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ABSTRACT

Modeling the Release of River Ice Jams and their Impact on River Bed Scouring

by

Michail Manolidis

Co-Chairs: Nikolaos Katopodes and William Schultz

The release of ice jams in rivers is a violent event accompanied by high flow

velocities and elevated water levels. It can cause loss of or damage to property,

disruption of water ways, and even loss of human life. Furthermore, increased water

flow during the release of an ice jam can cause river bed scouring, changes in bed

morphology and an increase in river depth. In the case of the Huron Erie Corridor, ice

jam releases in the St. Clair River may have a much more severe impact; the St. Clair

River drains Lakes Huron and Michigan, so changes in the conveyance of the river

affects water levels in those two lakes. Measurements show that the depth of the St.

Clair River increased during the 1980s and 90s, and this increase in depth may have

been responsible for an increase in river conveyance and a drop in the water levels of

Lakes Huron and Michigan. Such an increase in the depth of the St. Clair River may

have been caused by the release of ice jams. Considering the strategic importance

of Lakes Huron and Michigan, as one of the greatest freshwater reservoirs on Earth,

as well as their economic significance in commerce, tourism and commercial fishing,

much attention is needed on factors that may affect the integrity of these valuable

xi



assets. Until now it has not been shown that the release of an ice jam can cause

scouring in the St. Clair River.

In this work a movable bed model is developed and coupled to a hydrodynamic

model. The hydrodynamic model is a fully 3D non-hydrostatic Reynolds-averaged

Navier-Stokes equation solver, that employs the finite volume method. The movable

bed model employs geometric modeling of the river bed, whose proper morphology

is not given by the hydrodynamic model, as the latter employs stair-stepping to

model the bed morphology. The geometric model is combined with a methodology to

calculate the bedload fluxes when scouring occurs. A Shields criterion is employed to

determine whether sediment is mobilized or not. Once the fluxes are found the Exner

(bed evolution) equation is solved numerically using the finite volume approach in

order to update the bed elevation. A sandslide simulation algorithm is also developed

as part of the movable bed model. The model developed allows for variation in the

river bed roughness, and information on the sediment grain size distribution obtained

from field observations is used.

The other part of the work involves modeling an initially still ice jam that is

released. The shape and size of the ice jam is adjusted to match morphologic char-

acteristics as well as flow conditions during the massive 1984 ice jam. Boundary

conditions are also set to match those of the 1984 ice jam event. Flow simulations

were run for normal flow (open water) conditions as well as for when an ice jam is

present. It is found that under normal flow conditions there are three regions in the

St. Clair River where stresses on the bed are elevated. From simulations with an ice

jam present, it is found that during and following the release, the stresses in those

three locations rise above critical values and scouring occurs. When the jam is still,

however, it is found that the stresses on the bed under the jam are for the most

part lower than under normal flow conditions, and, as such, scouring cannot happen

under the jam when it is immobile. The movable bed model is employed in the ice

xii



jam release simulations, and significant changes in depth in three regions of the river

are produced. Based on the simulation results, the model predicts that in the event

of an ice jam like the one in 1984 significant scouring will occur at certain locations

of the St. Clair River. Finally, a scenario was tested where the water level difference

between Lakes Huron and St. Clair is even greater than during the 1984 ice jam. The

resulting scouring in that case is even more pronounced.
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CHAPTER I

Introduction

The Great Lakes account for 20% of the Earth’s surface freshwater supply, and

for 90% of North America’s surface freshwater supply. These figures indicate the

importance of these lakes as a freshwater reservoir that is readily available. Fur-

thermore, the Great Lakes have great importance as an ecosystem. With respect to

human activities, they are a source of food (fish), they encompass commercial routes

for industry, they offer tourist attractions, and entire communities and recreational

facilities are built around the Great Lakes.

A general map of the Great Lakes System can be seen in Figure 1.1.

Between 1963 and 2006, there has been a lake-to-lake head fall between Lakes

Michigan-Huron and Lake Erie of approximately 23 cm, as can be seen in Figure 1.2.

A drop of the water level in the Great Lakes, in addition to translating to a loss

of colossal amounts of freshwater, can affect and change the shoreline and the com-

munities that have been built around the Lakes. It may affect the entire ecosystem,

and can also cause disruptions to human activities, such as creating impediments for

the passing of ships.

A comprehensive report to the joint commission between the US and Canada [1]

was prepared in 2009, consisting of a number of discrete studies, that addressed the

key scientific issues related to the head fall between the two lakes.
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(8,620 ft3/s).  Higher and lower flows have occurred,
depending on the water level conditions on Lake
Erie and water requirements along the canal.  While
this diversion does not alter the long-term net total
water supplies to either Lake Erie or Lake Ontario, 
it does increase Lake Erie outflow conveyance and
thus lowers the long-term mean levels on Lake Erie
by 12 cm (4.7 in) and, to a lesser extent, by 4 cm
(1.6 in) on Lake Michigan-Huron.

• The New York State Barge Canal withdraws water
from the upper Niagara River and returns the
diverted water to Lake Ontario at several points in
upstate New York.  Given the location of the point
of withdrawal on the upper Niagara River and the
relatively small volume (about 31 m3/s or 1,100 ft 3/s
on an average annual basis), this diversion has negli-
gible effects on Lake Erie and Lake Ontario levels.

IMPACTS ON UPPER GREAT LAKES WATER LEVELS: ST. CLAIR RIVER24

Figure 2-4  Major Water Diversions in the Upper Great Lakes

(Source: modified from Great Lakes Commission and U.S. Army Corps of Engineers, 1999)

Table 2-2    Summary of Effects of Major Diversions in the Upper Great Lakes
(Increases/decreases in the long-term mean water levels of the lakes)

Great Lake Long Lac/Ogoki Lake Michigan/Chicago Welland Canal
Superior + 9 cm (3.5 in) 0 0
Michigan-Huron + 11 cm (4.3 in) - 6 cm (2.4 in) - 4 cm (1.6 in)
Erie + 7 cm (2.8 in) - 4 cm (1.6 in) - 12 cm (4.7 in)
(Source: Levels Reference Study Board, 1993)

Figure 1.1: Map of the Great Lakes System [1]

(Note that there is a distinction between the actual head
difference in individual years, which can vary from one
year to the next, and the trend line shown in Figure 2-7,
which represents the best linear fit to the changes in the
measured data over the time period.)

A combination of factors likely has contributed to the
change in the head difference between Lake Michigan-
Huron and Lake Erie over time:

• changes in water supplies to the Lake Erie basin and
to the upstream basins as a result of climatic variability
or shifting climate and weather patterns (as noted 
in 2.3.2)

• the effect of GIA on the head difference between 
the two lakes and its implications on recorded water
level data on these two lakes (as described below);
and

• changes in the conveyance of the St. Clair River 
due to natural forces and human activities such as
dredging (as described in 2.4).

Effects of Glacial Isostatic Adjustment
During the last period of continental glaciation, which
ended in North America only about 10,000 years ago, the
tremendous weight of the glacier that covered most of the
Great Lakes region depressed the earth’s crust underneath
it.  The weight also caused the crust beyond the edge of
the ice sheet to bulge upwards (this area is known as the
“forebulge”).  When the glacier retreated and melted, the
crust, relieved of the weight, began to recover.  The glacier
was thicker and remained longer over the areas that 
became the northern and eastern portions of the Great
Lakes basin.  As a result, the land in these regions is rising
relative to the earth’s core.  At the same time, areas in the
southern and western portions are subsiding, as the former
forebulge collapses.  

This process continues today, though at different rates
across the Great Lakes basin, affecting water depths along
the shoreline around each lake (Figure 2-8).  In general,
GIA has the effect of tilting the Lake Michigan-Huron
basin generally towards the southerly direction.  This shift
causes water levels on the northern and eastern shores of
the lakes to appear to recede or decline over time, and
water levels on the southern and western shores to appear

IMPACTS ON UPPER GREAT LAKES WATER LEVELS: ST. CLAIR RIVER30

Figure 2-7  Head Difference between Lake Michigan-Huron and Lake Erie

Figure 1.2: The Head Difference (Lake-to-Lake Fall) between Lake Michigan-Huron
and Lake Erie [1]

The studies, included in the report, examined a) the change in conveyance of

the St. Clair River, due to bed erosion, b) effects of Glacial Isostastic Adjustment

(GIA), and c) hydroclimatic factors. The studies showed that, of the three different

mechanisms, hydroclimatic factors have played a dominant role, and, in particular,

2



there seems to be a decrease in Net Total Supplies (NTS) to Lakes Michigan and

Huron, that affects the water level of those lakes. Net Total Supplies is the inflow of

water in the two lakes from tributaries, melting ice, precipitation, as well as runoff

water. GIA has had the least effect on the head fall. Of particular interest in this

study is the effect of change in river conveyance due to bed erosion. Change in

conveyance of the St. Clair River has had a significant effect, especially between 1985

and 1989. In fact, the change in conveyance during that period alone accounts for an

8 to 10 cm drop in head difference, and this change has been of an episodic nature.

It is worth noting that a 10 cm water level drop in Lakes Michigan-Huron accounts

for the loss of approximately 1.2 billion cubic meters of water. This compares to the

annual total water consumption for New York City and its surroundings (1.7 billion

m
3), or to the annual household water consumption of Greece.

There are three mechanisms that could have caused a change in conveyance in

St. Clair River. The first, which is the topic of this thesis, is scouring caused by

an ice jam. There is speculation, however, that dredging and mining could have

had an impact [1]. The last dredging project in St. Clair River took place in 1962

and water levels in Lakes Huron-Michigan have been dropping ever since. There

are two mechanisms by which dredging and mining could affect river conveyance.

By removing material the river might get deeper at certain locations. The second

mechanism involves exposing sediment of a different composition, effectively changing

the bed roughness. Sensitivity analysis has shown that the flow rate through St. Clair

River is very sensitive to changes in bed roughness and the change in resistance to

flow that it brings about [79]. Unfortunately, there is a lack of adequate information

on the bathymetry of St. Clair River before the last dredging project, as well as on

the bed sediment composition at the time. Furthermore, studies indicate that the

increase in river conveyance happened sometime in the mid 1980’s.

Another mechanism by which scouring can occur is by the stresses induced on the
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bed by propellers of ships [1]. It has been calculated that the stresses can reach levels

capable of moving gravel 60 mm in diameter, a size that is at the uppermost levels

of the median grain size distribution in St. Clair River. Again, it is very difficult

to impossible to assess the effect that the passage of ships may have had on bed

morphology over time, since information is lacking.

Bathymetric studies indicate that the bed of the St. Clair River was higher in

1971 than it was in 2007, along the river’s entire length. More recent measurements

show that there has been no bed erosion since 2000. There are questions about

the accuracy of the bathymetric data that date back to the 1970s and 80s. What

is, however, certain, is that the river’s conveyance increased during the 1980s; with

respect to this, four hydrodynamic models were used for the joint commission report,

and all indicated an increase in conveyance. Namely, models that were used were

the HEC-RAS, the RMA-2, the HydroSed2D, and the TELEMAC-2D. These models

will be described in subsequent chapters. All the models indicated that there was

an increase in the St. Clair River conveyance in the mid 80s period. From the

HydroSed2D model, it was estimated that, under normal flow conditions, the stresses

at the bottom of the St. Clair River would not suffice to induce any bed erosion,

considering the bed composition (grain size). However, it is speculated that during

episodic events as in ice jam releases, high flow velocities may induce bed scour. In

fact, successive seasonal ice jam releases may have had a cumulative effect in terms

of lowering the bottom of the St. Clair River.

The release of a river ice jam is, in general, a violent event, followed by high flow

velocities and increased water levels. It poses a threat to human life, property, as well

as the ecosystem. There are numerous historical accounts of such violent events. We

note the 1984 record jam in the St. Clair River [2], that lasted 24 days and whose

release may have had an effect on river bed erosion and conveyance.

The primary goal of this thesis is to elucidate whether the presence and re-
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lease of an ice jam, like the one in 1984, can lead to bed scouring in the

St. Clair River. The methodology/model that is used is applicable to any river

system, in terms of reproducing the dynamics and results of an ice jam release.

1.0.1 On Ice Jam Formations

Ice formation and breakup in rivers has been an active area of research for many

decades, up to this day. The breakup of ice jams is of particular interest and impor-

tance, since the ensuing surges or flood waves can be destructive to life and property,

and can alter hydrological systems and water reservoirs in adverse ways.

Ice formation in river channels occurs in seasonally cold regions. These regions are

characterized by average daily temperatures of below 0 degrees Celsius for at least a

month during winter. Ettema and Kempera [4] studied and described the processes

that lead to ice formation. There are four types of ice that form in a river when

temperatures are sufficiently low. The most visible type is border ice that forms at

the banks. The second type, frazil, comprises of millimeter-sized ice disks that grow

while suspended in turbulent supercooled water. The third type is anchor ice, that

is attached to the river bed. Anchor ice forms as supercooled and less buoyant water

is drawn to the bottom by turbulent mixing. Thus, anchor ice is formed in situ on

the river bed. Released anchor ice and frazil accrue on the surface, due to the higher

buoyancy of ice, and form drifting slush. This slush, exposed to frigid air, freezes

into ice masses, also known as pancake ice, which is the fourth type of ice. Figure 1.3

illustrates the process of ice formation.

Ice floes are the product of slush that freezes or may be the product of ice cover

fragmentation during the warmer season. When ice floes encounter an ice cover, their

passage is blocked and they accumulate to form a jam. Other factors which may

lead to the congestion and arrest of ice floes are natural constriction in the channel,

constrictions due to ice at the banks, as well as strong winds blowing upstream.
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Figure 1.3: Illustration of ice formation [4]

Jams occur, either during the cold season from complete freeze-up of the river surface

(freeze-up jams), or during the warm season, as floating ice bodies accrue and form

a jam (break-up jams). Breakup jams are generally more severe, because they occur

during periods of higher flows, during the melting of ice and increased precipitation.

Typically, the level of the water upstream is higher than the level downstream. Our

focus will be on breakup jams, since they lead to extreme phenomena, which will be

the area of concentration in this thesis.

Concerning the morphology/type of ice jams, the key factor is whether the ice

bodies submerge under when they encounter the ice cover. If they do not, the jam

will be a surface jam. Flow separation, however, under the ice body, generates a

downward force on the floating body, as can be seen in Figure 1.4. If the ice floe

submerges, three scenarios are possible:

After the ice bodies submerge, they deposit under the ice cover, until the flow

through the constriction is high enough that no more masses are deposited in the

constriction. Such a jam is called a thickened jam. Submerged ice bodies are carried

a distance under the ice cover and are eventually deposited at different locations

where the flow rate is low enough. Continuous deposition in a location causes so

called hanging dams. Finally, if the floes are large enough, they lodge between the

bed and the cover and form grounded jams. Jams that form by the submergence of
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Figure 1.4: Flow separation under the head of the jam causes incoming ice floes to

submerge [3]

ice floes under an ice cover form especially during freeze-up, but there are cases where

their formation takes place during the warmer seasons, as a result of breakup.

The 1984 ice jam in the St. Clair River was a break-up jam. It took place during

the warmer month of April and the ice that made up the jam originated from ice

bodies that had broken off from an ice sheet in Lake Huron near the entrance of the

river. The ice bodies were carried downstream until a cold spell fused them into a

jam, initially near Algonac and gradually expanding upstream as more ice bodies got

trapped. In its final days the ice jam almost reached the town of St. Clair upstream.

Judging from the dramatic effect that the jam had on reducing the river flow rate, it

is most probable that the 1984 ice jam was a thickened jam.

Morphologically, a thickened jam is characterized by a thinner head upstream,

which progresses gradually, and a thicker toe downstream, as can be seen in Figure 1.5.

In the region of the toe, flow is constricted more than elsewhere and is characterized

by higher velocities. This can lead to scouring of the river bed under the toe. As

the head progresses upstream, the water level and storage increases, and so does the

upstream-downstream difference in water levels.

It is worth mentioning here that there is a relationship between river slope and

thalweg sinuosity (sinuosity of the river) [7]. Because ice jams deepen and slow

7



Figure 1.5: Thickened jam [4]

down the flow upstream, the river responds as if the slope were smaller, and channel

alignment may be affected. Furthermore, due to changes in the channel cross section,

flow may be ducted through subchannels formed under a non-uniform jam, and this

may lead to channel avulsion and thalweg shifts. Finally, if water levels rise enough,

overbank flow may create new channels and old channels may be eventually cutoff,

as can be seen with the river in Figure 1.6.

Figure 1.6: Overbank flow in a river [4]
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Ice jams are held in place by an intact downstream ice cover. Release occurs when

this cover weakens and breaks. The weakening of the ice cover is the result of both

thermal and mechanical processes. If warmer water flows under the ice jam it can

make it thinner and weaken it. The other mechanism by which the ice cover weakens

and breaks is mechanical. Ice blocks can be entrained in turbulent flow deep under

the jam, and once after the jam will accelerate upwards until they hit the ice cover.

The impact may cause the cover to break. Another mechanism by which the cover

may fail is by increased flow conditions, due to melting ice and/or precipitation, which

pushes the jam downstream, and its toe upwards under the cover, which may cause

the cover to fail. Once the cover starts failing two things might happen. The moving

jam may create a front of breaking ice cover, or the cover may crack in its center and

along its length. In either case, a strong surge follows, not unlike the breaking of a

dam. The surge is characterized by high flow velocities and rising water levels that

can be felt a long distance downstream.

1.1 Contributions

To approach the problem of determining whether an ice jam could lead to scouring

of the river bed in St. Clair River there are three distinct parts that have to be

put together into one composite model. A hydrodynamic model is first employed.

The model is a 3D non-hydrostatic RANS equations solver and is the first fully

3D non-hydrostatic model to be employed in St. Clair River. It is also the first

non-hydrostatic model to be used to simulate the release of an ice jam. The non-

hydrostatic aspect is important because the release of an ice jam entails high fluid

accelerations, during which the hydrostatic assumption breaks down. The release

of an ice jam is modeled by modifying the hydrodynamic model. The 3D aspect is

important in its own right; complex flow patterns like flows in the transverse direction

in river bends cannot be captured by two-dimensional models based on the shallow
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water equations.

A bedload transport model capable of simulating bed scouring is developed in

this work and is coupled to the hydrodynamic model. The model uses two original

methodologies that are developed for modeling the bed geometry of the river, either of

which gives promising results. It is also capable of using two different methodologies

for calculating the motion of sediment along the bed.

The third part needed to simulated the release of an ice jam and any ensuing bed

scouring in St. Clair River is constructing the geometric domain on a computational

level. Bathymetric data obtained from the Great Lakes division of the National

Oceanic and Atmospheric Administration are used to construct a grid of the river.

Information on the sediment grain size distribution along the river was obtained from

the same source and is used both in the hydrodynamic and the bedload transport

models.

Simulations are run for flow in the St. Clair River under normal flow conditions,

during an ice jam like the one in 1984 while it is not moving and also during and

following the release of the ice jam. The results show that there are three regions in

the river that experience elevated bed stresses under normal flow conditions, which

have not appeared in any of the models that have been implemented before. During

and after the release of the jam the stresses in those regions increase to above-critical

values and scouring takes place. While much of the scouring occurs during the initial

surge following the release, scouring continues thereafter because high flow velocities

persist, fueled by the increased water level difference between Lakes Huron and St.

Clair. The increased water level difference is the result of diminished supply to Lake

St. Clair because of the flow constriction that the ice jam causes. A test case scenario

is simulated in which the water level difference between the two lakes is even greater,

which could happen in the case of a jam like the one in 1984, but which stays in

place for a longer period of time before it is released. The results of the simulation
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indicate considerably more pronounced scouring in that case. Finally, it is found that

scouring will not happen under a jam that is not moving, because the stresses under

the jam are in fact lower than those under normal flow conditions.
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CHAPTER II

An Overview of Past Work

2.1 Previous Studies of Ice Jams and their Release

2.1.1 A Study of Scouring Under a Stationary Jam

Mercer and Cooper [13] first studied scouring under an ice jam in 1977. Figure 2.1

shows the schematic of the jam model.

Figure 2.1: Schematic of model [13]

In steady open channel flow the mean flow velocity is given by the Chezy formula:

V = C

�
yS , (2.1)

where V is the mean velocity, y is the depth (hydraulic radius in 1D flow) and S
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is the slope of the bed. C is the Chezy coefficient with units m
1
2/s. The following

formula relates the Chezy coefficient with Manning’s roughness coefficient, n [11]:

C =
1.486

n
y

1
6 , (2.2)

where n is the Manning coefficient with units s/m
1
3 . The shear stress, τo, on the

boundary is given by:

τo = ρgyS , (2.3)

where ρ is the fluid density. For ice covered water and referring to figure 2.1, the

depth of flow was divided into two components, yi for the upper, ice, part and yb for

the bottom, bed, part, with respective friction coefficients, ni and nb. The following

formula deduced by Michel [15] was used for deriving Manning’s nu that includes

friction with the bed and the underside of the jam:

n
1.5
u

= n
1.5
i

+ n
1.5
b

, (2.4)

from which the depths yi and yb were calculated as:

yi

yu
= (

ni

nu

)1.5 (2.5)

and
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yb

yu
= (

nb

nu

)1.5 . (2.6)

Having calculated the depths yi and yb and using formula (2.3), it was possible to

find the flow-induced stress on the bed and on the ice. The authors used a criterion

that determined whether the jam thickened or lengthened (depending on whether

the incoming ice floes submerged), which was simply the Froude number. It was

considered appropriate to use Fr = 0.08 as a critical value, higher values of which lead

to thickening of the jam. The Shields criterion was used to determine ice deposition

under the jam, for ice floes carried by the flow under the jam, given by:

τi

(ρ− ρi)gki
= 0.046 , (2.7)

where τi is the shear on the ice, ρi is the ice density and ki is the dimension of

the ice blocks. If the value of 0.046 was exceeded, then the submerged ice floes would

not be deposited under the jam but would be carried further downstream. The mean

critical velocity associated with the critical shear stress was given by:

Vc = 0.046g
1
2y

1
6
i
k

1
3
i
. (2.8)

The authors presented a criterion that determined whether the jam would fail or

not. Based on the conditions upstream, the stability of the jam depended on the

value of a parameter X, given by:
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X =
BV

2
u

gC2y2
u

, (2.9)

where B is the river width, Vu is the upstream velocity, yu is the upstream depth

and C is the Chezy coefficient. The maximum value of X, for which the jam was

stable, was set to 0.0028, as given by Pariset [14]. For scour analysis, the continuity

equation for sediment transport is:

∂qs

∂x
+

∂( qs
Vs
)

∂t
+

∂zb

∂t
= 0 , (2.10)

where qs is the volumetric rate of sediment discharge per unit width, Vs is the

velocity of sediment movement, zb is the bed elevation, x is the distance along the

river and t is time. The first term in equation (2.10) can be large and is the rate of

change of sediment transport along the channel. The second term is, generally, small

and is the rate of change with time in the amount of sediment carried with the flow.

The third term is the time rate of scour/deposition. The authors used the Colby

relationship [16] for fine sand beds, that relates the rate of sediment discharge with

the average flow velocity:

qs = A(V − Vc)
B
, (2.11)

where qs is the sediment volumetric flow rate per unit width, A is a coefficient and

B is an exponent. Vc is a critical velocity above which there is sediment movement.

In their numerical analysis the authors simulated the evolution of an ice jam and the

scouring/deposition underneath. The initial conditions set were those of a jam of
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arbitrary length but stable thickness, placed in a river of constant slope. The upper

surface of the ice was set in such a way as to obtain a surface profile consistent with

the backwater relationship. The model advanced in time with a time step equal to

a few hours, adjusting the bed and water surface profiles, the ice jam length and

thickness. The process was repeated until it was determined that either the jam

had failed, or there was no more thickening taking place and scouring had ceased.

Figure 2.2 qualitatively shows the evolution of the jam.

Figure 2.2: Evolution of a jam and river bed scour [13]

The model showed (at least for the case of a stable jam) that maximum scouring

would occur at the entrance of the thickening part of the jam, where velocities become

high, and that there is deposition at the exit region, downstream, where the flow slows

down. Scouring ceased once thickening stopped and a maximum depth was attained.

By running many simulations, the authors performed a sensitivity analysis. The

Froude number played a critical role, since it determined whether the jam thickened

leading to further scouring, or not. The rate of ice delivery was not a significant factor

and only affected the duration for thickening and maximum scouring to occur. Factors

affecting the strength of the jam were important, since, the longer a jam remained

stable, the more scouring could occur. Namely, the angle of internal friction which
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determined the internal strength of the jam, was a very important parameter and

could only vary within narrow limits. The authors did not study the effects of ice

block dimensions.

As will be seen in the work presented in this thesis the premise that scouring

could happen under a stationary jam in St. Clair River is invalidated, and it will

be shown that stresses on the bed under the jam are in fact lower than those under

normal flow conditions. This is an important finding, since it is still speculated that

scouring in St. Clair River could have happened while the jam was stationary. A

clear weakness of the model by Mercer et al [13] was the use of open channel flow

theory that assumes hydrostatic pressure distribution. The assumption does not hold

for flow under jams, since the constriction to flow is accompanied by non-negligible

flow accelerations. Furthermore, for the case of St. Clair River, the stage elevation

upstream did not increase indefinitely, something that would eventually force high

flow velocities under the jam and potential scouring, but instead was limited by the

stage elevation of Lake Huron as an upper limit.

2.1.2 Studies on Ice Jam Release

Henderson and Geraud [8] carried out one of the first theoretical studies in the

breakup of ice jams and surge formation. Their work was based on the dam break

problem and used the 1D shallow water equations. Friction with the bed and bed

slope were not taken into account in the study, and it was assumed that the water

depth was small compared to a typical wavelength.

