tasks from being partitioned from the middle. Despite thebkerent difficulties, our algo-

rithm successfully finds the throughput limiting tasks andederates them. On an 8-core

107



100000

100000

—_— [ 1 —— 2 90000
90000 o o . A < group 2 group 3 /\ A
—group e grOUD ——deadline /\ /\ 30000

80000 / \ / \ o000 — group 4 ——new deadline / \ /\
70000 - etatic deadiine A
60000 / \ / \ 60000 /,’\‘\ /;'r;,‘\
g Ji\\ FFA\
nsoooo // \ / \ /\ 350000 e ————— {// ‘_,' \ i Y A
340000 TG % \ 40000 -2 7 /{ _______ v l:'-"vi\ :\ oo ,gy-:;';kﬁ
30000 . — s TN \/"‘ . _\__'_/.\ 30000 4 ‘\‘:___—_:_:_"-_Z‘_‘__‘_ ___— ;——;; 20 \'K\»/"if‘ DA

20000

20000

10000

10000

________________ - m—— = 0 T T T T T T T T T T T T T T T T T T T
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

() (b)

Figure 4.9: stage execution time for aac benchmark: (a) dymaic computation variance on

static partitioning, (b) pipeline deadline reduction with dynamic partitioning

PPA, static partitioning allows 2.44x, 1.66x and 1.66x sjpgeover symmetric partitioning.

4.4.4 Dynamic Partition

AAC Figure4.8 shows that postpass with dynamic partitioning is effectiveen the
number of cores are 5 and 8 but the gain is small, 1.7% and 2&8pectively. This is
because the task group with the largest execution time on Aglication consists of a
large amount of sequential code and a small portion of thisvaoé-pipelineable code. In
prepass, this huge sequential task cannot reserve enotgghlmecause of the low quality
schedule and remains the performance bottleneck. Thisgdlskn accelerated by sharing
its neighbors’ resources during postpass since it does@t o meet the quality factor
any more, hence the final performance is slightly enhancedshbyg the neighbor’s idle
resource.

Runtime observations of the real execution on both statititjpening and dynamic par-
titioning are shown in Figuré.9. Figure4.9(a) shows that task group 4 is the performance

bottleneck over time and execution times of task group 0 aaccZmall. Core allocation

108


recycling/fig/aac_thesis.eps

Cores | Perf (smart) | Perf (static) | Perf (dyn) | Overall
4 1.79 1.05 1 1.87
5 1.73 1.05 1.02 1.83
6 2.29 1.05 1 241
7 2.30 1.06 1 244
8 2.30 1.06 1.03 2.50

Table 4.1: Relative speedup for AAC benchmark (normalized @ the preceding column).

process places the cores, assigned to these three tasls gnexpto each other and group
4 gets some performance gain as shown in Figud€b). Despite the small performance
gain of group 4, 0 and 2 have substantial runtime overheadusecthese groups should
share the low quality schedule.

3D Rendering 3D rendering application has 5 tasks, two with small acyotide and
three with big software-pipelineable code. Dynamic piaming increases the throughput
by a large amount for all the cases because three huge tdsikt are easy to accelerate
by fine-grain parallelism, have similar workload and quatif the schedule is still high
when sharing the resources at runtime. The performancagamto 11.5% compared to
static partitioning, just with reusing idle resources. F&gd.10shows how dynamic recon-
figuration efficiently decreases the execution time of tlogvsbkt task group. On iteration
19-23, task 4 takes up to 60000 cycles to render 3D imageshasavork is finished in
50000 cycles by resource borrowing from task 0 and 1. Afteradyic performance tun-
ing, execution time on task 0 and 1 increases a large amoumipatask 4 finish early on
iteration 19-23.

H.264For H.264 benchmark, dynamic reconfiguration is not endideaduse execution

109



70000
60000
50000
@ 40000
30000
20000
10000

0

70000

60000

oert —genr I \ 50000
| AR YAV VIR R
! . & 30000

20000

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Iteration

(a)

— —group 0 -=-=-group 1

——group 3

—new deadline A
'

_|==-original deadline N

1 3 5 7 9 111315171921 23 2527 29 31 33 3537 39
Iteration

(b)

Figure 4.10: Stage execution time for 3D benchmark: (a) dynaic computation variance on

static partitioning, (b) pipeline deadline reduction with dynamic partitioning

Cores | Perf (smart) | Perf (static) | Perf (dyn) | Overall
4 1 1.23 1.02 1.25
5 1.23 1.01 1.11 1.38
6 1.25 1.09 1.11 1.52
7 1.35 1.22 0.99 1.65
8 1.66 1 1.03 1.72

Table 4.2: Relative speedup for 3D benchmark (normalized téhe preceding column).

time of the performance limiting task group fluctuates todely and is sometimes even

smaller than the fastest task group. Therefore, the comgéleides not to adapt dynamic

partitioning because runtime overheads of the fastesé steymuch bigger than the gains

of the limiting task and the overheads may adversely afteetfinal performance as the

fastest task becomes the slowest. Figufel shows that execution time changes by a huge

amount and sometimes is even lower than the fastest tashislodse, the compiler does

not allow dynamic reuse of the neighbor resources becaug®iag dynamic partitioning

is optional.

110


recycling/fig/3d_thesis.eps

18000
16000

14000 )

12000

$10000 -
%3

3 8000
6000
4000
2000

- = group0 e groupl e group 2 ——deadline

N A /

\ L A\ oA
v

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41
Iteration

Figure 4.11: Stage execution time for H.264 benchmark: dymaic partitioning is not applied

due to huge dynamic variance.

Cores | Perf (smart) | Perf (static) | Perf (dyn) | Overall
1 1.22 1 1.22
1.22 1 1 1.22
1.23 1.25 1 1.54
1.54 1 1 1.54
1.53 1.08 1 1.66

Table 4.3: Relative speedup for H.264 benchmark (normalizit to the preceding column).

4.5 Related Work

Architectures: Combining cores to create a bigger logical core is relatizehew

technique, recently proposed by Core fusid][and Composable Lightweight Proces-

sors fi4]. Core Fusion is a CMP architecture that can dynamicallycalle independent

cores together for a single thread execution maintainidgd@mpatibility. CLPs also al-

lows dynamic allocation of cores to form a larger and powesifugle-threaded processors.

It also keeps the binary compatibility for the special ED@&AI The major difference be-

tween [Z7] and [44] is the target environment. PPA is designed to exploit grgtead

performance in mobile environments where power consumitd hardware cost is a

111


recycling/fig/avc.eps

first-class constraint. The building blocks of PPA are siriptorder cores similar to clus-
tered VLIW processors9[l]. Also, the statically controlled point-to-point interwoect
provides a fast inter-core communication, allowing PPAxpleit fine grain pipeline par-
allelism efficiently for multimedia applications.

The PE level view of PPA is similar to Coarse-Grained Recaméble Architectures.
ADRES [65] is a reconfigurable architecture where PEs are connectadrtesh-style in-
terconnect. Modulo scheduling using simulated anneasimgriployed to exploit fine grain
pipeline parallelism of nested loops. The top row in theyabehaves as a VLIW processor
with a multi-ported central register file. However, the noftware pipelineable region of
the application can only utilize the VLIW part of the arrap, 8 cannot pipeline the appli-
cation in a coarser granularity as PPA. With identical reses, PPA outperforms our best
approximation of ADRES by 1.43x. PipeRenc¢H]is a 1-D architecture in which process-
ing elements are arranged in stripes to facilitate pipe¢jinbut it has a fixed configuration
of resource partitioning for pipelining while PPA can pawtn the array differently as to the
characteristics of the target application. RaPil)][is another CGRA that consists of het-
erogeneous elements (ALUs and registers) in a 1-D layounected by a reconfigurable
interconnection network.

Exploiting Parallelism: Exploiting coarse-grained pipeline parallelism is onehsf t
most attractive approaches to accelerate single threddrpemce as multicore architec-
tures enter the mainstream. Even this type of parallelisshany advantages compared
to other types of parallelism, adapting in real situatiomifficult because of program-
inherent data dependencés]. To overcome this difficulty, §6] has proposed a dynamic
analysis tool to extract a stream graph from legacy C codedardo give a programmer

112



hints for manual parallelization.8[] also tries load balancing by changing a program but
this work’s focus is more on compile time optimization foven program. $6] and [50]

are similar to this work to exploit coarse-grained pipelpaallelism but the paralleliza-
tion mechanism is limited only to stateless components ey &treamlit language. Our
work also considers composable architecture specificfestuch as resource conflict and
reconfiguration overhead whereas these works targetedrfiwéidcore solutions(RAW ar-
chitectures'$7] and Cell processors!{]). Resource borrowing on dynamic partition is a
similar concept to Work stealind §] but our approach is performed in more fine-grained

level, not thread level.

4.6 Summary

The popularity of mobile computing platforms has led to tlewelopment of feature
packed devices that support a wide range of software apiplica ranging from high-
definition audio and video to high-end 3D graphics. Howetlee, variable resource re-
quirements and complex data/control flow of these workldadg the applicability of
traditional acceleration techniques. In response, thikwooposes a novel, efficient com-
pilation framework to enhance the throughput by maximizggpurce utilization of a com-
posable accelerator called a polymorphic pipeline arrénge dompilation consists of three
phases: static partitioning into task groups, physicat @location, and dynamic parti-
tioning to reclaim idle resources to accelerate perforradattlenecks. The experimental
results show that static partitioning achieves up to 2.4kedup, with dynamic partition-

ing achieving even greater success in certain benchmarks.

113



CHAPTER 5

Efficient Performance Scaling of Future CGRAs for

Mobile Applications

5.1 Introduction

The embedded systems that power today’s mobile devicesrakebwth high perfor-
mance and energy efficiency in order to support the variopiigtions, such as audio
and video decoding, 3D graphics, and signal processinglitioaally, application-specific
hardware in the form of ASICs is used on the compute-intenkarnels to simultane-
ously meet tight performance/energy requirements. Horwyélve increasing convergence
of different functionalities combined with high non-redag costs involved in designing
ASICs have pushed designers towards more flexible solutih@isire post-programmable.
Coarse-grained reconfigurable architectures (CGRASs)ererhing attractive alternatives
because they offer large raw computation capabilities Vet cost/energy implementa-
tions [61, 85, 65. Example CGRA systems that target wireless signal pracgsand

multimedia are ADRESH6], MorphoSys 1], and Silicon Hive [ 8].

114



2000 -+

— CPU
1800 1 -43--Texts X
1600 1 — © —Images ,/'
| ==A=-Audio /
1400 --%--Video /

T 1200
21000

te

(expe
[0}
o
o

600
400
200

Incremental computational power

2009 2010 2011 2012 2013 2014 2015
Year

Figure 5.1. The computational power trends for social sitesn each resource type:texts, im-

ages, audio, video, and CPUs.

CGRAs generally consist of an array of a large number of fonainits (FUs) intercon-
nected by a mesh style network, as shown in Chahtd.1 Register files are distributed
throughout the CGRA to hold temporary values and are addessinly by a small subset
of the FUs. The FUs can execute common integer operatiookiding addition, sub-
traction, and multiplication. CGRA resources are fully raged in software to maintain
high energy efficiency. In contrast to FPGAs, CGRAs sacrijiate-level reconfigurability
to achieve hardware efficiency. Thus, CGRAs have short fegumation time, low delay
characteristics, and low power consumption.

Even though CGRAs can meet the performance requirementsany of today’s ap-
plications, future computational demands of mobile agpions are predicted to increase
exponentially P7]. Figure5.1depicts the trends in computational requirements for sgver

media processing domains (text, image, audio and videopalath the projected perfor-

115


cgrascaling/fig/trend.eps

mance gains of CPUs based on technology scaling based ofnatatg?”]. This projection
shows clearly that hardware scaling alone will be quicklydistanced by the performance
requirements of all these domains. Further, simple harelweglication will not solve this
problem as the power budgets for mobile devices are notasorg at a fast rate.

Previous works on CGRAs show that considerable performamgevements are pos-
sible by applying various techniques such as exploitingtiplel types of parallelismi4,
45] or generating complex processing elements (PES) [However, these only consider
features in isolation and fail to consider other issuesuiticlg the topology and memory
subsystem.

In this chapter, we perform a deep study to help the engirtesign future CGRAS to
meet future computation requirements while maintainingyattpower budget. We con-

sider the following four key questions for scaling the periance of CGRAs:

1. How effective is heterogeneous functionality at inchegefficiency?

2. Forthe same number of processing elements (PESs), wheffiarent interconnection

topologies?

3. For power efficiency, can a complex PE be helpful comparyedsimple PE?

4. For the memory interface, how useful is the introductibwextor memory operation

support?

This work does not propose the best optimized CGRAs or netuifess The goal of
this work is to investigate these factors and their feagytih the view of performance and

power efficiency. We consequently place emphasis on finti@gotential for architectural

116



features and CGRA organization. For the first question, vesvghat heterogeneous FUs
are indeed effective at reducing area and power at a smallobperformance. Second,
we demonstrate that recent fixed multi-core solutions aenakstricted by the application
characteristics and a flexible solution with an advancedpilation technique is required.
Third, we investigate whether complex PEs are indeed eneffggient. We show that
CGRAs with complex PEs can improve performance with smallitewhal energy con-
sumption. Lastly, we examine the effect of vector memoryrapen support and conclude
that it is helpful due to the high degrees of spatial localdynd in media and gaming
applications.

This chapter is organized as follows. Sect®2 provides the background informa-
tion on CGRAs, target applications, and simulation toakinh Section5.3 presents the
experimental methodologies, results, and discussionsanconsiderations. Sectidn4

concludes this chapter.

5.2 Analysis Infrastructure

This section introduces target benchmarks and the anatysastructure. ADRESH6]

is used for the baseline CGRA accelerator as introduced apten3.2.1.1

5.2.1 Benchmarks Overview

Two major classes of mobile benchmarks are used for thiscgtign analysis. The

benchmarks consist of:

117



e Media benchmark: Three key mobile media applications dextazl: AAC decoder
(MPEG4 audio decoding, low complexity profile), H.264 deeo(dMPEG4 video
decoding, baseline profile, qcif):f], and 3D (3D graphics rendering}][ These
benchmarks are optimized for DSPs in the production-qukgitel and a large por-

tion of the loops have a high potential degree of ILP and aftsvace pipelinable.

e Game physics benchmark: Three common kernels are extraioteadmobile gam-
ing applications f]. First, lineOfSight plays an important role of separatuigjble
objects and non-visible objects. Sound effects, colligietection and other func-
tions involving linear equations often exploit convolutiand the conjugate gradient

method. The three kernels mostly consist of high DLP loops.

5.2.1.1 Loop Characterization

Applications typically have many compute intensive kesnilat are in the form of
nested loops. Among these kernels, we analyze the availeBlend DLP of the in-
nermost loops and find the maximum natural vector width wisdchievable. To extract
maximum degree of ILP, we found tis®ftware pipelinablexnermost loops to which mod-
ulo scheduling can be applied: 1) counted loop, 2) no subrewtall, and 3) no multiple
exits/backedges. Control flows inside the innermost loopssalved by the if-conversion
compiler technique. Among the software pipelinable (SW&albnermost loops, we also
identify the SIMDizableinnermost loops which can utilize DLP. Based on the Intel €Eom

piler [41], the rules to be selected as a SIMDizable innermost loopsifellows:

118



Oinnermost  Oswpable  @simd

i)
= 0.8 -
{59
qE, 0.6 -
= 0.4
S 0.2 -
2
5 0
o ) =
Q ®© A S 4 % _5 S 2
i ® R > | 5| a3 | <
< > = (2
sl 28
o S c
(&) —_
Media benchmark Game benchmark

Figure 5.2: Loop categorization of various benchmarks: Thehree bars indicate ratio of exe-

cution time in innermost loops, SWPable loops, and SIMDizale loops.

The loop must contain straight-line code. No jumps or brasg¢hut predicated

assignments, are allowed only when the performance degwadsignorable.

The loop must be countable and there must be no data-depgendieconditions.

Backward loop-carried dependencies are not allowed.

All memory transfers must have same strides over iteration.

If a loop satisfies the above four conditions, the minimumaiien count is set to the
maximum available SIMD width.

