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ABSTRACT

The ability to manipulate individual quantum systems in a precise way has led to a new

era of quantum technologies, including quantum computation and quantum simulation. In

this thesis we present several new implementations of these quantum technologies.

We first aim at addressing current experimental challenges for quantum dot based

quantum computing. We propose a systematic way to study the dynamics of nuclear spin,

which is responsible for the short electron spin coherence time. Our calculation is based

on diffusion model and is consistent with experiments. We also invent a novel protocol

to realize high-fidelity ultrafast universal quantum gate in recently-developed quantum

dot molecule system. Experimental realization of our protocol requires only a simple time

engineering of optical pulses.

We then propose a new quantum state transfer scheme for Nitrogen-Vacancy center

based quantum computer, which is applicable at room temperature. Our method accom-

plishes high fidelity robust quantum state transfer through uncontrolled thermal nitrogen

spin chain between two remote NV registers.

Our next study helps building a hybrid quantum computer by entangling disparate

systems using photonic links. The photons emitted from two types of system need to be

matched in both frequency and pulse shape. We propose a simple method to match the

emitted pulse shape from two qubit systems with different transition linewidths.

xi



We then focus on quantum simulation with trapped ions. We show the possibility of

observing a novel type of temperature driven structural phase transition in trapped ion

chain, which originates from anharmonic interaction between different vibrational modes.

Afterward, an experimental protocol to simulate a conceptually new state of matter, called

time crystal, is proposed based on ions trapped in a ring trap.

Finally, we propose two new applications based on the recently developed trapped

ion quantum simulator of spin models: (1) simulation of Haldane-Shastry model, which

opens the way of experimental study to a remarkable theoretical model involving spin

liquid ground state and fractional excitations (2) observation of prethermalization and

dynamical phase transition, which are poorly understood non-equilibrium phenomena in

closed quantum many-body system.
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Chapter 1

Introduction

1.1 Background and Motivation

Developed at the beginning of the twentieth century, the theory of quantum mechanics

has been one of the most successful theories for its precise predictions of the microscopic

world. The world quantum mechanics portrays is fundamentally probabilistic, drastically

different from classical mechanics that deterministically describes the motion of macro-

scopic objects in everyday life. The quantum nature renders the possibility of a single ob-

ject in two states at the same time (superposition), and even of two objects far apart being

instantaneously connected (entanglement). In the past twenty years, physicists have made

tremendous progress at harnessing these unusual quantum effects to achieve a variety of

new quantum technologies, such as quantum computers with extraordinary computing

power, quantum communication with unbreakable security, quantum metrology aiming

for obtaining the highest measurement precision allowed by nature, and quantum sim-

ulators that can assist us in understanding some very complicated quantum many-body

system.
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The realization of these fascinating new quantum technologies, however, can be very

challenging. A large-scale controllable quantum system that can be used to build a quan-

tum computer or quantum simulator is still far from reality. One key reason is that the

quantum properties of a large system will quickly die off when the system interacts with

its surrounding environment. Such a phenomenon is called decoherence, a bane that

plagues almost every form of quantum technology. Another difficulty is that technologies

like quantum computation and quantum simulation require different parts of the quan-

tum system to interact strongly with each other. This schizophrenic requirement of having

a quantum system that is both strongly coupled within itself and well isolated from the

environment is the fundamental challenge in quantum technology. Motivated by this chal-

lenge, researchers have been actively investigating a variety of physical systems, ranging

from cold atoms and ions, to artificial atoms in solid state materials, in hopes of finding

an “ideal” system. However, up to now, each of these systems has their own advantages as

well as disadvantages, lacking a clear “winner”.

While a perfect candidate is still missing, we are far from exhausting the power of our

existing quantum systems. The main motivation of this thesis is hence to maximize the

benefit of our quantum technology with available experimental technique. Dedicated to

this goal, we have looked into three important and complementary approaches: (1) Find-

ing novel ways to ameliorate disadvantages within one quantum system. (2) Combining

the power of different types of systems to make a more powerful “hybrid system”. (3)

Discovering certain problems of physical importance that employ the unique strength of a

specific quantum system but circumvent its shortcomings.

Before we outline how far we’ve gone into these three approaches in Section 1.4, we’d

like to give some brief introduction to the background and history of two most important
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quantum technologies: quantum computation and quantum simulation, in the following

Section 1.2 and 1.3.

1.2 Quantum Computation

Here we present a brief review on quantum computation, and readers can find more

detailed reviews in Ref. [1–6]:

The idea of quantum computation was originated in the late 1980s. Pioneers such as

R. Feynman and D. Deutsch first realized the fundamental connection between the laws of

physics and computation [7,8], as the storing, transmitting and processing of information

always require physical means. It was then natural to find that at microscopic level, where

quantum effects become important, the classical theory of computation will be inadequate.

Particularly, phenomena such as quantum superposition and quantum entanglement may

be utilized for computations. If the quantum version of the computer is allowed to accept

an input state that is comprised of a coherent superposition of many individual classical

input states, the unitary evolution of such an input state, according to quantum mechan-

ics, will yield a coherent superposition of all corresponding output states, thus creating a

massive parallelism of computation. This quantum parallelism is the salient feature of any

quantum computer, as it may provide a significant speed up over its classical counterpart.

However, finding a quantum algorithm that fully exploits the power of quantum paral-

lelism is a quite difficult task, as the measurement of the output quantum state, if it’s in a

coherent superposition, will only give the observer one possible outcome among the huge

number of parallel components. Although some rather artificial problems can be solved

with a quantum computer in an extremely efficient manner [9], the real-world application
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of a quantum computer remains obscured, until in 1994, Peter Shor invented the ground-

breaking quantum algorithm for factorizing large numbers [10]. The importance of Shor’s

factoring algorithm lies in two aspects: (1) Most of the popular public key ciphers are

based on the difficulty of factoring larger integers, including the ubiqitous RSA protocol

and its variants. (2) Shor’s algorithm provides a way to factor large integers in polynomial

scale of time on a quantum computer, which is an exponential speed up over any known

classical algorithm. Consequently, the power of Shor’s algorithm would allow a very mod-

estly sized quantum computer (with, for example, a hundred quantum bits) to outperform

even the largest classical supercomputer in the world, hence becoming one of the foremost

motivations for developing a quantum computer.

While there is still an ongoing effort to discover new quantum algorithms with im-

pressive speed-ups [11–13], a large portion of the quantum computation community is

devoted to the physical implementation, i.e., to build a real-world quantum computer. The

requirements for building a quantum computer have also been formally characterized by

D. DiVincenzo, which are known as “DiVincenzo criteria” [14]. In short, there are five

basic criteria: (1) Well-defined qubits (2) Initialization to a pure state (3) Universal set of

quantum gates (4) Qubit-specific measurement (5) Long coherence times.

Over the years, researchers are finding different physical systems that meet the above

five criteria well. Outstanding candidates include trapped ions [15–17], neutral atoms [18,

19], superconducting circuits [20, 21], quantum dots [22], photons [23], and NV centers

in diamond [24]. This thesis only involves research related to three of these systems,

quantum dots, NV centers, and trapped ions. We’ll discuss how they perform in the task of

quantum computation case by case in the following chapters.
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1.3 Quantum Simulation

The idea of quantum simulation was also first proposed by Richard Feynman [7]. Feyn-

man was interested in simulating one quantum system with another because he became

aware of the complexity of simulating quantum systems using classical computers. For a

large quantum many-body system, even if one has the correct model with an explicitly

defined Hamiltonian, calculating its equilibrium or dynamical properties would involve

tackling a Hilbert space that scales exponentially with the number of particles. Even for

the simplest spin-1/2 system, the most powerful classical computer nowadays will fail at

predicting more than roughly 50 spins. Feynman’s proposal circumvents such computa-

tional problems by resorting to another quantum system that is effectively described by

the same model. In addition, this “simulator” system is assumed to be well controlled at

our disposal. For example, we have the ability of tuning the interactions between particles

within the system, and can perform measurements on physical quantities at different posi-

tions and time. As a result, we will have a much better knowledge of the original quantum

system we’d like to learn indirectly, without the need of simulation on classical computer.

Feynman also conjectured that a quantum computer would most likely be an efficient

quantum simulator at the same time, and indeed, as later proven by Seth Lloyd [25],

any quantum Hamiltonian with few-body interactions can be simulated by a quantum

computer with a polynomial cost of time, through breaking the evolution of Hamiltonian

into a series of quantum gates.

While we still have to wait for a fully fledged quantum computer, the main motivation

of quantum simulation, at the current stage, is to construct devices based on available

experimental techniques, that can perform helpful simulation of some poorly-understood

quantum many-body systems, including frustrated magnetic materials, high-Tc supercon-
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ductors, matter with topological orders etc. The reason why this goal is likely to be achiev-

able is because a lot of times, we do not need the knowledge of the complete many-body

wavefunction provided by a powerful quantum computer. Instead, certain physical observ-

ables, such as particle densities, magnetization, or spin correlations, suffice to tell us key

properties of a quantum system (e.g. its phase diagram). In addition, quantum simula-

tion is generally expected to be more robust to errors than quantum computation [26], as

macroscopic physical quantities are likely to be insensitive to local noise or perturbations.

These characteristics of quantum simulation lead researchers to build quantum simu-

lators with specific purposes for different systems. For example, the trapped ion system

is especially useful at simulating small sized quantum spin models [27, 28]; cold neutral

atoms trapped in an optical lattice have proven to be powerful simulators of the Bose-

Hubbard model [29, 30], and photonic system has the potential of simulating certain

quantum chemistry problems [31, 32]. But the wealth of problems amenable for quan-

tum simulation, even within the reach of current experimental technology, is still far from

exhausted. We’ll discuss about several new applications of existing quantum simulators in

this thesis as well.

1.4 Outline of the thesis

The first half of the thesis is dedicated to quantum computation. As we stated before,

the first approach to enhance our quantum technology is to counter existing problems in

specific quantum systems. In Chapter 2, we present our work closely related to the fight

against decoherence in quantum dot (QD) system [33]. The work is based on the recently-

developed way of enhancing qubit coherence time in QD via dynamical preparation of
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nuclear spin state [34–38]. We provide a detailed analysis of the dynamics of prepared

nuclear spin state, which is found to be consistent with experiments.

Chapter 3 continues the discussion in QD system, but now centered on the control of

qubits rather than the environment. We propose an experimentally feasible protocol to

achieve complete two-qubit control in vertically stacked double quantum dot system [39,

40], where universal quantum control has yet to be demonstrated due to limited control

in experiment. To maximize gate fidelity, we introduce the optimal pulse engineering

protocol, which can also be a very useful technique for other systems, such as trapped

ions [41,42].

In Chapter 4, we present a novel protocol for implementing high fidelity quantum state

transfer in Nitrogen-Vacancy center based quantum registers [43, 44]. Such a protocol

is robust to many error sources, and most importantly, allows for a room temperature

experimental setup, which is a huge advantage in reality.

Chapter 5 is related to the second approach we discussed in Section 1.1, the creation of

a hybrid quantum system. Specifically, we are aware that to transfer quantum information

within a hybrid quantum system, an efficient photonic channel used for heralding entan-

glement is usually mandatory [17, 45]. However, different types of matter qubit not only

have different transition frequencies, but may also have distinct transition linewidths. Our

work here solves the latter problem by using an engineered pulse to match the pulse shape

of photons emitted from two subsystems in a hybrid quantum structure.

The second half of the thesis aims for quantum simulation, where we have followed

the third approach that employs the unique strength of a specific system, here the trapped

ions, for investigating and simulating physically important problems. In Chapter 6, we

present a practical scheme to study a new type of temperature-driven structural phase

7



transition using the motional degrees of freedom in trapped ions [46]. In Chapter 7, we

propose the first possible realization of a conceptually brand-new state of matter, called

time crystal [47–50], that allows spontaneous time translational symmetry breaking in the

ground state.

The last two chapters are new applications of the trapped ion simulator on spin mod-

els, which has been a research focus in recent years [27, 51–53]. In Chapter 8, we use

a generalized version of an existing simulator to simulate the Haldane-Shastry model, a

fascinating exactly solvable theoretical model in condensed matter physics that unfortu-

nately, does not exist in any real-world materials. This model has the paradigmatic spin

liquid state as its ground state, which can be readily tested by our proposed trapped-ion

simulator. In Chapter 9, we show how one can observe and study some remarkable but

poorly-understood non-equilibrium phenomena in closed quantum many-body problem,

such as prethermalization and dynamical phase transitions, based on the currently avail-

able version of the trapped-ion spin model quantum simulator.

8



Chapter 2

Dynamics of nuclear spins in a quantum dot

2.1 Introduction

Electron spins in quantum dot consist of one of the most promising systems for real-

ization of quantum computation [54]. The spin state of a single electron in a quantum

dot can be coherently controlled either optically through fast laser pulses or electroni-

cally through tuning of gate voltages [54–57]. In experiments, the coherence time of the

electron spin is largely limited by its hyperfine coupling to the nuclear spin environment

in the host semiconductor material. The coupling causes spectral diffusion and gives a

typical spin decoherence time T ∗2 ∼ 15ns for the electron spin qubit [22, 58]. This co-

herence time could be significantly prolonged with application of spin echo [59] or other

dynamic decoupling techniques [60–63]. However, implementation of these techniques

requires repeated applications of many laser pulses. Each pulse inevitably induces some

noise by itself, which limits the practical performance of suppressing spin noise under real

environments.

Another technique to increase the coherence time for the electron spin is through the
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dynamic nuclear-spin polarization (DNP) [34, 36–38, 64–70], which prepares the nuclear

spin environment into certain configurations. The nuclear spins in such configurations

collectively generate an effective magnetic field (the Overhauser field) on the electron

spin with small fluctuation, hence reducing the spectral diffusion of the electron spin.

Although nuclear spins can be polarized through many methods such as optical pump-

ing [64], substantial reduction in the fluctuation of the Overhauser field requires almost

complete polarization of the nuclear spins [71], which is hard to achieve experimentally.

The recent experiments, including both optically and electronically controlled quantum

dot systems [34,36–38], however, demonstrate surprising feedback mechanisms which can

lock the Overhauser field to certain values without significant polarization of the nuclear

spins. The Overhauser field generated from such locking mechanism has much smaller

fluctuation, which effectively increases the coherence time T ∗2 of the electron spin qubit by

up to two orders of magnitudes.

The DNP process prepares a fixed Overhauser field with small fluctuation that enables

us to do gate experiments on the electron spins over a longer coherence time. Important

questions under this background are how long this fixed Overhauser field can survive

after the DNP process and what factors determine/influence the relaxation time of the

Overhauser field. Recent experiments have observed that the Overhauser field has a typical

relaxation time ranging from a few seconds to a few minutes, and even up to an hour

in certain system [72]. The variation of this relaxation time is believed to be a result

of diverse experimental configurations, such as different applied magnetic field [36, 69],

electron spin state in double quantum dots [36], and DNP pump time [70].

In this chapter, we develop a quantitative theory to calculate the relaxation time of

the Overhauser field in the environment of quantum dots, and provide a qualitative ex-
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planation to the dependence of Overhauser field relaxation time on various experimental

configurations mentioned above. The relaxation of the Overhauser field is widely believed

to be caused by nuclear spin diffusion. In bulk material, nuclear spin diffusion has been

well studied [73] and it is caused simply by the nuclear dipole-dipole interaction. In a

quantum dot, however, the presence of the electron spin generates two new effects in

the diffusion process. First, the electron spin can mediate the diffusion of nuclear spins

through a virtual hyperfine process. Second, the effective magnetic field generated by the

polarized electron spin produces an inhomogeneous Knight shift on the surrounding nu-

clear spins, and this Knight shift can suppress the nuclear spin diffusion. The influence

of the nuclear spin diffusion coefficient by the Knight shift has been taken into account in

Ref. [74], but electron mediated nuclear spin diffusion was ignored there. Without con-

sidering electron mediated diffusion, one cannot explain the dependence of Overhauser

field relaxation time on various experimental parameters such as magnetic field. A more

recent work [75] considers relaxation of the Overhauser field due to the electron medi-

ated nuclear spin diffusion, but not including the direct nuclear dipole-dipole interaction.

Such treatment ends up with a conclusion that the Overhauser field can only decay by less

than 1%, contradictory to experimental facts of complete decay of Overhauser field over

long time. A quantitative theory that includes a complete description of both effects is,

to our knowledge, still missing. In this work, we take into account both electron medi-

ated nuclear spin diffusion and direct nuclear dipole-dipole diffusion, and the results are

consistent with recent experimental observations in Refs. [36,69,70].

This chapter is arranged as follows: in Section 2.2 we give a formalism to describe re-

laxation of the Overhauser field that includes contributions from the nuclear dipole-dipole

interaction, the electron mediated nuclear spin diffusion, and the Knight shift. Then we
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derive the effective nuclear spin diffusion equation and solve it numerically to determine

the relaxation time of the Overhauser field. In Section 2.3 we compare our calculation re-

sults with the recent experiments and show that they are in qualitative or semi-quantitative

agreement. We summarize our results in Section 2.4 with brief discussions.

2.2 Formalism

We assume that an external magnetic field B0 much larger than the mean value and

variance of the local Overhauser field generated by nuclei is applied along the z-direction

(perpendicular to the quantum dot layer). In this case, we can drop the nonsecular terms

in the interaction Hamiltonian. For simplification, we consider only one species of nuclei

around the quantum dot electron. The total Hamiltonian for the electron and nuclear spin

system, including both the Fermi contact hyperfine interaction and nuclear dipole-dipole

interaction, can be written as:

H = He +Hn +Hen +Hnn, (2.2.1)

He = −geµBB0S
z, (2.2.2)

Hn = −gnµNB0

∑
i

Izi , (2.2.3)

Hen =
∑
i

AiS
zIzi +

∑
i

Ai
2

(S+I−i + S−I+
i ), (2.2.4)

Hnn =
∑
i 6=j

2BijI
z
i I

z
j −

∑
i 6=j

BijI
+
i I
−
j , (2.2.5)

Bij =
µ0

4π
(gnµN)2R−3

ij (1− 3 cos2 θij), (2.2.6)
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where Ai denotes the hyperfine coupling between the electron and nuclear spin at site i

with spatial coordinates (xi, yi, zi). Rij is the distance between two nuclei at site i, j. θij is

the angle between the line connecting sites i, j and the z direction.

We note that for B0 ranging from a few mT to a few T, the electron’s Zeeman splitting is

on the order of 10−1− 102GHz, while the average hyperfine coupling in most quantum dot

systems is on the order of MHz. Thus we can adiabatically eliminate the spin-flip terms in

the hyperfine interaction Hamiltonian and correspondingly modify the other terms in the

Hamiltonian as [75]:

He = −(geµBB0 +

∑
iA

2
i

4geµBB0

)Sz, (2.2.7)

Hn =
∑
i

[−gnµNB0 + Ai(1−
Ai

4geµBB0

)Sz]Izi , (2.2.8)

Hnn =
∑
i 6=j

2BijI
z
i I

z
j −

∑
i 6=j

(Bij +
AiAjS

z

2geµBB0

)I+
i I
−
j , (2.2.9)

where we have introduced an electron-mediated nuclear flip-flop term in Hnn. Since we

are interested in the long time dynamics of nuclear spins, we can completely eliminate the

electron from the Hamiltonian by replacing the constant operator Sz with its expectation

value. We find that using Sz = 1/2 or Sz = −1/2 will yield almost the same result in

the following calculations. Therefore we can set Sz = 1/2 for simplicity and arrive at the

following effective Hamiltonian (neglecting constant terms):

H = H0 +H1, (2.2.10)

H0 ≈
∑
i

(−gnµNB0 + Ai/2)Izi +
∑
i 6=j

2BijI
z
i I

z
j , (2.2.11)

H1 = −
∑
i 6=j

(Bij +
AiAj

4geµBB0

)I+
i I
−
j . (2.2.12)
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Here, the term proportional to Ai in H0 is the Knight shift term. For this Knight shift, we

have neglected the small term proportional to A2
i in Eq. (2.2.8) as it is dominated by the

Ai term in most experimental systems.

The expectation value for the z component of nuclear spin at site k will evolve according

to the Schrodinger equation:

∂〈Izk〉
∂t

=
i

~
Tr{ρ(t)[H1, I

z
k ]}, (2.2.13)

where ρ(t) is the nuclear spin density matrix at time t, which can be calculated by switching

to the interaction picture:

ρ̃(t) = ρ(0) +
i

~

ˆ t

0

[ρ̃(t′), H̃1(t′)]dt′, (2.2.14)

with H̃1(t) = exp(iH0t/~)H1exp(−iH0t/~). Further calculation yields [73]:

∂〈Izk〉
∂t

=
i

~
Tr{ρ(0)[H̃1(t), Izk ]} (2.2.15)

+

(
i

~

)2 ˆ t

0

Tr{ρ(t− t′)[H1, [H̃1(t′), Izk ]]}dt′ (2.2.16)

We assume the nuclear spin (with spin-I) density matrix as a product state of the

following form:

ρ(t) =
⊗
k

ρk(t) ρk(t) =
1

2I + 1
+
〈Izk(t)〉

Tr{(Izk)2}
Izk . (2.2.17)

Such an approximation is valid when off-diagonal terms of the density matrix are negligi-

ble. This is justified by the fact that fluctuations in B0 and inhomogeneous Knight shift will

quickly destroy correlation and transverse coherence between the nuclear spins [75, 76].
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Besides, calculating without this approximation will not change the physical nature of the

result, as the authors of Ref. [73] have shown that off-diagonal terms only have a minor

contribution to the diffusion coefficients.