Figure 2.3 shows the initial steady-state in the location of the jam, as well as the

variables involved. Continuity was expressed as:

∂q

∂x
+

∂y

∂t
= 0 , (2.12)
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q2 = v2y2
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Figure 2.3: Original steady-state in location of the jam

where q is the volumetric flow rate. Conservation of momentum yielded:

g
∂y

∂x
+ v

∂v

∂x
+

∂v

∂t
= 0 , (2.13)

where, to avoid any confusion, v is the horizontal velocity. y is the flow depth and

g is the acceleration of gravity. Combining equations (2.12) and (2.13) gave:

∂v

∂t
= g(Fr

2 − 1)
∂y

∂x
+

u

y

∂y

∂t
, (2.14)

where Fr is the Froude number. In the first few seconds after the break, velocities

increased substantially without notable increase in free surface height. Taking the

second time derivative in equation (2.12) and expanding the partial derivatives gave:

∂
2
y

∂t2
= g(1− Fr

2)

�
∂y

∂x

�2

+ y
∂
2
y

∂x2
(2.15)

and assuming constant slope for the free surface gave:

∂
2
y

∂x2
= 0 . (2.16)
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The term ∂y

∂x
is very small, so it was concluded that ∂y

∂t
was actually very small

initially. This analysis implied that flow velocities got high very quickly with no initial

notable changes in free surface height.
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F0 = v0 / gy0

Figure 2.4: Dam break situation

The dam break situation is depicted in Figure 2.4, where relevant parameters are

annotated. Following Henderson’s analysis [8] gave:

v2 + 2
√
gy2 = v1 + 2

√
gy1 , (2.17)

where v2 and y2 are the upstream flow velocity and depth, respectively, and v1

and y1 are the surge wave flow velocity and depth, respectively. Continuity and

conservation of momentum yielded:

c(y1 − y0) = v1y1 − v0y0 (2.18)

and

(c− v0)2

gy0
=

1

2

y1

y0

�
y1

y0
+ 1

�
, (2.19)

where c is the surge wave velocity, vo and yo are the original downstream flow

velocity and depth, respectively. With the three equations, 2.17, 2.18 and 2.19, the
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three parameters of the surge wave, the flow velocity, v1, the flow depth, y1 and the

surge wave speed, c, could be determined. The analysis showed that the surge wave

height, y1− y0, was never greater than half of the original drop ,12(y2− y0), across the

jam. The analysis then set an upper limit in the increase in stage elevation during a

dam break.
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Figure 2.5: Dam break situation with a reformed ice jam

Figure 2.5 shows the scenario where the dam reforms further downstream, with

relevant parameters. This was plausible, since the ice blocks from the break of the

initial jam can get congested further downstream. Continuity and conservation of

momentum yielded respectively:

c(y3 − y1) = v1y1 − q (2.20)

and

(c+ v1)
2 =

1

2

y3

y1

�
y3

y1
+ 1

�
, (2.21)

where, referring to figure 2.5, q is the volumetric flow rate under the jam, c is the

upstream-traveling wave velocity and v1 and y1 are the upstream flow velocity and

depth, respectively, and y3 and v3 are the new flow depth and velocity above the new

jam. The negative wave downstream of the jam was described by:
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v4 − 2
√
gy4 = v1 − 2

√
gy1 , (2.22)

where v4 and y4 is the new flow velocity and depth below the jam. Applying

continuity and conservation of momentum between sections 4 and 1 (figure 2.5) and

using the relationship between sections 3 and 1:

v3 + 2
√
gy3 = v1 + 2

√
gy1 , (2.23)

allows to solve for the unknowns c, q, y3 and y4. It turned out that in the particular

case, the rise in water level y3 − y0 could have been as much as six times the original

height difference y2 − y0. The important point was that failure of the second jam

downstream could produce a more powerful surge than in the release of the original

jam.

The authors compared theory to field observations, namely those of the 1979

spring break-up on the Athabasca River at Fort McMurray, Alberta [12]. A surge

3.6 meters in height arrived after 45 minutes, traveling from 11km upstream, the

location of the jam. The theory predicted a surge height of 4.16 meters. However,

their prediction of a surge speed of 11m/s was off, since the observed real speed was

closer to 4 m/s. It should be noted that the authors did not include the effects of

frictional resistance in their study.

In 1982, Beltaos and Krishnappan [9] conducted a more detailed analytical and

numerical study of ice jam release surges. They compared their results with accounts

of a 1979 jam release in the Athabasca River at Fort McMurray [12]. Their approach

was to study the unsteady one-dimensional ice and water flow. Figure 2.6 depicts the

situation of ice moving over water during a jam release.
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bottomof ice cover 

Frc. 1 .  Definition sketch. 

With reference to Fig. I ,  two flow layers can be 
distinguished: (i) the fragmented cover of thickness I, 
including the water contained in its voids; if the poros- 
ity, E, of the cover remains the same for both the re- 
gions above and below the water surface and if the ice 
is floating, then the submerged thickness of the cover is 
equal to S,I with s, = specific gravity of ice; (ii) the layer 
of thickness h that consists of water, between the bot- 
tom of the cover and the channel bed. Figure I shows 
the assumed velocity distribution across the two layers; 
the fragmented cover is assumed to act as a solid due to 
interlocking among the fragments and thence to have a 
uniformly distributed velocity, u,. 
Corlrirllrip ecl~rafiorls 

Assuming that the porosity E of the cover is con- 
stant,' the niass conservation for ice results in (thermal 

i effects are neglected): 

in which T = time, s = longitudinal distance, and cl, = 
ice discharge per unit width, given by: 

[2] q, = ( I  - E ) l l , I  

Substituting [2] in [ I ]  gives: 
a t  d(L1,f) 

131 s+,, = o 
Consideration of the mass conservation of water gives: 

in which cl,, = water discharge, given by 

with q '  = water discharge in the second layer, i.e., 

where V = average velocity in the layer. Substituting 
[5] in [4] and taking [3] into account, ,' =~ves:  

which may be viewed as the continuity equation for the 
second layer. 

To write the overall niass flux equation for the ice 
and water flow, multiply [ I ]  by pi (ice density) and [4] 
by p ,  (water density) and add, to find: 

in which H = overall water depth, given by: 

[9] H = h + s ,  r 
and p,"q is the total mass flux, that is: 

[ 101 p,,q = plql + PUL/\\ 
It is noted that [8] is identical to the continuity equation 
for water flow of depth H and discharge (1. 

Mornerzturn eyrrafior~s 
The momentum equation for the water layer in a 

direction parallel to the channel bed is: 

in which 11. u = velocity conlponents in the .r and y 
directions respectively; g = magnitude of the acceler- 
ation due to gravity = 9.8 m/s2; So = channel bed 
slope; p = pressure, assumed approximately equal to 
the hydrostatic pressure; and .i = shear stress parallel to 
the x-axis, acting on a plane normal to the y-axis. The 
differential equation of continuity reads: 

By virtue of [12], the bracketed term on the left-hand 
side of [ I  I ]  may also be written as ( J L L / ~ J T )  + (i)u2/dx) 
+ (duu/dy). Making this substitution and integrating 
both sides of [ I  I ]  from y = 0 to ~1 = l z ,  gives: 

' I n  reality. E is cxpcctcd to vary, but only within a narrow range. 

Figure 2.6: Definitions sketch [9]

Assuming a constant porosity of ice, e, continuity applied to the ice yielded:

(1− e)
∂T

∂t
+

∂qi

∂x
= 0 , (2.24)

where T is the ice cover thickness, x is the longitudinal distance and qi is ice

discharge per unit width, given by:

qi = (1− e)uiT , (2.25)

where ui is the ice velocity.

(2.24) was substituted into (2.25) giving:

∂T

∂t
+

∂uiT

∂x
= 0 . (2.26)

Continuity for water yielded:
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∂h

∂t
+ esi

∂T

∂t
+

∂qw

∂x
= 0 , (2.27)

where h is the height of the water column, si is the specific gravity of ice and qw

is the water discharge per unit width, given by:

qw = q
� + euisiT . (2.28)

The second term on the right in equation (2.28) accounted for the water entrained

in the ice and the first term, q�, is the discharge from under the ice, given by:

q
� =

h�

0

u dy = V h , (2.29)

where V is the average flow velocity under the ice.

Combining equations (2.27), (2.28) and (2.29), gave (2.30):

∂h

∂t
+

∂q
�

∂x
= 0 , (2.30)

which was a continuity equation for the region under the ice. Multiplying equa-

tion (2.24) by the density of the ice, ρi, multiplying (2.27) by the density of water,

ρw, and adding the results, yielded an overall mass flux equation:

ρw
∂H

∂t
+

∂ρwq

∂x
= 0 , (2.31)
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where H is the overall water depth, including the water below the ice and the

submerged portion of the ice, given by:

H = h+ siT , (2.32)

and ρwq is the total mass flux given by:

ρwq = ρiqi + ρwqw . (2.33)

Equation (2.31) is the continuity equation for water flow of depth H and discharge

rate q. Conservation of momentum for the water layer gave:

ρw

�
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

�
= ρwgS0 −

∂P

∂x
+

∂τ

∂y
, (2.34)

where u and v are velocity components in the x and y directions respectively,

g is the acceleration of gravity and S0 is the channel bed slope. The pressure, P ,

was assumed hydrostatic, and τ is the x-direction shear stress. It should be noted

that the authors did not start with the shallow water equations in their formulation,

but proceeded to depth-average later in the course of their analysis, following the

hydrostatic pressure assumption. Continuity in differential form gave:

∂u

∂x
+

∂v

∂y
= 0 . (2.35)

Multiplying (2.35) by u and adding to (2.34), and then integrating from y = 0 to
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y = h, gave:

ρw



 ∂

∂t

h�

0

u dy + (u)h
∂h

∂t
+

∂

∂x

h�

0

u
2 dy(u)2

h

dh

dt
+ (u)h(v)h



 =

ρwgSoh− ∂

∂x

h�

0

P dy + (P )h
∂h

∂x
− (τi + τo)

, (2.36)

where τo is the bed shear stress and τi is the shear stress on the underside of the

ice cover. It should be noted that (u)h = ui and P = ρwg(H − y). To determine

(v)h (2.35) was integrated from y = 0 to y = h to yield:

(v)h = ui

∂h

∂x
+

∂

∂x

h�

0

u dy . (2.37)

Using (2.29), (2.30), (2.32), (2.34), and (2.37), (2.36) was simplified to:

ρw

�
∂q

�

∂t
+

∂m
�

∂x

�
= ρwghSw − (τi + τo) , (2.38)

where Sw is the slope of the water surface and:

m
� =

h�

0

u
2 dy . (2.39)

Considering an elementary ice mass, dmi, of length dx, then:
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(dmi)ai = g(dmi)Sw + τidx , (2.40)

where ai is the acceleration of the elementary ice mass, given by:

ai =
dui

dt
=

∂ui

∂t
+ ui

∂ui

∂x
. (2.41)

Also:

dmi = ρi(1− e)Tdx+ ρweSiTdx = ρwSiTdx . (2.42)

Substituting Equations (2.41) and (2.42) into (2.40), gave:

ρwSiT

�
∂ui

∂t
+ ui

∂ui

∂x

�
= ρwgSiTSw + τi , (2.43)

where Si is the slope of the ice. Using equations (2.38) and (2.30), and making

the approximation m
� ≈ V

2
h, yielded:

ρwh

�
∂V

∂t
+ V

∂V

∂x

�
= ρwghSw − (τi + τ0) . (2.44)

Assuming that the ice quickly accelerated to the flow speed, that is, ui ≈ V , and

adding (2.43) and (2.44), gave:
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ρwH

�
∂V

∂t
+ V

∂V

∂x

�
= ρwgHSw − τ0 , (2.45)

which was the same as the conservation of momentum equation for open channel

flow of depth H and average velocity V. Furthermore, since q in (2.33) becomes V H,

then:

∂H

∂t
+

∂(V H)

∂x
= 0 . (2.46)

The authors then concluded that for flow containing an ice cover at fully developed

speed, the overall equations governing the motion of water and ice were identical to

those for water flow of depth H and average flow velocity V . Given proper boundary

and initial conditions, these equations could be solved numerically. The authors

estimated that it would take a few minutes for the ice cover speed, ui, to become 95%

of the average flow velocity V . The authors applied their model to the Athabasca

River event in 1979 [12]. The initial conditions were determined by Doyle and Andress

[12] through observations. To solve the equations numerically, the stress on the bed,τ0,

had to be estimated. This was done by taking:

V

V ∗ =
C
√
g
, (2.47)

where V ∗ is the shear velocity, defined as:

V ∗2 = τ0

ρ
, (2.48)
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and C is the Chezy resistance coefficient that can be calculated using one of

several empirical formulas [11]. The authors determined through trial and error that

the best agreement with experimental data was obtained by taking V

V ∗ = 9, the ratio

varying from 5 for a stationary ice sheet of 1m thickness, to 16 for open water flow.

Figure 2.7 shows the computed peak surge in the Athabasca river and Figure 2.8 shows

the computed velocity-time variation several kilometers downstream of the location

of the ice jam release, at Mac-Ewan bridge. At T = 35min, the surface velocity at

that location was computed to be 2.2m/s. Observers estimated the velocity at that

time and location to be between 2 and 3m/s. The agreement was good.BELTAOS AND KRISHNAPPAN 28 1 
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FIG. 5. Downstream variation of peak surge stage as com- 
puted with V/V* = 9. 

T=35 min. 
est 'd surf. vel. = 2-3 m/s 
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T=Tirne from release (mid 
FIG. 6. Computed velocity-time variation at MacEwan 

Bridge (V/V* = 9). 

though not necessarily associated with greater overall 
water depth, H (see also Fig. I ) .  Considering that such 
an occurrence is not inconceivable, it is of interest to 
examine the effects of a hypothetical jam with the same 
maximum H as that of the actual jam but with larger 
length. Figure 7 shows the assumed initial profile of the 
hypothetical jam: a constant water depth, equal to the 
maximum overall depth associated with the actual jam, 
is assumed to occur in a reach of length LC, and a 
horizontal water surface transition is drawn between 
this reach and the uniform-flow, open-water reach up- 
stream. Figure 8 shows the resulting peak stage at Mac- 
Ewan Bridge plotted versus LC using V/V:, = 9.0;  for LC 
= 25 km, this peak would have been 1.3 m higher than 
the one that actually occurred. The main effect of LC on 
V is associated with the duration of surging velocities. 
For L, = 0 ,  Fig. 6 indicates a maximum of 2.3 m/s  for 
V, whereas velocities in excess of 2 m/s lasted for 
about 45  min. For LC = 25 km, the maximum value of 
V was calculated as 2.35 m/s  but velocities larger than 
2 m/s persisted for 110 min. 

Discussion 
From the foregoing analysis, it appears tht a one- 

dimensional, unsteady, open-water flow model can be 

I I I I 
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x= Downstream D~stance (km) 

FIG. 7. illustration of initial hypothetical jam with anequi- 
librium reach. 

2 4 . b -  10 20 30 
Le= Length of equilibrium reach (km) 

FIG. 8. Effecl of jam length on peak surge stage at Mac- 
Ewan Bridge (computed with V/V* = 9). 

applied to the ice-water flow that results from the re- 
lease of an ice jam using appropriate definitions of the 
mass and momentum fluxes. Realistic predictions can 
be made with this approach provided a suitable value is 
selected for the coefficient V/V:,. At this time, it is not 
known how this coefficient is to be predicted because o f  
complications arising from the frequent existence o f  
solid ice sheets below an ice jam. For the present study, 
the best value of V/V;, was found equal to 9 ,  which is 
between the open-water value (=16) and  the apparent 
value (5)  for flow under a I-m-thick ice cover. The  
apparent value of V/V:,: is defined as the ratio of the 
apparent V(equa1 to q /H)  to the apparent V:,:(equal to 
(,gHS,.)"'); S,. = energy slope). The apparent V/V:,: ap- 
plies when the cover is stationary but has to increase 
when the cover is set in motion. Additional case studies 
would help to develop a method for predicting suitable 
values of V/V:,. 

The possible effects of the jam length o n  downstream 
flow conditions were investigated using V/V:, = 9. It 
was found that jams of the same maximum H, but 
longer than, the actual jam would have resulted in in- 

Figure 2.7: Computed downstream variation of peak surge stage [9]
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water depth, H (see also Fig. I ) .  Considering that such 
an occurrence is not inconceivable, it is of interest to 
examine the effects of a hypothetical jam with the same 
maximum H as that of the actual jam but with larger 
length. Figure 7 shows the assumed initial profile of the 
hypothetical jam: a constant water depth, equal to the 
maximum overall depth associated with the actual jam, 
is assumed to occur in a reach of length LC, and a 
horizontal water surface transition is drawn between 
this reach and the uniform-flow, open-water reach up- 
stream. Figure 8 shows the resulting peak stage at Mac- 
Ewan Bridge plotted versus LC using V/V:, = 9.0;  for LC 
= 25 km, this peak would have been 1.3 m higher than 
the one that actually occurred. The main effect of LC on 
V is associated with the duration of surging velocities. 
For L, = 0 ,  Fig. 6 indicates a maximum of 2.3 m/s  for 
V, whereas velocities in excess of 2 m/s lasted for 
about 45  min. For LC = 25 km, the maximum value of 
V was calculated as 2.35 m/s  but velocities larger than 
2 m/s persisted for 110 min. 

Discussion 
From the foregoing analysis, it appears tht a one- 

dimensional, unsteady, open-water flow model can be 
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applied to the ice-water flow that results from the re- 
lease of an ice jam using appropriate definitions of the 
mass and momentum fluxes. Realistic predictions can 
be made with this approach provided a suitable value is 
selected for the coefficient V/V:,. At this time, it is not 
known how this coefficient is to be predicted because o f  
complications arising from the frequent existence o f  
solid ice sheets below an ice jam. For the present study, 
the best value of V/V;, was found equal to 9 ,  which is 
between the open-water value (=16) and  the apparent 
value (5)  for flow under a I-m-thick ice cover. The  
apparent value of V/V:,: is defined as the ratio of the 
apparent V(equa1 to q /H)  to the apparent V:,:(equal to 
(,gHS,.)"'); S,. = energy slope). The apparent V/V:,: ap- 
plies when the cover is stationary but has to increase 
when the cover is set in motion. Additional case studies 
would help to develop a method for predicting suitable 
values of V/V:,. 

The possible effects of the jam length o n  downstream 
flow conditions were investigated using V/V:, = 9. It 
was found that jams of the same maximum H, but 
longer than, the actual jam would have resulted in in- 

Figure 2.8: Computed velocity - time variation at MacEwan Bridge [9]

The ice jam in the case study was more than 10km long. The authors conducted

computational studies for longer jams and estimated equal peak velocities but longer

durations of high surface velocities.
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Joliffe and Gerard [10] conducted experiments in order to study the effect of the

presence of ice on the surge wave characteristics. They also conducted a numerical

study of the dam break problem, but accounted for frictional resistance and channel

slope, which had not been accounted for by Henderson et al [8] in their study. The

experimental setup is shown in Figure 2.9. Artificial ice was used upstream of a sluice

gate, in the form of polyethylene pellets. The ice thickness was varied and the ice

length was kept inversely proportional to it. The upstream depth was 300mm and the

downstream depth was 100mm. The jam release was simulated by the rapid removal

of the sluice gate.
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Figure 2.9: Experimental setup [10]

The authors did not find a clear trend in the variation of flow depth with ice depth.

They concluded that since there was no clear trend in the experimental results, the

presence of ice had little effect on the characteristics of the surge front, the shallow

water equations could be used to describe the problem mathematically. Continuity

and conservation of momentum (St. Venant Equations) yielded, respectively:

∂A

∂x
+

∂Q

∂x
= 0 (2.49)

and
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∂Q

∂t
+

∂

∂x

�
Q

2

A

�
+ gA

∂y

∂x
= gA (S0 − Sf ) . (2.50)

A is the flow cross-sectional area, g is the acceleration of gravity, Q is volume flow

rate, S0 is the channel slope, Sf is the frictional slope, t stands for time and y is flow

depth. By numerically solving equations (2.49) and (2.50) , the authors showed that,

according to their model, the surge wave should diminish in amplitude over distance

and time, as shown in figure 2.10, the decrease being the direct result of friction. As

such, surge wave velocities should be smaller than those computed in simple dam

break theory by Henderson et al [8] where friction and slope were neglected.N 
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Figure 2.10: Variation of profile with time and distance [10]

Overall, while the argument that friction to flow will cause the surge wave to

diminish in amplitude is plausible and consistent with observations, it is not clear

how accurately the authors captured the presence of ice in their experiments. The

inertia of the pellets compared to that of water is one consideration. Furthermore, the

pellets did not provide significant resistance to flow from friction with the walls of the

channel, as would happen with an ice jam breaking. Finally, it is not clear how much

an ice jam during its release behaves like a collection of pellets with little friction

between them, like a single mass, or like a collection of bodies with viscous-plastic
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interactions between them.

Wong, Beltaos and Krishnappan [17] performed a series of experiments simulating

surges created by ice jam releases. They compared their results with previous work

done by Henderson et al [8] and Belaos et al [9], that has already been discussed.

Their setup is depicted in Figure 2.11.
NOTES 

Float Gauge (F1) 
m - Wire Gauge (W1) 
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t a t  t  t  t t  t t t  i: i 

Downstream D~stance (m) 

FIG. 2. Initial water surface profile, run No. I 

TABLE 1. Summary of hydraulic data and test characteristics 

Level 
difference 
caused by 
jam at the Downstream 

Run Flow rate Channel gate, 6 depth, Yo 
No. (m3/s) slope (cm) (cm) 6/Yo 

istics; and to assess the effects of jam configuration and 
stream slope and resistance. Laboratory jams, con- 
sisting of polyethylene pellets, were formed upstream 
of a sluice gate installed in a 1.2 m wide flume. The 
sluice gate reproduced the initial steplike increase in 
water level assumed by Henderson and Gerard (1981) 
and was removable so as to simulate a sudden jam 
release. Postrelease stage hydrographs were recorded 
0.15 m upstream of the sluice gate, for different combi- 
nations of ice jam thicknesses and flow depths. It was 
found that Henderson and Gerard's (1981) theoretical 
calculations gave good results under these conditions, 
and no ice effects could be discerned. A numerical 
calculation for an assumed ice jam configuration with- 
out the steplike initial water level increase indicated 
several qualitative and quantitative differences from 
the theoretical predictions of Henderson and Gerard 
(1981). The differences were attributed to the various 
simplifying assumptions involved in that theory. 

It is evident from the foregoing that verification of 
the available jam release models involves only limited 
experimental results and one case study. Moreover, 
the latter includes scarce quantitative data, i.e., ap- 
proximate water level profile prior to release; approxi- 
mate postrelease stage hydrograph at one location; and 

TABLE 2. Observed and predicted times of arrival of jam 
front 

Time of arrival (s) of jam front at: 

Location F5 Location F10 
(4.65mfrom (14.65mfrom 
retaining gate) retaining gate) 

Run No. I 
Observed 
Predicted 

(Beltaos and 
Krishnappan) 

Predicted 
(Henderson and 
Gerard) 

Run No. 3 
Observed 
Predicted 

(Beltaos and 
Krishnappan) 

Predicted 
(Henderson and 
Gerard) 

Run No. 5 
Observed 
Predicted 

(Beltaos and 
Krishnappan) 

Predicted 
(Henderson 
and Gerard) 

*Value in parentheses is average speed of travel of the jam front. 

one surface velocity estimate after the release. The 
tests described herein were conducted to enlarge the 
experimental basis of the theory. 

Experimental setup and procedures 
The propagation of the surges resulting from the re- 
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Figure 2.11: Schematic of experimental setup [17]

The jams were formed by feeding polyethylene blocks at the upstream end of a

flume and obstructing their passage with a retaining gate. The gate was removed

abruptly, to simulate the release. The resulting surges were recorded at various loca-

tions downstream, by monitoring the water depth and time of arrival of the surge at

different locations. Altogether five runs were made and a summary of the hydraulic

data is given in Figure 2.12, where a comparison of surge wave speeds was made with

the results of the models by Beltaos and Krishnappan [9] and Henderson and Cooper

[8].

There was some agreement between experimentally and mathematically derived

surge wave speeds, as can be seen in the figure. Figure 2.13 shows experimentally pro-

duced surge profiles and their evolution with time at different locations, and compares

them with results from the work of the aforementioned authors.

In comparing the experimental results with those of the model by Beltaos and Kr-

ishnappan [9], the authors assumed the initial free surface profile shown in figure 2.11

in the model, and the experimental boundary conditions upstream and downstream

were the same as in the model. A step profile was assumed to compare the model of
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istics; and to assess the effects of jam configuration and 
stream slope and resistance. Laboratory jams, con- 
sisting of polyethylene pellets, were formed upstream 
of a sluice gate installed in a 1.2 m wide flume. The 
sluice gate reproduced the initial steplike increase in 
water level assumed by Henderson and Gerard (1981) 
and was removable so as to simulate a sudden jam 
release. Postrelease stage hydrographs were recorded 
0.15 m upstream of the sluice gate, for different combi- 
nations of ice jam thicknesses and flow depths. It was 
found that Henderson and Gerard's (1981) theoretical 
calculations gave good results under these conditions, 
and no ice effects could be discerned. A numerical 
calculation for an assumed ice jam configuration with- 
out the steplike initial water level increase indicated 
several qualitative and quantitative differences from 
the theoretical predictions of Henderson and Gerard 
(1981). The differences were attributed to the various 
simplifying assumptions involved in that theory. 

