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Abstract 

Influence of habitual physical activity and acute exercise on lipid metabolism and insulin 

action 

by 

Rachael Katharine Nelson 

 

Although a physically active lifestyle is clearly an important contributor to long-term health and 

disease prevention, it remains unclear how much of these health benefits stem from the acute 

effects of the most recent session(s) of exercise, and how much can be attributed to physiologic 

adaptations accrued as a result of  habitual active.  Importantly, the time course for adaptations 

that occur in the early stages of adopting a habitually active lifestyle is not clearly understood.  

Therefore, my dissertation projects were designed to examine key metabolic adaptations that occur 

in response to a more physically active lifestyle in obese adults who are at risk for developing 

chronic metabolic diseases, including type 2 diabetes.  The major findings of my dissertation 

studies included: In STUDY#1, using data from the National Health and Nutrition Examination 

Survey (NHANES), we found that insulin sensitivity was significantly associated with the amount 

of time participants were engaged in physical activity behaviors (P=0.03), but not with their level 

of cardiorespiratory fitness. In STUDY #2, contrary to our hypothesis, Insulin Sensitivity Index 

(ISI) was significantly higher in a group of overweight adults who exercise regularly compared 

with a well-matched cohort of sedentary overweight adults, even though the regular exercisers 

abstained from exercise for 3 days.  In this study we also found that a single session of moderate-

intensity exercise was sufficient to increase ISI the day after exercise by nearly 25% in the 

previously sedentary overweight adults – but not in the regular exercisers, eliminating the 

difference in ISI between the groups that was evident at baseline.  In STUDY #3, although ISI was 

not improved in the hours after the first low-intensity exercise training session, after 2 weeks of 

training, post-exercise ISI was enhanced. We also discovered that a single session of exercise at 

50%VO2max (i.e., maximal oxygen uptake) for 40 min may be below a “threshold” for exercise 
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stimulus required to improve insulin sensitivity into the next day in obese adults. These studies 

provide important new information for optimizing the design of lifestyle interventions specifically 

aimed at enhancing metabolic health in overweight and obese individuals. 
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CHAPTER 1 

Statement of the problem 

 

Two-thirds of the U.S. population is classified as overweight or obese (10).  Along with this 

alarming prevalence of obesity, there is also a very high incidence of obesity-related diseases, such 

as Type 2 Diabetes Mellitus (T2DM) (12, 13).  Over twenty-five million people in the United 

States have T2DM and there are nearly two million new cases reported each year (1).  In addition, 

it is estimated that 35% of U.S. adults have impaired fasting glucose, and are at increased risk for 

developing T2DM (1).  Unfortunately, T2DM contributes to other life threatening diseases 

including cardiovascular and renal disease.  In addition to the aforementioned health consequences, 

diabetes also contributes to the growing financial burden of health care costs at a rate well over 

$100 billion per year (1).  Therefore, the prevention and treatment of T2DM is a serious public 

health concern. 

 

Insulin resistance, defined as a subnormal response to a physiologic dose of insulin, is a major 

underlying symptom of T2DM, and it is also linked to the development of many other chronic 

diseases (9, 11).  Although losing only 5-10% of initial body weight can improve insulin resistance 

(15), even this very modest weight loss can be very difficult to both achieve and sustain (6).  

Importantly, increased physical activity can improve insulin resistance and impart important 

metabolic health benefits even without weight loss (8).  Because regular physical activity can also 

enhance maximal oxygen uptake (i.e., VO2max), a measure of cardiorespiratory fitness, some of the 

physiologic adaptations underlying changes in VO2max with exercise (e.g., mitochondrial 

biogenesis) have been credited with much of the exercise-induced improvements in metabolic 

health.  Consequently most current exercise recommendations are designed with the goal to 

improve “fitness”. However, mounting evidence indicates that many health benefits of exercise 

are not directly linked with improvements in VO2max (3, 8, 14), and it is quite possible that training 

programs designed to improve cardiorespiratory fitness may not be optimally designed for 

improving metabolic health.  This is particularly relevant because the more vigorous exercise 
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intensity required to improve VO2max has been associated with a greater incidence of injuries and 

participant discomfort, leading to poor exercise adherence (5).  

 

Epidemiological evidence clearly indicates that even a rather modest increase in regular physical 

activity behavior can profoundly reduce disease risk (2, 16).  However, this level of activity is 

often found to be insufficient to induce meaningful improvements in classic measures of 

cardiorespiratory fitness (e.g., maximal oxygen uptake; VO2max) (7).  Conversely, regularly 

performed vigorous exercise (which is known to induce the most robust improvements in VO2max) 

does not appear to result in further reduction in disease risk beyond that found with light and 

moderate intensity exercise (2, 16). Moreover, profound improvements in markers of 

cardiovascular and metabolic health, including insulin resistance are apparent in the several hours 

after a single session of exercise (4), which is clearly not enough of an exercise stimulus to evoke 

physiologic adaptations to improve aerobic capacity (i.e., VO2max).  Therefore, although a 

physically active lifestyle is clearly an important contributor to long-term health and disease 

prevention, it remains unclear how much of these health benefits stem from the acute effects of 

the most recent session(s) of exercise, and how much can be attributed to physiologic adaptations 

accrued as a result of exercising regularly.  Moreover, the time course for adaptations that occur 

in the early stages of adopting a habitually active lifestyle are not clearly understood.   

 

The studies outlined in my dissertation examined:  

 

1) the influence of habitual physical activity behavior and cardiorespiratory fitness on 

important risk factors for cardiovascular and metabolic disease [PROJECTS 1 and 2]. 

2) the effect of a single session of mild exercise on key factors associated with cardiovascular 

and metabolic disease in overweight and obese adults [PROJECTS 2 and 3]. 

3) progressive adaptations in insulin resistance, skeletal muscle lipid metabolism, and factors 

regulating these processes as previously sedentary obese adults begin a modest exercise 

program (i.e., after 1 day, 2 weeks, and 3 months of a low-intensity exercise training 

program, and again after 3 days without exercise) [PROJECT 3] 
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The overall objective of my dissertation projects was to examine key metabolic responses and 

adaptations to acute and habitual exercise on factors underlying cardiometabolic disease risk.  

These findings have important implications for designing lifestyle interventions specifically aimed 

at enhancing metabolic health in overweight and obese individuals.  
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CHAPTER 2 

Review of literature 

 

Obesity is now one of the leading public health concerns worldwide.  It is estimated that 1.5 billion 

adults around the world can be classified as overweight and another 500 million as obese (64).  

The United States has the highest obesity prevalence in the world, with two-thirds of the adult 

population classified as overweight or obese (26) and obesity rates are continuing to rise (29).  

Clearly, obesity has a profound impact on disease risk (48) and mortality (17).  Life expectancy is 

thought to be reduced by 4-10 years in overweight and obese compared with non-obese individuals 

(17). The increased mortality rates may be explained by increased incidence of cardiovascular 

disease (67), certain types of cancer (70), and type 2 diabetes mellitus (T2DM) (85) in overweight 

and obese individuals.  Without question, the very high and further accelerating prevalence of 

obesity and obesity-related health complications carries an enormous economic burden.  The direct 

costs of obesity on health care has reached nearly $147 billion annually in the U.S. (84).  Moreover, 

indirect costs associated with obesity (i.e. missed days of work, obesity related physician visits, 

etc.) are also high.  For example absenteeism alone is believed to cost an additional $4.3 billion 

annually.  Unfortunately, the projected cost of obesity related diseases such as T2DM in the U.S. 

is also high (84).  Estimates suggest that obesity-related chronic diseases will contribute to a rise 

in health care costs by a rate of $22-68 billion per year through 2030 (94).  Additionally, annual 

health care costs for individuals with diabetes is five times greater than that of individuals without 

diabetes and associated with $174 billion annually in direct and indirect health care costs (1).  

