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ABSTRACT

Seamless Integration of Renewable Generation and Plug-in Electric Vehicles into the
Electrical Grid

by
Soumya Kundu

Chair: Professor Ian A. Hiskens

An imminent release of plug-in electric vehicles en masse will add substantial load to
electrical power grids that are already operating near limits. Coordinated control of vehicle
charging, however, can eliminate the need for expensive overhauls of grid infrastructure.
Furthermore, the growing penetration of renewable energy sources provides an excellent
opportunity to meet the increased electricity demand, but the challenge remains to tackle
the variability and intermittency associated with renewable energy. Our research focuses on
identifying and analyzing key issues regarding interactions between renewable generation,
vehicle charging, and the power grid. In order to address these issues, we are designing
control schemes that ensure seamless integration of newer forms of generation and load,
while achieving satisfactory grid-level performance in areas such as loss minimization,
voltage regulation, generation balancing and valley filling.

Feedback control oriented analytical models have been developed to regulate aggre-
gate demand by certain time deferrable loads (thermostatic loads, plug-in electric vehicle
chargers). It is shown that, via a hysteresis-based pulse-width modulated type control, a
linearized system response model can be established from the evolution of probability dis-
tribution of states (thermostat temperature, battery state-of-charge) of loads. It is shown
that grid-level objectives, such as generation tracking and valley filling, can be satisfied
by using only the aggregate power as measurement. A framework is presented to study
the impact of synchronization in plug-in electric vehicle chargers on the voltage resiliency
of electrical grid. It is shown that a fault-induced synchronized tripping of chargers can
cause critical over-voltage situations in a distribution feeder. A non-linear state-space
model is developed that can truly capture the complex, easily synchronizable, dynamics
of hysteresis-based loads. It is reported that, under certain control input signals, such load
aggregation can display instability in the form of period-adding cascade. A control method

xiv



is proposed that optimally allocates photo-voltaic inverter output in a de-centralized way to
minimize line losses and voltage deviations. While optimality of this de-centralized con-
trol law is proved under certain assumptions, its validity in a more practical scenario is also
discussed and possible modifications are suggested.
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CHAPTER I

Introduction

“With its array of gadgets and machines, all powered by energies that are destructive
of land or air or water, and connected to work, market, school, recreation, etc., by gasoline
engines, the modern home is a veritable factory of waste and destruction. ”-Wendell Berry1

Harsh words, no doubt! But there is definite truth in this. Residential sector consumes
about 36% of global energy [3] and there is every indication that the residential energy
consumption is only going to increase. Different surveys have forecasted that electricity
demand growth in USA will be led by commercial and residential sectors [4, 5]. In USA,
the total energy demand growth till 2035 has been estimated at 30% per annum, led by
commercial (42%) and residential (24%) sectors [4]. Add to this the new type of load of
plug-in electric vehicles (PEVs) are going to put on electrical grid, once they hit the market
in large scale, and the future of power system . Today’s electrical grid, with its largely
ageing infrastructure, is going to be under extreme stress possibly leading to failure unless
intelligent measures are taken to better manage an increasing demand. This rising demand
is now coupled with alarmingly fast depleting fossil fuel (natural gas, coal, petroleum, etc.)
reserves. Efforts are in place to increase energy production from renewable sources (hydro,
biomass, wind, geothermal, solar, etc.). While renewables today constitute only 10% (hy-
dro 6%, non-hydro 4%) of total electricity generation in USA, non-hydro renewables are
expected to grow fast with wind- and bio-energy leading the way with 3% per annum rate
till 2035 [6], [1]. Fig. 1.1 shows estimated growths of non-hydro renewable energy sources
in USA. While this is indeed an encouraging scenario, the growth of renewables worldwide
is faced with a variety of challenges, such as financial (high capital cost), policy-related
(lack of long-term support towards new investments), and technological [7].

Within the scope of this thesis work, possible solutions will be proposed to overcome
some of these technological challenges. Renewable generations are characteristically in-
termittent [8] and non-dispatchable [9], and cannot, in general, be relied upon for smooth
and regulated supply at all times. For safe and reliable operation of the power grid, the
generation has to meet the demand at all times. The current practice is largely to schedule
conventional generation units (coal, hydro, natural gas) based on electrical load forecasts,

1Wendell Berry is an American writer, farmer and academic.

1



Figure 1.1: Projection of non-hydro renewable power generation in USA [1].

over both short term (tens of minutes) as well as long terms (days) [10]. Any adjust-
ments in generation due to forecasting error are done real-time, e.g. via storage units (over-
generation) or spinning and non-spinning reserves (under-generation). At low penetration
levels, the daily variations in renewable generations can be dealt with similar to the load
variations, by using available weather forecasts to dispatch existing conventional genera-
tion plants [7]. But clearly as more number of renewable sources penetrate the grid, the
technique of forecast based generation scheduling would become increasingly difficult and
unsustainable. The fluctuations of renewable generation are usually much faster than the
ramp rates of conventional generators. A study by California Independent System Operator
(CAISO) estimates maximum ramping requirement due to wind variability at 190 MW/min
while 84% of its generation capability has a ramp rate less than 10 MW/min [11]. At large
penetration levels, the fluctuations in renewable generation would become nearly impos-
sible to be mitigated through scheduling of conventional generators. The variability and
uncertainty associated with forecast would necessitate building of large amount of storage
and spinning reserves. To be able to act as reserves, any additional back-up generation unit
is forced to operate at a low fraction of its full capacity most of the times. Apart from
the capital cost, continuous running of these reserves will mean less-than-efficient energy
generation as well as higher carbon emission [12].

This calls for a definite paradigm shift to deal with increased penetration of renewable
energy into the electrical grid. Primary objective of this thesis work is to address this chang-
ing grid scenario and explore ways to help in smooth integration of renewable energy into
existing power system, at the same time accommodating an increasing electricity demand
through load-control measures, without calling for an infrastructural overhaul. Quoting
from [7],

“Small-scale wind and solar photovoltaic systems create the potential for adding thou-
sands of generating sources to the nation’s distribution system. This would change fun-
damental engineering calculations about maintaining the delicate balance between supply
and demand that must be constantly maintained in order to ensure the reliability and in-
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tegrity of the electric system. This requires special steps to manage the power swings and
new peaks, and requires additional balancing units.”

1.1 Demand-side Control

Control of electrical loads actually presents a better alternative than building additional
generation reserves to mitigate variability in renewable energy [12–14]. Load control is
a faster and more efficient way of dealing with fluctuations in renewable generation, in
addition to relieving the grid of financial burden of setting up new reserve capacity. Re-
newable generation units (e.g. photovoltaic cells) are spatially distributed across the grid
thereby further encouraging electrical loads participation in balancing supply and demand.
Probably the most important characteristic sought in electrical loads in consideration for
generation-balancing support is time-flexibility [12]. Domestic appliances that satisfy this
requirement are air-conditioners, space and water heaters, etc., exact operations of which
can be altered without causing any perceptible change (or degradation) in their end-use
performance. In a 2005 survey [15] in USA, air-conditioning loads contributed to 8%,
while space and water heating contributed to 61% of total residential energy use. Heating
and cooling type loads are only going to increase over the next few decades as shown in
Fig. 1.2.

Figure 1.2: Projection of change (billion killowatthours) in residential electricity use in the
period 2009-2035 [2].

In the scope of this thesis work, the electrical loads considered for demand-side control
will be broadly referred to as thermostatically-controlled-loads (TCLs). Operation of such
loads are governed by a thermostat which maintains its temperature within a hysteresis
deadband about a set-point temperature. Air-conditioners are example of cooling type TCL,
whose temperature decreases when they draw power. Because these TCL loads are on/off
loads and not subject to the ramping limits of conventional thermal generation, they can
be fully deployed on the time scale of the latency of the communication system used to

3



access them, e.g. ∼0.3 minutes [14, 16–19]. However one primary challenge in designing
demand side control techniques is that because an accurate model needs to know the states
of operation of the electrical loads, it can run into the danger of being termed as invasive of
customer privacy. Already there have been concerns raised on the intrusive nature of a two-
way communication between the load co-ordinator and the electricity customer [20–23].

Research into the behavior of TCLs began with the work of [24] and [25], who pro-
posed models to capture the hybrid dynamics of each thermostat in the population. The
aggregate dynamic response of such loads was investigated by [26], who derived a coupled
ordinary and partial differential equation (Fokker-Planck equation) model. The model was
derived by first assuming a homogeneous group of thermostats (all thermostats having the
same parameters), and then extended using perturbation analysis to obtain the model for
a non-homogeneous group of thermostats. In [27], a discrete-time model of the dynamics
of the temperatures of individual thermostats was derived, assuming no external random
influence. That work was later extended by [28] to introduce random influences and het-
erogeneity. Although the traditional focus has been on direct load control methods that
directly interrupt power to all loads, recent work in [29] proposed hysteresis-based control
by manipulating the thermostat setpoint of all loads in the population with a common sig-
nal. While it is difficult to keep track of the temperature and power demands of individual
loads in the population, the probability of each load being in a given state (ON - drawing
power or OFF - not drawing any power) can be estimated rather accurately. System identi-
fication techniques were used in [29] to obtain an aggregate linear TCL model, which was
then employed in a minimum variance control law to demonstrate the load following capa-
bility of a population of TCLs. In a related work [30], the authors showed that by allowing
some “smartness” into battery chargers (equally applicable to other ON/OFF type of loads)
a stochastic control strategy can be used to perform frequency regulations in a robust and
decentralized manner.

However still there are open challenges in the context of load control. Designing a
good demand control requires an accurate model of the demand response. While an accu-
rate response model can be derived using coupled ordinary and partial differentiated equa-
tions [26], it is not useful from a control designer’s perspective. In more recent times, a
lot of important studies have been done on building a control-oriented model of hysteresis-
based loads [29,31–34]. But due to system complexity, either a system identification based
approach has been undertaken, or simplifying assumptions are made that lead to an approx-
imate analytical model which is then coupled with feedback to eliminate modeling errors.
However, as studies show, such load control techniques are often associated with highly
nonlinear dynamics, often a result of some synchronization of loads operation.

1.2 Plug-in Electric Vehicles Charging Load

Many market research reports suggest that by 2020, vehicles that acquire energy from
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the grid, which will be henceforth referred to as as plug-in electric vehicles (PEVs), may
well account for around 20% of total automobile sales in the USA [35–37], at which stage
PEVs will account for 3-6% of the total electricity demand. It is likely that financial incen-
tives will encourage charging overnight, when background non-PEV demand is less than
the average [38], e.g. the overnight “valley” hours. Therefore, it may be concluded that
during overnight hours, PEV charging load will contribute a significant proportion of the to-
tal demand on residential distribution feeders. At this stage a synchronized or un-regulated
charging of PEVs could potentially cause issues that affect resiliency of the power grid. Al-
though the interpretation of the term “resiliency” could vary, in this context it could mean
power grid’s adaptability under unforeseen change in grid structure. More specifically,
when PEV charging load is a significant portion of the total load on the grid, synchronized
behavior of PEV chargers can create instability in the grid, similar to fault-induced de-
layed voltage recovery (FIDVR) [39] of residential air-conditioner compressors leading to
cascading voltage collapse. Although un-regulated charging of a large fleet of PEVs can
pose concerns for the ageing and near-saturated grid infrastructure [40, 41], regulating the
charging process may actually be beneficial to the grid.

Research is being carried out on different techniques of controlling a group of PEV
chargers, at both distribution and transmission level. At the distribution level, optimal con-
trol algorithms have been studied to address the concerns that uncoordinated charging can
lead to power losses and voltage deviations, worsen the grid load factor [42–45], or even
cause black-outs [46]. In [42] authors showed that by establishing a relation between the
distribution feeder losses, load factor and load variance, it is possible to formulate a convex
optimization problem to co-ordinate PEV charging in order to minimize system losses and
voltage deviations. A real-time smart load management control for PEV charging was de-
veloped in [46] that takes into consideration time-varying market energy prices, PEV owner
preferred charging time zone, as well as random plug-in of PEVs to minimize generation
cost and power losses. Various optimization techniques, from linear programming [44], to
quadratic and dynamic programming [43] have been used in obtaining an optimal charging
mechanism which enables higher penetration of PEVs in the distribution feeder while sat-
isfying the network operation criteria (losses, voltage profile, etc.). In [47], authors showed
that roughly 50% reduction in number of replacements of overloaded components (trans-
formers, cables) is possible with controlled PEV charging, thereby decreasing system oper-
ation cost. Decentralized incentive-based charging control algorithm was proposed in [48]
to optimally shape the demand so as to avoid distribution transformer overheating. In a
recent development, a grid-friendly charging control technology from Pacific Northwest
National Laboratory, USA, that uses grid frequency to regulate vehicle charging process, is
poised to be soon implemented [49].

At the transmission level, considering a large number of vehicles (say, tens of thou-
sands), the primary objective and scope of the charging control change. Specifically, in this
dissertation, the focus would be on the following two objectives-
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A. fill the overnight demand “valley” thereby reducing daily “cycling” of power plants
and hence operational cost [50], as well as improving life expectancy of distribution
transformers [51], and

B. encourage higher utilization of wind power by performing faster generation-balancing
[18, 52]. Especially since the wind velocity is generally high at night, a successful
charging control algorithm can facilitate large integration of wind and PEVs into the
grid.

Studies have considered different control architectures, such as a centralized control scheme
where a central decision-making body supervises the operation of the loads making sure
their end-use constraints are satisfied, or a de-centralized control scheme where each PEV
charger will decide its charging scheme on it own ultimately trying to achieve some global
optimal performance. Often, a hierarchical control architecture is a more realistic approach,
whereby a nominal (or optimal) charging profile is determined by a system operator, and
the participating PEV chargers then respond on their own to this centrally communicated
charging profile. [53] proposed a two-level charging control algorithm that achieves val-
ley filling, by optimal utilization of wind energy, and frequency regulation, via feedback
control. In [54], the stochastic nature of the problem (such as, renewable generation, PEV
battery charge levels, number of plugged-in PEVs, etc.) was taken into consideration in de-
veloping a semi-Markov decision process based optimal charging policy. A de-centralized
price-based charging scheme was developed in [38], which was to shown to achieve a Nash
equilibrium that corresponds to valley-filling. The charging strategy was proven to be op-
timal when the vehicle population is homogeneous or near-optimal when the population is
heterogeneous. A de-centralized valley-filling charging strategy which is optimal for both
homogeneous and heterogeneous loads was developed in [55].

Most of these studies, however, assume that the charging demand of the individual
PEVs can be controlled in a continuous fashion, which may not be possible in practice. A
more realistic approach seems to be that the PEV would be allowed to charge only at certain
restricted power levels, where the actual charging demand is controlled via some pulse-
width-modulated (PWM) signal. PWM based control signals can be used to regulate the
charging current of the individual chargers, where the PWM signal is set by some external
(central) controller [56, 57]. In [52], the authors used a similar approach coupled with
a hysteresis-based charging strategy (inspired by thermostatic control in [29]) to achieve
load following by PEVs. However an analytical model to predict the system dynamics is
required to design an efficient control scheme that can perform demand shaping without
risking any synchronization.

1.3 Distributed Photovoltaic Generators

Another interesting research direction is to devise ways of using reactive power capabil-
ities of grid-connected distributed generation to improve performance of the electrical grid.
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While on the transmission level there are different options of renewable energy generation
(transmission-scale wind, concentrating solar power, large scale photovoltaic (PV)), at the
distribution level the only viable option, currently, is residential PV generators. Many stud-
ies have been done over the past few years on the feasibility, advantages and challenges of
distributed PV generators at the low/mid-voltage level. A relatively early study [58] looked
at the possibility and opportunity of using reactive power capability of the power elec-
tronics interface associated with distributed generators to provide ancillary support such as
spinning reserve, voltage regulation, etc. Impact of distributed PV generators on voltage
profile have been studied in [59–63]. Voltage sensitivity of lines in response to dynamics
of voltage-support-distributed-generators were analyzed in [60] to establish optimal design
criteria of voltage-support-distributed-generators. In [61], pseudorandom time series of so-
lar irradiance have been considered to measure the impact of fluctuating solar irradiance on
the grid voltage. A high-level of PV penetration at middle voltage level grid under different
loading scenarios and different orientations of solar panel were analyzed in [62] to study
the impact on network power loss, voltage balance and peak load compensation. It was
observed that in all network conditions a PV penetration equalling up to the load can be
easily accommodated. In [63] authors demonstrated through analysis and experiment that a
compromise based control method can added to distributed generation inverters to achieve
somewhat competing objectives of voltage regulation and harmonic suppression.

Although, the current interconnection standards [64] prevent the use of reactive power
capability of PV inverters, a lot of interest has been generated recently in coming up with
control algorithms to regulate the reactive power injection/consumption from inverters as-
sociated with distributed PV generators. To mitigate fast voltage fluctuations on the feeder,
de-centralized control schemes look more viable option [65–70]. This often presents the
challenge of a trade-off between higher speed in distributed control against guaranteed
optimality of centralized scheme. Nevertheless distributed control has its own advan-
tages in terms of higher resilience [67] and less communication bandwidth requirement.
Multi-agent system based de-centralized dispatch schemes have been proposed to utilize
distributed energy resources in achieving optimal grid performances, such as voltage reg-
ulation [65, 66]. In [68, 69] local control schemes based on locally measurable variables
(reactive power consumption, local node voltage) were compared against a globally optimal
centralized dispatch scheme. Another interesting approach is to apply networked control
systems and achieve optimality via information exchange between close neighboring re-
sources [67, 70]. However this area still remains largely open as the correlation between
the locally observable variables and optimal reactive power dispatch is not yet fully under-
stood and further research is required to formulate an optimal local control strategy. Often
the actual power system network is sparse in terms of distributed generation resources, and
communication between the resources could be unavailable. In such cases, a physically
based correlation between the globally computed optimal variables and the local measure-
ments can give better understanding of how a local optimal control law can be designed.
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1.4 Overview of the Dissertation

The overarching goal of this thesis work lies in identifying many challenges associ-
ated with the fast changing electrical grid structure initiated by integration of renewable
energy sources, ever-increasing electricity demand, and large scale penetration of plug-in
electric vehicles, and investigating new control algorithms to smoothen the process of in-
tegration of these new elements. And an efficient control law requires an accurate system
model. While many studies are being carried out in related topics, the primary focus of
this dissertation is to take a physically based approach to understanding the complex in-
terplay of varied dynamics. More specifically this dissertation will address the challenges
in designing model-based feedback control scheme for large number of electrical loads,
control-oriented charging scheme of plug-in electric vehicle chargers, impact of load syn-
chronization on electrical grid, and distributed control of photo-voltaic inverters in a feeder.

In Chapter II an analytical approach is taken to model the evolution of probability dis-
tribution of a large aggregation of thermostatic loads. It is showed how this model can
be linearized in order to use a feedback control law which enforces the demand to track
supply fluctuations. Chapter III discusses how a hysteresis-based charging mechanism can
enable a group of PEV chargers to perform similar ancillary services via feedback control.
The impact of synchronization in PEV chargers, initiated by a fault-induced tripping, on
the voltage resiliency of electrical grid is studied in Chapter IV. In Chapter V a state-space
based modeling technique is presented which can truly capture the dynamics of a group of
hysteresis-controlled chargers. With the help of this model, the behavior of the group of
PEV chargers to a wide range of control input is observed. A distributed control method
is proposed in Chapter VI that aims to optimally choose photo-voltaic inverter output in
order to minimize line losses and voltage deviations. The challenges in designing such an
optimal local control law in a practical scenario are discussed and possible modifications
are suggested. Finally the dissertation is concluded in Chapter VII.
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CHAPTER II

Setpoint Control of Thermostatically-controlled-loads

In this chapter the specific modeling and control approach undertaken in the thesis to
regulate aggregate power demand of thermostatically-controlled-loads (TCLs), often re-
ferred to as simply ‘thermostatic loads’, will be discussed. Natural examples of such loads
are air-conditioners, water heaters. These loads are quite abundant in any residential area,
usually large in number but small in size (each drawing only a fraction of a kilo-Watt power
over its duty cycle). It can be shown, that when these loads are considered in aggregation,
even through small control efforts a significant change in total power demand can be ini-
tiated. In other words, such aggregate thermostatic loads have the capacity of significant
anciallary services (peak load shaving, generation following) without effecting any percep-
tible change to the end-user experience.

Specifically in this work, a centralized type of control mechanism is considered where
the temperature setpoints of all the participating TCLs are changed uniformly by the same
control signal sent from a central co-ordinator. The job of this central co-ordinator is to
measure the aggregate power demand by the aggregation of TCLs and dispatch the control
signal in order to regulate the aggregate demand. To be able to compute the control law the
central co-ordinator needs to use an accurate enough model for the response of aggregate
demand to control input, coupled with a feedback control law. One of the big advantages of
using electrical loads for ancillary services is their responsiveness to control signals. Ad-
vances in communication system ensures that communication delay between co-ordinator
and the loads can be really small, only a fraction of a minute [14,16–19], and thus it would
be assumed in this work and control signals are sent to the participating TCLs at the interval
of 1-min.