It is evident from the foregoing that verification of 
the available jam release models involves only limited 
experimental results and one case study. Moreover, 
the latter includes scarce quantitative data, i.e., ap- 
proximate water level profile prior to release; approxi- 
mate postrelease stage hydrograph at one location; and 

TABLE 2. Observed and predicted times of arrival of jam 
front 

Time of arrival (s) of jam front at: 

Location F5 Location F10 
(4.65mfrom (14.65mfrom 
retaining gate) retaining gate) 

Run No. I 
Observed 
Predicted 
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Krishnappan) 

Predicted 
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Run No. 3 
Observed 
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(Beltaos and 
Krishnappan) 

Predicted 
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Run No. 5 
Observed 
Predicted 

(Beltaos and 
Krishnappan) 

Predicted 
(Henderson 
and Gerard) 

*Value in parentheses is average speed of travel of the jam front. 

one surface velocity estimate after the release. The 
tests described herein were conducted to enlarge the 
experimental basis of the theory. 

Experimental setup and procedures 
The propagation of the surges resulting from the re- 
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Figure 2.12: Observed and predicted times of arrival of surge front [17]

Henderson with results. Figure 2.13 reveals good agreement between the experiments

and the model by Beltaos and Krishnappan [9]. The irregularities in the waveforms

were due to problems with the measuring apparatus. Reflected waves were also accu-

rately reproduced. The experiments predicted a slow-down of the surge front, as was

numerically derived from the work by Joliffe et al [10]. The authors concluded that,

in agreement with the conclusion by Joliffe and Gerard [10], the presence of ice had

little effect on the characteristics of surges. Furthermore, the results added validity
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lease of ice jams was studied by simulating the process 
in a 1 m wide rectangular flume. The jams were formed 
by feeding polyethylene blocks (5 X 5 x 0.6 cm) at the 
upstream section of the flume and by obstructing their 
passage with a retaining gate located about 3 m down- 
stream. A photograph of a typical jam (test No. I) and 
the initial water surface profile of the same jam are 
shown in Figs. I and 2. 

The jams were released by lifting the retaining gate 
suddenly, and the resulting surges were monitored by 
recording the water level at various locations along the 
channel. Seven wire probes and nine float probes, 
whose locations are shown in Fig. 2, were used for this 
purpose. The speed of the ice run was also monitored by 
determining the time required for the blocks to arrive at 
two specified locations. 

Altogether, five runs were made. A summary of the 
hydraulic data for these runs is given in Table 1. More 
details of the experimental setup and procedures are 
given in Wong et al. (1983). 

Test results and comparison with model predictions 
Depth hydrographs obtained at float gauges F3, F6, 

F8, F9, and F10 during run No. 1 are shown in Fig. 3 
along with theoretical predictions. 

For the numerical model (Beltaos and Krishnappan 
1982), the profile shown in Fig. 2 was used as the initial 
condition and the calculation domaine was between the 
upstream sluice gate and the downstream tailgate. Flow 
rate, computed from the instantaneous water levels just 
upstream and downstream of the sluice gate, was used 
as the upstream boundary condition.   he downstream 
boundary condition was the measured water level just 
upstream of the tailgate. For the analytical model 
(Henderson and Gerard 1981), the rise in water level 
caused by the jam was assumed to be vertical and to 
occur at the retaining gate. 

In Fig. 3, it can be seen that the agreement between 
the measured levels and the predicted ones using the 
method of Beltaos and Krishnappan is good for all the 
stations. The model predicts the initial surge as well as 
the reflected waves. There is a discrepancy between 
model prediction and the measurements during the time 
when the blocks travel across the station. During the 
passage of the blocks, the float gauge rides over the 
blocks and produces a trace that is irregular and higher 
than the actual water level. The erratic pattern can be 
seen in the traces of the floating probes downstream of 
the jam some time after the release. Similar results were 
obtained in runs 2-5 (Wong et al. 1983). 

To test model performance with respect to flow ve- 
locities, observed and predicted times of travel of the 
jam front are summarized in Table 2. The numerical 
model (Beltaos and Krishnappan) gives fair overall pre- 
dictions but involves considerable error in one instance 
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Figure 2.13: Comparison of surge profiles [17]

to the model developed by Beltaos and Krishnappan [9].

In 1997 Hicks, McKay and Shabayek [18] performed a numerical simulation of

the documented 1991 ice jam release which occurred on the Saint John River, New
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Brunswick [19]. The surge propagation analysis used a one-dimensional finite element

model based on the St. Venant equations, called the cdg model and developed by

Hicks and Steffler [20]. The model employs a Galerkin scheme to solve the one-

dimensional unsteady open channel flow equations, that were modified for a channel

of variable width. The topography of the river was recreated using available survey

data, supplemented with topographic map data and approximated as a channel of

rectangular cross-section and a variable width. The authors also accounted for lateral

inflow from tributaries to the river. The equations on which the model was based

were the St. Venant equations. For continuity the equation used was:

∂A

∂t
+

∂Q

∂x
= q (2.51)

and for momentum:

∂Q

∂t
+

∂(Q
2)
A
)

∂x
+ gA

∂H

∂x
+ gASf = 0 , (2.52)

where A is the flow cross sectional area, Q is the volume flow rate, H is the flow

depth, Sf is the friction slope and g is the acceleration of gravity. The boundary con-

ditions that the authors used in their model were a) the known inflow at the upstream

end and b) an assumed constant stage downstream, based on observations. The final

form of the free surface profile before the jam release can be seen in figure 2.14.

In the simulation the presence of ice was not explicitly taken into account. Fig-

ure 2.15 compares results with observations for the water levels at a specific location.

The computed peak water surface elevation was off by a factor of two, higher than

the observed value. The authors believed that the discrepancy could be due to not

accounting for the presence of ice.
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Figure 2.14: Bed profile and water levels used for the ice jam surge release simulation
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Figure 2.15: Water level comparison at a specific location [18]

Figure 2.16 presents the computed discharges at various locations. The computed

results for surge wave speeds and rates of discharge compared favorably with obser-

vations, and added credibility to the model.

Finally, Figure 2.17 shows computed discharges along the river for various times.

Ice jam release phenomena are associated with high flow velocities.

It is important to note that in the work of this thesis, as will be described below,

the presence of ice was not taken explicitly into account. While the presence of ice

bodies in the flow may affect the characteristics of the surge wave following the release

of a jam, what is of interest and importance is the rise in flow velocities following the

release. The work by Hicks et al [18] justifies the approach, since her results were in
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Figure 2.16: Water discharge for various locations [18]
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Figure 2.17: Water discharge for different times [18]

good agreement with observations in terms of discharge and flow velocity elevations.

This agreement was apparent even in earlier work by Henderson et al [8]. It seems

that the presence of ice affects more the changes in water surface elevation than it

does the changes in flow discharge during the release of an ice jam.

In terms of the effects that the presence of ice might have on the characteristics

of the surge wave following a jam release, in 2003, Jasek [36] presented a detailed

study of ice jam release processes, based on field observations. He concluded that,

in contrast to the conclusions of previous experimental studies by Joliffe and Gerard

[10] and Wong et al. [17], the presence of ice has a significant effect on the character-

36



istics of a jam release surge, and should be taken into account in subsequent studies.

Field observations showed that in an unimpeded ice run, the surge included ice for

considerable distances downstream, which affects the nature of the surge.

In 2003, Hicks and Blackburn [33] revisited the case of the 1991 ice jam release

event in the Saint John River [19], which had been studied by Hicks et al in 1997 [18].

Their main goal was to study the effects of a more realistic geometry in their model,

as opposed to the original work [18], which had assumed a rectangular channel. Their

model was based on the modified St Venant equations; The momentum equation used

was:

∂Q

∂t
+

∂(βQ
2

A
)

∂x
+ gA

∂H

∂x
− gASf = 0 , (2.53)

where the term β is the momentum flux correction coefficient, that accounts for

non-rectangular variation in channel geometry. Q is the volumetric flow rate, A is

the variable cross-sectional area, g is the acceleration of gravity and H is the water

level height. Sf is the friction slope. To solve the equations, the finite element model

was used, one that had been used in the previous study by Hicks [18]. In addition to

studying the effect of variable channel geometry, the authors made a first attempt to

account for the presence of ice by simulating a more gradual release. The boundary

conditions were the river inflow, as well as the inflow from the tributaries, and the

water level downstream. The domain was divided into two sections with respect to

the Manning coefficient, n, assigning a different value in each domain. Also, while the

1997 study [18] modeled the jam based on information 24h old, the authors updated

the jam thickness, based on the discharge right before release, which had decreased.

Three runs were made. The first run neglected the effects of ice and did not

implement a gradual release. Figure 2.18 compares results with respect to water
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levels at a specific location downstream.

From a broader perspective, one must note that the recession portion of the
computed stage hydrograph does not accurately represent the measured data, in
that the stages computed using the natural channel geometry were considerably
lower than the observations. The trend implied by the recession portion of the
measured stage hydrograph suggests the possibility that the total volume of water
being routed by the model was less than the actual !i.e., that some water may be
missing". This is unlikely to be due to errors in mass conservation in the numeri-
cal model itself, since independent checks !Blackburn 2000" have found the
maximum mass conservation errors in the model are less than 3% for this type of
event. This underestimation of the recession curve might reflect an error in the

Fig. 3. Comparison of measured and computed flows and stages for Run 1: !a" stage;
!b" discharge
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Figure 2.18: Comparison of measured and computed stage [33]

Figure 2.19 shows the comparison with respect to discharge.

From a broader perspective, one must note that the recession portion of the
computed stage hydrograph does not accurately represent the measured data, in
that the stages computed using the natural channel geometry were considerably
lower than the observations. The trend implied by the recession portion of the
measured stage hydrograph suggests the possibility that the total volume of water
being routed by the model was less than the actual !i.e., that some water may be
missing". This is unlikely to be due to errors in mass conservation in the numeri-
cal model itself, since independent checks !Blackburn 2000" have found the
maximum mass conservation errors in the model are less than 3% for this type of
event. This underestimation of the recession curve might reflect an error in the

Fig. 3. Comparison of measured and computed flows and stages for Run 1: !a" stage;
!b" discharge
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Figure 2.19: Comparison of measured and computed water discharge for different
times [33]

The conclusion was that, with respect to water surface level, the natural geometry

and updated jam profile fit the measured data well. There was, however, a discrepancy

concerning the recession portion of the computed stage hydrograph, in that it was

much lower than the measured one. It should be noted that the model accurately

predicted the time of arrival of the surge front. With respect to discharge, there

38



was a discrepancy between computed and measured values before the surge, with

the computed values being quite lower. Run 2 provided a sensitivity analysis with

respect to channel roughness, by increasing Manning’s n. The results showed that

the computed peak water level was higher than in run 1. Increasing the roughness

did not affect the speed of propagation of the surge. In terms of the effect that

Manning’s n had on peak water levels, the results were in disagreement with those

from the numerical study by Joliffe et al [10], who had concluded that the presence of

friction lead to a gradual decrease in peak water levels with distance and time. Run

3 included the effect of the presence of ice, by doubling the wetted perimeter and

increasing Manning’s n in the location of the jam. After 15min, the resistance effect

was removed. The results, with respect to water levels and discharges downstream of

the toe, were identical to those of run 1, where presence of ice had been neglected.

However, there were significant differences ( 50%) in discharge levels between the two

runs in the region of the jam itself, as can be seen in Figures 2.20 and 2.21.

quickly combine into one wave as the stored water is mobilized. At t!5 min,
although the peak discharge has increased from 2,000 to more than 8,000 m3/s,
the water surface profile !shown in Fig. 6"a#$ has changed only slightly. This
effect has been observed in ice jam surge release simulations conducted by the
second writer for other case studies, and may explain the dramatically increased
velocities which have been observed in open water leads downstream of ice jams
immediately prior to jam release "Henderson and Gerard 1981#. Another interest-
ing feature of Fig. 5 is the fact that the peak discharge remains upstream of the
jam toe, and propagates upstream during the initial period following the release,

Fig. 5. Computed discharge profiles for "a# Run 1 and "b# Run 3
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Figure 2.20: Computed discharge in the jam region for run 1 [33]

Overall, this study was inconclusive in terms of the contribution of an accurate ge-

ometry, because the model was unable to reproduce the shape of the recession portion

of the observed stage hydrograph. Furthermore, it was also inconclusive with respect
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quickly combine into one wave as the stored water is mobilized. At t!5 min,
although the peak discharge has increased from 2,000 to more than 8,000 m3/s,
the water surface profile !shown in Fig. 6"a#$ has changed only slightly. This
effect has been observed in ice jam surge release simulations conducted by the
second writer for other case studies, and may explain the dramatically increased
velocities which have been observed in open water leads downstream of ice jams
immediately prior to jam release "Henderson and Gerard 1981#. Another interest-
ing feature of Fig. 5 is the fact that the peak discharge remains upstream of the
jam toe, and propagates upstream during the initial period following the release,

Fig. 5. Computed discharge profiles for "a# Run 1 and "b# Run 3
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Figure 2.21: Computed discharge in the jam region for run 3 [33]

to discharge evolution, since the authors were not able to capture the measured dis-

charge value before the jam release. In the work of this thesis, the hydrodynamic

model allowed for adjustments in discharge levels presence of a stationary ice jam.

The adjustments were possible by adjusting the geometry of the stationary ice jam,

to match reduced discharge levels presence of the jam, which were known from ob-

servations.

In 2004, Liu and Shen [34] presented their work on ice jam release surges by

incorporating the presence of ice as a separate continuum in their model. They

compared their results with those of the work by Hicks et al [33] and showed that

the presence of ice significantly affected the characteristics of the surge. The model

that was used was a 2D coupled flow and ice dynamic model (DynaRICE), that had

been previously developed by the authors [35]. The model was based on the depth

integrated momentum equations. The hydrodynamic component of the model used

a finite element scheme, capable of handling high velocity and transitional flows.

The surface ice was treated as a continuum and internal resistance was taken into

account, formulated with a viscous-plastic constitutive law. The momentum equation

in Lagrangian form for the ice layer was:
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M
DV

Dt
= R + Fa + Fw +G , (2.54)

where all quantities are vector quantities. M is the ice mass per unit area, V is

the ice velocity, R is the internal ice resistance, Fa is the wind drag, Fw is the water

drag, and G is the gravitational force. Ice mass conservation was:

DM

Dt
+M∇ · V = 0 . (2.55)

The continuity equation for water flow was:

∂H

∂t
+� • (q1 + qi + qs) =

∂

∂t
(Nt

�
i
) , (2.56)

where H is the total water depth, q1 is the unit width discharge of water under

the ice, qi is the water flow due to water entrained in the moving ice, and qs is the

apparent seepage velocity in the ice layer, produced by the hydraulic gradient. t
�
i
is

the submerged ice thickness and N is the ice concentration in the form of volume of

ice per unit volume. The momentum equations were derived as follows:

∂q1x

∂t
+

∂

∂y
(
q
2
1y

H � ) +
∂

∂y
(
q1xq1y

H � ) = −gH
� ∂η

∂x
+

1

ρ
(τbx − τsx) +

1

ρ

∂Txx

∂x
+

1

ρ

∂Txy

∂y
(2.57)

and
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∂q1y

∂t
+

∂

∂x
(
q
2
1x

H � ) +
∂

∂x
(
q1xq1y

H � ) = −gH
�∂η

∂y
+

1

ρ
(τby − τsy) +

1

ρ

∂Tyy

∂y
+

1

ρ

∂Tyx

∂x
, (2.58)

where q1x and q1y are x and y components of the water mass flow rate per unit

width, H � is the depth of water beneath the ice layer, g is the acceleration of gravity

and ρ is water density. η is the depth of water above a reference level. τbx and τby are

bottom x and y shear stress components and τsx and τsy are x and y components of

the shear stress on the ice. Also:

Tjk = �
w

jk
(
∂q1j

∂xk

+
∂q1k

∂xj

) , (2.59)

where �
w

jk
is the eddy viscosity. When applying the model, the authors used a

rectangular channel, with a similar slope and length to that of the Saint John River,

that had been studied by Hicks et al. [18], [33]. A constant Manning’s coefficient

was used. Figure 2.22 shows the initial state of the jam, just before release. There

was a spike in the flow velocity at the jam toe that was consistent with the work,

much earlier, by Mercer and Cooper [13] who had studied scouring in that location

because of elevated flow velocities and stresses on the bed. The spike is due to the

fact that flow is constricted to a much smaller cross-sectional area under the jam and

is forced to move at higher average velocities. However, both the work by Mercer and

Cooper [13] and by Liu and Shen [34] was based on models that did not account for

non-hydrostatic effects. Figure 2.23 shows the simulated evolution of the jam, once

it was released. While the jam was mobile, the flow velocity was high at the moving

toe region.

Figure 2.24 shows the increase in stage elevation at various locations downstream,

and at different times,
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an excellent analysis on ice jam release processes based on field observations, and 
pointed out the differences of opinions on the importance of effects of ice.  
 
In this paper, a two-dimensional coupled flow and ice dynamic model DynaRICE (Shen 
et al. 2000) is used to study the ice resistance effects, including both the internal ice 
resistance and boundary friction resistance, on ice jam release surges in river channels. 
The hydrodynamic component of the model has been refined using a streamline upwind 
finite element method (Liu and Shen 2003, Brooks and Hughes 1982, Hicks and Steffler 
1992, and Berger and Stockstill 1995), which is capable of simulating high velocity and 
transitional flows. To avoid confusing the actual ice effects with the inaccuracy in field 
data an idealized channel, with a similar slope and length to the Saint John River, is 
used to study the ice effects. Simulation results with ice dynamics are compared with 
simplified simulations, in which the ice resistance effects are neglected, to clarify the 
ice effects on the surge. This comparison explains the discrepancies between the 
numerical results and observed data in Blackburn & Hicks (2003). Additional 
simulations were carried out to examine the jam release upstream of a run-of-river 
power dam. 
 
RELEASE OF ICE JAM IN A LONG CHANNEL 
In this case, ice jam release in a rectangular channel of 100 km long and 600 m wide is 
studied. Bed slope of the first 30 km of the channel is 0.0004, and the rest 70 km 
downstream is 0.0001. A constant Manning’s coefficient of 0.03 is used for the river 
bed. A constant water discharge of 2000 m3/s is used at the upstream boundary. At 
downstream boundary, a normal flow depth condition is used to represent uncontrolled 
downstream boundary. The water surface elevation changes automatically with water 
discharge at the downstream boundary. The initial steady state width-averaged 
longitudinal profiles of ice jam and water surface are shown in Figure 1.  
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Fig. 1.  Simulated ice jam profile and initial condition for jam release 

 
The ice jam release simulation lasted for 24 hours following the initiation of the jam 
release. The water surface and ice jam profiles 4, 10, 20, and 60 minutes after the jam 
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Figure 2.22: Initial state of the jam [34]

release are shown in Figure 2. The water velocities along the river are also shown. The 
maximum velocity is about 3 m/s for the initial 15 minutes, comparing to 2 m/s under 
the jam toe before releasing. After that, the surge starts to attenuate and velocity 
becomes smaller. It is noticed that the velocity under the moving toe is higher than the 
water velocity of the open water reach ahead of the ice run. 
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Fig. 2.  Longitudinal profiles after the jam released 
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Fig. 3.  a) Stage hydrographs at different locations along the channel, and  
b) the  increase in stage from the ice free condition 

 
Stage hydrographs, and the profiles of water level increase over a steady state ice-free 
open channel flow with a constant discharge of 2000 m3/s, at different locations 
downstream of the jam toe are plotted in Figure 3. Figure 4 shows the water and 
combined water and ice discharge at selected downstream locations. Figure 5 shows 
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Figure 2.23: Evolution of the jam [34]

release are shown in Figure 2. The water velocities along the river are also shown. The 
maximum velocity is about 3 m/s for the initial 15 minutes, comparing to 2 m/s under 
the jam toe before releasing. After that, the surge starts to attenuate and velocity 
becomes smaller. It is noticed that the velocity under the moving toe is higher than the 
water velocity of the open water reach ahead of the ice run. 
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Fig. 2.  Longitudinal profiles after the jam released 
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Fig. 3.  a) Stage hydrographs at different locations along the channel, and  
b) the  increase in stage from the ice free condition 

 
Stage hydrographs, and the profiles of water level increase over a steady state ice-free 
open channel flow with a constant discharge of 2000 m3/s, at different locations 
downstream of the jam toe are plotted in Figure 3. Figure 4 shows the water and 
combined water and ice discharge at selected downstream locations. Figure 5 shows 
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Figure 2.24: Changes in stage elevation downstream [34]

while figure 2.25 shows the changes in discharge at different locations (and times)

downstream.

The authors ran a simulation neglecting the presence of ice, and the compari-

son of their results with and without accounting for the presence of ice is shown in
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simulated water discharge, ice discharge and water level at 30 km downstream of the 
jam toe. It shows that ice movement lagged the surge front by about 5 hrs, as expected. 
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Fig. 4.  a) Water discharge hydrographs; and b) combined water and ice discharge hydrographs,  

at different locations downstream of the jam toe 
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Fig. 5.  Simulated water discharge and water level at 75 km 
 
 
Simulation results with ice resistance neglected 
A simulation was carried out for the above case using the same initial and boundary 
conditions, but neglecting the ice resistance effects by treating the ice mass as water. 
The simulated stage and discharge hydrographs are shown in Figure 6.  
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Fig. 6.   Stage and discharge hydrographs at downstream location along the channel 
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Figure 2.25: Change in discharge downstream [34]

figures 2.26 and 2.27.

Effect of ice resistance 
The results from the above simulations showed that the ice resistance has significant 
effects on both stage and discharge hydrographs during an ice jam release. Figure 7 
compares the stage hydrograph, as well as the hydrographs of the combined water and 
ice discharge, at km 50 for simulations with or without ice resistance. This figure 
showed that the peak stage values are about the same for both cases, but the stage 
hydrographs are significantly different. The surge with ice resistance recedes much 
slower than the case without ice resistance. The discharge hydrographs showed the ice 
resistance can lower the peak discharge significantly. The results also explained the 
discrepancies between the simulated results and observed data shown in Figure 3 of 
Blackburn and Hicks (2003), which neglected the ice resistance effects.      
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Fig. 7.  Effects of ice resistance on stage and discharge hydrographs at 50 km 

 

ICE JAM RELEASE IN A SHORT CHANNEL    
In this case, ice jam release in a rectangular channel of 28 km long and 600 m wide is 
studied. Bed slope of the channel is 0.00012. A constant Manning’s coefficient of 0.018 
is used for the river bed. The maximum Manning’s coefficient of the underside of the 
ice jam is 0.05. A constant water discharge of 3,600 m3/s is used as the upstream and 
downstream boundary conditions. This simulation is used to demonstrate the jam 
release phenomenon in a reach between run-of-river power stations. The initial steady 
state longitudinal profiles of ice jam and water surface are shown in Figure 8.  
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Fig. 8.  Simulated ice jam profile and initial condition for jam release 
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Figure 2.26: Comparison of stage elevation with and without the presence of ice [34]

The results showed that there was a significant effect of the presence of ice; while

the peak water surface elevation in the comparison was the same, the increase was

more gradual presence of ice and persisted longer. With respect to discharge, the

presence of ice had an initial dampening effect on the peak, but higher flows persisted

longer. The presence of ice delayed the release process. In their study, accurate river

geometry was not considered and a constant Manning’s coefficient, n, was used, since
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Effect of ice resistance 
The results from the above simulations showed that the ice resistance has significant 
effects on both stage and discharge hydrographs during an ice jam release. Figure 7 
compares the stage hydrograph, as well as the hydrographs of the combined water and 
ice discharge, at km 50 for simulations with or without ice resistance. This figure 
showed that the peak stage values are about the same for both cases, but the stage 
hydrographs are significantly different. The surge with ice resistance recedes much 
slower than the case without ice resistance. The discharge hydrographs showed the ice 
resistance can lower the peak discharge significantly. The results also explained the 
discrepancies between the simulated results and observed data shown in Figure 3 of 
Blackburn and Hicks (2003), which neglected the ice resistance effects.      
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Fig. 7.  Effects of ice resistance on stage and discharge hydrographs at 50 km 

 

ICE JAM RELEASE IN A SHORT CHANNEL    
In this case, ice jam release in a rectangular channel of 28 km long and 600 m wide is 
studied. Bed slope of the channel is 0.00012. A constant Manning’s coefficient of 0.018 
is used for the river bed. The maximum Manning’s coefficient of the underside of the 
ice jam is 0.05. A constant water discharge of 3,600 m3/s is used as the upstream and 
downstream boundary conditions. This simulation is used to demonstrate the jam 
release phenomenon in a reach between run-of-river power stations. The initial steady 
state longitudinal profiles of ice jam and water surface are shown in Figure 8.  
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Fig. 8.  Simulated ice jam profile and initial condition for jam release 
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Figure 2.27: Comparison of discharge with and without the presence of ice [34]

the authors wanted to emphasize the importance of taking into account the presence

of ice. As such, the authors did not compare their results with observations. Since

the authors did not juxtapose their numerical findings with observational estimates,

it is difficult to say to what extent their model was accurate. In terms of the work

in this thesis, it will be shown that accuracy in capturing the very initial rise in flow

velocities is not essential in determining whether there will be scouring in St. Clair

River during and after the release of a jam. This is because a significant amount

of scouring will take place during the prolonged high flow velocities after the initial

spike and the passage of ice. In fact, if Liu and Shen [34] were right, higher prolonged

flow velocities after the initial phase of a delayed release will contribute to even more

scouring than predicted by the model in this thesis.