 

Although the increased disease risk associated with obesity is certainly caused by multiple factors, 

it appears that resistance to the physiologic actions of insulin (i.e., “insulin resistance”) underlies 

many obesity-related health complications including: T2DM, hypertension, dyslipidemia, as well 

as systemic and tissue inflammation (21, 27, 44, 64). Insulin resistance refers to the reduced ability 

of insulin to regulate nutrient metabolism in insulin-responsive tissues (e.g., skeletal muscle, liver, 

and adipose tissue).  More specifically, insulin resistance in skeletal muscle results in an impaired 
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ability of insulin to promote glucose uptake; in the liver, insulin resistance induces glucose 

overproduction; while insulin resistance in adipose tissue suppresses the normally potent anti-

lipolytic effects of insulin, resulting in an elevated lipolytic rate.  Therefore, obesity-induced 

insulin resistance in these tissues results in hyperglycemia, hyperinsulinemia, and an elevated 

systemic fatty acid availability, which are well known to be particularly detrimental to vascular 

and metabolic health (21, 27).  Hyperinsulinemia has also been found to increase blood pressure 

via vascular wall remodeling, vasoconstriction, and increased fluid retention (64).  Insulin 

resistance is thought to be a major contributor to the development of dyslipidemia (27), and the 

onset of insulin resistance typically precedes dyslipidemia in obese individuals (27).  Insulin 

resistant individuals have been reported to have 80% higher plasma triglyceride concentrations 

and 20% lower HDL-C concentrations than their insulin sensitive counterparts (44).  Collectively 

these findings suggest that interventions aimed at improving insulin resistance could have 

important implications for improving overall health.   

 

A physically active lifestyle can reduce disease risk 

For at least the better part of the last century accumulating epidemiological evidence supports the 

notion that a more physically active lifestyle is linked with lower morbidity and mortality rates 

(11), some of which may be attributed to reduced prevalence of insulin resistance, T2DM (40) as 

well as other chronic diseases (95).  The definition of a “physically active lifestyle” is very broad, 

and could range from regularly engaging in modest physical activity behaviors, like walking, to 

daily participation in very vigorous exercise training.  Current exercise guidelines recommend at 

least 2.5 hours of moderate-to-vigorous physical activity each week to prevent T2DM (2).  

Unfortunately, those more vigorous forms of physical activity are associated with greater 

participant discomfort and drop-out rates (20).  Light intensity physical activity however, appears 

to be the most prevalent form of physical activity (33, 50) and  is also associated with significant 

reductions in risk for developing T2DM (39).  In fact, compared with completely sedentary 

behavior, daily light physical activity such as walking is associated with a 34% reduction in the 

risk of developing T2DM (38) potentially resulting from better glucose tolerance and insulin 

sensitivity (34, 56).  For example, a cross-sectional study observed a similar inverse relationship 

between light physical activity and plasma glucose concentrations following a 2hr oral glucose 

tolerance test (34).  Further cross-sectional analyses have demonstrated similar increases in insulin 
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sensitivity in individuals who engage in more physical activity regardless of the intensity (56).  

Consequently, light intensity physical activity may be a very important therapeutic tool for 

improving glucose metabolism and ultimately reducing T2DM risk.  A better understanding of the 

underlying mechanisms that contribute to the improvement in insulin resistance when people begin 

to incorporate light/mild intensity physical activity into their daily lives could have important 

health implications for designing lifestyle interventions aimed at reducing T2DM risk.   

 

Current exercise guidelines emphasizing moderate-to-vigorous physical activity (2) in part stem 

from the understanding that regularly performed exercise at sufficiently high intensity can enhance 

cardiorespiratory fitness (e.g., maximal oxygen consumption (VO2max)), and higher 

cardiorespiratory fitness is associated with lower incidence of cardiovascular disease and T2DM 

even among overweight and obese individuals (51, 85).  Therefore, the subsequent improvement 

in VO2max resulting from regular physical activity/exercise is often credited for the exercise-

induced improvements in health (51, 85).  However, accumulating evidence suggests that many of 

the exercise-induced improvements in health may be independent of improved VO2max (19, 23).  

For example, several weeks of moderate intensity endurance training has been found to improve 

measures of insulin resistance and dyslipidemia in overweight and obese individuals in the absence 

of improved VO2max (23). Moreover, an overwhelming amount of evidence indicates that many of 

the effects of exercise on important health outcomes (e.g., insulin resistance, hypertension, 

dyslipidemia) are very transient (15, 35, 58).  Many studies demonstrate that the beneficial health 

effects of exercise training dissipate after only a few days (or less) without exercise (35), well 

before meaningful decrements in VO2max.  Additionally, a single session of exercise can greatly 

improve insulin resistance and reduce blood pressure in overweight and obese individuals at least 

into the next day (19, 24).  Yet one session of exercise is not enough of an exercise stimulus to 

enhance VO2max within the same time period.  Therefore, while it is clear that physical activity 

improves insulin resistance and metabolic health, the quantity or intensity of exercise required, 

and the underlying mechanisms responsible for this improvement are not completely understood.  

It remains uncertain how much of these health improvements are truly due to adaptations 

associated with the improvement in VO2max, compared with some other attributes of physical 

activity, per se.  Making this distinction becomes clinically relevant particularly when one 

considers that the vigorous activities/exercises required for robust improvements in VO2max are 
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associated with participant discomfort and injury, which are thought to contribute to poor 

adherence (20).  

 

Lipid oversupply and insulin resistance 

The rate of fatty acid mobilization from adipose tissue (lipolysis) is markedly higher in obese 

compared with lean adults (37), and this over-abundance of fatty acids in the systemic circulation 

is an important link between obesity and the development of insulin resistance (79).  Several 

studies have demonstrated that an elevation in plasma fatty acid availability via lipid and heparin 

infusion in lean, healthy adults results in profound insulin resistance within only 2-3 hours (22, 30, 

72).  Conversely, pharmacological suppression of lipolysis can improve insulin resistance in obese 

adults (69).  The exact mechanisms by which elevated systemic fatty acid availability leads to 

skeletal muscle lipid accumulation and insulin resistance are not completely understood.  Within 

skeletal muscle, in general fatty acids can either be oxidized in the mitochondria for energy 

production or stored in the form of intramyocellular triacylglycerols (IMTG) or lipid intermediates 

(i.e. diacylglycerol (DAG) and ceramide) (43).  While the accumulation of neutral lipids within 

IMTG stores is now largely understood to be inert (61), the accumulation of DAG and ceramides 

have been more directly linked with impaired insulin signaling (Figure 1) (41, 80, 86, 88, 91). 

DAG and ceramide are bioactive lipid species capable of activating as well as inhibiting cellular 

signaling pathways (31).  In the context of insulin resistance, DAG has been found to activate a 

novel protein kinase C (PKC) (41, 79), which has been implicated in serine phosphorylation of 

insulin receptor substrate-1 (IRS-1) (12) resulting in inhibition of the insulin signaling cascade, 

and the subsequent inhibition of translocation of the insulin-responsive glucose transporter 

(GLUT4) to the cell surface.  The insulin desensitizing effects of ceramides appear to occur just 

downstream of IRS-1 by reducing the phosphorylation of protein kinase B (PKB; also known as 

Akt), and by altering the translocation of Akt to the plasma membrane through activation of novel 

PKCs (36).  It has also been suggested that fatty acid-induced PKC activation may also increase 

other pro-inflammatory signaling pathways such as the Nuclear factor kappa-B (NF-κB) pathway, 

thereby reducing insulin sensitivity (41). Notably, compared with non-obese individuals, obese 

individuals show greater basal DAG accumulation and activation of pro-inflammatory pathways 

(i.e. c-jun N-terminal kinase (JNK) and NF-κB) (9, 59).    
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Figure 2-1. Influence of fatty acid intermediates (e.g., DAG, ceramide) on insulin signaling 

and glucose uptake.  Fatty acids enter the myocyte via facilitated diffusion, requiring transporter 

proteins such as CD36/FAT.  In general, the two major fates of fatty acids within the myocyte are 

to either be oxidized within the mitochondria for energy or to be esterified and stored as IMTG.  