By using the explicit form of the Hamiltonian [Eq. (2.2.10-2.2.12)] and density matrix

[Eq. (2.2.17)], we can reduce Eq. (2.2.15) to:

∂〈Izk〉
∂t

=
∑
i 6=k

Wik(〈Izi (t)〉 − 〈Izk(t)〉) (2.2.18)

Wki =
1

Tr{(Izk)2}

ˆ t

0

Tr{[H̃1(t), Izk ][H̃1(t− t′), Izi ]}dt′

where Wki has a clear physical meaning as the flip-flop rate between nuclear spins at site

i and k.

For a 2D InAs/GaAs quantum dot, we take As nuclei (I = 3/2) as an example for

further calculation. The parameter Wki can be analytically calculated when approximating

the integration upper limit in the above expression for Wki from t to infinity [74].

Wik =
17
√

2π

5
C2
ik(A

2
ik + gik)

−1/2

+
12
√

2π

5
C2
ik(A

2
ik + 64C2

ik + gik)
−1/2

+
9
√

2π

10
C2
ik(A

2
ik + 256C2

ik + gik)
−1/2, (2.2.19)

Aik = Ai − Ak, (2.2.20)

Cik = Bik +
AiAk

4geµBB0

, (2.2.21)

gik = 80
∑
j 6=i,k

(Cij − Ckj)2. (2.2.22)

The hyperfine coupling rate Ai is proportional to the square of the electron wave func-
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tion in a quantum dot. And in the following calculation we assume the dot potential

is like a square well in the z-direction and the electron wave function takes a Gaus-

sian shape in the x, y-plane. The hyperfine coupling rate Ai can then be written as

Ai = A0 cos2(πzi/z0) exp[−(x2
i + y2

i )/l
2
0], where (xi, yi, zi) are spatial coordinate of the site i.

l0 and z0 are, respectively, the Fock-Darwin radius and thickness of the quantum dot, and

A0 is the hyperfine coupling for the nuclear spin at the origin (electron’s location).

The assumption that the nuclear spins follow a diffusion process requires the flip-

flop rate for two distant sites to be negligible. This requirement is satisfied by the fact

that the coefficient Cik decays to zero fast as Rik increases (Bik ∝ R−3
ik and AiAk ≤

A0 exp[−(R2
i + R2

k)/l
2
0) ≤ A0 exp(−R2

ik/l
2
0) where we ignore the diffusion in z direction

as discussed below). If we treat 〈Izk(t)〉 as a continuous function of spatial variable xα

(α = x, y, z). We can then carry out a Taylor expansion of 〈Iz(t)〉 for site i around site k:

〈Izi (t)〉 ≈ 〈Izk(t)〉+
∂〈Izk(t)〉
∂xα

(xαk − xαi )

+
1

2

∂2〈Izk(t)〉
∂xα∂xβ

(xαk − xαi )(xβk − x
β
i ) + · · · (2.2.23)

where Einstein’s summation convention is implied for spatial index α, β. Substituting this

into Eq. (2.2.18) and noting that the summation of the first order derivative term over all

sites vanishes due to the lattice symmetry 1, we have:

∂〈Izk〉
∂t
≈
∑
i≈k

[
1

2
Wik(x

α
k − xαi )(xβk − x

β
i )]
∂2〈Izk(t)〉
∂xα∂xβ

(2.2.24)

The
∑

i≈k notation above means summation over the sites near k. Define coefficient Dαβ =

1The hyperfine coupling rate Ai, although inhomogeneous over a larger scale, only changes slightly
from one nuclear spin to its nearby spins, so in summation over the nearby lattice sites, we still have an
approximate lattice symmetry for the jump rate Wik.

16



∑
i≈kWik(x

α
k − xαi )(xβk − xβi )/2 and similarly note that for α 6= β the summation over all

sites vanishes, we have:

∂〈Izk〉
∂t

= (Dxx ∂
2

∂x2
+Dyy ∂

2

∂y2
+Dzz ∂

2

∂z2
)〈Izk(t)〉 (2.2.25)

Eq. (2.2.25) is a 3D anisotropic diffusion equation with spatially varying diffusion

coefficients (as Aik, Bik, Wik all depend on the spatial coordinates), which is not easy to

solve. To further simplify it, we note that to obtain the major feature for the full time

dynamics of the Overhauser field 〈hz(t)〉 =
∑

k Ak〈Izk(t)〉, it is reasonable to first ignore

the diffusion in the z direction, because the quantum dot layer is usually a few nm thick

and chemical or structural mismatch in adjacent layers can strongly suppress diffusion

in the z direction [69]. In addition, from symmetry in the 2D x − y plane, we expect

to have Dxx ≈ Dyy and can thus define an average 2D diffusion coefficient D(x, y) =∑
i≈kWik[(xk − xi)2 + (yk − yi)2]/4. Now we have a simplified 2D diffusion equation:

∂〈Izk〉
∂t

= D(x, y)(
∂2

∂x2
+

∂2

∂y2
)〈Izk(t)〉. (2.2.26)

The above partial differential equation can be effective solved using finite element

method by coarse graining a large number of nuclear spin sites to a small number of

mesh nodes. But before solving Eq. (2.2.26), we would like to have some discussion

about the diffusion coefficient D(x, y). For x, y � l0, the role of electron can be neglected

and a numerical calculation of the above diffusion coefficient gives a uniform background

value D ≈ 7 nm2/s, consistent with the previous theoretical and experimental reports of

diffusion coefficient in bulk material [73, 74]. In our calculation, we set the quantum dot

parameters l0 = 30 nm, z0 = 10 nm, A0 = 1 µeV ≈ 1.5 MHz,
∑

k Ak ≈ 80 µeV , the
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lattice constant a0 = 0.563 nm, and the number of nuclei N ≈ 9× 105, according to typical

experimental values [36,68,69].

Within the range of Fock-Darwin radius l0, the presence of the quantum dot electron

will change the diffusion coefficient through two competing mechanisms: on the one hand,

the confined electron generates an inhomogeneous Knight shift [58], which lifts the de-

generacy of the nuclear Zeeman energy for different nuclei and prevents the spin flip-flop;

on the other hand, electron mediated nuclear spin flip-flop enhances the nuclear spin dif-

fusion, and the enhancement decreases from the center to the edge of the dot.

Our numerical simulation shows that whether one mechanism dominates the other is

largely determined by the external magnetic field B0. Fig. 2.2.1-2.2.2 show the diffusion

coefficient D(x, y) under B0 = 0.2T and B0 = 2T . We can see that under a small magnetic

field, the electron mediated flip-flop greatly enhances the nuclear spin diffusion near the

center of the dot, causing a sharp peak in D(x, y)). In a large magnetic field, however, such

enhancement is negligible compared to the Knight shift, which suppresses the nuclear spin

diffusion, yielding a wide dip in D(x, y)). The dependence on the strength of magnetic

field can be easily explained from the effective Hamiltonian [Eq. (2.2.10-2.2.12)]: the

electron mediated flip-flop term is inversely proportional to B0 while the Knight shift term

is independent of B0. We note that the reason why we have a narrower peak than the dip

is due to the fact that the Knight shift term is proportional to the hyperfine coupling rate

(Gaussian distribution in x-y plane) while the electron mediated flip-flop term is propor-

tional to the product of two nucleus’s hyperfine coupling rates. We also note that the 2D

diffusion coefficient D(x, y) in Fig. 2.2.1-2.2.2 does not have azimuthal symmetry since

in our calculation we assume the nuclear spins are in a square lattice with no azimuthal

symmetry.
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Figure 2.2.1: Diffusion coefficient D(x,y) under B0 = 0.2T . The narrow high peak at the
center of the dot is due to electron-mediated nuclear spin flip-flop, and the wide dip is due
to inhomogeneous Knight shift.
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Figure 2.2.2: Diffusion coefficient D(x,y) under B0 = 2T . The inhomogeneous Knight
shift dominates in this case, so diffusion is generally suppressed within the Fock-Darwin
radius.
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2.3 Comparison with experiments

To compare with experiments, we numerically solve the diffusion equation [Eq. (2.2.26)]

under certain initial and boundary conditions. For the initial condition, since the nuclear

spins are partially polarized through the DNP process from the hyperfine interaction with

the electron spin [34, 36–38], it is reasonable to expect that right after the DNP process,

the polarization distribution 〈Izk〉 is proportional to the hyperfine interaction rate. So in

the following calculation, we assume 〈Izk〉 ∝ Ak ∝ exp[−(x2
i + y2

i )/l
2
0] at t = 0 for solving

the diffusion equation [Eq. (2.2.26)]. For the boundary condition, we can assume nat-

urally that 〈Izk〉 approaches zero when the radius goes to infinity. However, in numerical

calculation, we have to take a finite radius. To make the spin diffusion possible, this finite

radius has to be significantly larger than the radius of the size l0 of the initial electron

wave packet. In the calculation, we take a radius of about 300 nm (10 times of l0) so that

the number of total nuclear spins inside is about 100 times the number of initially partially

polarized nuclear spins within the electron’s wave packet. With such choice, we expect the

cutoff error to be at a percent level.
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Figure 2.3.1: Decay of the Overhauser field under various small magnetic fields. The solid
line refers to the case with electron staying in the (2,0) singlet state where electron plays
no role in nuclear spin diffusion.
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Figure 2.3.2: Decay of the Overhauser field under a strong magnetic field. The solid line
shows the dynamics of the Overhauser field under B = 2T and the dotted line is a fit by
using a constant diffusion coefficient.
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First, to compare with the experiments in Ref. [36], we calculate the relaxation of the

Overhauser field hz(t) =
∑

k Ak〈Izk(t)〉 under different electron states and different values

of the external magnetic field B0, and show the results in Fig. 2.3.1. We note that for

the double quantum dot system in Ref. [36], if the electron stays in the (2,0) singlet state,

the electron spin has Sz ≡ 0, therefore it basically has no influence on the nuclear spin

diffusion. In this case, the nuclear spin diffusion is merely governed by intrinsic nuclear

dipole-dipole interaction. However, for the electron in the (1,1) state, with the magnetic

field in the range of tens of mT as in this experiment, the electron mediated spin diffusion

dominates the Knight shift and it accelerates the nuclear spin relaxation. This is why one

can see two effects from Fig. 2.3.1: (1) electrons in the (1,1) state will speed up the decay

of the Overhauser field compared to electrons in the (2,0) state; (2) a smaller magnetic

field gives a faster decay of the Overhauser field. Both of these effects agree well with the

experimental observations in Ref. [36]. The decay time is also consistent in terms of the

order of magnitude.

With a much larger magnetic field (say, B0 = 2T , as in experiments in Ref. [69]), the

electron mediated nuclear spin diffusion is suppressed, and the Knight shift plays a more

important role. The Knight shift suppresses the nuclear spin diffusion, yielding a relax-

ation time of Overhauser field significantly larger than that in bulk material. Fig. 2.3.2

shows the decay of Overhauser field in this case, and we can fit the curve with an effective

constant diffusion coefficient at about Deff ≈ 0.7nm2/s. Compared with the diffusion co-

efficient in the bulk material (D ≈ 7nm2/s), a suppression factor of 10 is obtained through

applying a strong magnetic field. Experiments done in Ref. [69] measured an effective

diffusion coefficient 50 times smaller than the value in the bulk system. Other suppression

effect of nuclear spin diffusion involved in Ref. [69] comes from inhomogeneous quadru-
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ple shift of nuclear spin energy [72, 77]. Similar to the inhomogeneous Knight shift, the

inhomogeneous quadruple shift can also make nuclear spin flip-flop process off-resonant

and therefore suppressed. And the quadruple shift in those InGaAs quantum dot systems

can have much stronger influence to the energy spectrum of the nuclear Hamiltonian than

the Knight shift. Therefore intense suppression of nuclear spin diffusion can be induced by

quadruple shift, and Overhauser field relaxation time up to 1 hour was seen in Ref. [72].
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Figure 2.3.3: Decay of the Overhauser field under various initial distributions of the
nuclear polarization. The solid line refers to the case with a long DNP pump time that
gives a Gaussian distribution with the size characterized by the Fock-Darwin radius l0.
Other lines correspond to narrower polarization distribution characterized by a Gaussian
with its size r0 < l0.

The experiment in Ref. [70] studies relaxation of the Overhauser field under different

pumping time for the DNP process. With a shorter DNP pumping time, the nuclear spin

polarization may have a narrower distribution in space [68]. Although we do not know the

exact distribution profile of the nuclear spin polarization from a short DNP pump process,

we can assume that the distribution of 〈Izk〉 is still simply a Gaussian but with its radius
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r0 < l0, to model the experiment qualitatively. Taking this 〈Izk〉 as the initial condition,

we can calculate relaxation of the corresponding Overhauser field from the same diffusion

equation [Eq. (2.2.26)], and the result is shown in Fig. 2.3.3. The result indicates that

a narrower distribution of initial nuclear spin polarization leads to a faster decay of the

Overhauser field, which is consistent with the experimental result in Ref. [68]. This effect

can be explained by noting that diffusion is much stronger near the center of the dot due

to the electron mediated diffusion peak (see Fig. 2.2.1), so a shorter relaxation time is

obtained if the initial polarization is more concentrated near the dot center.

2.4 Discussion

In our calculation, we ignored the quadruple shifts of nuclear spins, which is non-

existent in certain systems such as 13C-nanotube quantum dots [78], negligible in strain-

free semiconductor nanostructures such as epitaxially grown droplet quantum dots [79],

and dominated by Zeeman energy under magnetic field B0 much larger than equivalent

quadruple magnetic field BQ (on the order of 0.1T for InAs quantum dot as in Ref. [72]).

For quantum dot with strong inhomogeneous strain-induced quadruple shifts, we believe

that nuclear spin diffusion will be further suppressed by them in a similar way as by the

inhomogeneous Knight shift (detailed influence of quadruple shifts on nuclear spin dy-

namics can be found in Ref. [80]). We also note that considering more than one species of

nuclei in the diffusion process, as in real experiments, should give a moderate increase of

diffusion coefficient because more nuclear spin flip-flop channels (including those between

two different species of nuclei) will be involved, but is unlikely to alter the electron’s role

in nuclear spin diffusion we discussed above.
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Our results can provide researchers the techniques of maintaining DNP generated Over-

hauser field sufficiently long for the practice of quantum computation. First, we can apply

a large magnetic field to effectively suppress the electron mediated nuclear spin diffusion.

Second, we can choose quantum dot system with large inhomogeneous Knight shift or

quadruple shift to suppress the intrinsic nuclear dipole-dipole spin diffusion. These meth-

ods together, can give us a rather long relaxation time of the Overhauser field.

The work here focused on the time dynamics of the expectation value of Overhauser

field, since this is the quantity that has been measured in several recent experiments.

Similar methods could apply to calculate the dynamics of the variance of Overhauser

field, and in terms of time scale, they should be more or less the same. We also want

to point out here that during the DNP process, nuclear spin diffusion also takes place.

The final distribution of the nuclear spin polarization and its variance may depend on

a balance between the DNP pump rate and the nuclear spin diffusion rate [34, 36–38,

67]. To understand this balance, a detailed knowledge of the specific DNP process will be

required. The calculation method presented in this chapter fully incorporates electron’s

role in nuclear spin diffusion, which will facilitate further understanding of DNP process,

in hope of maximizing its power in enhancing electron spin coherence time in quantum

dot based device.
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Chapter 3

Universal quantum gate protocol with quantum dot

molecule

3.1 Introduction

In the previous chapter, we have focused on the environment of the electron spin con-

fined in quantum dot, which has great influence on the decoherence time of the qubit.

Now we turn to the question of how we can control the qubit to perform tasks of quan-

tum computation. It was proven that any quantum algorithm can be implemented with

a specific set of single and two qubit quantum logic gates, known as universal quantum

gates [1, 3]. For electrically gated double quantum dot system, universal quantum gates

have been experimental demonstrated [81], but the gate speed is slow (∼ µs) due to weak

inter-dot spin exchange coupling. To successfully perform a quantum algorithm that may

consist of hundreds of elementary single or two qubit gates, the gate speed need to be sig-

nificantly higher than the decoherence rate of spin qubit. The optically controlled single

quantum dot system instead, has accomplished ultrafast single qubit universal quantum

control on time scale of picosecond [82], while achieving ultrafast two qubit gate in such
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system remains an experimental challenge.

Recently, another competitive platform for quantum dot based quantum computation

has emerged, which is comprised of optically controlled, vertically stacked double layer

self-assembled InAs QDs [39, 40] (See Fig.3.1.1). The electrons can tunnel between the

thin barrier across the layers, allowing for a kinetic spin exchange interaction on the or-

der of 30GHz, significantly larger than horizontally placed double quantum dot samples

(which is typically on the order of 100MHz [22]). As a result, ultrafast two qubit gates

(∼ 150ps) have been successfully demonstrated based on this system [39]. However, uni-

versal quantum computation is still a step away due to insufficient control on two-qubit

Hilbert space. The individual single-spin rotation requires the access to exciton levels (Ra-

man transition), which can be performed in only one of the dot by laser, since creating

exciton in the other dot will cause unwanted decay channels and cross-dot transitions,

leading to uncontrolled error in quantum gate operations.

The target of our work described in this chapter is to achieve complete two qubit control

with such limited control. Our proposed method only requires a simple time domain

engineering of gate pulses, which is within the reach of current experimental technology.
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Figure 3.1.1: Diode structure of vertically stacked quantum dot molecule (QDM). The
spins in the two QDs are coupled by coherent tunneling through a thin barrier. Laser fields
are used to initialize, measure or rotate the spins through a real or virtual electron–hole
pair (exciton) resonantly excited in the top dot (figure and caption from Ref. [39]).
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3.2 Formalism
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Figure 3.2.1: Level structure of QDM. A circularly polarized laser couples both H and V
transitions for the top dot (shown in arrow) and is off-resonant from the bottom dot.

The relevant level structure of QDM system is shown in Fig. 3.2.1 [39,40]. The Hamil-

tonian without applying any laser is given by (~ = 1) :

H0 = JS1 · S2 + δe(S
z
1 + Sz2) (3.2.1)

where S1/S2 correspond to bottom/top dot electron spin, J is the constantly-on kinetic

exchange interaction, and δe is the Zeeman splitting from external static magnetic field

applied on both dots in Voigt geometry (z direction in the Hamiltonian). In typical experi-

ment (and also assumed in following numerical calculations), J ≈ 30GHz and δe ≈ 10GHz

per Tesla [40].

We then apply a circularly polarized pulse laser with electric fieldE(t) = E0(t)[ ε̂V +iε̂H√
2
ei(ωt+φ)+

c.c] with E0(t) being the slowly varying pulse envelope function [82]. Define the Rabi fre-
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quency Ω(t) = µE0(t)e−iφ/~. Assume the laser frequency is detuned ∆ from the top dot

exciton transition (see Fig. 3.2.1). The bottom dot exciton transition is fabricated to be

very different from the top dot, so it’s far off-resonant and simply appears dark to the pulse.

The atom-field Hamiltonian for top dot in rotating wave approximation & field interaction

picture reads (up to a constant):

Htop =

⇐ ⇒ → ←

⇐ ∆ + δh 0 − i√
2
Ω 1√

2
Ω

⇒ 0 ∆ 1√
2
Ω i√

2
Ω

→ i√
2
Ω∗ 1√

2
Ω∗ 0 0

← 1√
2
Ω − i√

2
Ω∗ 0 −δe

By choosing ∆ � Ω, dΩ
dt
, δe, δh, the trion states population is negligible (spontaneously

emission can also be ignored then) and one can adiabatically eliminate the trion states to

obtain the Hamiltonian in ground state manifold:

Htop ≈

→ ←

→ |Ω|2
∆

i|Ω|2
∆

← −i|Ω|2
∆

|Ω|2
∆
− δe

= −ΩeffS
y
2 + δeS

z
2 + constant

where Ωeff = |Ω|2/∆. By changing the axis label−y → x x→ y (no physics affected),

one can write down the effective QDM Hamiltonian under laser pulse:
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H = H0 +H1(t) (3.2.2)

H0 = JS1 · S2 + δe(S
z
1 + Sz2)

H1 = Ωeff (t)S
x
2

Although we only have laser control on one of the spin by naively looking at Eq. 3.2.2,

due to the constantly-on exchange interaction, it is nevertheless possible to obtain univer-

sal two-qubit quantum control (as long as one does not have accidental symmetry caused

by the case δe = J) through proper engineering of Ωeff (t). To prove this possibility, let’s

first look at the evolution operator U(t) = T e−i
´ t
0 H(t′)dt′. This time-ordered integral can be

treated with the so-called Magnus expansion [83]:

U(t) = e−i
´ t
0 H(t′)dt′− 1

2!

´ t
0 dt
′ ´ t′

0 dt′′[H(t′′),H(t′)]− i
3!