In 2005, Hicks et al. [37] applied the finite element model that had been used in

previous studies [18] and [33], but incorporated ice effects more comprehensively than

they had done previously [33], in order to reproduce the results by Shen et al [34] and

the DynaRICE model that they had developed. A comparison was also made between

simulations and field data from the Saint John River ice jam release event [19]. The

formulation of the model was based on the assumption that released ice moves with
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the surface water velocity. The equations of total (ice + water) mass and momentum

were solved, and, separately, mass conservation for ice was solved. Bank resistance

to ice movement was accounted for by introducing a resistance term to the total flow

momentum equation. Longitudinal diffusion of the ice mass was approximated with

an empirical diffusion term in the ice mass continuity equation. In comparing the

results with those of Shen et al. [34], the same rectangular channel was used. Total

flow continuity was:

∂A

∂t
+

∂Q

∂x
= 0 (2.60)

and total flow momentum gave:

∂Q

∂t
+

∂UQ

∂x
+ gA

∂H

∂x
= −gASf + gASo − 2RigBηSf , (2.61)

where H is water surface elevation, A is the total cross sectional area, Q is total

discharge, U is the ice and water velocity and η is the ice thickness; Ri is a resistance

coefficient that accounts for friction between ice and the banks. Sf is the friction

slope, given by:

Sf =
n
2
U |U |
R

4
3

, (2.62)

where n is Manning’s coefficient and R the hydraulic radius. Continuity for ice

was:
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∂η

∂t
+

∂Uη

∂x
= D

∂
2
η

∂x2
, (2.63)

where D is an artificial numerical diffusion coefficient, that accounts for the longi-

tudinal diffusion of ice. The coefficients D and Ri were adjusted for optimal results.

Figure 2.28 gives a comparison with Shen’s results [34], with respect to stage ele-

vation, while Figure 2.29 gives a comparison with respect to discharge. Figure 2.30

shows a comparison with respect to the evolution of the ice jam profile.

0

5

10

15

20

25

0 20 40 60 80 100
Distance (km)

E
le

va
tio

n 
(m

)

             Top of ice
             Bottom of ice
             Water surface
             Channel bed

 
Figure 1. Liu and Shen’s (2004) test case for ice jam release simulation. 

 
 

2

4

6

8

10

12

14

16

18

-1 4 9 14 19 24
Time (hours)

W
at

er
 le

ve
l (

m
)

Liu and Shen (2004)

River1D (45km, Jam toe)

River1D (50km)
River1D (60km)

River1D (75km)

River1D (100km, Outf low )

 
 

Figure 2. Comparison of River1D with Liu and Shen’s (2004) results for water level. 
 
 
 

Figure 2.28: Comparison of water levels [37]

Shen’s results [34] were accurately reproduced. Figure 2.31 shows a comparison

between simulations with and without taking ice into consideration, with respect to

water surface elevations and discharges for two locations.

As can be seen, the model reproduces differences between results that do and do

not include the effects of the presence of ice. The authors applied their model to

the Saint John River event, which had been previously studied [18] and [33]. The

results were inconclusive, as there were marked differences in numerically derived and

observed water levels for both the case without ice and with ice, as can be seen in

Figure 2.32.
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Figure 3.  Comparison of River1D with Liu and Shen’s (2004) results for discharge. 
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Figure 2.29: Comparison of discharges [37]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Comparison of River1D with Liu and Shen’s (2004) results for ice jam profiles at 
different time after the release. 
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Figure 2.30: Comparison of ice jam evolution [37]
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Figure 5. Ice effects on stage and discharge hydrographs. 
 

 
 
 
 

Figure 2.31: Simulation result comparisons with and without ice effects [37]
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Figure 7. Comparison of measured and computed water levels at St Leonard (74.26km) for Saint 
John River ice jam release event. 

 

(b) 

(a) 

Figure 2.32: Comparison between simulation and observations for water levels [37]

2.2 A Numerical Study of the 1984 Ice Jam Event

In 2009, in response to the report by Beltaos [39], Kolerski and Shen [38] presented

a case study of the 1984 jam event, where they applied the DYNARice model that

was previously developed by Shen et. al [35]. The map of the region is shown in

Figure 2.33.

The jam first formed at Port Lambton, on April 6, gradually grew upstream to

reach St. Clair, and then stabilized. The jam released April 30th. Bathymetric data

were obtained and the region was meshed with triangular elements. Nine zones with

different Manning’s coefficients were used, and the model was calibrated with respect

to the coefficients, as well as ice discharge and concentration from Lake Huron, based
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Figure 2.33: Map of the St. Clair River [38]

on recorded water levels at various locations upstream and downstream of the jam.

The following formulas were used to estimate shear stresses on the bed:

τbx = cfρ
qx(q2x + q

2
y
)
1
2

H �2 (2.64)

and

τby = cfρ
qy(q2x + q

2
y
)
1
2

H �2 , (2.65)

where τbx and τby are bed shear stress components, cf is the friction coefficient

and qx and qy are flow rates. H
� is the depth of water under the ice. Based on

their simulations for the period prior to the release, the authors found that the flow

velocities under the ice jam did not significantly differ from the open water ones. The

jam began to release on April 28 and by April 30 had fully released. Figure 2.34 shows
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the maximum increase in estimated bed shear during the period of the stationary jam,

compared to open water conditions.
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Figure 2.34: Increase of bed shear stress due the presence of the jam (ice condition
minus May 1st open water condition) [38]

Based on their simulation results, the authors concluded that the presence of the

jam would have had negligible impact on bed scouring.

With respect to the work by Kolerski and Shen [38], certain points need to be

addressed. The authors studied the possible impact on scouring of the presence of

the 1984 jam, prior to its release. It will be shown in this work that, according to

numerical results, the bed stresses during the time the jam was in place were actually
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lower than in normal open water conditions. Scouring was found to happen during

and after the release of the jam, as a result of the ensuing high flow velocities, not

before its release. Furthermore, the model by Kolerski and Shen was based on the

depth-integrated momentum equations. A two-dimensional hydrostatic model cannot

adequately capture a jam release phenomenon, which is characterized by strong three-

dimensional turbulence and non-hydrostatic pressure gradients. Even under normal

open water conditions, it is unclear whether a two-dimensional model can accurately

capture the stresses on the St. Clair River bed, which are the product of complex

three-dimensional turbulent flow patterns.

2.3 Hydrodynamic Models that Have Been Used in the Huron-

Erie Corridor

Due to the significance of the region, hydrodynamical models of the HEC or its

components have been developed since before the 80s. A map of the region can be

seen in figure 2.35 and figure 2.36.

Figure 2.35: The Huron Erie Corridor
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Figure 2.36: The St.Clair/Detroit River System

2.3.1 River Models

Quinn and Wylie [21] published in 1972 their work on a 1D, transient flow model,

applied to the Detroit River, that connects lake St. Clair to lake Erie. The model

solved the 1D continuity and momentum equations with a finite difference implicit

scheme. The momentum equation used was:

1

A

∂Q

∂t
− 2QT

A2

∂z

∂t
+ (g − Q

2
T

A3
)
∂z

∂x
+

gn
2
Q|Q|

2.208A2R
4
3

= 0 , (2.66)

where Q is the volume flow rate, x is the distance in the flow direction and A is the

channel cross-sectional area. T is the channel width, z is the water surface elevation,

g is the acceleration of gravity, R is the hydraulic radius and n is Manning’s roughness

coefficient. The last term on the right accounted for shear-induced resistance to flow.

The Detroit River was modeled in idealized form, as seen in Figure 2.37.
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Flow Modeling 1463 

+ g- / 
[O(Zit--Zi+lt)'Ju(1--O)(Zi--Zi+')] = 0 

AX• 

fori = 1, 2, 3 j = 1, 3, 5 (6) 

• k = 4, 5, 6 

/, = Qs'- Q,'- Q4 '= 0 (7) 
If we acknowledge that a common water surface 
exists at the junction at any instant, i.e., Z2' = 
Z4' = Zs', then the equations contain nine 
unknown variables: Z•', Zs', Z6', and Q•' (i = 1, 
ß .. , 6). When two of the variables are specified 
as a function of time a unique solution for the 
remaining seven unknowns should be obtainable 
by a simultaneous solution of the seven equations. 
In this treatment the water surface elevations at 
Lake Erie Z•' and Lake St. Clair Z6' are specified. 
In addition the initial values of each of the nine 
variables must be known at time t. 

The nonlinear equations are handled numeri- 
cally by using the Newton-Raphson approach 
[Hildebrand, 1956]. At each time step the equa- 
tions are altered to form a linear set of simul- 
taneous equations, which are solved successively 
for unknown adjustments to the variables. These 

are successively applied to the original set of 
equations until the equations are satisfied to an 
acceptable tolerance. At each new time step, 
estimated values of the unknown variables are 
needed for correction by the computed adjust- 
ments. The efficiency of the method is quite 
dependent on the success with which these esti- 
mates are made. A method of projected approxi- 
mations that linearly extrapolates from known 
conditions to the new time step has been found 
to provide satisfactory trial values for the un- 
knowns to assure rapid convergence. 

In the Newton-Raphson procedure the values 
of the variables at two consecutive iterations 
are related by A quantities in the following 
manner: 

Z5 ! • (Z5 t) trial + AZ5 (s) 
Q,': (Q•')trial-[- AQ• 

for/= 1,-.. ,6 

The A quantities, or adjustments, are evaluated 
by solving the following set of equations: 

j=l,...,7 

LAKE ST. CLAIR 

(.6) I a 6, Q6 
I 

Reach 3 
(5) 

•5 ' Q5 
Crosse Isle 

LAKE ERIE 

ZI' Q3 

Fig. 2. Idealized plan view of Detroit River. 

Figure 2.37: The Detroit River model [21]

Three Manning’s coefficients were used, one for each reach (see Figure 2.37),

which were obtained by calibrating the model in order to most accurately reproduce

measured flow conditions. A sensitivity to the roughness coefficient analysis was

performed in that study. The formula used for the Manning’s coefficient is given

below:

n =
1.486AR

2
3

Q
(
(WSUP −WSDN)

L
+

Q
2∆A

32.2LA3
)
1
2 , (2.67)

where WSUP was the water surface elevation at the upstream gage, WSDN was

the water surface at the downstream gage, ∆A was the difference in area between the

upstream and downstream gages, and L was the length of the reach from upstream to

downstream gage. The boundary conditions used were the water surface elevations at

lakes St. Clair and Erie. The initial conditions were set by specifying water surface

elevations at Lake St. Clair and Lake Erie and computing an approximate steady

state flow configuration for each reach. The output of the model consisted of the

flows at each end of the three reaches of the model/river, as well as the water surface

elevations at the junction of the reaches.
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Quinn also studied the effects of wind stress on the hydrodynamics of the HEC [23].

Again, the model solved the continuity and momentum equations for 1D unsteady

flow, but a surface wind stress, τw, was included as:

τw = ρaCDU
2
, (2.68)

where ρa is the air density, CD is the drag coefficient, and U is the wind velocity.

The momentum equation, from equation (2.66) was modified to:

1

A

∂Q

∂t
− 2QT

A2

∂z

∂t
+ (g − Q

2
T

A3
)
∂z

∂x
+

gn
2
Q|Q|

2.208A2R
4
3

− ρa

ρw

U
2
cos(φ− a)|cos(φ− a)|CDT

1
= 0

, (2.69)

where φ is the channel azimuth, a is the wind direction and ρw is the water density.

The resultant wind speeds were taken from measurements at the Detroit City Airport.

It was found that the addition to the preexisting model [21] of wind shear effects for

the annual average wind amounted to a 4.3% flow reduction in the Detroit River.

The maximum daily wind effect was approximately a 7% reduction in flow. It was

concluded that the inclusion of wind effects had little influence on monthly flow rates

in the Detroit River, or the water level in Lake Erie (5mm difference in depth).

However, wind had a significant effect on the water level in Lake St. Clair, equivalent

to a 111mm depth difference. Variations of the model by Quinn [21] were presented

in the late 70s and early 80s, [22], [24], based on the same 1D equations of continuity

and momentum with or without the addition of wind effects. Their differences lay

primarily in the degree of spatial/temporal discretization, as well as the frequency

and accuracy of hydrodynamical measurements in the HEC.
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Tsanis et al. [27] presented in 1996 a steady 2D turbulent model, called the RMA2

model, applied to the St. Clair and Detroit Rivers. The goal of the model was to

accurately simulate river currents, in order to be able to track the movement and

dispersion of pollutants. The equations used were the depth-integrated equations of

momentum and continuity, as presented below; x - momentum was:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
+ g

∂ao

∂x
− �xx

ρ

∂
2
u

∂x2
− �xy

ρ

∂
2
u

∂y2
− 2ωvsinφ+

gu

C2h
(u2 + v

2)
1
2 − ξV

2
a

h
cosψ = 0 .

(2.70)

y - momentum was:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
+ g

∂ao

∂y
− �yx

ρ

∂
2
v

∂x2
− �yy

ρ

∂
2
v

∂y2
− 2ωusinφ+

gv

C2h
(u2 + v

2)
1
2 − ξV

2
a

h
sinψ = 0

(2.71)

and continuity was:

∂h

∂t
+

∂uh

∂x
+

∂vh

∂y
= 0 , (2.72)

where u and v are depth averaged flows in the x and y direction respectively, g

is the acceleration of gravity, h is water depth and ao is the water surface elevation.

�xx and �yy are turbulent viscosities, in the x and y direction respectively. �xy and �yx

are tangential turbulent eddy viscosities, in the x and y direction. ω is the Earth’s

angular rotation velocity, ρ is density and φ is latitude. C is the Chezy roughness
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coefficient and ξ is a coefficient relating wind speed to stress exerted on the water

surface. Va is wind velocity and ψ is the angle between wind direction and the x-axis.

The three equations were solved by the finite element method in an unstructured

grid, which facilitated the more accurate capturing of the physical geometry. Bed

friction was calculated with Manning’s equation. The following formula was used for

Manning’s n:

n = 0.0382k
1
6
s , (2.73)

where ks is the equivalent roughness that depends on the bed roughness, and

was fixed, since n was fixed. The authors accounted for the fact that horizontal

velocities were not uniformly distributed in turbulent flow. The velocity profiles were

approximately logarithmic and could be expressed by:

u(z)

u∗
= 2.5ln(

30.1z

ks
) , (2.74)

where u(z) is the velocity as a function of distance from the bed and u∗ is the

shear velocity. The shear velocity was given by:

u∗ =
�
ghSf , (2.75)

where Sf is the friction slope, that can be calculated via Manning’s formula as:

Sf = (nU/R
2
3
h
)2 , (2.76)
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where Rh is the hydraulic radius and U is the depth averaged flow velocity. Setting

z = h in equation (2.74) gave:

us

u∗
= 2.5ln(

30.1h

ks
) , (2.77)

where us is the flow velocity at the water surface. Integrating equation (2.74) from

the bottom to the water surface, and dropping small terms, the following formula was

derived:

U

u∗
= 2.5ln(

11.0h

ks
) . (2.78)

Combining equations (2.77) and (2.78), the authors derived:

us =
U

ln(11.0h/ks)
ln
30.1h

ks
. (2.79)

From (2.79), the surface velocity could be calculated from the depth-averaged ve-

locity, and was 15 - 20% higher than the latter. The authors used the depth-averaged

velocities derived from their model to calculate surface velocities, from which they

could compute the movement of surface pollutants. For the model, the upstream

boundary condition was a given discharge, and the downstream boundary condition

was water surface elevation. Both were fixed during the runs. The outputs of the

model were water surface heights and discharges. The models were run for sections

of the St. Clair and Detroit rivers, and the results were compared to field observa-

tions. Generally, there was very good agreement between simulations and field data.

An example is given by Figure 2.38, where simulated and observed discharges in a
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bifurcation of River St. Clair are compared.

Figure 2.38: Comparison of simulated and observed results in a location of River St.
Clair [27]

2.3.2 Lake Models

In 1981 Schwab, Bennett and Jessup [25] presented two 2D unsteady flow models

applied to Lake St. Clair. The first was a free surface (gravitational response) model,

intended for forecasting water level fluctuations. The second model was intended to

simulate large scale circulation in the lake, and free surface fluctuations were neglected

(rigid lid) in order to save in computational time. Both models were based on the

vertically integrated shallow water equations. For the first model, x-momentum gave:

∂M

∂t
− fN = −gD

∂H

∂x
+ ρ

−1
τ
S

x
− ρ

−1
τ
B

x
. (2.80)

y-momentum:
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∂N

∂t
− fM = −gD

∂H

∂y
+ ρ

−1
τ
S

y
− ρ

−1
τ
B

y
(2.81)

and continuity:

∂H

∂t
+

∂M

∂x
+

∂N

∂y
= 0 , (2.82)

where M and N are the components of the vertically integrated transport vector

in the x and y directions respectively; H is the water level displacement from its mean

value and D is the depth; f is the Coriolis parameter, with f = 2ωsinφ , where ω is

the angular speed of rotation of the earth, and φ is latitude; g is the acceleration of

gravity and ρ is the density of water; τS
x
and τ

S

y
are the x and y components of the

wind stress vector, and τ
B

x
and τ

B

y
are the x and y components of the bottom stress

vector. The following constitutive equations were provided for the bottom stress:

τ
B

x
=

CD

D2

√
M2 +N2M (2.83)

and

τ
B

y
=

CD

D2

√
M2 +N2N . (2.84)

Written in compact form the equations become:
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�τB

ρ
= CD|�V |�V , (2.85)

where �V is the average flow velocity. Provided that the surface stress (wind

speed) is specified as a function of x, y and t, then the three equations (2.80), (2.81)

and (2.82) form a closed set with three unknowns, H, M and N. For the rigid lid

model, the equation of continuity became:

∂M

∂x
+

∂N

∂y
= 0 . (2.86)

Defining the stream function, ψ, and setting M = −∂ψ

∂y
and N = −∂ψ

∂x
, the two

momentum equations were combined into one, scalar, equation:

∂

∂t
(� •D−1 � ψ) + fJ(ψ, D−1) =

∂

∂x
(
τ
S

y
− τ

B

y

ρD
)− ∂

∂y
(
τ
S

x
− τ

B

x

ρD
)

, (2.87)

where:

J(ψ, D−1) =
∂ψ

∂x

∂D
−1

∂y
− ∂ψ

∂y

∂D
−1

∂x
. (2.88)

Also:
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u = − 1

D

∂ψ

∂y
(2.89)

and

v =
1

D

∂ψ

∂x
, (2.90)

where u and v are the x and y components of the vertically averaged velocity,

respectively. The isolines of the stream function, ψ, were the streamlines, to which

the velocity vector was tangent. In the model the stream function varied with time

(unsteady flow). The transformation of the momentum equations to a scalar stream-

function-equation, in addition to being computationally advantageous, readily pro-

vided numerical means of tracking the movement of particles/pollutants in the flow,

as will be seen below [26]. The models used a finite difference explicit scheme to solve

the equations, with 1.2km grid squares forming the grid that approximates Lake St.

Clair.

In 1989 Schwab et al. [26] presented a study of the circulation in Lake St. Clair,

where they applied the rigid lid model described above [25], and compared their re-

sults with observations. Furthermore, a second model was used to track the movement

of partially submerged particles in the lake. The importance of tracing and predict-

ing the trajectories of particles lies, primarily, in being able to monitor and predict

the movement of pollutants in the lake. A 1.2km characteristic-length-grid was con-

structed to approximate the geometry of the lake, as can be seen in Figure 2.39.

The model was driven by the hydraulic flow through the lake and by time-

dependent wind stress at the surface. Wind stress was derived from hourly obser-

vations of wind speed and direction, air temperature and water temperature. The
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SCHWAB ET AL, ' WIND EFFI•CTS IN LAI(I• ST, CLAIR 4949 

Fig. 2. The 1.2-kin numerical grid for Lake St. Clair. Arrows show the 
inflows and outflow used in the numerical model. 

duced from this procedure increases with wind speed, in- 
creases when the air temperature is less than the water tem- 
perature, decreases when the air temperature is greater than the 
water temperature, and has a value of 1.62 x 10 -s for neutral 
conditions with a wind speed of 15 m s -• at 10-m height 
[Schwab, 1978]. 

Currents are calculated on a 1.2-km grid approximating the 
shape of the lake as shown in Figure 2 for the entire period May 
23 to December 2, 1985 during which wind data were col- 
lected. Hourly values of the currents for each grid square were 
then saved for comparison with observed currents and for 
simulation of particle transport through the lake. 

After currents are calculated, another model is used to move 
tracer particles through the lake. The particles are assumed to 
follow the vertically uniform currents without sinking or dif- 
fusing. The numerical model for particle trajectory calcula- 
tions was developed by Bennett et al. [1983] and used by 
Schwab and Bennett [1987] in Lake Erie. The model uses a 
second-order method to compute particle trajectories and takes 
special care to realistically represent the currents near the 
shoreline. As shown by Bennett and Clites [ 1987], this method 
is far more accurate than simple first-order methods yet is only 
slightly more complex computationally. This particle trajec- 
tory model is also used in the "Pathfinder" trajectory predic- 
tion system [Schwab et al., 1984] that is used by the National 
Weather Service and the U.S. Coast Guard for tracking hazard- 
ous spills and for search and rescue missions on the Great 
Lakes. 

The equations of motion for a partially submerged drifting 
object are 

d•-=u(x,y,t)= uc(x,y,t) +auw(x,y,t ) 

----=v(x,y t)=vc(x y,t) +avw(x,y t) dt ' ' ' 

(4) 

where uc and v, are the horizontal components of the current 
and u,• and v•, are the corresponding wind components. The 
constant, a, represents a "windage" factor that can vary from 

zero for a fully submerged object to several percent for objects 
with greater above water exposure The second-order finite 
difference scheme used to numerically integrate (4) is 

n+l _X n 
At 

u(x" ") l c)U (xn+l n) !• U ( 'Y + •"•xx - x + 28y Y n+l n) -y 

n+l n 
-y 

At 

n 1 •V (xn+ 1 v , + ¾T;; -- X") + !•V ( .+1 2 •y 'y -Y") 

(5) 

where the superscripts n and n+l indicate values at the current 
time step and the next time step, respectively. Bilinear inter- 
polation from the four corner values is used to compute the 
values of u and v and their derivatives at the particle position 
within a grid square. The time step, At, is automatically 
adjusted to ensure that a particle does not move more than 
1/8 of a grid interval in one time step. 

The main limitations of the circulation and particle trajec- 
tory models as applied to Lake St. Clair are (1) the two- 
dimensional circulation model only calculates vertically aver- 
aged currents and therefore cannot make predictions about the 
vertical structure of the circulation in the lake and (2) the par- 
ticle trajectory model does not attempt to model diffusion or 
mixing due to sub-grid scale processes. The limitation of 
vertically averaged currents may not be too severe in Lake St. 
Clair where, because of the shallow depth, the water column is 
generally well mixed right to the bottom and any thermal 
stratification is short-lived, although even in a thermally homo- 
geneous lake there may still be some vertical structure due to 
frictional boundary layers. The results of the trajectory model 
could be used to simulate diffusive processes by either consid- 
ering the tracer particle as the centtold of a diffusing patch and 
applying a Fickian type diffusion law to determine the size of 
the patch as a function of time or by adding a random walk 
component to the velocities used to move the particle in (4). 
However, to isolate the effect of wind-induced currents on 
residence times, diffusive processes are not included. 

3. COMPARISON OF MODEL RESULTS WITH 
MEASUREMENTS 

3.1. A. Comparison of Circulation Model Results 
With Moored Current Meters 

In 1985, as part of the joint U.S.-Canada Upper Great Lakes 
Connecting Channels Study, the National Water Research 
Institute (NWRI) of the Canada Centre for Inland Waters 
maintained 12 current meter moorings in Lake St. Clair from 
June to November. Each mooring consisted of a single self- 
recording current meter mounted on the lake bottom with the 
measurement height of the meter at 1 m off the bottom. The 
current meters at moorings 1-9 in Figure 3 were Nell Brown 
Acoustic Current Meters and the other three were Geodyne 
models. The moorings were arranged in two transect lines, one 
across the mouth of Anchor Bay and the other along a line just 
east of the shipping channel, with three other moorings in the 
eastern basin of the lake. The meters recorded 4-min vector 
averages of current once every 20 min. The 20-min samples 

Figure 2.39: Numerical grid of Lake St. Clair [26]

wind drag coefficient varied with wind speed and temperatures of the air and the

water. The particle trajectory model was implemented in the Pathfinder trajectory

prediction system, used by the National Weather Service and the U.S. Coast Guard

for tracking hazardous spills, as well as in rescue missions. The model used the

equations of motion for a partially submerged drifting object:

dx

dt
= u(x, y, t) = ue(x, y, t) + auw(x, y, t) (2.91)

and

dy

dt
= v(x, y, t) = ve(x, y, t) + avw(x, y, t) , (2.92)

where ue and ve are components of the current velocity and uw and vw are wind

63



velocity components. The constant a represents a ”windage” factor, that varies from

zero for fully submerged objects to several percentage points for objects with over-

the-surface exposure. The model used a highly accurate second order finite difference

scheme. A limitation of the rigid lid model was that it did not account for vertical

movements. As for the particle trajectory movement, a limitation was that it did not

account for any diffusion or mixing at a sub-grid level. The 2D flow approximation

was considered reasonable because of the shallowness of Lake St. Clair. There were

difficulties in calculating the bottom friction coefficient for use in the circulation

model. However, there was overall good agreement between computed results and

observations for the drifter trajectories.