Fatty acids that are not oxidized or stored as neutral lipids can accumulate as bioactive lipid 

intermediates including DAG and ceramide.  DAG can reduce insulin-stimulated glucose uptake 

by activating serine kinases (e.g., PKC), which serine phosphorylate IRS-1, thereby inhibiting 

insulin signaling and suppressing GLUT4 translocation to the cell membrane.  Ceramides can 

impair insulin signaling by acting (directly and indirectly) on Akt/PKB; via either 

dephosphorylation of Akt and/or interfering with Akt translocation to the plasma membrane. DAG 

and ceramides can also activate IKKβ, which phosphorylates IκBα/β resulting in the dissociation 

of IκB and NFκB (and IκB is subsequently degraded).  Upon dissociation with IκB, the liberated 

NFκB is now able to translocate to the nucleus where it up-regulates the transcription of key pro-

inflammatory cytokines (e.g., TNFa). DAG and ceramides can also activate JNK resulting in 

JNK’s migration to the nucleus where it also promotes the production of pro-inflammatory 

cytokines.  Abbreviations: GPAT, glycerol-3-phosphate acyltransferase; DGAT, diglyceride 

acyltransferase; IMTG, intramyocellular triacylglycerol; DAG, diacylglycerol; NF-κB, nuclear 

factor kappa-B; IκB, inhibitor of NF-κB; IKKβ, IκB kinase; JNK, c-jun N-terminal kinase, PKC, 

protein kinase C; IRS-1, insulin receptor substrate-1; PI3K, Phosphatidylinositol 3-kinase; 

Akt/PKB, protein kinase B; GLUT4, glucose transporter type 4. 
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Exercise-mediated improvements in insulin resistance may be due in part to alterations in the 

metabolism of fatty acids within muscle, perhaps leading to a reduction in the accumulation of the 

“damaging” lipid intermediates.  Our lab has demonstrated that an acute session of exercise 

protected against insulin resistance during a lipid infusion that was administered in the several 

hours after exercise (76). This protection against lipid-induced insulin resistance was accompanied 

by an increase in the accumulation of IMTG, and a reduction in DAG and ceramides, suggesting 

that the exercise session facilitated the partitioning of fatty acids that entered the muscle toward 

storage as neutral lipids in IMTG, rather than the other lipid intermediates.  Our finding that the 

protein abundance of key enzymes in the IMTG synthesis pathway (i.e., glycerol-3-phosphate 

acyltransferase (GPAT) and diglyceride acyltransferase (DGAT)) were up regulated the morning 

after this single session of exercise helped to support this hypothesis (76).  In conjunction with the 

reduced accumulation in muscle DAG and ceramide, we also found reduced 

phosphorylation/activation of JNK and increased abundance of IκB-α and IκB-β (76). Collectively 

these findings suggest that exercise may increase insulin sensitivity by acutely repartitioning fatty 

acids away from formation/accumulation of DAG and ceramides, and reduce markers of cellular 

inflammatory-stress. 

 

It is important to note that the study described above (76) was performed in lean adults undergoing 

an overnight lipid/heparin infusion in attempt to mimic the elevated fatty acid availability in 

obesity.  However, the responses to exercise in obese subjects, who are chronically exposed to 

elevated fatty acid availability, may be rather different. For example, we recently found that a 

single session of low intensity exercise (at 50% VO2max) also improved insulin sensitivity the 

next day in obese individuals, but this improvement in insulin sensitivity was not accompanied by 

measurable reductions in DAG concentration (62).  It is possible that the relatively large muscle 

lipid pools commonly found in obesity may make it very challenging to detect rather subtle (but 

perhaps physiologically meaningful) changes in muscle DAG abundance.  But we also must 

acknowledge that the effects of exercise on lipid partitioning in obesity may differ from the effects 

we found in lean subjects who were acutely exposed to an overnight lipid infusion.    

 

As described above, the insulin sensitizing effects of exercise training (and the subsequent 

improvement in aerobic capacity) are controversial, but much of the effects of exercise on insulin 
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sensitivity appear to stem from the most recent session(s) of exercise (58).  In the context of 

exercise training and lipid-induced insulin resistance, there has been considerable debate about the 

role of increased oxidative capacity on the accumulation of intramyocellular lipids (66, 75, 77, 

89).  A greater accumulation of these lipids within muscle of obese individuals (5, 7) suggests a 

mismatch between fatty acid uptake and oxidation in skeletal muscle.  Indeed, obese individuals 

are often found to have lower oxidative capacity than their non-obese counterparts (7, 47).  

Therefore, it has been proposed that the accumulation of lipid within skeletal muscle may be a 

consequence of lower oxidative capacity (10).  However, increased oxidative capacity alone is not 

sufficient to improve skeletal muscle insulin resistance (75, 81).  Therefore, although the 

contribution of a low oxidative capacity on muscle lipid accumulation and insulin resistance 

remains to be resolved, the negative impact of a high rate of fatty acid flux into the muscle is 

generally well accepted (6, 72, 79). 

 

Influence of adipose tissue inflammation on insulin resistance 

Obesity has been characterized as state of low-grade systemic inflammation that has been linked 

to the development of skeletal muscle insulin resistance (65, 78).  Once thought of as simply a 

storage depot for excess nutrients, we now know that adipose tissue can also act as an important 

paracrine and endocrine organ, secreting peptides known to influence insulin resistance (42, 65, 

78).  Although the regulation and release of pro-inflammatory peptides (i.e. cytokines) from 

adipose tissue is not completely understood, much of the adipose-derived cytokine production in 

obesity may actually be produced in macrophages that infiltrate adipose tissue (42). In general 

there are two types of macrophages classically referred to as “M1” and “M2” macrophage, 

associated with pro- and anti-inflammatory protein secretion respectively.  Compared with non-

obese individuals, total macrophage abundance is higher in obesity (65) and there also appears to 

be a shift toward more M1 macrophage with obesity (52).  Increased macrophage accumulation 

with adipose tissue may be at least partially explained by increased systemic availability of fatty 

acids that has been previously shown to increase adipose tissue macrophage accumulation (49).  

Additionally, hypertrophy of adipocytes, as seen in obesity, induces secretion of pro-inflammatory 

cytokines including tumor necrosis factor-alpha (TNFα), interleukin-1 beta (IL-1β), interleukin-6 

(IL-6), and monocyte chemoattractant protein-1 (MCP-1) (Figure 2-2) (42).  Consequently, 

cytokines released within adipose tissue can influence inflammatory signaling in adipose tissue 
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and skeletal muscle through systemic circulation.  Within adipose tissue, both TNF-α and IL-1β 

have been found to promote lipolysis, resulting in liberation of both saturated and unsaturated fatty 

acids (28, 74).  In turn saturated fatty acids have been shown to activate Toll Like Receptor-4 

(TLR-4) resulting in the translocation of NF-κB to the cell nucleus where it acts as a nuclear 

transcription factor in the production of more pro-inflammatory proteins (i.e., TNF-α, IL-1β, IL-

6, and MCP-1) from adipose tissue into systemic circulation.  Furthermore, the cytokine MCP-1 

specifically attracts more macrophage to adipose tissue (97).  In addition, with increasing 

adipocyte cell volume with weight gain and obesity there is a reduction in adipose tissue blood 

flow (8) which can induce hypoxia (97).  Hypoxia can activate both transcription factors HIF1-α 

and NF-κB, which have been linked with increasing M1 macrophage infiltration and pro-

inflammatory cytokine production respectively (Figure 2-3). 
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Figure 2-2. Adipose tissue inflammatory pathways leading to increased systemic circulation 

of pro-inflammatory cytokines.  As adipocytes hypertrophy with weight gain and obesity, M1 

macrophages are preferentially recruited to adipose tissue, and the ratio of M1-to-M2 macrophage 

increases.  M1 macrophages produce pro-inflammatory cytokines, while M2 macrophage are 

considered anti-inflammatory.  In addition, with increasing adipocyte cell volume, capillary 

density diminishes, which can induce hypoxia.  Hypoxia activates transcription factor HIF1-α, 

which has been linked with increasing M1 macrophage infiltration and augmenting inflammation 

in adipose tissue. Hypoxia can also induce translocation of NF-κB and the secretion of pro-

inflammatory cytokines as previously described.  Abbreviations: HIF1-α, hypoxia-inducible 

factor-1, alpha; M1, pro-inflammatory macrophage; M2, anti-inflammatory macrophage; TNF-α, 

tumor necrosis factor-1 alpha; IL-1β, interleukin-1 beta; IL-6, interleukin-6; MCP-1, monocyte 

monocyte chemoattractant protein-1. 
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Systemic pro-inflammatory cytokines (i.e. TNF-α, IL-6, and MCP-1) are positively associated 

with measures of insulin resistance (3, 46, 53), but how these cytokines influence insulin resistance 