A transfer function is developed, which relates the changes in aggregate response of a
homogeneous group of TCLs to disturbances that are applied uniformly to the thermostat
setpoints of all TCLs. Starting from hybrid temperature dynamics of individual thermostats
in the population, the steady-state probability distribution of loads being in the ON or
OFF states are derived. When the temperature set-point is decreased uniformly across
the population of TCLs more power will be drawn for cooling, i.e. the probability of a
TCL being in the ON stat increases, and vice versa. Utilizing this observation, an input-
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Table 2.1: Key symbols for Chapter II

N number of TCLs
θ(t) temperature (oC) of a TCL at time t
θamb ambient temperature (oC)
∆ width of the temperature deadband (oC)
θ+ upper deadband limit (oC)
θ− lower deadband limit (oC)
θs(t) temperature setpoint (oC) at time t
C thermal capacitance (kWh/oC)
R thermal resistance (oC/kW )
P power drawn (kW ) by a TCL in its ON-state
Tc duration a TCL spends in cooling (ON) cycle in its steady state
Th duration a TCL spends in heating (OFF) cycle in its steady state
tc(θ) duration an ON TCL takes from θ+ to θ
th(θ) duration an OFF TCL takes from θ− to θ
Nc number of ON TCLs in steady state
Nh number of OFF TCLs in steady state
nc(θ) steady-state number of ON TCLs having temperature in [θ, θ+]
nh(θ) steady-state number of ON TCLs having temperature in [θ−, θ]
f1(θ) steady-state probability density function of ON-state TCLs, θ ∈ [θ−, θ+]
f0(θ) steady-state probability density function of OFF-state TCLs, θ ∈ [θ−, θ+]

output relationship between change in temperature set-point and change in aggregate power
demand are developed based on steady-state probability distributions.

2.1 Thermal Dynamics of a TCL

The dynamic behavior of the temperature θ(t) of a thermostatically controlled cooling-
load (TCL), in the ON and OFF state and in the absence of noise, can be modeled by [27],

θ̇ =


− 1
CR

(θ − θamb + PR) , ON state

− 1
CR

(θ − θamb) , OFF state
(2.1)

where the model parameters are listed in Table 2.1. The dynamics forces a TCL’s tem-
perature into a hysteresis deadband from θ− to θ+ around the setpoint temperature θs =

(θ− + θ+) /2. A TCL switches its state from OFF to ON when its temperature increases
to θ+ and from OFF to ON when temperature drops to θ−. Solution of Eqs. (2.1) with
such boundary conditions is shown in Fig. 2.1 (top). Fig. 2.1 (bottom) shows that, at steady
state, power consumption by a TCL switches between a constant and zero values, respec-
tively in ON and OFF states. For a large heterogeneous (C,R and P values are different
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across the population) ensemble of TCLs, the aggregate power demand attains a steady
state value [29]. In steady state, temperatures of all the TCLs would lie within the hystere-
sis deadband.

θ+

θ-

P

time0

Tc

Th

Figure 2.1: Dynamics of temperature of a thermostatic load.

2.2 Steady State Distribution of Loads

Solving (2.1), the durations a TCL spends in the cooling and heating cycles, Tc and Th
respectively, in the steady state can be found out as

Tc = CR ln

(
PR + θ+ − θamb
PR + θ− − θamb

)
(2.2a)

Th = CR ln

(
θamb − θ−
θamb − θ+

)
(2.2b)

and, in general, time taken to reach some intermediate temperature θf ∈ [θ−, θ+] during the
cooling and heating periods, tc(θf ) and th(θf ) respectively, are,

tc(θf ) = CR ln

(
PR + θ+ − θamb
PR + θf − θamb

)
(2.3a)

th(θf ) = CR ln

(
θamb − θ−
θamb − θf

)
. (2.3b)

For a homogeneous1 number of TCLs expected to be found in steady state within any
temperature region inside the deadband is proportional to the time a TCL takes to sweep
that temperature region. Accordingly, using the notations in Table 2.1, following relations
hold

nh(θ)

th(θ)
=
nc(θ)

tc(θ)
=
Nc

Tc
=
Nh

Th
=

N

Tc + Th
(2.4)

1All loads share the same values for parameters θamb, C, R and P .
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where N = Nc +Nh. Defining, cumulative probability distributions of ON- and OFF-state
loads, as

F1(θ) := Pr{“a TCL is ON” and “its temperature is in [θ−, θ]”}

=
(Nc − nc (θ))

N
(2.5a)

F0(θ) := Pr{“a TCL is OFF” and “its temperature is in [θ−, θ]”}

=
(nh (θ))

N
(2.5b)

The ON- and OFF-state probability density functions, f1(θ) and f0(θ), can be now com-
puted, using (2.1)

f0(θ) =
dF0(θ)

dθ
=

CR

(Tc + Th)(θamb − θ)
(2.6a)

f1(θ) =
dF1(θ)

dθ
=

CR

(Tc + Th)(PR + θ − θamb)
(2.6b)

These estimates are shown to match closely with the Monte-Carlo simulation Figure 2.2.
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Figure 2.2: Steady state densities.

2.3 Setpoint Variation

Figure 2.3 shows the change in the aggregate power consumption of a population of
TCLs for a small step change in the setpoint of all devices, while keeping deadband width
unchanged. The goal is to derive the input-output relation between change in setpoint
temperature and the resulting change in population’s power demand. This will be done by
studying the changes in the steady state probability distributions (Figure 2.4) initiated by
the shift in temperature deadband. Let’s assume that the deadband is shifted by an amount
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Figure 2.3: Change in aggregate power consumption due to a step change in temperature
setpoint.

19.5

20

20.5

21

70
75

80
85

90
95
0

0.5

1

1.5

2

2.5

Temperature (oC)

Probability density function (OFF state)

Time (hrs.)

P
D

F
 (

O
F

F
)

(a) OFF-state distribution.

19.6
19.8

20
20.2

20.4
20.6

70
75

80
85

90
95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Temperature (oC)

Probability density function (ON state)

Time (hrs.)

P
D

F
 (

O
N

)

(b) ON-state distribution.

Figure 2.4: Variation in distribution of loads due to setpoint disturbance.
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δ from [θ0
−, θ

0
+] to [θ−, θ+], with the deadband width ∆ remaining unchanged. To compute

the change in steady state power consumption, we would focus on four different TCL
starting conditions, a-d in Figure 2.5, immediately after the step change in setpoint. Let’s
denote the temperatures of loads at points a, b, c and d by θa, θb, θc and θd, respectively, at
the time of initiation of setpoint disturbance. The power consumption ga(t, τa) of the load

a

b

c

d

OFF

ON

θ-0 θ+0θ- θ+

δδ

Δ

Figure 2.5: Different points of interest on the density curves.

at a in response to setpoint change is shown in Figure 2.6(a). All the loads in the OFF-state
and having a temperature between θ− and θ0

+ at the instant when the deadband shift occurs
will have power waveforms similar in nature to ga(t, τa). Thus the load at a typifies the
behavior of all the loads lying on the OFF-state density curve between θ− and θ0

+. The
same argument applies for loads at points b, c and d. Figures 2.6(a)-2.6(d) illustrate the
general nature of the power waveforms of the loads in all four regions, marked by a, b,
c and d in Figure 2.5. Aggregate demand response is nothing but summation of demand
response of TCLs lying in these four sections on the probability curves. Hence the aim is to
separately compute the aggregate demand responses of all the TCLs in these four regions
and then sum these up. Laplace transform of ga(t, τa) is given by (Appendix A)

Ga(s, τa) = e−sτaG(s); τa = Th − th(θa)

where G(s) = P (1−e−sTc )

s(1−e−s(Tc+Th))
. Averaging over all such loads (represented by a) on the

OFF density curve between temperatures θ− and θ0
+, we obtain the Laplace transform of

the average power demand,

Pa(s) =

∫ θ0+

θ−

f0(θa)Ga(s, τa)dθa (2.7)

In a similar way, Laplace transforms of demand response of the TCLs at points b, c and
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Figure 2.6: Power waveforms at four different points marked in Figure 2.5.

d can be computed as (Appendix A),

Gb(s, τb) =
(
es(Tc−τb)G(s)− P

s

(
es(Tc−τb) − 1

))
, τb = Tc − tc(θb) (2.8a)

Gc(s, τc) = e−s(Th+τc)G(s), τc = CR ln

(
θamb − θ−
θamb − θc

)
(2.8b)

Gd(s, τd) = e−s(Th+τd)G(s), τd = CR ln

(
θamb − θd
θamb − θ−

)
(2.8c)

and the average power demands of all the loads in the regions marked by b, c and d as,

Pb(s) =

∫ θ0+

θ−

f1(θb)Gb(s, τb)dθb (2.9a)

Pc(s) =

∫ θ−

θ0−

f0(θc)Gc(s, τc)dθc (2.9b)

Pd(s) =

∫ θ−

θ0−

f1(θd)Gd(s, τd)dθd. (2.9c)

The average power demand of the whole population becomes,

Pavg(s) = Pa(s) + Pb(s) + Pc(s) + Pd(s). (2.10)

Using (2.7), (2.9a), (2.9b) and (2.9c) we obtain an expression for Pavg(s) that is rather
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complex. It is hard, and perhaps even impossible, to obtain the inverse Laplace transform.
However, with the assistance of MATHEMATICAr, Pavg(s) may be expanded as a series
in s. It is assumed that,

A. The deadband width is small, i.e. ∆� (θs − θamb + PR) and ∆� (θamb − θs)

B. The shift in deadband is small relative to the deadband width, i.e. δ � ∆

The steady-state power consumption is given by

Pavg,ss ≈
(θamb − θ+)N

ηR
,

where η is the electrical efficiency of the cooling equipment. The aggregate demand re-
sponse, linearized around the steady state value Pavg,ss, becomes

Ptot(s) ≈ −
(
d

s
+

ωA∆

s2 + ω2

)
δ (2.11)

where

A∆ =
5
√

15C(θamb − θ+)(PR− θamb + θ+)

η
(
P 2R2 + 3PR(θamb − θ+)− 3(θamb − θ+)2

)3/2

×(3PR− θamb + θ+)N

(Tc0 + Th0)
,

ω =
2
√

15(θamb − θ+)(PR− θamb + θ+)

CR∆
√
P 2R2 + 3PR(θamb − θ+)− 3(θamb − θ+)2

,

d =
N

ηR
.

and Tc0 and Th0 are the pre-disturbance steady-state cooling and heating times, respectively.
The transfer function for this linear model is,

T(s) =
Ptot(s)

δ/s
= −

(
d+

A∆ωs

s2 + ω2

)
.

Due to the assumptions of low-noise and homogeneity, our analytical model is un-
damped. The actual system, on the other hand, experiences both heterogeneity and noise,
and therefore will exhibit a damped response. In order to capture that effect, we have
chosen to add a damping term σ (to be estimated on-line) into the model, giving

T(s) = −
(
d+

sωA∆

(s+ σ)2 + ω2

)
. (2.12)

Figure 2.7 shows a comparison between the response calculated from the model (2.12)
and the true response to a step change in the setpoint obtained from simulation. A damping
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coefficient of 0.002 min−1 was added, as that value gave a close match to the decay in the
actual system response.
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Figure 2.7: Comparison of the approximate model with the actual simulation, for the same
setpoint disturbance as in Figure 2.3.

2.4 Control Law

The TCL load controller, described by the transfer function (2.12), can also be ex-
pressed in state-space form,

ẋ = Ax+ Bu

y = Cx+ Du

where the input u(t) is the shift in the deadband of all TCLs, and the output y(t) is the
change in the total power demand from the steady-state value. The state-space matrices are
given by

A =

[
−2σ −ω
σ2+ω2

ω
0

]
, B =

[
ωA∆

0

]
,

C =
[
−1 0

]
, D = −d.

Our goal is to design a controller using the linear quadratic regulator (LQR) approach
[71] to track an exogenous reference yd. We observe that the system has an open-loop
zero very close to the imaginary axis (d � ωA∆) and hence we need to use an integral
controller. Considering the integral of the output error e = (y − yd), where yd is the
reference, as the third state w(t) =

∫ t
0
(y(τ) − yd(τ))dτ of the system, the modified state-
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space model becomes

ẋ = Ax+ Bu+ E yd

y = Cx+ Du

where x = [x w]> and,

A =

[
A 02×1

C 0

]
, B =

[
B

D

]
,C =

[
C 0

]
,D = D, E =

[
02×1

−1

]
.

Minimizing the cost function

J =

∫ ∞
0

(
x(t)>Qx(t) + u(t)2R

)
dt

where Q ≥ 03×3 and R > 0 are design variables, we obtain the optimal control law u(t) of
the form

u = −(Kx+ G yd),

with G a pre-compensator gain chosen to ensure unity DC gain. Since we can only measure
the output y(t) and the third state w(t), the other two states are estimated using a linear
quadratic estimator [71] which has the state-space form,

˙̂x = A x̂+ Bu+ L(y − yd)
ŷ = C x̂+ Du

u = −K
[
x̂

w

]
+ G yd.

The plots in Figure 2.8 show that the controller can be used to force the aggregate power
demand of the TCL population to track a range of reference signals. Figure 2.9 shows that
in presence of the feedback control action, the distribution of loads almost always remains
close to steady state distribution, thereby holding the linearized model fairly valid under
disturbances.

2.5 Summary

In this chapter an approach has been presented to analytically derive a transfer function
relating the change in aggregate power demand of a population of TCLs to a change in
thermostat setpoint applied to all TCLs in unison. A linear quadratic regulator designed
on the aggregate response model forced the group of loads to track fluctuating trajectories,
which could originate from renewable generation. The analysis has been based on the as-
sumptions that the TCL population is homogeneous and that the noise level is insignificant.
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Figure 2.8: Reference tracking achieved through setpoint shift.
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Figure 2.9: Variation in distribution of loads under the influence of the controller.
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Further studies are required to incorporate the effects of heterogeneity and noise into the
model. Those extensions are important for determining the damping coefficient. In extreme
heterogeneity, possibly tracking performance would fail in absence of an accurate model.
However, ongoing study [72] shows that different protocols could be generated such that the
aggregate power demand is made to mitigate a sudden, and short, under-/over-generation
of power without the need for detailed modeling and feedback control.

Performance of the hysteresis-based control designed in this chapter actually motivates
further research on the feasibility of hysteresis-based control in plug-in electric vehicles
charging load. Details of the development of hysteresis-based charging approach would be
discussed in Chapter III.
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CHAPTER III

Hysteresis-based Charging of Plug-in Electric Vehicles

In the scope of this thesis, all vehicles that derive their energy either partially or fully
from the power grid would be termed as plug-in electric vehicles (PEVs). As PEVs start
to penetrate the market in large numbers, PEV charging loads would become significant, at
least on a localized level (e.g. in financially affluent neighborhoods). Due to price-based
incentives, and convenience, most of these vehicles are going to be charged during off-
peak hours, usually overnight. Often this PEV charging load is ‘deferrable’, since most
customers only care about getting the vehicle fully charged by early morning. Thus poten-
tially a large number of PEV chargers offer a significant energy resource to the utility that
can be used to benefit grid operations (e.g. overnight ‘valley’ filling, generation balancing).

In Chapter II a modeling and control approach was discussed for a large group of ther-
mostatic loads, in which the hysteresis band limits of the loads are moved by a central con-
troller. Interestingly, similar control benefits can be also utilized in other hysteresis-based
electric loads. While hysteresis-based control is a natural consequence of the inherent tem-
perature dynamics in TCLs, such a mechanism can also be established for charging of a
fleet of PEV chargers [52, 73]. Each vehicle charger is assigned a nominal state-of-charge
(SoC) profile, which can be calculated from a ‘valley’ filling algorithm, or could a simple
linear trajectory such that the vehicle gets fully charged by a stipulated time. A hysteresis-
band is then introduced around the nominal SoC curve, such that the actual SoC follows the
nominal SoC profile within the tolerance of the hysteresis deadband width, thereby giving
rise to a charging process that resembles a pulse-width-modulated electrical power profile
(a sequence of power ON and power OFF intervals).

Once a hysteresis based charging process is set up, a similar modeling approach as
in Chapter II can be taken to develop a linearized response model for the PEV charging
loads. A Lyapunov based feedback control law is designed to perform reference tracking
by the aggregate of PEV chargers. Performance of the controller is tested against reference
demand profiles representative of ‘valley’ filling, peak-shaving and fluctuating generation.
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Table 3.1: Key symbols for Chapter III

N number of PEVs
SoC state-of-charge (kWh)
Pmax maximum charging rate (kW )
Pnom nominal charging rate (kW )
Emax battery charge capacity (kWh)
∆ deadband width as a fraction of battery capacity
t0 the instant when charging starts
tf the instant when charging completes
Non number of “ON” PEVs in steady-state
Noff number of “OFF” PEVs in steady-state
Ton duration a PEV charger spends in ON cycle in steady-state
Toff duration a PEV charger spends in OFF cycle in steady-state

3.1 Hysteresis-based Charging

The hysteresis-based charging of a PEV battery is developed assuming that the charging
may take place only at two allowed rates [52]. The charger draws power at its maximum
rate, Pmax, when it is ‘ON’ and does not draw any power when it is ‘OFF’. When PEV
charger draws power (in ON state) its state-of-charge (SoC), also a measure of the energy
consumed, increases linearly and during its OFF state the SoC remains constant. The
charging process stops when SoC reaches the battery capacity, Emax. The sequence of
ON and OFF states are decided by setting up a nominal charging trajectory and a small
hysteresis band, a fraction ∆ of the charge capacity, around the nominal trajectory such
that during the whole charging process the SoC always stays within the hysteresis band.
The nominal trajectory is defined as the SoC profile the charger would have if it were
charged at a constant rate, Pnom, throughout the charging duration. After the charging
process starts, at t0, the charger turns OFF when its SoC touches the upper deadband limit
and remains OFF till its SoC touches the lower deadband limit at which instant it switches
back to ON state and this process continues till charging completes, at tf . Fig. 3.1 shows a
typical such charging profile.

To illustrate the situation, assuming a constant nominal charging rate, the nominal
charge profile over the duration of charging, [t0, tf ], and the hysteresis deadband limits
around it would be

SoCnom(t) = (t− t0)Pnom; Pnom =
Emax
tf − t0

(3.1a)

SoC+(t) = (t− t0)Pnom + Emax∆/2 (3.1b)

SoC−(t) = (t− t0)Pnom − Emax∆/2 (3.1c)
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Figure 3.1: Hysteresis-based charging profile.

If s(t) denotes the state of a charger and an assignment of s(t) = 1 when ON and s(t) = 0

when OFF is made, then the following dynamics governs the charging process

˙SoC(t) = s(t)Pmax (3.2)

where

s(t) =


1, SoC(t) ≤ SoC−(t)

0, SoC(t) ≥ SoC+(t)

s(t−), otherwise.

While the actual deadband width of a vehicle is proportional to its maximum charge ca-
pacity, the ratio of deadband width to charge capacity is the same for all. Defining a new
variable

S̃oC(t) =
SoC(t)− SoCnom(t)

Emax
(3.3)

which will be referred to as normalized SoC henceforth, the dynamics in (3.2) can be
modified as

˙̃
SoC(t) =

(s(t)Pmax − Pnom)

Emax
(3.4)

where

s(t) =


1, S̃oC(t) ≤ −∆/2

0, S̃oC(t) ≥ ∆/2

s(t−), otherwise.

This formulation helps in normalizing the hysteresis deadband. While the actual deadband
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shift with time being centered around SoCnom(t), the normalized deadband is static having
a width ∆, same for all, centered around zero.

If all the vehicles start charging at the same instant, t0, the aggregate power demand
would start with large oscillations which will ultimately settle down to a steady state aggre-
gate demand level, as shown in Fig. 3.2(a)1. To analyze what happens during the cyclic ON
and OFF states probability distribution of the normalized state-of-charge, S̃oC(t), is plotted
in Fig. 3.2(b) and Fig. 3.2(c). Initially the ON probability density shows large peaks which
move in the direction from lower deadband limit−∆/2 to upper deadband limit +∆/2 and
appears as peaks in OFF probability density which move in the opposite direction. After a
few cycles these peaks flatten out which corresponds to the steady state power demand in
Fig. 3.2(a). However this oscillation can be avoided if the starting instant is allowed to be
uniformly distributed over a time window of the order of the duration of a typical charging
cycle (ON and OFF). Choosing t0 to be uniformly distributed over a 50 min time win-
dow yields an aggregate power demand that shows minimal starting oscillation, as shown
in Fig. 3.3(a). Fig. 3.3(b) and Fig. 3.3(c) show the corresponding evolution of probability
density starting from the instant when all the PEVs have started charging.
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Figure 3.2: Aggregate response in hysteresis-based charging when the starting instant is
same for all.

1Number of PEVs, N , is 20, 000. Emax was chosen to be uniformly distributed over 12-20 kWh and
Pmax to be uniformly distributed over 3-5 kW . The deadband width is a fraction ∆ = 0.05 of Emax
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Figure 3.3: Aggregate response in hysteresis-based charging when the starting instant is
uniformly distributed.

3.2 Linearized State-space Model

The goal is to design a feedback control that regulates the aggregate power demand of
PEVs by shifting the hysteresis deadband position while keeping the normalized width, ∆,
fixed. In this section, a linearized state-space model of the system is developed based on
the steady state probability distribution of ON and OFF state chargers. The approach is
similar to the one described in Chapter II. Section 3.2.1 derives an analytical estimation of
the steady state probability distribution while Section 3.2.2 would build a system model lin-
earized around the steady state distribution. Although the analysis presented here assumes
that the system is homogeneous and noise-free, the Monte-Carlo simulation will consider a
heterogenous system with some noise.

3.2.1 Steady State Probability Distribution

In the steady state the aggregate power consumption becomes (almost, for non-homogeneous
noisy system) constant and hence the number of chargers in their ON state will be a con-
stant number, Non, and so will the number of chargers in OFF state, Noff = N − Non.
Since the rate of change of normalized state-of-charge, S̃oC(t), is constant (or indepen-
dent of S̃oC(t)) both in the ON and OFF state (from (3.4)), the probability distribution of
ON and OFF-state chargers would have to be a uniform distribution between [−∆/2,∆/2].
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The values Non and Noff can be found by equating the in-coming and out-going flux of
probability at the boundaries of the normalized deadband [−∆/2,∆/2]. To maintain steady
state distribution, the rate of departure of PEV chargers from ON state should be equal to
the rate of departure of chargers from OFF state, i.e. from (3.4)

Non
Pmax − Pnom

Emax
= Noff

Pnom
Emax

.