´ t
0 dt
′ ´ t′

0 dt′′
´ t′′
0 dt′′′{[H(t′′′),[H(t′′),H(t′)]]+[H(t′′′),H(t′′)],H(t′)]}+···

The first order unequal time commutator is:

[H(t1), H(t2)] = [H0, H1(t2)] + [H1(t1), H0]

= [H0, H1(t2)−H1(t1)]

= (Ω2 − Ω1)[JS1 · S2 + δe(S
z
1 + Sz2), Sx2 ]

= i(Ω2 − Ω1)(JSz1S
y
2 − JS

y
1S

z
2 + δeS

y
2 )

where Ωi ≡ Ωeff (ti). The next order is:
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[H(t3), [H(t1), H(t2)]] = i(Ω2 − Ω1)[JS1 · S2 + δe(S
z
1 + Sz2) + Ω3S

x
2 , JS

z
1S

y
2 − JS

y
1S

z
2 + δeS

y
2 ]

= −(Ω2 − Ω1)[2J2(Sx1 − Sx2 )

+2Jδe(S
x
1S

z
2 − Sz1Sx2 )− δ2

eS
x
2 + Ω3J(Sz1S

z
2 + Sy1S

y
2 ) + Ω3δeS

z
2 ]

If one further calculates the next next order term [H(t4), [H(t3), [H(t1), H(t2)]]], all 15

generators of SU(4) group {Si1, Si2, Si1S
j
2} (i, j = x, y, z) will show up. As Ωeff (t) can

have arbitrary value at different time ti. One can generate any linear combinations of

these 15 generators to give arbitrary SU(4) operation, which is equivalent of implementing

universal two-qubit gate (up to a global U(1) phase).

3.3 Experimental Protocol

An experimentally realistic way of engineering Ωeff (t) is to use M equally spaced seg-

ments with variable intensity. When the segment duration is on the order of τ = 100ps,

this type of engineering can be done in practice through modulating a continuous-wave

laser. The segmented pulse setting allows the evolution operator

U(t) = T e−i
´ t
0 (H0+H1(t′)dt′

to be easily calculated numerically one segment by one segment:

U(t) ≈ e−iH(t+(M−1)τ)τ · · · e−iH(τ)τe−iH(0)τ (3.3.1)
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with

H(t) = JS1 · S2 + δe(S
z
1 + Sz2) + Ωm

effS
x
2 (m− 1)τ ≤ t < mτ (m = 1, 2, . . .M)

If UG is the desired quantum gate operation in the two-qubit Hilbert space, we calculate

the gate fidelity for a given initial state |ψi〉:

F = |〈ψi|U †GU |ψi〉|
2

One can then invoke numerical optimization over M variables {Ωm
eff} to maximize the

gate fidelity F .

In Fig. 3.3.1, we show by numerical simulation that for a small number of segments

(M = 8), by optimizing the segments’ Rabi frequencies, one can achieve any two qubit gate

almost perfectly. The required (Raman) Rabi frequency for each segment is approximately

on the order of J ∼ 30GHz, which is within current experimental limit [39].
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Figure 3.3.1: Optimized segmented pulse shape for near perfect universal two-qubit gate.
(Left) CNOT with bottom dot spin as control qubit and top dot spin as target qubit. (Right)
π/8 gate on the top dot spin. The initial state is set to the spin singlet state and QDM
parameters are chosen in accordance with Ref. [39]

To show that we have coherent control over the two-qubit Hilbert space, we can tune

the global pulse amplitude (by using an attenuator for example) and measure the state

population in the stationary singlet-triplet basis of free Hamiltonian Eq. 3.2.1:

|S〉 = (| ↑↓〉 − | ↓↑〉)/
√

2

|T0〉 = (| ↑↓〉+ | ↓↑〉)/
√

2

|T−〉 = | ↓↓〉

|T+〉 = | ↑↑〉

The anticipated results are shown in Fig. 3.3.2, which can be readily verified experi-

mentally.
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Figure 3.3.2: Coherent oscillations of stationary state population by tuning global pulse
amplitude from 0% to 100%. The pulse shape is the same as the CNOT gate case in Fig.
3.3.1. At 100% amplitude, it gives a perfect CNOT gate with initial state in singlet.

3.4 Discussion

We give a brief discussion on the errors that may occur in the above protocol. First, for

each pulse to perform non-negligible rotation in two-qubit Hilbert space, we need Ωm
effτ &

π. There the faster gate time, the stronger lase power is required. However, because

in deriving the effective Hamiltonian (Eq. 3.2.2) we have assumed ∆ � Ωm
eff , τ

−1, the

gate speed is limited by the ∆, which is further limited by the optical transition frequency

difference between the top and bottom dots. In reality, ∆ is on the order of 100GHz [39]

so by having Ωm
eff ∼ 30GHz, we already have about 10% trion state population, which will

cause quantum gate error due to leakage out of computational subspace.

The gate time with M = 8 segments is roughly 800ps in the above examples, but the

spin coherence time reported in [39] is only 400− 700ps, so errors caused by decoherence
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may also be non-negligible. However, this coherence time is expected to get substantially

improved by suppressing electric field fluctuation [39] . We believe that a combined effort

of enhancing electron-spin coherence time and employing optimal pulse control will offer

us the power brought by ultrafast and high-fidelity quantum gate in quantum dot systems.
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Chapter 4

Robust quantum state transfer between remote NV

registers

4.1 Introduction

Reliable quantum state transfer between distant qubits forms an essential ingredient of

any scalable quantum information processor [25]. However, most direct qubit interactions

are short-range and the corresponding interaction strength decays rapidly with physical

separation. For this reason, most of the feasible approaches that have been proposed

for quantum computation rely upon the use of quantum channels which serve to connect

remote qubits; such channels include: electrons in semiconductors [84], optical photons

[85–87], and the physical transport of trapped ions [88]. Coupled quantum spin chains

have also been extensively studied [89–101]. A key advantage of such spin chain quantum

channels is the ability to manipulate, transfer, and process quantum information utilizing

the same fundamental hardware [102]; indeed, both quantum memory and quantum state

transfer can be achieved in coupled spin chain arrays [103], eliminating the requirement

for an external interface between the quantum channel and the quantum register. Prior
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work on spin chain quantum channels has focused on three distinct regimes, in which the

spin chain is either initialized [89,96,97,101], engineered [91] or dynamically controlled

[93,104–106].

An important application of spin-chain mediated coherent coupling is in the context of

realizing a room temperature quantum information processor based upon localized spins

in the solid-state [107]. In this case, it is difficult to envision mechanical qubit transport,

while other coupling mechanisms are often not available or impose additional prohibitive

requirements such as cryogenic cooling [87]. At the same time, long spin chains are gen-

erally difficult to polarize, impossible to control with single-spin resolution, and suffer

from imperfect spin-positioning [98, 99]; such imperfections can cause both on-site and

coupling disorder, resulting in localization. For these reasons, a detailed understanding

of quantum coherence and state transfer in random spin chains with a limited degree of

external control is of both fundamental and practical importance.

In this chapter, we propose and analyze a novel method for quantum state transfer

(QST) in an unpolarized, infinite temperature spin chain. In contrast to prior work, the

method requires neither external modulation of the Hamiltonian evolution nor spin chain

engineering and initialization. Furthermore, it is robust to specific, practically important

types of disorder. The structure of this chapter is as follows: in section 4.2 we introduce the

main idea of our QST protocol, based on free fermion state transfer (FFST). In section 4.3,

we extend the protocol to cases with strong chain-register coupling and cases with long

range spin-spin interaction. We end this chapter by discussing experimental realization of

our protocol using defect centers in diamond.
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4.2 Formalism

The key idea of our approach is illustrated in Fig. 4.2.1(a). The two spin qubits at

the ends of the spin chain are assumed to be initialized and fully controlled, while the

coupling between these remote qubits is mediated by a set of intermediate spins, which can

not be initialized, individually controlled, or optically detected. We further assume that

the qubit-chain coupling g, which can be variably adjusted, and the intrachain coupling

κ, which is fixed, are characterized by short-range XX interactions. The essence of our

quantum state transfer protocol is the long-range coherent interaction between the spin

qubits, mediated by a specific collective eigenmode of the intermediate spin chain. This

mode is best understood via Jordan-Wigner (JW) fermionization, which allows for the

states of an XX spin chain to be mapped into the states of a set of non-interacting spinless

fermions. In this representation, the state transfer is achieved by free fermion tunneling, as

shown in Fig. 4.2.1(b). In what follows, we show that the initial state of the intermediate

chain does not affect the tunneling rate associated with free fermion state transfer (FFST),

allowing for the implementation of a SWAP operation between the end qubits after a period

of unitary evolution.

To be specific, we consider an XX Hamiltonian governing two distant qubits connected

by a quantum channel consisting of a spin-1/2 chain

H = H0 +H ′ (4.2.1)

with H0 =
∑N−1

i=1 κ(S+
i S
−
i+1 + S−i S

+
i+1) and H ′ = g(S+

0 S
−
1 + S+

N+1S
−
N + h.c.), as shown in

Fig. 4.2.1(a). Here, S± = Sx ± iSy, where ~S = ~σ/2 and ~σ are Pauli spin operators (~ = 1).

We consider the limit g � κ, and work perturbatively in H ′. Upon introducing Fermi op-
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erators ci = eiπ
∑i−1

0 S+
j S
−
j S−i , H0 is transformed to H0 =

∑N−1
i=1 κ(c†ici+1 + cic

†
i+1), wherein

conservation of total spin z-projection becomes conservation of fermion number [108].

The subsequent diagonalization of this tight-binding Hamiltonian occurs through an or-

thogonal transformation f †k = 1
A

∑N
j=1 sin jkπ

N+1
c†j with k = 1, · · · , N and A = (N+1

2
)1/2,

yielding H0 =
∑N

k=1Ekf
†
kfk, where Ek = 2κ cos kπ

N+1
[108]. The perturbation Hamiltonian

is likewise transformed to

H ′ =
N∑
k=1

tk(c
†
0fk + (−1)k−1c†N+1fk + h.c.), (4.2.2)

where tk = g
A

sin kπ
N+1

. We begin by restricting our discussion to odd N , where there

exists a single zero energy fermionic mode in the intermediate chain corresponding to

k = z ≡ (N + 1)/2. Thus, the two end spins are resonantly coupled to the zero energy

fermion by H ′, and under the assumption that the tunneling rate tz ∼ g/A is much smaller

than the fermion detuning, |Ez − Ez±1| ∼ κ/N , off-resonant coupling to other fermionic

modes can be neglected. Upon absorbing a phase factor of (−1)z−1 into c†N+1, evolution is

governed by the effective Hamiltonian, Heff = tz(c
†
0fz + c†N+1fz + h.c.), which describes

resonant fermionic tunneling, as shown in Fig. 4.2.1(b).
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Figure 4.2.1: Schematic of FFST protocol. (a) Distant spin qubits coupled by an unpolar-
ized spin-chain quantum channel with g, the coupling between qubits (yellow, green) and
the spin chain and κ, the coupling between intra-chain elements. The spin chain can be
re-expressed in terms of free fermions via the Jordan-Wigner transformation, wherein the
hopping strength is characterized by κ. Boxed spins, labeled a′ and b′, represent additional
spin qubits that can correspond to the memory of a quantum register or ancillary qubits
associated with quantum information encoding. (b) By ensuring that the end spins are res-
onant with a single fermion mode (k = z), unpolarized spin-chain state transfer becomes
analogous to fermionic tunneling. Maintaining g � κ/

√
N ensures that off-resonant cou-

pling to other fermionic modes can be neglected and enables state transfer independent
of the intermediate spin-chain state. (c) Graph-like state generated by FFST, between the
qubits and the intermediate spin chain [95]. Each line represents a controlled-phase gate.

Unitary evolution underHeff for a time τ = π√
2tz

results in Ueff = e−iτHeff = (−1)f
†
z fz(1−

(c†0+c†N+1)(c0+cN+1)). Upon projection to the subspace spanned by {(1, c†0, c
†
N+1, c

†
0c
†
N+1)|00〉0,N+1},

the effective evolution can be expressed as

U fermi
eff = (−1)n0+nN+1+nz(−1)n0nN+1SWAP0,N+1, (4.2.3)

where nθ = f †θfθ is the fermion number operator. Hence, as desired, time evolution un-

der Heff swaps the quantum state of the two end fermions. However, in addition to the
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SWAP gate and single fermion rotations, the end fermions are entangled through a con-

trolled phase gate CP0,N+1 = (−1)n0nN+1, which arises from fermionic anticommutation

relations [93, 95, 109]. Before discussing this entanglement, let us first consider the anal-

ogous prescription in the spin basis.

We consider a generic initial state Φi = (α| ↓〉 + β| ↑〉)0 ⊗ (α′| ↓〉 + β′| ↑〉)N+1 ⊗ ΨM,nz

where Ψ represents the intermediate spin chain state, characterized as the co-eigenstate

of commuting operators M =
∑N

j=1 S
+
j S
−
j and nz. After fermionization, evolution and

inversion back to the spin basis, the final spin chain state becomes

Φf = (
N∏
j=1

CP0,jCPN+1,j)CP0,N+1SWAP0,N+1Φi (4.2.4)

up to single qubit rotations. In this basis, the Wigner-strings become controlled-phase gates

and generate a graph-like entangled state between the two end spins and the intermediate

spins, as shown in Fig. 4.2.1(c) [95].

Despite this entanglement, the use of a simple two-qubit encoding can achieve coherent

quantum state transfer [110]. The quantum information is encoded in two spins, a and

a′, with logical basis | ↓〉 = | ↓〉a| ↓〉a′, | ↑〉 = | ↑〉a| ↑〉a′. After encoding, one first performs

FFST between spins a and b via the unpolarized spin chain, and then, repeats the operation

between spins a′ and b′, as shown in Fig. 4.2.1(a). Finally, the quantum information is

decoded by applying a CNOT gate between spins b and b′, after which, the information has

been coherently mapped to spin b. Thus, we have demonstrated the ability to perform QST

between spatially separated spin qubits. Furthermore, as detailed in the subsequent section

on experimental realizations utilizing Nitrogen-Vacancy registers, we offer an alternative

solution which achieves remote coupling of spatially separated quantum registers through
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a dual-transfer protocol.

To confirm perfect quantum state transfer, we perform numerics, as shown in Fig. 4.2.2.

Specifically, we calculate the average fidelity, F = 1
2

+ 1
12

∑
i=1,2,3 Tr [σiE(σi)], of two-qubit

encoded state transfer, where E represents the quantum channel consisting of encoding,

state transfer and decoding [111]. This average fidelity can be expressed in terms of

elements of the matrix e−iKτ , where K is the N×N coupling matrix of the full Hamil-

tonian found in H =
∑

i,jKi,jS
+
i S
−
j (see Appendix A for details); crucially, this allows

for simulations of channel fidelity in extremely long spin chains, since diagonalization

of the full Hilbert space is no longer necessary. In finite chains of fixed length, the in-

fidelity, ε = 1 − F , varies as a function of g/κ, as shown in Fig. 4.2.2(a). This infi-

delity results from the leakage of quantum information into the off-resonant modes of

the intermediate spin chain, and can be analytically expressed, in the limit g � κ, as

ε ≈
∑

k 6=z
5
3

(
tk
Ek

)2

[1+(−1)k+z cos(Ekτ)], where z = N+1
2

[44]. In this limit, the analytic ex-

pression is in exact agreement with the numerics, and is upper-bounded by the theoretical

estimate,
∑

k 6=z
10
3

(
tk
Ek

)2

, as shown in Fig. 4.2.2(a).
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Figure 4.2.2: (a) Numerical simulation of the infidelity of QST for N = 7 as a function of
g/κ depicting fluctuations in the infidelity. The numerical infidelity is bounded by the the-
oretical estimate (bold line). (b) For a chosen tolerable infidelity ε0 = 10−3, the minimum
time τ (in units of 1/κ), required for state transfer scales linearly with chain length.

Utilizing the analytic upper bound for a given chain length N , a given intra-chain

coupling κ, and a given tolerable infidelity ε0, we can compute the maximum allowed g and

hence the minimum state transfer time τ . By contrast to direct dipole-dipole interactions,

which would depict a cubic scaling of τ with N , the time required for FFST scales linearly

with chain length, as shown in Fig. 4.2.2(b) [112]. Intuitively, this results from the fact

that the condition on tz allowing for off-resonant coupling to be neglected is tz � κ/N ,

implying that τ ∼ 1/tz ∼ N/κ.

While we have chosen to focus on the case of odd N length intermediate chains, the

extension to even N is directly analogous. In even N chains, since the fermion eigen-

spectrum is symmetric about E = 0, no fermionic eigenmode is initially resonant with

the end spin qubits. However, by introducing a controllable detuning to the end spins,

H∆ = ∆(Sz0 +SzN+1), it is possible to choose an N-dependent ∆ such that the end spins are
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resonant with any single fermion eigenmode in both even and odd N cases. In particular,

for ∆ = Ek, resonant tunneling will occur at the rate tk, allowing for control over the speed

of FFST.

4.3 Extension

4.3.1 Strong Coupling Regime

The eigenmode-mediated QST discussed above operates in the weak coupling regime,

g � κ/N . Numerical simulations reveal that by optimally tuning g = gM(N) ∼ κ, high-

fidelity QST can also be achieved (see Fig. 4.3.2). This “strong-coupling” regime enables

faster state transfer and has been discussed in several recent studies [101,113–115], which

focus on the case of an initially polarized intermediate chain. Here, we show that chains

with infinite spin-temperature can still support QST in the strong-coupling regime.

To provide intuition for this strong-coupling regime, we will begin by considering the

engineered spin-chain described in [91], where we haveN+2 spin-1/2 atoms with nearest-

neighbor XX-interactions. The intra-chain coupling is non-uniform and is given by, Ji =

1
2

√
(i+ 1)(N + 1− i), yielding a Hamiltonian

H =
N∑
i=0

Ji(σ
+
i σ
−
i+1 + h.c.) +

N+1∑
i=0

h

2
σzi , (4.3.1)

where h is a uniform background magnetic field. Upon employing the Jordan Wigner

transformation, we once again return to a simple tight-binding form, with H =
∑

ijKijc
†
icj

whereKij = Jiδj,i+1+Jjδi,j+1+hδi,j up to a constant. Diagonalizing revealsH =
∑N+1

k=0 ωkf
†
kfk

with a linear spectrum given by ωk = k + h− N+1
2

.

45



0 1 2 3 4 5 6 7 8 9 10 11
0.6

0.8

1

1.2

Spin Number

C
o
u
p
lin

g
 S

tr
e
n
g
th

 

−2

0

2

E
ig

en
fr
eq

ue
nc

y 
ω

k

(J
 ) i

Figure 4.3.1: Coupling pattern {Ji} between spins for two differing cases: 1) engineered
couplings (circles) as in [91] and 2) strong coupling regime (squares). The left y-axis
characterizes the coupling strength for each case and is associated with solid symbols; the
couplings are plotted between spin numbers (e.g. J0 is plotted between spin number 0
and 1). The right y-axis characterizes the fermionic spectrum (in this case, the x-axis is
simply an index) and is associated with the open symbols. The open red circles depict
the exactly linear spectrum of engineered chain, while the open green squares depict the
quasi-linear spectrum of the strong coupling case with uniform interchain couplings κ = 1
and optimized g ≈ 0.7.
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Figure 4.3.2: Strong coupling regime: By tuning g/κ ∼ N−1/6, we obtain high-fidelity
QST utilizing an unpolarized chain with two-qubit encoding (paired-protocol). The trans-
fer time scales linearly with N (Lieb-Robinson bound) and high fidelity > 90% can be
maintained for chain lengths up to N = 100.

As described in Appendix A, the system’s evolution is governed by ci(t) =
∑

jMij(t)ci(0).

Upon setting h = N+1
2

, one finds that at time t = 2π, M(2π) = I and therefore ci(2π) =

ci(0), returning the system to its initial state. As the coupling pattern {Ji} harbors mirror

symmetry with Ji = JN−i, the orthogonal transformation, ψ, which diagonalizes H can

also be chosen mirror symmetric, ψik = (−1)N+1+kψN+1−i,k. Setting h = 3
2
(N + 1) and

t = π yields,

Mij =
∑
k

ψN+1−i,kψjk = δN+1−i,j. (4.3.2)

To demonstrate state transfer, let us employ the analytic single-swap fidelity given in Ap-

pendix A. For the moment, we assume that the spins {0, 1, . . . N} are all polarized, so that

Tr[ρSSch P ] = 1. Combined with Eq. (4.3.2), which ensures M0,N+1 = 1, we find FSS = 1, en-
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abling perfect QST. We note that in lieu of applying a uniform magnetic field h = 3
2
(N+1),

one can also just apply a simple phase gate UP =

1 0

0 (−i)N+1

 on spin 0 following

transfer.

Turning now to the case of an unpolarized spin chain, we again employ the two-qubit

encoding previously described. In this case, one will need to apply the phase gate, U2
P =1 0

0 (−1)N+1

 to the logical qubit after state transfer.