within skeletal muscle is not completely understood.  Similar to the inflammatory response within 

adipose tissue, available evidence suggests that pro-inflammatory cytokines can directly influence 

skeletal muscle insulin resistance through inhibition of the insulin signaling cascade or indirectly 

through activation of pro-inflammatory pathways that may circulate back and inhibit insulin 

signaling (Figure 3) (96).  In fact, it has been found that macrophage accumulation is also elevated 

in skeletal muscle of obese individuals, and their abundance is inversely associated with insulin 

sensitivity (92).  It is also known that TLR-4 expression is elevated in obese insulin resistance 

individuals (71)  In vitro studies using human derived myocytes have shown that physiological 

concentrations of IL-1β and IL-6 are sufficient to inhibit insulin signaling at the level of Akt/PKB 

serine phosphorylation and MCP-1 can reduce insulin stimulated glucose uptake (82).  Importantly 

many pro-inflammatory cytokines (i.e., TNF-α, IL-1β, IL-6, and MCP-1) are known to be 

produced endogenously within skeletal muscle (13).  This makes it difficult to determine the 

influence of adipose tissue and skeletal muscle derived pro-inflammatory cytokines on insulin 

signaling.  This is especially so because in vivo models of inflammation and insulin signaling or 

glucose uptake have focused primarily on either adipose tissue or skeletal muscle (45, 53, 71, 92).  

Therefore, assessing both adipose tissue and skeletal muscle inflammation in obese individuals 

may contribute to our understanding in the relationship between inflammation and skeletal muscle 

insulin resistance.   
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Figure 2-3. Influence of pro-inflammatory cytokines on skeletal muscle insulin resistance.  

Pro-inflammatory cytokines (e.g., TNFα, IL-1β) can inhibit insulin stimulated glucose uptake 

within skeletal muscle through activation of IKKβ and JNK resulting in serine phosphorylation of 

IRS-1, thereby inhibiting insulin signaling and suppress GLUT4 translocation to the cell 

membrane.  These cytokines can also work more indirectly by facilitating the ability of NF-κB and 

JNK to migrate the nucleus, which can increase the transcription of additional inflammatory 

cytokines.  These cytokines may then exit the cell and interact with cell surface membrane 

receptors (in an autocrine and paracrine manner), further perpetuating the pro-inflammatory cycle 

and the inhibition of the insulin signaling.  Abbreviations: NF-κB, nuclear factor kappa-B; IκB, 

inhibitor of NF-κB; IKKβ, IκB kinase; JNK, c-jun N-terminal kinase, PKC, protein kinase C; IRS-

1, insulin receptor substrate-1; PI3K, Phosphatidylinositol 3-kinase; Akt/PKB, protein kinase B; 

GLUT4, glucose transporter type 4. 
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Influence of acute and habitual physical activity on adipose tissue, systemic, and skeletal 

muscle inflammation 

The effects of exercise/physical activity on the abundance of pro-inflammatory cytokines in 

adipose tissue, systemic circulation, and skeletal muscle of obese individuals remain unresolved.  

In adipose tissue, hypoxia has been proposed to be a major mediator of inflammation through 

activation of the NFκB pathway (97) and by reducing efflux of macrophage from adipocytes (90).  

A potent stimulator of angiogenesis, exercise may reduce pro-inflammatory signaling in adipose 

tissue through enhanced blood flow.  Hypoxia inducible-factor 1 (HIF-1) is a transcription factor 

and master regulator of genes involved in oxygen homeostasis inducing expression of hypoxia 

inducible-factor 1α (HIF-1α) leading to the transcription of vascular endothelial growth factor 

(VEGF) and ultimately increased angiogenesis (83).  Obese individuals show reduced adipose 

tissue blood flow (57) and increased expression of HIF-1α (14).  At least in rodent models exercise 

training does appear to increase capillary density of adipose tissue (32) and reduce M1 macrophage 

as well as TLR-4 expression (45).  However, to our knowledge markers of hypoxia and 

vascularization have not been examined in response to exercise training in obese individuals.  If 

exercise training can influence the inflammatory profile within adipose tissue it does not appear to 

modulate the systemic pro-inflammatory state of obese individuals who demonstrate no change in 

IL-6, TNF-α, or MCP-1 with 12 weeks of exercise training when measured 24-48 hrs after 

participants last exercise training session (16).  A better understanding of the inflammatory 

response to acute and habitual physical activity within adipose tissue and in the systemic 

circulation of obese individuals could have important implications for designing lifestyle 

interventions aimed at reducing disease risk associated with chronic inflammation.   

 

Much less is known about the inflammatory state of muscle in response to physical 

activity/exercise training in overweight and obese humans.  Macrophage accumulation is higher 

in skeletal muscle of obese individuals (92) and capable of endogenous production of pro-

inflammatory cytokines (96).  Acutely, exercise stimulates the production and secretion of IL-6 

from skeletal muscle (25).  However, the release of these cytokines peaks at the end of exercise 

and is relatively low in the basal state of lean individuals (25).  It is not clear whether macrophages 

are the source of IL-6 production in skeletal muscle.  Monocytes are precursor cells for 

macrophage and also classically characterized as pro- and anti-inflammatory (68).  Overweight 

and obese individuals show greater markers of pro-inflammatory monocytes (87).  While exercise 
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training has been shown to reduce the percentage and concentration of pro-inflammatory 

monocytes (87), expression of macrophage and pro-inflammatory cytokines within skeletal muscle 

remains unchanged (16).  Therefore, it is not clear how acute and habitual physical activity 

influence markers of inflammation in skeletal muscle.  Determining the inflammatory state of 

adipose tissue, systemic circulation, as well as skeletal muscle could provide a more complete 

understanding of how exercise/physical activity contributes to improved cardiovascular and 

metabolic health (Figure 2-4).   

 

 

 

 

 

Figure 2-4. Potential targets for assessing adipose tissue, systemic and skeletal muscle 

inflammation in response to acute exercise and habitual physical activity.  My dissertation 

projects were designed to examine the effects of acute exercise and habitual physical activity on 

insulin sensitivity, and markers for inflammatory pathway activation that may affect insulin action 

in muscle.  In addition, I also explored the effects of acute exercise and habitual physical activity 

(without weight loss) on pro-inflammatory cytokine profile within adipose tissue and systemic 

circulation of overweight and obese individuals. 
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Measure of insulin resistance – strengths and limitations 

Insulin resistance and insulin sensitivity are major outcomes for the projects of my dissertation.  

Many different methods have been used, and validated, to assess insulin resistance in humans.  

These methods range from rather crude assessments based on fasting plasma glucose and insulin 

concentrations e.g., Homeostatic Model Assessment of Insulin Resistance [HOMA-IR], to more 

involved/sophisticated methods requiring glucose and insulin infusion (e.g., hyperinsulinemic-

euglycemic clamp).  Although HOMA-IR has been reported to correspond well with insulin 

resistance measured using the “gold-standard” clamp procedure (93), there are very important 

limitations of using HOMA-IR in part because this measure only involves fasting glucose and 

insulin rather than changes in glucose metabolism in response to an increase in insulin.  However, 

HOMA-IR has been acknowledged to be a useful tool for assessing insulin sensitivity in large-

scale epidemiological studies (54, 93) such as the NHANES databases used in PROJECT #1 of 

my dissertation.             

 

A more involved method of estimating insulin resistance includes measurements of plasma glucose 

and insulin concentration during an oral glucose tolerance test (OGTT).   Calculations estimating 

whole-body, muscle and hepatic insulin sensitivity have been derived from the OGTT and compare 

reasonably well with measures acquired with the hyperinsulinemic-euglycemic clamp (4, 55).  The 

product of glucose and insulin area under the curve (AUC) within the first 30 minutes of the OGTT 

has been used as a measure of hepatic insulin resistance (4).  In healthy individuals the rise in 

plasma glucose and insulin within the first 30 minutes of the OGTT should be sufficient to suppress 

endogenous glucose production from the liver.  Therefore, elevated plasma and insulin 

concentrations within that time frame reflect the inability of insulin to suppress endogenous 

production of glucose from the liver.   