Figure 5.2 shows relative execution time of innermost loops, SWPabtgpd, and
SIMDizable loops to total execution time on a simple 1-is8kM processor. On aver-
age, there is a substantial amount of time spent on eithestor®/VPable and SIMDizable
loops. More specifically, the media benchmark is originapfyimized to maximize the por-
tion of SWPable loops, but it also has high ratio of SIMDizalolops. The gaming physics
benchmarks have higher levels of data parallelism. ResuRgure5.2 confirm that not

119


cgrascaling/fig/simd_opportunity.eps

only different applications have different charactedstibut also different innermost loops
in a single application can have different characteristiosaddition to this, we can have
another opportunity to improve the overall performanceéfave additional mechanism

to support DLP.

5.2.2 Experimental Setup

Target Applications As discussed in Sectiob.2.1 the evaluation is conducted for
subsets of two domains. The top 10 loops having higher exattime are selected for
gaming benchmark, and 144 loop kernels, varying in size fota 142 operations, are
extracted from the media benchmark because ratio of totdugion time of top 10 loops
is too small.

Compilation and Simulation The IMPACT compiler [ 1] is used as the frontend com-
piler. Edge-centric modulo scheduling (EMS}]-based modulo scheduler is implemented
in the backend compiler on the ADRES{] framework.

Power/Area Measurementsvarious CGRA templates are generated in RTL Verilog,
synthesized with the Synopsys design compiler, and pladerauted with the Cadence
Encounter using IBM 65nm standard cell library in typicakogting conditions with 1.0
operating voltage. Synopsys PrimeTime PX is used to megmwer consumption. The
Artisan Memory Compiler and RF Compiler are used to deteentive power of memory

operation using a 1.2 operating voltage. The target fregjasiof the systems are 200MHz.

120



5.3 Analysis

In this section, we describe the key issues on scaling CGRws, set up the method-
ology in order to collect meaningful results for each factonally, we analyze the experi-

mental results and suggest several recommendations féadtoes.

5.3.1 Question 1: Heterogeneity vs. Homogeneity
5.3.1.1 Overview

In common CGRAs, the use of heterogeneous FUs (mix of sirmpéger FUs and
complex FUSs) is considered as an apparent architecturatelstnce complex function-
ality such as multiply and divide operations requires higgaaand static power overhead
but the utilization of them is often disproportionally lomthan simple integer operations.
For example, only 2.2% and 1.3% of the total dynamic instomstare multiplications and
divisions in the H.264 video decoding applicatidri]. However, most architectural explo-
ration on CGRAS has been focused on the interconnect topalodjthe array size’), 51].

In this section, we examine the performance effect of hgemeous FUs over homoge-

neous FUSs.

5.3.1.2 Methodology

Based on the 16-PE homogeneous baseline CGRA (Set?)owe decrease the num-
ber of FUs supporting whole functionalities. In the basel®GRA, all FUs support all
the functionalities: simple integer operations, compleerations (multiply, divide), and

memory operations. Then we decrease the total number of sway@ functionalities.

121



Media o Game
o
1 c 1 = 1
8 &
£08 [ | £08 | [ [ §08 -
o o H
Eo6 || F—— 06 || - 206 -
S - o
504 | - 004 H H [ £ 04
o 2 S
00.2 + H H ®0.2 + [ [ ® 0.2 -
2 °
E 0 L e e B L L — x 0 T - T T T T T T T 0 T 1
Q 2 D ™ PN QO % QPN DO % QN 2 D % 9PN DO %X QP N D % 9 N k) 1 Vv N
3 P NI NN QIR QSR QI Q7 QIQ7 9 Ny NS NS A 7 o/ QF o7
TP SEE SRR R TSP SESE S ERRE o7 7 8
(a) (b) (c)

Figure 5.3: Performance degradation and static power consuption on a CGRA at different

FU organizations.

First, we limit the number of FUs supporting complex openasi from 8 to 1 (mulN):
only a subset of all 16 FUs supports complex operations dtfdJal support all other oper-
ations. Second, we also limit the number of memory operatioremN). Lastly, we limit
the number of FUs that supports both complex and memory tpesaexpN). For these

architectures, the total execution time is used as a metric.

5.3.1.3 Result and Discussion

Figure5.3illustrates the performance degradation as the numberpareive units de-
crease on a 16-PE CGRA accelerator. Each bar shows theegdatiformance normalized
to that of the homogeneous baseline CGRA. From this graphartiounts of performance
degradation are not as substantial as the area/static fx@mefits when reducing expen-
sive units in both benchmarks. This is because the perfaenannormally constrained
not by the expensive operations but by the simple integerucons. Among complex
and memory operations, the performance degradation demeuach more on memory op-
erations. If we set 80% of the baseline performance as thamain performance target,

we can decrease the number of both complex and memory uniip by 75% with high

122


cgrascaling/fig/hetero_result.eps

area/power benefits.

5.3.2 Question 2: Interconnection Topology
5.3.2.1 Overview

To enhance the overall performance, increasing total nurab®Es is the simplest
method to use. However, the key problem is the utilizatiorthef PEs. As discussed
in PPA [74], the performance saturates at some point if we simply eseethe size of
the CGRA due to the routing overhead and the lack of enoughbeurof instructions
inside the loopbody. The routing overhead is more critiemause CGRAs do not provide
a multi-ported, centralized register file and the operandstrhe explicitly routed using
decentralized resources, often PEs. The number of ingingdinside the loopbody can be
increased by loop unrolling, but it will be also limited wittncreasing routing overhead.

Clustering is the common interconnection topology for tlefgrmance saturation
problem [, 58]. A large number of PEs are split into smaller partitions aadh subset
of PEs works separately. In this system, loops are schedatigdting one partition (clus-
ter) and executed in multiple partitions, where iterationrmts are divided by the number
of partitions. An interesting question at this point is hawfind the optimal number of
partitions and PEs inside each partition. In this sectiom.examine various types of in-
terconnection topologies, including clustering, and maalia and gaming benchmarks on

CGRAs. We then introduce a reasonable strategy for scaérfgqmnance.

123



DDDDDE}DD
DDDDDDDD

Baseline

Fixed partition

____________________

0 ElD_D,D_D,D_D,

Flexible mapping

Figure 5.4: Various interconnection topologies of CGRAs: &) baseline, (b) fixed partition, (c)

flexible partition, and (d) a table for execution model of logs on different topologies.

5.3.2.2 Methodology

To assess the impact of clustering as the size increasesokall the SWPable loops
in media and gaming benchmarks. Three different styles dR&@rchitectures are imple-
mented for design space exploration. Each style of ardhite@lso has six variations of

PE number: 4, 8, 16, 32, 64, and 128. The detailed explanatithre architecture styles is

as follows:

e N: Baseline architecture (FiguBe4(a)). The architecture consists of all the PEs, and
the structure is the same as the architecture explainedatmo8&?. As shown in

Figure5.4(d), both DLP and non-DLP loops are scheduled targeting @/R&s.

e MXxL : Fixed partition (Figur&.4(b)). N PEs are physically splitinto M partitiorzss€
M < 8),then L (N/M) PEs consist of each partition. Both kinds of loops are sched

uled targeting one partition. Non-DLP loops are executezhia partition due to the

Bln ) akn afw)
COo00000)

DLP loop Non-DLP loop
Baseline | Schedule on | Schedule on
all the PEs all the PEs
Execute on Execute on
all the PEs all the PEs
Fixed Schedule on | Schedule on
partition one partiion | one partition
(MxL) Execute on Execute on
M partition one partition
Flexible Schedule on | Schedule on
mapping | one partition | all the PEs
Execute on Execute on
M partition all the PEs
(M can vary)

124



cgrascaling/fig/flexible_method.eps

inter-iteration dependencies, and DLP loops are executéd partitions and each

iteration count is divided by M (Figurg.4(d)).

¢ N_flex: Flexible partition (Figuré.4(c)). Based on a baseline architecture, the num-
ber of partitions can be dynamically changed from 1 to 8. &fuge, non-DLP loops
are scheduled targeting whole PEs and executed on wholeHeERLP loops, the
schedule of each loop is generated targeting the bestiparitd executed in parallel

on each partition for smaller iteration counts (divided bg humber of partitions).

To determine the effects of differing architectural feagjithe measurements of perfor-

mance and the performance saturation point distributidaags were obtained.

5.3.2.3 Result and Discussion

Figure 5.5 shows the performance results of above architecture typebeaCGRA
size increases. The X-axis on these graphs shows the atcindéemplates, and the Y-axis
shows the average performance of media and gaming apphesattach performance result
is normalized to when each application is mapped onto th& b#seline architecture.
Here, we can notice that the throughput saturates as weaserhe size of the baseline
architecture. For media and gaming benchmarks, the pesfacendoes not increase that
much beyond the size of 32 PEs and 16 PEs, respectively. §hecause the average size
of innermost loops on gaming benchmarks is smaller tharoihatedia benchmarks.

For fixed partition, the performance is often worse than tiressponding size baseline
architecture on small sizes, but it scales well on largessiger media benchmarks, a high

number of partitions does not always show the best perfocenamong various same size

125



-
N

Media s

-
o
T

Relative performance
N A O

no 0l
[ S B e S B
< X 00 I X O oo T X N © 00 < X < N © 00 X 00 N O X
= JFE “&XFE "%F3E “%xdE YRS
b o b q Nl Q<% LSRNl
< [-<} © N < (-]
- [3r] © N
a
Architecture
10
(] _
e . Game I
©
§6 i
h=
o 4 _ L
o
(] - L
: il <H>
=
2,00 |l
— T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
(] < X 0 < X © 00 I X N © 00 < X <t N © o0 X 0 < N O X
x £ e XL “"xI&8E U TET xS
= = = & *= J<F " Jd<o"
< [} ©o N < [-e]
- ™ ©o N
‘_

Architecture

Figure 5.5: Performance comparison of various architectues for media and gaming bench-

marks.

architectures because the degree of DLP is not high for Dbpd@nd the performance of
non-DLP loops is higher on larger partition size. Differotn media, gaming benchmarks
always show the best performance on the highest numbertitiquas. This is because most
of the loops are small data-parallel loops with high itenatounts. Figur&.6explains this

difference well. Two pie charts in Figufe6 show loop distribution at different saturation
points for two domain benchmarks. From this figure, we cartlsgtehigh portion of loops

in media benchmarks needs more than 32 PEs for full accieleréience the performance
is often limited by the small size of a partition. Conversetyre partitions are much

helpful for performance improvement on gaming benchmaskaast of the loops have the

126


cgrascaling/fig/flex.eps

4
3% 4

64
8
1%

128
5%

1% 1%

32
1%

32
48%

45%

Media Game

Figure 5.6: Performance saturation point distribution at different PE sizes for media and
gaming benchmarks: media benchmarks need relatively highmmber of PEs to be sufficiently

accelerated but gaming benchmarks need small number of PEs.

small saturation points less than 16.

Though fixed partitioning shows decent performance gairg ftard to say that the
application is fully accelerated. This is because the lesttsire highly varies over loops
inside a a benchmark and also across multiple benchmarksefne, we also test a unified
architecture to support flexible mapping_flex). As shown in Figurés.5, the flexible
architecture always shows the best performance and reteatsbility even in large size as
all the loops can be executed on the best partition guidetddoyesults on Figurg.6.

These results reveal the difficulty of performance scaliith sommon solutions in the
real world. To further improve the single threaded perfamo® it is necessary to find a
mechanism to flexibly change the partition adaptive to tl ikcharacteristics. The flexible
mapping without physical array partitioning will also bghly favorable to other research
for improving the multi-threaded performance such as PPAdnd MT-ADRES [], while

our flexible partitioning scheme is completely orthogowattulti-threading of CGRAs.

127


cgrascaling/fig/saturation.eps

5.3.3 Question 3: Complex PEs vs. Simple PEs
5.3.3.1 Overview

Interconnection topology has been a primary consider#tioscaling CGRAs because
most CGRAs consist of multiple simple PEs, which include Bbeand one RF. Recently,
CGRAs with more complex PEs, consisting of multiple FUs aRd Rire also introduced in
order to improve performanced, 14, 12]. Construction of CGRAs with complex PEs has
several key advantages over conventional CGRAs. Firstsepaterconnection between
PEs provides better cost and energy scalability with mimmperformance loss due to the
dense interconnection inside PEs. Second, the number ot&Fslecrease as mapping
multiple instructions inside a PE can reduce RF accessesrégtlg consuming tempo-
rary values generated inside a PE. Third, back-to-backuatsbns can be chained without
pipeline registers, hence execution can be faster. Ldstgrogeneity inside PEs can be
implemented while retaining PE-level homogeneity.

Despite these advantages, adopting complex PE schemigsieitionable because it
is hard to attain full utilization of resources inside thesPk this section, we focus on the
energy consumption instead of resource utilization. Westigate whether complex-PE
based CGRAs can consume less or comparable energy, thentsitdhe energy overhead
is not critical in some cases. We believe that this evalnatiol help developers consider

complex PE based design as one of possible options.

128



[0 Register file

O Simple integer
@ optimized
Simple integer
O + Complex
T @optimized
®)

(a) (b) () (d) (e)

Figure 5.7: PE designs with different number of FUs: the numler of RFs is the same as the

number of output ports and only shaded FUs support all instrictions in optimized PEs.

5.3.3.2 Methodology

Figure5.7 demonstrates the structure of complex PEs varying the nuailbéJs from
one to six. The number of RFs depends on the number of outptg. pBor all the PE
structures, two kinds of designs are considered: uniforchaptimized. In a uniform PE,
all the FUs support all the functionalities including botmple integer operations (add,
sub, and logic) and complex operations (mul, div), whiley@stladed FUs support complex
operations for an optimized PE.

To estimate the energy consumption on different PE stylesnap all the loops on to
those PEs by taking the concept of subgraph identificatiGn6]. Briefly, the compiler
generates the dataflow graph (DFG) of each loopbody, andbse all the subgraphs
(groups of instructions) which can be mapped onto the td&*getEach remaining node is
regarded as a subgraph with one instruction.

Based on the above data, estimated energy consumption afpaidocalculated as
Pctive X Noubgraph- Pactive @NANgupgrqpn refer to the power consumption when a PE is active

and the number of subgraphs, and inactive PEs are assumedyoémically power-gated.

129


cgrascaling/fig/compPE.eps

IS
@
o

B

<©-Media uniform ©-Media optimized
4-Game uniform »-Game optimized
x x x X

©-Media uniform

@
3
>
w
o
©

©-Media optimized

w
N
@

4-Game uniform

N
o

o ox &
[a]
o
©

o~ A
x-Game optimized ES &) o A A

[N}
> X

o
3
©

=]
X =}

X
a

o

© o

o
o
o

Relative energy consumption

R N

g

]
Relative energy consumption

Relative number of subgraphs

o
3
o
13
o
3

2 3 4 5 6 1 2 3 4 5 6 3 4 5 6
# of FUs per PE # of FUs per PE # of FUs per PE

N

(@) (b) (c)

Figure 5.8: Experimental results on various PEs: (a) relatre average energy consumption,
(b) relative energy consumption of every loop, and (c) the nmber of subgraphs. All the FUs
support full functionality on uniform PEs, and only a subsetof FUs supports full functionality

on optimized PEs.

5.3.3.3 Result and Discussion

The average energy consumption of loops on media and garaimghinarks are shown
in Figure5.8(a). The target PEs are shown on the X-axis, and relativegggrmemnsumption
normalized to the one-FU PE (Figube/(a)) on the Y-axis. The following results are ex-
amined and shown as a line form: averages of energy consumsjuif all loops included in
media and gaming benchmarks targeting uniform PEs (Medfaramand Game uniform),
and those targeting optimized PEs(Media optimized and Gaptienized). Figures.8(b)
shows the energy consumption of all loops on both benchntargsting only optimized
PEs. Figures.8(c) shows the relative number of mapped subgraphs, and eechhHows
the average of relative numbers of subgraphs normalizdtetorie-FU PE.

From Figure5.8(a), even though the utilization is always lower at more claxPEs,
the energy increase is not as substantial as FU number seseahis is because the power
consumption of each PE is not directly proportional to thenbar of FUs due to smaller

number of RFs and pipeline registers. As shown in FiguBg), some loops consume

130


cgrascaling/fig/PE_vary.eps

less energy on 2- or 3-FU PE CGRASs by high resource utilipati@r media benchmarks,
complex PEs are well utilized as shown in Figd&(c), and energy consumption can be
highly saved when using optimized PE structure becausepihiecations have low ratio of
complex operations(Figui8(a)). Conversely, execution of gaming benchmarks at com-
plex PE architectures shows more relative energy consomptian media benchmarks
because the number of subgraphs does not highly decreas®fercomplex PE architec-
tures (Figures.8(a)). Moreover, the performance degradation from a unifBrstructure

to a optimized PE structure is high because game applicatiave a high portion of com-
plex operations such as multiplication/division but animjed PE structure has smaller
number of these FUs (FiguBe§(c)).