The state transfer fidelities for these two strong coupling methods are given analo-

gously by,

FSS =
1

2
+

1

6
[2|M0,N+1|+ |M0,N+1|2), (4.3.3)

Fenc =
1

2
+

1

6
[2|M0,N+1|2|M2

0,N+1 −M0,0MN+1,N+1|

+|M0,N+1|2 + |
N∑
i=1

MN+1,iMi,0|2]. (4.3.4)

While these expressions are valid for an arbitrary coupling pattern (so long as the resultant

fermionic Hamiltonian is quadratic), to ensure high-fidelity QST, we require |M0,N+1| ≈

1. As depicted in Eq. (4.3.2), satisfying this constraint is intimately related to the linear

spectrum resulting from the choice of Ji = 1
2

√
(i+ 1)(N + 1− i).

Let us now consider the strong coupling regime (g ∼ κ) where J0 = JN = g and

J1 = J2 = ... = JN−1 = κ. Surprisingly, tuning only g/κ enables one to obtain a quasi-

linear spectrum [114]; such a spectrum will then ensure that |M0,N+1| ≈ 1, as desired.

Of course, for N = 2, 3, Ji = 1
2

√
(i+ 1)(N + 1− i) can be satisfied exactly. Although for

N > 3, an exactly linear spectrum cannot be obtained, it is possible to optimally tune
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g = gM(N), so that ωk looks nearly identical to the previous linear spectrum, k − N+1
2

(h = 0), as shown in Fig. 4.3.1. In particular, by optimizing Fenc, we obtain gM ∼ N−1/6,

with a transfer time τ ∼ N (Fig. 4.3.2), consistent with [113]

4.3.2 Long-range Interactions

We now consider the effect of longer range interactions. The majority of proposals for

spin-chain state transfer, as well as what we introduced in last section, focus on approx-

imate nearest-neighbor models; however, the microscopic magnetic dipolar interaction is

naturally long-range and decays as 1/r3, inducing an important infidelity in quantum state

transfer. The origin of this infidelity becomes especially evident as we examine the Jordan-

Wigner fermionization of the spin chain. Each Wigner fermion carries a string of the form

e−iπ
∑i−1
j=1 σ

+
j σ
−
j . In the nearest-neighbor case, all such strings cancel pairwise leaving a sim-

ple quadratic model. However, with longer-range interactions, uncanceled strings remain

and generically introduce perturbative quartic terms into the Hamiltonian. These quartic

terms imply that the model, unlike the transverse field Ising model, is no longer diago-

nalizable in terms of free fermions. In the previous free fermion case, the energy of each

eigenmode is independent of the occupation of all other eigenmodes; this enables state

transfer even when the spin-temperature of the chain is effectively infinite. By contrast,

the quartic terms associated with the long-range dipolar coupling introduce interactions

between fermionic eigenmodes; the energy fluctuations of each eigenmode, caused by

changing occupations of other modes, naturally dephases quantum information, limiting

the operational spin temperature of the chain.

Certain proposals have suggested the possibility of using dynamical decoupling to ef-

fectively cancel next-to-neareast neighbor (NNN) interactions [103], but the complete can-
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celing of all long-range interactions requires a level of quantum control that is currently

beyond the realm of experimental accessibility. Since any long-range XX coupling de-

stroys the quadratic nature of the fermionic Hamiltonian, an analytic solution for state

transfer fidelities in the presence of full dipolar interactions is not available. Thus, we

perform exact diagonalization for chains of length up to N = 12 (total number of spins),

as shown in Fig. 4.3.3. We obtain the encoded state transfer fidelities for dipolar, NNN-

canceled-dipolar and NN interaction models. Remarkably, even with full dipolar interac-

tions, fidelities ∼ 90% can be obtained for a total of N = 10 spins; in the case where NNN

interactions are dynamically decoupled, the fidelities can be further improved to ∼ 98% at

similar lengths.
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Figure 4.3.3: Infidelity of QST for a strongly coupled chain with long range interactions.
Encoded state transfer (paired protocol) fidelities are shown for dipolar (diamonds), NNN-
canceled-dipolar (squares) and NN interaction (circles) models.
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4.4 Experimental Realization

The proposed FFST protocol can be possibly realized by Nitrogen-Vacancy (NV) regis-

ters in diamond, which have extremely long room-temperature coherence times [103]. In

particular, the imperfect conversion of NV centers from single Nitrogen impurities results

in substantial spatial separation between individual registers. However, the unconverted

spin-1/2 Nitrogen impurities form a natural spin chain connecting remote registers. At

ambient temperatures, the Nitrogen impurity spin chain, which is optically unaddressable,

would be unpolarized and hence, the proposed scheme would be essential to enable dis-

tant NV register coupling.

Thus, we envision an array of two-qubit NV registers connected by a quantum chan-

nel consisting of spin-1/2 implanted Nitrogen impurities [103]. Recent experiments have

demonstrated the ability to fully manipulate the two-qubit NV register corresponding to the

NV nuclear spin, which serves as the memory qubit, and the NV electronic spin, which is

used to initialize, readout, and mediate coupling to the intermediate spin chain [116–118].

The effective Hamiltonian described in Eq. 4.3.1 can be achieved in such a mixed spin sys-

tem via dynamic decoupling, with only a small error caused by NNN interactions as shown

in section 4.3, and the qubit-chain coupling g can be fully tuned by utilizing the structure

of the NV center ground-state manifold [103].

Based on the FFST protocol, one can also apply arbitrary two qubit gates between the

nuclear memory of distant NV registers by going through the following steps:

1. SWAP the state of the nuclear and electronic spin of the first register

2. Apply FFST between the electronic spins of the two registers

3. Apply a CP-gate between the electronic and nuclear spin of the second register
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4. Repeat (2) and (1) to return the nuclear memory of the first register and disentangle

from the intermediary chain.

Together with single qubit rotations, such an implementation of FFST achieves a universal

set of gates and hence computation in an array of NV registers connected by Nitrogen

impurity spin chains.

Finally, we discuss the effect of realistic imperfections including disorder and decoher-

ence on our protocol. On-site and coupling disorder cause localization, asymmetry of the

eigenmodes, and changes in the statistics of the eigenenergies [98, 99]. In the thermody-

namic limit in 1D, localization occurs for any amount of disorder; thus, it will be necessary

to utilize eigenmodes whose localization length is sufficiently large relative to the chain

length, thereby rendering such modes effectively extended and viable for QST. Crucially, in

the case of particle-hole (PH) symmetric disorder (e.g. coupling-strength disorder), there

exists an extended critical state at E = 0 with a diverging localization length; this ensures

the existence of an extended eigenmode with a known eigenenergy, suggesting that FFST

is intrinsically robust against coupling-strength disorder [119]. In the case of on-site disor-

der, random modulation of the on-site potential may be able to restore PH symmetry [120];

in cases where this is insufficient, it is possible to characterize the energy spectrum and

coupling strengths of the intermediate spin chain solely through tomography of a single

end spin [121]. This characterization will help allow for the identification of a suitable,

extended eigenmode.

However, the existence of an extended mode is not sufficient to ensure state transfer

as disorder also enhances off-resonant tunneling rates and causes the eigenmode wave-

function amplitude to become asymmetric at the two ends of the chain. Despite such

imperfections, by individually tuning the qubit-chain couplings, gL (left) and gR (right), it
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is possible to compensate for eigenmode asymmetry; furthermore, sufficiently decreasing

the magnitude of the qubit-chain coupling ensures that off-resonant tunneling can safely

be neglected, even in the presence of disorder.

In addition to disorder, decoherence of the spin qubits and the intermediate spin chain

places a stringent lower bound on the values of gL and gR, since τ ∼
√
N/g. Thus, an

interplay of disorder and decoherence will ultimately limit the experimental realization of

FFST [44].
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Chapter 5

Photon heralded entanglement between hybrid qubit

systems

5.1 Introduction

There has been a rapidly growing research interest in hybrid quantum systems, which

combine two or more physically different systems to harness the advantages and strengths

of each systems [122], with the goal of enhancing current quantum technologies and

potentially bring new applications

Generally speaking [123], macroscopic systems, such as superconducting qubits, offer

great scalability and have strong coupling to external fields, but suffer from relatively

fast decoherence rate. More importantly, they are usually not identical in properties like

transition frequency and linewidth. On the other hand, microscopic systems, such as atoms

and ions, are naturally identical and have quite long coherence time, sometimes exceeding

a few seconds. The drawback of them mainly lies in slow operational speed due to weak

coupling to external fields, as well as poor scalability compared to solid state devices.

Several approaches of combining these two complimentary type of systems for building
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hybrid quantum structure have been proposed and experimentally investigated [124–126],

with main focus on superconducting qubits and circuit QED.

The key ingredient in constructing a hybrid quantum device is the generation of en-

tanglement between two sub systems. While entanglement between identical quantum

systems has been experimentally achieved in recent years, in both atomic [127] and

solid state system [128–130]. Extending entanglement to disparate quantum systems,

however, is much challenging, and usually requires the assistance of some forms of cav-

ity [45, 124, 131]. For many systems, such as trapped ions and quantum dot, the inte-

gration of an optical cavity brings significant technological difficulty, and protocols that

generate hybrid entanglement without the need of cavity is highly desired at this moment.

In most cases, entanglement over two well-separated identical quantum systems are

mediated by photons [127–130]. But for different type of quantum systems, the photons

from spontaneous emission process can have significant mismatch in spectral and temporal

properties. In order to have high fidelity and high efficiency entanglement generation, the

photons from different systems must have (1) nearly identical central frequency, and (2)

significant overlap of pulse shape in time. The big mismatch in radiation frequency can

usually be alleviated by nonlinear frequency conversion process [132], and small mismatch

in frequency can be possibly tuned out through DC Stark Shift in natural or artificial atomic

system [133]. This chapter intends to fulfill the requirement on pulse shape overlap. We

find that by engineering input driving laser pulse shape in proper manner, the output

photon pulse can be well matched for certain types of qubit system.
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5.2 Waks-Monroe protocol

Before we introduce our work, we’d like to review an existing similar protocol [45]

also aimed at eliminating mismatch in radiation from two different quantum systems,

specifically, trapped ion and quantum dot. The protocol (named as “Waks-Monroe” proto-

col below) is based on remote entanglement generation method proposed in Ref. [134],

which is sketched in Fig. 5.2.1. Whenever the photon detector that is placed far from

both quantum systems registers a click, due to the indistinguishably of the two paths, the

photon can be either from effective two-level system A or B. If the initial states of A and

B are both in excited states |1A〉 and |1B〉, we will end up with an entangled state

|ψAB〉 =
1√
2

(eiφA|0A1B〉+ eiφB |1A0B〉) (5.2.1)

However, in order for this entangled state to be the actual state we are getting, we

need to make sure the two photon emission case is very rare (as the photon collection

efficiency without a cavity can be very low [135], two photon emission events can often

be registered as single photon click, causing errors in result). This means initially, the

excited state population for both A and B

p = Tr(ρ0|1A〉〈1A|) = Tr(ρ0|1B〉〈1B|)

must be much smaller than 1. Therefore, the entanglement generation is probabilistic,

with probability p� 1, which is low in efficiency.

Another drawback of this protocol is that it requires phase locking of the two optical

paths between system A/B and the detector. This is because whenever φA or φB randomly
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fluctuates (due to optical setup instability or motions of atoms inside the trap), the entan-

gled state 5.2.1 decoheres and becomes non-entangled. The phase-locking technique can

constitute a big challenge for many experimental setups.

Nevertheless, provided the low efficiency and hassle of phase locking, it is easy to

counter the pulse shape mismatch problem, as shown by the Waks and Monroe. As we

require p � 1, we can weakly excite two systems with off-resonant (Raman) lasers, this

results in elastic (Rayleigh) scattering regime where the output pulse shape will simply

follow the input pulse shape. Specifically, if the driving laser has a time-dependent Rabi

frequency Ω(t) = Ω0f(t) and detuned from the qubit transition by ∆ � ΓA,ΓB,Ω0 for

both system A and B, then the emitted photon pulse shape will both follow I(t) ∝ f(t)2,

independent of the linewidth ΓA and ΓB.

|1𝐴〉 

|0𝐴〉 

ΓA 
|1𝐵〉 

|0𝐵〉 

ΓB 

Detector 

∆
Ω(𝑡) 

∆
Ω(𝑡) 

𝜙𝐴 𝜙𝐵  

Figure 5.2.1: Schematic of a remote entanglement protocol. Two effective two-level
systems with spontaneous emission rate ΓA and ΓB are placed far away from a photon
detector. The emitted photon from system A or B that gets detected will carry an optical
phase φA or φB proportional to the distance.
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5.3 Our protocol

There is an improved entanglement generation protocol, based on Ref. [136], which

was first implemented experimentally in Ref. [127]. This improved protocol is sketched in

Fig. 5.3.1

50/50 BS



|0𝐴〉

|1𝐴〉

|𝑒𝐴〉

𝜎+ 𝜋 𝜎_

ΩA(𝑡)



|0𝐵〉
|1𝐵〉

|𝑒𝐵〉

𝜎+ 𝜎_

ΩB(𝑡)

PBS PBS

𝐷1
𝐷2 𝐷3

𝐷4

Figure 5.3.1: Schematic of an improved remote entanglement protocol. Each quantum
system consists of three (Λ type, upper right) or four (tripod type, upper left) relevant
energy levels, and the optical transitions give rise to different polarizations of photons,
including an orthogonal pair σ+ and σ−. The photons emitted from both systems then pass
through a Bell-type measurement setup, made of a beam splitter (BS), two polarized beam
splitters (PBS), and four detectors (D1 −D4)

The key in this protocol is the existence of different polarization channels in each quan-
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tum system. Such quantum system usually has either the Λ-type level structure, as found

in physical systems with spin-1/2 ground state (e.g. single InAs quantum dot [137]),

or a tripod-type level structure, as found in systems with spin-1 ground state (e.g. Y b+

ions [127] and NV center in diamond [87]) If the emitted photon has different polariza-

tion, then the state for the atom or spin is also different. Based on this property, if each of

the two systems emits a photon and the two photons get detected in two specific detectors

in Fig. 5.3.1, one can acquire an entangled state of two qubits:

|ψAB〉 =
1√
2

(|1A0B〉+ |0A1B〉) (5.3.1)

up to a global phase. The advantages of this protocol are

1. The probability of successful generation does not need to be much smaller than one.

If pA (pB) is the probability of photon emission in each individual polarization chan-

nel, the total success probability is then p = pApB. Assume each channel has roughly

the same spontaneous emission rate (equal branching ratio), the maximum theoret-

ical probability p is 25% for two Λ type system (Fig.5.3.1)

2. Robustness to phase fluctuation. No more phase locking is required in this protocol

as the phase difference between two paths does not enter the expression of entangled

state (Eq. 5.3.1). Therefore vibrations of trapped atoms/ions is also unimportant for

entanglement generation.

However, if the transition linewidths of system A and B are different, it is now much

harder to match them using the simple elastic scattering picture in Waks-Monroe scheme.

This is because the condition p� 1 is no longer valid and the classical Rayleigh scattering

approximation fails. Therefore, we need a quantum mechanical treatment for the pump-
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emission process, which can be started by using the following master equation: (note that

for simplicity, we focus on the Λ type level structure below, but the results can be trivially

extended to tripod type system)

∂ρ00

∂t
= Γρee (5.3.2)

∂ρ11

∂t
= Γρee + i(Ω∗ρe1 − Ωρ1e) (5.3.3)

∂ρe1
∂t

= (i∆− Γ)ρe1 + iΩ(ρ11 − ρee) (5.3.4)

ρij = ρ∗ji (5.3.5)

ρee = 1− ρ11 − ρ00 (5.3.6)

where Γ is the spontaneous emission rate for both the σ+ and the σ− channel in Fig. 5.3.1,

and Ω = Ω0f(t) is the pumping pulse with time dependency (we’ve neglected any non-

radiative decay here).

The emitted photon pulse intensity will follow the excited state population ρee(t). To get

an analytical solution of ρee(t), we need to invoke the “adiabatic ” condition, which again

assumes the detuning ∆ is much larger than Ω and Γ. Under adiabatic approximation, after

some mathematical manipulations, we end up with the following differential equation for

ρee
dρee
dt

= (2
Ω̇

Ω
− Γ

Ω2

∆2
)ρee (5.3.7)

Assuming our driving pulse has a shape function f(t/τ) with characteristic width τ ,
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then the solution to above differential equation is

ρee(t) =
Ω(t)2

∆2
exp[−ΓΩ2

0

∆2

ˆ t

−∞
f(
t′

τ
)2dt′] (5.3.8)

To give two explicit examples: an input pulse in hyperbolic secant shape f(t) = sech(t)

will give ρee ∝ sech2(t) exp[− τΓΩ2
0

∆2 (1 + tanh t
τ
)], and input pulse in Gaussian shape f(t) =

exp(−t2/2) will yield ρee ∝ exp[−t2 +
τΓΩ2

0

∆2

√
π(1 + Erf t

τ
)]. Thus the output pulse shape

no longer follows input pulse shape, which is a striking difference from the Waks-Monroe

protocol.

Fortunately, the analytical solution Eq. 5.3.8 allows us to easily match the emitted

photon pulse shape I(t) ∝ Γρee(t). While ΓA 6= ΓB, one can drive the two system with

same input pulse shape, but with matched Rabi frequencies obeying

ΩA
0 /Ω

B
0 = ∆A/∆B

√
ΓB/ΓA (5.3.9)

to make IA(t) = IB(t). Note that we allow the detuning ∆A 6= ∆B for the driving pulse,

enabling a fine tune of pulse frequency in two different systems.

The probability of the emission per channel for both system A and B is given by

P =
1

2

ˆ ∞
−∞

Γρeedt =


1
2
(1− e−2κ) Sech pulse

1
2
(1− e−κ

√
π) Gaussian pulse

(5.3.10)

with κ = τΓA(ΩA
0 )2/∆2

A = τΓB(ΩB
0 )2/∆2

A characterizing amount of excitation. When κ �

1, the emission probability quickly goes to its maximum value, rendering high efficiency in

entanglement generation.
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The protocol we introduced here can effectively eliminate the pulse shape mismatch

problem for two hybrid systems both in tripod level structure. But if one or two of the

systems has the Λ-type level structure with only two optical transition channels, there is

a potential problem causing imperfect entanglement: as the driving transition is now at

the same one of the emission channel, there’s possibility that multiple photons are emitted

during the driving pulse duration (although on average still only P < 1 photon is emitted

per channel, according to Eq. 5.3.10). If multiple photon emission happens in one system,

the coincidence click on detectors does not guarantee the generation of entangled state,

similar to the Waks-Monroe protocol. To make sure such event is unlikely, we have to make

P � 1 again, therefore invalidating one key advantage of our protocol. Further work

is still undergoing on how to maximize successful probability while perfectly matching

photon pulse shape in this scenario.

62



Chapter 6

Temperature driven structural phase transition with

trapped ions

6.1 Introduction

Ions trapped in a linear Paul trap or a planar Penning trap have become a very useful

platform for quantum technologies [138], with exciting applications including quantum

information science [15, 139–141] and precision measurements [142]. Trapped ions also

provide a controllable system to simulate and study many-body phase transitions [27,

143, 144]. A well-known phase transition that can be observed in a small ion crystal

is the structural phase transition of the Wigner crystal formed with trapped ions, which

has raised significant interest and been extensively studied [145–154]. For instance, a

linear crystal in a Paul trap can be squeezed to a zigzag shape with change of the aspect

ratio between the transverse and the axial trapping frequencies. The structural phase

transition for trapped ions so far is formulated on a classical level, determined by the

mechanical equilibrium conditions. In these classical treatments that neglect quantum

and thermal fluctuation of the ion positions, the structural phase transition is independent
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of the system’s temperature.

In this chapter, we develop a theoretical formalism to take into account quantum and

thermal fluctuation in the structural phase transition, and show for the first time that

a structural phase transition can be driven solely by change of the system temperature.

The structural phase transition is induced by condensation of phonons into the soft mode

(the lowest frequency collective oscillation mode of the ion crystal). Anharmonic coupling

between different phonon modes intrinsic in the Coulomb interaction leads to renormal-

ization of the soft mode frequency which affects the phase transition point. We calculate

the system’s partition function using the path integral approach, and gradually integrate

out the high frequency modes with the renormalization group (RG) method to construct

the RG flow for the soft mode frequency. With this formalism, we can calculate the finite-

temperature phase diagram for the ion crystal. Using the linear ion crystal in a Paul trap

as an example, we propose an experimental scheme to detect the predicted temperature-

driven linear-to-zigzag structural phase transition and show that the requirements in ob-

serving this transition fits well with the current status of the experimental technology.

6.2 Formalism

We consider N ions of mass m subject to external harmonic potentials in both axial (z)

and transverse (x, y) directions. To be concrete, we take a linear Paul trap as an example

with the trapping frequencies ωy > ωx > ωz (the method can be extended easily to other

type of traps). We consider the system near the linear-to-zigzag transition point, with the

ions distributed along the z direction with a tendency towards the zigzag transition in the

x − z plane. To describe this phase transition, it suffices to consider the ion interaction
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Hamiltonian in the x− z plane, given by

H =
N∑
i=1

∑
α=x,z

[
p2
iα

2m
+

1

2
mω2

αα
2
i ] +

∑
i>j

κ

|ri − rj|
, (6.2.1)

where κ is the Coulomb interaction rate. We assume the temperature of the system is sig-

nificantly below the melting temperature of the ion crystal, which is typically of the order

of 0.1 − 1K [155]. This condition is satisfied straightforwardly in experiments with laser

cooling. The ions have well-defined equilibrium positions ri, and we expand ri around the

equilibrium positions up to the fourth order of the displacement operators δri ≡ ri − ri.