 

Hepatic Insulin Sensitivity Index = [Glucose AUC0-30] x [Insulin AUC0-30]  

 

As noted, this method of estimating hepatic insulin resistance has been shown to be significantly 

correlated with more direct measures of hepatic insulin resistance (4).  Likewise, assuming hepatic 

glucose production is nearly completely suppressed 30 minutes into the OGTT, the reduction in 

plasma glucose concentration would reflect peripheral glucose uptake.  Therefore, the decline in 
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glucose concentration from peak to nadir during the OGTT, divided by the average insulin 

concentration during this timeframe has been used as an indicator of peripheral insulin resistance 

and is also significantly associated with more sensitive measures of peripheral insulin sensitivity 

(4).   

 

𝑀𝑢𝑠𝑐𝑙𝑒 𝐼𝑛𝑠𝑢𝑙𝑖𝑛 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =
dG

dt
/[MPI]  

 

In addition to these tissue-specific indices of insulin sensitivity, the Matsuda Composite Index of 

Insulin Sensitivity (ISI) provides a measure of whole body insulin sensitivity as a product of fasting 

plasma glucose and insulin concentration and average plasma glucose and insulin concentration in 

response to a glucose load (55).  This calculation is derived from the assumption that fasting 

glucose concentration is indicative of endogenous glucose production from the liver as a function 

of insulin concentration and the average plasma glucose and insulin concentration during the 

OGTT reflects both the suppression of hepatic glucose production and disposal of glucose in 

peripheral tissues.   

 

𝑀𝑎𝑡𝑠𝑢𝑑𝑎 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝐼𝑛𝑑𝑒𝑥

= 10,000/ √[(fasting insulin x fasting glucose) x (2h glucose x 2h insulin) 

 

Similarly, ISI is also significantly correlated to the hyperinsulinemic-euglycemic clamp method of 

measuring insulin resistance (55).  Unlike both HOMA-IR and the hyperinsulinemic-euglycemic 

clamp method of determining insulin resistance, ISI is a dynamic measure of insulin resistance in 

response to a glucose load potentially reflecting a normal meal for an individual.  Therefore, the 

glucose and insulin response to a glucose load similar to a “meal” may have very important clinical 

implications in populations at increased risk for T2DM.  Also the OGTT has been repeatedly found 

to respond fairly quickly (within a day) to activity and inactivity (35, 73) suggesting that it would 

be an appropriate measure of insulin resistance for PROJECT #2 of my dissertation examining the 

acute and chronic effects of exercise on insulin resistance in overweight and obese adults.   
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The most sensitive measure of insulin resistance, and currently the “gold standard” for determining 

insulin resistance, is the hyperinsulinemic-euglycemic clamp method (60).  The hyperinsulinemic-

euglycemic clamp method involves two intravenous catheters in contra-lateral arms for a constant 

infusion of insulin and variable infusion of glucose  as well as frequent arterialized blood draws at 

a rate of one every five minutes (18, 60).  Additionally a stable isotope tracer infusion of glucose 

can also be used to distinguish between hepatic and peripheral insulin resistance (60).  Because of 

the level of involvement of the clamp procedure, it is not ideal for large epidemiological or clinical 

investigations (60).  However, there are two important advantages to the hyperinsulinemic-

euglycemic clamp method including its relatively high degree of reproducibility and low 

variability (60).  This makes the hyperinsulinemic-euglycemic clamp method ideal for smaller 

experimental investigations examining subtle yet potentially meaningful changes in insulin 

resistance similar to the study proposed in PROJECT #3 of my dissertation examining the 

progressive adaptations associated with adapting a fairly modest exercise training program in 

obese adults.   

 

Summary of review of literature 

The overall objective of my dissertation projects was to thoroughly examine key metabolic 

adaptations that are consistent with a habitually active lifestyle.  These findings will have important 

implications for designing lifestyle interventions specifically aimed at enhancing metabolic health 

in overweight individuals.  Although increased physical activity is clearly known to improve 

metabolic health, the optimal amount of exercise required, and the underlying mechanisms 

contributing to this improvement are not completely understood.  Most current exercise 

recommendations are designed with the goal to improve cardiorespiratory fitness (e.g. maximal 

oxygen uptake (VO2max)) (2). However, mounting evidence suggests many health benefits of 

exercise are largely independent of improvements in VO2max, suggesting a training program 

designed to improve “fitness” may not be optimal for improving metabolic health.  This is 

particularly relevant because the higher intensity exercise required to improve VO2max often leads 

to poor exercise adherence (20). Additionally, many of the metabolic health benefits of exercise 

actually stem from the most recent exercise session(s), rather than from adaptations to weeks, 

months, and even years of exercise training (19, 24). Insulin resistance is also linked to the 

development of many other chronic diseases, and it is a primary outcome measure of my 
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dissertation studies (21, 27, 44, 63). Despite clear evidence that insulin resistance is greatly 

improved after a vigorous session of exercise (i.e., 24-48 hrs after exercise – but mostly dissipates 

after that), the effects of cumulative sessions of a more modest exercise/physical activity program 

on metabolic responses and adaptations that may improve insulin resistance remain unclear.  
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CHAPTER 3 

Daily physical activity predicts degree of insulin resistance: a cross-sectional observational 

study using the 2003–2004 National Health and Nutrition Examination Survey 

 

Abstract 

This study examined the independent association of objectively measured physical activity on 

insulin resistance while controlling for confounding variables including: cardiorespiratory fitness, 

adiposity, sex, age, and smoking status.  Data were obtained from National Health and Nutrition 

Examination Survey 2003-2004, a cross-sectional observational study conducted by the National 

Center for Health Statistics of the Centers for Disease Control that uses a stratified, multistage 

probability design to obtain a nationally representative sample of the U.S. population. The analysis 

included 402 healthy U.S. adults with valid accelerometer, cardiorespiratory fitness, and fasting 

plasma glucose and insulin concentrations. After controlling for relevant confounding variables 

we performed a multiple linear regression to predict homeostatic model of insulin resistance 

(HOMA-IR) based on average daily minutes of moderate-to-vigorous physical activity (MVPA).  

In our bivariate models, MVPA, cardiorespiratory fitness and body fat percentage were all 

significantly correlated with log HOMA-IR. In the complete model including MVPA and relevant 

confounding variables, there were strong and significant associations between MVPA and log 

HOMA-IR (β= -0.1607, P=0.004). In contrast the association between cardiorespiratory fitness 

and log HOMA-IR was not significant.  In conclusion, when using an objective measure of 

physical activity the amount of time engaged in daily physical activity was associated with lower 

insulin resistance, whereas higher cardiorespiratory fitness was not. These results suggest that the 

amount of time engaged in moderate-to-vigorousphysical activity may be an important 

determinant for improving glucose metabolism.  

 

Keywords: Ambulatory monitoring, physical fitness, adiposity  
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Introduction 

The incidence of obesity-related diseases, such as type 2 diabetes is increasing in parallel with the 

alarming rise in the prevalence of obesity (16). Lifestyle programs involving weight loss and 

exercise are often found to improve insulin resistance (IR) in individuals with diabetes, and also 

to prevent or delay the onset of diabetes in those at risk of developing the disease (2). Although 

weight loss can markedly improve IR, exercise can also improve IR even in the absence of weight 

loss. Additionally, although improved cardiovascular “fitness” in overweight and obese 

individuals is linked with a reduced incidence of diabetes, exercise can also improve IR without 

enhancing cardiovascular fitness (11). For example, a single session of exercise can have a 

profound improvement on IR that can persist for several hours and even days (7, 25). Collectively 

this evidence suggests that exercise, per se, provides a potent stimulus for improving IR. Therefore, 

promoting a lifestyle change to increase regular physical activity (PA), even if it is not sufficient 

to induce weight loss or improve cardiovascular fitness, may be a viable and realistic intervention 

option aimed at reducing diabetes risk. 

 

“PA” is broadly defined to include any bodily movement produced by skeletal muscle that 

increases energy expenditure (1). Until recently it has been difficult to quantify ambulatory PA in 

free-living individuals. Large cohort studies have traditionally used self-reported surveys to 

measure PA, contributing to errors in determining the intensity and duration of PA (12, 23). 