The interesting point here is that we may allow some degrea@iyy overhead because
of several reasons: 1) at same operating frequency, corRfdestructure is faster than the
one-FU PE structure, and 2) routing overhead can be redwctteanumber of subgraphs
decreases (Figure.g(c)). Therefore, if we decide that 50% energy overhead caalbe
lowed, complex PEs with 2 and 3 FUs can also be consideredeagrtiper solution in

addition to the simple PE(Figute8(a)).

5.3.4 Question 4: SIMD Memory Support
5.3.4.1 Overview

In addition to the previous consideration about the sizeks, Bupporting SIMD mem-
ory operation by adding a vector unit into a PE is also intosdlby some recent CGRAS.

For example, ADRES system supports special intrinsicuiesitvns that allow SIMD oper-

131



ations p4, 6]. Similar to Sectiorb.3.3 supporting SIMD memory operations on PEs has
several noticeable advantages such as less fetching podéess number of instructions
over simple scalar memory operations.

However, current designers often hesitate to add the SIMIalisty into CGRAS due
to the uncertainty of high potential degree of DLP. In thistem, we investigate the fre-
guency of spatial reuse of wide vector data on the mobilelraacks, and then show that
SIMD functionality is worthwhile to adopt in some range wilght overhead due to the
domain specific characteristics.

Though there are several previous research about the meatnocgure and scheduling
algorithm on CGRASs, most of the research focuses on the qpeaioce improvement on
scalar memory-based system such as reducing memory cewitichulti-bank scratchpad
local memory {16]. We further examine the availability of SIMD memory-bascétem

for high efficiency.

5.3.4.2 Methodology

To prove the effectiveness of SIMD memory support, we carsgiiMD memory units
from 1 to 16 vector length in the view of the energy consumpéind the performance. For
the energy consumption, we first get the memory referendpfiots during sixteen itera-
tions for each loop. Based on the footprints, we find the mreguaumber of vector instruc-
tions for each SIMD memory uni,...;). We also measure the power consumption of
the SRAM per memory accesB(...s) from the datasheet generated by memory compiler.
We then estimate the total energy consumption of memorysaesebyP, ..css X Naceess-

Additionally, the performance effect of SIMD memory ungsiso examined. We mea-

132



sure the performance effect by substituting scalar memoitg into SIMD memory units
while keeping the same total bandwidth. For instance, wherset the total bandwidth
as 4x32 bits, we test 16-PE CGRAs with four 32-bit scalar mgmaits (Figure5.9a)),
two 2x32 vector memory units (Figu9b)), and one 4x32 vector memory unit (Fig-

ure5.9c)).

Pel{reHpelee) - (el (pef{Pefpe]  (Pe}{Ef{PE){Pe]
'@@. ..E. .ﬁ@ﬁ
Mem

Mem [2x32 Mem] [2x32 Mem] [ 4x32 Mem ]

£]

Mem| Me [ 2-way vector operation support ] [ 4-way vector operation support ]

(a) (b) (c)

Figure 5.9: Example CGRAs with different SIMD memory support: (a) four scalar memory

support, (b) two 2x32 SIMD memory support, and (c) one 4x32 D memory support.

For performance metric, we use the resource-constrainedrlbound (ResMiIl) of
memory resourcesN,...ss (number of memory instructions)Vy....; (number of mem-
ory units). This is because the performance of a loop, whioduto scheduling is applied
to, is generally determined by the initiation interval (When the number of iterations
is large [/3, 79. The goal of the modulo scheduling is to minimize the Il bylMdnd
therefore, if ResMIl of memory resources is larger than Mlbdginal architecture, the

performance of the loop can be thought as to be affected.

133


cgrascaling/fig/vector_support.eps

--a--Relative # of access 4

N,
N}

--m--Relative power per access

—— Relative total energy

TS ——

Vector width Vector width

(a) (b)

Figure 5.10: Experimental results with different vector widths: (a) relative energy consump-
tion for total memory accesses, and (b) memory ResMIl increse when using SIMD memory

units with same total bandwidth.

5.3.4.3 Result and Discussion

Figure 5.10a) shows the average energy consumption of loops overngmector
widths of memory units. X-axis shows the vector widths of neeyrunits, the number of
memory accesses, the power consumption per memory accesthetotal energy con-
sumption are shown as a line form, and these are normalizétetecalar memory unit
(vector width = 1). In the left graph of Figui1Q@a), though power consumption for one
memory access highly increase at longer vector width, ttag émergy consumption main-
tains a similar level to that of a scalar memory unit by virafea high degree of spatial
locality in memory accesses on mobile benchmarks. Thegadagraph on the right side
shows that total energy consumption can be even lower thealars/ector unit in the case
of a 2-way vector unit. This is because most of loaded dataised without additional
loads and the vector load consumes less power than multalardoads.

The performance effect of using vector memory units is shmwFigure5.1Qb). The

four lines indicate the average memory ResMlI of all loopgwhhanging the vector width

134


cgrascaling/fig/mem_energy.eps

while retaining same bandwidth. Each ResMIl data is norredlito the Ml targeting the
16-PE CGRA with scalar memory units. This graph shows thdwgabgrowth of mem-
ory ResMIl but they are always less than the actual Mll, artdfore, the performance
degradation does not exist.

These data show that adopting vector instructions is noaasflal as a common myth
in the view of energy consumption and performance, henceldgers should consider

SIMD capability for designing a future mobile CGRA.

5.3.5 Summary and Insights

The analysis of these four considerations provides seweigihts. First, using hetero-
geneous FU organization is highly effective in reality ahd tatio of expensive resources
can be tuned by performance degradation. Second, evenhthloeigurrent fixed partition-
ing scheme is fairly effective over the baseline for perfante scaling, the high variance
of loops inside and across applications prevents it frorth&rrachieving the performance
gain. Therefore, flexible partitioning should be suppottgdoth architectural and com-
piler modifications. Third, a complex PE structure can be ait@e attractive options for
further improving performance because complex PE can be mrgrgy efficient even in
lower resource utilization. Lastly, the characteristitsnmbile benchmarks can make the

wide SIMD memory support from an aggressive solution intealistic solution.

135



5.4 Summary

The mobile applications have been rapidly developed safiesfuture mobile devices
need to provide high single-thread performance withintihipower budget. CGRAs are
known as one of the prominent solutions to achieve thesesnéed the potential for the
scalability of CGRAs are not thoroughly investigated yattHis work, we perform a deep
analysis on several key considerations when scaling: dgeeeity, interconnection topol-
ogy, complexity of PEs, and SIMD memory support. The studywshus that CGRAS
have high potential of performance improvement with higicieincy and some key fac-
tors, which are easy to overlook, should also be considenedesigning CGRAs. We be-
lieve that these insights will be key advices for improvinguire applications (more DLP),
compilers (support flexible mapping), and architecturesnfglex PEs and SIMD memory

units).

136



CHAPTER 6

Libra: Tailoring SIMD Execution using Heterogeneous

Hardware and Dynamic Configurability

6.1 Introduction

The mobile devices market, including cell phones, netbpakd personal digital assis-
tants, is one of the most highly competitive businesses. cbingputing platforms that go
into these devices must provide ever increasing performeapabilities while maintaining
low energy consumption in order to support advanced mudttiemend signal processing ap-
plications. Application-specific integrated circuits (I€S) are the most common solutions
for meeting these requirements, performing the most coeaptensive kernels in a high
performance but energy-efficient manner. However, sevesatlires push designers to a
more flexible and programmable solution: supporting mldtgpplications or variations of
applications, providing faster time-to-market, and emaphlgorithmic changes after the
hardware is constructed.

Processors that exploit instruction-level parallelisioP(l provide the highest degree

137



of computing flexibility. Modern smart phones employ a onezGHal-issue superscalar
ARM as an application processor. Higher performance digigmal processors are also
available such as the 8-issue Tl C6x. However, ILP processave scalability limits in-
cluding many-ported register files (RFs) and complex imenects. Alternately, single-
instruction multiple-data (SIMD) accelerators providgthefficiency because of their reg-
ular structure, ability to scale lanes, and low control togverhead. They have long been
used in the desktop space for high performance multimedigeaphics functionality. But,
their combination of scalable performance, energy effmyeand programmability make
them ideal for mobile systems(, 17, 59, 9.

In order to fully utilize the SIMD hardware, it is necessanr the programmer or
compiler to extract sufficient data-level parallelism (DLRutomatic loop vectorization
is available in a variety of commercial compilers includoféerings from Intel, IBM, and
PGI. Classic scientific computing (regular structure, éangp count loops, and few data
dependences) are naturally well-matched to SIMD accelesaBut, in many respects, the
mobile terminal has become a general-purpose computers, Tika the desktop, only a
small percentage of mobile applications look like classiemtific computing. The com-
putation is not dominated by simple vectorizable loops dyubops containing significant
numbers of control and data dependences to handle the catgmeémodern multimedia
standards. As a result, applications have varying amoungcior parallelism ranging
from none to some to large amounts. The net effect is that Shisiidware goes unused for
a large fraction of application execution and thus cannatdasted on to provide signifi-
cant performance gains.

A second but inter-related problem with SIMD computing & lloardware utilization

138



even when vector loops are executed. The use of homogenaalsdre (e.g, identical
lanes) is one of the best advantages of SIMD datapaths bgiregdesign cost and com-
plexity. But, the utilization of the most complex comporgenf a SIMD lane is often
disproportionally lower than the simple components. Fanegle, the H.264 video de-
coding application is dominated by simple integer operetiadds, subtracts, shifts) and
an average of only 2.2% and 1.3% of the total dynamic ingonstare multiplies and di-
vides [L1]. This is not an outlying data point, most multimedia andseiscomputing appli-
cations have small fractions of multiply, divide and othepensive operators. For 128-bit
SIMD (4 lanes), such utilization rates may not matter, buSB4D widths are scaled to
increase performance to 1024 bits (32 lanes) or more, tHagarobecomes serious due to
poor area utilization and high static power dissipation.

To attack these problems, we propose a customizable SIM&lexator that is capable
of tailoring its execution strategy to the running applicat referred to as theibra. Libra
employs two key conceptbgeterogeneityanddynamic configurabilityto achieve broader
applicability and better energy efficiency than traditicsBBMD accelerators. Heterogene-
ity allows lanes to have different functionalities and bettnatch functional capabilities
with expected operator distributions. Dynamic configuigbénables lane resource to ex-
ecute as a traditional SIMD processor, be re-purposed taveeds a clustered VLIW pro-
cessor, or combinations in between. Dynamic configurgtaléo enables efficient sharing
of expensive resources between lanes (e.g., multipligrshterleaving independent in-
structions with each lane’s expensive instruction so asde resource contention. Libra
consists of an array of simple processing elements (PEsatbaightly interconnected by
a scalar operand network. Groups of four PEs form PE growtsite normally driven by a

139



single instruction stream. Each group can behave as a bgitdock for a SIMD processor
(e.g., PEs behave as SIMD lanes) or a VLIW processor (e.g,deBave as a cluster of
function units). The compiler maps 1 or more loops to the &idccelerator by combining
and configuring clusters of PE groups to efficiently explo& available DLP and ILP.

This chapter offers the following three contributions:

e An in-depth analysis of the available ILP/DLP parallelisndats variability in three
representative mobile application domains: computeouisipplications, commer-
cial media applications optimized in industry level, andngsphysics engine appli-

cations.

e The design of a unified loop accelerator that can effectigelyport future mobile
applications with varying performance requirements aratatteristics. To achieve

this objective, we offer three key features:

1. Scalability: Libra can meet high performance requiretséy simply increas-
ing the number of clusters, whereas most current accetsratifer from poor

scalability.

2. Configurable performance: Libra can dynamically tunelti®DLP-support
capability in order to successfully support ILP-intensii¢_P-intensive, and
ILP/DLP-mixed applications, as well as tolerate perforg®degradation due

to its heterogeneity.

3. Energy efficiency: Simple hardware implementation agsdiigh energy-efficiency

with competitive performance.

140



e Alight-weight design and organization of a configurablegassing element for sup-

porting simple latency hiding techniques and sharing esperresources.

6.2 Background and Motivation

In this section, we examine the limitations of tradition&® accelerators based on
an analysis of various mobile applications. We first intrcglthe target benchmarks and
the baseline architecture, and find two main sources of aieffities in SIMD accelerators.
We then propose high-level solutions to overcome theséesigds that facilitate designing

efficient hardware and maximizing the utilization of exigfiresources.

6.2.1 Benchmarks Overview

Three classes of mobile benchmarks are used for this apphcanalysis that contain

varying degrees of vector parallelism. The benchmarksisbos

e Vision benchmark: We evaluated a subset of the SD-VBS beadhsuite B€] for
mobile vision applications. As these benchmarks are ngirally optimized for a
specific target architecture, we manually modified these@arks to increase the
opportunities for efficient execution with function inlitg and loop unrolling. All
the benchmarks are functionally verified on QEifput data sizes, which is widely

used on mobile devices.

We used QCIF (176x144) image size for uniformity of benchtaaand the similar trend appears on

higher resolution images.

141



e Media benchmark: Three mobile media applications are slecAAC decoder
(MPEG4 audio decoding, low complexity profile), H.264 deeo(MPEG4 video
decoding, baseline profile, qcif):f], and 3D (3D graphics rendering}][ These
benchmarks are optimized for DSPs in the production-qukgitel and a large por-

tion of the loops have a high potential degree of ILP and aftsvace pipelinable.

e Game physics benchmark: Three common kernels are extriotadnobile game
applications ?]. First, lineOfSight plays an important role of separatwigible
objects and non-visible objects. Sound effects, colligletection and other func-
tions involving linear equations often exploit convolutiand the conjugate gradient

method. The three kernels mostly consist of high DLP loops.

6.2.2 Baseline Architecture

A SIMD architecture that is based on SOD#{] is used as the baseline SIMD acceler-
ator. This architecture has both SIMD and scalar datapaties SIMD pipeline consists of
a multiple-lane datapath where each lane has an arithmatigvarking in parallel. Each
datapath has two read-ports, one write-port, a 16 entngtegiile, and one ALU with a
multiplier. The number of lanes in the SIMD pipeline can vdgpending on the charac-
teristics of the target applications. The SIMD Shuffle Netaw(SSN) is implemented to
support intra-processor data movement. The scalar pgetinsists of one 32-bit datapath
and supports the application’s control code. The scalalipip also handles DMA (Direct

Memory Access) transfers.

142



L1 e T oo ]
Program 0 [CRET ] FU 1 )
Memory ok [CRrRF2_]

1
Controller
2 % ° °
R ° °
3 S [ ] [ Swizzle
Bank S [ 4 ° Network
Bl r : :
A l— [ ] [ ]
R [ ) [ )
DMA
RF 28 FU 28
RF 29 FU 29
\—
j—

I Bank ;]RF 30 FY 50

7 RF 31 FU 31
Scalar

Memory »—u[ Scalar Pipeline
Buffer

Figure 6.1: A traditional 32-lane SIMD accelerator.

6.2.3 Limitations for Current SIMD Accelerators

6.2.3.1 Loop Characterization

Applications typically have many compute intensive kesnilat are in the form of
nested loops. Among these kernels, we analyze the availaBland DLP of the inner-
most loops and find the maximum natural vector width that lFea@ble. To extract the
maximum degree of ILP, we found tf8oftware pipelinablénnermost loops: 1) counted
loop, 2) no subroutine call, and 3) no multiple exits/bagesd Control flows inside the in-
nermost loops are solved using if-conversion. Among thenswé pipelinable (SWPable)
innermost loops, we also identify tf&MDizableinnermost loops which can utilize DLP.
We apply the conditions used by the Intel compilét][to determine if a loop is SIMDiz-
able and the minimum iteration count is set to the maximuniaa SIMD width (natural

SIMD width).

143


libra/fig/conventional_simd.eps

0.99 0.83 0.74 0.86 0.87 0.86 0.58 0.85 0.70 0.71 1.00 1.00 1.00 1.00
(]

£
c
o _—
=
3
9 z/ s 5 € 2 ¢ 8 33 2 215 %
w © = = » = < © N < o | 3
Q N 2] [ < =) = =
i = S c Q (@]
© [} = 5] 2 >
[$) o S c
o 8 =
Vision Media | Game Physics
Ohigh-DLP Olow-DLP BSWPable

Figure 6.2: Loop categorization: The components of the bamidicate ratio of execution time in
SWPable loops, low-DLP, and high-DLP SIMDizable loops. Theatio of loop execution time

over total execution time is indicated as a number above eadbar.