Using Non +Noff = N gives,

Non =
NPnom
Pmax

, Noff =
N (Pmax − Pnom)

Pmax

and the probability density functions, fon and foff would be

fon =
Pnom
Pmax∆

(3.5)

foff =
Pmax − Pnom
Pmax∆

(3.6)

Fig. 3.4 shows how the probability densities computed from (3.6) compare with the simu-
lated steady state densities. The discrepancies could be attributed to the non-homogeneity
and noise present in the simulated system.
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Figure 3.4: Probability distribution of S̃oC of vehicles in ON and OFF state.

3.2.2 Linearized Step Response

In this section we will build a linearized model of the system by analyzing the response
of aggregate power demand to a step change in the nominal SoC profile. Fig. 3.5(a) shows
a typical response of the system of PEVs to a shift in the hysteresis deadband. To quantify
this response in terms of the magnitude of shift, δ, we will take a probabilistic approach,
similar to the one in Chapter II. If we could sum up the responses of all the PEV chargers
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Figure 3.5: Aggregate and individualistic response to a shift in deadband
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Figure 3.6: The reference square-wave g(t).

in the population, we will quantify the aggregate response. In order to do that, we would
split the probability density curves in four regions, as shown in Fig. 3.5(b):

A. ON probability density curve between (−∆/2 + δ) and ∆/2 (point ‘a’)

B. OFF probability density curve between (−∆/2 + δ) and ∆/2 (point ‘b’)

C. ON probability density curve between −∆/2 and (−∆/2 + δ) (point ‘c’)

D. OFF probability density curve between −∆/2 and (−∆/2 + δ) (point ‘d’)

Demand response of the PEV chargers lying in regions ‘a − d’ to the shift in deadband
would be similar to Figs. 3.5(c)-3.5(f). For example, a charger initially at ‘a’, with a nor-
malized state-of-charge S̃oCa ∈ [−∆/2 + δ,∆/2], would stay ON for some time, τa, and
then continue with its natural OFF/ON sequence. Let us denote Ton and Toff as the time
spent in ON and OFF states, respectively, in each cycle. The power response ga(t) in
Fig. 3.5(c) is a time-shifted version of the square waveform g(t) (g(t) = 0 when t < 0) in
Fig. 3.6. Denoting Laplace transform of the waveform g(t) as

G(s) =
Pmax

(
1− e−sTon

)
s
(
1− e−s(Ton+Toff )

) (3.7)

where, Ton and Toff are given by

Ton =
Emax∆

(Pmax − Pnom)
, Toff =

Emax∆

Pnom
, (3.8)

we obtain the Laplace transform Ga(s) of ga(t) = g(t+Ton− τa)1(t), (1(t) : unit step)

as

Ga (s, τa) = es(Ton−τa)G(s)−
(
es(Ton−τa) − 1

)
s

Pmax

28



where

τa =
∆/2 + δ − S̃oCa

Pmax − Pnom

is the time taken to increase normalized state-of-charge from S̃oCa to (∆/2 + δ). Similarly
for other regions,

Gb (s, τb) = e−sτbG(s); τb =
S̃oCb + ∆/2− δ

Pnom
(3.9a)

Gc (s, τc) = e−sτcG(s) +
(1− e−sτc)

s
Pmax; τc =

−∆/2 + δ − S̃oCc

Pmax − Pnom
(3.9b)

Gd (s, τd) = e−sτdG(s) +
(1− e−sτd)

s
Pmax; τd =

−∆/2 + δ − S̃oCd

Pmax − Pnom
(3.9c)

Aggregate response of all the chargers in the four regions ‘a− d’ will be

Pa(s) = N

∫ ∆/2

−∆/2+δ

fonGa (s, τa) dS̃oCa (3.10)

Pb(s) = N

∫ ∆/2

−∆/2+δ

foffGb (s, τb) dS̃oCb (3.11)

Pc(s) = N

∫ −∆/2+δ

−∆/2

fonGc (s, τc) dS̃oCc (3.12)

Pd(s) = N

∫ −∆/2+δ

−∆/2

foffGd (s, τd) dS̃oCd (3.13)

and the whole population’s aggregate response

Ptot(s) = (Pa(s) + Pb(s) + Pc(s) + Pd(s)) . (3.14)

After linearizing about the steady-state power consumption Pss = NonPmax,

P̃tot(s) = Ptot(s)−
Pss
s

(3.15)

≈
(

I0

s+ σ′
+

A∆

(s+ σ)2 + ω2

)
δ (3.16)
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with

I0 = (Pmax − Pnom)N/∆ (3.17)

ω =
2
√

15Pnom (Pmax − Pnom)

∆
√
P 2
max + 2PnomPmax − 2P 2

nom

(3.18)

A∆ =
10
√

15P 2
nom (Pmax − Pnom)2N

∆ (P 2
max + 2PnomPmax − 2P 2

nom)3/2
. (3.19)

The transfer function of the response would be

T(s) =
s I0

s+ σ′
+

s A∆

(s+ σ)2 + ω2
(3.20)

where σ′ and σ are damping parameters associated with heterogeneity and noise and are
to be estimated real-time 2. This is the response to a right shift in deadband where the
nominal SoC profile increases. However, a similar analysis can be done for a left shift (i.e.
δ < 0) as well, in which case the transfer function comes out to have a similar form with
I0 = PnomN/∆. Fig. 3.7(a) and Fig. 3.7(b) show the comparison of the model with the
simulation for a right and left shift, respectively, of the deadband. The discrepancies in the
two responses could be attributed to the non-homogeneity in the system.
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(a) Shifting the deadband towards right.
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(b) Shifting the deadband towards right.

Figure 3.7: Comparison of the model performance with Monte-Carlo simulation.

2For this particular system, σ
′

= 0.2 and σ = 0.025.
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3.3 Control Design and Results

3.3.1 Control Law

The system with transfer function (3.20) can be modeled into a state-space form as

ẋ = Ax+ Bu (3.21)

y = Cx+Du (3.22)

where the input u(t) ∈ R is the shift in the deadband, and the output y(t) ∈ R is the
aggregate power demand linearized about the steady-state value, Pss, and the states are
x ∈ R3×1. The state-space matrices are given by

A =

 0 0 −σ′ (σ2 + ω2)

1 0 −
(
2σσ

′
+ σ2 + ω2

)
0 1 −

(
σ
′
+ 2σ

)


B =

 −I0σ
′
(σ2 + ω2)

A∆ωσ
′ − 2I0σσ

′

A∆ − I0σ
′


C = (0 0 1)

D =

{
(Pmax − Pnom)N/∆, u(t) ≤ 0

PnomN/∆, u(t) < 0

To design the control law, a sliding surface S(t) is defined [74]

S(t) := e(t) + ci

∫ t

0

e (τ) dτ, ci > 0 (3.23)

where, e(t) = y(t)− yd(t), (3.24)

yd(t) being the desired linearized trajectory. The aim is to design a control input u(t) that
satisfies the relation Ṡ(t) = −ηS(t), η > 0. However because of the presence of the non-
zero scalar D in (3.22), Ṡ(t) will have both u(t) and u̇(t). To resolve this, an estimate of
u(t) is calculated by equating e(t) = 0 and then the estimate is used to compute u̇ from
Ṡ(t) = −ηS(t), according to

û(t) =
(yd(t)−Cx(t))

D
(3.25)

u̇(t) =
(−ηS(t)− cie(t) + ẏd(t)−CAx(t)−CBû(t))

D
. (3.26)

Carefully choosing the design variables η and ci will guarantee exponential convergence of
the error e(t) to zero (see Appendix B). A linear estimator has been used to estimate the
state x(t) appearing in (3.25)-(3.26).
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Figure 3.8: An ideal valley-filling profile.

3.3.2 Controller Performance

Fig. 3.8 (left) shows a typical overnight base demand (scaled down to suit our example)
in summer for the region managed by the Midwest Independent System Operator (MISO).
An ideal valley-filling charging strategy would be to fill the valley by a flat demand curve
and at the same time ensure that all the vehicles are fully charged by a stipulated time (say,
8 AM or 20:00 hr. in this case). It is assumed that a complete knowledge of each vehicle
- maximum charging rate and amount of charge required that night, is available. If d(t) be
the base (non-PEV) demand andEmax,i the charge requirement of ith PEV, then the optimal
flat demand level, Pdes and the optimal charging start and completion time instants, t0 and
tf , can be computed by iteratively solving the relation

∫ tf

t0

(Pdes − d(t)) dt =
N∑
i=1

Emax,i (3.27)

And the valley-filling optimal PEV demand is then given by

yd(t) =

{
Pdes − d(t), if t ∈ [t0, tf ]

0, otherwise
(3.28)

as shown in the in Fig. 3.8 (right). An alternative approach to determining the optimal
charging trajectory yd is presented in [75]. In that case, all PEVs seek to minimize their
charging costs, and in so doing achieve a Nash equilibrium that establishes the globally
optimal charging trajectory.

Fig. 3.9 shows the closed loop performance of the controller for different reference tra-
jectories and the corresponding control inputs. In Fig. 3.9(a) the aggregate PEV demand
tracks the ideal valley-filling trajectory found in Fig. 3.8. Fig. 3.9(b) shows tracking of
a reference trajectory which experiences a “step” decrease midway through the charging
period. This situation could occur when there is a sudden increase in the non-PEV elec-
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tricity demand or a sudden loss of a generator. In this case there is significant non-zero
PEV demand beyond the optimal charge-completion time tf . This non-zero power demand
compensates for the reduced charging rates that occurred in response to the step decrease
in the reference trajectory. In Fig. 3.9(c) the aggregate PEV demand tracks a fluctuating
reference trajectory which may arise from wind generation.

It is interesting to note the large control input that is required towards the end of the
charging process. This can be attributed to the fact that as the charge completion time
approaches, more and more vehicles become fully charged and hence take no further part
in the closed loop control. This results in a loss of controllability.
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Figure 3.9: Tracking performance of the controller in response to varying trajectories.

3.4 Summary

In this work a large population of PEVs has been considered and it is assumed that a
fairly complete knowledge of their battery’s charge requirement and the maximum charg-
ing rate is available. A hysteresis-based charging method has been proposed. A linearized
model of aggregate response of PEV chargers to a shift in the hysteresis deadband has
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been developed. A nonlinear feedback controller has been shown to fulfill the objectives of
tracking a valley-filling PEV demand and fluctuations in generation. It has been observed
that the controllability of the system is low towards the start and end of the charging du-
ration. As the charge completion time approaches, more and more vehicles become fully
charged and hence take no further part in the closed loop control thereby resulting in a
loss of controllability. Further research should be done to address these issues and possibly
come up with a better model to utilize the full potential of PEV charging.
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CHAPTER IV

Analysis of Synchronized Tripping of PEV Chargers

Plug-in electric vehicle (PEV) charging equipment incorporates protection that ensures
grid disturbances do not damage the charger or vehicle. When the grid voltage sags below
80% of nominal, under-voltage protection is likely to disconnect the charging load from
the grid. Most PEV charging will occur overnight, when non-PEV load is at a minimum.
PEV voltage-sag response, when synchronized across large numbers of PEVs, could result
in the loss of a significant proportion of the total load. It is shown that this load loss can
lead to unacceptably high voltages once the initiating event has been cleared. The objective
is to explore the nature of this voltage-rise phenomenon and develop analysis tools to assist
in determining PEV loading conditions that demarcate acceptable post-disturbance voltage
response from unacceptable outcomes.

When electricity demand is composed of large numbers of similar devices, relatively
benign events can synchronize their response, resulting in collective behavior that is poten-
tially destabilizing, such as fault-induced delayed voltage recovery (FIDVR) [39], voltage-
sag induced synchronized stalling of residential air-conditioner compressors may lead to a
cascading form of voltage collapse. We show that if the penetration of PEV charging load
is sufficiently high, synchronized tripping of PEV chargers may lead to unacceptably high
voltages on distribution feeders. The response of PEV chargers to power quality events is
governed by SAE Standard J2894 [76], which updates an earlier EPRI report [77]. But sit-
uations where voltage sags below 80%, but remains non-zero, are not explicitly covered by
the standard. Such voltage sags are not uncommon on distribution systems. For example,
FIDVR events generally occur when voltage falls to around 60-65% of nominal, as that is
the voltage at which residential air-conditioner compressors tend to stall [78]. We therefore
take the view that distribution networks will experience voltage sags that are sufficient to
cause large numbers of PEV chargers to trip. Following such trips, J2894 recommends that
restarting be delayed, so as to minimize the possibility of cold load pickup. Because of
mostly overnight charging, PEV charging load could be a relatively high proportion of the
total load on a distribution feeder during overnight hours. Accordingly, a voltage sag that
tripped PEV chargers would cause a significant reduction in the load. Upon recovery from
the voltage sag, the feeder would experience much lighter load, and consequently voltages
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Figure 4.1: Post-fault voltage rise due to tripping of PEV chargers.

would rise above nominal. Shunt capacitors, which are common on distribution feeders,
would further contribute to the post-sag voltage rise. A significant voltage rise, perhaps
above 110% of nominal, could cause other electrical equipment to trip. In fact, J2894 al-
lows PEV chargers to trip for voltages above 110% of nominal. The high voltages resulting
from such a cascade could damage distribution equipment and the remaining load.

4.1 Motivating Example

A voltage sag is a relatively common occurrence that can happen due to many reasons,
e.g. a distant fault in the grid, a sudden increase in load (high start-up current of many
equipments). The response of PEV chargers to a voltage sag or a momentary outage is
specified in the standards [76, 77]. An EV charger should be able to ride through a sag of
80% nominal voltage for 2s and a momentary outage (0% nominal voltage) for 12 cycles.
If the voltage sag (or outage) is longer than that, chargers are free to trip. Once tripped, the
charging can be restarted only after a delay of at least 2 min and, moreover, the restart time
has to be randomized over a period of several minutes (e.g. 10 min) to avoid any “cold
load pick-up”. Hence on fault clearance the line voltage would increase beyond nominal
because of the reduced electricity demand. Fig. 4.1 depicts a typical such scenario. On
initiation of a voltage sag (or, a momentary outage) at time t1 the line voltage drops from
nominal level L1 to some level L2. If the sag continues for longer than a critical duration
(e.g. 12 cycles in case of an outage) the PEV chargers on-line would trip resulting in a
slight increase in line voltage from L2 to L3. Subsequently on fault clearance at time t3
(typically after a few hundred milliseconds) the voltage recovers but, due to loss of load,
increases to a level L4 which is above the nominal L1. Beyond this point the line voltage
regulators would start to react. Usually in any distribution feeder, there would be a sequence
of tap-changing regulators which react to voltage swings with a time delay of few tens of
seconds [79–81]. While the fast regulators (often using inverse time delay) usually has a
minimum time delay of 15 s, most of the line regulators would have a minimum time delay
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Figure 4.2: Two-bus network.

of 30-60 s. Depending on the time delay of the tap changers, at some time t4, the voltage
would start to fall back down to the nominal value, L1, through a sequence of tap changes,
with each tap-change action adding a inter-tap delay of typically a few seconds.

The simple two-bus network of Figure 4.2 will be used to provide an initial illustration
of voltage rise associated with PEV charger tripping. For this simple system, the relation-
ship between active power load p, susceptance b, and load-bus voltage V can be written
as,

F (p, b, V ; r, x, V∞) =
(

(1− bx)2 + (br)2
)
V 4 +

(
2pr − V 2

∞
)
V 2 + p2

(
r2 + x2

)
= 0.

(4.1)

An outline of the derivation of (4.1) is provided in Appendix C. The relationship between
p, b and V is shown graphically 1 in Figure 4.3, where each line corresponds to a particular
value of voltage V , and can be thought of as a contour of the (p, b, V )-surface [82, 83].

We also desire base-case conditions of p = 0.5 pu and V = 1.0 pu. The capacitive
susceptance required to achieve these loading conditions can be determine from (4.1) as b =

0.46 pu. This base-case point is identified on the surface of Figure 4.3. If the load power
p were to reduce, while holding susceptance b constant, the operating point would move
horizontally to the left, crossing contours of higher and higher voltage. For a sufficiently
large loss of load p, the operating point would move to the unacceptable operating region
where V > 1.1 pu. By setting V = 1.1 pu in (4.1), the value of load at which voltage
becomes unacceptable can be found to be p = 0.364 pu. Therefore, in this example, if
(0.5−0.364)/0.5 = 27% of the original load tripped, the voltage at the load bus would rise
from 1.0 pu to 1.1 pu.

4.2 Basic Framework

In order to extend analysis from the two-bus case of Section 4.1 to realistic distribution
feeders, we will consider the radial network structure shown in Figure 4.4. Node 1 denotes
the substation bus at the source of the feeder, while load nodes 2, ..., n are arranged so that
node number increases along paths from the substation to the end nodes. The set of feeder
nodes is given by N = {1, ..., n}. Let C be the set of all connections between nodes, so

1Parameter values are V∞ = 1.0 pu, r = 0.3 pu and x = 0.5 pu.
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Figure 4.3: Relationship between load power p, susceptance b and voltage V .
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Figure 4.4: Radial structure of a distribution feeder.

that (i, j) ∈ C if a physical connection exists between nodes i and j. We also define,

Ci = {j : (i, j) ∈ C, i < j}

as the set of all nodes that are connected “downstream” from node i. The complex power
drawn by the load at node i is denoted pi + jqi, whereas Pij and Qij are the active and
reactive power flowing from node i towards node j ∈ Ci through the connecting branch
(i, j). The impedance of that branch is zij = rij + jxij .

We have modeled the load at each node as constant power, though it could just as easily
be modeled as a combination of constant power, current and impedance, the familiar ZIP
model [84]. The reactive power produced by a shunt capacitor bi at node i is given by
Qci = biV

2
i . A Thévenin equivalent has been used to model the grid from generation to the

feeder source node 1. Source reactance is given by x0, with source resistance neglected.
It is convenient to model radial feeders of the form shown in Figure 4.4 using the
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DistFlow [85] recursive power flow equations,

Pij =
∑
k∈Cj

Pjk + rij
(
P 2
ij +Q2

ij

)
/V 2

i + pj (4.2)

Qij =
∑
k∈Cj

Qjk + xij
(
P 2
ij +Q2

ij

)
/V 2

i + qj − bjV 2
j (4.3)

V 2
j = V 2

i − 2 (rijPij + xijQij) +

(
r2
ij + x2

ij

) (
P 2
ij +Q2

ij

)
V 2
i

. (4.4)

For later use, we define,

P =
{
Pij : (i, j) ∈ C

}
Q =

{
Qij : (i, j) ∈ C

}
V =

{
Vi : i ∈ N

}
p =

{
pi : i ∈ N

}
q =

{
qi : i ∈ N

}
b =

{
bi : i ∈ N

}
,

and write (4.2)-(4.4) compactly as

F (P,Q, V ; p, q, b) = 0.

The DistFlow equations (4.2)-(4.4) can be solved iteratively. Assuming a flat start, with
Vi = 1.0 pu for all i ∈ N , the flows Pij and Qij can be computed using (4.2) and (4.3) by
starting at the extremities of the feeder (the nodes farthest from the source) and working
back towards the source. Those values can then be used in (4.4) to update voltages Vi,
starting from the known source voltage V0 = 1.0 pu, and proceeding outwards to the end
nodes. The process is then repeated using the updated voltages.

The load at each node is comprised of both non-PEV base load and PEV charging load.
We assume that the active power drawn by PEV chargers at node i accounts for a fraction βi
of the total active power consumption at that node. The power factor of the PEV charging
load is pfi.2 Therefore the PEV load is given by,

ppev,i(βi) + jqpev,i(βi) = βipi

(
1 + j

√
1− pf 2

i

pfi

)
(4.5)

2In later studies, we will assume that all PEV charging loads have a power factor of pfi = 0.97, which is
consistent with [76]. This is not a restrictive assumption though.
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and the non-PEV load is given by,

pnpev,i(βi) + jqnpev,i(βi) = (1− βi)pi + j

(
qi − βipi

√
1− pf 2

i

pfi

)
. (4.6)

In later formulations, we will use the notation,

pnpev(β) = {pnpev,i(βi); i ∈ N}
qnpev(β) = {qnpev,i(βi); i ∈ N}.

4.3 Problem Formulation

In the two-bus example considered in Section 4.1, determining the relationship between
loss of load and consequent voltage rise involved a two-step process:

A. For a given total load (non-PEV plus PEV), the susceptance b required to achieve the
desired pre-disturbance voltage was determined.

B. With susceptance fixed at the value determined in step 1), the load reduction required
for the voltage to reach the maximum allowable voltage of 1.1 pu was then calculated.

This process is straightforward for the two-bus case, and can be implemented by coupling
together two copies of (4.1), with the pre-disturbance values for p and V specified in the
first equation, and the voltage threshold V = 1.1 pu specified in the second equation. This
results in two equations in two unknown variables, the susceptance b and the reduced load
pred. The critical proportion of PEV charging load is then given by βcrit = (p − pred)/p.
This formulation provides a direct mapping from p to βcrit.

We desire such a mapping for general multi-node networks of the form shown in Fig-
ure 4.4. Some adaptation of the two-step process is required, with the following subsections
describing a generalized approach.

4.3.1 Pre-disturbance conditions

In establishing pre-disturbance conditions, it is assumed that the feeder normally oper-
ates with all node voltages within allowable bounds, for example±2% of nominal [86], and
that power losses are minimized. These requirements can be achieved by placing shunt ca-
pacitor banks along the feeder. Capacitor placement and sizing strategies have been exten-
sively studied, with both heuristic guidelines [87–89] and optimization techniques [85, 90]
widely used. For our studies, we have adopted the approach suggested in [87], and sized
the capacitors using an optimization formulation that minimizes line losses,

min
b

L(P,Q, V ) =
∑

(i,j)∈C

rij
(
P 2
ij +Q2

ij

)
/V 2

i (4.7)

40



subject to

F (P,Q, V ; p, q, b) = 0 (4.8)

0.98 ≤ Vi ≤ 1.02, ∀i ∈ N . (4.9)

Reliable convergence was obtained through an iterative approach that makes use of CVX
[91]. The voltage bounds may, however, occasionally lead to infeasibility. In such cases,
they may need to be relaxed slightly.