However, objectively measured PA has been shown to be a better predictor of metabolic health 

than self-reported PA (5). Accelerometers, currently the gold standard for objectively measuring 

PA in a free-living population (26), were incorporated into the National Health and Nutrition 

Examination Survey (NHANES) 2003-2004 survey, a nationally representative sample of 

residence in the U.S. Analysis of fasting blood samples (including plasma concentrations of insulin 

and glucose), and other variables known to influence IR (i.e. cardiorespiratory fitness, and total 

body adiposity) were also determined for a subset of healthy participants in this NHANES cohort. 

The objective measurement of these constructs in a large representative cohort of U.S. adults 

allows more precise estimates than in previous studies along with an opportunity to access lower 

intensity PA that is difficult to quantify by self-report. Therefore, the aim of our study was to 

examine the independent association of objectively measured PA on IR while controlling for 

potential confounding variables in a representative sample of healthy U.S. adults.  
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Methods 

Inclusion criteria 

NHANES is a cross-sectional observational study conducted by the National Center for Health 

Statistics of the Centers for Disease Control and Prevention that uses a stratified, multistage 

probability design to obtain a nationally representative sample of the U.S. population. The survey 

population included randomly selected households within clusters of neighborhoods. Of the 12,761 

individuals selected during the 2003-2004 survey, 10,122 individuals agreed to participate. The 

NHANES 2003-2004 survey included an interview, physical examination and laboratory testing 

conducted by trained staff. Only non-pregnant adults aged 18-49 without a history of diabetes (or 

taking medication to treat diabetes), cardiovascular or renal disease, stroke or emphysema were 

included in this analysis. Because participants were scheduled for either a morning blood draw 

after a 9-hour fast or an afternoon blood draw after a 6-hour fast, a fasting questionnaire was used 

to determine whether or not participants met the fasting requirements. Therefore, fasting glucose 

and insulin used to calculate the primary outcome of homeostatic model of IR (HOMA-IR) were 

only available on approximately half of the NHANES participants who were classified as fasted. 

Also, only participants who successfully completed submaximal VO2max fitness test in order to 

determine cardiorespiratory fitness were included in this analysis (Figure 3-1).     

 

Assessment of insulin resistance 

Blood samples were obtained by trained medical personnel in mobile examination centers after a 

6- or 9-hour fast. Samples were centrifuged; the plasma from each sample was placed into storage 

test tubes, shipped to the University of Missouri-Columbia (Columbia, Missouri), and stored at -

70˚ until analysis. Plasma glucose concentration was determined by hexokinase enzyme method. 

Plasma insulin concentrations were measured with Tosoh AIA-PACK IRI (Toyama, Japan) two-

site immunoenzymometric assay. Individuals with fasting insulin concentrations < 2 µIU/mL or > 

100 µIU/mL (n = 34) were considered outliers and were excluded from the analysis. HOMA-IR 

(the product of fasting plasma glucose and insulin concentrations divided by 22.5 

[mM*μIU/mL/22.5]) was used as a composite index for IR (34).   
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Assessment of habitual physical activity 

PA was monitored by an Actigraph AM-7164 accelerometer (formerly the CSA/MTI AM-7164, 

manufactured by ActiGraph of Ft. Walton Beach, FL), which is a pager-sized device powered by 

a small lithium battery and attached to an elasticized belt worn on the right hip (33). The 

accelerometer measured the duration and intensity of PA by capturing the magnitude of 

acceleration (intensity) and summing the magnitudes (intensity counts) within a specified time 

interval (epoch). A one-minute epoch was used by NHANES (17). Participants were asked to wear 

the device for seven consecutive days while they were awake and to remove it while swimming or 

bathing. Monitors were returned by express mail to NHANES, where data were downloaded and 

the device was checked to determine whether it was still within manufacturer’s calibration 

specifications. NHANES used standardized data quality procedures to assess validity and 

reliability of Actigraph ACC data (17). Our analysis included PA data from participants who wore 

the accelerometer for at least 600 minutes on four or more days of the week. Any block of time 

greater than or equal to 60 minutes where the activity count was equal to zero was considered time 

when the monitor was not worn. Each minute of accelerometer data was coded based on the 

recorded activity counts for that minute.  Minutes with ≥1952 activity counts were coded as 

moderate-to-vigorous intensity PA (MVPA) and  ≥260 and <1952 activity counts were coded as 

light PA (24). We summed the number of minutes at these intensities over the entire day. This 

activity did not have to represent clearly defined sessions of exercise or be sequential and were 

thus accumulated throughout the day. Minutes of activity were divided by 30 to reduce the risk of 

rounding error in regression betas due to the fine scale of activity minutes. This calculation yields 

a measure of PA in which each unit represents approximately 30 minutes of PA per day. Changes 

to the units do not affect the associations described by our analysis.   

 

Assessment of cardiorespiratory fitness 

A multiple-stage submaximal treadmill exercise test was employed to estimate maximal oxygen 

consumption (VO2max), which was used as the marker for cardiorespiratory fitness. Per NHANES 

protocol, inclusion criteria for exercise testing were based on medical conditions, medication and 

physical limitations determined during household interviews, and limited to adults 18-49 years 

who did not have any known cardiac conditions. A detailed list of inclusion criteria and 

submaximal exercise testing procedures can be found elsewhere (4). Briefly, the exercise test 
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included a two-minute warm-up on the treadmill, two separate three-minute submaximal exercise 

stages and a two-minute cool-down. Heart rate associated with known workloads at the end of 

each stage were used to estimate VO2max, as previously described (4). Grade and speed for each 

stage were selected based on age, sex, body mass, and self reported PA. Heart rate was monitored 

throughout the test by four electrodes attached to the participant’s thorax and abdomen. Individuals 

with non-physiological estimates of VO2max (> 100 ml/kg/min, n=3) were excluded from the 

analysis.    

 

Anthropometric measures 

A wall-mounted stadiometer and a digital floor scale were used to measure height and weight, 

respectively, and calibrated as previously described (31). Body fat percentage was determined by 

dual-energy X-ray absorptiometry (DEXA) using Hologic QDR-4500A fan-beam densitometer 

(Hologic, Inc., Bedford, Massachusetts) (3). The DEXA was performed by a certified radiology 

technologist, and the densitometer was calibrated daily with a Hologic Anthropomorphic Spine 

Phantom as directed by the manufacturer.   

 

Smoking status 

Smoking status was determined by measuring plasma serum levels of cotinine, which is a major 

metabolite of nicotine. Individuals with cotinine levels > 10 ng/ml were coded as being current 

smokers. 

 

Participant characteristics 

Age at the time of the survey was calculated from the participant’s self-reported date of birth. 

Participants were classified into 1 of 4 categories for race/ethnicity based on self-reported 

background: Non-Hispanic white, Non-Hispanic black, Mexican American, or other.    

 

Statistical analysis 

Descriptive statistics include means, standard deviations, and range for continuous variables 

(glucose, insulin, HOMA-IR, PA, VO2max, percent body fat, and age). Frequencies were 

calculated for categorical variables (i.e. sex and race/ethnicity). Because HOMA-IR was not 

normally distributed, we used log HOMA-IR as the primary outcome variable in our regressions. 
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Multiple linear regressions were performed with log HOMA-IR as the dependent variable.  

HOMA-IR was transformed using the log function to correct for the skewed distribution.  Minutes 

of MVPA and VO2max were the primary predictor variables. Appropriate confounding variables 

including: adiposity, sex, and age were also included in our complete model. Model parameters 

were also stratified by sex. Race/ethnicity and smoking status did not significantly impact model 

estimates and was not included in any reported models. Adjusted r-squared values were calculated 

during the addition of confounding variables to our complete model. We also examined variance 

inflation factors to determine multicollinearity in our complete model.   

 

Predicted mean values of HOMA-IR with confidence intervals were calculated for various levels 

of PA using the complete multiple linear regression including PA, cardiorespiratory fitness, 

percent body fat, age, and sex as independent variables.     

 

All analysis took into consideration NHANES complex survey design including: weighting, 

stratification, and clustering. Sample weights for the NHANES 2003-2004 fasting sample were 

used. For all analysis, significance was set at <0.05. Statistical analysis was performed using Stata 

11.0 for Windows (StataCorp LP, College Station, TX, 2006). 