6.2.3.2 SIMD Width Variance over Loops

Figure6.2 shows the relative execution time of SWPable loops and SidBle loops
to total execution time on a simple 1-issue ARM processor.wAsuse a 16-lane SIMD
processor for this experiment, SIMDizable loops with natl8IMD width smaller than
16 are categorized into low-DLP loops. On average, theresisbatantial amount of time
(87%) spent on SWPable or SIMDizable loops as expected. #ndsting question here is
how many applications are not well-matched to a wide SIMDebator. Unfortunately,
4 of 11 applications are highly dependent on SWPable andda®-oops, which means
that not all the lanes can be utilized. For example, trad#i&IMD cannot decrease the
execution time of an AAC application more than 60% of theltlatap execution time be-
cause around 40% of the time is spent on SWPable loops. Irr@etiee game physics
benchmarks have high levels of data parallelism, visiorcherarks have modest data par-

allelism, and media benchmarks have low degrees of datgdmra. Results in Figuré.2

144


libra/fig/simd_opportunity.eps

Loop distribution Performance degradation

@16-way SIMD
lack of Mul units
/ g 1
lack of Mem units s 016
Vision| Media | Game | Total o R £ 08 o8
Avg ratioMEM) | 0.44 | 0.26 | 0.27 | 0.32 s . N é 06
Avg ratio(MUL) | 0.15 | 0.10 | 0.22 | 0.16 x g o4 B4
ratio of MEM loop | 0.93 | 0.36 0.33 | 0.54 g o m2
ratio of Mul loop 0 0.04 0 0.01 2 02
T m1
g o0
0 0.2 0.4 0.6 0.8 1 Vision Media Game
Mem ratio
(a) (b) (c)

Figure 6.3: Resource utilization: (a) average ratio of dynanic instruction count of expen-
sive instructions and ratio of Mem/Mul dominant loops, (b) loop distribution over ratio of
Mem/Mul, and (c) performance degradation on a SIMD at different number of Mem/Mul

resources.

confirm that a simple SIMD accelerator cannot effectivelgprt the range of mobile ap-
plications. Even with a perfect support for DLP, SWPable tvdDLP loop execution
result in low utilization of SIMD resources. Therefore,ther consideration is required to

fully utilize the SIMD resources on the execution of nonifBIMDizable loops.

6.2.3.3 Resource Utilization Variance

To maximize the total utilization of computation resourcége number of each re-
source should be decided based on the average fraction afrdgnnstructions. While
current CPUs solve these challenges by out-of-order exacat parallel instructions on
multiple execution units, current SIMD architectures aatrsolve this problem due to its
homogeneous nature: the datapath of each SIMD lane hastieefgactionalities, even for
expensive units such as memory and multiply units. Thesectexistics are unfavorable
in terms of efficiency because not all execution units arv@eivery cycle, and expensive

units are much less utilized (an average of only 32% for a nmgmnoit and 16% for a mul-

145


libra/fig/op_stat.eps

tiply unit (Figure6.3(a))). A traditional solution for this problem is to turn dffe unused
resources by clock/input gating, but this solution doesatiatinate leakage power. Power
gating is unlikely a practical solution because idle pesiéat expensive units tend to be
relatively short.

Another challenge is the diversity of instruction disttilom across/inside applications.
Even if we are somehow able to place a specific number of eaatuggn unit based on
average fraction, careful consideration is also requiesthbse the fraction varies greatly.
In Figure 6.3(a), for example, the ratio of multiply instruction varieeii 10% to 22%
across three application domains. We also define a loop todweary/multiplication de-
pendent if the fraction of memory/multiplication instrisets are more than 33% of the
total instructions. Figur®.3(b) shows a distribution of the loops according to the ratio
of memory/multiply instructions. Based on Fige3(a) and (b), more than 54% of the
loops in the three benchmark sets highly depend on the meimsiryctions, and therefore,
normal ALU functional units can be idle due to the memory agien bottleneck if only
33% of memory resources exist. On the contrary, multiplceis not the critical perfor-
mance bottleneck if 33% of multiplication resources exstduse only 1% of the loops
are multiplication dependent. As a result, the high diwgrisi the instruction distribution
will make most loops to not be effectively accelerated dutédack of enough resources,
or to waste resources due to the excess resources, if the S0derator simply allocate

resources based on specific rules such as average fracoore @er four lanes.

146



6.2.4 Insights for the Traditional SIMD

Based on the application analysis, we found several fundtahsources of SIMD inef-
ficiency. First, a traditional wide SIMD accelerator may hemedesigned since the overall
performance will be saturated at some point and limited bynigh-DLP loops where the
SIMD accelerator is poorly utilized. Second, lane unifdgmmakes the SIMD datapath
inefficient due to over-provisioning expensive resourcesird, the high variation in the
resource requirements of loops makes the problem moreutiftitan simple sharing of
expensive resources would accomplish. A central challéxege is how to decrease over-
provided resources on traditional SIMD accelerators anoveycome the inflexibility in

order to more effectively utilize the hardware.

6.3 Libra Architecture

6.3.1 Overview

The Libra accelerator presented here is a unified accetdoaitmobile applications that
allows flexible execution of loops by customizing the confagion adaptive to their key
characteristics. The Libra accelerator is based on toawitiSIMD accelerators and has
several important extensions for providing both high epefiiciency and performance
improvement. First, Libra is composed of a non-uniform lateicture for power effi-
ciency: only a subset of lanes has expensive but infrequestd execution units. Fur-
thermore, dynamic configurability of logical lanes helpbiai in executing a target loop

in an efficient manner with high utilization. In Libra, a gmof logical lanes is executed

147



Hot Loops : high DLP, no Mul |
x )
Iﬂﬂﬂﬂﬂﬂﬂlﬁﬂﬂﬂ@@@.} :
I
I

( r

\=—=

J |

\—

=N
D

E_QDDDI)]DDI)DDE@
I
: |

| @DDIDDDIDDDIDDDE :
| I |
no DLP, Mul / 0 15,

| SIMD Resource

|
( \ I
I

="\

[ ] BasicPE

I

I

I

I

}' [ Expensive PE

(a) Program (b) Loop characterization (c) Dynamic lane mapping
Figure 6.4: Mapping loops to Libra: (a) identify hot loops, (b) find the available DLP and

resource requirement of each expensive operation, and (change the configuration based on

the characteristics of each loop.

in a SIMD manner, where the logical lane is configured by a grofiprocessing ele-
ments (PEs). DLP is exploited in the form of parallel exemutof logical lanes, and ILP
is exploited inside each logical lane in a way that each PEwredifferent operations.
Therefore, Libra is able to flexibly tune the ILP/DLP-suppcapability by changing the
logical lane configuration.

Figure6.4 shows a conceptual view of the execution of Libra. Firstesalvhot loops
are identified as candidates to be accelerated utilizingithra architecture(Figuré.4(a)).
Second, software-pipelinable loops are selected, and ttie &vailability is also deter-
mined as discussed in Secti6r2.3.{Figure6.4(b)). In this step, several additional key
characteristics such as the amount of potential ILP in tbpbody and the ratio of expen-

sive instructions are also considered. Finally, a best neatéogical lane configuration for

148


libra/fig/concept.eps

each loop is chosen by the compiler (Figérd(c)). In Figure6.4, we assume a 16-lane
heterogeneous SIMD including 12 basic and 4 expensive PEsedon this, each PE
constitutes one logical lane for full DLP support to exeduitgh-DLP loops having only
simple instructions, intermediate numbers of PEs form dagical lane for ILP/DLP hy-
brid execution to support low-DLP loops or expensive openaintensive loops, and one
large logical lane for full ILP execution is configured form®LP loops. Note that fully
exploiting SIMD parallelism does not always outperformlexing ILP on heterogeneous
structures. SectioB.3.1.1and 6.3.1.2explain the core concept of Libra in detail with

evidence of its effectiveness.

6.3.1.1 Heterogeneity

Heterogeneous lane organization, based on average fradfti@source utilization, is
required in order to enhance power efficiency: all the langgert simple integer oper-
ations and only a subset of the lanes support expensivetapera When an expensive
instruction is fetched, the accelerator stalls until thibset of lanes generates results for
all lanes, then resumes execution. This structure delavdrigh level of power efficiency
due to the expensive resource removal, but significant paence degradation will occur
when executing expensive operation-intensive code. Ei§L8(c) illustrates the perfor-
mance degradation as the number of multiplier/memory deitseases on a 16-lane SIMD
accelerator. Each bar shows the relative performance hiaedao that of the homoge-
neous SIMD when each heterogeneous SIMD has specific nurhbgpensive resources.
From this graph, substantial amounts of performance degjoadexist in vision and game

benchmark because they are highly dependent on expengvatioms and incur a number

149



[Lane0 |[ Lane1 |[Lane2 |[ Lane3 | [ Lane 0 |
0 1 2 3

hlgh_D_I.Ii,lhﬂul » PE 0 1 2 3 L PE
Z-ZZZ=Z=Z\) ] 8 8 8 8 8 8
P - N o o <] o _ (] o o
’ADD ADDl:I: Aon )Y(Aon+1)(A0n+2 ) AOn+3) 4 Aon )(A1n-1)(A2n-2 Y M3n-3) <
: (0 (1) ||:| Aln YAIn+D)(ATn+2)(ATn+3) | Aln A2n-1 (M3n-2) | n
| ADD I (Azn Y@Azn+1YAzn+2)A2n+3) | N (A0n+2)(Aln+1 ) A2n YM3n-1) | &
| (2) ::|: " A0n+3 ) (A1n+2 (A2n+1 Y M3n )
| | a 9 o o o o
i _ |®= El 8 S 8 g
Rl ORI 5 | F i
———— = } [ v
£ o o o -
= 8 8 8
(a) Example loop (b) Simple resource sharing (c) Logical lane mapping

Figure 6.5: Dynamic configurability on a 4-lane heterogeneaas SIMD (lane 3 has a multiplier):
(a) a simple high-DLP loop with 1 multiply, (b) performance degradation due to stalls during

multiply execution, (c) logical lane formation removes stls by instruction pipelining.

of stalls to handle these operations. However, media beadtsware not highly affected by
the proportion of these expensive resources because tloerpance is already constrained

by low DLP.

6.3.1.2 Dynamic Configurability

Dynamic configurability of lanes helps the heterogeneotBaccelerator in dealing
with the aforementioned problems. One logical lane canisbu$ one PE for highly
SIMDizable loops with no expensive instructions, and alenosist of multiple PEs for
non/low-SIMDizable loops or loops having expensive instians. The resulting SIMD
width is decided by the number of logical lanes and each &dane executes the same
instruction stream in lockstep. Inside a logical lane, IsRxploited to use multiple lanes
in parallel, and therefore it can efficiently distributetmstions between simple lanes and

expensive lanes.

150


libra/fig/sharing_example.eps

The effectiveness of dynamic lane mapping can be explaigegtidosimple following
performance equation. In the equation, we compare the petdbrmance of the simple
SIMD and the Libra SIMD by the metric of IPC (instruction pgrcte). The IPC of SIMD
can be calculated by the multiplication of IPC of one lah(;,,.) and the minimum of
the number of PEsNs;y/p) and the available degree of DLVf ) of the target loop
(Equation 6.1)). Similarly, the IPC of Libra can be the multiplication &*C of one logical
lane ( PClogical_iane), CONSisting ofn PEs, and the minimum of the number of logical lanes
(%) and the degree of DLP of the loop (Equati&hd)). Therefore, when executing
non/low-DLP loops, Libra can easily outperform the basi®lBlbecause it only requires
better performance of a logical lane than that of a PE, ansl @iways true as a logical
lane exploits ILP with multiple PEs inside(Equatiof.)). Dynamic configurability is
also able to address the performance degradation probletiheoheterogeneous SIMD.
When executing high-DLP loops, Libra outperforms SIMD whiea IPC of a logical lane
is higher than that ofn PEs. Although the ILP performance is normally inferior to®L
performance because of its dependences and complexitg ¢am frequently be better due
to the heterogeneity. FiguXa), (b) and (c) shows the superiority of Libra. Fig6t&b)
and (c) show the execution of a simple high-DLP loop havingudtiply instruction on
both the simple SIMD and Libra which have one multiplier oa #E 3. In this example,
the IPC of SIMD is less than the IPC of Libra when one largedabiane is configured due

to a number of stalls.

151



IPCgsrpp = min(Nsrvp, Nprp) X IPCiane (6.1)

. Nsim
[PCLibra - mln( [MD 5 NDLP) X IPClogical_lane (62)
IPCLipra > IPCs1mD,
IPClogical_lane > IPClane> if % > NpLp
when (6.3)

e N
IPClogical_lane >m X IPClanea if % < NDLP

6.3.2 Microarchitectural Details

The Libra architecture with eight PE groups (32 PES) is shiowsigure6.6(a). Differ-
ently from the traditional SIMD, the Libra datapath consist 2 groups of clusters, which
can be configured to create logical SIMD lanes of 2, 4, 8, an®H$ based on the loop
characteristics. Each of the clusters is composed of 4 PapgroThe SIMD controller
performs the role of managing the logical lane status to@x@IMD parallelism, while
the thread controller manages the ILP-exploiting methastmthe logical lane. Each PE
group contains 4 PEs. Each of the PEs has an FU and a registevtiich can be thought
as one lane of the traditional SIMD. Only one of the PEs in a Rig has a multiplier
while another has a memory unit. Differently from the tramhail SIMD, each PE group
also has two kinds of reconfigurable interconnects insideaamoss PE groups in order to
achieve flexible configuration of logical lanes.

Key features of Libra architectures are as follows:

Scalability: The resources are fully distributed including FUs, registes, and inter-

152



Cluster 0 Cluster 0 w,ctionl Cache PE Group N SIMD tiontroller Threiad controller

— 7 — = e 1 Ve T T ~
Bank RFO |l [Fuo]! I SIMD Thread | Loop Configuration buffer |
0 e I? | controller || controller n i T T Loop Config
| | | o -
Bank [~ . i § ] o : ‘g | i g T RF 0 FUO RF index bits IMtra-group  opco4e  Inter-group
o
y e |EI! 1 E I &l Lol [RES FU1 ]| Index bits Index bits
° | 5 ° 18! RF 2 FU2 4x8
Bank ° | 5 | ° | o | RF 3 FU3 PE (4n) r———
-~ - o  ———— A== HE = ==== = 1
2 = SED =N o -3 /—\<§ ( U TN
Bark — LRE14 | o ILFUT4 ] 5 1|« 5 E1E RF4 Fu4]) |g| | (4n) out |
an C s tehr2 3| ] Int
3 8 RF 15 || § : FUTS | 1§ I % S| gl |-RES FUS Hs |\ " |(4(n+1;) 1111/
@ i 5 1 5 4 2 s RF 6 FU 6 H ) ———=—-——gtL
Bank || & = 12M | e g & ) i |, 7— === === T
4 |0 RF16 |, € I[FUi6 ]| € | N| &3 SERE FU \
———— 0 |——— 9 | ES SE| HEI (4n+1) || out |
—{ [RE17 ]|© [FU17 ]! © «-»\5 g RF 8 FUSB SR Int+Mem NAN| Y]
= Ig-' 5| 1| [RFo FUS | — ————— [@m)+)) |
°* ol e 1o ! \ RF10 | [FU10 PE (4n+2) _[[ll - BE
= 1= n-
PO - R - X RE11] [FUM [ FU | )
. IS : : s | . P | |(4tn;n2)| out |
+
) = [ : \ RF12] [FU12 ‘L el ] 1'2‘("_*1@' )
| - 2 PE (4n
Bank RF30] |[FU30] Lo V| Ly|[rem] [Furs]|] e P _(4(_“1_”)4 R
7 RFa1] |[Ffust | RF14] [FUT ( FuU I
|| - — L S RF 15 | [FU15 | I (nv3) | Out I I I
 —— n /
Cluster 1 N — =1 ] G
Intra-group Inter-group
(a) (b) Interconnect  (c) Interconnect

Cluster Cluster

Group 2 3

Group 3 !