In 1985 Ibrahim and McCorquodale [28] presented a 3D steady state, finite ele-

ment model, intended to study the circulation, as affected by wind and ice conditions,

in Lake St. Clair. Their model’s main objective was to generate representative flow

patterns affected by wind, and to simulate the movement of pollutants. The authors

made several assumptions in formulating the governing equations; stratification was

neglected, horizontal momentum transfer was neglected, wind was assumed uniform

over the lake and the time needed to attain steady state was short; furthermore,

non-linear inertial terms were neglected. This assumption was based on certain com-

putational results, which showed that the inclusion of the non-linear terms changed

the values of velocities by only 3%. Finally, a constant eddy viscosity was assumed.

The x, y and z momentum equations then became respectively:

−fv = −1

ρ

∂p

∂x
+ �z

∂
2
u

∂z2
, (2.93)
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fu = −1

ρ

∂p

∂y
+ �z

∂
2
v

∂z2
(2.94)

and

g = −1

ρ

∂p

∂z
, (2.95)

where p is (hydrostatic) pressure, ρ is the density of water and f is the Coriolis

coefficient. g is the acceleration of gravity and �z is the turbulent viscosity. Continuity

gave:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 , (2.96)

where u, v and w are x, y and z velocities. The surface boundary conditions were:

�z
∂u

∂z
= τsx (2.97)

and

�z
∂v

∂z
= τsy , (2.98)

where τsx and τsy are wind stress functions in the x and y directions. For the

wind stress function, equation (2.85) was used. Furthermore, a transport model was

used for the simulation of pollutant circulation, based on a depth averaged transport

65



equation:

U
∂c

∂x
+ V

∂c

∂y
=

1

h

∂

∂x
(hEx

∂c

∂x
) +

1

h

∂

∂y
(hEy

∂c

∂y
)−

Ex

h

∂c

∂x

∂h

∂x
− Ey

h

∂c

∂y

∂h

∂y
+ kc+Q ,

(2.99)

where c is the depth-averaged pollutant concentration, Q is a source/sink term

and k is a reaction coefficient; Ex and Ey are turbulent eddy diffusivities in the x and

y directions, h is depth and U and V are depth averaged velocities in the x and y

directions. The flow and transport equations were solved by a finite element scheme.

The model was calibrated by adjusting eddy viscosities. Good simulation of current

magnitudes and fair prediction of current directions resulted. The model was also

tested for an ice-covered-lake scenario, by setting wind stresses to zero and adding

friction with ice on the top.

In 1989, Simons and Schertzer [29] presented a 2D unsteady model based on

the linearized vertically integrated equations of motion. The model used a finite

difference scheme, and the objective was to compute water levels as a function of

wind stresses. The model was verified by correlating hourly values of computed

and measured water levels, and a correlation coefficient of 0.92 was found for 1753

hourly values. The model was found to be very sensitive to the formulation of the

bottom stress. Since the bottom stress was formulated first, and then the model was

calibrated by adjusting the drag coefficient for wind stress, it was concluded that,

from a computational perspective, the wind stress formulation depended heavily on

the bottom stress formulation.
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2.3.3 Combined-System Hydrodynamic Models

Holtschlag and Koschik [30] presented in 2002 a steady-state, 2D, finite element

model for the HEC. The model was based on the RMA2 model developed by Tsanis

et al. [27], presented above. The equations solved were the 2D depth-averaged RANS

equations and continuity, that have been presented above in (2.70), (2.71) and (2.72).

In the implementation of the RMA2 model, the Coriolis force, as well as wind effects,

were excluded. For the bed shear, Manning’s formula was used. The equations

were solved by the Galerkin method of weighted residuals, that led to a system of

nonlinear equations, solved by the Newton-Raphson method. The mesh comprised of

triangular and quadrilateral elements, containing a total of 42,936 nodes. Calibration

parameters were the Manning’s coefficient, n, and the turbulent viscosities. The model

was initiated with a given n value. Then 25 material zones with different Manning’s

coefficients were used, which were estimated based on seven scenarios/comparisons.

A universal inverse modeling code was used to make the required adjustments, based

on a nonlinear regression procedure. During the calibration procedure, the eddy

viscosities were assigned values based on an assigned Peclet number. The boundary

conditions were the flow velocity at the entrance of St. Clair River and the water

level at the outflow of the Detroit River in Lake Erie. Outputs were flow velocities

and water surface elevations. Overall, there was good agreement between simulated

and expected results, as seen in figures 2.40 and 2.41.

In 2010, Anderson et al. [32] presented the first fully 3D, unsteady, hydrostatic,

model, as applied to the HEC, that was based on the Finite Volume Coastal Ocean

Model (FVCOM), developed by Chen et al. [31]. The equations on which the model

was based are shown below; Continuity:

� • �V = 0 . (2.100)
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Figure 10. Relation between expected and simulated flows on St. Clair River for seven calibration scenarios. 
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Figure 2.40: Comparison of simulated and expected flows [30]
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Figure 13. Relation between expected and simulated water levels on Detroit River for seven calibration scenarios.  
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Figure 2.41: Comparison of simulated and expected water levels [30]

X-momentum:

Du

Dt
− fv = −1

ρ

∂P

∂x
+

∂

∂z
(Km

∂u

∂z
) + Fu . (2.101)
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Y-momentum:

Dv

Dt
− fu = −1

ρ

∂P

∂y
+

∂

∂z
(Km

∂v

∂z
) + Fv (2.102)

and z-momentum:

∂P

∂z
= −ρg , (2.103)

where �V is the velocity vector and u and v are its components. f is the Coriolis

parameter, ρ is the density of water and P is pressure; Km is the vertical eddy

viscosity and Fu and Fv are horizontal momentum diffusion terms. The model used

a turbulent kinetic energy closure scheme. The boundary conditions were:

Km

∂(u/v)

∂z
=

1

ρ
τx/y , (2.104)

where τx/y is the bottom (or surface) shear in the x/y directions, given by:

τx/y

ρ
= CD

√
u2 + v2(u/v) , (2.105)

where CD is the drag coefficient, and u/v can be either the surface wind velocity

components, or flow velocity components. An unstructured grid consisting of trian-

gular elements was used, and a finite volume scheme was employed. The boundary

conditions were the water levels at Lake Huron and Lake Erie, driving winds at Lake

St. Clair, and water inflow from tributaries. The initial conditions in the model cor-
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responded to a steady state. The steady state was achieved in the following manner:

the system began with a flat water surface. Then the water was allowed to drain at

the exit of the Detroit River into Lake Erie, until a surface elevation difference be-

tween 1.5 and 2 meters developed between Lake Huron and Lake Erie, which served

as an initial condition. Bed roughness was taken to vary between different zones, and

the model was calibrated based on the procedure followed by Holtschlag et al. [30].

Initially the model was calibrated (based on roughness values), with respect to water

surface elevations at various locations. Once good agreement was achieved between

measured and simulated water level values by changing individual roughness values,

the model was calibrated with respect to flows by increasing or decreasing all rough-

ness values simultaneously. Good agreement between expected values and simulated

results was achieved, with the maximum difference in water level being approximately

4 cm and for most locations being less than 2 cm. Flows at the head of the St. Clair

River were within 5% of measured values. The model was designed to provide both

nowcasts and forecasts. Nowcasts were based on real-time (every six minutes) water

level measurements, hourly figures for wind conditions in Lake St. Clair, and daily

averages for tributary flows. 48h forecasts were based on wind and water level fore-

casts. Forecasts were updated every 12 hours, based on the newest measurements.

As would be expected, the more time elapsed from the last forecast, the less accurate

that forecast was. The limiting factor was the accuracy of the weather forecasts.

2.3.3.1 Other Models Currently in Use

The HEC-RAS model computes water surface profiles for one-dimensional steady,

gradually varied flow in rivers of any cross section, and was developed by the US

Army Corps of Engineers.

The TELEMAC-2D is a model that uses the finite element method to solve the

depth averaged equations of flow (shallow water equations).
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The HydroSed2D model solves the depth averaged equations of flow, but also

incorporates sediment transport.

All three models were used in the International Joint Commission Report [1],

briefly described in the introduction.
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CHAPTER III

The Hydrodynamic Model

As seen from the study of previous models, a fully 3D turbulent, unsteady, non-

hydrostatic model had not been implemented on any of the parts of the Huron Erie

Corridor until now. This is precisely the type of model that is used in this work.

The hydrostatic model is based on the work by Fringer et al [40], which solves the

RANS equations on an unstructured grid using the finite volume method. The un-

structured triangular grid is capable of capturing complex geometries. The model

is the basis of the Suntans project (Stanford Unstructured Nonhydrostatic Terrain-

following Adaptive Navier-Stokes Simulator), that is widely used in oceanographic

studies. It has scalar transport capabilities and can account for surface winds. The

Suntans platform readily allows for the unix-based code to run on multiple proces-

sors. The non-hydrostatic solver is based on the predictor-corrector method originally

developed by Casulli [41].

3.0.4 A description of the equations

The conservative form of the Reynolds-Averaged Navier-Stokes equations for mo-

mentum are:
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∂u

∂t
+� • (�uu)− fv + bw = − 1

ρo

∂p

∂x
+�H • (νH �H u) +

∂

∂z
(νV

∂u

∂z
) , (3.1)

∂v

∂t
+� • (�uv) + fu = − 1

ρo

∂p

∂y
+�H • (νH �H v) +

∂

∂z
(νV

∂v

∂z
) (3.2)

and

∂w

∂t
+� • (�uw)− bu = − 1

ρo

∂p

∂z
+�H • (νH �H w) +

∂

∂z
(νV

∂w

∂z
)− g

ρo
(ρo + ρ) .

(3.3)

Continuity leads to the incompressibility constraint:

� • �u = 0 , (3.4)

where u, v and w are x, y and z velocity components, respectively. ρo is a constant

reference density and ρ is the density variation, while the total density is given by

ρo+ρ, f and b are Coriolis terms, and νH and νV are the horizontal and vertical eddy

viscosities respectively. p is the total pressure. We also note that �H stands for the

horizontal gradient operator:

�H = ex
∂

∂x
+ ey

∂

∂y
. (3.5)

The pressure, p, is broken into hydrostatic, ph, and nonhydrostatic, q, components,
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such that p = ph + q, with the hydrostatic pressure defined by:

∂ph

∂z
= −(ρo + ρ)g . (3.6)

In this work density and other scalar gradients (temperature and salinity) were

neglected, since flow in the St. Clair River is vigorously mixed. Dropping the density

gradient and Coriolis terms, and neglecting atmospheric pressure variations, gives:

∂u

∂t
+� • (�uu) = − 1

ρo

∂q

∂x
− g

∂h

∂x
+�H • (νH �H u) +

∂

∂z
(νV

∂u

∂z
) , (3.7)

∂v

∂t
+� • (�uv) = − 1

ρo

∂q

∂y
− g

∂h

∂y
+�H • (νH �H v) +

∂

∂z
(νV

∂v

∂z
) (3.8)

and

∂w

∂t
+� • (�uw) = − 1

ρo

∂q

∂z
+�H • (νH �H w) +

∂

∂z
(νV

∂w

∂z
) , (3.9)

where h is the free surface elevation. Integrating the continuity equation (3.4) from

the bottom, z = −d(x, y) to the free surface, z = h(x, y, t), gives the depth-integrated

continuity equation:

∂h

∂t
+

∂

∂x
(

h�

−d

u dz) +
∂

∂y
(

h�

−d

v dz) = 0 , (3.10)

The following kinematic boundary conditions have been employed at z=h and
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z=-d:

∂h

∂t
+ uH|z=h •�Hh = w|z=h (3.11)

and

−uH|z=−d •�Hd = w|z=−d , (3.12)

where uH = uex+vey is the horizontal velocity vector. Equations (3.4), (3.7), (3.8), (3.9)

and (3.10) comprise a set of equations for the flow velocity components, u, v and w,

the free surface elevation , h, and the non-hydrostatic pressure, q.

3.0.5 The turbulence model

Suntans uses the Mellor and Yamada 2.5 turbulence closure model. The model

rests on the assumption that horizontal turbulence transport is negligible with the

resolved horizontal scale, which is much larger than the vertical. The only Reynolds

stresses that remain then are u�w� and v�w�. In accordance to the Boussinesq hypoth-

esis:

−u�w� = νV
∂u

∂z
(3.13)

and

−v�w� = νV
∂v

∂z
, (3.14)
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where v�, u� and w
� are velocity fluctuations (u, v and w are average values). The

vertical turbulence viscosity, νV , is given by:

−νV = lqSM , (3.15)

where l is a length scale, q is the turbulent kinetic energy and SM is a, so called,

stability function given as an algebraic expression of the term GM , where:

GM =
l
2

q2
[(
∂u

∂z
)2 + (

∂v

∂z
)2] . (3.16)

The Mellor and Yamada model is a two-equation model, the two equations being

prognostic equations for q and l. The equation that gives the evolution of q is:

D(q2/2)

Dt
− ∂

∂z
(lqSq

∂

∂
(
q
2

2
) = Ps − � , (3.17)

where Sq is a constant and � is the turbulent kinetic energy dissipation rate with:

� =
q
3

B1l
. (3.18)

B1 is a constant. The term Ps is:

Ps = −u�w�∂u

∂z
− v�w�∂v

∂z
. (3.19)

The prognostic equation for l is:
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D

Dt
(q2l)− ∂

∂z
[qlSl

∂

∂z
(q2l)] = lE1Ps −

q
3

B1
[1 + E2(

l

κL
)2] . (3.20)

In the equation above Sl, E1 and E2 are constants and κ is the Von Karman

constant. L is a distance from the wall. The given set of equations provides a closure

scheme from which the vertical eddy viscosity can be computed. In the model a

constant value is given for the horizontal viscosity, for stability purposes.

3.0.6 The grid

The grid is first constructed by two-dimensional Delaunay triangulation and is

completed in the third dimension by stacking elements horizontally in the z-direction.

The circumcircle of each triangle is formed by the Delaunay points at the vertices,

and each pair forms a Delaunay edge. The Voronoi points are the centers of the

circumcircles. The grid is constructed in such a way that no triangle lies in the

circumcircle of another triangle, but the Voronoi point of a triangle might do so.

Furthermore, the edges that connect the Voronoi points of neighboring triangles, the

Voronoi edges, are perpendicular to the faces of the Delaunay triangles (Delaunay

edges) shared by those triangles, thus forming an orthogonal unstructured grid. A

schematic of the description above can be seen in Figure 3.1. In theory the grid is

meant to be orthogonal, that is the lines connecting the Voronoi points of neighboring

triangles are perpendicular to the edges shared by the triangles. However, the meshing

software used in this work – Gambit – did not guarantee such a condition, and

additional numerical error, with potential for instabilities, was introduced.

The model employs a staggered grid. All scalars (eddy viscosity, diffusivities,

temperature, salinity etc, as well as pressure) are defined at the centers of cells. The

horizontal velocities, U , are defined normal to each vertical cell face, at the intersection
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q ¼ qðs; T Þ; ð15Þ

where s and T represent salinity and temperature anomalies from reference states s0 and T0, respectively. After
filtering and employing a scalar diffusivity law, the transport equations for salinity and temperature are given
by

os
ot

þr % ðusÞ ¼ rH % ðcHrHsÞ þ
o
oz

cV
os
oz

! "
; ð16Þ

oT
ot

þr % ðuT Þ ¼ rH % ðjHrHT Þ þ
o
oz

jV
oT
oz

! "
; ð17Þ

where cH, cV, jH and jV are the horizontal and vertical turbulent mass and thermal diffusivities, respectively.
In this paper we neglect the effects of temperature stratification and assume a linear equation of state of the
form q = bs, which implies a transport equation for density of the form

oq
ot

þr % ðuqÞ ¼ rH % ðcHrHqÞ þ
o
oz

cV
oq
oz

! "
: ð18Þ

3. Unstructured, finite-volume prism grid cells

We confine ourselves to three-dimensional z-level grids, for which vertical grid spacings remain constant in
the horizontal. In plan, the grid is composed of a two-dimensional Delaunay triangulation (see, e.g., Shew-
chuck, 1996), in which no pointset (which is comprised of the three vertices) of a particular triangle lies within
the circumcircle of any other triangle within the triangulation, as shown in Fig. 1. The dual of the Delaunay
triangulation is the Voronoi diagram, which connects the circumcenters of the Delaunay triangles. The Voro-
noi points make up the nodes of the Voronoi diagram, and the edges that connect the Voronoi points are
perpendicular to the faces of the Delaunay triangles, thus forming an orthogonal, unstructured grid. All dis-
cretizations in the present paper assume this orthogonality condition.

The eddy viscosity, scalar diffusivities, scalars, and nonhydrostatic pressure are defined at the Voronoi
points and vertical centers of the prismatic cells, the free-surface and surface pressure are defined at the Voro-
noi points on the surface of the top cells, and the depth is defined at the Voronoi points at the bottom of the
bottom-most cells. The horizontal velocity U is defined normal to each vertical cell face at the intersection of
the Voronoi and Delaunay edges, and the vertical velocity w is defined at the Voronoi points at the top and
bottom of each cell, as shown in Fig. 2.

Each vertical face with index j has a predefined normal (whose orientation is arbitrary), nj, which indicates
the positive direction of the velocity vector defined on that face, so that, if uj is the velocity vector at face j, then

Fig. 1. A Delaunay triangulation, in which the circumcircles (denoted by – –) of the triangles do not contain the pointset of any other
triangle in the triangulation. The circumcircles can, however, contain the Voronoi points of neighboring triangles. Delaunay points/edges:
–s –, Voronoi points/edges: – · –.

144 O.B. Fringer et al. / Ocean Modelling 14 (2006) 139–173

Figure 3.1: Schematic of the implemented Delaunay triangulation; the Delaunay
points are denoted by ’-o-’ ,the circumcircles are denoted by ’- -’, and
the Voronoi points by ’+’ [40]

of the Delaunay and Voronoi edges. The vertical velocities, w, are defined at the

Voronoi points at the top and bottom of cells. Figure 3.2 shows this description.

uj ! nj ¼ Uj: ð19Þ

Every Delaunay edge j with a normal nj has two neighboring cells defined by the Voronoi points that make up
the jth Voronoi edge. The indices to these two cells are given by the pointers G2j and G2j+1. The first index, G2j,
provides the index of the cell in the direction of nj, while G2j+1 provides the index of the cell in the opposite
direction. If xi and yi correspond to the Voronoi points of a given planform cell i, then we can define the
components of the normal vector nj = n1jex + n2jey with

n1j ¼
xG2j % xG2jþ1

Dj
; ð20Þ

n2j ¼
yG2j

% yG2jþ1

Dj
; ð21Þ

where the gradient distance is defined by

D2
j ¼ ðxG2j % xG2jþ1

Þ2 þ ðyG2j
% yG2jþ1

Þ2: ð22Þ

Because G2j+1 and G2j are indices to cells, if there are Nc triangular cells that make up the unstructured grid,
then for computational edges, 1 6 G2j 6 Nc and 1 6 G2j+1 6 Nc. By adopting the convention that face-
normals always point into the domain, boundary edges are identified by G2j+1 = %1.

Using the present notation, we can identify the upwind cell iiw corresponding to a given edge j with

iiw ¼
G2jþ1 Uj > 0;

G2j otherwise:

!
ð23Þ

We can also define gradients normal to an edge face using the G pointer. As an example, the magnitude of the
free-surface gradient $Hh in the direction of the normal nj and perpendicular to Delaunay edge j is given by

ðrHhÞj ! nj ¼
hG2j % hG2jþ1

Dj
þ Eg; ð24Þ

where Eg is the truncation error. If the grid is composed of equilateral triangles, then the truncation error Eg in
Eq. (24) is second order in Dj. Otherwise, face-normal gradients are not centered about the Delaunay edges.

The three outward-pointing normals of each cell can be defined by no1 ; no2 ; and no3, as shown in Fig. 3.
Rather than storing the components of each of these normals, we store the dot product of the outward normal
with the unique normal at every edge nj, and define this as

Nj ¼ noj ! nj ¼ '1: ð25Þ

This is also used to specify the gradient in the direction of the outward pointing normal at a cell face. Since the
gradient of a cell-centered quantity / in the direction of the unique normal n1 in Fig. 3 is defined as

ðn1 !r/Þn1 ¼
/G2j

% /G2jþ1

Dj
n1; ð26Þ

height=∆z 
U

U

w

Fig. 2. Depiction of a three-dimensional prismatic grid cell, showing the horizontal velocity U defined normal to the vertical cell faces and
the vertical velocity defined at the Voronoi points at the top and bottom of the cell with height Dz.
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Figure 3.2: Description of a 3D prismatic grid cell [40]

3.0.7 Numerical discretization

The horizontal momentum equations are solved at the vertical faces of each cell,

by taking the dot product of the face-normal vector, n with the horizontal momentum

equations (3.7) and (3.8):
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∂U

∂t
+ n •� • (uu) = − 1

ρo

∂q

∂n
− g

∂h

∂n
+�H • (νH �H U) +

∂

∂z
(νV

∂U

∂z
) , (3.21)

where ∂

∂n
is the face-normal gradient and u is the horizontal velocity vector. The

vertical momentum equation is given by:

∂w

∂t
+� • (uw) = − 1

ρo

∂q

∂z
+�H • (νH �H w) +

∂

∂z
(νV

∂w

∂z
) . (3.22)

Based on the old non-hydrostatic pressure at the previous time step, a velocity at

edge number j and grid level k at the next time step, n+ 1, is computed from:

U
n+1
j,k

− U
n

j,k

∆t
=

1

2
(3F n

j,k
− F

n−1
j,k

)− 1

ρo

∂q
n− 1

2

∂n
− gθ

∂h

∂n

����
n+1

j

− g(1− θ)
∂h

∂n

����
n

j

+θ
∂

∂z
(νn

V

∂U
n+1
j,k

∂z
) + (1− θ)

∂

∂z
(νn

V

∂U
n

j,k

∂z
) (3.23)

and a vertical velocity at cell number i and vertical level k is computed from:

w
n+1
i,k

− w
n

i,k

∆t
=

1

2
(3Hn

j,k
−H

n−1
j,k

)− 1

ρo

∂q
n− 1

2

∂z
+ θ

∂

∂z
(νn

V

∂w
n+1
i,k

∂z
) + (1− θ)

∂

∂z
(νn

V

∂w
n

i,k

∂z
)

(3.24)

The vertical diffusion and free surface terms have been discretized semi-implicitly

with the theta method. The explicit terms are discretized with the second order

Adams-Bashforth method as:
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Fj,k = −CH(Uj,k)− CV (Uj,k) +DH(Uj,k) (3.25)

and

Hj,k = −CH(wj,k)− CV (wj,k) +DH(wj,k) , (3.26)

where CH(), CV () and DH() are horizontal and vertical advection and horizontal

diffusion operators, respectively. Boundary conditions for the horizontal velocity at

the bed are given by the drag law:

νV
∂U

∂z

����
z=h

= Cd,B|U |U , (3.27)

Where Cd,B is the bed drag coefficient, more about which will be said below. In

the original model numerical values were directly given to the bed drag coefficient.

As part of this work, a bed particle size distribution is provided and from there

drag coefficients are computed. At the free surface, a drag law with wind stress can

be imposed, but in this work wind-induced drag was not considered, so the upper-

boundary boundary condition was zero traction. In vector form, the depth-integrated

continuity equation is given by:

∂h

∂t
+�H •

h�

−d

uH dz = 0 , (3.28)

which is discretized as:
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h
n+1
i

− h
n

i

∆t
+

1

Ai

θ

Ns�

m=1

Nke�

k=1

U
n+1
m,k

∆zi,kNmdfm +
1

Ai

(1− θ)
Ns�

m=1

Nke�

k=1

U
n

m,k
∆z

uw

i,k
Nmdfm = 0 ,

(3.29)

where Ai – in the horizontal plane –is the area of the cell i with Ns sides and at

which the free surface height is hi. Nke is the number of levels in the vertical direction

at side m, and dfm is the length of the m − th side of the cell triangle. Um,k is the

normal component of the velocity at the m− th side at the k− th depth level. ∆zi,k is

the height of cell i at level k. Equation (3.29) gives the free surface at the next time

step, n + 1. The way the scheme works is to first replace the horizontal velocity at

time step n+ 1 in the horizontal momentum equation (3.23), Un+1, with a predicted

velocity, U∗. In the free-surface equation (3.29) the predicted horizontal velocity, U∗,

is used instead of the one at the next time step, without loss of much accuracy. Then,

the horizontal momentum equation (3.23) and the free surface equation (3.29) have

two unknowns, hn+1 and U
∗. The two variables can be computed by first substituting

for the free surface height in the momentum equation and solving for the predicted

horizontal velocities and then going back to the free surface equation to find the free

surface elevations at the next time step. The predicted vertical velocity, w∗, can be

readily computed from previous step values. The horizontal and vertical predicted

velocities, U∗ and w
∗, are adjusted after a non-hydrostatic pressure correction term

is computed.

3.0.7.1 Nonhydrostatic pressure

The predicted velocity field, U∗ and w
∗, was derived by means of depth-integrating

the continuity equation. As such, it does not satisfy local continuity. To correct this,

a non-hydrostatic pressure field that forces local continuity is computed. This is
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done by correcting the horizontal and vertical velocity fields with a non-hydrostatic

pressure correction term, qc, as follows:

U
n+1
j,k

= U
∗
j,k

−∆t(
qcG2j ,k − qcG2j+1,k

Dj

) (3.30)

and

w
n+1
i,k

= w
∗
i,k

− 2∆t(
qci,k − qci,k−1

∆zi,k +∆zi,k−1
) , (3.31)

where j is a face index, k is a level index and i is a cell index. The indices G2j and

G2j+1 refer to neighboring cells and Dj is the distance between the Voronoi points of

neighboring cells. The continuity equation is integrated over a cell with Ns sides, to

give:

Ai(w
n+1
i,k+1 − w

n+1
i,k

) +
Ns�

m=1

U
n+1
m,k

∆zm,kdfm = 0 (3.32)

The velocities at the next time step, Un+1 and w
n+1, in equation (3.32) are sub-

stituted for the pressure-corrected velocities of equations (3.30) and (3.31) to give a

Poisson equation to be solved for the pressure correction terms. Once the pressure

correction terms are determined, the predicted flow field is updated to the flow field

at the next time step, and the pressure field is also updated to find the new pressure

field.
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3.0.8 Concluding remarks on the hydrodynamic model

A few significant points need to be addressed about the hydrodynamic model

(suntans). The semi-implicit treatment of vertical diffusion terms in the momentum

equations provides stability at relatively large time steps, even when there is a high

degree of vertical grid refinement, provided horizontal grid scales remain large enough.