Up to the second order of δri, the quadratic part of the Hamiltonian can be diagonalized

to get the normal phonon modes. For N ions in the x − z plane, there are in total 2N

normal modes, and we label them from 1 to 2N in the ascending order of the mode eigen-

frequencies. Expressed with the coordinates of the normal modes, the Hamiltonian has

the form

H =
2N∑
i=1

p2
i

2m
+

1

2
mω2

zz
2
0

( 2N∑
i=1

ω2
i q

2
i (6.2.2)

+
2N∑
ijk

Bijk qiqjqk +
2N∑
ijkl

Cijkl qiqjqkql

)

where pi and qi are the canonical momentum and coordinate for the ith phonon modes

and ωi denotes the corresponding eigen-frequency. We have factorized out ωz (axial trap

frequency) and z0 ≡ (2κ/mω2
z)

1/3 (typical distance between the ions) as the frequency and

the length units (ωi, qi, Bijk, Cijkl are thus all dimensionless). The terms with Bijk and

Cijkl represent the cubic and quartic terms in the expansion of the Coulomb potential, and
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we need to keep both of them as they lead to the same order of correction to the phase

transition point in the following renormalization calculation. The values for ωi, Bijk, and

Cijkl are determined numerically through expansion of the Hamiltonian in Eq. (6.2.1)

and diagonalization of its quadratic components [41]. The nonlinear interaction between

phonon modes has been observed in Ref. [156], which leads to interesting collapse and

revival behavior of the contrast of a Ramsey-type experiment.

The structural phase transition is caused by phonon condensation in the lowest normal

mode (soft mode, or mode 1 in our notation, which corresponds to the zigzag mode for

an ion chain). This happens when the effective frequency ω1eff of the soft mode crosses

zero. In the classical treatment [153], interaction and fluctuation of the phonon modes

are neglected and the effective frequency ω1eff is just given by the bare frequency ω1 in the

Hamiltonian (6.2.2). As ω1 is determined simply through expansion and diagonalization of

the trapping and the Coulomb potentials, it is apparently determined only by the mechan-

ical conditions and has no dependence on the system’s temperature. Here, we take into

account the phonon interaction and derive the effective frequency ω1eff through a renor-

malization group treatment of the partition function corresponding to the Hamiltonian

(6.2.2) in the path integral formalism. As a qualitatively new result from this treatment,

we show that the structural phase transition is not purely mechanical any more and be-

comes a thermodynamic transition depending on the system temperature.

In the path integral formalism, the partition function of the system Z = e−H/(kBT )

(where T is the system temperature) can be written as [157]

Z =

˛ 2N∏
i=1

Dqie−S, (6.2.3)
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where the action

S =

ˆ ~ωz/(kBT )

0

dτ

~ωz
1

2
mω2

zz
2
0

{
2N∑
i=1

[
(∂qi/∂τ)2 + ω2

i q
2
i

]
+
∑
ijk

Bijk qiqjqk +
∑
ijkl

Cijkl qiqjqkql

}
. (6.2.4)

The RG method provides a way to work out this partition function and to find the ef-

fective frequency ω1eff of the lowest mode. The basic idea of the RG method is to integrate

out the high frequency modes in the path integral step by step to get a renormalized action

for the lower frequency modes. We start from the highest mode 2N , and the integration

over this mode can be done in a perturbative manner with Gaussian integration over the

variable q2N (τ), where τ is the imaginary time in the unit of 1/ωz. We define a small pa-

rameter ε = δz/z0, where the length scale δz = (~/mωz)1/2 characterizes the ion oscillation

amplitude for a single ion in a trap with frequency ωz. We consider renormalization cor-

rection to the effective parameters up to the order of ε2 (which is the order of Cijkl term in

the action). Following the standard procedure to calculate the path integral, we find that

after integration of the mode 2N , the action for the modes 1 to 2N − 1 still takes the form

of Eq. (4) up to the order ε2, with the effective parameters renormalized to

ω′ij = ωij + ε2
[
f1
Ci,j,2N,2N

2ω2N

− f2
Bi,2N,2NBj,2N,2N

8ω3
2N

]
(6.2.5)

C ′ijkl = Cijkl +
Bi,j,2NBk,l,2N

4ω2
2N

+O(ε2)

B′ijk = Bijk +O(ε2)

f1 = coth(
~ωzω2N

2kBT
)

f2 = coth(
~ωzω2N

2kBT
) +

~ωzω2N

2kBT

[
sinh(

~ωzω2N

2kBT
)

]−2
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where ωij and ω′ij denote the coefficients before the quadratic term qiqj in the action

(ωij = ω2
i δij in Eq. (6.2.5)), and for the coefficients written as Ci,j,2N,2N or Bi,2N,2N , sum-

mation over all possible permutations of the indices are implicitly assumed. After the

renormalization, we re-diagonalize the quadratic term from
∑

ij ω
′
ijqiqj to

∑
i ω
′2
i q
′2
i and

make the corresponding changes to B′ijk and C ′ijkl through change of coordinates from qi

to q′i. With this step, the action then takes the same form as in Eq. (4), with the mode index

summarizing from 1 to 2N−1 and the coefficients renormalized to ω′i, B
′
ijk, and C ′ijkl. Then

we can continue with integration of the next highest mode until we finally integrate out all

the modes except for the soft mode 1. The transformation (ωi, Bijk, Cijkl)→
(
ω′i, B

′
ijk, C

′
ijkl

)
defines the RG flow equations, and after integration of all the modes from modeN to mode

2, the last ω′1 gives the effective frequency ω1eff . By numerically solving the RG flow equa-

tions, the structural phase transition point can be determined by the criterion ω1eff = 0.

Since the RG flow equations (see Eq. (6.2.5)) depend on the system temperature T , and so

does ω1eff , structural phase transition can be possibly driven solely by temperature under

a fixed aspect ratio of the trap.

The temperature related functions f1 and f2 can be well approximated at temperature

T � ~ωzω2N/kB (the latter corresponds to a pretty low temperature compared to Doppler

cooling limit) by:

f1 '
2kB

~ωzω2N

T, f2 ' 2f1, (6.2.6)

so the renormalization correction to ω1eff is linear in T for a wide range of temperature.

As a result, the critical exponent for temperature induced linear-to-zigzag phase transi-

tion should be 1, as long as the critical temperature is above ~ωzω2N/kB. The magnitude

of the correction to ωij at each step is of the order of kBT/ (mωzz
2
0), which is a small

quantity representing the ratio of system temperature to melting temperature. It is also
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worth mentioning that even for zero temperature, the renormalization correction to ω1eff

is nonzero as f1 = f2 = 1 when T = 0, providing correction from quantum fluctuation to

this structural phase transition.

6.3 Numerical calculation

In the following, we carry out some explicit numerical calculation to show that it is

realistic to observe the predicted temperature driven structural phase transition in the

current experimental system. In our calculation, we take 10 ions as an example with the

mass of ions set as same as Y b+ ions. The axial trap frequency is set to 100 kHz and the

aspect ratio ωx/ωz is chosen around the classical critical value 4.59 [152]. Temperature is

varied on the order from µK to mK. Fig. 6.3.1 shows the change of soft-mode frequency

during the process of renormalization (the RG flow for ω1) at different temperatures. We

find that each renormalization step (integration of one normal mode) increases slightly

the soft mode frequency, and the change after 2N − 1 renormalization steps can be quite

significant. The change clearly increases with the temperature, as the thermal fluctuation

of the ion positions deviate the system from the classical limit where each ion is assumed

fixed at its equilibrium position.

To characterize the phase transition, we calculate the order parameter, which is taken

as the transverse displacement of the zigzag mode (the mean value of q1) for the linear-to-

zigzag transition. Fig. 6.3.2 shows the value of the order parameter and the corresponding

phase diagram as a function of both temperature and aspect ratio. The phase boundary

has a slope there, which shows that a structure phase transition can be driven vertically

at a fixed aspect ratio solely by change of the system temperature. The order parameter
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Figure 6.3.1: Change of the soft mode frequency during the renormalization process
with the aspect ratio α ≡ ωx/ωz = 4.6. Different curves correspond to different tempera-
ture, and the number of the renormalization steps represent the number of high frequency
modes that have been integrated out.
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Figure 6.3.2: The map of the order parameter (with value in unit of µm) as a function of
temperature and aspect ratio in the linear-to-zigzag phase transition for N = 10 ions. The
dashed line marks the phase boundary where the order parameter crosses zero.

gradually increases from zero when one crosses the transition point, so the transition is

still of the second order [153], as one expects for the symmetry breaking transition. From

the figure, we also see that the order parameter is more sensitive to the aspect ratio than

to the temperature. Tuning the aspect ratio by about 1% (4.59 to 4.54 for example) at a

fixed temperature (around 1 mK) will result in a change of the order parameter by about 5

µm, while the same change with a fixed aspect ratio around 4.54 requires one to cool the

temperature from 10 mK to 1 mK.
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Figure 6.4.1: The change of value of the order parameter as a function of the aspect ratio
when temperature is cooled from 10mK to 1mK. By tuning the aspect ratio of the confining
trap to an optimum value, cooling the ions can give rise to a change of the order parameter
as large as 5µm, resulting in a fairly noticeable transition from linear to zigzag pattern.

6.4 Experimental detection

Experiment done in Ref. [149] has successfully observed the classical linear-to-zigzag

phase transition in a trapped ion crystal by changing the radial trap frequency with an

accuracy of 2 kHz (0.5% for aspect ratio). With such an accuracy (and probably better

nowadays), one can pick an optimum value for aspect ratio to maximize the change of

order parameter based on the numerical calculation shown in Fig. 6.4.1. The CCD camera

used in Ref. [149] has a resolution of 0.3 − 1 µm, which is enough to tell the transition

point as the change of order parameter is apparently larger than 1µm for a relatively wide

range of aspect ratios (see Fig. 6.4.1 ).
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Figure 6.4.2: Plot of ions’ probability density in x − z plane (in unit of µm for both
axes) due to thermal fluctuation. The upper figure shows the position and the probability
density of 10 ions at high temperature (5mK), which characterizes the linear phase. The
lower figure is simulating the ion’s position after cooling the temperature to 1mK, and the
zigzag pattern clearly emerges. The aspect ratio is tuned at about 4.57.

In real experiments carried out at finite temperature, the thermal fluctuation of the

ions’ positions will blur the image of ions. In this case, we need to calculate whether the

image of ions are still sharp enough to show the temperature driven structural phase tran-

sition for the ion chain. We calculate the thermal fluctuation of ions’ axial and transverse

positions, and plot the probability density of the ions’ wave-packets above and below the

critical temperature (See Fig. 6.4.2), with the aspect ratio tuned near classical critical

value. Here we only demonstrate the case with a few ions (N=10) where the transverse

displacement of all ions can be roughly treated as the same as the order parameter cal-

culated above, but our calculation method works for larger number of ions as well. Our

simulation shows that one can clearly observe the structural phase transition from linear to

zigzag pattern in experiment, as the thermal fluctuation of ions’ transverse position in the

considered temperature range is much smaller than the change of order parameter across

the transition point.
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Chapter 7

Space-time crystal with trapped ions

7.1 Introduction

Symmetry breaking plays profound roles in many-body physics and particle physics

[158]. The spontaneous breaking of continuous spatial translation symmetry to discrete

spatial translation symmetry leads to the formation of various crystals in our everyday

life. Similarly, the spontaneously breaking of time translational symmetry can lead to

the formation of a time crystal [48, 159]. Intuitively, if a spatially ordered system rotates

persistently in the lowest energy state, the system will reproduce itself periodically in time,

forming a time crystal in analog of an ordinary crystal. Such a system looks like a perpetual

motion machine and may seem implausible in the first glance. On the other hand, it has

been known that a superconductor [160, 161] or even a normal metal ring [162] can

support persistent currents in its quantum ground state under right conditions. However,

the rotating Cooper pairs or electrons in a metal are homogenous in space. Thus no spatial

order is mapped into temporal order and it is not a time crystal [48]. While it has been

proved mathematically that time crystals can exist in principle [48, 159], it was not clear
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how to realize and observe time crystals experimentally.

In this chapter, we propose a method to create a space-time crystal (Fig. 7.1.1a), which

is also a time crystal, with cold ions in a cylindrically symmetric trapping potential. Differ-

ent from electrons in conventional materials, ions trapped in vacuum have strong Coulomb

repulsion between each other and have internal atomic states. The strong Coulomb repul-

sion between ions enables the spontaneous breaking of the spatial translation symmetry,

resulting in the formation of a spatial order that can be mapped into temporal order. The

internal atomic states of ions can be utilized to cool the ions to the ground state as well as

observing their persistent rotation directly by state-dependent fluorescence.

7.2 Formalism

We consider N identical ions of mass M and charge q in a ring trap and a uniform

magnetic field B (Fig. 7.1.1b). The magnetic field is parallel to the axis of the trap. It

is very weak so that it does not affect trapping. The equilibrium diameter of the ion ring

is d. Figure 7.1.1c shows examples of the trapping potentials for a 9Be+ ion in the radial

plane of a quadrupole ring trap and a linear octupole trap, with details described in the

Appendix B.

When the average kinetic energy of ions (kBT/2, where kB is the Boltzmann constant

and T is the temperature) is much smaller than the typical Coulomb potential energy

between ions, i.e. T � Nq2/(2π2ε0kBd), the ions form a Wigner ring crystal. For ions

in a ring crystal, we can expand the Coulomb potential around equilibrium positions to

the second order, so the many-body Hamiltonian becomes quadratic (see the Appendix

B for details). We can diagonalize the quadratic Hamiltonian by introducing a set of N
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Figure 7.1.1: Schematic of creating a space-time crystal. a, A possible structure of a space-
time crystal. It has periodic structures in both space and time. The particles rotate in
one direction even at the lowest energy state. b, Ultracold ions confined in a ring-shaped
trapping potential in a weak magnetic field. The mass and charge of each ion are M and
q, respectively. The diameter of the ion ring is d, and the magnetic field is B. c, The
pseudo-potentials (Vext) for a 9Be+ ion in a quadrupole ring trap (solid curve) and a linear
octupole trap (dashed curve) along the x or y axis. See Appendix for details.
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normal coordinates qj and normal momenta p′j. The normal coordinate and momentum

of the collective rotation mode are q1 = 1√
N

∑
j θj and p′1 = 1√

N

∑
j pj, respectively. The

remaining N −1 normal coordinates correspond to relative vibration modes. Choosing the

potential energy at equilibrium positions as the origin of energy, the Hamiltonian of the

system becomes [163]:

H =
2~2

Md2
[(−i ∂

∂q1

−
√
Nα)2 +

N∑
j=2

(− ∂2

∂q2
j

+ η2ω2
j q

2
j )], (7.2.1)

where ~ = h/(2π) is the reduced Planck constant, α = qπd2B/(4h) is the normalized

magnetic flux, η2 = q2Md/(8π~2ε0), and ωj is the normalized normal mode frequency.

The eigenstate of this Hamiltonian is a product state ψ(~q) = eikq1
∏N

j=2 ϕj(qj), where

ϕj(qj) (j ≥ 2) are eigenfunctions of harmonic oscillators. Resetting the ground state energy

of the relative vibrations to be the origin of energy, the energy of this state is

E =
2~2

Md2
[N(

k√
N
− α)2 +

N∑
j=2

2njηωj], (7.2.2)

where nj = 0, 1, 2, · · · (j ≥ 2) are the occupation numbers of the relative vibration modes.

The wavefunction has to be symmetric with respect to the exchange of two identical

bosonic ions, and has to be antisymmetric with respect to the exchange of two identical

fermionic ions. If nj = 0 for all j ≥ 2, i.e. the relative vibration modes are in their ground

states, the periodic boundary condition and symmetry property of the wavefunction re-

quires eik(2π/
√
N) = 1 for identical bosonic ions, and eik(2π/

√
N) = (−1)N−1 for identical

fermionic ions. Thus for identical bosonic ions (e.g., 9Be+ ions), we have k = n1

√
N for

all N , where n1 = 0,±1,±2, · · · . For identical fermionic ions (e.g., 24Mg+ ions), we have
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k = n1

√
N if N is an odd number and k = (n1 + 1

2
)
√
N if N is an even number. This results

a qualitatively different rotation behavior for fermions and bosons that can be observed

experimentally.

The lowest normalized relative vibration frequency is ω2 = 2.48 when N = 10 and

will increases as N increases [163]. ω2 ≈
√

0.32N ln(0.77N) for large N . η = 4.0 × 104

for 9Be+ ions in a d = 10µm ring trap. So it costs a lot of energy to excite the relative

vibration modes. Thus we have nj = 0 for all j ≥ 2 at lowest energy states. For an ion

ring of identical bosonic ions, the energy En1 and the angular frequency ωn1 of the n1-th

eigenstate of the collective rotation mode are:

En1 = E∗(n1 − α)2 =
2N~2

Md2
(n1 − α)2,

ωn1 = ω∗(n1 − α) =
4~
Md2

(n1 − α),

(7.2.3)

where E∗ = 2N~2/(Md2) and ω∗ = 4~/(Md2) are the characteristic energy and the char-

acteristic frequency of the collective rotation, respectively. For identical fermionic ions, the

results are the same as Eq. (7.2.3) if N is an odd number, and n1 should be changed to

n1 + 1
2

if N is an even number.

In classical mechanics, the angular velocity of the lowest energy state is always ω/ω∗ =

0, which means that the ions do not rotate. In quantum mechanics, however, ω/ω∗ = 0

is not an eigenvalue when the normalized magnetic flux α is not an integer or half of an

integer. So the ions can rotate persistently even at the ground state. Since the ions are

in the ground state already, there is no radiation loss due to the rotation. The rotation

frequency is independent of the number of ions in the ring. The energy gap between the

ground state and the first excited state is ∆E = N~2/(Md2) when α = 1/4. ∆E → ∞

when N → ∞. Thus the persistent rotation of identical ions is a macroscopic quantum
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Figure 7.2.1: The rotational energy levels and frequencies of trapped ions in a ring. a, The
energy levels of identical bosonic ions as a function of the magnetic flux α. The quantum
number n1 is labeled on each curve. The angular frequency of the persistent rotation as a
function α is shown in b for an even number of fermionic ions, and c for bosonic ions. a
and c are also applicable to an odd number of fermionic ions. d, The angular frequency
of the persistent rotation of a bosonic ion ring in a constant magnetic field B0 > 0 as a
function of its normalized diameter d/d0.
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phenomenon and is robust for observation when N is large, which is important for a time

crystal [48]. This is very different from the situation of a rigid body with mass NM and

charge Nq in a ring, for which the maximum energy gap between the ground state and the

first excited state is ∆Erigid = 2~2/(NMd2). ∆Erigid → 0 when N →∞. When we consider

a rigid body, we only minimize the energy of its center-of-mass (c.o.m.) motion. Here we

minimize the total energy of the whole system, which depends on the internal interaction

and the exchange symmetry of the system. If the relative vibration modes are not in

their ground states, the symmetry requirement of the c.o.m motion of identical particles is

relaxed and the energy gap between different c.o.m. motion states becomes smaller. The

result becomes the same as that of a rigid body when all particles are different from each

other.

Figure 7.2.1a shows the lowest energy levels of an ion ring consisting identical bosonic

ions. When the magnetic flux satisfies −0.5 < α < 0.5, the n1 = 0 state is the ground state.

As α increases above 0.5, n1 = 1 state becomes the ground state. Similar things happen

whenever α crosses half integer values. As a result, the angular frequency of the persistent

rotation of the ground state is a periodic function of the magnetic flux (Fig. 7.2.1c). Figure

7.2.1d shows the rotation frequency of a bosonic ion ring in a constant positive magnetic

field B0 as a function of its normalized diameter d/d0, where d0 =
√

4h/(πqB0). The

rotation frequency in Fig. 2d is normalized by ω∗0 = qB0/2M . The ground state is n1 = 0

when d/d0 < 1/
√

2. The rotation frequency is independent of the ring diameter and the

number of ions in the ring for this state, and oscillates and decreases to 0 when d/d0

increases above 1/
√

2. If we confine many ions in a harmonic trap to form a 3D spatial

crystal, ions in the crystal will rotate with the same angular frequency ω∗0 and form a 4D

space-time crystal when the outer diameter of the ion crystal is smaller than d0/
√

2. If we
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confine ions in two concentric ring traps with diameters larger than d0/
√

2, the rotation

frequencies of the two rings can be different or the same, depending on the interaction

between ions in different rings. When the ratio of the rotation frequencies of the two

rings is an irrational number, the ions have an order in time but cannot reproduce their

positions simultaneously in a finite period. Thus we have a time quasi-crystal, in analog of

a conventional spatial quasi-crystal [164].