Full ILP i Hybrid Full DLP

(d)

Figure 6.6: The 32-PE Libra architecture: (a) a 2-cluster Libra accelerator, (b) a cluster, (c) an
example of a single PE group: PE 1 supports memory operationrad PE 2 supports multiply

operation, and (d) execution modes.

connections. PE groups have dense interconnections ibstdsach PE group is sparsely
connected with neighbors. As a result, area and power costsase approximately pro-
portional to the number of resources, which makes Libra akeblte as a simple SIMD.
Polymorphic Lane Organization: PE groups can be aggregated to form a larger log-
ical lane in order to exploit the existing ILP inside the Idogdy, or be split into multiple
small logical lanes in order to exploit DLP over loop itecais.
Resource Sharing:In heterogeneity, the major challenge is how to determiaentim-

ber of expensive resources and how to efficiently share thetmden logical lanes when

153


libra/fig/libra_arch_thesis.eps

necessary. To flexibly handle this, we place the expensseurees based on the aver-
age utilization and provide a sharing mechanism betwean théwo categories. A more
detailed description is provided in Secti6r8.3.3

Simple Multi-threading Mechanism: Even though a logical lane provides a number
of parallel resources, efficient use of the available resgaiis limited due to the low ILP of
the loopbody. Therefore, we extended the ILP into loopdlpagallelism through modulo
scheduling T 3]. Modulo scheduling generally provides a decent perforceamprovement
by parallelizing instructions over loop iterations andihgllong latency between back-to-
back instructions. However, several Libra specific featuseich as SIMD capability and
fully-distributed nature, diminish the effectiveness abaulo scheduling. To compensate

for this, simple static multi-threading with list schedgiis proposed in Sectich 3.4

6.3.2.1 PE Group

A detailed illustration of a single Libra PE group is providien Figure6.6(c). A PE
group consists of four PEs each with a 32-bit FU and a 16-eagigter file with 2-read/1-
write ports (write ports can be added to support threadifrgiger arithmetic operations
are supported in all four FUs but multiply and memory operaiare available in only
one FU per PE group (PE1 for memory and PE 2 for multiplicatiofrigure 6.6(c)).
The FUs inside are modified to connect with each other withreselex8 full crossbar
network for passing data between the FUs without writingkdadhe RF. This allows the
PE groups to exploit ILP in a distributed nature. In orderdtaim scalability, the Libra
architecture has a simple and fully distributed across-Ritiginterconnect. Only FUs

are connected between the corresponding neighbors inesdjRE groups. In addition to

154



these components, a loop configuration buffer is added te sistructions for modulo/list
scheduled loops. The buffer is a small SRAM that saves théigroation information
including instructions, register addresses and interechimdex bits of the current loop.
The interconnect between the loop buffer and SIMD/Threadrodlers in the cluster is
used to transfer instructions for executing loops. TheWward components and execution

mechanism for SIMD/ILP support is explained in detail in S@ts6.3.3and 6.3.4

6.3.2.2 Cluster

A cluster is a high-level basic unit that consists of four P&ugs and several additional
features for flexible loop execution support: the SIMD colir and the thread controller.
The SIMD controller is a small controller to manage the lagjiane organization inside
the cluster, including the number of logical lanes and thd[Svidth of memory transfer.
It receives the information from the instruction cache. didi&ion, the SIMD controller
also gets the configuration for one logical lane from therirgton cache and transfers it
to each PE group. A thread controller is responsible for etheg loops. It also gets the
information about which mode is selected from the instnrctache and orchestrates the
loop execution. When modulo scheduling is selected, itgustutes the loop sequentially,
and, when multi-threading is selected, it executes the Indpe order of the thread se-
guence table. The information is statically set during cibenfime and is fetched from
the instruction cache. Multiple clusters can execute orgelbbop or can execute multiple

parallel loops separately.

155



6.3.2.3 Configuration Process

Loop execution of Libra can be divided into two stages: camfitjon and execution.
Configuration stage is forming logical lanes and sendindigaration bits to all the loop
buffers of each PE-group. For every loop, the instructiacheacontains both logical lane
organization information and configuration bits for oneitadlane. The SIMD controller
gets these information from the instruction cache and teens the configuration bits to
the loop buffers of the PE groups based on the logical lan&gumation. The thread con-
troller also gets the information about the execution matksequence table, if required,
from the instruction cache. This process takes 3-5 cycles/erage before the loop buffer
receives the configuration bits for the first cycle and thetiaries depending on the size of
the logical lane. The thread controller starts the exeawtiben the first cycle configuration

is ready on all the loop buffers.

6.3.2.4 Memory Support

The memory operation of the Libra system needs support ftr sealar and SIMD
memory access. For scalar memory access, the local memsrth@asame number of
banks as the number of total memory units. For SIMD accesspttal memory also needs
to support contiguous access across all logical lanes @llphrTherefore, for the 32-PE
Libra system, a 64kB local memory is used, consisting of 8 nrgnbanks where each
bank is a 2-wide SIMD containing 1024 32-bit entries. As shaw Section6.2.3.1 all
memory transfers have the same strides over iterationshiib&able loops. Therefore,

when several logical lanes execute the same instructiorSIkDized loops, a single ad-

156



dress calculation followed by a wide memory operation ifqreted. The data is then
distributed to different logical lanes. Multiple memoryitsninside a logical lane need to
generate their own memory addresses. The SIMD width of eexdsa and the number of
different addresses are determined by the logical lanegumatiion, which is saved in the

SIMD controller.

6.3.2.5 Communication with a Host Processor

The Libra architecture is a co-processor similar to a GPU iatatfaces with a host
processor such as ARM using memory. The data transfer ienpeefl through a standard

AMBA bus along with a DMA.

6.3.3 Execution Model

This section describes the three different execution maodéke Libra architecture,
which are full ILP, hybrid, and full DLP modes. We first expidiow each mode operates
and then provide proof of how the three modes can effectisepport different kinds of

loops. The example provided assumes a four-PE group clastiown in Figuré.6(d).

6.3.3.1 Full ILP Mode

In this mode, the Libra architecture decides to use all the #&Fone large logical lane.
The SIMD controller spreads different configuration infations into the loop buffer of
each PE group. The execution mechanism is the same as thadoelgration technique of
common VLIW solutions but the performance might be slighilyrse than previous solu-

tions because the Libra architecture sacrifices both dea#daresources and dense across-

157



PE group interconnects. Applications which have a high griogn of non-SIMDizable

loops mostly utilize this mode for acceleration.

6.3.3.2 Hybrid Mode

When a loop is SIMDizable, a cluster has the possibility diei having several small
logical lanes or forming a large logical lane. In this cake,ltibra architecture may choose
to use a hybrid mode with a cluster having at least two lodésads, each having at least one
PE group. With smaller logical lanes, the performance Uguadreases since SIMDization
provides an opportunity to increase performance by the sanoeint as the degree of DLP.
Also the routing overhead decreases with small logicaldahether boosting performance.
Figure6.6(d) also has two examples of hybrid mode execution. The SiMitroller dis-
tributes the same configuration information and live valieethe loop buffer and RFs of
each logical lane. When a loop lacks sufficient level of DL as a moderate proportion

of expensive resources, hybrid mode can achieve the bdstipance.

6.3.3.3 Full DLP Mode

When a loop is highly data-parallel but has a low degree of the resources (PES)
cannot be effectively utilized because the degree of ILl@lbop cannot meet the min-
imum degree of the PE group. To compensate for the lack ofthdPLibra architecture
supports separation of PE groups, forming two smaller kldemes. As a result, SIMD
parallelism can make up for insufficient ILP in the loops dails Figure6.6(d)). Hence,
a cluster has a total of eight logical lanes executing in$te. Distinct from loops with

a small number of instructions, loops with unbalanced resousage can also be well

158



matched to a full DLP mode, unlike the hybrid mode. As merawim Sectior6.2.3.3 the
hybrid mode cannot fully utilize resources in a PE group siperformance of loops with
a high proportion of memory operations are constrained byrtemory unit.

The major challenge in full DLP mode is determining how torshexpensive resources
between two small logical lanes in a PE group. The first catefyo resource sharing is
expensive but infrequently used functionalities such asntlltiply operation. As shown
in Figure6.3(a), the average ratio of multiply is as low as 16% and only I%aps are
multiply-dominant, and therefore simple sharing betweem hhalf-PE groups does not in-
cur performance degradation. The second category is frélguesed functionalities such
as memory operations as shown in Figarga). These instructions are already a perfor-
mance bottleneck and simple sharing cannot enhance thallgverformance. Therefore,
this shared resource should lead to double the performarecéghtweight manner.

We accomplish these requirements using simple hardwaréficaimbns as shown in
Figure6.7(a). One PE group is mapped into two small logical lanes Wtk Q, PE 1) and
(PE 2, PE 3). Based on the application analysis, only PE2@tgmultiply operations and
PE 1 supports memory operations. To ensure that both |ldgizas support all functionali-
ties, PE 0 and PE 2 share the multiplier and PE 1 and PE 3 sleanegimory unit. To share
the multiplier, PE 0 connects input and output ports to thdtiplier of PE 2. A memory
controller in PE 1 is shared with PE 3 in a different manner.eWthe memory controller
receives a memory operation command, only PE1 communigateshe memory with
double bandwidth and send/receives the data of PE 3 throbgpass logic.

To execute the same instructions in both logical lanes ugiagabove modifications,

the following processes are required:

159



| hY
i 1 [Fuo sr?O sr%c1 : 1 [Fu1 srfO 5501 sri:2 : i
;l T |: i B )| 1! Address
e N e =——
} | | [ 1 Data
0 I I I I12x bandwidth |
‘ \ [ ¥ 1, 5
l':,’ ::i:‘!,:;;(z,oiliiii:i::::i:is:r;;:::i:i':ili:i:ﬁ:ﬁ:ﬁ::i:ﬁ:ﬁ:ﬁ::i:ﬁ’ i:ﬁ:f\ %
[} 1 |
| v : | |Fus S0 ST pa L =
I | [ I — |
8 shiter] [ LU || |1 || [snifter] [ AU ] [Data ||| 1!
; \ Mul I bypass||| ||
I | !
11 | 1 .
i\l,—,f,_,::,_,f,_,::,_,T,_,::,_,T,_,,JI,,L,T,T::,_,T,T:,_{T,T,T::,_Jlj Loglcal Iane 1
(a)
eycle Logical Lane 0 Logical Lane 1
Load Load PEO PE1 PE2 PE3
1 (A0)
2 (BO) (A1)
3 PR —— @ A1, B1 data bypass
4 (AQ A1 in\
galyl — \
5 (BO BT in)} <A1 in )
6 \Blin
7
C1) ~—0 | Resource Conflict:
8 \ Can’t schedule
10 @ instruction
(b) (c)

Figure 6.7: Resource sharing support: (a) hardware modificdon: PE 0 and 2 share the mul-
tiplier and PE 1 and 3 share the memory unit, (b) example loop bdy dataflow graph, and (c)

actual schedule: 1-cycle difference between lanes for ras@e contention avoidance.

e The compiler must not schedule multiply instructions in,deecause the multiplier
needs a spare cycle after the cycle in which the multiplyrueston is scheduled in
order to handle the operation of the other logical lane. H@areother instructions
can be placed since they have no resource or writeback dammenMemory in-
structions can be scheduled without any restrictions abdhgware supports double

bandwidth.

e The SIMD controller has the instruction configuration ordy 6ne logical lane. The
controller transfers the same configuration into the lodifebwf both logical lanes

with one-cycle difference to avoid resource contention.

160


libra/fig/resource_sharing_thesis.eps

Figure6.7(b) is an example of a full DLP mode execution. For a simplafiiav graph
of the loop body, the latency of the load and multiply openasiare set to 4 and 2. Due to
the small size and high memory dependent characteristieeddbp body, a full DLP mode
is selected and each PE group is separated into two logites lddentical schedules based
on two PEs are transferred into the loop buffer in the PE gneitip one cycle difference
between logical lane 0 and logical lane 1 (see Figuréc)). Different memory operations
can execute in the same cycle as shown in cycle 2 but diffenatitply instructions cannot

be scheduled at cycle 7 because logical lane 1 needs to uswittiglier in that cycle.

6.3.4 Improving ILP Performance

Although modulo scheduling has proven to be an effectivetsmi to exploit ILP over
loops, itis not always the best solution because 1) origieedtion count is divided by DLP
capability, and therefore, the smaller iteration count matycompensate for the prolog and
epilog overheads even in moderate DLP loop§ pnd 2) sparse interconnection between
PEs and no centralized RFs make the quality of the schedukewAs a result, we suggest
supporting list scheduling] of the loop body as another option to exploit ILP. When aithe
there is not much total ILP in the loop, or the hardware cabeokefit from increased ILP,
list scheduling can outperform modulo scheduling sinceé@sinot incur the overhead of
modulo scheduling: handling modulo information such agistapredicates.

The remaining problem of adapting list scheduling to hide @ycles comes from long
latency instructions such as multiply and memory operatiofo solve this problem, we

propose a simple multi-threading scheme with fast conteikthing. Assuming the Libra

161



architecture supports two threads, a loop with large nurobiégrations is divided into two
threads with identical loops with half number of iteratio$e two threads are then exe-
cuted on the same logical lane. To make the scheme simpldat@syfrunning threads is
allowed only when all the PEs are idle. Each thread has itsregister file space divided
by the number of threads, similar to what a GPU does, andftirereao context change
overhead exists. The schedule with multiple threads igcatht decided at compile time.
The multi-threading technique is simple but highly effeetand is a realistic solution be-
cause of the following two reasons: 1) low register pressla@ps with small number of
instructions have a small amount of data to save in the \eadigt and list scheduling does
not require additional register overhead, and 2) a high@han hiding latency: this tech-
nique is applied only to SIMDizable loops executing on sragjical lanes, thus increasing
the probability that all FUs are idle.

Although multi-threading looks promising, the Libra aneuture faces a number of
challenges in reality. There are three essential chaleagd we present the lightweight
solutions incorporated in the Libra architecture:

Context Saving: The fully distributed nature of Libra allows temporal dadébe saved
in the register files as well as the output buffer in order tectiy transfer the data between
FUs. As a result, the output buffer data of each thread shalslal be saved in addition
to the register files. The register file is divided into the samumber of threads. The
parts are then addressed by the thread ID. However, thetdudffar is originally a simple
flip-flop without addressing support. Therefore, it is sitbstd by ann-entry register file
addressed by thread IB( the number of threads supported). The output data can thus

remain unchanged when another thread is executed.

162



Writeback Contention Avoidance: Handling multi-latency instructions is not a simple
problem if the output data from a multi-latency instructisngenerated when the other
thread is executing. To solve this problem, multi-latentisfkheed to save the thread ID
when the input is issued and be connected to the output bisifeall register file) with
an additional port addressed by the original input threadSiDce only a single additional
port is required for multiple FUs with the same latency, therbead is negligible. For the
Libra architecture, only two ports are added to the whole Ritgto support a multiplier
and a memory controller.

Code Bloat: Since multiple threads are scheduled at compile time, tbe buffer of
each PE group needs to contain the entire schedule infamattall threads for each cycle.
This causes the code bloat problem, requiring an increassgubuffer size which incurs
a power overhead. However, an important observation tot maitis that the schedules
of different threads are essentially the same, just witfedght execution times. We can,
therefore, solve the problem by 1) saving the schedule aanafiipn of only one thread and
2) adding a simple sequence table which contains a threaddDRree corresponding loop
buffer address pointing to the actual schedule configurafibie thread controller contains
the basic information for supporting multi-threading ahd sequence table.

Figure6.8shows an illustration of the Libra architecture with an ek on modified
features(shaded components) to support multi-threadisgpiming that the architecture
supports execution of two threads. The loop buffer contaamdiguration information for
only one thread as shown in Figuge3(c). Therefore, its size is the same as when one thread
is executed. The thread controller in the cluster has a tayence table containing the

actual thread ID and the address of the configuration savigiloop buffer. Figuré.8(b)

163



Cluster Schedule time
Thread Controller cyel Thread 1d | Loop buffer Cyel Thread-aware
ycle ea address Original Original yele configuration
Group Thread Id L. loop buffer 0 0 0 Cycle Configuration o A0
- i 0 A
Thread Id Thread Id-added 1 0 1 1 B0
schedule 2 1 0 1 B 2 At
E 2 NOP
FU2 srcO srcl 3 1 1 3 p 3 B1
{ 4 0 3 4 co
hlfter ALU
5 E
Mul R 6 0 5 6 E0
\_ 7 1 3 7 c1
8 1 4 8 D1
9 1 5 9 E1
(a) (b) (c) (d)

Figure 6.8: Multi-threading support & compiler support: (a ) hardware modification: shaded
components are modified, (b) sequence table in the thread ctaller, (c) loop buffer, and (d)

final multi-threaded schedule.

depicts an example sequence table for two thread exec@inoe two threads are executed
in this example, the space of RF is divided by two and the dudpfiier is a 2-entry register
file. By reading the sequence table from cycle 0 to cycle Qhtesad controller transfers the
thread ID and loop buffer address for each cycle to the lodfgbuFrom this information,
the loop buffer generates the final configuration by readiegappropriate configuration
and adding a thread ID to the register file address (see F&8{@)). The multiplier gets
the thread ID and has a separate data bus due to the multeyafienctionality. When the
original configuration B has the multiply operation for FUtBe result data from thread
0 and B configuration can be stored in the output buffer atecgalvithout any writeback

contention.