This makes the model suitable for use in geometries where vertical length scales are

much smaller than horizontal. Another characteristic of the model is that the way

the free surface movements are tacked is by extending or shortening the cells in the

top layer of the grid; cells are not added or subtracted from the top layer as the free

surface moves. This can make the model unstable when dealing with high free surface

fluctuations, because if the free surface drops at or below the height of the top cell,

the vertical Courant number goes to infinity and the code becomes unstable. On the

other hand, if the height of the top cell is too big, the flow field will not be properly

resolved. This is a weakness of the model and was of significance in the validation

case for the bedload transport model. With respect to stability, the time step used

is proportional to the square of the horizontal length scale. When horizontal grid

refinement doubles, without changing the vertical refinement, the time step has to

be divided by a factor of 4. Computation time increases then by a factor of 8 (since

the number of cells doubles). This makes the model unsuitable for use in small-

scale geometries, since the time steps involved prohibit reasonable simulation run

times. The reason(s) for the discrepancy between theoretical and practical stability

limits is not clear. Another characteristic of the model is that approximately 90% of

computational time is taken up by the non-hydrostatic pressure solver. The solver

uses an iterative procedure which is computationally intensive.
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CHAPTER IV

Modeling Bedload Transport

4.1 Previous Work on Sediment Transport Models

The first fluid-dynamical computational models with sediment transport capabil-

ities appeared in the 80’s. The first fully 3D models were developed starting 2000,

the first by Wu et al [42] in 2000 to model scouring in a channel with a 180o turn.

It employed the finite volume method in a non-staggered adaptive grid to solve the

RANS equations with a two-equation (k − �) closure scheme. The position of the

free surface was computed by depth integrating the x and y momentum equations,

presented below:

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −g

∂zs

∂x
+

1

ρ

∂Txx

∂x
+

1

ρ

∂Txy

∂y
− 1

ρh
τxb (4.1)

and

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= −g

∂zs

∂y
+

1

ρ

∂Txy

∂x
+

1

ρ

∂Tyy

∂y
− 1

ρh
τyb , (4.2)

where V and U are average flow velocities, zs is the coordinate of the free surface,
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Txx and Txy are averaged stresses, τxb and τyb are stresses on the bed. h here is

the water depth. Differentiating the x-momentum equation with respect to x and

y-momentum with respect to y and combining the two equations leads to a Poisson

equation in zs:

∂
2
zs

∂x2
+

∂
2
zs

∂y2
=

Q

g
, (4.3)

where Q contains the re-arranged terms from the differentiated equations, from

the previous time step. The depth-integrating process implied hydrostatic pressure

distribution, so the model assumed only gradually varied flow. This was a weakness

of the model, since flow around bends is non-hydrostatic due to the centripetal accel-

eration, and is characterized by secondary transverse flows, which are the ones that

cause scouring. The scouring in channel bends is primarily in the transverse direction

due to the secondary flows that tend to move material from the outer bank to the

inner bank. These currents are plotted in figure 4.6. All hydrodynamic models that

were developed after the work by We et al [42] that employed scouring solved the

non-hydrostatic RANS equations. This is a necessity for accurate simulations of flow

in channels with bends, as well as flow around obstacles which involves decelerations.

Both entrained and bedload sediment transport was employed by Wu et al in their

model. Suspended sediment transport was modeled by solving a convection-diffusion

equation with empirical pickup and deposition functions for the boundary between

the bed and the flow field. Of interest is the bedload transport model. For the stresses

on the bed a log law was employed, much like the one used as part of the work of this

thesis, and which will be presented later. The median grain diameter, d50, was used

to calculated the bed roughness, which is commonly used to calculate the stresses on

river beds. The bed load flux, qb was computed from these stresses and the Exner
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equation (mass balance) was solved to find the evolution of the bed:

(1− p)
∂zb

∂t
+

∂qbx

∂x
+

∂qby

∂y
= 0 , (4.4)

where zb is the bed elevation, p is the sediment porosity and qbx and qby are the

bed load fluxes in the x and y direction respectively, given by:

qbx = αbxqb, qby = αbyqb , (4.5)

where αbx and αby are direction cosines of the flow velocity vector. The angle of

inclination of the bed and the component of the weight of the grains in that direction

were not taken into account, since the direction cosines were those of the flow velocity

near the bed. The results of the model were compared to those of the experiment by

Odgaard and Bergs [43], of scouring in a channel with a 180o bend and the agreement

was good as seen in figure 4.1.

Nagata et al developed a fully 3D non-hydrostatic RANS solver model with bed-

load transport capabilities [50]. The model used a finite volume scheme on a staggered

Cartesian deformable grid. The grid deformed both following free surface movements

and the moving bed. For the RANS solver, a k − � model was used. To validate the

model, the authors simulated flow around a spur dike and around a bridge pier in a

channel, both frequently used hydraulic structures. Their results compared well with

experimental data from Michiue et al for the case of the dike [51] and Melville [52],

[53] for the case of the bridge pier. For the bed elevation, the following formula was

used:
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Figure 4.1: Scouring profiles in a channel: Experimental and numerical results com-
pared [43]

∂zb

∂t
=

A1A2

A3

(Vd − Vp)

Sp

, (4.6)

where zb is the bed elevation, A1, A2 and A3 are shape coefficients for the sediment

grains and Sp is the area of the projected bed surface on the horizontal plane. Vd is

the sediment volume deposition rate and Vp is the sediment volume pickup rate.

For the sediment volume pickup rate, the following formula was used:

Vp =
A3d50

A2
psSp . (4.7)

d50 is the median sediment grain diameter, while the pickup rate, ps, was a function

of the dimensionless Shields stress,
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θ =
u
2
∗

(s− 1)gd50
, (4.8)

where s is the specific gravity of the sediment, g is the acceleration of gravity and

u∗ is the friction velocity, which is a measure of the flow induced stress on the bed,

and which will be explained more later. It will suffice here to say that to calculate

u∗ the authors assumed a logarithmic velocity profile based on bed-roughness height

equal to 2.5d50. The Shields stress gives the magnitude of the stress on the bed

that induces sediment motion, relative to the immobilizing weight of the sediment

particle. To calculate the velocity vector of a sediment particle, used, the authors

solved a momentum equation, taking into account the local bed inclination, the angle

between the particle velocity vector and the direction of maximum bed slope, as well

as the angle between the particle velocity vector and the proximal flow vector. This

approach is similar to the one followed by Roulund et al the same year [47] and will

be presented later. The position of a sediment particle after being picked up at the

next time step, n, was given by:

psed(n) = psed(n−1) +∆tused , (4.9)

and the distance of sediment movement, s(n), was:

s(n) =
�

∆t|used| . (4.10)

To find the volume deposition rate of the sediment moving from point j at the

time it reached the position psed(n) the authors used a stochastic approach:

88



Vd(j,n) = Vp(j)fs(s(n))|used(n)|∆t , (4.11)

where Vd(j,n) is the volume deposition rate and Vp(j) is the total volume flow rate

of particles moving from point j. fs(s(n)) is a probability density function of step

length, given by:

fs(s(n)) =
1

λ
e
(−

s(n)
λ )

, (4.12)

where λ is the average step length. The originality of the approach followed by

the authors was in calculating the sediment volume deposition rate by means of a

stochastic approach, while at the same time solving a momentum equation to find

individual sediment grain velocities.

At approximately the same time as Nagata et al [50] presented their model,

Roulund et al [47] presented a model similar in some respects, that simulated scouring

around a circular pile. The model was based on EllipSys3D, a RANS non-hydrostatic

solver, that was originally developed at the Technical University of Denmark [54]. The

solver used the finite volume method on a curvilinear deformable grid. The k − ω

turbulence model was used. The authors conducted experiments and compared nu-

merical and experimental results. Figure 4.2 shows a photo from one of the scouring

experiments that the authors conducted.

The bedload transport model that was implemented is of particular interest, since

part of the methodology used to calculate bedload fluxes was used in the model

that is part of this thesis. Like in the model of Nagata et al [50], the velocity of a

grain particle, Ub, is assumed to be different from that of the flow field at the bed,

U. U is given as U = αUf , Uf being the friction velocity, calculated by assuming
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Figure 4.2: A photograph of scouring around a circular pile [47]

a logarithmic velocity profile (law of the wall), and α being a constant, following

Engelund and Fredsoe [55], set equal to 10. The rate of bedload transport is given

by:

qb =
1

6
πd

3PEF

d2
Ub . (4.13)

Here qb is the rate of bedload transport vector given as volume per unit time per

unit length. d is the median grain diameter. PEF is the percentage of particles in

motion in the surface layer of the bed, while Ub is the velocity of a bed particle. The

parameters that have to be found in order to calculate the bedload rate of transport

are PEF and Ub. For the percentage of particles in motion the following formula is

used from Engelund and Fredsoe [55]

PEF = [1 + (
1
6πµd

θ − θc
)4]−1/4

, (4.14)

where θ is the Shields stress, θc is the critical Shields stress and µd is the coefficient
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of dynamic friction. If the Shields stress exceeds the critical Shields stress motion is

initiated. The critical Shields stress depends on the local angle of inclination of the

bed, β, as well as the angle that the flow velocity vector makes with the direction of

maximum slope, α, and is given by:

θc = θc0(cos β

�

(1− sin2
α tan2

β

µ2
s

)− cosα sin β

µs

) , (4.15)

where µs is the coefficient of static friction and θc0 is the critical Shields stress

for a flat bed, taken equal to 0.05. The forces on a sediment particle are the weight

component:

W sin β , (4.16)

where W is the weight of a grain particle adjusted for buoyancy, given by:

W =
1

6
πρg(s− 1)d3 . (4.17)

s is the submerged specific gravity, d is the grain diameter and ρ is the water

density. The drag force, FD, on the particle is given by

FD =
1

2
ρc

π

4
d
2
U

2
r
, (4.18)

where Ur is the flow velocity relative to the particle and c is a force coefficient

given by Fredsoe and Deigaard [48] :
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c =
4µs

3a2(12θc0)
. (4.19)

The stabilizing force is friction, given by:

(Wcosβ)µd . (4.20)

Friction acts in the direction to oppose particle motion. Figure 4.3 shows schemat-

ically the kinematic and dynamic relations that govern the motion of a sediment

particle.

Figure 4.3: Kinematic and dynamic relations of the movement of a bed particle [47]

The kinematic relation that ties the relative-to-the-flow particle velocity to the

flow velocity and the particle absolute velocity is expressed in vector form as:
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Ur = αUf −Ub , (4.21)

where Uf is the friction velocity, Ur is the relative velocity and Ub is the absolute

velocity of the bed particle. The relationship above can be expressed by two scalar

equations, and referring to figure 4.3 they are:

UrsinΨ1 − αUfsinΨ = 0 , (4.22)

and

UrcosΨ1 − αUfcosΨ+ Ub = 0 , (4.23)

where Ur, Uf and Ub are magnitudes. Force balance gives the following relations,

expressed as algebraic equations, and referring to figure 4.3:

FDcosΨ1 +Wsinβcos(α−Ψ)− (Wcosβ)µd = 0 , (4.24)

and

FDsinΨ1 −Wsinβsin(α−Ψ) = 0 , (4.25)

where FD is the drag force induced by the relative flow velocity, W is the weight of

the particle adjusted for buoyancy, and µd is the coefficient of dynamic friction. The
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angles α, β, Ψ1 and Ψ are depicted in figure 4.3. Equations (4.22) to (4.25) forms a

system of four non-linear algebraic equations in four unknowns, namely Ur, Ub, Ψ1 and

Ψ. While the authors did not say what methodology they followed to solve the system,

in the work of this thesis the Newton-Raphson algorithm is employed. Furthermore,

while the solution gives the magnitude of Ub and not its x and y components, a

second linear system in three unknowns is solved in this work. Once the velocity of

a bed particle, Ub, is calculated, and having found the Shields stress, θ, and in effect

the percentage of particles in motion (4.14), the bedload flux vector, qb, is computed.

Once the bedload fluxes are known the change in bed elevation is calculated by

using the Exner equation (4.4), given below in integral form, after having applied the

divergence theorem:

∂h

∂t
=

−1

1− n

1

A

4�

i=1

[(qb,i • ni)|li|] , (4.26)

where h is the bed elevation, n is the sediment porosity and A is the projected area

of an element on the horizontal plane. qb,i is the bedload flux vector through side i,

ni is the outward normal on side i and |li| is the length of side i. Note that the fluxes

are computed as volume flow rates per unit length, and, as such, the Exner equation

is essentially a conservation of volume equation. The derivation of equation (4.26)

and its use will be explained more later when describing the model developed in this

thesis. The model by Roulund et al [47] includes a sandslide algorithm that goes

into effect once the angle of inclination exceeds a critical angle, the angle of repose,

dependent on the sediment type and size. In this case, the sediment particle velocity

is aligned with the weight component in the direction of maximum slope, and is given

by:
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Wsinβ − µdWcosβ − 1

2
ρCD

π

4
d
2
U

2
b
= 0 , (4.27)

where CD is the particle drag coefficient. The model assumes that sand slides are

instantaneous in time, and stop once the angle of repose is not exceeded. As part

of this thesis, a modified sand slide algorithm is implemented that gives equivalent

results. Below is a figure comparing experimental and numerical results of scouring

around a circular pile.

Figure 4.4: Comparison between experimental and numerical results; the thick line
corresponds to the experiment after equilibrium is established. The
continuous thin line corresponds to the simulation after equilibrium is
achieved. The dashed lines correspond to scouring depths at different
times before equilibrium [47]

The model that the authors developed slightly under-predicted the degree of scour-

ing around a circular pile. The modeled upstream scour depth was approximately

15% less than the experimental, while the downstream depth was approximately 30%

less. Nonetheless, the results were considered acceptable. It should be noted that for

the scouring model the authors used a steady state hydrodynamic flow model, and

that may have contributed to the discrepancies between experimental and numerical

results. Furthermore the authors did not account for a free surface in their model,

although the depth was enough to be able to ignore the free surface, at least in theory.

Finally only one grain diameter size was used in both the experiment and the model.
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Khosronejad et al [58] presented a numerical model for scouring in a 90o channel

bend. They compared their results with experimental data derived from experiments

by Matsuura et al [59]. The hydrodynamic model used the finite volume method on a

curvilinear deformable grid to solve the non-hydrostatic RANS equations. For closure

the model used either a k−ω or a k−� turbulence scheme. The authors implemented

both suspended sediment transport by solving a convection-diffusion equation, as well

as bedload transport. Of interest here is the latter. For calculation of the stresses

on the bed a logarithmic velocity profile was assumed, allowing the use of a drag

law. The Exner equation (sediment continuity equation) was used to update the bed

elevation:

(1− λ)
∂zb

∂t
+

∂qT ξ

∂ξ
+

∂qT ζ

∂ζ
= 0 , (4.28)

where λ is the sediment porosity, zb is the bed elevation, ξ and ζ are cuvilinear

coordinates and qT ξ and qT ζ are total fluxes, both of suspended sediment and of bed

load. Of importance are the bedload fluxes, qbξ and qbζ , and the methodology that

was followed in order to calculate them. For the magnitude of the bedload flux vector,

qb, Van Rijn’s bedload transport formula [60] was used:

qb = 0.053[
ρs − ρ

ρ
g]0.5

d
1.5
50 T

2.1

D0.3
∗

, (4.29)

with

T =
τ0 − τcr

τcr
(4.30)
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and

D∗ = d50[
(ρs − ρ)g

ν2
]1/3 , (4.31)

where τ0 is the bed shear stress, τcr is the critical bed shear stress for an inclined

bed, ρs is the sediment density, ρ is the water density and ν is the kinematic viscosity

of water. d50 is the median grain diameter and g is the acceleration of gravity. The

critical shear stress, τcr, depends on the local angle of inclination, and the authors

corrected for that. As for the bedload flux components, the following formulas were

used by Duan et al [76], [62]:

qbξ = qb(
1�

1 + tan2γ
) (4.32)

and

qbζ = qbξ(tanγ +
1 + χtanφ

λstanφ

�
τcr

τ0
tanβ2) , (4.33)

where χ and λs are constants, φ is the friction coefficient (the tangent of the angle

of repose), β2 is the transverse bed slope angle and γ is the deviation angle given by:

γ = arctan(
w

u
)− θt , (4.34)

where u and w are horizontal velocity components in the x and z directions re-

spectively (the authors took the x-z plane as the horizontal plane), and θt is the angle

97



between the centerline and positive x-axis.

The authors simulated scouring in a 90 degree bend of a channel, following ex-

periments by Matsuura [59]. Figure 4.5 presents a comparison between experimental

and numerical results. As mentioned earlier, in a channel bend, due to the rapid

accelerations to which the fluid is subjected, secondary, transverse, circular currents

appear that tend to move bedload material towards the inner bank and scour the outer

bank. The rapid accelerations necessitate the use of non-hydrostatic hydrodynamic

models to simulate flows under such conditions. Figure 4.6 shows the streamlines

of transverse sections on a channel bend, where the transverse currents are clearly

visible.

Figure 4.5: Comparison between experimental and numerical results for scouring in a
90 degree channel bend for different sections; the continuous line is from
experimental data, the dotted line is from the model using the k − ω

turbulence scheme and the line with circular markers is from using the
k − � turbulence scheme [58]

The numerical results did not disagree with the experimental by more than 13%,
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Figure 4.6: Transverse currents in channel bend [64]

and the model was considered to be of acceptable accuracy. The best results were

obtained from the model that used the k − ω turbulence scheme. This is because

k − ω models are considered to capture shear stresses on the bed better than k − �

models [63]. The authors concluded that there were three sources of significant error;

the assumption of isotropic turbulence in channels is innaccurate, since the scales in

each direction are very different. Furthermore, the empirical relationships used to

calculate the bed load fluxes and their direction are inherently inaccurate. Finally,

the authors applied a rigid lid model, which may have suppressed the appearance of

certain secondary currents.

In 2008 Garcia et al [65] presented a free-surface flow, non-hydrostatic deformable

mesh model with bed scouring capabilities, and ran simulations of scouring from a

horizontal jet impinging on a movable bed, based on experiments carried out by Chat-

terjee et al [66]. Figure 4.7 shows a schematic of the setup on which the experiments

and simulations were based.

Figure 4.7: Turbulent wall jet impinging on a movable bed; schematic view [65]
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The hydrodynamic model was based on the finite volume approach in an unstruc-

tured deformable mesh. The free surface was modeled using the VOF scheme. For

bed scouring the authors used a quasi-steady approach. Like in previous work the

authors used the Shields criterion for initiation of scouring. The bedload fluxes were

calculated from the following formula:

qi = qo
τi

|τ | − C|qo|
∂η

∂xi

, (4.35)

where τi is the i component of the local stress on the bed, |τ | is the stress mag-

nitude, η is the bed elevation, C is a constant that varies between 1.5 and 2.3, and

which determines the effect that the bed slope has on the bedload fluxes [67]. qo is

the bedload flux magnitude for a flat bed, given by:

qo = q
∗
�

Rgdd , (4.36)

where R is the sediment submerged specific gravity, d is the sediment median

diameter size and g is the acceleration of gravity. q
∗ is a dimensionless bedload

transport rate given by [55]:

q∗ = 18.74(θ − θc)[θ
1/2 − 0.7θ1/2

c
] , (4.37)

where θ is the Shields stress and θc is the critical Shields stress. The critical Shields

stress is a function of the critical Shields stress for a flat bed, θc0 and the local angle of

inclination. For its computation the same formula used by Roulund et al [47], (4.15),

was used. However, while Garcia accounted for the local angle of inclination in the
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bed morphology in his model, he used an empirical formula in the Exner equation

to account for it, while Roulund et al [47] solved the specific equations of motion to

find the bedload flux vector. The authors used the finite volume approach to solve

the Exner equation. Figure 4.8 shows the results of their simulation for scouring at

different times compared to experimental results from Chatterjee et al [66].

Figure 4.8: Comparison between numerical and experimental results [65]

It can be seen from the figure that the authors got good agreement with experi-

mental data. Figure 4.9 shows the flow field at a certain time of their simulation, and

it can be seen that the model captured areas of recirculation well. A two-equation

k− � turbulent scheme was implemented, which may have been appropriate for a case

like theirs where turbulence in the domain or interest could be considered isotropic.

In the work of this thesis two modules are incorporated in the scouring model,

which can be used interchangeably. One implements the methodology by Roulund

et al [47] to calculate the bedload fluxes while the other module implements the

methodology by Garcia et al [65] to account for the bed inclination in the flux calcu-

lation. The difference between the two methodologies in terms of practicality is that

the latter is more computationally efficient, since having to solve a set of non-linear

equations of motion is not necessary.

Apsley et al [68] presented a model for bedload transport in 2008. The model was

implemented within a finite volume RANS solver that used a curvilinear adaptive
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Figure 4.9: Flow field during scouring [65]

grid. The model used an ‘effective stress’ instead of a flow induced stress in the

direction of the flow, by accounting for the weight component of a bed particle in

the direction of maximum slope, which in general is not aligned with the flow vector.

The bed has a local angle of inclination. The plane of inclination was defined by the

normal vector, given by:

n̂ =
1�

1 + |� zb|2
(−∂zb

∂x
,−∂zb

∂y
, 1) , (4.38)

where zb is the bed elevation. The angle of inclination, β is β = cos
−1
nz, where nz

is the component in the z direction. If êz is the unit vector in the vertical direction,

the unit vector in the direction of maximum slope, b̂, will be given by (êz × n̂)× n̂.

The forces acting on a bed particle were the fluid force, τAs, where τ was the flow

induced stress and As was a representative area of the particle; then there was the

buoyancy-reduced weight component, W �
sinβb̂, W � being the weight adjusted for

buoyancy; finally there was the frictional force that acted against the combination of

the other two forces, and was given by µW
�
cosβ, where µ is a friction coefficient, given
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by µ = tanφ, where φ is the angle of repose. The authors combined the flow-induced

stress force with the weight component into what they called the effective stress force:

τ effAs = τAs +W
�
sinβb̂ . (4.39)

The authors adjusted the critical Shields parameter for the local inclination:

τ ∗
eff,crit

= τ ∗
crit,0cosβ . (4.40)

The above formula is much simpler than that one used by Roulund et al [47]

(formula (4.15)). The difference is that the authors did not account for the angle

between the flow velocity vector and the weight component in the direction of maxi-

mum slope when adjusting the critical Shields parameter. Their argument was that

any local inclination reduces the weight component in the vertical direction, and thus

reduces the frictional force that is opposed to motion. Once the three vectors were

calculated – the flow-induced stress, the weight component and the frictional force –

the authors computed the bedload flux vector. The approach followed for calculating

the forces on a bed particle and applying a force balance to find the fluxes was similar

to the one followed by Roulund et al [47], with the difference that the latter did not

assume a flow-induced drag in the direction of flow, but instead solved for the more

general case in which the flow induced drag is in the direction of a relative-to-the-flow

particle velocity; in theory the approach by Roulund et al was more complete and

more accurate than the one by Apsley et al [68], even though it was published three

years prior. The authors also incorporated an avalanche (sand slide) algorithm in

their model. The sand slide flux was given by:
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qaval = (1− p)
1
2L

2(tanβ − tanφ)

cosβ∆t
, (4.41)

where p is the sediment porosity, L is the length of the side through which there is

flux, φ is the angle of repose and β is the angle of inclination (greater than the angle

of repose). The sand slide flux, as given above, should adjust the angle of inclination,

so that it not exceed the angle of repose, in a single time step. This was a different

methodology from the iterative approach with smaller (virtual) time steps in an inner

loop, implemented by Roulund et al [47], where the sand slide fluxes were calculated

by means of a physical argument taking into account the specific forces that generate

the sand slide. In both cases the sand slide flux was directed along the slope of

maximum inclination, b̂. To update the bed elevation the authors solved the Exner

equation by using a finite volume approach. The bedload fluxes had to be computed

at the cell edges, and the problem was set up so that neighboring cell halves share

a common angle of inclination. To find the angle of inclination, so that it be shared

by sections of neighboring cells, the authors fitted a plane on control points, that is

cell centers, of neighboring cells that exchange bedload material. The equations of

motion to find the grain velocities were based on the inclination of the fitted planes.

Figure 4.10 shows the procedure in 2D, as well as a problem that arose; the inclined

bed that the bedload model ‘saw’ was not made up of the actual cell surfaces, but

instead was a ‘virtual’ plane created by means of interpolation. A sawtooth pattern

(in 2D) appeared, which the bedload model failed to ‘see’ and account for, but instead

reinforced. To solve this problem the authors had to add an artificial flux term based

on the inclination of the actual cell surfaces, which created a movement of material

from the elevated half of a cell to the lower half.