4.3.2 Post-disturbance voltage rise

Under post-disturbance conditions, with some of the PEV load disconnected due to the
voltage-sag event, voltages across the distribution feeder will tend to be higher than normal.
It is assumed that the status of shunt capacitors does not change during the event, so the
values of b obtained from the optimization (4.7)-(4.9) will remain fixed. The goal is to
determine the smallest loss of PEV charging load across the feeder that would cause the
voltage at any of the nodes hit its limiting value of 1.1 pu. This problem can be addressed
using the optimization formulation,

min
β

∑
i∈N

βipi (4.10)

subject to

F
(
P,Q, V ; pnpev(β), qnpev(β), b

)
= 0 (4.11)

max{V } = 1.1. (4.12)

To overcome the non-convexity inherent in (4.12), we constrain a single node voltage at
a time, replacing (4.12) by a constraint of the form Vi = 1.1 pu. This is effective as usually
only a few nodes are candidates for the highest voltage. If we force a node voltage to
1.1 pu, and notice that other nodes have higher voltages, then the optimization is repeated
with the voltage constraint enforced for the node with the highest voltage. With some prior
knowledge of likely high-voltage buses, we have found that this procedure only needs to
be repeated once or twice.

4.4 Case Studies

Two distribution feeder examples will be used to illustrate, in a practical setting, the
risk of overvoltages as PEV charging load increases. The first is an existing 23 kV feeder
that has no lateral branches [87], and the second is the standard IEEE-34 distribution feeder
[92].
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Figure 4.5: Pre- and post-disturbance voltage profile along the 10-node primary feeder.

4.4.1 23 kV 10-node primary feeder

The feeder data for this example were obtained from [87]. The feeder was modified to
include the Thévenin equivalent representation of the grid, in accordance with Figure 4.4.
The load was scaled up by 20% uniformly across the feeder to account for general load
growth as well as increased penetration of PEVs. Shunt capacitors were placed at nodes 7
and 10 to ensure pre-disturbance voltages remained within allowable bounds of ±2%. The
base-case voltage profile is shown in Figure 4.5. It is clear that all voltages are acceptable
prior to the loss of PEV charging load. Figure 4.5 also illustrates the rise in voltage that
occurs when PEV load is disconnected. For this particular case, 31.8% of the load at
every node was tripped. This resulted in the voltage at node 10, which is farthest from the
substation, rising to exactly 1.1 pu.

To further investigate the characteristics of this feeder, three different scenarios have
been considered.

4.4.1.1 Uniform PEV charging load

For this case, it was assumed that the PEV charging load was spread uniformly across
the feeder, such that the PEV load fraction βi was the same for every node. By setting
βi = β̂, ∀i ∈ N , the constraints (4.11)-(4.12) form a set of equations that has dimension
equal to the number of variables. As a result, an iterative solution process, similar to that
described in Section 4.2 for the DistFlow equations, can be used to directly find the critical
value β̂crit that corresponds to max(V ) = 1.1 pu.3 This value separates acceptable cases
(β̂ < β̂crit) from unacceptable situations (β̂ > β̂crit).

To explore different loading scenarios, for example daily load variations, the total load
on the feeder was scaled from 100% to 135% of the load data given in [87]. Shunt ca-

3Constraint switching associated with (4.12) can be handled in a similar way to that described in Sec-
tion 4.3.2.
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Figure 4.6: Allowable PEV load as total load increases, with βi uniform across the 10-node
primary feeder.

pacitors were sized using (4.7)-(4.9) whenever they were required to improve the pre-
disturbance voltage profile along the feeder. The value of β̂crit was calculated at each load-
ing level, and is plotted in Figure 4.6. The voltage profile shown in Figure 4.5 corresponds
to the point marked ‘o’ in Figure 4.6. Any point above the curve describes an unaccept-
able loading condition, as the post-disturbance voltage of at least one node exceeds 1.1 pu.
Loading conditions below the curve result in acceptable post-disturbance voltages. It may
be concluded from Figure 4.6 that for high loading levels, the rise in voltage following a
disturbance may be excessive even when the PEV charging load penetration is quite low.

4.4.1.2 Sensitivity to location

The location of PEV charging load along a distribution feeder has an important influ-
ence on post-disturbance voltage rise. The effect of load loss tends to become magnified as
the distance from the substation increases. The relative significance of different locations
can be determined through the use of (4.11)-(4.12). Consider an investigation of PEV load
at two locations, nodes i and j. The corresponding values of βi and βj are free variables
in (4.11), while βk, k 6= i, j, are fixed for all other nodes. This leads to (4.11)-(4.12) hav-
ing one more variable than constraint. This under-determined set of equations describes a
1-manifold (or curve) which can be obtained using a continuation process [93]. The sim-
plest approach is to assign a series of values to βi and use (4.11)-(4.12) to calculate the
corresponding values for βj . The resulting curve separates acceptable loading conditions
(below the curve) from those that would leave the system vulnerable to post-disturbance
overvoltages (above the curve).

This procedure was used to compare the relative importance of PEV loads at nodes 6
and 10 in the 10-node feeder. The results are shown in Figure 4.7 for two different back-
ground loading conditions, 1) all loads were scaled to 120% of their base-case values
in [87], and 2) all loads were scaled by 130%. The proportion of PEV charging load at
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Figure 4.7: Sensitivity between β6 and β10 for two loading scenarios on the 10-node pri-
mary feeder.

all nodes other than 6 and 10 was held at βk = 0.25, k 6= 6, 10. The relationship between
β6 and β10 is very close to affine, with both lines in Figure 4.7 having slopes of approxi-
mately -0.36. It follows that the load at node 10 has a much more significant influence on
the overvoltage phenomenon of interest. Even though the result is to be expected in this
case, as node 10 is at the very end of the feeder, this process provides a valuable analysis
tool for cases that are not so straightforward.

4.4.1.3 Maximum vulnerability

The optimization formulation (4.10)-(4.12) determines the minimum PEV load loss
necessary to cause unacceptable post-disturbance voltages. This effectively establishes the
locations where loss of PEV load contributes most to voltage rise. Table 4.1 presents the
results of this optimization for a range of background loading conditions, from the load
profile given in [87] to a 35% increase beyond that base level. In all cases, it can be seen
that the network is most vulnerable to overvoltages when PEV load is located near the
remote end of the feeder. The proportion of PEV load relative to the total feeder load is
given by

∑
i βipi/

∑
i pi, with values for the various loading conditions given in the last

row of the table. For the 135% loading condition, overvoltage vulnerability occurs when
PEV charging load accounts for only 8.9% of the total load. However problems will only
arise if all that load is placed at the end of the feeder.

To explore a more reasonable distribution of PEV load, the optimization problem (4.10)-
(4.12) was augmented by the additional constraint,

βi ≤ 0.5∀i ∈ N (4.13)

From the results in Table 4.2, tt is again clear that the network is more vulnerable to over-
voltages when PEV loads are further from the substation. Based on the scenarios presented
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Table 4.1: Minimum PEV charging load necessary to cause unacceptable post-disturbance
voltages on the 10-node primary feeder.

Node #
% loading

100 105 110 115 120 125 130 135
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0.845 0.60 0.382 0.184 0 0 0 0

10 1.0 1.0 1.0 1.0 0.982 0.875 0.775 0.672∑
i βipi∑
i pi

0.200 0.180 0.163 0.147 0.130 0.116 0.103 0.089

in Table 4.2, a relatively small amount of PEV charging load is required for overvoltage
vulnerability. Considering the 120% loading case, for example, unacceptable overvoltages
may occur when only 17.2% of the load is due to PEV charging.

4.4.2 IEEE-34 test feeder

Similar analysis has been undertaken for the IEEE-34 distribution test feeder [92]. This
is an actual 24.9 kV feeder in Arizona that is long and lightly loaded. PEV-induced over-
voltage effects are more prominent in this feeder because of its long lines. Nodes 822
and 890 were chosen as shunt capacitor locations, whenever needed. Pre-fault acceptable
voltage range (4.9) was relaxed a bit to 0.97 − 1.05 pu. Also a Thévenin equivalent, rep-
resented by node ‘0’, of the higher-voltage grid was incorporated. For most part of the
analysis a single-phase approximation of the three-phase feeder model has been used. We
will henceforth do most of the analysis on the single-phase model, before finishing with a
brief look into the three-phase case.

4.4.2.1 Uniform PEV charging load

As in Section 4.4.1.1, this initial study assumed that PEV charging load was spread
uniformly across the feeder, so βi = β̂, ∀i ∈ N . Figure 4.8 shows the variation in the
critical value β̂crit as the total load on the feeder was decreased from 100% of the base
case [92] to 70%. Recall that β̂crit corresponds to a post-disturbance voltage profile where
max{V } = 1.1 pu. For each loading scenario, source node voltage and the regulator tap-
ratios were adjusted to keep the substation voltage at 1.05 p.u. and the voltages at nodes 850
and 832 close to 1.021 p.u. and 1.035 p.u., respectively. Figure 4.9 shows the pre- and post-
disturbance voltage profiles for the case where load scaling is 100% and β̂crit = 0.0764.

45



Table 4.2: Repeat of Table 4.1, subject to the constraint βi ≤ 0.5, ∀i.

Node #
% loading

100 105 110 115 120 125 130 135
2 0 0 0 0 0 0 0 0
3 0.139 0 0 0 0 0 0 0
4 0.5 0 0 0 0 0 0 0
5 0.5 0.418 0 0 0 0 0 0
6 0.5 0.5 0.459 0.190 0 0 0 0
7 0.5 0.5 0.5 0.5 0.309 0 0 0
8 0.5 0.5 0.5 0.5 0.5 0.374 0.105 0
9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.361

10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5∑
j βjpj∑
j pj

0.397 0.303 0.244 0.209 0.172 0.141 0.116 0.095
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Figure 4.8: Allowable PEV load as total load increases, with βi uniform across the 34-node
feeder.

This particular loading condition is identified on the curve in Figure 4.8 by a ‘o’.

4.4.2.2 Sensitivity to location

The continuation process described in Section 4.4.1.2 was used to compare the relative
importance of PEV loads at nodes 844 and 890, which are on different spurs of the 34-node
feeder. The proportion of PEV load at all other nodes was held constant at βi = 0. The
results for two loading conditions, 70% and 80% of base case, are presented in Figure 4.10.
As with the 10-node feeder, the relationship displayed in Figure 4.10 is almost affine. In
this case, though, the lines have a slope of -0.85. It may be concluded that PEV load at
both locations has almost the same influence on post-disturbance voltage rise.
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Figure 4.10: Sensitivity between β844 and β890 for two loading scenarios on the 34-node
feeder.

4.4.2.3 Maximum vulnerability

The results of the optimization (4.10)-(4.12) coupled with (4.13), for a range of load-
ing conditions, are presented in Table 4.3. These results identify the locations where high
penetration of PEV load makes the network most vulnerable to post-disturbance overvolt-
ages. It is again clear that adding PEV charging load near the ends of the feeder maximizes
vulnerability. For this particular case, the spurs associated with node 890 and with nodes
848-846-844 are most sensitive to PEV load loss. Required load drop amount at all other
nodes remained zero across the selected load range, and hence were omitted from Table 4.3.

4.4.2.4 Overvoltage on the three-phase model

So far the analyses have been done on the single-phase equivalent model. Figure 4.8
showed that at 100% loading, a load drop of 7.64% could result in voltage rise up to
1.1 p.u.. To simulate this scenario in the three-phase model, the shunt capacitor values

47



Table 4.3: Minimum PEV charging load necessary to cause unacceptable post-disturbance
voltages on the 34-node feeder. With constraint βi ≤ 0.5, ∀i.

Node #
% loading

70 75 80 85 90 95 100
844 0.231 0.113 0.007 0 0 0 0
846 0.5 0.5 0.5 0 0 0 0
848 0.5 0.5 0.5 0 0 0 0
890 0.5 0.5 0.5 0.456 0.382 0.319 0.258∑
i βipi∑
i pi

0.184 0.135 0.090 0.061 0.051 0.043 0.034
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Figure 4.11: Post-fault phase voltages along the main feeder length when the load drop is
uniformly 8% across three phases.

from the single-phase optimization were used alongwith adjustments in the source node
voltage and regulator tap-ratios. Figure 4.11 shows the three phase-voltages along the main
feeder length when a uniform PEV-induced load drop of 8% were applied across the feeder
(for simplicity, the voltages on the laterals have not been shown). Post-fault voltage at
phase-A of node 832 reaches 1.1 p.u.. However, if there is imbalance in the distribution
of PEV-charging load across three phases, even a smaller load drop could potentially cause
overvoltage issues. For example, Figure 4.12 shows a situation when 15% load on phase-A
were dropped due to PEV-tripping but none of the base case loads were dropped on other
phases. Voltage at phase-A of node 832 rises up to 1.1 p.u. while other phase voltages
remain nice, even though overall load drop in ths system is only about 5%.

4.5 Summary

It has been shown that potential overvoltage situations can be assessed using tools that
are based on the power flow equations. This can be achieved by introducing variables βi to
describe the proportion of PEV charging load at each node i. Three situations have been
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Figure 4.12: Post-fault phase voltages along the main feeder length when the load drop is
concentrated at 15% on phase-A.

considered, 1) uniform distribution of PEV charging load across all loads, 2) sensitivity
between various βi, and 3) minimum charging load that can cause overvoltage issues. The
outcome in each case demarcates between benign conditions where all post-disturbance
voltages remain below 1.1 pu, and unacceptable situations where at least one node voltage
rises above 1.1 pu.

This work has identified a potentially significant issue associated with synchronous
behavior of PEV charging loads. When grid voltage sags below 80% of nominal, PEV
chargers are likely to trip [76]. Voltage sags often affect entire distribution feeders, and may
be even more widespread when initiated by an event on the transmission system. Study of
realistic scenarios show that once the initiating event has been cleared, voltages may easily
rise above 1.1 pu. This would result in further load tripping, including any remaining PEV
chargers [76]. The resulting overvoltage conditions would damage electrical equipment
and remaining loads.
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CHAPTER V

Non-linear Dynamics of Hysteresis-based Control

The primary challenge in control of aggregate loads is the danger of synchronization
of load response. For example, in hysteresis-based control a step change in control input
can lead to large power swings (Chapters II and III), or a distant fault could lead to critical
voltage rise (Chapter IV). Successful control design requires an accurate representation of
the system dynamics. In the available hysteresis-based load control studies, usually some
reasonable assumptions such as initial steady state, slow control input, 50% duty cycle,
etc. [33, 34, 73, 94] are used to derive an analytical model, or the model is established
through system identification techniques [29, 31,32]. However a true analytical model that
can capture the fast (often non-smooth) dynamics of the loads will help in designing more
efficient control.

The work presented here specifically address the issue of non-linear dynamic behavior
of hysteresis-based loads. While the focus of this chapter would be on PEV chargers,
the analysis is applicable to other types of hysteresis-based loads, e.g. TCLs, as well. A
state-space model is developed to accurately represent the system response to rather non-
restrictive control input signals. The developed model is tested against a wide variety of
control input, and is used to understand some interesting non-linear dynamic behaviors
displayed by hysteresis-based loads.

5.1 Modeling

In modeling the aggregate demand response of PEV chargers, a homogeneous noise-
free system would be considered. A typical charging profile is shown in Fig. 5.1 where
the state-of-charge (SoC) always remains within the hysteresis deadband set up around a
nominal SoC profile. While the deadband width was proportional to the maximum charge
requirement (Emax) of the individual chargers, introducing a new state variable as the nor-
malized SoC results in a normalized deadband spread symmetrically around zero [73]. The
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Table 5.1: Key symbols for Chapter V

Nv number of PEVs
N number of sections the deadband width is split in
SoC state-of-charge (kWh)
S̃oC normalized state-of-charge
Pmax maximum charging rate (kW )
Pnom nominal charging rate (kW )
Emax battery charge capacity (kWh)
∆ deadband width as a fraction of battery capacity
xi(t) number of chargers in ith bin
u(t) shift in normalized SoC profile over time
v(t) rate at which normalized SoC profile changes
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Figure 5.1: Hysteresis-based charging profile.

resulting normalized SoC (S̃oC) dynamics was shown to be:

˙̃
SoC(t) =

(s(t)Pmax − Pnom)

Emax
(5.1)

where, s(t) =


1, S̃oC(t) ≤ −∆/2

0, S̃oC(t) ≥ ∆/2

s(t−), otherwise.

and s(t−) = limδt→0+ s(t − δt). With this formulation the width of the normalized dead-
band becomes ∆. The rest of this chapter will dwell on the normalized deadband and
normalized SoC, and henceforth, for simplicity, the term “normalized” will be dropped and
“deadband” and “SoC” will be used to refer to “normalized deadband” and “normalized
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SoC”, respectively. Moreover, let two parameters, αon and αoff , be introduced as the rates
of increase and decrease of (normalized) SoC, respectively. From (5.1) ,

αon :=
(Pmax − Pnom)

Emax

αoff := −Pnom
Emax

(5.2)

More generally, these rates αon and αoff would be time-varying, αon(t) and αoff (t). For
example, when the nominal charging rate, Pnom(t), is a time-varying parameter instead of
a constant, Pnom, as shown in (5.1). However, in such cases, assuming that the variation
is relatively small enough, average values, αon and αoff , could be used to account for the
varying rates αon(t) and αoff (t).

5.1.1 Case 1: All Chargers Inside the Deadband

The dynamics (5.1) forces all the PEV chargers to move inside the (normalized) dead-
band. Once a charger is inside the deadband, it will remain inside unless the deadband
limits start moving about too quickly (it is alright if the deadband shifts slowly, as dis-
cussed in [31, 33]), or the charging completes. One approach in capturing the aggregate
dynamics is to split the deadband width into N sections of equal width

δbin := ∆/N (5.3)

and notice the migration of chargers from one section to another. Considering that at any
moment, some of the chargers lying within the deadband will be in ON-state while the
rest in OFF-state, it is therefore useful to consider N number of bins of equal width each
holding a (not necessarily equal) number of “ON” chargers and another N number of bins
each holding a number of “OFF” chargers, while the number of chargers in those 2N bins
determined from the probability distribution of the population’s SoC. Fig. 5.2 presents a
typical such scenario. The deadband is split up into N equal-width sections. The number
of chargers, both in ON- and OFF-state, within those sections can be easily computed from
the distribution of chargers over their SoC. Thus a bin of chargers (separately for ON-
and OFF-state) is considered at each of those sections so that the height of bin represents
the probability density of chargers (ON or OFF, respectively) inside that section. Bins
numbered 1 to N account for the ON-state chargers while bins numbered N + 1 to 2N

account for the OFF-state chargers. The chargers in the ON-state are moving to the right
(as their SoC increases) at a speed αon and the OFF-state chargers are moving to the left
at a rate αoff . The dynamics (5.1) restricts that no ON-state charger can exist right to the
boundary wall at the upper deadband limit, while no OFF-state charger may exist left to
the boundary wall at the lower deadband limit. Any ON-state charger hitting the wall at
the upper deadband limit instantly switches to OFF-state and any OFF-state charger upon
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hitting the wall at the lower deadband limit switches to ON-state.

... ...

......

on

-off

1 2 k-1 k N-1 Nk+1

2N 2N-1 m+1 m N+2 N+1m-1

vv

v v

Figure 5.2: Inter-bin migration when all the loads are inside the deadband.

5.1.1.1 Case 1A: Static Deadband

To start with, the deadband is assumed to be static, i.e. the deadband position (shift
from nominal), u(t), as well as the speed, v(t) = u̇(t), with which the deadband limits
shift are both zero (u(0) = 0, v(0) = 0). Let the height of the ith bin, representing the
probability density of chargers in that bin, at time t be xi(t) ∀i = 1, 2, 3, . . . , 2N. The
probability that a PEV lies within the ith bin is then xi(t)δbin, and hence,

δbin

2N∑
i=1

xi(t) = 1.

Clearly the change in height xi(t) is nothing but the difference between inflow of chargers
from (i − 1)th bin and outflow of chargers from ith bin [33], for i = 2, 3, . . . , 2N. While
for i = 1, the inflow happens from the 2Nth bin. Taking care of the switching at the two
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deadband limits, the dynamics can be written as

ẋi(t)δbin =


−x2N(t)αoff − x1(t)αon, i = 1

xi−1(t)αon − xi(t)αon, i = 2, 3, . . . ,N

xN(t)αon + xN+1(t)αoff , i = N + 1

−xi−1(t)αoff + xi(t)αoff , i = N + 2,N + 3, . . . , 2N

(5.4)

with the total power demand as

Ptot(t) = NvPmaxδbin

N∑
i=1

xi(t) (5.5)

It is to be noted that (N + 1)th to 2Nth bins correspond to OFF-state chargers and hence
does not contribute to instantaneous power demand. This result holds when the deadband
is static. However if the deadband starts to move, say with a rate v(t), the effective rate at
which the migrations take place would change. For example, if the deadband limits move
with a rate v = αon/2 in the same direction as αon (as shown in Fig. 5.2), the effective rate
at which the ON-state chargers in Nth bin hit the upper limit would be αon/2 and the rate at
which OFF-state chargers in 2Nth bin hit the lower deadband limit would be αon/2−αoff .