6.3.5 Decision Flow

In order to maximize the performance and resource utibratihe Libra architecture

depends on an intelligent selection of the configuratiowbeh the number of logical lanes

164


libra/fig/multi_thr.eps

Generic C Hardware Profile
program Information Information

Compiler Compiler Front-end
Back-end

RRSTREREEY SRR F e .
EL°°P's_pe‘_:'f'c Classifying the loop Determine
: optimization 7 SIMDizability :
Resource allocation Set SIMD mode :
: Modulo List scheduling | -
: scheduling w/ multi-threading ESet ILP mode

Code Generation

Executable

Figure 6.9: Decision flow of the Libra architecture.

and the size of each logical lane. The system flow is showndnrgi6.9. Applications
run through a front-end compiler, producing a generic mtiate Representation (IR),
which is unscheduled and uses virtual registers. The cemgdgo has a high-level machine
specific information, including the number of resourceze %f register files, the size of
a cluster, and the number of supported micro-threads. litiaddo this, the compiler
needs to have profile information about the iteration cowft®ops and memory alias
information. Given the IR, hardware and profile informatidine compiler categorizes
loops into two basic types: SWPable and SIMDizable loopse ddmpiler then decides
the logical lane configuration of a cluster for each loop duese allocation). If a loop
is not SIMDizable but only SWPable, the entire cluster isgas=d to the loop. If a loop
is proved as SIMDizable, the compiler finds the best configpmebased on the provided
information such as average iteration count, instructimh@pendency information of the

loop. Briefly speaking, the compiler tries to fully exploiVD parallelism by securing the

165


libra/fig/decision_proc.eps

maximum number of logical lanes without performance degfiad due to the instruction
imbalance. However, it also performs broad design spackm®tipns by changing the
number of logical lanes. This is because 1) sometimes teeteféness of DLP is not clear
when the divided trip count is small and the instruction nemis not too small, and 2)
the scheduler uses a heuristic way to generate the modudmlgieh After deciding the
lane configuration, the compiler chooses the method to @dpi® inside the logical lane.
Finally, the compiler performs modulo scheduling or lidteduling. It then generates the

final schedule and the configuration information.

6.4 EXxperiments

6.4.1 Experimental Setup

Target Architecture To evaluate the effectiveness of the Libra architectuneetex-
ample implementations with different sizes are used: 1@ (duoster, four PE groups),
32 (two clusters), and 64 (four clusters) PEs. Four FUs pgstef are able to perform
load/store instructions to access the data memory with-dgale latency while another
four FUs support two-cycle pipelined multiply instructgrnrhe Libra is compared against
two other accelerators in our experiment. We generate g@ix 4(PE), 8<4, and 16«4
heterogeneous VLIWSs having the same organization of PEsrassponding Libra archi-
tectures. The wide SIMD architecture as discussed in Se6tih2is used and the number

of SIMD resources can vary from 16 to 64, having the same bgégreous FU structure.

166



Target Applications As discussed in SectioB.2.1, the evaluation is conducted for
subsets of three domains. Max 20 top loops having a high éxectime are selected for
vision and game physics benchmarks, and 144 loop kernelgngan size from 4 to 142
operations, are extracted from the media benchmark betlagsatio of execution time to
the total execution time of the top 20 loops is too small. Higmber of loops in the media
benchmarks and several major loops in the vision benchniankes conditional statements,
while the gaming benchmarks do not have them. In order taméite all internal branches,
we applied if-conversion for these loops.

Compilation and Simulation The industrial tool chain developed by SAIF][is used
for compilation and simulation of Libra. The IMPACT compilg’1] is used as the fron-
tend compiler. Basic list schedulef][ edge-centric modulo scheduling (EMS)J-based
modulo scheduler, and simple loop-level SIMDization schedusing a SODA-styleq]
wide vector instruction set are implemented in the backemadpiler. Based on the original
modulo scheduler, we developed a scheduler that can supgbrflexible execution of Li-
bra and list scheduling with static multi-threading tecjud. The performance is generated
by the cycle-accurate code schedule of loops, accountirntpéoconfiguration overhead.

Performance MeasurementFor fair comparison, both list scheduling and modulo
scheduling are applied and the better performing schedybecked for the SIMD accel-
erator. For VLIW, loop unrolling is applied when a loopbodyesis too small and its
resources may not be fully utilized. Multi-threading teirjue of Libra is also not applied
for a fair comparison of the performance of the three archites. This issue is discussed

in Section6.4.6

167



o
>
o
w

e
]

M DSWPable (non-SIMDizable) 0 SIMDizable
. £
2 £o025

e L e
a N

Executiol
o _o
ooSo
oc&Sawn
[
T
]
Normalized Execution
o °
> o
o & 5
o —

=
]
>
stitch svm tracking ‘ AAC

H

SIMD

a g
= 8
2] -

H
=i
S

Normalized Execution
" VLIW
" Libra

Vision Media ‘ Game Physics ‘

CaNWANOIN®OD

Normalized Energy

SIMD —————
1

[[TTTTTT
%j
=T

[ [T [T

[ [T [T
]
ﬁ

2 vuw

" S Libra

Figure 6.10: Performance/Energy comparison of 32-PE LibréSIMD/VLIW architectures: (a)
total loop execution time and (b) energy consumption. All tie data are normalized to that of

a simple in-order core.

Power/Area MeasurementsAll architectures are generated in RTL Verilog, synthe-
sized with the Synopsys design compiler, and place-antkdowith the Cadence En-
counter using IBM SOI 45nm regular Vt standard cell libransiow operating conditions
with a 0.81V operating voltage. Synopsys PrimeTime PX iglusemeasure the power
consumption based on the utilization. The Artisan Memoryn@iber is used to determine
the area and the power of the memory operation using a 0.84 dpérating voltage. The

target frequency of Libra is 500MH@zimilar to the latest mobile GPUs.

6.4.2 Performance/Energy Evaluation

We compared the performance of a 32-PE Libra architectutk identically sized
VLIW (8 x4) and SIMD(32-wide) architectures. Performance resuésr@easured as the

total loop execution time when each loop is scheduled by tthod the target architecture

2The FO4 delay of this process is about 13ps.

168


libra/fig/exectime_energy.eps

supports. Figuré.1Q@@) shows a plot comparing the performance of the threetaathres
normalized to the simple 1-issue inorder core. For indigihenchmarks, the graph also
indicates the fraction of two different loop categoriedviBlizable and SWPable loops.

For benchmarks with a high ratio of non-SIMDizable loopstsas stitch, AAC, and
lineOfSight, SIMD shows severe performance degradatitvereas VLIW and Libra show
a fair performance improvement. Libra outperforms evenWlhecause it can accelerate
SIMDizable regions more efficiently. On the other hand, ibthSIMD and Libra deliver
a substantial performance improvement for benchmarks miktly SIMDizable loops,
while VLIW suffers. The Libra also shows better performatitan SIMD because it ef-
fectively accelerates applications having low-SIMDizldops (3D, H.264) and its ILP
capability also helps Libra to adequately tolerate the lafokxpensive resources for high-
SIMDizable loops (convolution, conjugate). Overall, lakshows the best performance in
all benchmarks except H.264 benchmark. This is because sfitihtly lower performance
gain on SWPable regions due to its distributed nature. Anawegage result of each do-
main, performance gain of Libra is the highest on game pBy#s a result, Libra shows
a performance gain of 2.04x and 1.38x over SIMD and VLIW, eesipely.

Despite using the same amount of computation resourcesrpamce-only compari-
son may not be fair due to the different interconnectiorntsgyias among the architectures.
An energy comparison may Yyield a better comparison conisigléroth performance and
hardware overhead. FigufelQb) shows the energy consumption of three architectures
and the results are also normalized to the 1-issue core. gragh shows a similar trend
to Figure6.1(0a). On average, even though SIMD added extra logics forlmansgharing

resources (Figuré.5b)), VLIW shows 16% more power consumption because of bigge

169



™.

P /%,/ég%[;ﬁ;/fzud A
0

16/3264| [16/3264| (16/32/64| (163264 |16/32(64| 16/3264 16/32(64) |16/32/64| |16/32/64 16/32/64 16/32/64| 1632/64| |16/32(64] |16/32/64 ’ 16/32/64
disparity | localization| stitch svm tracking Avg AAC 3D H.264 Avg lineOfSight |convolution| conjugate | Avg Average
Vision Media Game Physics
-=SIMD —=VLIW ——-Libra

Figure 6.11: Scalability of Libra/SIMD/VLIW architecture s: the Libra architecture is highly
scalable for most of benchmarks, while SIMD and VLIW cannot ke scalable for several bench-

marks.

RFs and complex control logics, and Libra shows 20% more p@essumption due to
more interconnects and Libra-specific overhead such aspHoffer and a thread con-
troller. Based on these power differences, the Libra sa8és &1d 19% energy compared
to SIMD and VLIW, respectivel}; As a result, the Libra architecture shows a fair amount
of performance improvement in addition to high energy edficy by providing a more

suitable acceleration scheme for each loop.

6.4.3 Scalability

Figure6.11shows the performance of each architecture normalized tisauk core
for different sizes across three benchmark domains. Théeuof PEs varying from 16 to
64 are shown on the X-axis. The results show high scalatafithe Libra architecture in
all benchmark domains.

In the vision and game domain benchmarks, applications @repecially optimized

3Figure6.1Qb) does not mean that a simple 1-issue core is 3x energyesftithan Libra because the
performances are different. For a performance-equivatemparison, Libra is much more efficient than the

simple core.

170


libra/fig/libra_scalability.eps

to the SIMD-style architecture, but the performance is lyigitalable as the number of
PEs increases because most loops are simple and highly ddlei Only the stitch is
barely scalable because the application is mostly seqlagithe dominating loop has
only a small number of iterations. In the media domain, tHed.iaccelerator performance
also fairly increases as it scales to more PEs. Comparedhtr atchitectures, VLIW
performance results are frequently saturated becauselowcheduling of a big size loop-
body(often unrolled) on a large number of PEs is too compdexxploit ILP, while Libra
solves this problem by scheduling a small loopbody in a sitogital lane and applying
the same schedule to multiple logical lanes. The SIMD resale also constrained by
lack of expensive resources and program complexity. To samzey the Libra architecture
can increase its performance with larger resources wheagpkcation has enough total

ILP/DLP parallelism.

m Extra @mD-mem O Control ORF OFU

2 1.2 1.2
© _
£1.8 > 1 5 1 I
© Ej ;
E 0.8 00.8
£ 16 & o
o o 0.6 00.6
T 1.4 2 2
S 504 w04
1.2 & 0.2 30 2
& |:| . m .

1 0 —— 0

16 32 64 16 32 64 homogeneous heterogeneous
Resource Resource SIMD Libra

(a) (b) (c)

Figure 6.12: Performance/energy improvement of the hetegeneous Libra over the same
sized homogeneous SIMD: (a) performance, (b) energy consytion, and (c) power break-
down with five categories: FU, RF, control logic, memory, andarchitecture specific additional

logic.

171


libra/fig/power_efficiency.eps

6.4.4 From the Homogeneous SIMD to the Heterogeneous Libra

Section6.4.2and 6.4.3evaluate three different architectures consisting of traes
computation resources. The key question here is how mudadha kilrpasses the traditional
SIMD architecture. To answer this question, we comparedtdréormance and energy
consumption of the heterogeneous Libra and the homogergMi3. The heterogeneous
Libra has a quarter of memory/multiply resources and thedgmneous SIMD has the
same number of memory/multiply resources as the total nuPibs. Figurés.12shows the
average of relative performance and energy consumptioiboélover SIMD for different
sizes. In terms of performance, Libra outperforms SIMD draldifference increases in
proportion to the size (Figur@.12a)). This is because 1) the lack of expensive resources
can be effectively compensated for by forming logical laaed 2) the lane utilization of
the traditional SIMD is lower for a larger size due to the peog characteristics.

In terms of the energy consumption, Libra still shows simmiésults as its performance
improvement because significantly less computationakuwah reduce the overall power
overheads, and the result is better on larger size. For deathe 32-PE heterogeneous
Libra consumes 11% more power than the same size homogeBS&di due to 12%
power savings on FUs with 23% overheads (Figargc)). On average, Libra shows

101%, 71%, and 56% energy consumption compared to theitmaalitSIMD.

6.4.5 Acceleration Mode Selection

Our experiments so far have focused on the overall perfocmahthe Libra architec-

ture compared to other architectures, showing consideadrformance enhancement. In

172



this section, we evaluate the effectiveness of flexible faapping to answer the question if
Libra really needs to provide various intermediate sizdegital lanes between SIMD and
VLIW. Figure 6.13a) shows the execution time distribution at different tagilane sizes
for the three application domains on the 16, 32, and 64-PEaLiDn average, all available
modes are used for considerable fraction of time and no dammiglogical lane size exists,
which proves the effectiveness of flexible lane mappingti&rmore, the lane sizes are se-
lected adaptive to the domain characteristics. For visiemchmarks, 2-PE small sized
logical lane is dominant because most loops are small andomyeoperation dominant. In
media benchmarks, large logical lanes are used for a higtidreof the execution because
of lack of DLP. Game physics uses a 4-PE logical lane in sabistdraction to execute
high-DLP loops with some ILP. Figuré.13b) compares the normalized performance of
Libra to that when only one specific logical lane configunaimallowed to execute bench-
marks. The results of this graph further prove the effeaegs of flexibility by showing

that any fixed mode execution cannot win over the flexible etien.

100% & [0 TR o 30
il _ HH S25
0, - | [=
80% | | I I 5 20 /
ol il 1 Vo
40% H—1HH THH HHl &M ~
20% 1 H T o
0o LI THIEA LI ITI L £ 7 4632064 16(3264) 1632164 163264
163264 (163264 163264 (163264 E Vision | Media | Game | Avg
Vision Media Game Avg 2 Physics
Physics ——Libra 2 4 8
02 04 08 ©O16 m32 m64 16 32 64

(a) (b)

Figure 6.13: Mode selection: (a) execution time distributn at different logical lanes, (b)

flexible vs. fixed execution.

173


libra/fig/mode.eps

6.4.6 Multi-threading Effectiveness

As discussed in Sectidh 3.4 a simple multi-threading functionality is added to Libra.
In this section, we evaluate the effectiveness of this fonetity. Figure6.14(a) shows the
performance improvement on SIMDizable loops only, singgtéchnique can be only ap-
plied to SIMDizable loops. On average, a performance gair2ef6% is achieved, and this
is up to 28% more effective in vision benchmarks because #jenty of loops are small
and multi-threading is most effective in small size logitzale mapping. Figuré.14(b)
shows the execution time distribution for different loditzame sizes when multi-threading
is applied. Compared to Figuéel3a), a substantial amount of 2 and 4-PE logical lane ex-
ecution is substituted with multi-threading. Overall, tivtihreading is effective for small

logical lanes when executing SIMDizable loops.

100%
80%
60%

-
w

-
N
(3]

=
N
]
|
I

Relative performance
—
=N
[3,]
:
|
|

40% Sasns
1.1 HHH M 20% E—f i
1.05 - H [ 0%
1 16‘32‘64’ 16\32\64\ 16\32’64\ 16’32‘64
16\32\64‘ \16‘32\64\ \16\32‘64\ \16’32\64\ Vision Media Pﬁanje Avg
_ . ysics
Vision | Media pﬁ;?iis Avg 864_thr 32_thr 816_thr 88_thr =24_thr ©=2_thr
m64 @32 @016  O8 o4 o2
(a) (b)

Figure 6.14: Multi-threading effectiveness: (a) performance improvement for SIMDizable

loops, (b) execution time distribution at different logicd lanes.