This problem as well as the method used to solve it is very similar to one in an
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Figure 4.10: Methodology followed to find the local inclination, as well as the saw-
tooth instability that arose [68]

initial bedload transport methodology that is developed independently as part of this

thesis. A ‘virtual’ bed surface is created in that model by means of an averaging

process, and the equations of motion are solved on that surface. Because the model

fails to ‘see’ the actual bed morphology, a checkerboard pattern appears, which in 2D

would be a sawtooth pattern. To solve this an artificial flux term is added. Another

methodology is chosen though, developed later, that directly accounts for the actual

localized inclination, and which is devoid of such numerical instabilities. Both models

will be described below.

The authors tested their model by simulation of scouring in a 90o channel bend,

following experiments carried out by Kawai et al [69]. Figure 4.11 depicts the bed

elevations at maximum-scour locations along the inner and outer banks of the channel;

their results are juxtaposed to experimental data. The authors got relatively good

agreement with experimental data.

Sotiropoulos et al [70] presented the latest bedload transport model to date in

2011. The hydrodynamic model used a finite volume RANS solver in a curvilinear
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Figure 4.11: Experimental and numerical results of maximum scouring along inner
and outer banks of a channel bend [68]

grid, with a k − ω closure scheme. What was unique in the model was that it used

an immersed boundary method to model a moving bed. In the method only a part

of the grid – the part above the bed – was ‘active’, that is the flow field was resolved

in that part. A schematic of the grid is shown in figure 4.12.

Figure 4.12: Grid with immersed boundaries used in the model [70]

As the bed moved new grid nodes were exposed and the flow field was expanded,

or existing grid nodes were covered by the bed, and the volumes they delineated were

‘deactivated’. The advantage of the approach is that re-meshing was not required

and the cost of doing so was avoided. Furthermore, the method allowed for capturing

complex geometries, since various features outside the flow field could just be embed-

ded in it. At the same time, the bed was discretized as an unstructured triangular

mesh, forming a C
0 continuous surface. Since the boundary velocities were not read-

ily available for the scouring model an interpolation methodology was followed, as
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shown in figure 4.13.

Figure 4.13: Immersed boundary method on a moving bed [70]

A normal was taken from a node adjacent to the bed (node B) to the bed and the

normal was extended into the flow (point A). The flow velocity at point A was found

by interpolation from adjacent nodes. Once that was found and applying the law

of the wall, the friction velocity was computed. From knowing the friction velocity

and applying the law of the wall one more time, the velocity at the boundary node

(node B) was found. Once the boundary node velocities were known, a normal was

drawn from the centroid of the triangle forming the bed mesh (point D). The velocity

at the intersection of the normal with the edge of the bed load layer (point C) was

calculated once the nodal velocities were known. The velocities at the edge of the

bedload layer were used in the scouring model by using the formula:

qBL = Ψ|ds|δBLuBL , (4.42)

where qBL is the bedload transport rate through edge ds with normal δBL, and

uBL is the flow velocity at the edge of the bedload layer. Ψ is the local sediment

concentration on the bed, given by Van Rijn [72] as follows:
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Ψ = 0.015
d50

δb

T
3
2

D

3
10
∗

, (4.43)

where

D∗ = d50[
(ρs − ρ)g

ν2
]
1
3 (4.44)

and

T =
τ∗ − τ∗cr

τ∗cr
, (4.45)

where d50 is the median grain diameter, δb is the bedload layer thickness, ρ and

ρs are the density of water and bed material respectively, g is the acceleration of

gravity and ν is the kinematic viscosity of water. τ∗ is the Shields stress and τ∗cr is

the critical Shields stress. Equation (4.44) is similar to equation (4.14) that gives the

percentage of bed particles in motion by Roulund et al [47]. The critical Shields stress

was computed from the critical Shields stress for a flat bed by adjusting for the local

angle of inclination and the direction of flow, using formula (4.15) that was described

in the work by Roulund et al [47]. However, it should be noted that the authors do

not explicitly account for a weight component in the direction of maximum slope,

like in the work by Roulund et al [47] or that by Apsley et al [68], but assumed that

the bedload fluxes were in the direction of the flow. Once the bedload fluxes were

computed, the bed elevation was updated by solving the Exner equation using the

divergence theorem (4.4). The hydrodynamic model did not conserve mass locally as

the bed morphology changed, since the algorithm that re-created the bed surface did
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not have such a provision. Global mass conservation was achieved by adjusting the

mass outflow rate in accordance to the bedload material volume change rate as:

Qout = Qin +
∂V

∂t
, (4.46)

where Qout is the volume outflow flow rate, Qin is the inflow flow rate and ∂V/∂t

is the bed material volume change rate. To solve the Exner equation the authors

alternatively implemented two different schemes. The GAMMA scheme is a hybrid

first-order upwind, second-order central scheme, while a first-order upwind (FOUW)

scheme was also implemented. To validate their model, the authors ran simulations

of flow in channels with bends of varying degrees and movable beds, in accordance to

experiments carried out by Pirestani [71]. Figure 4.14 show a comparison of results

for flow in a 90o channel bend.

Figure 4.14: Comparison of measured results (circles) with computed with FOUW
(dashed lines) and GAMMA (solid lines) schemes [70]

The authors achieved good agreement with both schemes for solving the Exner

equations. The GAMMA scheme gave slightly better results, due to its less diffusive

nature.

109



4.2 The Movable Bed Model

4.2.1 Mode of Sediment Transport in the St. Clair River

In this work, emphasis is given on bedload transport and a model is developed and

coded that can do that. The question that arises is why expect sediment transport to

happen by way of bedload transport and not by way of suspended sediment transport

instead. The drop in stage elevation from the entrance of St. Clair River in Lake

Huron to the outflow in Lake St. Clair is approximately 1.6 meters, and the average

flow velocity is 1.7m/s. Observations show that there are no abrupt drops in stage

elevation along the length of the river and the flow is always well into the subcritical

domain with the Froude number always below unity. The material comprising the

bed was studied experimentally [78] and it was found that the river bed along its

length and for the greater part of its width consisted of gravel with average diameter

no less than 12mm. Figure 4.15 shows the longitudinal distribution of gravel size in

St. Clair River.

Figure 4.15: Longitudinal median grain diameter distribution along the river
thalweg[78]

The type of sediment transport is governed by the Rouse number, which is a ratio

of the gravity force on sediment grains that tends to keep them on the river bed, to

the upward forces of lift and drag. The Rouse number is given by equation (4.47) :

110



P =
ws

κu∗
, (4.47)

where ws is the settling velocity of the sediment, κ is the Von Karman constant

taken equal to 0.41, and u∗ is the shear or friction velocity (explained later). The

criterion that governs the dominant mode of sediment transport is given in table 4.16,

based on experimental observations and analytical studies [45]:

Figure 4.16: Criterion that determines mode of sediment transport [45]

The settling velocity of sediment, which is the constant fall velocity in an undis-

turbed fluid, when there is balance between gravity and drag, is given by the universal

formula by Ferguson et al [46] as:

ws =
RgD

2

C1ν + (0.75C2RgD3)0.5
, (4.48)

where R is the submerged specific gravity (1.65 for quartz in water), g is the

acceleration of gravity and ν is the kinematic viscosity of the fluid (water). D is the

grain diameter. C1 and C2 are constants, which for natural grains are given the values

C1 = 18 and C2 = 1 of Ferguson [46].

For the sake or argument, it can be calculated that for a grain with diameter equal

to 4mm, in order for the Rouse number to be equal to 2.5, the flow velocity 0.5 meters

above the bed must be equal to 4.73m/s. For a grain diameter equal to 10mm, the
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velocity has to be 6.65m/s. Considering the grain size distribution in figure 4.15, it

becomes evident that for the St. Clair River sediment transport will be practically

exclusively by means of bedload transport. This means that the grains will move very

near the bed, their movement characterized by sliding and saltation.

4.2.2 Modeling The Drag Force on the River Bed

The boundary condition that Suntans uses at the river bed is based on a drag law

and is given below:

νV
∂U

∂z

����
n+1

z=h

= Cd,B|U |U , (4.49)

where U is the horizontal velocity, νV is the vertical turbulent viscosity and Cd,B

is the bed drag coefficient. The equation is derived from the law of the wall, first

formulated by Von Karman, that states that the average flow velocity at a point in a

turbulent flow field is proportional to the logarithm of the distance from that point to

the wall, which in this case is the bed of the channel. The law applies well to velocity

profiles of natural streams, but is more accurate near the bed (< 20% of the height

of the flow), which is well within the range that the model uses to calculate the stress

on the bed of the channel. In dimensional form the law is written as:

u =
u∗

κ
ln

y

y0
, (4.50)

where u is the average velocity a distance y from the wall and y0 is the theoretical

distance from the wall at which the velocity goes to zero. κ is Von Karman’s constant

taken as 0.41. u∗ is the so-called friction velocity given by:
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u∗ =

�
τw

ρ
, (4.51)

where τw is the wall stress and ρ is the density of water. The friction velocity

is a measure of the flow-induced stress on the bed. The distance y0 is calculated

differently depending on whether the roughness elements for the wall are within the

viscous sublayer (hydraulically smooth flow) or whether they ‘stick out’ (hydraulically

rough flow). In our case it is easy to ascertain that the flow is rough. If the roughness

elements are within five wall units from the wall (within the viscous sublayer), then

the flow is smooth. A wall unit is given by the formula:

y
+ =

yu∗

ν
, (4.52)

where y
+ is a wall unit and ν is the kinematic viscosity of water. Open channel

flow theory [44] estimates the shear stress on the bed by the following formula:

τw =
ρgn

2

H
1
3

|U |U , (4.53)

where g is the acceleration of gravity, n is Manning’s coefficient (units s/m
1
3 ),

H is the depth of flow and U is the average flow velocity. For a flow depth of 7m,

an average flow velocity of 1m/s and a very conservative figure for Manning’s n of

0.02s/m
1
3 , the shear stress on the bed is approximately 2.05Pa. The numerical values

chosen are representative of St. Clair River. Then, a roughness element of 10mm

will be 452 wall units in height. The flow is hydraulically rough, in which case y0 is

calculated by:
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y0 =
ks

30
, (4.54)

where ks is a roughness length scale, called the Niduradse roughness coefficient,

which for river beds can be taken as [57] :

ks ≈ 3.5d85 . (4.55)

d85 is the the 85th percentile grain diameter, and is approximately 1.5 times the

median grain diameter, d50, of the bed [56]. Using equation (4.50) one can derive

equation (4.49) by taking:

Cd,B = (
1

κ
ln

y

y0
)−2

. (4.56)

Then equation (4.49) is obtained by setting:

τw

ρ
= νV

∂U

∂z
, (4.57)

where the coordinate y has been replaced by z, and the derivative is numerically

calculated by using a small distance from the bed, ∆z/2. The final formula then by

which Cd,B is calculated is then:

Cd,B = (
1

κ
ln

∆z

2
3.5∗1.5∗d50

30

)−2
. (4.58)
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Then the friction velocity, uτ , can be calculated by using:

u∗ =
�

Cd,B|U | , (4.59)

where |U | is the magnitude of the flow velocity some distance ∆z/2 from the bed,

based on which the drag coefficient Cd,B is calculated. Nondimensionalizing the stress

on the bed we get:

θ =
u
2
∗

(s− 1)gd50
, (4.60)

where θ is the non-dimensional Shields stress, s is the specific gravity of the

sediment, g is the acceleration of gravity and d50 is the median grain diameter of

the sediment. Based on experimental work, it has been observed that measurable

bedload transport occurs when θ exceeds a certain value. This critical value is called

the critical Shields stress, which we will denote by θcr, and the criterion that it defines

is called the Shields criterion. The critical Shields stress value varies depending on

the kind of sediment that comprises the surface layer of the bed. For a bed with a

uniform grain size, the nominal value of 0.047 is given [73], [77]. However, based on

experimental studies and field observations of bedload transport in rivers, for beds

with mixed grain composition, the value of 0.03 is most accurate [75], [76], [74]. The

reason for the lower value is that while the critical Shields stress for grains of median

diameter, d50, has a certain value, in mixed grain sediments smaller grains will be

mobilized at lower stress values. As such, the Shields stress value at which sediment

transport becomes significant will be lower than the nominal value for sediment of

uniform grain size. The value of 0.03 has been adopted in the simulations of flow

in the St. Clair River. While the Shields stress on the bed is below the value of
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0.03 under normal flow conditions in the St. Clair River, there still is a very small

but detectable amount of bedload material transported downstream [78]. This is

significant in terms of the argument above on selective sediment mobilization.

4.2.3 Modeling Bedload Transport

Implementing a bedload transport model involves knowing the stresses on the

bed, as well as the angle of inclination at various locations on the bed. As was seen

in previous models, the critical Shield’s stress as well as the direction of sediment

movement at a certain location depend on the inclination of the bed at that location.

Suntans implements a z-axis grid, and the bed morphology is modeled as a series of

‘steps’. This means that angles of bed inclination at different bed locations are not

readily obtainable. This feature is unique to Suntans, since all previous models used

adaptive griding, where the bottom-most cells followed the contour of the bed. To the

author’s knowledge, the only model that did not use an adaptive deformable mesh

was that by Sotiropoulos et al [70], who used the immersed boundary method in their

model. On the other hand, there are advantages to using a z-axis grid. One of them

is that the model allows for unsteady geometries without having to continuously re-

mesh the domain. The top layer of cells expands or shrinks to follow the movement of

the free surface, while the code is adjusted to allow for an unsteady bed morphology.

This is done by changing the height of the bottom-most cells to adapt to changes

in morphology, and if the changes in height exceed a certain value the code adds or

subtracts cells from the bottom layer of the grid. The benefit is twofold; by not having

to re-mesh the entire domain, computational cost is minimal. Uniformity of the grid as

a whole is maintained even after big changes in bed morphology, because the code just

adds or subtracts elements from the grid boundary. This was not the case for other

unstructured adaptive grid models, like the one by Garcia et al [65]. Furthermore,

boundary velocities are readily available from resolving the flow field, unlike in the
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model by Sotiropoulos et al [70], who had to use an interpolation technique to find flow

velocities near the bed. Finally, unlike models that used structured grids, Suntans

uses an unstructured grid that allows for meshing complex domains without grid

deformations. In developing the bedload transport model work was done for finding

the local angle of inclination at any location on the bed. One method that is developed

is to map the discontinuous ‘stepwise’ domain to a C
0 continuous surface domain.

This is achieved by assigning at each node of the triangular mesh that is a shared

vertex a depth equal to the weighted average of the depths of the cells that share the

node. The process can be visualized in figure 4.17 below, where the 2D equivalent

case is also presented.

Figure 4.17: Constructing the bed geometry

The created virtual surface, which is an approximation of the bed morphology,

consists of triangular elements at a certain inclination with the horizontal. Specifi-

cally, for each element, there is an angle of inclination, β, corresponding to the direc-

tion of maximum slope with respect to the horizontal plane, which affects both the

magnitude and the direction of the bedload fluxes. Figure 4.18 shows the geometric

relationships for finding β.
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Figure 4.18: Finding the bed inclination

The direction of maximum slope, which is the line of action of the weight compo-

nent along the bed, is given by the unit vector, �b:

�b =
(êz × �n)× �n

|(êz × �n)× �n| , (4.61)

where �n is the unit vector normal to the bed and êz is the unit vector in the z

direction. Once a continuous bed morphology has been computed, the bedload fluxes

can be calculated for each inclined triangular element that comprises the continuous

surface. The approach followed to compute the bedload fluxes, once the bed inclina-

tion is found, is adopted from the work by Roulund et al [47], and involves solving the

equations of motion for a single – representative – bed particle, and then extrapolat-

ing to find the bedload fluxes on each cell. Figure 4.19 shows the forces acting on a

bed particle, as well as the dynamic and kinematic relations governing the movement

of a bed particle.

The angle α between the weight component and flow velocity vector is computed

by simply taking α = arccosine(
�U

|�U | •
�b), where �U is the flow velocity vector near the
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Figure 4.19: Geometric and analytic relations governing the movement of a bed par-
ticle

bed, taken as a multiple of the friction velocity vector [47].

Roulund [47] does not provide a methodology for calculating the geometric charac-

teristics of the bed. He presents the necessary dynamic and kinematic relationships to

solve and find the velocity of a bed particle, as seen above ( (4.22), (4.23), (4.24), (4.25)).

While the author does not say how he solved the system of non-linear algebraic equa-

tions, in this work the Newton-Raphson algorithm was successfully implemented.

The algorithm provided necessary accuracy with only a few iterations, and proved

to be computationally efficient. Once the bedload fluxes at each cell are calculated,

the Exner equation is solved numerically in order to update the bed elevation. The

Exner equation is:
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∂η

∂t
= − 1

1− n
� •�q , (4.62)

where η is the bed elevation, n is the porosity of the sediment and q is the flux

vector. The Exner equation is formulated and solved in the horizontal plane, so only

the x and y components of the flux vector enter the equation. Integrating over an

area A gives:

�

A

∂η

∂t
= − 1

1− n

�

A

� • �q (4.63)

and applying the divergence theorem gives:

A
∂η

∂t
= − 1

1− n

�

∂A

�q • �n , (4.64)

where �n is the outward normal. Discretizing for a computational cell i gives:

∆ηi

∆t
= − 1

1− n

1

Ai

3�

j=1

�qj • �njlj , (4.65)

where Ai is the horizontal area of the cell, i, �qj is the flux through side j with

normal �nj and of length lj. Referring to figure 4.20, if i and k are neighboring cells,

the flux through the shared edge j is found by interpolation using a central scheme:

�qj =
∆x1�qi +∆x2�qk

∆x1 +∆x2
. (4.66)
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Figure 4.20: Method for calculating fluxes through edges

Figure 4.21 shows scouring under a sluice gate based on a simulation using this

methodology for modeling the bed geometry.

Figure 4.21: Scouring under a sluice gate

This method for modeling the bed geometry gives qualitatively intuitive results,

provided a diffusive flux is added to the solution of the Exner equation. Referring

to figure 4.21, a checkerboard type of instability appears in the solution, which can

faintly be discerned in the figure. Figure 4.22 depicts an inclined plane after a sand
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slide, where checkerboarding is clearly visible.

Figure 4.22: Sand slide simulation with checkerboarding

The reason for the instability is similar to the one described by Apsley et al [68]

in their work for bedload transport modeling, and goes back to the way the bed

morphology is reconstructed as a continuous surface. Since the depths at the vertices

are produced by means of averaging out the depths of the cells sharing them, the

model cannot ‘see’ the checkerboarding since the nodal depth averages out to a middle

level. The mechanics of the instability are expressed in figure 4.23, which for simplicity

depicts the instability in a 2D case.

The diffusive term that was added to the Exner equation was a function of the

depth difference between neighboring cells, and, referring to figure 4.20 and equa-

tion (4.66), was included in the flux equation as:

�qj =
∆x1�qi +∆x2�qk

∆x1 +∆x2
+ f(d1 − d2) + g(d1 − d2) ∗ |

∆x1�qi +∆x2�qk

∆x1 +∆x2
| , (4.67)
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Figure 4.23: Mechanics of checkerboard instability

where d1 and d2 are the depths of neighboring cells and f is a monotonic function

of the depth difference, that has a cutoff beyond which there is no diffusion; this is

to prevent the bed from becoming completely flat over time. Typically the cutoff can

be set to be some depth difference, below which diffusion stops. g is also a monotonic

function of the depth difference, which has as a multiplier the flow-induced flux. The

logic behind this third term is that cells experiencing high levels of fluxes are more

prone to checkerboarding and need higher levels of diffusion to prevent it.

With the addition of artificial diffusion, the model was tested in sand slide simu-

lations, and the results for simple geometries were good. In the case of sand slides,

the velocity of bed particles was given by Roulund et al [47] (4.27). The sand slide

algorithm works in an internal loop, assuming that sand slides are instantaneous in

time, and the time step is adjusted so that the distance traveled by a particle in a

time step does not exceed a characteristic length of the grid. Figure 4.24 shows the

result of a sand slide in an inclined plane, where artificial diffusion has been used.

There are no visible irregularities in the final configuration after the slide. The model

works in such a way that sand slide is initiated when the local angle of inclination
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exceeds the angle of repose by 2o or more, and stops when it is 2o below the angle

of repose (here set to be 30o). In the figure the plane is initially inclined at 45o and

after the slide it is inclined at 30.07o. The scheme in this particular case proved to

be highly accurate.

Figure 4.24: Sand slide in an inclined plane; (a) is the initial configuration with an
angle of inclination of 45o and (b) is the final configuration where the
angle of inclination is 30.07o. Artificial diffusion has been added

Because of the accuracy of the scheme in simulating sand slides, it has been

adopted as the scheme of choice when it comes to large-scale sand slides, while for

flow-induced scouring a different scheme is implemented that is inherently stable, as

will be described below. Figures 4.25 and 4.26 show a sand slide in a conical pile of

sand, with figure 4.25 showing the initial configuration before the slide and figure 4.26

showing the pile after the slide. The critical angle of repose condition is met within

one degree after the slide stops.

As mentioned above, a different geometric modeling scheme is used for flow-

induced scouring, that does not require the addition of artificial diffusion terms in

the Exner equation. Figure 4.27 depicts the methodology followed.

In this scheme, neighboring cells share an inclined plane formed by taking the cross

product of the shared edge and the vector formed by connecting the Voronoi points
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Figure 4.25: Sand slide in a conical pile of sand; initial configuration

Figure 4.26: Sand slide in a conical pile of sand; final configuration

of the two cells. In this way, each cell is divided in three parts where to each part

there corresponds a different angle of bed inclination, β. To find the sediment fluxes
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Figure 4.27: Geometric scheme followed in order to find the bed inclination

through the edges, while the flow velocity at the center of each cell is considered, the

velocity of the grains and by extension the fluxes are computed separately for each

third of the cell, since each third has a different angle of inclination. Furthermore,

neighboring thirds of cells don’t share the same flux, since, while they share the same

angle of inclination, to each cell there corresponds a different flow velocity. Figure 4.28

depicts the scheme followed to compute the fluxes at the edges, as well as the way

that the Exner equation is numerically solved.

The success of the method is based on the fact that there is no averaging process

to derive the bed inclination and any checkerboarding is avoided. Once the angles of

inclination are computed, two different methodologies are available to find the particle

velocities and fluxes. One is that already used in previous versions of the model, and

involves solving the equations of motion according to the methodology originally

presented by Roulund et al [47] and adopted in this work, as seen in figure 4.19.

The other methodology for computing the fluxes involves accounting for the bed

inclination by using an empirical formula in the following way:
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Figure 4.28: Scheme developed in order to find the fluxes through the edges; solution
to the Exner equation

qi = qo
τi

|�τ | − Cqo
∂η

∂xi

, (4.68)

as already used by Garcia et al [65] in their model. qi is the flux in the i direction,

qo is the flux magnitude for a flat bed and τi is the flow induced stress in the i direction.

η is the bed elevation and C is a constant. As seen in this empirical formula, the flux

for a flat bed is adjusted by adding a second term that accounts for the local bed

inclination. Figures 4.29 and 4.30 depict scouring under a sluice gate, in a similar

fashion to that depicted in figure 4.21, where the two methodologies for computing

the fluxes have been used alternatively. It can be seen that the results are similar

for this simple case with a coarse grid. Furthermore, no checkerboarding is present,

despite the lack of artificial diffusion.
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Figure 4.29: Scouring under a sluice gate; the fluxes are computed by solving the
equations of motion for an inclined plane. No checkerboarding is present

Figure 4.30: Scouring under a sluice gate; fluxes are computed by adjusting the fluxes
for a flat bed to account for the bed inclination, by means of an empirical
formula (4.68). No checkerboarding is present

4.2.4 Validation of The Model

In terms of validating the model, there are two considerations that need to be

addressed. The first is that while all work that has been done by investigators, in

terms of developing movable bed models, has been validated by comparing results

with experiments in miniaturized settings, it is not clear that experimental findings

in miniaturized settings accurately replicate moving bed phenomena in actual scales.

To the knowledge of the author, there have not been any experiments in scales larger

than the ones previously described, which are all miniaturized. The two key non-
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dimensional parameters that characterize flow in open channels, the Froude number

and the Reynolds number, differ by orders of magnitude between the miniature set-

tings and the actual scales, provided the parameters that govern the movement of

bed particles are kept the same, namely the Rouse number and the particle Reynolds

number. The second, more practical consideration, is that Suntans was developed

for large scale simulations and is computationally inefficient when dealing with very

small scales, as in those encountered in experimental work. Specifically, every time

the characteristic length scale of the grid is halved, the time step has to be divided

by a factor of 4. Taking into account the doubling of the number of cells means

that every time the grid is refined by a factor of 2, the computational time increases

by a factor of 8. In light of this, it was not possible to run simulations with grid

refinements similar to those used by other investigators.

The experiment that is chosen as a validation case is that of the horizontal jet

impinging on a movable bed. The same case was simulated by Garcia et al [65], as

has been described, and is based on experiments conducted by Chatterjee et al [66].

A schematic of the setup can be seen in figure 4.31.

The simulations that are carried out were based on one of the runs conducted by

Chatterjee [66]; the setup is 3 meters long and the depth is approximately 0.3 meters.

The jet aperture is 2 centimeters in height and the movable bed starts 0.66 meters

downstream of the jet exit, the bed being rigid closer to that. The jet velocity is

1.56 m/s and the sand consists of uniform grain size of 0.76 millimeters. As pointed

out by Garcia [65], the nature of the phenomenon is essentially two-dimensional,

and the simulation is treated as such, in order to save in computational time. The

grid constructed has 300 cells in the horizontal, with a characteristic length of 2

centimeters, and has 40 levels in the vertical, where the vertical length scale becomes

finer towards the bed. At this level of refinement, the largest time step at which

Suntans is stable was found to be 0.002 seconds. The run time for simulating flow
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Figure 4.31: Schematic of experimental setup, based on which simulations for valida-
tion were conducted

for 5 min is approximately 5 hours. Most of that time ( 90%) is taken by the non-

hydrostatic solver. Two more grids are used with characteristic horizontal lengths of

2.5 centimeters and 3 centimeters. Figure 4.32 is a plot of the Shields stress on the

bed as a function of distance from the jet exit for the three grids, before any scouring

has taken place.