5.1.1.2 Case 1B: Slowly Moving Deadband

If the rate, v(t), at which the deadband limits move is less in magnitude than the natural
rates, αon and −αoff (since αoff < 0 by definition (5.2)), then the migrations would still
keep taking place, but with adjusted rates as (αon − v(t)) and (−αoff + v(t)) instead of
αon and −αoff , respectively. Consequently, the dynamics of migration in (5.4) can be
modifed to

ẋi(t)δbin =


− (x2N(t) (αoff − v(t)) + x1(t) (αon − v(t))), i = 1

(xi−1(t)− xi(t)) (αon − v(t)), 2 ≤ i ≤ N

(xN(t) (αon − v(t)) + xN+1(t) (αoff − v(t))), i = N + 1

− (xi−1(t)− xi(t)) (αoff − v(t)), N + 2 ≤ i ≤ 2N

(5.6)

and total power given by the same (5.5). Existence of terms such as xi(t)v(t) in the right-
hand-side of (5.6) tells that the resulting state-space model is a bilinear one [33], where
states of the system are xi(t)∀ i = 1, 2, 3, . . . , 2N.

5.1.1.3 Case 1C: Fast Moving Deadband

It is expected that the state-space model would become further complicated as some
different scenarios are looked into, such as a fast moving deadband. Till the rate of dead-
band shift is “slow”, i.e. αoff < v(t) < αon, the chargers would keep on hitting the two
boundary walls, right boundary wall for the ON-state chargers and left bundary wall for
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the OFF-state chargers, and as a result all of the chargers would remain inside the mov-
ing deadband. But as soon as, the rate of deadband shift becomes too high, the switching
between states would cease to operate normally. For example, if the deadband is moving
towards right with a speed v(t) > αon, there would be no more switching at the boundary
wall at the upper deadband limit, although the OFF-state chargers would keep on hitting
the wall at the lower deadband limit with a rate (v(t)− αoff ). Consequently, the Nth bin
will get detached from the upper deadband limit and start to lag behind it, and equivalently
some of ON-state chargers would lie outside the deadband (left of the lower limit). There-
fore, structurally the model in such scenario becomes equivalent to the ones covered in
Sections 5.1.2.1 and 5.1.2.2.

5.1.2 Case 2: Some or All Chargers Lying Outside the Deadband

It is assumed that initially all the chargers were inside the deadband and as the deadband
moved faster than the natural rates, αon and −αoff , some or all of the chargers fell outside
the shifted deadband. Fig. 5.3 shows a typical case where the deadband has effectively
moved to right, and some of the ON-state chargers now lie left of the lower deadband
limit. By looking at the dynamics in (5.6), it can be observerd that, as v(t) increases
and approaches αon, the rate of inter-bin migration of ON state chargers, proportional to
(αon − v(t)), also decreases. As v(t) increases beyond αon both the inter-bin migration in
ON state, as well as ON-to-OFF state switching at the right boundary completely stops and
a “gap” is created between the Nth bin and the right boundary wall. Equivalent situation
happens in OFF-state when v(t) decreases beyond αoff , as shown in Fig. 5.4. Assuming
that initially all the chargers were inside the deadband limits, the “gap” between the extreme
end bins and boundary wall can be defined as,

urel∆ (t) :=

 0, t = 0∫ t

0

f (τ, v (τ)) dτ, t > 0
(5.7)

where the f : (0,∞]× R→ R is defined as

f (τ, v (τ)) :=


0, τ ∈ T0

v(τ)− αon, τ ∈ T1

v(τ)− αoff , τ ∈ T2

(5.8)

and,

T0 :=
{
τ
∣∣∣urel∆ (τ−) = 0

∧
v(τ) ∈ (αoff , αon)

}
(5.9a)

T1 :=
{
τ
∣∣∣(urel∆ (τ−) = 0

∧
v(τ) ≥ αon

)∨
urel∆ (τ−) > 0

}
(5.9b)

T2 :=
{
τ
∣∣∣(urel∆ (τ−) = 0

∧
v(τ) ≤ αoff

)∨
urel∆ (τ−) < 0

}
(5.9c)
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with urel∆ (τ−) = lim
δτ→0+

urel∆ (τ − δτ), and
∨

and
∧

denote standard Boolean operators.

Clearly, assuming that initially all chargers were inside the deadband limits, the variable
urel∆ (t) would be zero till the time v(t) is less than the natural rates of chargers. As v(t)

becomes higher than αon, urel∆ (t) would be positive and the number of bins lying outside
the deadband limits would be proportional to urel∆ (t). Please note that, bins will lie below
the lower deadband limit when urel∆ (t) > 0, and above the upper deadband limit when
urel∆ (t) < 0. Let nt be the number of bins (either ON or OFF) lying outside the deadband
limits at time t. Then,

nt := min

(⌈∣∣urel∆ (t)
∣∣

δbin

⌉
,N

)
; (5.10)

It is to be noted that while the actual deadband position may lie within a bin, thereby making
a part of that bin outside the deadband limits and the rest inside, it suffices to consider the
whole of that bin outside the bin, as “ceiling” function does in (5.10), because the width of
the bin is a very small fraction, 1/N, of the deadband width.

Note:If u(t) undergoes a step change, then v(t) will be undefined at that instant and
(5.7) is no longer applicable, because f (τ, v (τ)) becomes undefined. One way to resolve
this issue is to assume that practically all step changes can be approximated by a super-fast
ramp signal, and this way v(t) is defined everywhere. And with that, the gap urel∆ (t) can
be always computed using (5.7). Because there is no limit to how large the v(t) can be, a
step input canl be smoothed into a sufficiently fast ramp input. Another way of looking at it
is by decomposing the shift in deadband into one component u(t) that varies continuously
and another component ∆u(t) that is constant apart from step changes. The continuous
component u(t) is used to determine v(t), and thus drives variations in urel∆ (t) according
to (5.7). To account for the step-wise contribution given by ∆u(t), the total variation in
urel∆ (t) is given by,

urel∆ (t) = urel∆,5.7(t) + ∆u(t)

where urel∆,5.7(t) refers to the value of urel∆ (t) given by (5.7).
The aim is to be able to quantify the inter-bin migration of chargers in this scenario. In

Section 5.1.1 the deadband was split into N equal parts and the number of chargers, both
in ON- and OFF-state, lying in those equal parts were monitored to ultimately derive the
total power demand Ptot(t). This resulted in a state-space of length 2N. When the number
of chargers lying outside the deadband is under consideration, a first logical extension
could be to increase the number of bins so as to cover the shift in deadband. This would
require a larger number of bins and hence a larger state-space to handle. It might even
cause scalability and/or computational issues if the shifts in deadband are unpredictably
large, e.g. a few times the deadband width itself. However a closer inspection reveals that
stretching the state-space is not be necessary, and the same 2N number of states are able to
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Figure 5.3: Inter-bin migration when some chargers lie left of the deadband.

capture the dynamics under situations such as Fig. 5.3.
Let us next state a result that establish mathematically that no matter what the control

input is, the initial 2N bins are sufficient in capturing the dynamics. In order to do that, let
the following variables be defined:

S̃oC
U

on(t) := Maximum SoC among all chargers in the ON-state at time t

S̃oC
L

on(t) := Minimum SoC among all chargers in the ON-state at time t

S̃oC
U

off (t) := Maximum SoC among all chargers in the OFF-state at time t

S̃oC
L

off (t) := Minimum SoC among all chargers in the OFF-state at time t (5.11)

Theorem V.1. If there exists a time instant such that all the loads together (regardless
of their state) span a width that is less than or equal to the width of the hysteresis band
(not necessarily lying within the exact band limits), then for all subsequent time instants
those loads will span a width that is less than or equal to the width of the hysteresis band.
Mathematically,

∃ t0 | max
(
S̃oC

U

on(t0), S̃oC
U

off (t0)
)
−min

(
S̃oC

L

on(t0), S̃oC
L

off (t0)
)
≤ ∆,

(5.12a)

=⇒ ∀ t > t0, max
(
S̃oC

U

on(t), S̃oC
U

off (t)
)
−min

(
S̃oC

L

on(t), S̃oC
L

off (t)
)
≤ ∆.

(5.12b)
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Proof. Please refer to Appendix D for the proof.

Theorem V.1 shows that it is indeed possible to quantify the aggregate power dynamics
by simply considering the state-space of 2N number of bins spanning a width, ∆, equal to
that of the deadband. Next two sections discuss how this can be achieved.

5.1.2.1 Case 2A: Chargers Lying Left to the Lower Limit (urel∆ (t) > 0)

Let us consider the case when some (or all) of the chargers are lying to the left of the
lower deadband limit. There is a gap between the right-most ON state charger and the
upper deadband limit, as illustrated in Fig. 5.3. Thus there will be no hitting at the right
boundary wall and hence no switching from ON-to-OFF state. Consequently all the ON
state bins would move towards right with the same natural rate, αon and there would be
no inter-bin migration in the ON state. However there would be continued switching from
OFF-to-ON state at the left boundary wall thereby increasing the height of the ON-state bin
SoC of which coincides with the lower deadband limit.

When all the chargers were inside the deadband limits (Section 5.1.1) the positions of
the bins were easily referenced with the help of the deadband. Even though the deadband
moved with v(t) ∈ (αoff , αon), the bins’ position relative to the deadband remained fixed.
In the case when chargers lie left to the lower deadband limit, it would be helpful to choose
the positions of the ON-state bins as reference. That is, for the sake of analysis, an equiva-
lent situation is considered where the ON state bins remain fixed and the deadband moves
with relative rate (v(t) − αon), and the OFF state chargers change their SoC at a relative
rate of (αoff − αon). Due to absence of any boundary switching from ON-to-OFF state,
the height of the (N + 1)th bin in the OFF-state would simply decrease with rate propor-
tional to (αon − αoff )xN+1(t), and the rate of OFF-to-ON state switching is proportional
to x2N−nt(t) max (0, v (t)− αoff ), where nt is given by (5.10). It is to be noted that if
v(t) < αoff there can be no OFF-to-ON switching. The state dynamics of the bins is then
given by:

ẋi(t)δbin =



x2N−nt(t) max (0, v (t)− αoff ) , i = nt + 1

xi(t) (αoff − αon) , i = N + 1

−(xi−1(t)− xi(t)) (αoff − αon) , i = N + 2,N + 3,

. . . , 2N− nt − 1

−xi(t) max (0, v (t)− αoff )
−xi−1(t) (αoff − αon)

, i = 2N− nt

0, all other i

(5.13)

5.1.2.2 Case 2B: Chargers Lying Right to the Upper Limit (urel∆ (t) < 0)

When some or all of the chargers lie to the right of the upper deadband limit, as illus-
trated in Fig. 5.4, similar formulation as in Section 5.1.2.1 can be excercised by considering
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Figure 5.4: Inter-bin migration when some chargers lie right of the deadband.

the position of the OFF-state bins as reference. In this frame of reference, the OFF state
chargers stand still resulting in no inter-“OFF bin” migration, while ON state chargers
change SoC at rate (αon − αoff ), and the ON-to-OFF switching at the right boundary is
proportional to xN−nt(t) max (0, (αon − v (t))), where nt is the number of OFF-state bins
lying right of the upper deadband limit at time t, given by (5.10). The state equations
become:

ẋi(t)δbin =



−xi(t) (αon − αoff ) , i = 1

(xi−1(t)− xi(t)) (αon − αoff ) , i = 2, 3, . . . ,N− nt − 1

−xi(t) max (0, αon − v (t))

+xi−1(t) (αon − αoff )
, i = N− nt

xN−nt(t) max (0, αon − v (t)) , i = N + nt + 1

0, all other i

(5.14a)

State equations in (5.6), (5.13) and (5.14) together represent the complete aggregate
power model, where aggregate power is given by (5.5). To summarize, Table 5.2 shows
how each of these state equations applies to different scenarios of control input and the
hysteresis band positions.
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Table 5.2: Aggregate non-linear model of hysteresis-based loads.
PPPPPPPPPv(t)

urel∆ (t)
< 0 = 0 > 0

> αon (5.14) (5.13) (5.13)
∈ [αoff , αon] (5.14) (5.6) (5.13)
< αoff (5.14) (5.14) (5.13)

5.2 Numerical Verification

The model built in Section 5.1 is verified against Monté-Carlo simulation of a homoge-
neous population of PEV chargers1 each following the dynamics in (5.1). Fig. 5.5 illustrates
a situation when the deadband moves slowly so that all the chargers stay within the dead-
band limits. The deadband is set to a sinusoidal oscillation (Fig. 5.5(a)) so that the rate of
movement stays inside (αoff , αon), as shown in Fig. 5.5(c). Since the deadband keeps mov-
ing at enough slow rate, the chargers always remain inside the deadband limits as supported
by the fact that urel∆ (t) stays at zero throughout (Fig. 5.5(a)). The resulting aggregate power
demand is shown in Fig. 5.5(b) which verifies that the model output matches the Monté-
Carlo simulation output. The case of fast movement of the deadband, resulting in chargers
lying outside the deadband, is treated in Fig. 5.2. As the deadband position u(t) moves
faster than the natural rates, as shown in Fig. 5.6(c), some chargers start to fall outside the
deadband limits as supported by the non-zero values of urel∆ (t) in Fig. 5.6(a). Just as v(t) in-
creases beyond αon, the relative “gap” between the bins and the deadband urel∆ (t) becomes
positive and stays so until such a time v(t) has dropped below αon and the bins slowly catch
up and get inside the deadband limits. The aggregate demand shows large oscillation which
fluctuate between the maximum and zero (Fig. 5.6(b)). In Fig. 5.2, this effect of fast forced
fluctuation is created by high frequency pulsating movement of the deadband (Fig. 5.7(a))
followed by a very slow sinusoidal oscillation. Fig. 5.7(b) shows that even after the dead-
band movement slows down, the total power keeps oscillating between maximum and zero
but with a reduced frequency. Thus an exposure to high frequency, and relatively large,
movements in the deadband position can render the system almost unresponsive to small
and slow changes in the deadband position.

5.3 Nonlinear Dynamic Behavior

Hysteresis-based control mechanism introduces switching-induced nonlinearity in the
system. Particularly interesting is the response of the system to control input signals that
periodically ramp up and down.

1Parameters for the simulation are (Table 5.1): Nv = 1000, N = 200, ∆ = 0.05, Pmax = 4 kW,
Pnom = 2.4 kW, Emax = 16 kW-hr. The continuous dynamics in (5.1) was discretized using a time step of
0.2 min.
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Figure 5.5: System response when the deadband moves slowly and all the chargers are
always within the deadband.
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Figure 5.6: System response when the deadband moves rapidly and some of the chargers
fall outside the deadband.
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Figure 5.7: Exposure to frequent deadband movement renders the system less responsive
to slowly variations.
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5.3.1 Response to Slow Ramps

Fig. 5.8(a) shows such an input which ramps up and down periodically. Each ramp up
and ramp down sequence is of duration 15.4 min each and ramp rates less than ‘natural’
(Fig. 5.8(b)). Please note that the since the input varies at a slower than “natural” rate, the
chargers always stay within the hysteresis band which is why urel∆ (t) remains zero through-
out. The resulting demand response is a period-1 waveform which keeps on oscillating
closely between the maximum and zero (Fig. 5.8(c)). However interesting phenomena start
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Figure 5.8: Period-1 response to a input of equally wide ramp up and down sequences with
rates 0.0013 min−1 and 0.0017 min−1, respectively, and having a time period
30.8 min.

to happen as the time period of the control input is gradually decreased. Fig. 5.9 show one
such scenario when the total time period of the input is reduced to 24.4 min while keeping
the ramp rates unchanged. Aggregate demand, shown in Fig. 5.9(c), enters into a period-2
orbit, i.e. having a time period twice that of the input, with a reduction in amplitude as well.
The Monté-Carlo simulation results are compared against the state-space model output by
simulating (5.6), in Fig. 5.8(c) and Fig. 5.9(c).

To investigate this further, a bifucation diagram was plotted using a Monté Carlo sim-
ulation of individual dynamics in (5.1). Keeping other parameters fixed, the time period
of the input, Tu, was varied over a wide range, and the intersections of the output with a
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Figure 5.9: Period-2 response to a input of equally wide ramp up and down sequences with
rates 0.0013 min−1 and 0.0017 min−1, respectively, and having a time period
24.4 min.

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

T
u
 (min)

P
n (

M
W

)

Figure 5.10: Bifurcation diagram when the input is a periodic ramp, with ramp up and
down rates as 0.0013 min−1 and as 0.0017 min−1, respectively.
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Poincaré plane, denoted by

Pn := Ptot (nTu) , n ∈ N, (5.15)

were plotted after discarding the transients, n > n0 (a n0 = 5 was found to be sufficient).
The resulting bifurcation diagram is shown in Fig. 5.10. For time period, Tu, values over
∼30 min, the demand follows a period-1 orbit. Periodicity collapses as Tu is reduced, until
a period-2 orbit appears at ∼26 min, which again collapses as Tu is reduced to ∼23 min.
As Tu keep on decreasing, such a sequence of period-adding cascade is observed with
successive periodic regions interspersed by regions of aperiodicity. By carefully selecting
the value of the parameter Tu, different higher periodic orbits can be generated in the system
response. Figs. 5.11(a) & 5.11(b) respresent two such scenarios, at Tu values of 15.6 min
and 12.4 min, when, respectively, a period-3 and a period-4 orbit exist. It is to be noted that
ramp rates are kept fixed at their previous values, ramp up rate at 0.0013 min−1 and ramp
down rate at 0.0017 min−1, for all these figures.
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9 10 11 12 13 14
0

1

2

3

4

5

6

7

8

9

t (hr)

P
to

t (
M

W
)

 

 
actual PEV demand
model output

(b) At Tu = 12.4 min
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Figure 5.11: Demand response at different Tu values, with the ramp up and down rates
fixed at 0.0013 min−1 and as 0.0017 min−1, respectively.

So far the model developed in Section 5.1 truly captured the complex response of the
system. However, model accuracy reduces drastically as time period is chosen from within
one of the aperiodic regions. Fig. 5.11(c) shows a typical such waveform when the input
time period is chosen to be 28.8 min. In this case, the model output and the Monté-Carlo
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simulation start off pretty close to each other but soon, after about one of input cycle,
deviate from each other by a significant large margin. This behavior is similar to what is
observed in a chaotic orbit, where a small error in initial condition can quickly grow out of
bounds. However, finding out exact nature of the time waveform in Fig. 5.11(c) requires
further analysis and is beyond the scope of the present work.

5.3.2 Faster Ramp Rates

It appears that this nonlinear dynamic behavior is rather non-restrictive to any particular
ramp rate. However, the exact nature of the nonlinear response varies as the ramp rates
change. To investigate this, the nonlinear behavior of the demand response was studied
under ramp rates that are faster than the natural rates, while comparing the Monté-Carlo
simulation with the state-space equations in Section 5.1.
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Figure 5.12: Bifurcation diagram when the input is a periodic ramp, with ramp up and
down rates as 0.002 min−1 and as 0.0028 min−1, respectively.

Fig. 5.12 shows a bifurcation diagram when the ramp rates were chosen from beyond
the natural rates, αon and αoff . It is found that the range of stability of period-1 orbit
extends down to Tu ≈24 min. Moreover the earlier observed (Fig. 5.10) period-2 orbit
disappers. A period-3 orbit closely follows the period-1 orbit after narrow band of aperiod-
icity as Tu is decreased. Subsequently a period-5 orbit exists followed by another band of
aperiodcity, while no discernible existence of period-4 is observed. Fig. 5.13 confirms the
existence of period-1 orbit at Tu =24.4 min. Because the ramp rates are higher (in magni-
tude) than the natural rates (Fig. 5.13(b)), some chargers fall out of the hysteresis band as
reflected in non-zero values of urel∆ (t), as in Fig. 5.13(a). It might seem to the naked eye
that very narrow bands of period-2 and period-4 orbit are present at Tu values∼13 min and
∼9.5 min, respectively. However, time waveforms in Fig. 5.14(c) and Fig. 5.14(a) reveal
that it is not the case, while Fig. 5.14(b) shows the presence of an aperiodic region between
the stable period-3 and period-5 regions.
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Figure 5.13: Period-1 response when input time period, Tu, is 24.4 min, and ramp up and
down rates are 0.002 min−1 and as 0.0028 min−1, respectively.
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(a) At Tu =13.2 min
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(b) At Tu =11.93 min
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Figure 5.14: Demand response at different Tu values, with the ramp up and down rates
fixed at 0.002 min−1 and as 0.0028 min−1, respectively.
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The two important observations of the bifurcation analysis of faster ramp rates in
Fig. 5.12 are that the period-1 orbit is stable for a larger parameter region and period-2
and period-4 orbits appear to be absent (or almost indiscernible). In priliminary analysis,
these two findings seem to be quite general for all ramp input faster than natural rates.
Fig. 5.15 illustrates this where a bifurcation diagram is plotted for ramp up and down
rates 0.003 min−1 and 0.004 min−1, respectively. Period-1 orbit now extends down to
Tu = 20 min, narrowly followed by a period-3 orbit, while the period-2 and period-4 orbits
disappear.
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Figure 5.15: Bifurcation diagram when the input is a periodic ramp, with ramp up and
down rates as 0.003 min−1 and as 0.004 min−1, respectively.