174


libra/fig/thr_result.eps

6000

X
5000 . :/ ’Libra' Component Power(mW) | Ratio(%) | Area(um”2) | Ratio(%)

m 11 18 MIPS /ra SIMD FUs 131.3 26.7% | 341909 | 17.1%
g 4000 : SIMD RFs 180.2 | 36.6% | 405963 | 20.3%
= _.--="" |SIMD Pipeline + Routing ) .
3 3000 |+ Scalar Pipeline 115.5 235% | 117721 5.9%

Tensilica Ll LT T i
< e TIC6x_.-- - Instruction Control . .
g 2000 Diamond -~~~ AT T (SIMD controller + Loop buffer) 56.0 4% 471984 23.6%
5 1000 |Core Thread controller 3.2 0.7% 37714 1.9%
= e XScale D-mem (64kB) 5.9 1.2% 626550 | 31.3%
§ o LHeTT ARMUL R P NS o [rotal 4922 | 100.0% | 2001840 | 100.0%

0 100 200 300 400 500 600 700

Power (mW)
(a) (b)

Figure 6.15: (a) Power/Performance comparison, and (b) pogr and area breakdown of the

32-PE Libra architecture.

6.4.7 Power and Area Measurement

We measured the average power when the 32-PE Libra archtestecutes the H.264
benchmark at 500 MHz. A power and an area consumption breakftor various com-
ponents that are part of the architecture are shown in Figur&b). Compared to the
normal SIMD, the power consumption of the routing logic isgkx due to its dynamic
configurability, but FU power is smaller due to the smalleminer of expensive units. A
SIMD controller and four loop buffers, and a thread conaolre added to a cluster. The
power consumption of a SIMD controller and four loop buffersubstantial because the
loop buffer is implemented as 64-entry wide two-port SRAMI dhe data is read every-
cycle. In addition to this, the thread controller also cansa 0.7% of total power because
the sequence table is a 256 entry 8 bit two-port SRAM. Thd tota of the 32-PE Libra
architecture is 2.0 min

Based on the power and performance data, we compared thierefficof Libra to
other architectures using data shown &¥][ Based on Figuré.15a), the Libra archi-

tecture achieves 11.18 MIPs/mW and most of the other wallakmsolutions show lower

175


libra/fig/power_thesis.eps

efficiency. The Tensilica Diamond Core is slightly more edfit than the Libra architec-
ture, but the actual performance is not enough to succéssfkxgcute compute-intensive

media applications.

6.5 Related Works

Many previous works have focused on accelerators to adtlreshallenges of improv-
ing computing efficiency. Some exploit only one type of piatedm and others introduce
some flexibility to support more than one type of paralleligaigure6.16 compares and

shows the major differences between Libra and prior works.

ILP | DLP | Heterogenity S:rrf‘gfn‘i;anbclee Scalability E;g;’;ﬁ;y
SIMD No | High No No High High
DLP Accelerator GPU Low | High Limited No High Low
Embedded GPU| Low | High Limited No High High
ILP Accelerator ADRES High | No Yes No Low High
DLP + ILP Accelerator Imagine High | High Yes No High Low
AnySP Low | High No Limited High High
. SIMD-Morph || High | High No Limited Low High
Flexible Accelerator I —=p ps; SCKLE High High Yes Yes High Med?um
Libra High | High Yes Yes High High

Figure 6.16: Comparison to prior work

Accelerators for multimedia usually focus on one type oflalism without adaptive
configuration. Conventional SIMDL}/, 59] only supports DLP and misses the opportunity
of improving performance with other form of parallelism. Byndahl's law, low-DLP
regions quickly become the bottleneck of applications. v@ational SIMD also wastes
expensive resources due to imbalanced utilization. Whadadtest GPUs/[0, 69] support

the limited level of heterogeneity and embedded GPUs su@Quatcomm Adreno4] and

176


libra/fig/relwork_table.eps

ARM Mali [ 1] are power-efficient, GPUs have the same fundamental weaka® other
data-parallel accelerators.

ILP accelerators, such as ADRES], tackle the problem in another way by exploiting
ILP with the help of modulo scheduling. Even though it hashtsgalability by providing
distributed architecture, the throughput quickly saesads the number of resources in-
creases due to the scheduling difficulty as shown in PR} [Hybrid accelerators such
as the Stanford Imagine] use the VLIW-SIMD scheme but the fixed configuration fre-
guently incurs a lack or waste of resources.

Recently, several architectures have tried to embracéilixiin a conventional SIMD
accelerator in order to support multiple application damawith different characteristics.
AnySP P targets mobile applications such as 4G wireless commtinitand high-
definition video coding. AnySP achieves the goal efficiebthysimply chaining two SIMD
lanes and supporting limited thread level parallelism umaterutilization in low-DLP loops
is still inevitable due to the lack of general policy to suggaP. SIMD-Morph [30] em-
ploys subgraph matching to accelerate sequential codenreddespite their fair perfor-
mance gain, their simple ILP/DLP mode transition policymainadaptively adjust the de-
gree of ILP and DLP inside a specific code region. For exanipig,mpossible to fully
utilize the SIMD-Morph for a low-DLP code region since anuffgcient degree of DLP
cannot be supplemented by ILP exploitation, while Libra.cimaddition, they are still
homogeneous SIMD, and therefore, cannot improve utibredind power efficiency.

TRIPS B1] and SCALE [9] are also similar to this work. TRIPS integrates ILP,
DLP and TLP, and SCALE exploits both vector parallelism ahdP.TThey are targeting
more the desktop/server space, and therefore, need expanshitectural features such as

177



inter-cluster networks, additional multiple fetch unésid specialized caches for general-
ity. However, Libra focuses on more efficient execution afde with minimal hardware
modifications.

Avoiding resource contention of expensive instructionglpelined execution is also
introduced in an instruction-systolic array architectig. However, systolic execution
may incur severe performance degradation on high numbdt®bBcause of the pipelining

delay, while Libra limits sharing only between two logicahks in full DLP mode.

6.6 Summary

The popularity of mobile computing platforms has led to tleeelopment of feature-
packed devices that support a wide range of software apiplisawith high single-thread
performance and power efficiency requirements. To effityiesthieve both objectives,
SIMD-based architectures are currently proposed. HowéverSIMD is not able to effi-
ciently support a wide range of mobile applications due tesa limiting factors: limited
availability of high trip count vector loops and the homogeus nature of the hardware.
To enhance the applicability of SIMD and improve its inheéremergy efficiency, we break
two long-standing traditions of SIMD design: identicalésrmand static configuration. The
Libra accelerator adapts the SIMD lane resources to target agiplic The Libra archi-
tecture customizes the lane configuration based on the toogtgre from many resource-
constrained logical lanes for highly data-parallel lodpsa modest number of lanes with
moderate resources, up to a single resource-rich logicaltlzat is effectively a multiclus-

ter VLIW. A 32-PE Libra system achieves an average 1.58xdyge@ver the traditional

178



SIMD system, and the gain becomes higher as the number offfeEsases. Through a
judicious mechanism to share expensive resources, Liboeaaghieves a 29% reduction in
energy compared to the SIMD system. We believe that as indwexjuires higher perfor-

mance with high energy efficiency, the proposed scalabldtarture puts more resources

to work in order to meet this demand.

179



CHAPTER 7

Conclusion

The Libra accelerator is a unified loop accelerator that ¢ectevely support future
mobile applications with varying performance requirenseand characteristics. Libra can
dynamically tune ILP/DLP-support capabilities in orderstaccessfully support ILP-only,
DLP-only, and ILP/DLP-mixed applications. Also, Librasrgple hardware implementa-
tion and its distributed nature achieve high energy-efiicyevith competitive performance
at a high degree of scalability which other current accébesehardly realize.

In this work, a number of compiler optimizations are presdrfor execution models
supported in the Libra accelerator. There are several arpeirformance bottlenecks in
exploiting ILP, DLP, and Task-level parallelism in curremcelerator models. Thus, three
compilation techniques are proposed to enhance the goéstghedules over the traditional
approach.

The SIMD Defragmenter successfully increases the DLP @geeby finding potential
DLP opportunities from the code written in the form of ILP.ellata packing/unpacking

overhead can be overcome by SIMDizing in groups of paralbehgatible instructions

180



(subgraphs) to maximize SIMD gain. On a 16-lane SIMD execytexperimental results
show that SIMD defragmentation achieves a 1.6x mean spemdrrgraditional loop vec-
torization and a 31% gain over prior research approachesoforerting ILP to DLP.

Dynamic operation fusion is proposed to enable a CGRA maodsfectively accelerate
latency-constrained code regions such as non-loop, tnder-and recurrence-constrained
loop code. Dynamic operation fusion is enabled through timetination of a small bypass
network added between functional units in a conventionaR8@&nd a sub-cycle modulo
scheduler to automatically identify opportunities foritus Results show that dynamic op-
eration fusion reduced total application run-time by up7édlon a 4x4 CGRA execution.

Based on the previous compilation optimizations, a higlklleempilation framework
is introduced that maximizes application throughput wigtoid resource partitioning of
a dynamic multicore accelerator based on the stream graplilmecheduling algorithm.
Static partitioning handles part of the resource assigmnten this is followed up by dy-
namic partitioning to identify idle resources and put theruse. Experimental results
show that real-time media applications can take advanthgeecstatic and dynamic con-
figurability of the PPA system for increased throughput.

While these optimizations attack the major performancédrwcks of various acceler-
ation models, using multiple solutions still incurs thregical problems: static power/area
overhead, low execution efficiency due to the applicatiomgiexity, and higher software
development costs. In response, we decided to propose améedwaccelerator for mo-
bile applications. To achieve this, we find four key issuedtture accelerators: homoge-
neous versus heterogeneous functionality, interconopacldgies, simple versus complex
processing elements, and scalar versus vector memory igupiiten, the proper future

181



directions for those issues are proposed based on deepatppiianalysis.

Under the guidance of the above study, we propose the Lilm@lerator, an acceler-
ator that allows flexible execution of loops by customizihg tonfiguration and adapt-
ing resources to the underlying characteristics of theiegjpbn. Libra achieves the goal
using datapath heterogeneity and dynamic configurabikityst, Libra is composed of a
non-uniform lane structure for power efficiency: only a sitlsf lanes have expensive but
infrequently used execution units. Transparent sharinghau@sms provide the appearance
of uniformity. Second, dynamic configurability repartit®resources to match execution
patterns at run-time to maintain high utilization. In Libeagroup of logical lanes is exe-
cuted as SIMD, while the lane itself is composed of a groupro€gssing elements (PES)
similar to a CGRA. DLP is exploited in the form of parallel ex¢ion across the logical
lanes, and ILP is exploited inside each logical lane. Inesselibra provides a spectrum
of resource configurations from a large number of skinnydafioe executing code with
high levels of DLP to a small number of fat lanes for code watlv levels of DLP. Experi-
mental results show that 32-PE Libra outperforms the tiaud SIMD system by average
of 1.58x, and the performance is linearly scalable as treeiszeases.

To conclude, we believe that a unified accelerator substraidd eliminate major prob-
lems from which today’s mobile computing platforms with ttiplle accelerators on a chip
suffer. However, the unified accelerator must support argésset of applications, loops,
and acyclic code regions to be performance competitive. arbkitectural and compiler
solutions presented in this dissertation provide an ingmaigtep towards the future unified

mobile solution.

182



BIBLIOGRAPHY

183



BIBLIOGRAPHY

[1] ARM Mali Graphics Hardware
- http://www.arm.com/products/multimedia/mali-graggvhardware/177

[2] Cuda toolkit. - http://developer.nvidia.com/cudasiiat. 118 142
[3] Glbenchmark - http://www.glbenchmark.com/18 142

[4] Qualcomm Adreno
- http://www.qualcomm.com/solutions/multimedia/gragsh. 176

[5] Samsung advanced institute of technology
- http://www.sait.samsung.co.kid67

[6] T.V. Aa, M. Palkovic, M. Hartmann, P. Raghavan, A. Dejtiegand L. V. der Perre.
A multi-threaded coarse-grained array processor for es®baseband. IAroc. of
the 2011 IEEE Symposium on Application Specific Procespages 102-107, June
2011.123 127,132

[7] T. Adam, K. Chandy, and J. Dickson. A comparison of lishesdules for parallel
processing system€&€ommunications of the ACM7(12):685-690, Dec. 197461,
167

[8] J.H. Ahn et al. Evaluating the Imagine stream architeetinProc. of the 31st Annual
International Symposium on Computer Architecfyrages 14—-25, June 200477

[9] A. Aleta, J. Codina, J. Sanchez, and A. Gonzalez. Gpartitioning based instruc-
tion scheduling for clustered processors. Piroc. of the 34th Annual International
Symposium on Microarchitectyrmpages 150-159, Dec. 20047

[10] R. Allen and K. Kennedy. Optimizing compilers for modern architectures: A
dependence-based approadiorgan Kaufmann Publishers Inc., 20016

[11] M. Alvarez, E. Salami, A. Ramirez, and M. Valero. A parftance characterization
of high definition digital video decoding using h.264/awt2D05 IEEE International
Symposium on Workload Characterizatipages 24—-33, Oct. 200%21, 139

184



[12] G. Ansaloni, P. Bonzini, and L. Pozzi. Design and amttiiral exploration of
expression-grained reconfigurable arraysPtac. of the 2008 IEEE Symposium on
Application Specific Processqnsages 26—33, June 200828

[13] G. Ansaloni, P. Bonzini, and L. Pozzi. Egra: A coarseingd reconfigurable archi-
tectural templated EEE Transactions on Very Large Scale Integration (VLSHt&ys
19(6):1062-1074, June 201116, 128

[14] G. Ansaloni, L. Pozzi, K. Tanimura, and N. Dutt. Slackaae scheduling on coarse
grained reconfigurable arrays. Rroc. of the 2011 Design, Automation and Test in
Europe 2011.128

[15] R. Barik, J. Zhao, and V. Sarkar. Efficient Selection @&ictor Instructions Using
Dynamic Programming. IfProc. of the 43rd Annual International Symposium on
Microarchitecture Dec. 201041

[16] K. Berkel, F. Heinle, P. Meuwissen, K. Moerman, and M.i¥8e \ector processing as
an enabler for software-defined radio in handheld devieERRASIP Journal Applied
Signal Processing2005(1):2613-2625, 2001, 10, 83

[17] H. Bluethgen, C. Grassmann, W. Raab, and U. Ramacherogrgmmable platform
for software-defined radio. Imtl. Symposium on System-on-a-Ghgages 15-20,
Nov. 2003.1, 10, 83,138 176

[18] R. D. Blumofe and C. E. Leiserson. Scheduling multittted computations by work
stealing.Journal of the ACM46(5):720-748, 1999113

[19] P. Bonzini, G. Ansaloni, and L. Pozzi. Compiling custdamstructions onto
expression-grained reconfigurable architecturesPriyc. of the 2008 International
Conference on Compilers, Architecture, and Synthesis fobétilded Systemsages
51-59, Oct. 200858, 80

[20] F. Bouwens, M. Berekovic, B. D. Sutter, and G. Gaydadji@rchitecture enhance-
ments for the ADRES coarse-grained reconfigurable arragrdo. of the 2008 Inter-
national Conference on High Performance Embedded Archites and Compilers
pages 66—81, Jan. 200821

[21] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp tatoire and C compiler.
IEEE Computer33(4):62—-69, Apr. 200062, 80

[22] C. Canali, M. Colajanni, and R. Lancellotti. Perfornsanevolution performance
evolution. Internet Computing Magazine, IEEE3(2):60—-68, Mar. 2009115, 116

[23] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned rstgr files for VLIWSs: A pre-
liminary analysis of tradeoffs. IRroc. of the 25th Annual International Symposium
on Microarchitecturepages 103-114, Dec. 19927

185



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

M. Chu, K. Fan, and S. Mahlke. Region-based hierardtuparation partitioning for
multicluster processors. IRroc. of the SIGPLAN '03 Conference on Programming
Language Design and Implementatigages 300-311, June 200%.