 

Results 

Participant characteristics 

Of the 10,122 participants in the 2003-2004 NHANES sample, 883 were healthy, non-pregnant 

adults between the ages of 18-49 who were scheduled for a morning fasting blood draw. Of those 

883 participants, 402 had valid data for HOMA-IR calculations, estimated VO2max, and PA 

(Figure 3-1). Categorical and continuous summary statistics of the final sample are presented in 

Table 3-1.  The 481 individuals who were excluded from the analysis were slightly older, heavier 

and more likely to be non-white than the 402 with complete data (Table 3-1).   

 

Regression models 

Parameter estimates for the four different regression models were presented in Table 3-2. We did 

observe a weak but significant relationship between cardiorespiratory fitness and physical activity 

(r2=0.1065, P<0.01; Figure 3-2).  Importantly variables in our complete model did not demonstrate 
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multicollinearity with an average variance inflation factor of 1.55 (range: 1.05-2.19). In bivariate 

models, MVPA and cardiorespiratory fitness were all significantly correlated with log HOMA-IR 

with higher levels of MVPA (β=-0.224, P=0.024) and cardiorespiratory fitness (β=-0.019, 

P=0.003) predicting lower log HOMA-IRs. However, in our complete model (Model 4), including 

predicting and confounding variables (cardiovascular fitness, body fat percentage, age and sex), 

the association between cardiorespiratory fitness and log HOMA-IR became non-significant while 

MVPA remained significantly correlated with log HOMA-IR. When stratified by sex, our analysis 

did not show any evidence of moderation by sex on the association between MVPA and log 

HOMA-IR (data not shown).   

 

Light physical activity 

We also examined minutes of light PA in our analysis. Although not statistically significant, there 

was a trend for an association between LPA and log HOMA-IR in our bivariate model (β=0.0288, 

P=0.099) and for LPA to predict log HOMA-IR when included in a more complete model with 

confounding variables (β=-0.0214, P=0.093). Importantly, when both LPA & MVPA were 

modeled with confounding variables, MVPA remained a significant predictor of log HOMA-IR 

(β=0.1457, P=0.035) while LPA (β=-0.0154, P=0.184) and cardiovascular fitness (β=0.0015, 

P=0.760) did not. 

 

Prediction of HOMA-IR based on Model 4.  

The predicted HOMA-IR means with confidence intervals for a range of MVPA levels are 

presented in Table 3-3. Assuming that the association found in Model 4 is causal, if the average 

individual in our model (based on means presented in Table 1 for predicting and confounding 

variables) who initially does not engage in any MVPA and subsequently increases his/her PA to 

30 minutes of MVPA a day can decrease their HOMA-IR by 0.26 which is an 13% reduction in 

HOMA-IR.   

 

Additional correlational analyses 

Please note that in the process of responding to reviewers’ comments for this submitted manuscript 

(which is now accepted for publication in the International Journal of Behavioral Nutrition and 

Physical Activity), it was requested that we remove some comparisons from the accepted 
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manuscript that I had included in my original dissertation proposal.  These additional comparisons 

were to examine the independent association between physical activity and mean arterial pressure 

(MAP), total cholesterol (Total-C), and C-reactive protein as well as the independent association 

between cardiorespiratory fitness and these same outcomes.  These data can be found in 

APPENDIX 1. 

 

Discussion 

Although increased PA is known to improve IR, the mechanisms underlying this improvement are 

not completely understood. More specifically, it is difficult to distinguish the metabolic benefits 

of PA, per se, from the improvement in cardiorespiratory fitness that often accompanies an increase 

in PA. Presently, we found a strong and significant association between daily MVPA and a 

measure of IR (HOMA-IR) after adjusting for confounding variables including cardiorespiratory 

fitness. In contrast, we did not observe the same relationship between cardiorespiratory fitness and 

log HOMA-IR after correcting for the same confounding variables. Together these results 

highlight the potential importance of daily MVPA as a target intervention of improving IR 

independent of changes to cardiorespiratory fitness.     

 

It is clear from previously published longitudinal studies that individuals with greater 

cardiorespiratory fitness are at lower risk for developing diabetes (30, 32). Yet improvements in 

cardiovascular fitness as a result of exercise training are highly variable and can take several 

months to develop (6). Also, while the most robust improvements in cardiovascular fitness stem 

from higher intensity training (8, 10), this kind of activity is also associated with greater participant 

discomfort and injury contributing to higher dropout rates (8). Therefore, it is necessary to 

determine alternative intervention programs that may be more attainable by individuals at risk of 

developing diabetes. Our prediction analysis shows marked improvements in IR with relatively 

modest changes to daily MVPA. Indeed the benefits of cardiorespiratory fitness on other health 

outcomes such as cardiovascular health are undeniable (12, 23), but modest PA may be an 

appropriate alternative for individuals that may see exercise intensity as a barrier to being more 

physically active.   

 



40 
 

Near-optimal fasting plasma glucose and insulin levels yield a HOMA-IR value close to 1, and our 

model showed that 120 minutes of MVPA per day predicts near optimal HOMA-IR values.  This 

is equivalent to only 7.5 minutes of activity per hour during wakeful hours (accounting for 8 hours 

of sleep), throughout the day. Some PA guidelines emphasize a bout of at least ten minutes of PA 

to improve health (18). However, our analysis included accumulated minutes of PA throughout 

the entire day. We did not determine how the MVPA was accumulated, and future research is 

required to determine whether MVPA accumulated sporadically throughout the day is sufficient 

to improve IR or if it should be accumulated in bouts to have a positive effect on IR.   

 

Surprisingly, LPA was not significantly associated with IR in our regression models. In contrast, 

similar methods, using objectively measured PA, identical criteria for defining intensity of PA, 

and inclusion of confounding variables like adiposity (i.e. waist circumference or BMI), have 

reported an inverse relationship between LPA and 2-hour plasma glucose concentrations during 

an oral glucose tolerance test (19). This discrepancy between our results and previous analysis may 

be explained by the use of HOMA-IR, which has not been found to be associated with LPA (20). 

Furthermore, while the use of accelerometers are currently the ideal method for measuring PA and 

have a high degree of sensitivity for LPA, HOMA-IR is a less sensitive measure of IR. Therefore 

LPA could have a positive effect on IR that we were unable to detect in our analysis. The use of 

more sensitive measures of IR (i.e. intravenous glucose tolerance test and hyperinsulinemic-

euglycemic clamp methods) may be required to determine the influence of LPA on IR. Further 

investigation into the influence of LPA on IR may have important public health implications for 

individuals incapable or resistant to higher intensity PA.    

 

Obesity is associated with increased risk of IR and type 2 diabetes (21, 29). In our complete model, 

we show that body fat percentage was most strongly associated with IR. With two-thirds of the 

U.S. population classified as overweight or obese, weight loss is an important therapeutic target 

for metabolic disease prevention (15, 16). In fact modest weight loss (~5% of initial body weight) 

can induce clinically relevant improvements in metabolic health (22).  However, clinical trials 

targeting behavioral changes to diet and exercise as well as pharmacological interventions have 

shown only modest weight loss and more importantly have proven difficult to sustain (9). Because 
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sustained weight loss is so difficult for many people (9), adopting a physically active lifestyle may 

be a more feasible alternative to weight loss for those at increased risk of developing IR.     

 

Our study has certain limitations. Because our analysis is cross sectional, causation cannot be 

determined. However, our analysis showed that higher MVPA was indicative of lower IR in 

healthy adults. Large observational trials confirm the association between PA and HOMA-IR (13). 

Controlled intervention trials in which adiposity, cardiorespiratory fitness and PA are manipulated 

independently in a sample large enough to convincingly establish causal association are likely to 

be infeasible. However, a more practical approach may be to systematically determine the 

minimum “dose” (i.e. intensity, duration, caloric expenditure, etc.) of PA, as well as the effect of 

habitual PA over time on the mechanisms underlying an improvement in IR.   

 

It is also important to note that HOMA-IR is not the most sensitive measure of insulin resistance, 

and better measures of insulin resistance exist including an intravenous glucose tolerance test and 

hyperinsulinemic-euglycemic clamp methods.  Although our analysis included a relatively 

insensitive measure of insulin resistance, we were able to detect measurable differences and the 

HOMA-IR method was practical for measuring insulin resistance in a population this large and 

diverse.  