7.3 Experimental detection

The persistent rotation of trapped ions can be detected by measuring the current gener-

ated by the ions, or inferred by probing the energy levels of the ion ring. More importantly,

we can observe the persistent rotation directly by measuring the ion positions twice when

N is large. For example, if we have an ion ring consistingN identical 9Be+ ions, we can first

use a pulse of two co-propagating laser beams to change the hyperfine state of one (or a

small fraction) of the ions by stimulated Raman transition and use this ion as a mark (qubit

memory coherence time greater than 10 s has been demonstrated with 9Be+ ions [165]).

Both laser beams are parallel to the axis of the ion ring and have waists of w0. We assume

that w0 is larger than the separation between neighboring ions and the pulse is very weak

so that on average less than one ion is marked. This two-photon process localized the po-

sition of the mark ion with an uncertainty of about ∆x ∼ w0/
√

2. The recoil momentum of

the ion due to a stimulated Raman transition is ~p1 − ~p2, where ~p1 and ~p2 are the momenta

of photons in the two laser beams. The amplitude of the transverse momentum of each

photon in a Gaussian beam with waist of w0 is about ~/w0. Thus the momentum of the ion

ring is changed by about ∆p ≈
√

2~/w0. ∆p should be smaller than the absolute value of
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the initial momentum of the ion ring, which is N~/(2d) when α = 1/4. Thus the waists of

lasers need to satisfy 2
√

2d/N < w0 <
√

2d in order to localize the position of an ion with-

out significantly alter the initial momentum of the ion ring. This condition can be fulfilled

when N is large. Then we can use a global probe laser which is only scattered by the mark

ion [51] (state-dependent fluorescence) to measure its angular displacement (∆θmk) after

a time separation ∆t. The displacement of the mark is about ∆θmk ≈ ω∗(n1 − α)∆t when

N is large. The mark ion repeats its position when ∆t ≈ 2πl/[ω∗(n1 − α)] , where l is an

integer. After the measurement, we can cool the ions back to the ground state and repeat

the experiment again.

To study the effects of finite temperatures on persistent rotation, we assume the trapped

ions are at thermal equilibrium with temperature T . Then the average angular frequency

of the ions is

ω =
∞∑

n1=−∞

ωn1

Z
e−En1/kBT , (7.3.1)

where the partition function is Z =
∑

n1
e−En1/kBT . It is convenient to define T ∗ ≡ E∗/kB =

N~ω∗/2kB as the characteristic temperature for the ring of ions. T ∗ increases when N

increases.

Figure 7.3.1a shows the average rotation frequency of an ion ring consisting identical

bosonic ions as a function of the temperature. At very low temperatures (T � T ∗), the av-

erage rotation frequency is independent of the temperature. As the temperature increases,

the probability of the ion ring occupying excited states increases. These states have posi-

tive and negative velocities alternately, which cancel each other. As a result, the amplitude

of the average rotation frequency drops to zero at high temperatures (T > T ∗). So T ∗ can

be considered as the phase transition temperature of the space-time crystal. T ∗ and ω∗ as

a function of the diameter of an ion ring (or an electron ring) are displayed in Fig. 7.3.1b.
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Figure 7.3.1: The temperature dependence of the persistent rotation of trapped ions.
a, The average angular frequency of the persistent rotation of identical bosonic ions as a
function of the temperature. From top down, the magnetic flux increases from -0.45 to
0.45. b, The characteristic temperature (left axis) and the characteristic frequency (right
axis) of the persistent rotation of an ion (or electron) ring consisting 100 identical ions
(or electrons) as a function of the diameter. From top down, the trapped particles are
electrons, 9Be+ ions, and 24Mg+ ions.
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For a d = 100µm ion ring consisting 100 9Be+ ions, T ∗ = 1.1 nK and ω∗ = 2.8 rad/s. T ∗ is

larger for smaller ion rings.

In order to experimentally realize such a space-time crystal with trapped ions, we need

to confine ions tightly to have a small d, and cool the ions to a very low temperature.

Recently, cylindrical ion traps with inner radius as small as 1 µm have been fabricated

[166]. Simulations suggested that it is also possible to confine charged particles with a

nanoscale rf trap [167]. The challenge is that ions must be cooled to below 1 µK for a

microscale trap (Fig. 3b). We propose to first add a pinning potential to confine ions

with MHz trapping frequencies in the circumference direction. A combination of Doppler

cooling and resolved-sideband cooling can be used to cool the ions to the ground state

of the MHz trap [15, 168]. The system is in the ground state of the ring-shaped trapping

potential after ramping down the pinning potential adiabatically. For T ∗ = 1.1 nK, the

ramping down time should be longer than 7 ms. The ultimate way of cooling ions to

ultralow temperature, however, is perhaps to put the ions near a Bose-Einstein condensate

of neutral atoms [169], which has been cooled to below 0.5 nK by adiabatic decompression

[170].
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Chapter 8

Simulation of exact spin liquid state with trapped ions

8.1 Introduction

Frustration is an important phenomenon in magnetic materials, where local spins car-

rying magnetic moments have competing interaction energies which cannot be minimized

simultaneously. The ground state of a frustrated material usually has large degeneracy and

massive entanglement, which can give rise to exotic properties of materials such as spin

ice [171, 172], spin glasses [173, 174], and spin liquid [175, 176]. The properties of spin

liquid have been of particular interest to researchers in recent years, due to the existence of

nontrivial collective phenomena such as emergent gauge fields and fractional statistics of

quasi-particle excitations [176]. In addition, it is long conjectured that spin liquid, which is

microscopically a resonating-valence-bond (RVB) state, has close relationship with High-Tc

superconductors [177].

Despite intense research interest, the understanding of spin liquid state is still poor

due to both challenges in accurate theoretical description and lack of experimental prob-

ing methods in real frustrated materials. We’re hence motivated by invoking Feynamn’s
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proposal on quantum simulation: if one can simulate a spin liquid model with atomic

system, one will gain a much higher level of control and measurement than traditional

condensed matter system. And in fact, quantum simulation of simple spin model such as

Ising model has been experimentally demonstrated, both with trapped ions [51, 53, 178]

and cold atoms in optical lattice [179], where magnetic frustration has already been ob-

served due to long range spin-spin interactions in trapped-ion quantum simulator [27].

But the quantum simulation of spin liquid is currently still away from reality, due to the

challenge of finding a well-understood theoretical model that at the same time, practical

for experimental realization.

In this chapter, we propose a feasible approach to simulate a model with exact spin

liquid ground state, known as “Haldane-Shastry” model. The model, which was proposed

independently by F. Haldane and B. Shastry both in the year of 1988 [180, 181], has the

exact RVB ground state as proposed by Anderson [175]. Moreover, the model is exactly

solvable by analytics for full energy spectrum and wavefunctions [182], and is found to

have interesting fractional statistics for quasi-particle excitations [183]. Regardless of a

high level of remarkable theoretical properties, the “Haldane-Shastry” model has long been

out of experimental interest, due to the peculiar inverse square range interaction in a 1D

ring geometry, which does not exist in any known natural materials. Here we show that

an extended version of the current trapped-ion quantum simulator can be used to simulate

this model with a high level of accuracy, and meantime enabling site-to-site measurement

capability in spin correlations.

This chapter is organized as follows: in section 8.2, we give a brief introduction of

the “Haldane-Shastry” (HS) model and its properties. We show how to use available tech-

nology in trapped ions to simulate the model in section 8.3. Numerical calculations that
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support our simulation approach is presented in section 8.4, together with discussions on

future directions.

8.2 The Haldane-Shastry model

The HS model is described by the following Hamiltonian [180]

HHS =
N∑
i<j

1

d2
ij

(Sxi S
x
j + Sxi S

x
j + Szi S

z
j ) dij =

N

π
| sin[π(i− j)/N ] (8.2.1)

If one put N spins equally spaced on a ring, then distance dij represents “chord dis-

tance” between spin i and j on a ring (Fig. 8.2.1). For convenience, we can introduce

complex coordinates {zi} for all spins with |zi| = 1 (unit circle), then [184]

HHS = (
2π

N
)2

N∑
i<j

Si · Sj

|zi − zj|2
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Figure 8.2.1: Haldane-Shastry model on a ring. N spin-1/2 particles form a equally-spaced
lattice on a ring. To simulate the HS Hamiltonian, we add several Raman beam pairs with
wave vector difference pointing in x direction (perpendicular to the ring plane)

Now we introduce the spin basis |z1, · · · zM〉 to be the state vector with spins at coordi-

nates {z1, · · · zM} pointing up (and the rest down). It is found that the ground state |ψGS〉

of HHS has M = N/2 (total spin singlet) for any component, with the coefficient given by

〈z1, . . . zM |ψGS〉 =
M∏
j<k

(zj − zk)2

M∏
j=1

zj (8.2.2)

The ground state wavefunction is reminiscent of the Laughlin wavefunction for ν = 1/2

fractional quantum hall state [183,185]. It is also proven to be identical to the Gutzwiller

variational wave function [186] and Anderson’s resonating valence bond state [177],

hence it is an exact spin liquid state by definition.

Although it is hard to verify a spin liquid state by probing the wavefunction (Eq. 8.2.2),

the spin correlations of |ψGS〉 has a signature decay law of (−1)j/j, according to “Haldane’s
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conjecture” and analytic calculation in Ref. [187] for large N limit

〈Szi Szi+j〉 =
(−1)j

4πj
Si(j) Si(x) =

ˆ x

0

sin(πy)

πy
dy (8.2.3)

The fall-off of spin correlations shows that the ground state is disordered, which is one

of the key features of spin liquid available for experimental test.

8.3 Trapped-ion Simulation

We now discuss about how to simulate HHS with trapped ions. Since HHS is transla-

tionally invariant on a ring, it is natural to consider ions trapped on a ring, which has been

experimentally achieved [166,188,189]. The reader can find detailed description on how

a ring trap can be constructed in Appendix B. Here we assume the ions are already trapped

in a ring with translational invariance in azimuthal direction. By applying laser beams that

couples ion’s spin qubit transition (usually Raman beams as ion spin qubit is made of hy-

perfine levels) in beatnote with frequency µ and wave vector (wave vector difference for

Raman beams) k in transverse direction x to all ions (see Fig. 8.2.1), we have the spin

part of ion Hamiltonian (σ is the Pauli operator, and ~ = 1):

H =
∑

i [
ν0

2
σiz + (ei(kxi−ν0t) + c.c.)Ω cos(µt)σix] (8.3.1)

where we assume the (Raman) Rabi frequency Ω to be real and uniform on all ions.

Going to interaction picture of H0 = νHF
2
σz, and applying rotating wave approximation,

we obtain
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HI =
∑
i

Ω cos(µt)[cos(kxi)σ
i
x − sin(kxi)σ

i
y]

In Lamb-Dicke limit, kxi =
∑

m ηi,m(ame
−iωmt + h.c.) � 1 (ηi,m is the Lamb-Dicke pa-

rameter that measures the coupling between ion i and phonon mode m, and {ωm} are

transverse phonon mode frequencies), then

HI ≈ Ω cos(µt)
∑
i

[σix −
∑
m

ηi,m(ame
−iωmt + a†me

iωmt)σxy ] = HI0 +HII

HI0 = Ω cos(µt)
∑
i

σix

HII = −Ω cos(µt)
∑
i

∑
m

ηi,m(ame
−iωmt + a†me

iωmt)σiy

We can further go into the interaction picture of HI0. Using

UI0 = T
ˆ
e−iHI0(t)/~dt = ei

´
Ω cos(µt)

∑
i σ
i
xdt =

∏
i

(cos θ − iσix sin θ)

with θ = Ω
µ

sin(µt), we obtain

HII = U †I0HIIUI0

= −Ω cos(µt)
∑
i

∑
m

ηi,m(ame
−iωmt + a†me

iωmt)[cos(2θ)σiy − sin(2θ)σiz]

= −Ω cos(µt)
∑
i

∑
m

ηi,m(ame
−iωmt + a†me

iωmt)[
σiy + iσiz

2
ei2θ +

σiy − iσiz
2

e−i2θ]
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Note that

ei2θ = ei
2Ω
µ

sin(µt) =
∞∑

n=−∞

Jn(
2Ω

µ
)einµt

In the case µ � Ω, the Bessel function Jn(x) ≈ (x
2
)n/n! (n ≥ 0, J−n(x) = (−1)nJn(x) )

decays exponentially with large n. Thus up to first order in Ω/µ:

e±i2θ ≈ 1± Ω

µ
(eiµt − e−iµt)

HII ≈ −Ω
∑
i

∑
m

ηi,m
eiµt + e−iµt

2
(ame

−iωmt + a†me
iωmt)[σiy + σiz

Ω

µ
(eiµt − e−iµt)](8.3.2)

In Ref. [27, 190], one chooses µ ≈ ωm, so only σy terms are near-resonant, and other

terms will be fast oscillating (µ� Ω) and average out to zero. We end up with

HII ≈ −Ω cos(µt)
∑
i

∑
m

ηi,m(ame
−iωmt + a†me

iωmt)σiy

The evolution operator U = T
´ t

0
e−iHII(t′)dt′ can be expanded again using Magnus for-

mula

U(t) = e−i
´ t
0 H(t′)dt′− 1

2!

´ t
0 dt
′ ´ t′

0 dt′′[H(t′′),H(t′)]− i
3!

´ t
0 dt
′ ´ t′

0 dt′′
´ t′′
0 dt′′′{[H(t′′′),[H(t′′),H(t′)]]+[H(t′′′),H(t′′)],H(t′)]}+···

HI itself has only linear terms like a†σyi / aσyi , the first order commutator [H(t′′), H(t′)]

only has term proportional to σyi σ
y
j , coming from the only non commuting term [am, a

†
m] =

1, all higher order commutators will be zero and hence truncated. As a result, we can write
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U(t) = exp[i
∑
i

∑
m

(αi,ma
†
m − h.c.)σ

y
i + i

∑
i,j

βi,jσ
y
i σ

y
j ]

Plug into Schrodinger’s equation i∂U
∂τ

= HU and compare coefficients, we obtain:

αi,m(t) =
ηi,mΩ

µ2 − ω2
m

[eiωmt(µ cosµt− iωm sinµt)− µ]

βi,j(t) =
∑
m

ηi,mηj,mΩ2

µ2 − ω2
m

[
µ sin(µ− ωm)t

µ− ωm

−µ sin(µ+ ωm)t

µ+ ωm
+
ωm sin(2µt)

2µ
− ωmt]

In the off-resonant phonon excitation case, µ − ωm � ηi,mΩi, we have αi,m(t) ≈ 0 and

βi,j(t) ≈ Jyijt, where

Jyij =
∑
m

ηi,mηj,mΩ2ωm
µ2 − ω2

m

≈
∑
m

ηi,mηj,mΩ2

2(µ− ωm)

As U(t) = exp[i
∑

i,j Jijσ
y
i σ

y
j t], we’re simulating the effective Ising-type Hamiltonian∑

i,j J
y
ijσ

y
i σ

y
j

Now if we add another beatnote with frequency µz = µ/2 and Rabi Ωz, then the non-

fast-oscillating terms come from σz terms in Eq. 8.3.2, which gives three-wave mixing

µz − 2µz + µz and −µz + 2µz − µz. As a result, one can show after similar calculations that

there will be effective σizσ
j
z interaction at

Jzij ≈
∑
m

ηi,mηj,mΩ2
z

2(2µz − ωm)
(
Ωz

µz
)2

By choosing Ω4
z = Ω2µ2/4, we can achieve Jyij = Jzij. In addition, the σixσ

j
x can be
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achieved by simply adding a π/2 phase to the beatnote with same Ω and µ, but along

orthogonal transverse direction (assume phonon modes to be the same as {ωm} so Jxij =

Jyij = Jzij). Doing this simply swap σx and σy in all equations starting from Eq. 8.3.1. thus

one ends up with the effective Hamiltonian

Heff = Jij(S
x
i S

x
j + Sxi S

x
j + Szi S

z
j ) (8.3.3)

Jij ≈
∑
m

ηi,mηj,mΩ2

2(µ− ωm)
(8.3.4)

8.4 Numerical simulation and Discussion

Eq. 8.3.3 is a long-range Heisenberg model, with the coupling pattern Jij determined

by transverse phonon mode structure and beatnote frequency µ. Now we show that by

properly tuning µ and transverse phonon mode structure (through changing trap frequency

aspect ratio), Jij will match the inverse-range interaction in HS model very well.

As an example, we perform a numerical simulation with N = 20 Y b+ ions trapped in a

ring with diameter r0 = 125µm. The transverse confining potential is set to ωx = 5MHz,

and beatnote frequency µ = ωx + 319KHz. In Fig. 8.4.1, we show that the simulated Jij

(Eq. 8.3.4) matches reasonably well with that in the exact Haldane-Shastry model (Eq.

8.2.1). More importantly, we find that the spin correlations 〈σxi σxi+j〉 agrees extremely well

with the numerical calculation from exact ground state of HS Hamiltonian, and consistent

with the power law decay in analytical expression (Eq.8.2.3)
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Figure 8.4.1: Comparison of Jij between HS and simulated model. The simulated Jij using
trapped ions (black triangle) matches reasonably well with the Haldane-Shastry model
Jij ∝ 1/ sin2[π(i− j)/N ] (dash line and red dot).
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Figure 8.4.2: Comparison of spin correlation between HS and simulated model. The sim-
ulated Hamiltonian with trapped ions (black circle) gives almost the same spin correlation
power law decay (see Eq. 8.2.3) as the exact Haldane-Shastry model (dash line and red
dot).
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The ground state of the simulated HS Hamiltonian can be prepared using adiabatic

passage [27]: we first add a magnetic field in x direction (by using carrier transition

beams) that is much larger than any Jij, then we initialize all ions to σix = −1 state, so

the system is approximately in the ground state of current spin Hamiltonian. Afterward,

we adiabatically ramp down the transverse magnetic field to zero, and the system will stay

in ground state of the simulated HS model. Note that the ramping speed depends on the

energy gap of the HS Hamiltonian, which is proportional to 1/N [182], requiring only a

linear increase of simulation time or laser power, so a relatively large size of the HS model

can be simulated in the future.

The spin correlations 〈σxi σxi+j〉 (or 〈σyi σ
y
i+j〉 and 〈σzi σzi+j〉) can be readily measured in

experiment using state-dependent fluorescence, as already carried out in Ref. [52]. The

signature decay pattern (Fig.8.4.2) will serve as a key evidence of the existence of spin

liquid state. But we’d like to point out that the HS model has many more interesting fea-

tures than the power-law decay of spin correlations. An incomplete list of these features

are fractional spinon statistics [183], high degeneracy in energy spectrum due to Yangian

symmetry [191], and non-trivial properties in entanglement entropy [192]. We’re cur-

rently on the way of searching methods to experimentally study these features based on

the proposed trapped-ion simulator.
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Chapter 9

Prethermalization in isolated trapped ion chain

9.1 Introduction

The dynamical properties of isolated quantum many-body systems have been under

intense interest in recent years [193, 194]. On the theory side, the research has been

centered on whether and how isolated quantum system approaches thermal equilibrium.

While certain observables are found to relax to equilibrium in some large systems [195–

199], it remains unclear on what time scale equilibration occurs in generic systems [200–

203]. On the experimental side, recent progress with cold atoms [204–206] and trapped

ions [27,51–53] has made it possible to simulate well controllable simple models, such as

1D Bose gas and transverse field Ising model. These quantum systems can be well isolated

from environmental bath and have long coherence time, while their physical properties

can be measured at individual atomic level, providing an unprecedented opportunity for

studying non-equilibrium dynamics in closed interacting systems.

A particular intriguing phenomenon in this context is called prethermalization [207],

which has been shown to emerge in various theoretical setups [208–210], and experi-
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mentally observed in cold atomic gas [206, 211]. The emergence of prethermalization is

characterized by an establishment of quasi-stationary state at intermediate time scale, and

followed by relaxation to stationary state at long time scale. Physical origin of prethermal-

ization, however, is still elusive, and is primarily speculated to be related to integrability

of model, where the prethermal state can sometimes be characterized by a Generalized

Gibbs Ensemble (GGE) coming from the integrable approximation of a non-integrable

model [206, 209]. However, it was shown recently that even for exact integrable system,

prethermalization can still occur, and the prethermal state can not be described accurately

by GGE [210].

In this chapter, we propose an experimental method to observe and study a new type

of prethermalization in a XY spin model, using currently available trapped-ion quantum

simulator [52]. Here the emergence of prethermalization is due to the combination of

inhomogeneous lattice spacing and long range spin-spin interaction. Unlike many other

systems, the prethermalization can occur for as few as N = 16 spins, and survive for N

as large as a few thousand (limited only by numerical computation power), allowing for

easy experimental realization. In particular, the prethermal state in our system cannot

be described by GGE, but can be well described by a partial diagonal ensemble (PDE).

By examining the energy spectrum of our system in a small dimension subspace, we find

a non-trivial structure of near-degenerate eigenstate pairs in the lower half energy spec-

trum, which is confirmed to be responsible for the occurrence of prethermalization. In

addition, by tuning the range of interaction in an experimentally straightforward way, we

find the dynamical behavior of system to exhibit three different phases: thermalization

only, prethermalization followed by thermalization, and prethermalization only. The tran-

sition between different phases becomes sharper and sharper with increased number of
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spins, hinting the existence of dynamical phase transition [212]. Our method provides a

new way of investigating prethermalization and related dynamical properties in models

irrelevant of integrability.