N. Clark et al. Application-specific processing on a g&t-purpose core via trans-
parent instruction set customization. Pnoc. of the 37th Annual International Sym-
posium on Microarchitecturgpages 30—40, Dec. 20047, 59, 79, 129

N. Clark et al. An architecture framework for transpar@struction set customization
in embedded processors. Rioc. of the 32nd Annual International Symposium on
Computer Architecturgrages 272—-283, June 200K, 52, 57, 59, 129

N. Clark, A. Hormati, and S. Mahlke. VEAL.: Virtualizedkecution accelerator for
loops. InProc. of the 35th Annual International Symposium on CompAtehitec-
ture, pages 389-400, June 200&

N. Clark, A. Hormati, S. Mahlke, and S. Yehia. Scalahlbgraph mapping for acyclic
computation accelerators. Rroc. of the 2006 International Conference on Compil-
ers, Architecture, and Synthesis for Embedded Systeages 147-157, Oct. 2006.
47

N. Clark, H. Zhong, and S. Mahlke. Processor accelenatihrough automated in-
struction set customization. Froc. of the 36th Annual International Symposium on
Microarchitecture pages 129-140, Dec. 20030, 32, 47

G. Dasika, M. Woh, S. Seo, N. Clark, T. Mudge, and S. Mahlkighty-morphing
power-simd. InProc. of the 2010 International Conference on Compilerghiec-
ture, and Synthesis for Embedded Sysiébes. 2010.177

C. Ebeling et al. Mapping applications to the RaPiD ogmfable architecture. In
Proc. of the 5th IEEE Symposium on Field-Programmable GusBmmputing Ma-
chines pages 106-115, Apr. 19979, 112

K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging tt@mputation gap between
programmable processors and hardwired acceleratorBroin of the 15th Interna-
tional Symposium on High-Performance Computer Architecfpages 313-322, Feb.
2009.175

J. Glossner, E. Hokenek, and M. Moudgill. The sandleidgndblaster communica-
tions processor. lProc. of the 2004 Workshop on Application Specific Processor
pages 53-58, Sept. 2004.10, 83

S. Goldstein et al. PipeRench: A coprocessor for stregmultimedia accelera-
tion. InProc. of the 26th Annual International Symposium on ConmpArehitecture
pages 28-39, June 19989, 112

186



[35] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. Meli, A. b, C. Leger, J. Wong,
H. Hoffmann, D. Maze, and S. Amarasinghe. A stream compidecémmunication-
exposed architectures. Trenth International Conference on Architectural Support
for Programming Languages and Operating Systgmages 291-303, Oct. 20023

[36] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploitirgarse-grained task, data,
and pipeline parallelism in stream programs. 14th International Conference on
Architectural Support for Programming Languages and Opiaga Systemspages
151-162, 200683, 84, 113

[37] J. Hiser, S. Carr, and P. Sweany. Global register pamiitg. InProc. of the 9th In-
ternational Conference on Parallel Architectures and Cdatwn Techniquespages
13-23, Oct. 200047

[38] A.Hormati et al. Exploiting narrow accelerators withtd-centric subgraph mapping.
In Proc. of the 2007 International Symposium on Code Generatiml Optimization
pages 341-353, Mar. 20080

[39] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, lcébson, and P. Bose. Mi-
croarchitectural techniques for power gating of executioits. InProc. of the 2004
International Symposium on Low Power Electronics and Degigges 32—-37, Aug.
2004.18

[40] IBM. Cell Broadband Engine Architecturar. 2006.113

[41] Intel. Intel compiler, 2009. software.intel.com/asfintel-compilers/.16, 46, 118
143

[42] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core fosi Accommodating
software diversity in chip multiprocessors. Pnoc. of the 34th Annual International
Symposium on Computer Architectupages 186-197, 20086, 111

[43] H. Kalva. The H.264 video coding standalEEE MultiMedig 13(4):86-90, 2006.
118 142

[44] C. Kim, S. Sethumadhavan, M. Govindan, N. RanganatBarGulati, D. Burger,
and S. W. Keckler. Composable lightweight processorsrbt. of the 40th Annual
International Symposium on Microarchitectypages 381-393, Dec. 20086, 111

[45] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi. Resourharing and pipelining in
coarse-grained reconfigurable architecture for domagtifip optimization. InProc.
of the 2005 Design, Automation and Test in Eurqueeges 12—17, Mar. 200816

[46] Y. Kim, J. Lee, A. Shricastava, and Y. Paek. Memory asagstimization in compi-
lation for coarse-grained reconfigurable architectu/gSM Transactions on Design
Automation of Electronic Systeni®(4), Oct. 2011132

187



[47] Y. Kim and R. N. Mahapatra. A new array fabric for coaggained reconfigurable
architecture. IrProc. of the 34th Euromicro Conferenqeages 584-591, Sept. 2008.
79

[48] Y. Kim, |. Park, K. Choi, and Y. Paek. Power-consciousfiguration cache structure
and code mapping for coarse-grained reconfigurable aothrte InProc. of the 2006
International Symposium on Low Power Electronics and De<iirt. 2006.79

[49] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. fika J. Casper, and
K. Asanovic. The vector-thread architecture. Rroc. of the 31st Annual Interna-
tional Symposium on Computer Architectu2804.47, 177

[50] M. Kudlur and S. Mahlke. Orchestrating the executiostméam programs on multi-
core platforms. IrProc. of the SIGPLAN '08 Conference on Programming Language
Design and Implementatiopages 114-124, June 203, 85, 89, 113

[51] A. Lambrechts, P. Raghavan, M. Jayapala, F. Catthoor[a Verkest. Energy-aware
interconnect optimization for a coarse grained reconfigierarocessor. IProc. of
the 2008 International Conference on VLSI Desigages 201-207, Jan. 20021

[52] S. Larsen and S. Amarasinghe. Exploiting superworeéllgarallelism with multi-
media instruction sets. IRroc. of the SIGPLAN '00 Conference on Programming
Language Design and Implementatigages 145-156, June 2004, 26, 27, 30, 38,

47

[53] S. Larsen and S. Amarasinghe. Increasing and deteotgmory address congru-
ence. InProc. of the 11th International Conference on Parallel Atebtures and
Compilation Techniquepages 18-29, Sept. 20027

[54] C. Lee, M. Potkonjak, and W. Mangione-Smith. MediaB&né tool for evaluat-
ing and synthesizing multimedia and communications systemProc. of the 30th
Annual International Symposium on Microarchitectysages 330-335, 19971

[55] E. Lee and D. Messerschmitt. Synchronous data fl®woceedings of the IEEE
75(9):1235-1245, 198 B4

[56] J. Lee, K. Choi, and N. Dutt. Compilation approach foarse-grained reconfigurable
architectureslEEE Journal of Design & Test of Compute$(1):26—-33, Jan. 2003.
80

[57] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V.kKdarand S. Amarasinghe.
Space-time scheduling of instruction-level parallelismacRAW machine. IrEighth
International Conference on Architectural Support for Bramming Languages and
Operating Systemgpages 46-57, Oct. 19982, 113

[58] W.-J. Lee, S.-H. Lee, J.-H. Nah, J.-W. Kim, Y. Shin, Jel.and S.-Y. Jung. Sgrt: A
scalable mobile gpu architecture based on ray tracing,.2042

188



[59] V. Lin et al. Soda: A low-power architecture for softwearadio. InProc. of the
33rd Annual International Symposium on Computer Architegpages 89—-101, June
2006.1, 10, 14, 83,138 142 167,176

[60] Y. Lin et al. Soda: A high-performance dsp architectimesoftware-defined radio.
IEEE Micro, 27(1):114-123, Jan. 20038

[61] G. Lu et al. The MorphoSys parallel reconfigurable systeln Proc. of the 5th
International Euro-Par Conferengc@ages 727-734, 1999, 50, 79, 114

[62] A. Lungu, P. Bose, A. Buyuktosunoglu, and D. J. Sorin.nBsic power gating with
quality guarantees. IRroc. of the 2009 International Symposium on Low Power
Electronics and Desigrpages 377-382, Aug. 20098

[63] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavarafcase for guarded
power gating for multi-core processors.Rroc. of the 17th International Symposium
on High-Performance Computer Architectufeeb. 201118

[64] B. Mei et al. ADRES: An architecture with tightly couple@liw processor and coarse-
grained reconfigurable matrix. Proc. of the 2003 International Conference on Field
Programmable Logic and Applicationgages 61-70, Aug. 20039, 132 177

[65] B. Mei et al. Exploiting loop-level parallelism on cea-grained reconfigurable ar-
chitectures using modulo scheduling. Pnoc. of the 2003 Design, Automation and
Test in Europepages 296-301, Mar. 2003, 50, 52, 80, 112, 114

[66] B. Mei, A. Lambrechts, J. Y. Mignolet, D. Verkest, and [Rauwereins. Architecure
exploration for a reconfigurable architecture templatePioc. of the 2005 Design,
Automation and Test in Europpages 90-101, Mar. 2002, 8, 50, 53, 55, 83, 114,
117,120

[67] D. Nuzman et al. Vapor simd: Auto-vectorize once, ruergwhere. InProc. of the
2011 International Symposium on Code Generation and Opdtion pages 151—
160, Apr. 201112

[68] D. Nuzman and A. Zaks. Outer-loop vectorization - réed for short simd archi-
tectures. InProc. of the 17th International Conference on Parallel Atebtures and
Compilation Techniquepages 2-11, 200816, 47

[69] NVIDIA. NVIDIAs Next Generation CUDA Compute Architégre:
Fermi. http://www.nvidia.com/content/PDF/fernvhite_papers/
NVIDIA _FermiComputeArchitectureWhitepaper.pdf176

[70] NVIDIA. GeForce GTX 200 GPU architectural overview,G8)
http://www.nvidia.com/docs/I0/55506/ GeForGa X_200 GPU_TechnicalBrief.pdf.
176

[71] OpenIMPACT. The OpenIMPACT IA-64 compiler, 2005.
http://gelato.uiuc.edu38, 120 167

189



[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]
[83]

H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graphladding: Mapping
applications onto coarse-grained reconfigurable ardhites. InProc. of the 2006
International Conference on Compilers, Architecture, é&yhthesis for Embedded
Systemspages 136-146, Oct. 2008, 34, 52, 80

H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H. seok Kimddge-centric modulo
scheduling for coarse-grained reconfigurable architestutnProc. of the 17th In-
ternational Conference on Parallel Architectures and Cdatn Techniquespages
166-176, Oct. 2008, 34, 52, 65, 85, 120, 133 154, 167

H. Park, Y. Park, and S. Mahlke. Polymorphic pipelineagr A flexible multicore
accelerator with virtualized execution for mobile multidiee applications. IrProc.
of the 42nd Annual International Symposium on Microardtitee pages 370-380,
Dec. 2009.83, 87, 88, 95, 104, 116, 123 127,177

J. Park, D. Shin, N. Chang, and M. Pedram. Accurate miegleind calculation of
delay and energy overheads of dynamic voltage scaling irenmaaigh-performance
microprocessors. IRroc. of the 2010 International Symposium on Low Power Elec-
tronics and Designpages 419-424, Aug. 20108

J. Park, H. Yang, G. Park, S. Kim, and C. C. Weems. An udion-systolic pro-
grammable shader architecture for multi-threaded 3d geagitocessingJournal of
Parallel and Distributed Computing’0(11):1110-1118, 201Q.78

Y. Park, H. Park, and S. Mahlke. Cgra express: Accdlagagxecution using dy-
namic operation fusion. IRroc. of the 2009 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systpagges 271-280, Oct. 20092

M. Quax, J. Huisken, and J. Meerbergen. A scalable impl&ation of a reconfig-
urable WCDMA RAKE receiver. IProc. of the 2004 Design, Automation and Test
in Europe pages 230-235, Mar. 2004, 50, 114

B. R. Rau. Iterative modulo scheduling: An algorithn $oftware pipelining loops.
In Proc. of the 27th Annual International Symposium on Micobétecture pages
63—74, Nov. 199455, 83, 89, 133 161

R. M. Russell. The CRAY-1 computer systemCommunications of the ACM
21(1):63-72, Jan. 1978.38

K. Sankaralingam et al. Exploiting ILP, TLP, and DLP ngipolymorphism in the
TRIPS architecture. I®roc. of the 30th Annual International Symposium on Com-
puter Architecturepages 422-433, June 20037

F. Semiconductor. Altivec, 2009. www.freescale.caltivec. 38

J. Shin, J. Chame, and M. W. Hall. Compiler-controll@dlzing in superword register
files for multimedia extension architectures. Rroc. of the 11th International Con-
ference on Parallel Architectures and Compilation Tecleig| pages 45-55, 2005.
47

190



[84] D. Talla, L. K. John, and D. Burger. Bottlenecks in moi&dia processing with simd
style extensions and architectural enhancemdmBEE Transactions on Computers
52(8):1015-1031, 20031

[85] M. B. Taylor et al. The Raw microprocessor: A computatibfabric for software
circuits and general purpose prograrttSEE Micro, 22(2):25-35, 20022, 50, 114

[86] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A malcapproach to exploit-
ing coarse-grained pipeline parallelism in ¢ programsPioc. of the 40th Annual
International Symposium on Microarchitectuf@ec. 2007112 113

[87] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streafylanguage for streaming
applications. InProc. of the 2002 International Conference on Compiler Garts
tion, pages 179-196, 20084, 85

[88] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. L. S. GarciaB8longie, and M. B.
Taylor. SD-VBS: The san diego vision benchmark suite2009 IEEE International
Symposium on Workload Characterizatipages 55—-64, Oct. 200241

[89] M. Woh et al. From SODA to scotch: The evolution of a waet baseband processor.
In Proc. of the 41st Annual International Symposium on Mictbéecture pages
152-163, Nov. 20081, 10, 83

[90] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, ané&ldutner. AnySP: Any-
time Anywhere Anyway Signal Processing.Rroc. of the 36th Annual International
Symposium on Computer Architectupages 128-139, June 2009, 47, 138 177

[91] H. Zhong, K. Fan, S. Mahlke, and M. Schlansker. A disttdd control path architec-
ture for VLIW processors. IProc. of the 14th International Conference on Parallel
Architectures and Compilation Technigueages 197-206, Sept. 2008L2

191



	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Compiler Support for Various Accelerator Models
	Improving DLP Performance
	Improving ILP Performance
	Improving Task Level Parallelism Performance

	Design of Future Mobile Accelerators
	Finding the Guideline for Developing Future Tiled Architectures
	Libra Accelerator


	Efficient ILP Realization on Data-parallel Architectures
	Introduction
	Background and Motivation
	Baseline Architecture Overview
	Analysis of Multimedia Applications
	Beyond Loop-level SIMD Parallelism
	Summary and Insights

	Subgraph Level Parallelism
	Overview
	Comparison with Superword Level Parallelism
	Challenges and Solutions

	Compiler Support
	Overview
	Subgraph Identification
	SIMD Lane Assignment
	Code Generation

	Experimental Results
	Experimental Setup
	Subgraph Level Parallelism Coverage
	Performance
	Energy Measurement

	Related Works
	Summary

	Accelerating Execution using Dynamic Operation Fusion
	Introduction
	Motivation
	Analysis of Multimedia Applications
	Accelerating Sequential Code

	Dynamic Operation Fusion
	Delay Statistics and Tick Time Unit
	Bypass Network

	Compiler Support
	Edge-centric Modulo Scheduling
	Tick-based Scheduling
	Tick Specific Features.

	Experimental Results
	Experimental Setup
	Performance Measurement
	Power and Energy Measurement
	Operating Frequency Optimization

	Related Work
	Architecture
	Compilation Techniques

	Summary

	Putting Idle Resources to Work on a Composable Accelerator
	Introduction
	Background and Motivation
	Composable Accelerators
	Stream Graph Modulo Scheduling
	Compilation Challenges

	Compiler Framework
	Prepass: Static Partitioning
	Core Allocation
	Postpass: Dynamic Partitioning

	Experimental Results
	Experimental Setup
	Performance Evaluation
	Static Partition
	Dynamic Partition

	Related Work
	Summary

	Efficient Performance Scaling of Future CGRAs for Mobile Applications
	Introduction
	Analysis Infrastructure
	Benchmarks Overview
	Experimental Setup

	Analysis
	Question 1: Heterogeneity vs. Homogeneity
	Question 2: Interconnection Topology
	Question 3: Complex PEs vs. Simple PEs
	Question 4: SIMD Memory Support
	Summary and Insights

	Summary

	Libra: Tailoring SIMD Execution using Heterogeneous Hardware and Dynamic Configurability
	Introduction
	Background and Motivation
	Benchmarks Overview
	Baseline Architecture
	Limitations for Current SIMD Accelerators
	Insights for the Traditional SIMD

	Libra Architecture
	Overview
	Microarchitectural Details
	Execution Model
	Improving ILP Performance
	Decision Flow

	Experiments
	Experimental Setup
	Performance/Energy Evaluation
	Scalability
	From the Homogeneous SIMD to the Heterogeneous Libra
	Acceleration Mode Selection
	Multi-threading Effectiveness
	Power and Area Measurement

	Related Works
	Summary

	Conclusion
	BIBLIOGRAPHY