5.4 Summary

In this chapter, a hysteresis based charging process for PEVs is considered and detailed
nonlinear state-space model is built to capture the aggregate population dynamics of a large
number of PEV chargers in response to deadband movement. The model is shown to be
able to truly replicate the dynamics even in the range of very large fluctuations in the dead-
band position. It also provides tool to understand the system behavior such as a frequent
strong fluctuation in deadband position rendering the system unresponsive to following
slow fluctuations typically generated from some control actions. The choice of PEV charg-
ers as population is non-restrictive and similar modeling approach could be applied to other
hysteresis-based processes, e.g. thermostatically-controlled-loads. The model developed is
able to truly capture the rich dynamical behavior of hysteresis-based loads. It has been
observed that stability of the system can be disrupted by changing a certain parameters of
the control signal. Bifurcation diagrams are obtained by varying the time period of a pe-
riodic ramp input. When the ramp rates are kept to slower than the natural rates, a period
adding cascade is observed. Stability region of the period-1 orbit is found to increase when
the ramp rates are faster than natural. With a better understanding of the dynamics of the

69



system, it would be easier to design effective demand control algorithms and ensure stable
operations of the grid. However a lot of study is required to fully understand the dynamics.
It would be interesting to obtain quantitative relations between the stability of the response
and the control input parameters.
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CHAPTER VI

Distributed Control of Reactive Power

Much like the way “deferrable’ ’ electrical loads offer increased control of grid oper-
ations, distributed generation units spread across power grid offer additional resources to
the grid. Not only they provide support to the conventional power generation, these are
also capable of extending reactive power support, to improve voltage profiles, minimize
line losses. However one of the main differences between an electrical load and distributed
generation is that distributed generation is heavily reliant upon weather conditions (uncon-
trollable by a central co-ordinator). Thus designing a centralized control for distributed
generation is impractical! However while the standard optimizaiton proceedures can en-
sure optimality of a centralized control scheme, it is rather unclear how to provide such
guarantee in a distributed control set-up.

The goal of this ongoing work presented in this chapter is to design a decentralized al-
gorithm that regulates the reactive power output from highly distributed photovoltaic (PV)
sources. A PV panel produces direct-current power, with production dependent upon the
available solar irradiance. An inverter converts the DC power into alternating-current for
supply to the grid. The rapid variations in net power flow can result in extensive voltage
swings across the grid [59–62]. However PV inverters are capable of providing flexible
reactive power support to the grid. The approach adopted here is to study solutions of a
global optimization routine run under varied operating conditions, by simulating varying
loading and weather scenarios, and then analytically derive a control law that performs
(near-)optimally while taking only local measurements (such as voltage, power consump-
tion, and/or local line flow). First part of this chapter presents how a completely local
control law can be derived in a simplistic set up, while the later part of the chapter focuses
on the modifications required to the control law to be applicable in a more realistic scenario.

6.1 Model Description

6.1.1 PV inverters without storage

The active and reactive power generated by an inverter attached to the j-th PV source
will be denoted by pgj and qgj , respectively. Without local storage, a PV inverter does not
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Figure 6.1: Dependence of PV inverter reactive power capability qg on active power gener-
ation pg.

control pgj , but it can control qgj to be either positive or negative. This reactive power
capability is limited by the inverter’s fixed apparent power capability sj and its variable
active power generation pgj , and is given by [68, 95],

|qgj | ≤
√
s2
j − (pgj )

2 := qgj,max. (6.1)

This relationship is illustrated by the complex power diagram in Fig. 6.1. In [68], it was
found that sj ≈ 1.1pgmax provides sufficient freedom in qgj to realize a substantial reduction
in distribution losses. Under this condition, |qgj | ≤ 0.45pgmax when pgj = pgmax. The choice
of sj ≈ 1.1pgmax is reasonable because inverters are available in discrete sizes and are likely
to be slightly oversized relative to pgmax. For the first part of this chapter, it will be assumed
that the inverters at each node are identical and,

pgj,max = 2 kW, sj = 2.2 kVA, ∀j. (6.2)

This assumption will be relaxed later on.

6.1.2 Grid model

Initial part of this chapter would consider a simplistic grid model which is represented
by a radial distribution feeder with no laterals, as shown in Fig. 6.2. The first node, at the
substation, will be denoted as node 0. Node number increases as the feeder is traversed
away from the substation. The resistance and reactance between nodes i and i+1 are given
by ri and xi, while Pi and Qi denote the active and reactive power flowing from node i
towards node i + 1. The active and reactive power consumed at node i is given by pci and
qci , and the active and reactive power generated by a PV source at node i is given by pgi and
qgi .

Consider a distribution feeder with N + 1 nodes (in the following example, N = 100 is
assumed), and with a PV source at each node. The feeder model can be written using the
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Figure 6.2: Distribution feeder with no laterals.

LinDistFlow form [85, 90, 96], where for each i ∈ {1, 2, ..., N},

Pi−1 =
N∑
j=i

pj =
N∑
j=i

(
pcj − p

g
j

)
(6.3a)

Qi−1 =
N∑
j=i

qj =
N∑
j=i

(
qcj − q

g
j

)
(6.3b)

Vi = V0 −
i−1∑
j=0

(rjPj + xjQj) . (6.3c)

This set of equations provides a simplified and approximate load flow computation. Assum-
ing small line losses, the equations are quite accurate and provide appealing optimization
properties. However, later in this chapter, a more accurate set of load flow equations would
be considered.

6.1.3 Generating scenarios

Five levels of loading (L1-L5) will be considered, with the active load at each node pcj
drawn from a uniform distribution that has mean and width,

L1: 0.625 kW and 1.25 kW,

L2: 0.9375 kW and 1.875 kW,

L3: 1.25 kW and 2.5 kW,

L4: 1.5625 kW and 3.125 kW,

L5: 1.875 kW and 3.75 kW.
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In each of these scenarios, the reactive load at each node qcj is drawn from a uniform distri-
bution with mean value of 0.25pcj and a width of 0.1pcj . For each of the five loadings, three
different solar irradiance conditions are considered,

A. Sunny: all PV systems are generating at pgj = pgj,max.

B. Night time: all PV systems generate pgj = 0.

C. Partly cloudy: the PV system at the first node away from the substation (i.e. at node
1) is assigned either pgj = 0.2pgj,max or pgj = pgj,max with equal probability, and each
subsequent node is assigned,

pgj+1 =

p
g
j , with probability 0.9

pgj+1,max

(
1.2− pgj

pgj,max

)
, with probability 0.1.

(6.4)

For each combination of loading and solar irradiance, twenty realizations were considered
by randomly generating pgj , q

g
j , pcj , q

c
j . The line parameters rj were drawn from a uniform

distribution with range 0.66 Ω to 0.99 Ω, and xj = 1.15rj .

6.2 Central Optimization

For all j ∈ {0, 1, . . . , N} define,

∆Vj := Vj − 1 (6.5a)

∆V eff
j :=


0, |∆Vj| ≤ Vsl

∆Vj − Vsl, ∆Vj > Vsl

∆Vj + Vsl, ∆Vj < −Vsl

(6.5b)

where Vsl is a soft limit for the voltage deviations from 1.0 pu. The desired control objective
is expressed though the following minimization,

min
qgj ,V0

M
(
qgj≥1;V0

)
=

N∑
j=1

βj

(
∆V eff

j

)2

+
N−1∑
j=0

rj(P
2
j +Q2

j) (6.6)

s.t., |Vj| ≤ 1.05, ∀ j ≥ 0

|qgj | ≤
√
s2
j −

(
pgj
)2
, ∀ j ≥ 1.

where βj > 0, ∀j ∈ {1, 2, . . . , N} are weighing parameters associated with voltage devi-
ations. In most distribution systems, the maximum allowable deviation of the voltage Vj
from 1.0 pu is 0.05. For subsequent investigations, the soft limit will be set to Vsl = 0.02.
This allows the optimal control the latitude to minimize losses when the voltages Vj are
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well within normal bounds, while smoothing the control action as the voltages begin to
significantly deviate from 1.0 pu. It is also assumed that the substation voltage V0 can be
adjusted.
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Figure 6.3: Correlations between the local observables Vj and qcj and the optimal reactive
dispatch qgj .

The central optimization (6.6) was evaluated, using βj = 1 ∀j ∈ {1, 2, . . . , N}, for
20 instances of each of the 15 cases discussed in Section 6.1.3. The goal was to identify
any correlation between the optimal qgj values and the locally observable (to the PV-node)
quantities Vj , pcj , p

g
j , and qcj . Notice though that the load flow equations in (6.3) suggest that

the qgj values are directly linked with the reactive power flow in the system, which directly
affects the voltage profile on the feeder. Thus a strong correlation is expected between qgj
and the locally observable variables qcj and Vj .

Figs. 6.3(a)-6.3(b) show that some correlations exist between qgj and the local variables
Vj and qcj . Red dots correspond to the qgj that encounter their limit defined in (6.1) while
black dots show those qgj that are within their limit. Careful investigation reveals that qgj is
generally affine with qcj , with a slope that is approximately 1. Also qgj increases or decreases
linearly as Vj deviates from its nominal value of 1 pu by more than Vsl = 0.2 pu. It remains

75



fairly independent of any voltage deviations that are within the soft bounds.

6.3 Local Control Strategy

The imperfect correlations in Fig. 6.3 suggest that qgj is often set to qcj when the voltage
deviations (Vj − 1) are within soft limits, while responding linearly to voltage deviations
beyond soft limits, |Vj − 1| − Vsl. This apparent strong correlation between the optimal qgj
and the locally observable qcj and Vj motivates a local control law of the form,

qgj = qcj − α∆V eff
j , ∀ j ≥ 1 (6.7)

where α is a design parameter chosen to optimize qgj . In fact it can be shown that if the
ratio of line reactance and line resistance is constant over the entire feeder (and all βj’s are
equal to 1), the control law in (6.7) is optimal with α = xj/rj . Fig. 6.3(c) illustrates the
correlation between qgj − qcj and Vj . Setting α to xj/rj = 1.15, which follows from the line
parameter choice in Section 6.1.3, the suggested control law (6.7) closely replicates this
observed correlation.

Theorem VI.1. (Optimality of the local control law):
If all line impedances satisfy,

xj
rj
, α, ∀j ∈ {0, 1, 2, . . . , N − 1}, (6.8)

where α is a constant, then the optimal qgj values that minimize the objective functionM
in (6.6) can be computed by observing only the local variables Vj and qcj , and are given by,

qgj = qcj − αβj∆V
eff
j , ∀j ≥ 1. (6.9)

Proof. It is assumed that V0 is set independent of the PV-inverters. The proof then follows
by taking partial derivatives of the objective functionMwith respect to variables qgj ∀j ≥ 1

and using mathematical induction. Please refer to Appendix E for the details.

6.4 Performance of the control law in (6.7)

Fig. 6.4 provides a comparison of the local control law (6.7) and the central optimiza-
tion (6.6), for three distinct cases, 1) a high import case, Fig. 6.4(a), when the substation
is supplying large active power to the feeder, 2) a high export case, Fig. 6.4(b), when the
feeder is returning large active power back to the substation, and 3) a balanced situation,
Fig. 6.4(c), when the generation from the PVs is almost balanced with the load consump-
tion. It can be observed that the local control law almost always matches the optimal values,
except when it has to compensate for neighboring PV sources that have encountered their
limits, as seen in the extremities of Figs. 6.4(a) and 6.4(b).
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Figure 6.4: Testing optimality of the local control law in - (a) high import, (b) high export,
and (c) balanced situation.
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While the control law in (6.7) performs well in the simplistic feeder model in Sec-
tion 6.1, further research is required to investigate more general situations. For example in
a practical scenario it is expected that there would be less than 100% PV penetration, non-
uniform ratio of line reactance to resistance ratio, and feeders with high line losses. Also it
is likely that the feeder will have laterals, voltage regulators, and regulating transformers.
To investigate some of these scenarios a modified IEEE-34 feeder model is considered.

6.5 Adjusted IEEE-34 Feeder
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Figure 6.5: Comparison between the positive-sequence voltages for the three-phase model
and the corresponding voltages for the single-phase equivalent model.

IEEE 34 node distribution, shown in Fig. 6.5, is an existing 24.9 kV feeder in Arizona
[92,97]. To ease in our analysis, the three-phase feeder would be converted to an equivalent
single-phase feeder. Fig. 6.6 shows a comparison of the positive sequence voltage of the
actual IEEE-34 feeder and the voltage of the single-phase approximation of the feeder. It
shows that the single phase approximation of the feeder is close to reality at most of the
nodes except may be at nodes around 808-814 where the discrepancy can be attributed to
signficant voltage imbalance (among three phases) at those locations.

In the previous example of a no-lateral feeder with 100 nodes, each of the nodes was
assumed to be supplying a household and hence drawing active power of the order of a
few kilo-Watts. However in IEEE-34 feeder, each node supplies a load that is a few order
higher than a single household consumption. To take care of this mismatch, it is assumed
that at each node, there are a number of houses (proportional to the amount of load at that
node) each of which has an identical PV panel. Thus if we denote the average household
active power consumption by < pc >, maximum active power generation from a single PV
panel by pgmax and size of a PV inverter as s, then at node i, there would be an “aggregated
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Figure 6.6: Comparison between the positive-sequence voltages for the three-phase model
and the corresponding voltages for the single-phase equivalent model.

PV panel” with

maximum generation, pgi,max = pgmax
pci

< pc >
(6.10a)

and size of inverter, si = s
pci

< pc >
(6.10b)

where, pci is the active power consumption at node i. For those nodes that do not draw any
power, no PV panel is assumed to be present. Thus in contrast to the previous example, in
this case we will have less than 100% penetration of PV panels. It is to be noted, that IEEE-
34 feeder has quite a few “distributed loads” too. These distributed loads are converted to
equivalent “spot loads” with the help of dummy nodes as discussed in [88].

One more important aspect of this feeder is the presence of voltage regulating elements -
shunt capacitors at nodes 844 and 848, and the tap-changing transformers on the connecting
lines 814-850 and 852-832. The presence of shunt capacitors can be handled easily by
subtracting reactive power generation by the shunt capacitors from the consumer reactive
load to obtain “net reactive power consumption” qci at node i.

6.6 Global Optimization

A central optimization problem is formulated in the same way as in (6.6). The optimiza-
tion is run for three different loading scenarios, created by scaling the consumption level to
- 50%, 100%, & 150% of the published data, and three representative weather conditions,

• sunny: all PV systems are generating at pgj = pgj,max,

• night time: all PV systems generate pgj = 0, and
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• partly cloudy: first available PV system after substation, at some node ‘j’, is assigned
either pgj = 0.2 pgj,max or pgj = pgj,max both with probability 0.5, and each subsequent
available PV system (also considering the lateral branches), at node ‘k’, is assigned

pgk =

 pgk,max
pgj

pgj,max
, with probability 0.9

pgk,max

(
1.2− pgj

pgj,max

)
, with probability 0.1

(6.11)

Simulations are run for different loading and weather conditions, with five instances gener-
ated each time in a ‘partly cloudy’ scenario to evaluate possible PV generation sequences,
and considering βj = 2 ∀j. The regulators between nodes 814 and 850, and between 832
and 852 are assumed to be simply maintaining equal voltages across their terminals. Op-
timal values of the reactive power from PV inverters, collected from all such simulations,
were plotted together in Fig. 6.7 in order to find out any correlation between local variables.
To compare with our findings on the no-lateral feeder of 100 nodes, a reference correlation,
given in (6.9), is also shown in Fig. 6.7. While the actual line resistance over line reac-
tance ratio varies throughout the IEEE-34 feeder, the ratios are relatively close, and a mean
ratio is considered to obtain the reference correlation. When the size of a single PV unit
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Figure 6.7: Correlations between the local observables Vj and qcj and the optimal reactive
dispatch qgj , with voltage regulators maintaining equal voltage across terminals.

is kept at 2.2 kW (Fig. 6.7(a)), a lot of the PV systems hit their saturation limits (marked
by red dots). In such cases the rest of the PV systems would try to compensate and hence
deviate from the local control strategy (6.9) which has no information of the other nodes.
When simulations were re-run without the limits on reactive power support by the PV units
(Fig. 6.7(b)), the optimal values come closer to the reference correlation. But even then
the correlation is not quite clear, as opposed to the previously discussed main feeder case.
This necessitates a re-evaluation of the local control strategy. In the next section, these
aberrations would be investigated by obtaining some analytical insights into the globally
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optimal solution.

6.7 Derivation of Optimal Solution

The case of IEEE-34 feeder presents a distinctive scenario in which many of the nodes
do not participate in reactive power control. In fact this scenario is essentially similar to
the effect a reactive power limit has on the optimal solutions, appearing as constraint in
(6.6). Whenever a PV inverter at any node gets saturated by its reactive power limit, the
node effectively ceases to provide any further reactive power support and hence should be
treated as a simple non-PV node. Thus henceforth, for simplicity of analysis, it would be
assumed that there are no limits to reactive power dispatch capability of the PV inverters.
Additionally, as mentioned in Section 6.6, it is assumed that there is no voltage regulation
along the length of the feeder, except the one at the substation (node #0).

6.7.1 Grid Model

For simplicity, a main feeder structure with no lateral (Fig. 6.2) is considered as the
grid model. The adjustments required to deal with branches would be discussed later. Let
us denote the first node (the substation) as node #0 and count up as we go farther, where ri
and xi are the resistance and reactance of the edge between node #i and node #(i+ 1). Pi
andQi are the real and reactive power coming out of node #i (entering the rest of the grid);
pci and qci are the real and reactive power consumed at node #i. As discussed in Section 6.5,
the net reactive power consumption, qci , is composed of the consumer reactive load, qLi , and
the reactive power compensation, qcapi , through shunt capacitance (including line charging
capacitance). pgi and qgi are the real and reactive power generated by photo-voltaic cells
(PVs) sitting at node #i. Thus,

qi = qci − q
g
i (6.12a)

pi = pci − p
g
i (6.12b)

where, qci = qLi − q
cap
i , qcapi = qcapi,ratedV

2
i (6.12c)

where, qcapi,rated is the rated reactive power (in p.u.) supplied by the shunt capacitance at node
#i. Let us assume that there are m ∈ {1, 2, . . . , N}, number of nodes having a PV system
(with unlimited capacity of reactive support), and locations of the PV nodes form a set

K = {k1, k2, . . . , km} , 1 ≤ m ≤ N (6.13)

where, 1 ≤ ki < kj ≤ N, ∀ 1 ≤ i < j ≤ m

Consequently,

∀ i /∈ K, si = qgi = pgi = pgi,max = 0 (6.14)

81



6.7.2 Line Flow Properties

The power flow equations in a radial distribution feeder, with no laterals, can be sim-
plified as, [85, 90, 96]

∀i ∈ {0, 1, 2, 3, ..., N − 1} , Pi = Pi+1 + ri
(
P 2
i +Q2

i

)
+ pi+1 (6.15a)

Qi = Qi+1 + xi
(
P 2
i +Q2

i

)
+ qi+1 (6.15b)

V 2
i+1 = V 2

0 − 2
i∑

j=0

(rjPj + xjQj) (6.15c)

with, PN = QN = 0 (6.15d)

where it is assumed that Vi ≈ 1 (in p.u.), ∀i. In our case, the reactive power consumed at
each node, pi, is un-controllable while the reactive power, qi, can be controlled at certain
node locations i ∈ K.

Claim. Under all acceptable operating conditions, the following assumptions are valid

∀j ∈ {0, 1, . . . , N − 1} , ∀k ∈ K, ∂Pj
∂qk

= 0, (6.16a)

and,
∂Qj

∂qk
=

{
0, k ≤ j

1, k ≥ j + 1
(6.16b)

Justification. The relation (6.16a) follows from the fact that, in any distribution feeder, the
active power losses are very small (usually less than 5%) and hence can be neglected in
(6.15a). While in absence of any appreciable reactive power support, the reactive power
losses could also be similarly be neglected in (6.15b), the argument fails in presence of
reactive power control. Because of (6.16a), the line losses appearing inM, (6.6), can be
reduced by minimizing reactive power flows, Qi. As |Qi| → 0, the reactive power losses
in (6.15b) can no longer be neglected. However, in such scenarios, (P 2

i +Q2
i ) ≈ P 2

i and
(6.16b) follows rather trivially from (6.15b) and (6.16a). �

Also, the power flow equations in (6.15) can be rewritten as,

∀i ∈ {0, 1, 2, 3, ..., N − 1} , Pi = Pi+1 + pi+1 =
N−1∑
j=i

pj+1 (6.17a)

Qi = Qi+1 + xiP
2
i + qi+1 =

N−1∑
j=i

(
xjP

2
j + qj+1

)
(6.17b)

V 2
i+1 = V 2

0 − 2
i∑

j=0

(rjPj + xjQj) (6.17c)

with, PN = QN = 0 (6.17d)

82



Before moving on to solve the optimization problem, let us introduce the following nota-
tions,

γi :=

∑ki+1−1
n=ki

xn∑ki+1−1
n=ki

rn
, ∀i ∈ {1, 2, . . . ,m− 1} (6.18a)

and, γ0 :=

∑k1−1
n=0 xn∑k1−1
n=1 rn

(6.18b)

which would be helpful later on.

6.7.3 Solving the Optimization

With respect to the discussion in Section 6.7.1, the objective function can be rewritten
as,

min M (qk |k ∈ K) =
N−1∑
j=0

(
βj+1

(
∆V eff

j+1

)2

+ rj(P
2
j +Q2

j)

)
(6.19)

where K was defined in (6.13). Optimal reactive power dispatch qgi ’s can be computed
uniquely from optimal qi’s using (6.12). It is to be noted that, for ease of analysis, the
voltage inequality constraints in (6.6) have been ignored. It would be assumed for the
purpose of analytical computations, that generally, the objective function in (6.19) would
keep the voltage deviations low, and any additional adjustment can be taken care of by the
voltage regulator at the substation (node #0) and also by the weighing parameters βj’s.