9.2 Model of system

Our model comes from the quantum simulator made of a 1D chain of ions trapped in a

linear Paul trap (9.2.1), which has been described in details in section 8.3 of the previous

chapter. Through proper configuration of laser beams, the optical dipole force can generate

an effective transverse field Ising model [27,51,52]:

𝑧

𝑥

Figure 9.2.1: Schematic of the proposed experimental setup: A chain of N ions are trapped
along the z direction in a 1D harmonic linear Paul trap, with inhomogeneous lattice spac-
ing. The global (Raman) laser beams generate spin-dependent force along x direction,
resulting in effective Ising-type interaction. A focused laser beam is applied on one end of
the ion chain to selected flip only the first spin on demand.
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H =
N∑
i<j

Ji,jσ
x
i σ

x
j +B

N∑
i=1

σzi (9.2.1)

here σi is the spin-1/2 Pauli matrix for the ith ion qubit, and the interaction pattern Jij

is given by

Ji,j = Ω2

N∑
m=1

ηi,mηj,mωm
µ2 − ω2

m

where µ is the Raman beatnote frequency, and Ω is the effective Raman Rabi frequency,

which is assumed uniform on all ions. {ωm} are the phonon mode frequencies of ions in x

direction (ω1 < ω2 < . . . ωN = ωx), and ηi,m is the Lamb-Dicke parameters measuring the

coupling between ion i and phonon mode m.

It is experimentally possible to make the effective transverse magnetic field B much

larger than Jij [51]. In this limit, the σ+
i σ

+
j and σ−i σ

−
j terms in Eq. 9.2.1 will be energeti-

cally forbidden, and one ends up with the XY Hamiltonian:

H ≈ HXY =
∑
i<j

2Ji,j(σ
+
i σ
−
j + h.c.) +B

∑
i

σzi (9.2.2)

The key feature of the simulated Hamiltonian (9.2.1 & 9.2.2) is that Jij is long-ranged.

Moreover, the range of interaction can be tuned easily by changing the beatnote frequency

µ. The two extreme cases are (1) µ− ωx → 0, where Jij →constant and (2) µ− ωx →∞,

where Jij ∼ 1/|i − j|3. For generic µ, Jij can be approximated with an inverse power-law

decay interaction:

Jij ∼
1

|i− j|α
(9.2.3)

where α ∈ (0, 3), but its realistic value should be determined by trap frequencies,

maximum laser power and spin decoherence time.
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The 1/rα Ising model (Eq. 9.2.1) with zero transverse field (essentially classical) can be

analytically solved [213, 214], and its dynamical property has also been recently studied

[210, 215], where it is found that if α is smaller than the dimensionality of the system,

the total interaction energy per site will diverge, drastically changing the dynamics after

a quantum quench. However, there is no known analytic solution for 1/rα XY model

(Eq. 9.2.2), and numerical calculation of its dynamics would require a full diagonalization

of the 2N × 2N matrix, which is intractable even for an experimentally achievable small

number of ions (e.g. N = 16 as in [52])

For large α, it may be possible to approximate HXY by only keeping the nearest-

neighbor interaction Ji,i+1. In this case, a Jordan-Wigner transformation yields the in-

tegrable fermionic Hamiltonian

Hint = 2
∑
i

(Ji,i+1c
†
ici+1 +Bc†ici) (9.2.4)

We note that both the Hamiltonian 9.2.2 and 9.2.4 conserves the total spin excitation

n =
∑

i c
†
ici =

∑
i
σzi +1

2
, thus the Hamiltonian is block-diagonal in different n subspaces.

If our initial state lies in one of the subspace, then the subsequent dynamics is also con-

strained in the same subspace, which can significantly speeds up numerical calculation

of system dynamics when the subspace dimension is significantly smaller than the total

Hilbert space.

We’ll first initialize all the spin qubits carried by ions to spin down state (σzi = −1)

1. This initial state is the eigenstate of HXY and thus stationary. We then start the non-

equilibrium dynamics by using focused laser beam that only flips the first spin (left end

1For ion qubit with hyperfine clock state, this can be done by first prepare prepare all hyperfine spin
qubits to σy

i = −1 (where y is the quantization axis), then followed by a coherent π/2 rotation around x axis
to prepare an initial state with σz

i = −1.
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ion) to σzi = 1, the resulting state

|ψ(0)〉 = | ↑↓↓ · · · ↓〉

is no longer the eigenstate of the original HXY and is subject to unitary dynamics in n =

1 (single spin excitation) subspace. This subspace has dimension N × N , allowing for

efficient numerical calculation up to N ∼ 103 ions on classical computer.

For experimental interest, we consider the time evolution of local observables 〈σzi (t)},

and their correlations 〈σzi (t)σzj (t)〉, both of which can be easily measured at different time

[52] for all ions. In addition, we define the operator

C =
N∑
i=1

fi
σzi + 1

2

where the coefficient fi ≡ (i−N+1
2

)/(N−1) is equally distributed between [−1, 1] from i = 1

to i = N . The expectation value of C takes value between [−1, 1] and physically measures

the relative position of the “spin excitation center”. It’s easy to check that 〈ψ(0)|C|ψ(0)〉 =

0, and for any state that has spatial inversion symmetry around the center of the chain,

〈C〉 = 0. We’ll show that the 〈C〉 acts as an “order parameter” that characterizes the

dynamics of the system from the above non-equilibrium initial state.

9.3 Numerical results

We start our numerical calculation by first investigating an experimentally testable N =

16 ion chain, and especially, we’re interested in comparing dynamics between short range

and long range interaction pattern. The practical values of α for both cases, together with

101



corresponding other experimental parameters are listed in Table 9.1. The generated Jij

pattern are plotted in Fig. 9.3.1

N = 16 α ωz ωx µ− ωx ηxΩ J

Short-range 2.6 100KHz 5MHz 200KHz 40KHz 20Hz
Long-range 0.52 600KHz 5MHz 20KHz 3.9KHz 20Hz

Table 9.1: Experimental parameters used for simulations in Fig. 9.2.1-9.3.4, which can be
achieved with current trapped-ion quantum simulation technology (Ref. [51, 52]). ηx =√

~(δk)2

2Mωx
, J =

∑
i 6=j Jij/N

2
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Figure 9.3.1: Jij in Hamiltonian 9.2.1 & 9.2.2 using parameters in Table 9.1. (a) Short
range interaction (b) Long range interaction.

The short time dynamics (a few 1/J) of all 〈σzi 〉 and 〈C〉 are shown in Fig. 9.3.2. In

the short-range interaction case, one sees that the spin excitation ,initially located at left

end of the chain, somewhat coherently travels to the other end and oscillates back and

forth with small dispersion. In contrast, the spin excitation diffuses to the rest of the chain

slowly in the long interaction case and somehow get locked before it reaches the middle

of the chain. (〈C〉 ≈ −0.4).

102



Evolution time (ms)

Io
n 

in
de

x

(a)

 

 

0 50 100

5

10

15
−1

−0.5

0

0.5

1

Evolution time (ms)

Io
n 

in
de

x

(b)

 

 

0 50 100

5

10

15
−1

−0.5

0

0.5

1

0 50 100
−1

−0.5

0

0.5

1

Evolution time t (ms)

〈C
(t

)〉

(c)

0 50 100
−1

−0.5

0

0.5

1

Evolution time t (ms)

〈C
(t

)〉

(d)

Figure 9.3.2: Short time dynamics of 〈σzi (t)〉/〈C(t)〉 for short range (a)/(c) and long range
(b)/(d) interaction.

To better present the long time dynamics, we performed a finite time average on all

observables

A(t) ≡ 1

t

ˆ t

0

〈A(τ)〉dτ

to remove fast temporal fluctuations on shorter time scale 2. From Fig. 9.3.3a, we find that

in short-range interaction case, σzi and C, as well spin correlations σzi σ
z
j , will quickly relax

2In certain system with large N , this time averaging procedure is not necessary, as 〈A(t)〉 converges to
A(t) after long enough time [197, 198]. In the example considered here, the number of particles is rather
small and the operators in interest do not converge well.
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to the stationary values at around T ∼ 10/J , and these values coincide (Fig. 9.3.3c) with

the “thermal” values 3 predicted by diagonal ensemble (DE). In the long-range interaction

case (Fig. 9.3.3b), all these operators first reach “prethermal” quasi-stationary values at

time scale T , and further relax to the stationary thermal values at much longer time scale

(104T ).
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Figure 9.3.3: (a)-(b): Full time dynamics of C, σzi and σzi σ
z
j for (a) short range and (b)

long range interaction. (c) The stationary value of σzi at t ≈ 10/J = 200ms matches well
with both DE and GGE prediction for short range interaction. (d) The prethermal value of
σzi does not match with either GGE or DE, but agrees with PDE (see main text).

3“Thermal” value here means exclusively the value predicted by diagonal ensemble. This should not be
confused with the thermal values predicted by Gibbs (canonical) ensemble in non-integrable system.
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Fig. 9.3.3d shows that the “prethermal” state features an interesting asymmetric spin

configuration, which suggests the use of our “order parameter” C, since the emergence

of prethermalization is manifested in a nonzero value of C at intermediate time scale

T . We find that the prethermalization only happens when the index α is smaller than

a critical value (αC ≈ 1.3 for N = 16). For larger system size (up to N = 1024), the

prethermalization-thermalization transition still occurs, but αC becomes smaller and the

transition becomes sharper, indicating the existence of a dynamical phase transition [212,

216–218]
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Thermalization Only

Figure 9.3.4: A dynamical “phase diagram” with regard to index α. The N = 16 case uses
the parameters in Table 9.1 (long range row) and N = 64, 256 cases use a scaled down
ωz ∝

√
lnN/N to maintain chain stability.
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9.4 Discussion

We’ll now give physical explanations to the above numerical results: The distinctive

dynamics of 〈σzi (t)〉 in Fig. 9.3.2 can be explained by examining the energy spectrum

of HXY in n = 1 subspace (shown in Fig. 9.4.1a). In the short-range interaction case,

the energy spectrum is close to linear. This is because HXY can be approximated by Hint

(Eq. 9.2.4), whee only nearest-neighbor Jij terms are kept. Hint is close to a “quantum

mirror” Hamiltonian [44, 219], resulting in a near dispersion-less spin wave propagation

until non-linearity sets in. The stationary values of σzi can also be well predicted by GGE

(based on conserved fermionic quasi-momentum in Hint), as shown in Fig. 9.3.3c. On the

other hand, the energy spectrum of long range interaction case is highly non-linear, so the

dynamics of spin excitation is highly dispersive.

The existence of prethermal stage in the time evolution, however, is much more non-

trivial. Naively, the spin flip-flop matrix Jij varies smoothly among sites for any α ∈

(0, 3), so the spin excitation should continuously diffuse from one end of the chain to the

whole chain, and is not expected to get trapped somewhere in the middle for a long time.

The two stage dynamics indicates that there are two different time scales weaved in the

Hamiltonian, which is not at all obvious by looking at Jij. Instead, since the time dynamics

of any physical observable is simply given by

〈A(t)〉 =
∑
m,n

ρmn(0)Anme
i(Em−En)t/~

, different time scales of dynamics can be unraveled through mapping of eigenenergy

differences {Em − En}, as done in Fig. 9.4.1. In the short-range interaction case (Fig.

9.4.1b), all {Em − En} are continuously distributed from J to 100J , so a single-stage
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relaxation is expected after T ∼ 10/J . In the long-range interaction case (Fig. 9.4.1c),

although most {Em −En} still fall into the range of 1− 100J , there is strikingly a separate

branch gapped at much lower rate (∼ 10−6J). This branch actually corresponds to near-

degenerate pairs ({E2k − E2k−1}) of eigenenergy (Fig. 9.4.1a) that make up the first half

energy spectrum, and the number of these pairs scale up with system size N .

This key feature in energy spectrum, is not merely caused by long range interaction.

If we put the ions into a ring trap to make the ions equally spaced, then even with same

long range interaction, there is no separate branch in {Em − En} (Fig. 9.4.1d), hence we

also find no prethermalization behavior in such case. As a result, we contribute the cause

of prethermalization here to be a combined effect of long range interaction and inhomoge-

neous lattice spacing (due to harmonic axial trapping potential).

107



5 10 15
−0.5

0

0.5

1

m

E
m

 (
K

H
z)

(a)

 

 
α=2.6
α=0.52

0 100 200

10
−5

10
0

m

|E
m

−
E

n|/J
0

(b)

0 100 200

10
−5

10
0

m

|E
m

−
E

n|/J
0

(c)

 

 

0 100 200

10
−5

10
0

m

|E
m

−
E

n|/J
0
(d)

Figure 9.4.1: (a) Energy spectrum in the n = 1 subspace for N = 16 spins (b-d) Map of
eigenenergy differences {Em − En} for N = 256 spins with (b) α = 2.4, (c) α = 0.74 and
(d) α = 0.74 but with homogenous ion chain on a ring.

From Fig. 9.3.3d, we see that the prethermal values cannot be described by GGE. This

is simply because HXY in long range interaction case cannot be well approximated by the

integrable Hamiltonian Hint. The prethermal values also differ from DE predictions (ther-

mal values), but we find that the system can be described by a partial diagonal ensemble
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(PDE), defined mathematically as

ρPDE =


ρmn(0)δmn |νm − νn| & 1/T

ρmn(0) |νm − νn| � 1/T

where T denotes the prethermalization time scale. The PDE correctly predicts prethermal

values of local observables, as shown in Fig. 9.3.3d.

We note that the thermal state described by either DE or GGE always has spatial in-

version (parity) symmetry, because the interaction pattern Jij shares such symmetry. The

reason why prethermal state can break this symmetry is because at intermediate time scale

T , one cannot distinguish the near-degenerate pairs of eigenstates in energy, so linear com-

binations within each pair are allowed. Since each pair consists an even and an odd parity

eigenstate, their linear combination can break the spatial inversion symmetry, leading to a

symmetry-breaking dynamical phase transition when α is tuned across the critical value.

Another interesting feature worth mentioning is that when α = 0, the uniform coupled

HXY can be analytically solved, with N − 1 exact degenerate eigenenergy. In this case, the

GGE/DE completely breaks down and only prethermalization stage exists. By calculating

the PDE, one finds the prethermal value of C to be 2
N
− 1.

The “phase diagram” (Fig. 9.3.4b) has the hint of two non-analytic points serving as

critical values of two speculated dynamical phase transitions, one is where C becomes

non-zero, representing the emergence of prethermalization, and the other is where C

approaches 2
N
− 1 (α → 0), representing the disappearance of thermalization. We are

however, not clear, on how the phase diagram will look like in the thermodynamic limit.

Apart from the absence of analytic solution, one also does not have a well-defined ther-
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modynamic limit for an inhomogeneous system, as if part of the ion chain has infinitely

small density, the phonon modes will have infinitely large density near ωx, making the

simulation of HXY essentially impossible [190].

Finally, we briefly discuss the case where the initial non-equilibrium state has more

than one spin excitations: the energy levels in other subspaces are likely to connect the

slow time scale branch in Fig. 9.4.1c to fast time scale bulk. Closing the gap between these

two energy scales will smear out the prethermalization stage and one will only see a single

relaxation stage to thermal state, possibly over a longer time scale (confirmed by additional

numerical simulations). But once moved out of the single spin excitation subspace, it

would be more interesting to consider quantum quenches on the transverse magnetic field,

or even the interaction pattern. Recently, researchers have found evidence of dynamical

phase transition in both nearest neighbor [212] and uniform [220] coupled Ising model.

We believe that the research on dynamical properties of system with continuously tunable

range of interaction, together with its intimate experimental relevance, is far from an end.
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Chapter 10

Outlook

In this thesis, we have discussed a wide range of topics on the implementation of quan-

tum computation and quantum simulation, based on either atomic or solid state systems.

There are many future directions related to these topics, and we’ll mention a few of them

in this Chapter below:

Scalable quantum computation with atomic and solid state system

Over the years researchers have achieved single-qubit and two-qubit quantum gates in

a variety of physical systems [2], and the real challenge now is how to scale these systems

up to perform powerful quantum algorithms. Architectures of scalable quantum processors

based on the characteristics of specific system have also been proposed [221–223]. In most

of these architectures, optimal quantum control technique and hybrid quantum system are

involved, thus we anticipate a lot of future research along these two directions.

Optimal quantum control technique aims to address limited degrees of freedom or

limited precision in experimental control of quantum systems. The basic idea is to design

time-dependent or space-dependent optical/electrical control pulses and optimize the tar-
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get goal, such as decoherence rate of physical qubit, fidelity of quantum gate, speed of

quantum state transfer, or required total laser power. In the past, optimal control tech-

niques are mainly focused on single or two qubit operations, such as spin echo proto-

cols [61] and ultrafast gate [42]. The generalization to multi-qubit is thus essential for

a large scale quantum computer, but may involve a much more complicated study that is

still lacking.

Hybrid quantum system, on the other hand, allows one to combine benefits of differ-

ent systems and interconnect them to make the quantum processor scalable. For example,

one successful hybrid system, known as circuit QED, involves the combination of cavity

and superconducting qubits, and has been already used widely in various quantum tech-

nologies [224,225]. Generally speaking, photons (or microwave photons) can serve as an

efficient bus for interconnecting same type of physical qubits. But if one moves one step

further, photons can also be used to mediate interactions between different types of matter

qubits, allowing one to truly take advantage of a variety of quantum systems [122]. Such

more complex hybrid system is still in an early developing stage and worth exploring in

both theory and experiment.

Quantum simulation of exotic many-body system

Impressively high level of control, engineering and measurement has been achieved

on atomic and optical system, including trapped ions, cold atoms in optical lattice, and

photons in high-finesse cavity [15, 23, 29]. These well-controlled quantum many-body

system have become powerful simulators of condensed matter and high energy models

recently [52,226]. Two particularly interesting systems, related to the topics in this thesis,

and can be possibly simulated and explored using atomic systems are:

112



Spin liquid and topological state of matter: Caused by high level of magnetic frus-

tration, spin liquid is one of the most puzzling states of matter. It is also found that certain

kinds of spin liquid have topological excitations that may be used to achieve fault-tolerant

quantum computation. Some of these spin liquid states and topological excitations may

be easier to find in atomic systems than in condensed matter materials, due to the flexibil-

ity of engineering the many-body interactions with AMO techniques. One example is the

experimental realization of tunable spin-orbital coupling with cold atoms [227]. Synthe-

sizing artificial quantum materials using atomic systems to bring interesting applications

tends to be a very promising direction in the future.

High dimensional system: Spatially periodic structure is ubiquitous in both nature

and lab. In condensed matter system, they’re known as crystals. To simulate their prop-

erties with atomic physics, researchers have created artificial crystals either by optical or

electrical lattice potential. However, a time periodic structure is much less explored, espe-

cially when studied together with spatial degrees of freedom. Examples such as “Space-

time crystal” [47] and “Floquet topological insulator” [228] are recently proposed. These

high dimensional systems may open up brand new applications as well as enhancing our

understanding of space-time analogy.

Non-equilibrium dynamics of open and isolated quantum system

Our knowledge of condensed matter system is largely at low energy and equilibrium.

AMO systems, on the other hand, are often driven far out of equilibrium and even in a

dissipative way. The non-equilibrium dynamics of a quantum many-body system is usually

intractable due to exponential number of states involved. Nevertheless, AMO systems can

be used to probe them with amazingly high spatial and time accuracy. Important future
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directions include:

Dynamical phase transition in isolated system: The unitary quantum dynamics seem

to eliminate any thermalization behavior of isolated system. However, local observables

can have distinctive dynamics based on many factors, including typicality of initial state,

integrability of Hamiltonian, etc. A dynamical phase transition will appear if the system

shows distinctive dynamical behaviors at different time or under different control parame-

ters. A better theoretical understanding, including a complete definition and characteriza-

tion, of dynamical phase transition, is highly desired [212]. It is also very likely to probe

dynamical phase transition in experiments by exploiting the strength in controlling and

measuring atomic systems.

Dissipation in open many-body system: Dissipative dynamics are well studied in

single or non-interacting systems. Under strong interaction, however, little is known due

to lack of efficient theoretical tools. Furthermore, understanding dissipation is vital for

building a quantum computer with large number of interacting qubits, where dissipative

process through environment is almost inevitable. Proper engineering of dissipative dy-

namics, on the other hand, may even offer us novel approaches to generate entanglement

and prevent decoherence for many-body system [217,229].
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Appendix A

Analytical Channel Fidelity

We now derive the analytical channel fidelity associated with the paired FFST protocol

described in chapter 4. To set up the analytic framework, we begin by calculating the

fidelity of a simplified protocol, termed the “double-swap”. In this double-swap, we con-

sider the left register (indexed 0) undergoing two successive eigenmode-mediated swap

gates. Ideally, this simplified protocol swaps the quantum information twice, thereby dis-

entangling it from the intermediate chain and also returning it to its initial position at

the left register. We then consider a second protocol, termed the “single-swap”, in which

the quantum information undergoes only one eigenmode-mediated swap-gate. Analyzing

this protocol will illustrate the effect of the residual entanglement on the channel fidelity.