It is clear from the figure that at these levels of grid refinement, the stress dis-

tributions on the bed under normal flow conditions with no scouring are practically

identical for the three grids. Furthermore, it can be seen that the Shields stress clearly

exceeds the threshold value of 0.05 [65] at the location of the beginning of the movable

bed (x = 0.66cm) and for a distance downstream. Although the model zeroed out the

flow-induced fluxes distances shorter than 0.66cm from the jet exit, sand slides were

allowed to induce fluxes starting at shorter distances. This is in agreement with the

model developed by Garcia et al [65]. The results from simulating flow with scouring

for a duration of 5 minutes are shown in figure 4.33.
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Figure 4.32: Plots of the Shields stress on the bed for the three different grids under
normal flow conditions with no scouring; blue circles belong to the 2cm
characteristic length grid; red triangles to the 2.5cm one and green circles
to the 3cm one. It can be seen that at these grid resolutions there is no
significant difference

Figure 4.33: Simulation results for scouring from impinging horizontal jet, with three
different grids; blue circles belong to the 2cm characteristic length grid;
red triangles to the 2.5cm one and green circles to the 3cm one. It can
be seen that at these grid resolutions there is no significant difference
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It can be seen in the figure that there is no significant difference between the

three grid sizes. The scouring depth is approximately 30% of what we would expect

from experiment for the same time duration. Furthermore, in the simulation scouring

ceases halfway through, because the stresses on the bed fall below the critical value,

based on the Shields criterion. This can be seen in figure 4.34 where the Shields stress

is plotted after scouring has taken place for five minutes.

Figure 4.34: Plot showing the Shields stress as a function of distance from the jet
exit, after scouring has taken place for five minutes; the stress values
have dropped below critical level at the location where the movable bed
starts and beyond, and no more scouring is taking place

Extending the simulation time does not make any difference in the depth of scour-

ing, since that has ceased to occur within the first five minutes of flow. It was found

that increasing the jet velocity and, as such, the stresses on the bed, played only a

small role in the depth of scouring, which remained well below experimental values.

Again, scouring stopped taking place within the first five minutes of flow. Figure 4.35

shows a close-up of the flow field near the location of the jet exit and where scouring

has taken place. It also shows how the model works in increasing or reducing the size

of the grid by adding or removing computational cells from the boundary.
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Figure 4.35: Flow-field near the location of the jet exit. Depicted are the flow velocity
vectors. There is no recirculation in the location of the scoured bed

The plot of the flow field shows no recirculation in the pocket created by scouring.

In Garcia’s model [65], a recirculation zone is created in the hole that is dug out.

This can be seen in figure 4.9 given above, which plots the flow field in Garcia’s

model. It is not clear if Garcia’s model accurately captures the flow field. If it

does, it is interesting that the recirculating flow moves opposite to the direction of

the average flow. This would imply that material is picked up by the recirculating

flow and is entrained in the flow above the recirculation zone, which then deposits

it further downstream. Garcia’s model implemented entrained sediment transport

as well as bedload transport, and the former mode of transport could capture the

pickup and deposition process, in a way that accurately reproduced the final bed

morphology. However, the exact physics of the pickup and deposition mechanism do

not point to a passive scalar mode of transport, irrespective of whether Garcia was

able accurately reproduce the final morphology in the experiments by Chatterjee [66].

The Rouse number is above 2.5 in the scouring region, and any pickup and deposition
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would amount to long-distance saltating particles rather than passively entrained

fine sediment. A Lagrangian approach for tacking the trajectory of particles would

best suit the physics of the problem. In that case, even if Suntans captured the

recirculation region of the flow field, the transport model developed in this thesis

would not be able to capture the precise physics of the movement of sediment in the

scour hole.

4.2.4.1 Conclusions

While the results of the attempt to validate the bedload transport model are

disappointing, it is evident that the source of error lies not in the bedload transport

model but in the fact that the hydrodynamic model does not accurately capture

the flow dynamics in the particular case, at least not at the level of grid refinement

implemented. Finer grids were tested, but the hydrodynamic model proved to be

unstable even at very small time steps. A problem with the hydrodynamic model

that has already been mentioned is that at very high grid resolutions, even slight

changes in the free surface can cause the water level to drop below the height of cells

at the top layer, causing the code to become unstable. To counteract this an attempt

was made to run the simulation in a rigid lid configuration, by setting the acceleration

of gravity to very high values, but the code still proved unstable. Nonetheless, while

the hydrodynamic model failed to accurately reproduce the flow field in this particular

case, the transport model was consistent in following the stress levels on the bed. It

is not clear whether the RANS model used, or any RANS model for that matter, can

accurately reproduce the flow field in this two-dimensional case. The fact, though,

that in none of the three grids used was there a recirculation zone implies that the

particular RANS model is not well suited. A reason for that could be that the Mellor

and Yamada model rests on an anisotropic turbulence assumption which does not

hold in the particular case.
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Finally, had the recirculation zone been captured by Suntans, the bedload trans-

port model in this work would not be able to capture a complex pickup-and-deposition

phenomenon that would require particle trajectory tracking using a Lagrangian ap-

proach for particles moving in the flow field in a non-passive manner. The reason this

particular case was used for validation is that it was the only case that could remotely

be handled in terms of computational load and simulation times. As pointed out, the

time steps required for stability in small scale simulations by Suntans prohibit the

use for validation of any of the other cases described in the literature.

Considering the fact that there are no actual-scale experimental data it is not clear

to what extent the bedload transport model can be validated, at least when coupled

with the Suntans hydrodynamic model in actual scales. On the other hand, and

as pointed out above, small-scale experiments on scouring do not exactly correlate

with large scale phenomena. The flow parameters, Reynolds number and Froude

number, that govern flow patterns in rivers, differ by orders of magnitude between

experimental scales and full-blown-river scales. It would be physically impossible

to achieve dynamic similarity in terms of flow and at the same time match Rouse

numbers between small scale experiments and actual scales. The only true way then

to validate the bedload transport model in this work, provided the hydrodynamic

model is validated, is to compare it with field observations that involve scouring.

Field observations of such accuracy do not exist.
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CHAPTER V

Results

The flow rate through the St Clair River fluctuates depending on the season. It

can be as low as 4200m3
/s in the winter and can be as high as 5500m3

/s in the

summer [79]. The difference in water levels between Lake Huron and Lake St. Clair

stays approximately the same at 1.6 meters. What mostly causes the variation in

flow rates is the water levels in the two lakes, and as such in St. Clair River. In

other words, the river is deeper during the summer months. This can be seen in the

graphs in figure 5.1 (black lines), which were obtained from GLERL’s (Great Lakes

Environmental and Research Laboratory) website, and show water levels in Lakes

Huron and St. Clair. The same graphs, however, show that there can be significant

variation in water levels over the years (red and green lines).

A grid was created of the St. Clair River, with approximately 50,000 elements in

the horizontal and a total of approximately 600,000 cells. The horizontal characteristic

length of the grid was 55 meters and the vertical approximately 1 meter. The grid

can be seen in figure 5.2.

The two lakes that the grid connects have been modeled as wide openings at the

respective ends. The goal is for the openings to be wide enough so that flow velocities

can be considered negligible at the open boundaries, as will be explained below. The

estuary where St. Clair River opens in Lake St. Clair has been omitted from the grid,
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Figure 5.1: Water level fluctuations in Lakes Huron (top) and St. Clair (bottom);
black lines give average values

because it would add unnecessary complexity to the geometry of the problem without

affecting the hydrodynamic behavior of the system. The water level drop from the

entrance to the exit of the estuary is 0.2 meters, so in the boundary conditions, the

water level difference is 1.4 meters instead of 1.6 meters. Bathymetric data were

obtained from GLERL, NOAA, [79] in the form of latitude and longitude versus

depth. The latitude/longitude were converted to Cartesian coordinates in Matlab.

The model has a built-in interpolation function that sets depths at the Voronoi points

of the grid triangles, based on any x − y − z data file. A figure of the grid showing

the depths at various parts of the river can be seen in figure 5.3.

The depths vary from approximately 10 meters to spots where the water can be

137



Figure 5.2: Computational grid. The entrance and exit have been widened to simulate
hydro-dynamically the lake openings. The scale of the abscissa is greater
than that of the ordinate

Figure 5.3: Bathymetric plot of the St. Clair River. Deeper parts of the river are
colored in red

as deep as 17 meters. Points were added to the bathymetric data that assign depths

in the openings at Lakes Huron and St. Clair.

The 1984 ice jam event took place in the month of April. The flow rate was

approximately 4800m3, which agrees with annual flow variation. Open water flow

simulations were carried out and the steady state flow rate was adjusted by varying the

depth of the whole river to match the 4800m3
/s figure. It was found that adding 0.15

meters of depth to the bathymetric data gave the desired flow rate with reasonable
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accuracy (4834m3
/s). The need for only a slight adjustment to the depth data in order

to achieve an average flow rate is an indication of both accuracy of the bathymetric

data, as well as accurate capturing of the flow dynamics by the model. The sediment

grain size distribution along the river has been studied [78] and has been given in

figure 4.15. These values were used in the movable bed model and a linear plot of the

size distribution employed can be seen in figure 5.4.

Figure 5.4: Grain size distribution as used in the model along the St. Clair River
thalweg. The distribution used was taken and linearized from published
data [78] (figure 4.15), in order to be computationally usable

For the river banks, as well as the banks in the two islands (Stag Island and

Fawn Island), no-slip boundary conditions are set. For the river bed a drag law is

applied, as has been described. The drag coefficient near the banks is set to a lower

value that corresponds to finer grain size than that in the thalweg (5.4). This is in

accordance to the grain size distribution in St. Clair River, with the banks having

finer sediment on the bed [78]. For the entrance and exit, water levels are set and the

flow velocities in the open boundary cells are set to zero. The physical interpretation

of this boundary condition is that flow velocities become negligible well into the

lakes, and water is gradually accelerated from zero at the entrance, and gradually

decelerated to negligible values at the exit. This is the reason that the grid entrance

and exit are made so wide. Zero traction is set at the free surface, since wind-induced
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stresses are not taken into account. A 5 second time step is used. The stresses on the

bed were computed under normal flow conditions and are plotted in figure 5.5.

Figure 5.5: Stress distribution (Shields stress values) in the St. Clair River under nor-
mal flow conditions. There are three regions where stresses are elevated
(yellow and red color) but below critical values

The results reveal three regions of elevated stresses on the river bed (red and

yellow colors). The Shields stresses in all three parts are below critical values, but

that is not the case during an ice jam release where the stresses locally exceed critical

values, sometimes for extended periods of time. The regions of elevated stresses are a

new finding and were not present in the results of the work by Kolerski and Shen [38],

who used a 2D model based on the shallow water equations.

After simulating normal flow conditions, flow presence of an ice jam was simulated.

The ice jam is modeled based on the 1984 ice jam [2]. A map showing the location

of the jam before release is shown in figure 5.6.

Records show that during the last days of the jam, flow dropped by about 65%

and the water level in Lake St. Clair dropped by approximately 0.6 meters. The

boundary conditions then at the open boundaries were set to a 2 meter water level

difference between Lakes Huron and St. Clair. These open boundary conditions were
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Figure 5.6: Map showing the location of the 1984 ice jam. The upstream end of the
jam almost reached St. Clair and the downstream end reached Algonac

maintained throughout the simulations of a jam release, because simulation times

were short enough to assume that the water level in Lake St. Clair remained constant.

With these boundary conditions the flow was adjusted by altering the thickness of the

jam along its length until the flow was approximately 1700m3
/s. Figure 5.7 shows

the flow field in a straight two-dimensional channel with a jam, the same length and

thickness as the one constructed in the actual model. The constructed jam has a

head thickness of 2 meters and a toe thickness of 4 meters.

The purpose of the figure is to show that the flow field in the model can be

modified to account for the presence of an ice jam, or any stationary object in the

flow field for that matter. The jam is simulated by setting the fluxes through the

walls of the cells at the boundaries of the jam to zero, in which case the whole region

of the flow field within the jam behaves as a stationary object. This can be seen in

the figure 5.7, where the flow field in the region taken by the jam is zero. Friction

was added at the underside of the jam by imposing a drag law like in the case of

the bed. Based on recent studies on ice-covered rivers [80] the drag coefficient for
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Figure 5.7: Flow field in a straight two-dimensional channel in the presence of an ice
jam. The ice jam has the same length and thickness as the one in the
model. The red line depicts the free surface

ice in a jam is given a value equal to 0.0025. Noticeable from the figure 5.7 is the

smooth transition of the free surface (red line) between upstream and downstream of

the jam water levels. This feature of the model captures reality more accurately when

it comes to the release of the jam, than having an abrupt step-like transition like in

early work on ice jam releases. Flow was simulated for 25000 seconds (6.9 hours)

with the ice jam in place until steady state was achieved and the rate of discharge

was stabilized at 1743m3
/s. Figure 5.8 shows the difference in stresses under normal

flow conditions and in the presence of a stationary jam.

It can be seen in the figure that stresses under the jam are lower than during open

water flow conditions, with the exception of the banks where there is a slight elevation

in stresses, but not enough to warrant attention. The reason for the elevated stresses

on the bed near the banks may be due to the lower friction that flow encounters there,

because of the finer sediment and lower drag coefficient. Flow under the ice could be

shifted near the banks because it encounters less friction. All in all, the result shows

that, contrary to hypothesis [1] and previous findings [38], stresses under the jam and

along the thalweg prior to release should be lower than under open water conditions,

a finding that disproves the scenario that scouring could have taken place prior to

142



Figure 5.8: Plot showing the difference in Shields stress values between normal flow
conditions and during the stationary jam; with the exception of the banks,
stresses under the jam are lower (yellow or red color) than under normal
flow conditions

release, as studied by Mercer [13].

The jam is released in the flow by removing the zero-flux restriction through

the jam boundaries, as well as the enforced drag on the bottom surface of the jam.

Essentially the jam release is simulated by releasing an initially stationary body of

water into the flow. At the same time when the jam was released, the scouring model

went into effect. Flow and scouring were allowed to continue for 25,000 more seconds.

From field observations during the 1984 ice jam [2] it is known that the water level in

Lake St. Clair was restored by 75% in the first four days following the release. Since

the water level difference between Lakes Huron and St. Clair decreased with time,

flow and scouring were allowed to occur under the initial boundary conditions for 6.9

hours after the release. Furthermore, it will be shown that for the case where the

water level difference between entrance and exit is 2 meters, most scouring happens

in the first 5000 seconds after the release. Figure 5.9 shows the evolution of the
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stresses on the bed along the river with time. The stresses as a function of the x

and y coordinates are projected on the y − z plane, in order to produce a 3D figure

showing evolution in time. The z axis shows stress levels.

Figure 5.9: Evolution of bed stresses with time during jam release

There are certain things to note in figure 5.9. The three regions in the river

that experience high stresses under normal flow conditions experience even more

elevated stresses during the jam release. At the jam toe, there is a spike in stresses

that subsides to lower values after approximately 2500 seconds. In all three regions

stresses remain relatively high even after the initial surge, because the water level

difference between the two lakes is higher than normal. This means that scouring

can persist at certain locations, even after the initial surge. It takes more than 1000

seconds after the release for the stresses to spike at the location right below the jam

toe. That location coincides with a location of elevated stresses under normal flow

conditions, which become much higher during the surge. The time lag means that

it takes time for the initially still mass of water to accelerate to appreciable values.
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Then the assumption that ice in a jam release will accelerate very quickly to water

flow values [9] does not hold. In the figure it can also be seen that following the release

of the jam, an upstream-moving wave propagates originating at the head of the jam

(red triangle). The wave covers approximately 30 kilometers in 2500 seconds, with

an approximate speed of 12m/s. This corresponds to a wave traveling in a straight

channel of approximate depth of 15 meters, according to open channel flow theory.

This is close to average depths in St. Clair River. Figure 5.10 shows the change

in depth 25,000 seconds after the jam release. Blue colors signify scouring and red

colors deposition. From the figure it can be seen that there is localized scouring

near the river entrance. There is also a region in the central portion of the river

with several locations where there is scouring intermingled with deposition. Most

importantly there is a region of extensive scouring near the exit of the river (green

and blue color). It can be seen from the figure that scouring in that region extends

several kilometers and occupies the central portion along the width of the river, while

there is deposition close to the banks. A net amount of approximately 9000 m
3 of

bedload material are displaced during the period of scouring that was simulated.

Figure 5.10: Difference in initial and final depth after jam release in St. Clair River.
Blue and green colors show scouring and red deposition
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Figure 5.11 shows depth change, but with blue and green colors showing scouring

more than 1 centimeter in depth. It can be seen in the figure that significantly smaller

regions experience scouring more that 1 centimeter in depth.

Figure 5.11: Difference in initial and final depth after jam release in St. Clair River.
Blue and green regions show scouring more than 1 centimeter in depth

Figure 5.12 shows scouring that happens after the initial surge, due to persisting

high flows. This is scouring that happens between 30,000 and 50,000 seconds, the

jam released at 25,000 seconds. Blue regions in the figure show scouring more than

1 centimeter in depth. It is seen that scouring continues after the initial surge. This

is an important finding because it means that, surge aside, the high flows due to the

higher-than-normal water level difference between Lakes Huron and St. Clair can

lead to scouring. The 1984 ice jam lasted for 24 days, during which the water level in

Lake St. Clair dropped by 0.6 meters. Lake St. Clair is a small lake and an imbalance

between inflow and outflow caused by a jam can cause water levels to drop quickly,

unlike Lake Huron whose water level was not affected during the 1984 jam. As will

be seen below, an even greater drop in the water level in Lake St. Clair would lead

to extensive scouring during and after a jam release.

A scenario was tested where the water level drop in Lake St. Clair was 1 meter

146



Figure 5.12: Scouring happening after the initial phase of the jam release; blue regions
indicate scouring more than 1 centimeter in depth

instead of 0.6 meters. That could happen if a jam persisted longer than 24 days which

was the duration of the 1984 ice jam. The boundary conditions were set so that the

water level at the entrance was 2.4 meters higher than that at the exit, and flow

was simulated until steady state was achieved. The size and shape of the jam were

left unaltered. Then the jam was released. Flow was simulated for 12,500 seconds

after the release, a shorter duration than in the previous run. The duration was kept

shorter because it is assumed that the very high flow velocities will cause the water

level in Lake St. Clair to rise very rapidly, invalidating the boundary conditions set in

the onset of the simulation. Figure 5.13 shows the evolution of the stresses on the river

bed with time, in a similar fashion as in figure 5.9. Most notably, the stresses at the

locations of high-stress concentration under normal flow conditions are significantly

higher and the high values persist with time. This, again, is because irrespective of

the initial surge the flows remain high due to the big water level difference between

the two lakes. The high flows lead to scouring after the initial surge.

Figure 5.14 shows the depth changes that have taken place 12,500 seconds after
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Figure 5.13: Evolution of bed stresses with time during jam release; this time the
difference in water level between the two lakes is even greater

the jam release. The blue and green regions show scouring more than 1 centimeter

in depth. Again, there is a small region of scouring in the upper portion of the river,

while there are several small regions where scouring has taken place in the central

part of the river. Extensive scouring has taken place in the lower part of the river

near the exit, right below the jam toe. The scouring stretches for approximately 3

kilometers along the river, and covers large areas of the central portion along the

width.

Figure 5.15 shows scouring that has taken place starting 5000 seconds after the

release, after the surge has passed. Blue regions indicate scouring more than 1 cen-

timeter in depth. While lesser scouring takes place after the initial surge has passed,

it is still significant and at locations can exceed 10 centimeters in depth (not seen

in the figure). It is worth noting that this is scouring that takes place during 7500

seconds of flow (2.1 hours). Considering the fact that it would take days for the water

level in Lake St. Clair to rise to levels where there is no more scouring taking place in

the St. Clair River, the degree of scouring that takes place during the entire process,
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Figure 5.14: Difference in initial and final depth after jam release in St. Clair River.
Blue and green regions show scouring more than 1 centimeter in depth.
This time the water level difference between the two lakes was 2.4 meters

which can be several tenths of a meter in depth, can have a significant impact on the

hydrodynamics of the system. This applies to a lesser extent to the 1984 ice jam,

although the lower initial water level differences between the two lakes would mitigate

the phenomenon.

Figure 5.15: Scouring happening after the initial phase of the jam release; blue regions
indicate scouring more than 1 centimeter in depth. This time the water
level difference between the two lakes was 2.4 meters
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5.0.5 Conclusions

Flow in the St. Clair River was simulated both for normal open water conditions

and for conditions when an ice jam, similar to the 1984 ice jam in size and in the effect

that it had on the flow, is present. Normal flow simulations revealed three regions of

elevated stresses on the bed, one near the entrance, one in the central portion of the

river and one near the exit. During the release of an ice jam stresses in those parts

are even more elevated and exceed critical values. This finding is based purely on the

hydrodynamic model, and indicates that scouring will take place irrespective of the

accuracy of the movable bed model. Application of the movable bed model indicates

that significant scouring would have taken place during the 1984 ice jam, especially

near the exit of the river right below the toe of the jam. This scouring amounts to

several thousands cubic meters of sediment displaced from the central portions along

the width of the river towards the banks. Significant amounts of scouring would have

occurred after the initial phase of the release, once the surge had passed. This is

because of the high water level difference between the two lakes that existed right

before the release of the jam. A test scenario was run where the water level in Lake

St. Clair drops by an additional 0.4 meters. Referring to figure 5.1 showing water

level fluctuations in the lake, this scenario is possible and could happen if a jam

like the 1984 ice jam stayed in place for more than 24 days. Significant scouring

happens in a short period of time after the release and continues thereafter until the

water level in Lake St. Clair rises to pre-jam levels. Under these conditions the total

amount of scouring could have very pronounced effects on the hydrodynamics of the

system. It has to be stressed, however, that while the model gives strong indications

that scouring will happen in an event like the one in 1984, since the movable bed

model has not been validated, it is still uncertain how exactly the bed morphology

will change. Furthermore, the sensitivity of the system to localized changes in bed

morphology has yet to be ascertained. A 10 cm drop in the water level of Lake
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Huron over the last 25 years amounts to an average increase in river conveyance by

approximately 1.5 m
3
/s. Compared to the average volume flow rate through the river

of approximately 4800 m
3
/s, this is a very slight increase. A highly non-liner system

like the Huron Erie Corridor could be sensitive to even minute, localized changes in

bed morphology when it comes to very small increments in conveyance.

5.0.6 Future Work

While attempts to validate the movable bed (bedload transport) model were un-

successful, this is due to weaknesses of the hydrodynamic model and related com-

putational difficulties as was shown. Because the hydrodynamic model is unsuitable

for small-scale simulations, the best approach to validate the movable bed model

would be to incorporate it in a different hydrodynamic model, unless validation cases

arise involving larger scale phenomena. A continuous sediment size distribution was

used in this study, but more detailed information on the sediment composition of

the bed could be incorporated. A more accurate model for scouring would involve

variation of sediment composition with depth, as well as accounting for sediment size

changes brought about by movement of bedload of a certain size to locations whose

sediment size profiles are different. Analytical formulas accounting for changing sed-

iment composition because of sediment transport have been developed [81], [75], [76]

and involve an evolving grain size distribution at each location, as well as account-

ing for relative mobilities between different grain sizes. It would be a simple matter

to incorporate these changes in the bedload transport model. More difficult would

be to obtain detailed information on the river bed. The entire Huron Erie Corridor

(HEC) system should be incorporated in one model and simulations should be run

involving scouring and potential changes in the amount of water drained from Lakes

Huron-Michigan. While in this study it is shown that scouring will happen in a 1984

ice jam scenario, any longterm impacts on the water level of Lake Huron cannot be
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studied unless flow simulations are run that treat the HEC in its entirety. Provided

that the scouring model is validated and gives accurate results, the sensitivity of the

entire system to even minute changes in the river bed morphology can be investigated.

Considering the non-linearity of the system, as well as the only very slight increase

in river conveyance needed to bring about the recorded change in the water level of

Lake Huron over time, it is an intriguing question whether a localized change in bed

morphology can bring about such a change. If such a phenomenon can occur, it will

be the equivalent of the ‘butterfly’ effect for the Huron Erie Corridor. Finally, more

extreme worst case scenarios should be tested. Referring to figure 5.1 it is plausible

that under unusual conditions the water level difference between Lakes Huron and

St. Clair can reach 3 meters. The impact of such extreme events should and could

be investigated. All of the above tasks are within reach using Suntans, provided the

movable bed model is modified to account for changing surface sediment composition

and is validated.
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APPENDIX A

Nomenclature

Symbol Description

ωs fall velocity

κ Von Karman’s constant

u∗ friction velocity

R submerged specific gravity

g acceleration of gravity

D diameter of sediment particle

ν kinematic viscosity of water

νV vertical turbulent viscosity

Cd,B bed drag coefficient

τw wall stress

ρ density of water

y
+ wall unit

H water depth

ks Nikuradse roughness coefficient

d85 85th percentile sediment grain diameter

d50 50th percentile sediment grain diameter
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s specific gravity of sediment particle

β angle of inclination of bed

η bed elevation

n sediment porosity (note that in the literature review n

stands for Manning’s n; in this work however it is used

for porosity)

�q bedload flux vector

qi bedload flux vector component

τi component of stress on the bed vector

�τ stress on the bed vector

qo bedload flux vector for horizontal bed
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