The optimization problem can be solved using the simultaneous equations,

∀ i ∈{1, 2, . . . ,m} , fi :=
∂M (qk |k ∈ K)

∂qki
= 0 (6.20)
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Claim. Optimal solutions of (6.19) can be summarized as,

∀ i ∈ {2, 3, . . . ,m− 1} ,

qki = −xki−1P
2
ki−1 −

ki−2∑
j=ki−1

(
xjP

2
j + qj+1

)(∑j
n=ki−1

rn∑ki−1
n=ki−1

rn

)

−
ki+1−2∑
j=ki

(
xjP

2
j + qj+1

)(∑ki+1−1
n=j+1 rn∑ki+1−1
n=ki

rn

)
+

ki−1∑
j=ki−1

βj+1∆V eff
j+1

Vj+1

(∑j
n=ki−1

xn∑ki−1
n=ki−1

rn

)

+

ki+1−2∑
j=ki

βj+1∆V eff
j+1

Vj+1

(
γi−1 −

∑j
n=ki

xn∑ki+1−1
n=ki

rn

)
+ (γi−1 − γi)

N−1∑
j=ki+1−1

βj+1∆V eff
j+1

Vj+1

(6.21a)

and,

qk1 = −xk1−1P
2
k1−1 −

k1−2∑
j=0

(
xjP

2
j + qj+1

)(∑j
n=1 rn∑k1−1
n=1 rn

)

−
k2−2∑
j=k1

(
xjP

2
j + qj+1

)(∑k2−1
n=j+1 rn∑k2−1
n=k1

rn

)
+

k1−1∑
j=0

βj+1∆V eff
j+1

Vj+1

(∑j
n=1 xn∑k1−1
n=1 rn

)

+

k2−2∑
j=k1

βj+1∆V eff
j+1

Vj+1

(
γ0 −

∑j
n=k1

xn∑k2−1
n=k1

rn

)
+ (γ0 − γ1)

N−1∑
j=k2−1

βj+1∆V eff
j+1

Vj+1

(6.21b)

qkm = −xkm−1P
2
km−1 −

km−2∑
j=km−1

(
xjP

2
j + qj+1

)(∑j
n=km−1

rn∑km−1
n=km−1

rn

)

−
N−1∑
j=km

(
xjP

2
j + qj+1

)
+

km−2∑
j=km−1

βj+1∆V eff
j+1

Vj+1

(∑j
n=km−1

xn∑km−1
n=km−1

rn

)

+ γm−1

N−1∑
j=km−1

βj+1∆V eff
j+1

Vj+1

(6.21c)

Proof. The proof follows in a similar way as in Theorem VI.1. Detailed calculations are in
Appendix F.

The optimal reactive power dispatch from PV inverters can be computed directly from
(6.21) using the relations in (6.12).

6.8 Realizability Issues

The optimal solutions in (6.21) require the knowledge of system variables (power flow,
node voltages) that are non-local with respect to the location of the PV inverter of concern.
Thus it is not possible to compute the globally optimal qgi values, simply by observing
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local quantities such as node voltage and nodal power consumption. To derive a reasonable
local control law, it is necessary to estimate some of the global variables as well. Let
us assume that the impedances are fixed and known to all the PV-nodes participating in
control. Denoting by fi (.) ,∀ i ∈ {1, 2, . . . ,m− 1}, the dependence of optimal solutions
qki on system variables, the following relations can be noted from (6.21), (6.12) and (6.14),

∀ i ∈{2, 3, . . . ,m− 1} ,
qgki = fi

({
Pj, q

c
j+1 |ki−1 ≤ j ≤ ki+1 − 2

}
; {Vj |ki−1 + 1 ≤ j ≤ N }

)
(6.22a)

and,

qgk1 = f1

({
Pj, q

c
j+1 |0 ≤ j ≤ k2 − 2

}
; {Vj |1 ≤ j ≤ N }

)
(6.22b)

qgkm = fm
({
Pj, q

c
j+1 |km−1 ≤ j ≤ N − 1

}
; {Vj |km−1 + 1 ≤ j ≤ N }

)
(6.22c)

It is assumed that, if necessary, measurements can be made about the line power flow,
node voltage, and load drawn at a PV-node [98]. Let us consider the decision to be
taken by the PV-inverter at node ki, i ∈ {1, 2, . . . ,m}, based on only local measure-
ments: Vki , q

c
ki
, pgki , p

c
ki
, Pki and Qki . It can be argued that, with this set of local mea-

surements, a reasonable estimation of the optimal reactive power dispatch, henceforth de-
noted as q̂gki ,∀ i ∈ {1, 2, . . . ,m}, can be made with the help of fixed system parameters
xj, rj,∀ j ∈ {0, 1, 2, . . . , N − 1} and flow equations in (6.17). Different methods have
been suggested to estimate the load at different nodes on a distribution feeder [99–101].
Therefore it would be fair to assume that reasonable estimates of the active and reactive
power consumption: p̂cj, q̂cj ,∀j ∈ {0, 1, 2, . . . , N − 1}, at different nodes can be made.

Claim. Let us assume that real-time estimates of nodal power consumptions, p̂cj and q̂cj ,
are available at each node j ∈ {0, 1, 2, . . . , N − 1}. Then, based on measurements of the
quantities Vki , q

c
ki
, pgki , p

c
ki
, Pki and Qki at PV-node ki, i ∈ {1, 2, . . . ,m}, it is possible to

compute estimates of the quantities:{
V̂l, P̂l, Q̂l | ki−1 ≤ l ≤ ki+1 − 1

}
, when, i ∈ {2, 3, . . . ,m− 1} , (6.23a){

V̂l, P̂l, Q̂l | 0 ≤ l ≤ k2 − 1
}
, when, i = 1, and, (6.23b){

V̂l, P̂l, Q̂l | ki−1 ≤ l ≤ N
}
, when, i = m. (6.23c)

where, P̂N = Q̂N = 0, by construction.

Proof. • Up-stream nodes:
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From the power flow equations in (6.17), it follows that

P̂ki−1 = Pki + pcki − p
g
ki

(6.24a)

Q̂ki−1 = Qki + qcki − q
g
ki

+ xki−1P̂ki−1

2
(6.24b)

and, V̂ki−1 =

√
V 2
ki

+ xki−1Q̂ki−1 + rki−1P̂ki−1 (6.24c)

This way the estimates: V̂ki−1, q̂cki−1, p̂
c
ki−1, P̂ki−1, and Q̂ki−1 become available for

node (ki − 1). Now if the node (ki − 1) is a non-PV node, then further using the
knowledge of pgki−1 = qgki−1 = 0 the corresponding quantities can be estimated at the
node (ki − 2), and continually at nodes (ki − n) , n = {1, 2, 3, . . . }. However, the
estimation process stops at the node (ki − n) ≡ ki−1 ∈ K in which case accurate
estimation of the quantities pgki−1

and qgki−1
is not possible, or if (ki − n) ≡ 0 (occurs

when i = 1).

• Down-stream nodes:

Similarly, if (ki + 1) /∈ K (i.e. pgki+1 = qgki+1 = 0 is known), the following computa-
tions are possible,

P̂ki+1 = Pki − p̂cki+1 (6.25a)

Q̂ki+1 = Qki − q̂cki+1 − xkiP
2
ki

(6.25b)

and, V̂ki+1 =
√
V 2
ki
− xkiQki − rkiPki (6.25c)

This way the estimates: V̂ki+1, q̂cki+1, p̂
c
ki+1, P̂ki+1, and Q̂ki+1 become available for

node (ki + 1) /∈ K. It is to be noted, that if instead (ki + 1) ≡ ki+1 ∈ K (where,
i < m), the estimates P̂ki+1 and Q̂ki+1 can not be computed because of lack of
information on pgki+1

and qgki+1
(although the estimate of V̂ki+1

can still be computed).

Thus, when i < m, all the estimates V̂l, P̂l, Q̂l, l ∈ {ki + 1, ki + 2, . . . , ki+1 − 1} are
possible. Of course, if i = m , then the estimates V̂l, P̂l, Q̂l are possible all the way
up to l = N (with P̂N = Q̂N = 0).

The claim follows from combining the conclusions of above discussions.

But the optimal solutions require the knowledge of voltages at all down-stream nodes,
as noted in (6.22). However, in distribution feeders, it is very likely that the ratios of line
reactance and line resistance of different long sections of the feeder would be almost equal
to each other. Let us assume that,

γi = γj ∀ i, j ∈ {0, 1, 2, . . . ,m− 1} . (6.26)

Using (6.26) in (6.21), the dependence of the optimal solution, at PV-node ki, on node
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voltage values can be shrunk to the set of nodes:

{ki−1 + 1, ki−1 + 2, . . . , ki+1 − 1} , when i ∈ {2, 3, . . . ,m− 1} ,
{1, 2, . . . , k2 − 1} , when i = 1, and ,

{km−1 + 1, km−1 + 2, . . . , N} , when i = m;

at each of which the node voltages can be estimated from local measurements done at
node ki∀i, as discussed in Claim 6.8. Hence it is possible to estimate the reactive power
dispatch at each PV-node ki ∈ K, based on only local measurement of the quantities
Vki , q

c
ki
, pgki , p

c
ki
, Pki and Qki .

Finally, there is the issue of lateral branches. While a rigorous derivation of the op-
timal control law in such a case is tedious, and require to conisder numerous different
configurations, a quick look at some simple examples can help in identifying the general
modifications to be applied on the optimal control law in (6.21). To illustrate this, let us
consider the Fig. 6.8 in which there are two PV-nodes (marked by red dot) at node# 3 and 5,
and there are two lateral branches, 1-2 and 1-3, connected at node 1 to the main feeder (0-
1-4-5). The node 0 is the substation node. The line flows, line impedances, and the voltage

0 1

3

54r01, x01 r14, x14 r45, x45

r 13
, x 13P01 P14 P45

P 13

q1 q4

2

q2

P
12

r12 , x
12

V0 V1 V4

Figure 6.8: Examples of radial feeder structure with laterals.

and (net) reactive power consumption at PV-nodes can be noted in the Fig. 6.8. Under the
assumption of fixed line resistance to line reactance ratio throughout the feeder, the objec-
tive function in (6.19) can be solved for optimal values of net reactive power consumptions
at the PV-nodes, i.e. the optimal values of q3 and q5, where in this case K = {3, 5}. The
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optimal values can be found out to be,

q3 =− x13P
2
13 −

((
x01P

2
01 + q1

)
+
(
x12P

2
12 + q2

)) r01||(r14 + r45)

r01||(r14 + r45) + r13

−
(
x14P

2
14 + q4

) r45

r45 + r14

r01||(r14 + r45)

r01||(r14 + r45) + r13

+
β3∆V eff

3

V3

x01||(x14 + x45) + x13

r01||(r14 + r45) + r13

+

(
β1∆V eff

1

V1

+
β2∆V eff

2

V2

)
x01||(x14 + x45)

r01||(r14 + r45) + r13

+
β4∆V eff

4

V4

x45

r45 + r14

x01||(x14 + x45)

r01||(r14 + r45) + r13

(6.27a)

q5 =− x45P
2
45 −

((
x01P

2
01 + q1

)
+
(
x12P

2
12 + q2

)) r01||r13

r01||r13 + r14 + r15

−
(
x14P

2
14 + q4

) r01||r13 + r14

r01||r13 + r14 + r15

+
β5∆V eff

5

V5

x01||x13 + x14 + x15

r01||r13 + r14 + r15

+

(
β1∆V eff

1

V1

+
β2∆V eff

2

V2

)
x01||x13

r01||r13 + r14 + r15

+
β4∆V eff

4

V4

x01||x13 + x14

r01||r13 + r14 + r15

(6.27b)

where, the symbol || is used to represent equivalent parallel impedance (resistance and/or
reactance), i.e. z1||z2 := z1z2/ (z1 + z2). Interesting thing to note here is that with only
local measurements at nodes 3 and 5, the respective optimal values can be computed if
a good estimate of the quantities q1, q2 and q4 are available, and the line parameters are
known. This observation is consistent with the discussions earlier in this section. Fur-
thermore, a closer look at the multiplying terms associated with

(
xijP

2
ij + qj

)
reveal a nice

pattern. For example, the multiplier associated with (x14P
2
14 + q4) in (6.27a) can be thought

of as the voltage (in Volt) that would have appeared at node 4, if a DC voltage source of
1 Volt magnitude was connected at node 3 and the other power sources in the grid (e.g.
sub-station node, voltage regulators, other PV-nodes, etc.) were connected to ‘ground’,
i.e. zero voltage. Similar observation holds with the voltage deviation terms, with the dif-
ference that the numerator has corresponding reactance values. While this is true for all
‘up-stream’ nodes with respect to the concerned PV-node, similar observation can be made
with ‘down-stream’ nodes too, in which case too the factor is directly related to potential-
divider type of setup. For a quick check, please refer to the optimal qki in (6.21). The
multipliers associated the voltage deviation terms for nodes (ki + 1) to (ki+1 − 1) can be
computed directly using the potential-divider analogy. Thus it is possible to extend the re-
sult of (6.21) to feeders with lateral branches, under the assumption that line reactance and
resistance ratios are same within the feeder.

88



6.9 Numerical Results

6.9.1 No active voltage regulator, no active voltage constraint

Three typical scenarios - when a active large power is drawn from the grid through the
sub-station node; when a large active power is fed back into the grid; and when a there
is a party cloudy condition with a random sequence of solar power generation between
PV-nodes, have been studies on the modified IEEE-34 feeder (Section 6.5). The βj values
in (6.6) are generally chosen to be equal to 2, except at the node 890 at the which the
weighting factor of the voltage is assigned a value 7.
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Figure 6.9: High consumption, night sky (no generation).

Fig. 6.9 presents results from a numerical simulation when the consumption of power is
at 150% of the rated value, with none of the PV-units generating any solar power. The first
node is the sub-station node, marked as 800 in the feeder diagram, and all other nodes are
placed subsequently in the same order as in the feeder diagram. As expected, this scenario
causes a generally decreasing voltage profile away from the sub-station (node 800, or the
first node), in Fig. 6.9(a). The reactive power dispatch from the PV-inverters, as calculated
using the strategy developed in this work, compares fairly well with the values computed
through a global (central) optimization routine. Fig. 6.9(b) shows three ratios along the
feeder length - the ratios between reactive line loss and reactive line flow; between active
line loss and active line flow; and between reactive and active line flows. The values support
the claims in Section 6.7.2 that - active line loss is negligible compared to active line flow;
and reactive line loss can safely be attributed to the corresponding active line flow.

Fig. 6.10 shows a scenario when the consumption is at a low level - 50% of rated,
and the PV-generation is at its maximum, with a generally increasing voltage profile away
from the sub-station. Reactive power dispatch values computed from the local strategy and
the global optimization are in generally close agreement (Fig. 6.10(a)). While Fig. 6.10(b)
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Figure 6.10: Low consumption, sunny sky (maximum generation).
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Figure 6.11: Moderate consumption, partly cloudy sky (non-uniform generation).
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justifies the claims in Section 6.7.2. Finally a typical scenario with a moderate consumption
(100% of rated) and partly cloudy sky condition is presented in Fig. 6.11.

6.9.2 Effect of active voltage regulator and active voltage constraints
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Figure 6.12: High consumption, night sky (no generation), with βj = 2∀j.
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Figure 6.13: High consumption, night sky (no generation), with βj = 2∀j and active line-
voltage-regulators.

Before concluding this section, let us explore the issue of voltage constraints in the
optimization problem (6.6). Fig. 6.12 shows the scenario when there is a large import of
active power, as in Fig. 6.9, except that now the weighting factors, βj , are all equal to 2. As
a result the voltage at node 890 (marked as node# 22 in the x-axis) is allowed to decrease
further and hits the minimum allowed value 0.95 p.u.. Thus the voltage constraint in (6.6)
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now becomes active the reactive power dispatch has to increase further to keep satisfying
the voltage constraint. This results in a significant mis-match, at node 890, between the
reactive dispatch values computed from global optimitization and the local strategy which
does not consider active constraints. However, this mis-match can be removed by care-
fully choosing βj’s so that none of the voltage constraints becomes active. Alternatively,
presence of active line-voltage-regulators (between nodes 852 and 832, and nodes 814 and
850) can provide required additional reactive power support, thereby reducing the burden
on PV-inverters. Shown in Fig. 6.13 is a typical such situation. In this case, the βj values
are all set to 2, but the voltage regulators are now actively operating to minimize the objec-
tive function in (6.6). As a result the globally optimal and the locally computed values of
reactive power dispatch, even at node 890, are very closely matched.

6.10 Summary

In this chapter a solution is proposed for designing realizable strategy that can locally
control the reactive power dispatch from PV-inverters using the measurements made only
at the PV-node. Both the line losses and the voltage deviations across the feeder have
been considered to evaluate globally optimal reactive power dispatch solutions. Numerical
studies have been done to validate the applicability of the designed distributed control al-
gorithm. Various issues affecting the decision have been discussed. It is shown that if each
node of the feeder has an installed PV-inverter and the line reactance and line resistance
ratio remains constant throughout the feeder, then strictly local control law can be derived
that guarantees optimal performance in terms of minimizing a weighted combination of
power losses and voltage deviations. It is also shown that an exact optimal solution can
be computed in a more practical scenario under the presence of other voltage regulating
elements, less than 100% penetration of PV-inverters. With reasonable assumptions, a lo-
cally computable control law is derived from the optimal solution. Simulation results are
presented to compare the performance of this derived local control law that under varying
conditions. It is observed that although this derived local control law may not be truly opti-
mal, but with good choice of weights in the optmization function, the local control law can
be made to perform satisfyingly close to the global optimal.
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CHAPTER VII

Conclusions

7.1 Accomplishments

In the scope of this thesis work, different aspects and challenges of integration of re-
newable energy resources and plug-in electric vehicles have been looked at. This disserta-
tion addresses the key challenges in integrating a large number of electrical loads, which
have been shown to be prone to synchronization leading to instability in the grid. An-
alytical model-based control has been developed that can prevent such synchronizations,
and efficiently shape the aggregate demand. It has been shown that such control can help
in providing ancillary services to the grid, such as mitigating large and fast fluctuations in
renewable generation, or filling the overnight valley in electricity demand. Distributed con-
trol algorithms have been developed that can effectively control the reactive power output
from photo-voltaic inverters, under varying solar irradiance and varying electricity demand.
A more detailed account of the accomplishments is provided below.

Based on a probabilistic approach, a linearized state-space model has been developed to
capture the aggregate demand response of a large homogeneous group of thermostatically-
controlled-loads when the temperature set-point of all the thermostats is disturbed by the
same magnitude. This could be done in a centralized set-up where a common signal to
change set-point would be broaadcast to all the participating loads. Based on this ag-
gregate linear model, a linear feedback controller has been designed, which is shown to
perform satisfactorily in terms of tracking a fluctuating reference power profile possibly
coming from a renewable energy source. Although the model is based on a homogeneity
assumption, the control action works well for a slightly heterogeneous ensemble.

A hysteresis-based charging scheme has been proposed for plug-in electric vehicle
charging, such that actual charge of a battery would follow certain nominal charge pro-
file within the tolerance of a deadband around it. Based on the charge dynamics generated
by such hysteresis, a probabilistic approach has been adopted to model the aggregate de-
mand response of a large homogeneous population of vehicle chargers to uniform change
in nominal charging profile. A nonlinear (sliding mode) feedback control is shown to force
aggregate charging demand into tracking valley filling trajectory, and fluctuating genera-
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tion.
The impact of voltage sag induced synchronized tripping of plug-in electric vehicle

chargers on voltage profile in the grid has been studied. It has been show that in realistic
scenarios such synchronized behavior could potentially result in dangerous overvoltage sit-
uations. An analysis tool has been developed to identify a safe penetration level of plug-in
electric vehicles that guarantee against such overvoltage events. It has also been stressed
that a modification in current standard is required to safe-guard against such potential haz-
ards.

When considering a large number of electrical loads, a synchronizing event (such as
a set point change, or a fault-induced voltage sag) can lead to undesirable power and/or
voltage swings in the grid. Analysis has been carried out to build a model that can truly
capture the demand response to a hysteresis-based control signal. Using an initial esti-
mation/information of the probability distribution of the electrical loads (e.g. temperature
distribution of thermostats, normalized state-of-charge distribution of plug-in electric ve-
hicle chargers), the model is shown to accurately predict the system behavior under a non-
restrictive set of control inputs. Strange behaviors, such as high periodicity, have been
reported to occur when certain types of control input is applied to a large aggregation
hysteresis-based PEV chargers. Bifurcation diagrams are plotted to show that a period-
adding cascade occurs as the control inputs periodicity is varied.

Distributed control algorithms have been studied to control reactive power output from
photo-voltaic inverters in a distribution feeder. It has been shown under simplifying as-
sumption, e.g. constant line resistance to line reactance ratios, optimal local control law
can be derived. While this control law matches the globally optimal control algorithm in
a linear radial feeder (with no laterals) and 100% penetration, it needs to be modified to
be applied in the real-life scenario. Taking the example of a standard IEEE-34 distribution
feeder, a global optimal solution has been derived. From this global optimal solution, it
is then shown that an effective locally computable control law can be synthesized. Per-
formance of this modified local control law is verified against varying conditions, and in
a realistic set up. It has been shown how this locally computable control law can satis-
factorily peform near-optimally with some smart choice of optimization parameters, and
effective estimation of neighborhood load consumption.

7.2 Future Works

There are some interesting issues that need to be taken care of for a successful deploy-
ment of demand side control, or distributed generation control. For practical application of
any control design, it needs to be made sure that the model used for analysis is as accurate
as possible and that the controller is robust against any modeling uncertainties. Further
research is required in these directions.

Hysteresis-based control of plug-in electric vehicle chargers is fundamentally different
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from that of the thermostats. For example, there is a limitation on controllability of vehicle
chargers posed by their charge capacity. Simulations show loss of controllability both at the
start and end of the charging duration. On the other hand, it may be observed that towards
the end as more and more chargers become full, the effective population size decreases
and demand response gets weaker. It would be interesting to model the response as the
total populations size changes (increases during start up, while decreases during charging
completion), possibly by formulating the problem as a Markov process by taking into ac-
count the random plug-in and plug-off process of PEVs. Another important direction is to
quantify the effect of system heterogeneity into the analytical model. As discussed in this
dissertation, heterogeneity among the PEV chargers leads to damped oscillatory response
to step input. While in [34] a method was developed to quantify the effect of heterogeneity
in a single parameter, it becomes increasingly difficult to model the effect multiple hetero-
geneous parameters. Also further research needs to be done to characterize the nonlinear
phenomena observed in Chapter V. It might be useful to apply Poincaré map analysis to
record the movement of eigen values of the system.