Finally, we turn to the paired-protocol and demonstrate that the proposed two-qubit en-

coding can eliminate this entanglement, thereby enabling quantum state transfer.
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Double-swap

The average channel fidelity for a quantum dynamical operation is given by

F =
1

2
+

1

12

∑
i=x,y,z

Tr
[
σiE(σi)

]
,

where E characterizes the quantum channel [111]. We focus on the Hamiltonian intro-

duced in chapter 4.2 (Eq. 4.3.1):

H = g(σ+
0 σ
−
1 + σ+

Nσ
−
N+1 + h.c.) +

N−1∑
i=1

κ(σ+
i σ
−
i+1 + h.c.)

For the double-swap (DS), we let U represent evolution under H for a time, t = 2τ ,

equivalent to twice the state-transfer time. Let us suppose that the left register is initially

disentangled from the remainder of the chain, which is in a thermal mixed state ρDSch ; the

average double-swap channel fidelity is then given by,

FDS =
1

2
+

1

12

∑
i=x,y,z

Tr
[
σi0U(σi0 ⊗ ρDSch )U †

]
=

1

2
+

1

12

∑
i=x,y,z

Tr
[
U †σi0U(σi0 ⊗ ρDSch )

]
=

1

2
+

1

12

∑
i=x,y,z

Tr
[
σi0(t)(σi0 ⊗ ρDSch )

]
,

where σi0(t) is the Heisenberg evolution of the left register. By fermionization, this evo-

lution can be re-expressed with respect to elements of the matrix M = e−iKt where K

is the (N + 2) × (N + 2) coupling matrix of the full Hamiltonian (including registers),

H =
∑N+1

i,j=0 Kijc
†
icj. Evolution of the Fermi operators is governed by ˙cm = −i

∑
nKmncn,
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implying that cm(t) =
∑

nMmncn and further, that

σ+
0 (t) = U †σ+

0 U = U †c†0U

=
∑
i

M∗
0ic
†
i =

∑
i

M∗
0iσ

+
i

∏
l<i

eiπσ
+
l σ
−
l ,

σz0(t) = 2c†0(t)c0(t)− 1 = −1 + 2
∑
ij

M∗
0iM0jc

†
icj

= −1 + 2
∑
ij

M∗
0iM0jσ

+
i σ
−
j

∏
i<l<j

eiπσ
+
l σ
−
l ,

where we have used the fact that c†0 carries no Wigner string. To evaluate FDS, we note that

σ± = (σx ± iσy)/2, and hence, Tr [σx0 (t)(σx0 ⊗ ρch)] = Tr
[
(σ+

0 (t) + σ−0 (t))((σ+
0 + σ−0 )⊗ ρch)

]
.

Contributions are only obtained from the cross-terms, σ+
0 (t)(σ−0 ⊗ρch) and σ−0 (t)(σ+

0 ⊗ρch),

since the number of excitations in i = 0 must be preserved to generate a non-zero trace.

For example,

Tr
[
σ+

0 (t)(σ−0 ⊗ ρch)
]

= Tr

[
(
∑
i

M∗
0iσ

+
i

∏
l<i

eiπσ
+
l σ
−
l )(σ−0 ⊗ ρch)

]
= Tr

[
M∗

00σ
+
0 σ
−
0 ⊗ ρch

]
= M∗

00.
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An analogous calculation yields Tr
[
σ−0 (t)(σ+

0 ⊗ ρch)
]

= M00. Finally, for the σz terms, one

finds,

Tr [σz0(t)(σz0 ⊗ ρch)] = Tr [−σz0 ⊗ ρch]

+ Tr

[
(2
∑
ij

M∗
0iM0jσ

+
i σ
−
j

∏
i<l<j

eiπσ
+
l σ
−
l )(σz0 ⊗ ρch)

]
= Tr

[
2M∗

00M00σ
+
0 σ
−
0 σ

z
0 ⊗ ρch

]
= 2|M00|2,

where we’ve noted that i = j to ensure that the number of excitations in each mode is

conserved. Moreover, we must also have that i = j = 0, since Tr[σz0] = 0. Combining the

above terms yields the double-swap channel fidelity as,

FDS =
1

2
+

1

6
(M00 +M∗

00 + |M00|2).

Interestingly, we need to compute only a single matrix element to obtain the relevant

channel fidelity.

Single-swap

We now consider the single-swap (SS) channel fidelity associated with the transfer of

quantum information from the right register (indexed N + 1) to the left register (indexed

0),

FSS =
1

2
+

1

12

∑
i=x,y,z

Tr
[
σi0(t)(ρSSch ⊗ σiN+1)

]
,

where ρSSch now characterizes the initial state for spins {0, · · · , N}. Note that FSS will

be independent of the direction of state transfer, and we have chosen right to left for
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notational simplicity. One finds,

σx0 (t) = c†0(t) + c0(t) =
∑
i

M∗
0ic
†
i +M0ici

=
∑
i

[{Re(M0i)σ
x
i + Im(M0i)σ

y
i }

i−1∏
l=0

(−σzl )].

In analogy to the DS case, i 6= N + 1 terms do not contribute to the trace,

Tr[σx0 (t)(ρch ⊗ σxN+1)] = 2Re(M0,N+1)Tr[ρSSch
N∏
l=0

(−σzl )].

The σy term yields an identical contribution while the σz term yields, Tr[σz0(t)(ρSSch ⊗

σzN+1)] = 2|M0,N+1|2. Therefore,

FSS =
1

2
+

1

6
[2Re(M0,N+1)Tr[ρSSch

N∏
l=0

(−σzl )] + |M0,N+1|2).

For perfect transfer with FSS = 1, we would require both |M0,N+1| = 1 and |Tr[ρSSch
∏N

l=0(−σzl )]| =

1. In the case of an unpolarized chain, the second condition is unsatisfied since the expec-

tation value of the chain parity operator P =
∏N

l=0(−σzl ) is zero. The dependence of the

single-swap fidelity on the intermediate chain’s parity presents an obvious problem for

QST.

Paired-Protocol

To overcome this problem, we now turn to the two-qubit encoding proposed in chapter

4, i.e. | ↓〉 = | ↓〉a| ↓〉b, | ↑〉 = | ↑〉a| ↑〉b. Let us index the full chain as {0a, 0b, 1, · · · , N, (N +
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1)b, (N+1)a} and define Ub as the transfer process through the sub-chain {0b, 1, · · · , N, (N+

1)b}, while Ua represents the transfer process through the sub-chain {0a, 1, · · · , N, (N +

1)a}. To model a realistic experimental situation, we will assume that the quantum in-

formation is originally encoded in qubit 0a, while qubit 0b is prepared in state | ↑〉. A

C0aNOT0b gate is then applied to encode the information in the logical 0-register. After the

state transfer, we apply C(N+1)bNOT(N+1)a to decode our quantum information into qubit

(N + 1)b. The unitary characterizing the encoding, state transfer, and decoding is then

U =C(N+1)bNOT(N+1)aUbUaC0aNOT0b, and the average channel fidelity is given by

Fenc =
1

2
+

1

12

∑
i=x,y,z

Tr
[
σiN+1(t)(σi0 ⊗ ρPPch ⊗ ρN+1)

]
.

Here, ρPPch is the mixed initial state of the intermediate chain ({1, · · · , N}), while ρN+1 is

the mixed state of the encoded (N+1) register within the logical subspace. Working within

this logical subspace is crucial to ensure that CP0a,N+1aCP0b,N+1b = I. Inspection reveals

that the paired-protocol includes two contributions from the chain parity operator, and

since P 2 = I, we have effectively disentangled from the intermediate chain. Since a consis-

tent ordering of the spin-chain is required to implement the Jordan-Wigner transformation,

the Hamiltonian, HUa governing the Ua transfer evolution will contain uncanceled Wigner

strings. For example, the piece of HUa containing the coupling between the registers and

the ends of the spin-chain takes the form, HUa = g(c†0ae
iπn0bc1 + c†Ne

iπn(N+1)bc(N+1)a + h.c.).

While one must take care to correctly evaluate such strings, an otherwise straightforward
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computation yields,

Fenc =
1

6
(2|M0,N+1|2Re

[
M2

0,N+1 −M0,0MN+1,N+1

]
+ |M0,N+1|2 + |

N∑
i=1

MN+1,iMi,0|2) +
1

2
.

Again, one only needs to compute certain matrix elements of M .

Before concluding this appendix, we point out that one can alternatively decode the quan-

tum information into qubit (N + 1)a via C(N+1)aNOT(N+1)b. In this case, the expression

for Fenc above is identical, except the term |
∑N

i=1MN+1,iMi,0|2 is not present. Thus, the

decoding into qubit (N + 1)b described above gives a slightly higher average fidelity, which

is used in the numerical simulations in chapter 4.

121



Appendix B

Hamiltonian in ring ion trap

We provide some details about the ring ion trap used in chapter 7 and 8 in this ap-

pendix. The ring-shaped trapping potential can be created by a quadrupole storage ring

trap [230,231], a linear rf multipole trap [188,232] or other methods.

Quadrupole ring trap. A rf quadrupole ring trap can be formed by many segments of

quadrupole electrodes [230] or four ring electrodes [231]. The harmonic pseudo-potential

for a single ion is Vext(r, z) = 1
2
Mω2

r(r−rmin)2 + 1
2
Mω2

zz
2 , where r =

√
x2 + y2 is the radial

position of the ion, rmin is the radius of the ring trap, ωr and ωz are trapping frequencies

in the radial and axial (z) directions, respectively. If the inner radius of the trap (r0, which

is half of the separation between opposite electrodes [230]) is much smaller than rmin,

the trapping frequencies are approximately ωr = ωz = qVrf/(
√

2MΩr2
0). Here Vrf is the

amplitude of the rf voltage applied to adjacent electrodes, Ω/2π is frequency of the rf

voltage. In Fig. 1c, ωr = 2π × 5 MHz and rmin = 20µm for the quadrupole ring trap.

Linear rf multiple trap. The pseudo-potential for a single ion in a linear rf multipole

trap is cylindrically symmetric [188,232]:

Vext(r, z) =
k2q2V 2

rf

16MΩ2r2
0

(
r

r0

)2k−2 +
βqVdc
z2

0

(z2 − r2

2
),
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where 2k is the number of poles of the trap, β is the geometrical factor of the trap, Vdc is

the static voltage applied to the outside sets of segmented electrodes, and 2z0 is the length

of the center part of the segmented trap. The trapping frequency in the axial direction

is ωz =
√

2βqVdc/(Mz2
0) . The trapping potential has its minimum value in the radial

direction at

rmin = r0

(
2MΩωzr

2
0

qVrfk
√
k − 1

)1/(k−2)

.

The trapping frequency in the radial direction is ωr =
√
k − 2ωz near rmin. Fig. 1c shows an

example of the effective trapping potential for a 9Be+ ion in the radial plane of an octupole

trap (2k = 8). The parameters used for the calculation of Fig. 7.1.1c are r0 = 200µm, Vrf

= 200 V, ωz/2π = 0.5 MHz, and Ω/2π = 94 MHz.

Many-body Hamiltonian. As we are interested in the rotation of ions in a ring at very

low temperatures, our Hamiltonian only involves the angular coordinate θj (j = 1, · · · , N)

of trapped ions:

H =
N∑
j=1

(pj − qAθ)2

2M
+
∑
j<l

q2

4πε0d| sin(
θj−θl

2
)|
,

where pj = −i2~
d

∂
∂θj

is the canonical momentum operator, Aθ = Bd/4 = φ/(πd) is the

vector potential, and ε0 is the electric constant of vacuum. φ = πd2B/4 is the magnetic

flux inside the ion ring. This Hamiltonian can be further expanded around equilibrium

positions of ions to give phonon mode frequencies.
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Tartakovskii, “Suppression of nuclear spin diffusion at a GaAs/Al {x}Ga {1x}As in-
terface measured with a single quantum-dot nanoprobe,” Physical Review B, vol. 79,
p. 081303, Feb. 2009.

[70] M. N. Makhonin, A. I. Tartakovskii, A. B. Van’kov, I. Drouzas, T. Wright, J. Skiba-
Szymanska, A. Russell, V. I. Fal’ko, M. S. Skolnick, H.-Y. Liu, and M. Hopkinson,
“Long nuclear spin polarization decay times controlled by optical pumping in indi-
vidual quantum dots,” Physical Review B, vol. 77, p. 125307, Mar. 2008.

[71] W. M. Witzel and S. Das Sarma, “Wavefunction considerations for the central spin
decoherence problem in a nuclear spin bath,” Physical Review B, vol. 77, p. 165319,
Apr. 2008.

[72] P. Maletinsky, M. Kroner, and A. Imamoglu, “Breakdown of the nuclear-spin-
temperature approach in quantum-dot demagnetization experiments,” Nature
Physics, vol. 5, pp. 407–411, June 2009.

[73] I. J. Lowe and S. Gade, “Density-matrix derivation of the spin-diffusion equation,”
Physical Review, vol. 156, pp. 817–825, Apr. 1967.

[74] C. Deng and X. Hu, “Nuclear spin diffusion in quantum dots: Effects of inhomoge-
neous hyperfine interaction,” Physical Review B, vol. 72, p. 165333, Oct. 2005.

[75] D. Klauser, W. A. Coish, and D. Loss, “Nuclear spin dynamics and zeno effect in
quantum dots and defect centers,” Physical Review B, vol. 78, p. 205301, Nov. 2008.

[76] J. Schliemann, A. V. Khaetskii, and D. Loss, “Spin decay and quantum parallelism,”
Physical Review B, vol. 66, p. 245303, Dec. 2002.

[77] R. I. Dzhioev and V. L. Korenev, “Stabilization of the electron-nuclear spin orienta-
tion in quantum dots by the nuclear quadrupole interaction,” Physical Review Letters,
vol. 99, p. 037401, July 2007.

[78] H. O. H. Churchill, A. J. Bestwick, J. W. Harlow, F. Kuemmeth, D. Marcos, C. H.
Stwertka, S. K. Watson, and C. M. Marcus, “Electron–nuclear interaction in 13C
nanotube double quantum dots,” Nature Physics, vol. 5, pp. 321–326, May 2009.

[79] T. Belhadj, T. Kuroda, C.-M. Simon, T. Amand, T. Mano, K. Sakoda, N. Koguchi,
X. Marie, and B. Urbaszek, “Optically monitored nuclear spin dynamics in individual
GaAs quantum dots grown by droplet epitaxy,” Physical Review B, vol. 78, p. 205325,
Nov. 2008.

130



[80] C.-W. Huang and X. Hu, “Theoretical study of nuclear spin polarization and depo-
larization in self-assembled quantum dots,” Physical Review B, vol. 81, p. 205304,
May 2010.

[81] R. Brunner, Y.-S. Shin, T. Obata, M. Pioro-Ladrière, T. Kubo, K. Yoshida,
T. Taniyama, Y. Tokura, and S. Tarucha, “Two-qubit gate of combined single-spin
rotation and interdot spin exchange in a double quantum dot,” Physical Review Let-
ters, vol. 107, p. 146801, Sept. 2011.

[82] D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a
single quantum dot spin using ultrafast optical pulses,” Nature, vol. 456, pp. 218–
221, Nov. 2008.

[83] P. Berman, Principles of laser spectroscopy and quantum optics. Princeton N.J.:
Princeton University Press, 2011.

[84] A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent
electronic transfer in quantum dot systems using adiabatic passage,” Physical Review
B, vol. 70, p. 235317, Dec. 2004.

[85] B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entan-
glement between a single trapped atom and a single photon,” Nature, vol. 428,
pp. 153–157, Mar. 2004.

[86] P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and
C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic
ions,” Nature Physics, vol. 3, pp. 538–541, June 2007.

[87] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S.
Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement
between an optical photon and a solid-state spin qubit,” Nature, vol. 466, no. 7307,
pp. 730–734, 2010.

[88] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap
quantum computer,” Nature, vol. 417, pp. 709–711, June 2002.

[89] S. Bose, “Quantum communication through an unmodulated spin chain,” Physical
Review Letters, vol. 91, no. 20, p. 207901, 2003.

[90] D. Petrosyan, G. M. Nikolopoulos, and P. Lambropoulos, “State transfer in static
and dynamic spin chains with disorder,” Physical Review A, vol. 81, p. 042307, Apr.
2010.

131



[91] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, “Perfect state transfer in quan-
tum spin networks,” Physical Review Letters, vol. 92, no. 18, p. 187902, 2004.

[92] D. Burgarth, V. Giovannetti, and S. Bose, “Optimal quantum-chain communication
by end gates,” Physical Review A, vol. 75, p. 062327, June 2007.

[93] M.-H. Yung and S. Bose, “Perfect state transfer, effective gates, and entangle-
ment generation in engineered bosonic and fermionic networks,” Physical Review
A, vol. 71, p. 032310, Mar. 2005.

[94] A. Kay, “Unifying quantum state transfer and state amplification,” Physical Review
Letters, vol. 98, p. 010501, Jan. 2007.

[95] S. R. Clark, C. M. Alves, and D. Jaksch, “Efficient generation of graph states for
quantum computation,” New Journal of Physics, vol. 7, p. 124, May 2005.

[96] L. Campos Venuti, S. M. Giampaolo, F. Illuminati, and P. Zanardi, “Long-distance
entanglement and quantum teleportation in XX spin chains,” Physical Review A,
vol. 76, no. 5, p. 052328, 2007.

[97] G. Gualdi, V. Kostak, I. Marzoli, and P. Tombesi, “Perfect state transfer in long-range
interacting spin chains,” Physical Review A, vol. 78, p. 022325, Aug. 2008.

[98] M. Paternostro, G. M. Palma, M. S. Kim, and G. Falci, “Quantum-state transfer in
imperfect artificial spin networks,” Physical Review A, vol. 71, p. 042311, Apr. 2005.

[99] D. I. Tsomokos, M. J. Hartmann, S. F. Huelga, and M. B. Plenio, “Entanglement
dynamics in chains of qubits with noise and disorder,” New Journal of Physics, vol. 9,
p. 79, Mar. 2007.

[100] W. Zurek, U. Dorner, and P. Zoller, “Dynamics of a quantum phase transition,” Phys-
ical Review Letters, vol. 95, Sept. 2005.

[101] L. Banchi, T. Apollaro, A. Cuccoli, R. Vaia, and P. Verrucchi, “Optimal dynamics
for quantum-state and entanglement transfer through homogeneous quantum sys-
tems,” Physical Review A, vol. 82, Nov. 2010.

[102] J. Gong and P. Brumer, “Controlled quantum-state transfer in a spin chain,” Physical
Review A, vol. 75, p. 032331, Mar. 2007.

[103] N. Yao, L. Jiang, A. Gorshkov, P. Maurer, G. Giedke, J. Cirac, and M. Lukin, “Scalable
architecture for a room temperature solid-state quantum information processor,”
Nature Communications, vol. 3, p. 800, Apr. 2012.

132



[104] P. Cappellaro, C. Ramanathan, and D. G. Cory, “Simulations of information trans-
port in spin chains,” Physical Review Letters, vol. 99, p. 250506, Dec. 2007.

[105] J. Zhang, M. Ditty, D. Burgarth, C. A. Ryan, C. M. Chandrashekar, M. Laforest,
O. Moussa, J. Baugh, and R. Laflamme, “Quantum data bus in dipolar coupled
nuclear spin qubits,” Physical Review A, vol. 80, p. 012316, July 2009.

[106] J. Fitzsimons and J. Twamley, “Globally controlled quantum wires for perfect qubit
transport, mirroring, and computing,” Physical Review Letters, vol. 97, p. 090502,
Sept. 2006.

[107] M. Stoneham, “Is a room-temperature, solid-state quantum computer mere fan-
tasy?,” Physics, vol. 2, p. 34, Apr. 2009.

[108] E. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferromagnetic
chain,” Annals of Physics, vol. 16, no. 3, pp. 407–466, 1961.

[109] A. V. Gorshkov, J. Otterbach, E. Demler, M. Fleischhauer, and M. D. Lukin, “Photonic
phase gate via an exchange of fermionic spin waves in a spin chain,” Physical Review
Letters, vol. 105, p. 060502, Aug. 2010.

[110] M. Markiewicz and M. Wieśniak, “Perfect state transfer without state initialization
and remote collaboration,” Physical Review A, vol. 79, no. 5, p. 054304, 2009.

[111] Michael A Nielsen, “A simple formula for the average gate fidelity of a quantum
dynamical operation,” Physics Letters A, vol. 303, no. 4, pp. 249–252, 2002.

[112] E. H. Lieb and D. W. Robinson, “The finite group velocity of quantum spin systems,”
Communications in Mathematical Physics, vol. 28, pp. 251–257, Sept. 1972.

[113] L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, and P. Verrucchi, “Long quantum
channels for high-quality entanglement transfer,” New Journal of Physics, vol. 13,
p. 123006, Dec. 2011.

[114] A. Bayat, L. Banchi, S. Bose, and P. Verrucchi, “Initializing an unmodulated spin
chain to operate as a high-quality quantum data bus,” Physical Review A, vol. 83,
no. 6, p. 062328, 2011.
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