The models developed in this thesis work require very good knowledge of the pop-
ulation of loads. Information such as the number of loads “interested in/available for”
control action, load parameters such as thermal capaitance and resistance for thermostats,
and charge requirement of vehicle batteries are often difficult to exactly know. Most likely,
in practial scenarios an online estimation of parameters would have to be done at certain
intervals. One scheme is to inject pseudo-random noise and look for cross-correlation with
changes in the total load [29]. The injected signal would need to be consistent with the
control bandwidth. Robustness analysis needs to be done to test the controller performance
under model uncertainties. Robustness is very important for the distributed control algo-
rithm developed in Chapter VI. The control law depends on reliable estimate of the load
consumption by non-photo-voltaic nodes in a closed neighborhood. As in practice, this
estimate may not always be true, care must be taken to ensure the distributed control still
remains robust.
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APPENDIX A

Computation of Ga(s, τa) and Gb(s, τb) in Chapter II

This appendix provides an outline of the steps involved in deriving the expressions for
Ga(s, τa) and Gb(s, τb). Derivation of the expressions for Gc(s, τc) and Gd(s, τd) is similar
to that of Ga(s, τa) and hence is not included.

time

P

Tc
Th

(θ+) (θ-) (θ+)

g(t)

Figure A.1: The reference square-wave g(t).

A. Derivation of Ga(s, τa)

We note that the waveform ga(t, τa) shown in Figure 2.6 is a time-shifted square-
wave. Considering the waveform g(t) in Figure A.1, where g(t) = 0 for t < 0, we
can express ga(t, τa) as ga(t, τa) = g(t−τa)1(t), where 1(t) is the unit-step function,
defined as

1(t) =

{
1, t ≥ 0

0, t < 0.
(A.1)

The Laplace transform of the square-wave g(t) is G(s) = P (1−e−sTc )

s(1−e−s(Tc+Th))
. Hence, the

Laplace transform of ga(t, τa) is

Ga(s, τa) =

∫ ∞
0

ga(t, τa)e
−stdt

=e−sτaG(s) (A.2)

98



The expressions for Gc(s, τc) and Gd(s, τd) can be derived similarly.

B. Derivation of Gb(s, τb)

The square-wave gb(t, τb) can be expressed as gb(t, τb) = g(t + Tc − τb)1(t) and its
Laplace transform as

Gb(s, τb) =

∫ ∞
0

gb(t, τb)e
−stdt

=

∫ ∞
0

g(t+ Tc − τb)1(t)e−stdt

=

∫ ∞
0

g(t+ Tc − τb)e−stdt

=

∫ ∞
Tc−τb

g(t∗)e−s(t
∗−Tc+τb)dt∗

where t∗ = t+ Tc − τb. Therefore,

Gb(s, τb) =es(Tc−τb)

∫ ∞
Tc−τb

g(t∗)e−st
∗
dt∗

=es(Tc−τb)

∫ ∞
0

g(t∗)e−st
∗
dt∗

− es(Tc−τb)

∫ Tc−τb

0

g(t∗)e−st
∗
dt∗

=es(Tc−τb)G(s)

− es(Tc−τb)

∫ Tc−τb

0

Pe−st
∗
dt∗

=es(Tc−τb)G(s)

− es(Tc−τb)P

(
1− e−s(Tc−τb)

)
s

=es(Tc−τb)G(s)− P
(
es(Tc−τb) − 1

)
s

. (A.3)
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APPENDIX B

Proof of convergence of the control Law in Chapter III

A proof of convergence of the error e(t) in (3.23) to zero is presented here. Using the
control law in (3.25)-(3.26), we can write from (3.23),

Ṡ(t) = ė(t) + cie(t)

= ẏ(t)− ẏd(t) + cie(t)

= CAx(t) + CBu(t) +Du̇(t)− ẏd(t) + cie(t)

= CBu(t)−CBû(t)− ηS(t)

= CBu(t)− CB

D
(yd(t)−Cx(t))− ηS(t)

=
CB

D
e(t)− ηS(t)

= −
(
η − CB

D

)
e(t)− ηci

∫ t

0

e (τ) dτ

⇒ ė(t) + cie(t) = −
(
η − CB

D

)
e(t)− ηci

∫ t

0

e (τ) dτ

Differentiating both sides gives,

ë(t) +

(
ci + η − CB

D

)
ė(t) + ηcie(t) = 0. (B.1)

The error e(t) will converge exponentially to zero if the roots of the following quadratic
equation

s2 +

(
ci + η − CB

D

)
s+ ηcie(t) = 0 (B.2)
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have negative real parts. This is true if the design variables η and ci are chosen so that,(
ci + η − CB

D

)
> 0 (B.3)(

ci + η − CB

D

)2

< 4ηci (B.4)

The control error e(t) will then exhibit damped oscillations. For (B.4) to hold, ci must be
positive. Hence integral control plays an important role in achieving successful tracking
performance.
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APPENDIX C

An outline of the derivation of (4.1)

Basic circuit relationships give,

V∞∠0− V ∠θ
r + jx

=
p− jq
V ∠− θ

where q = −bV 2. Therefore,

V∞∠0 = V ∠θ +
(p− jq)(r + jx)

V ∠− θ

=
V 2 + pr + qx+ j(px− qr)

V ∠− θ
.

The magnitude squared of both sides is,

V 2
∞ =

(V 2 + pr + qx)2 + (px− qr)2

V 2

which simplifies to,

V 2
∞ = V 2 + 2(pr + qx) +

(p2 + q2)(r2 + x2)

V 2
.

Substituting q = −bV 2 and simplifying gives,

V 2
∞ =

(
(1− bx)2 + (br)2

)
V 2 + 2pr +

p2
(
r2 + x2

)
V 2

.

Multiplying throughout by V 2 and grouping terms gives (4.1).
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APPENDIX D

Proof of the Theorem V.1

Before proceeding to the proof, let us define,

∆U(t) : = Position of the upper deadband limit (right wall) at time t (D.1a)

∆L(t) : = Position of the lower deadband limit (left wall) at time t (D.1b)

⇒ ∆U(t) = ∆L(t) + ∆, ∀ t. (D.1c)

Also it would be assumed that the control input u(t) is a continuous function in t, i.e.
v(t) always exists. Although in theory, this assumption puts a restriction on the use of
‘instantaneous’ jumps (e.g. step change) in control input, this is usually true in all practical
situations where any centrally dispatched control signal can be effectively interpolated into
a continous one. For example, a step change in the control input between two subsequent
discrete time instants can be approximated by a very fast ramp signal.

Proof. It can be noted that the time interval t ∈ (t0,∞) could be divided into different
sub-intervals each characterized by either of the four different scenarios: no switching at
either of the boundaries, switching at only the upper boundary (or, equivalently, only at the
lower boundary), and switching at both the boundaries. The modified goal here is to prove
that, for any such sub-interval denoted by (t1, t2], the following is true:

∃ t1 ≥ t0 | max
(
S̃oC

U

on(t1), S̃oC
U

off (t1)
)
−min

(
S̃oC

L

on(t1), S̃oC
L

off (t1)
)
≤ ∆,

(D.2a)

=⇒ ∀ t ∈ (t1, t2], max
(
S̃oC

U

on(t), S̃oC
U

off (t)
)
−min

(
S̃oC

L

on(t), S̃oC
L

off (t)
)
≤ ∆.

(D.2b)

Then the proof of the Theorem V.1 follows by simple application of induction. Next, each
of the four different possibilities would be considered individually. Before dealing with
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individual cases, let us note this relation that comes from the definitions (D.1),

∀ t, S̃oC
U

on(t) ≤ ∆U(t) = ∆L(t) + ∆ ≤ S̃oC
L

off (t) + ∆ (D.3)

A. No switching during (t1, t2]

Since the system is homogeneous, and there is no switching, the following holds,

∀ t ∈ (t1, t2],

S̃oC
U

on(t)− S̃oC
L

on(t) = S̃oC
U

on(t1)− S̃oC
L

on(t1) ≤ ∆ [from (D.2a)] (D.4)

and similarly,

S̃oC
U

off (t)− S̃oC
L

off (t) ≤ ∆ (D.5)

Also, because αoff < αon,

∀ t ∈ (t1, t2], S̃oC
U

off (t) = S̃oC
U

off (t1) + αoff (t− t1)

≤ S̃oC
L

on(t1) + ∆ + αoff (t− t1) [applying (D.2a)]

< S̃oC
L

on(t1) + ∆ + αon (t− t1)

< S̃oC
L

on(t) + ∆ (D.6)

Combining the relations (D.3) and (D.5),

∀ t ∈ (t1, t2], max
(
S̃oC

U

on(t), S̃oC
U

off (t)
)
< S̃oC

L

off (t) + ∆ (D.7)

while from (D.4) and (D.6),

∀ t ∈ (t1, t2], max
(
S̃oC

U

on(t), S̃oC
U

off (t)
)
< S̃oC

L

on(t) + ∆ (D.8)

On applying (D.7) and (D.8), the relation (D.2b) is proven for the no switching case.

B. Only ON-to-OFF switching (constantly) during (t1, t2]

In this case,

∀ t ∈ (t1, t2], S̃oC
U

on(t) = ∆U(t), and, S̃oC
L

off (t) > ∆L(t). (D.9)
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Thus,

∀ t ∈ (t1, t2], S̃oC
L

on(t) = S̃oC
L

on(t1) + αoff (t− t1)

≥ S̃oC
U

on(t1)−∆ + αoff (t− t1) [from (D.2a)]

> S̃oC
U

on(t)−∆ (D.10)

Because of constant switching at the upper boundary,

∀ t ∈ (t1, t2],

S̃oC
U

off (t) = max
{
S̃oC

U

off (t1) + αoff (t− t1) , ∆U(t)
}

≤ max
{
S̃oC

L

off (t1) + ∆ + αoff (t− t1) , ∆U(t)
}

[∵ (D.2a)]

= max
{
S̃oC

L

off (t1) + αoff (t− t1) , ∆L(t)
}

+ ∆

= S̃oC
L

off (t1) + αoff (t− t1) + ∆ [∵ (D.9)]

= S̃oC
L

off (t) + ∆ (D.11)

Also,

∀ t ∈ (t1, t2],

S̃oC
U

off (t) = max
{
S̃oC

U

off (t1) + αoff (t− t1) , ∆U(t)
}

≤ max
{
S̃oC

L

on(t1) + ∆ + αoff (t− t1) , ∆U(t)
}

[∵ (D.2a)]

= max
{
S̃oC

L

on(t1) + αoff (t− t1) , ∆L(t)
}

+ ∆

< max
{
S̃oC

L

on(t), ∆L(t)
}

+ ∆ [∵ αoff < αon]

= S̃oC
L

on(t) + ∆, [applying (D.9) and (D.10)] (D.12)

Combining (D.3), (D.10), (D.11) and (D.12), the relation (D.2b) is proven for the
case when there is constant ON-to-OFF switching but no OFF-to-ON switching in
the conerned time interval.

C. Only OFF-to-ON switching (constantly) during (t1, t2]

This situation is equivalent to the previous case (only ON-to-OFF switching), and
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can be treated similarly. For example, in this case,

∀ t ∈ (t1, t2], S̃oC
L

off (t) = ∆L(t),

S̃oC
U

on(t) < ∆U(t),

and, S̃oC
L

on(t) = min
{
S̃oC

L

on(t1) + αon (t− t1) , ∆L(t)
}

Following equivalent steps, (D.2b) can be proved for the case when there is constant
OFF-to-ON switching, but no ON-to-OFF switching during (t1, t2].

D. Constant switching at both the boundaries during (t1, t2]

In this case,

∀ t ∈ (t1, t2], S̃oC
L

off (t) = ∆L(t), (D.13a)

S̃oC
U

on(t) = ∆U(t), (D.13b)

S̃oC
L

on(t) = min
{
S̃oC

L

on(t1) + αon (t− t1) , ∆L(t)
}

(D.13c)

and, S̃oC
U

off (t) = max
{
S̃oC

U

off (t1) + αoff (t− t1) , ∆U(t)
}

(D.13d)

Now,

S̃oC
L

on(t1) ≥ S̃oC
U

on(t1)−∆ = ∆L(t1) [∵ (D.2a) & (D.13)]

and, S̃oC
U

off (t1) ≤ S̃oC
L

off (t1) + ∆ = ∆U(t1) (D.14)

Hence from (D.13), S̃oC
L

on(t) ≥ ∆L(t) and S̃oC
U

off (t) ≤ ∆U(t), for all t ∈ (t1, t2].
Rest of the proof of the relation (D.2b) for t ∈ (t1, t2] follows trivially.

Thus for all possible scenarios, it can be proved that if the width of the span of SoCs is
less than ∆ at the start of the time interval [t1, t2], then the same is true for the rest of time
interval as well. Hence the Theorem V.1 is proved by considering the time interval [t0,∞)

as a summation of many such sub-intervals in each of which the relation holds.
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APPENDIX E

Proof of the Theorem VI.1

It is assumed, for simplicity, that V0 is set by some external method and hence is beyond
the regime of local control action. From (6.3) and (6.5a), it can be written

∂Qj

∂qgk
=

{
0, k ≤ j

−1, k ≥ j + 1
(E.1a)

and,
∂∆Vj
∂qgk

= −
j−1∑
i=0

xi
∂Qi

∂qgk
= −

min(j,k)−1∑
i=0

xi
∂Qi

∂qgk
(E.1b)

where the second equality in (E.1b) follows from (E.1a). Furthermore,

∂
(

∆V eff
j

)2

∂qgk
= 2∆V eff

j

∂∆Vj
∂qgk

, ∀ j ≥ 0,∀ k ≥ 1. (E.2)

Note: From the definition (6.5a),(6.5b),

∀j ≥ 0, k ≥ 1,

∂
(

∆V eff
j

)2

∂qgk
= 2∆V eff

j

∂∆V eff
j

∂qgk
=


0, |∆Vj| ≤ Vsl

2(∆Vj − Vsl)∂∆Vj
∂qgk

, ∆Vj > Vsl

2(∆Vj + Vsl)
∂∆Vj
∂qgk

, ∆Vj < −Vsl

But it also follows directly from (6.5b) that,

∀j ≥ 0, k ≥ 1, 2∆V eff
j

∂∆Vj
∂qgk

=


0, |∆Vj| ≤ Vsl

2(∆Vj − Vsl)∂∆Vj
∂qgk

, ∆Vj > Vsl

2(∆Vj + Vsl)
∂∆Vj
∂qgk

, ∆Vj < −Vsl
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Hence the relation (E.2) holds.
The optimal values of qgj are given by the stationary points of (6.6),

fk :=
∂M

(
qgj≥1;V0

)
∂qgk

= 0, ∀k = {1, 2, . . . , N} (E.3a)

which implies

fk = 2

(
N∑
j=1

βj∆V
eff
j

∂∆Vj
∂qgk

+
N−1∑
j=0

rjQj
∂Qj

∂qgk

)

= 2

− N∑
j=1

βj∆V
eff
j

min(j,k)−1∑
i=0

xi
∂Qi

∂qgk
−

k−1∑
j=0

rjQj


= 0, ∀ k ≥ 1. (E.3b)

Optimal qgN can be solved using fN and fN−1. From (E.3b), fN − fN−1 = 0 implies,

−2βN∆V eff
N

(
N−1∑
i=0

xi
∂Qi

∂qgN
−

N−2∑
i=0

xi
∂Qi

∂qgN−1

)
− 2rN−1QN−1 = 0

and using (E.1a) gives,

βN∆V eff
N

(
N−1∑
i=0

xi −
N−2∑
i=0

xi

)
− rN−1QN−1 = 0

⇒ QN−1 =
xN−1

rN−1

βN∆V eff
N (E.4a)

⇒ qgN = qcN −
xN−1

rN−1

βN∆V eff
N (E.4b)

where the final step follows from (6.3). Thus the optimal qgN can be computed using only
the local VN and qcN , and satisfies the control law in (6.7) with α = xN−1/rN−1.

The remainder of the proof follows from induction. It will be shown that if there exists
an M ∈ {1, 2, . . . , N − 1} such that for all k ≥M + 1,

qqk = qck −
xk−1

rk−1

βk∆V
eff
k (E.5a)

then,

qqM = qcM −
xM−1

rM−1

βM∆V eff
M . (E.5b)
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It has already been shown in (E.4b) that there is an M = N − 1 for which (E.5a) holds. To
prove (E.5b), refer back to (E.3b), from which fM − fM−1 = 0 implies,

−2
N∑

j=M

βj∆V
eff
j

(
M−1∑
i=0

xi
∂Qi

∂qgM
−
M−2∑
i=0

xi
∂Qi

∂qgM−1

)
− 2rM−1QM−1 =0.

Using (E.1a), this gives,

QM−1 =
xM−1

rM−1

N∑
j=M

βj∆V
eff
j

and hence from (6.3),

N∑
j=M

(
qcj − q

g
j

)
=
xM−1

rM−1

N∑
j=M

βj∆V
eff
j

⇒ qgM = qcM −
xM−1

rM−1

βM∆V eff
M (E.6)

where the final step makes use of (E.5a) and (6.8). Hence the claim in (E.5) is proved. The
claim (E.5) together with (E.4b) complete the proof that each optimal qgj can be computed
by observing local variables Vj and qcj , and its optimal value is given by (6.7) with α =

xj−1/rj−1.
This concludes the proof of Theorem VI.1.
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APPENDIX F

Deriving the optimal solutions in (6.21)

From (6.17c) and (6.16),

Vi+1
∂Vi+1

∂qk
= −

min(i,k−1)∑
j=0

xj
∂Qj

∂qk
, ∀ i ∈ {0, 1, 2, . . . , N − 1} , ∀ k ∈ K (F.1)

Following similar steps as in (E.2), and using (F.1) and the definition (6.5a),

∀ i ∈ {0, 1, 2, . . . , N − 1} , ∀ k ∈ K,

∆V eff
i+1

∂∆V eff
i+1

∂qk
= ∆V eff

i+1

∂Vi+1

∂qk
= −

∆V eff
i+1

Vi+1

min(i,k−1)∑
j=0

xj
∂Qj

∂qk
(F.2)

Moreover from the definition of fi’s in (6.20),

fi = 2
N−1∑
j=0

(
βj+1∆V eff

j+1

∂∆V eff
j+1

∂qki
+ rj

(
Pj
∂Pj
∂qki

+Qj
∂Qj

∂qki

))

= 2

−N−1∑
j=0

βj+1∆V eff
j+1

Vj+1

min(j,ki−1)∑
n=0

xn +

ki−1∑
j=0

rjQj

 [∵ (F.2) & (6.16)] (F.3)

and hence using fm − fm−1 = 0, derived from (6.20), the following is obtained,

km−1∑
j=0

rjQj −
k(m−1)−1∑

j=0

rjQj =
N−1∑
j=0

βj+1∆V eff
j+1

Vj+1

min(j,km−1)∑
n=0

xn −
min(j,km−1−1)∑

n=0

xn


=⇒

km−1∑
j=km−1

rjQj =
N−1∑

j=km−1

βj+1∆V eff
j+1

Vj+1

min(j,km−1)∑
n=km−1

xn (F.4)
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Using the relations (6.17b) and (F.4),

N−1∑
j=km−1

(
xjP

2
j + qj+1

)min(j,km−1)∑
n=km−1

rn =
N−1∑

j=km−1

βj+1∆V eff
j+1

Vj+1

min(j,km−1)∑
n=km−1

xn

=⇒ qkm = −xkm−1P
2
km−1 −

km−2∑
j=km−1

(
xjP

2
j + qj+1

)(∑j
n=km−1

rn∑km−1
n=km−1

rn

)

−
N−1∑
j=km

(
xjP

2
j + qj+1

)
+

km−2∑
j=km−1

βj+1∆V eff
j+1

Vj+1

(∑j
n=km−1

xn∑km−1
n=km−1

rn

)

+ γm−1

N−1∑
j=km−1

βj+1∆V eff
j+1

Vj+1

[using (6.18)] (F.5)

Similarly the optimal value of qkm−1 can be solved as,

fm−1 − fm−2 = 0

=⇒
km−1−1∑
j=km−2

rjQj =
N−1∑

j=km−2

βj+1∆V eff
j+1

Vj+1

min(j,km−1−1)∑
n=km−2

xn [from (F.4)]

=⇒
N−1∑

j=km−2

(
xjP

2
j + qj+1

)min(j,km−1−1)∑
n=km−2

rn =
N−1∑

j=km−2

βj+1∆V eff
j+1

Vj+1

min(j,km−1−1)∑
n=km−2

xn

=⇒ qkm−1 = −xkm−1−1P
2
km−1−1 −

km−1−2∑
j=km−2

(
xjP

2
j + qj+1

)(∑j
n=km−2

rn∑km−1−1
n=km−2

rn

)

−
km−2∑
j=km−1

(
xjP

2
j + qj+1

)( ∑km−1
n=j+1 rn∑km−1
n=km−1

rn

)

+

km−1−1∑
j=km−2

βj+1∆V eff
j+1

Vj+1

(∑j
n=km−2

xn∑km−1−1
n=km−2

rn

)

+
km−2∑
j=km−1

βj+1∆V eff
j+1

Vj+1

(
γm−2 −

∑j
n=km−1

xn∑km−1
n=km−1

rn

)

+ (γm−2 − γm−1)
N−1∑

j=km−1

βj+1∆V eff
j+1

Vj+1

(F.6)

Continuing this way, all the optimal values qki ∀i ∈ {1, 2, . . . ,m}, can be computed as
summarized in (6.21).
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