 

The NHANES 2003-2004 survey limited cardiovascular fitness testing to individuals <49 yrs of 

age because of increased risk for an adverse cardiovascular incident. Examining the independent 

relationship between physical activity and cardiovascular fitness on insulin resistance in middle 

and older aged adults is an important question worth pursuing. However, we were unable to make 

this analysis with the current NHANES data set.  

 

Because only healthy adults were selected for this analysis in order to rule out any unnecessary 

confounding factors brought about by disease, on average our sample was more active and fit than 

the average American. While participants averaged nearly 30 minutes of MVPA per day and had 

an estimated VO2max of 40 ± 9 ml-1 •kg -1•min-1, there was a large range of values and high 

variability between participants, suggesting a rather heterogeneous subject pool rather than a 

highly fit population. Although a maximal exercise test was not performed, VO2max was estimated 
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objectively using a submaximal exercise test. Submaximal exercise tests have been shown to be 

strongly correlated with maximal measures of VO2max (14). Also, although the participants in the 

present study were generally younger than the age range where the incidence of newly diagnosed 

type 2 diabetes is greatest (45-64 years old (1)), in order to prevent or delay the onset of diabetes 

it is important to determine how PA behavior may influence IR in younger adults (>45 year old). 

Other than requiring an overnight fast, diet and exercise were also not controlled prior to 

participants’ fasting blood draw or submaximal exercise testing. Although macronutrient meal 

composition and exercise can acutely alter IR (25, 28) it is not unreasonable to assume that 

participant’s diets and exercise habits were not altered during this brief testing period.  

 

Our analysis, using objective measures of PA demonstrated that an increase in daily MVPA had a 

significant and positive effect on IR. Importantly these improvements were independent of other 

variables also known to influence diabetes risk including cardiovascular fitness and adiposity. 

Therefore, if improved glucose metabolism is the primary goal, lifestyle programs targeting 

improvements in metabolic health may be best designed to encourage individuals to participate in 

daily MVPA. This may be particularly important for individuals who have difficulty achieving or 

maintaining weight loss and/or for those who may be deterred by vigorous exercise regimens.   
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Variable Final Cohort 

Mean ± Linearized SE 

(n=402) 

Range 

(n=402) 

Excluded Individuals 

Mean ± Linearized SE 

(n=481) 

Sex (%)    

   Male 53.0  49.0 

   Female  47.0  51.0 

Race (%)    

   Non-Hispanic white 74.0  68.0* 

   Non-Hispanic black 10.0  14.0* 

   Mexican American 10.0  8.0* 

   Other 7.0  10.0* 

Smoking Status    

   Smokers 29.0  37.0 

   Non-smokers 71.0  63.0 

Age (yrs.) 32.6 ± 0.56 18-49 34.0 ± 0.51* 

Mass (kg) 79.7 ± 1.16 42.8-156.7 82.8 ± 0.95 

BMIa (kg/m2) 26.9 ± 0.26 16.0-50.1 28.3 ± 0.29* 

Body Fat (%) 31.2 ± 0.40 12.2-51.8 33.2 ± 0.42* 

Fasting glucose (mmol/L) 5.1 ± 0.03 3.8-12.1  

Fasting insulin (μU/mL) 9.4 ± 0.49 2.0-61.2  

HOMA-IRb  2.1 ± 0.11 0.2-17.3  

Average MVPAc (min) 32.1 ± 1.23 0.0-134.0  

Estimated VO2maxd 

(ml/kg/min) 
39.7 ± 0.54 21.4-78.9  

 

Table 3-1. Participant demographics, anthropometric, metabolic, physical activity characteristics 

and cardiorespiratory fitness (n=402) 

 
a body mass index 
b homeostatic model assessment of insulin resistance 
c moderate-to-vigorous physical activity  
d maximal oxygen consumption 

*Statistically significant difference between final cohort (n=402) with valid measures of HOMA-

IR, cardiorespiratory fitness, and physical activity and those excluded due to missing or invalid 

data.    
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Beta 

(P-value) 
Model 1 Model 2 Model 3 Model 4 

Physical Activity (30 min of 

MVPAb) 

-0.2241 -0.1676 -0.0680 -0.1607 

(0.024) (0.072) (0.378) (0.028) 

Estimated VO2max c (ml/kg/min)  -0.0144 0.0035 -0.0008 

 (0.018) (0.613) (0.868) 

Body Fat  (%)   0.0396 0.0789 

  (<0.001) (<0.001) 

Age (yrs.)    -0.01611 

   (0.005) 

Sex Male = 1; Female = 0    -1.0540 

   (<0.001) 

Adjusted r 2 0.042 0.064 0.165 0.423 

r 2 (% change)  52.4% 158% 156% 

 

Table 3-2. Linear regression models predicting log of insulin resistance (log HOMA-IRa).  For 

all models n=402.   

a homeostatic model assessment of insulin resistance 
b moderate-to-vigorous physical activity  
c maximal oxygen consumption 
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Average MVPA 

(min/day) 
HOMA-IR 95% CI 

0 1.95 1.58-2.32 

15 1.81 1.57-2.06 

30 1.69 1.52-1.86 

45 1.57 1.40-1.73 

60 1.46 1.25-1.69 

75 1.35 1.08-1.63 

90 1.26 0.93-1.59 

105 1.17 0.79-1.55 

120 1.09 0.67-1.51 

 

Table 3-3. Predicted effect of average minutes of MVPAa on HOMA-IRb and 95% confidence 

interval (95% CI) 

 

Predictions are based on Model 4 

 
a moderate-to-vigorous physical activity  
b homeostatic model assessment of insulin resistance 
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Figure 3-1. Inclusion (subsample) flow chart. 
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Figure 3-2. Relationship between average minutes of daily MVPA and cardiorespiratory fitness. 
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CHAPTER 4 

Health benefits of habitual and acute exercise in overweight-to-mildly-obese adults 

Abstract 

The aims of this study were to compare markers of cardiometabolic disease risk in overweight 

adults who exercise regularly with a well-matched cohort of overweight adults who do not 

exercise, and to assess the metabolic impact of a single session of exercise in these groups. Twenty-

eight overweight-to-mildly obese men and women (BMI: 27-34 kg/m2) were divided into 2 cohorts 

based on their self-reported exercise behavior. 16 of these subjects (male/female: 7/9) were 

classified as exercisers (“EX”) (>2.5h planned endurance-type exercise/week), while 12 subjects 

(male/female: 4/8) were non-exercisers (“Non-EX”). VO2max was significantly greater in EX vs. 

Non-EX (33±3 vs. 25±2 ml/kg/min, p=0.04) but as designed, body mass (89±3 vs. 88±3 kg), 

%body fat (34±1 vs. 37±2%), and waist circumference (100±2 vs. 96±2 kg) were well-matched 

between groups. Participants reported to the laboratory after an overnight fast, and we measured 

resting blood pressure (BP), a fasting blood sample was collected for measures of blood lipids and 

inflammatory cytokines, and insulin sensitivity was assessed using the Matsuda Insulin Sensitivity 

Index (ISI) during an oral glucose tolerance test (OGTT).  Importantly, EX participants refrained 

from exercising for exactly 3 days before the measurements.  After the OGTT, all participants 

performed a single session of exercise (1h at ~70% of their age-predicted HRmax).  They returned 

to the laboratory the next morning for the same measurements performed the day before. ISI was 

significantly higher in EX vs. Non-EX (3.3±0.3 vs. 2.5±0.4; P=0.03), but BP, and blood lipids 

were not different between groups. The acute exercise session increased ISI the next morning in 

Non-EX (2.5±0.4 vs. 3.2±0.6; P=0.01), and this improvement in ISI was significantly correlated 

with the reduction in the plasma concentration of the pro-inflammatory cytokine, IL-1β (P=0.05).  

The exercise session did not increase ISI the next day in EX (3.1±0.2 vs. 3.3±0.5; P=0.56), and as 

a result, ISI was similar between groups the morning after a single session of exercise. In summary, 

exercising regularly (>2.5h/week) was associated with a persistent improvement in insulin 

sensitivity among overweight adults, but not blood pressure or blood lipids. Additionally, just one 
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session of exercise increased insulin sensitivity among sedentary overweight adults to levels equal 

to regular exercisers. 

Keywords: Exercise training, physical activity, sedentary, insulin resistance 

 

Introduction 

Two-thirds of the US adult population are now classified as overweight or obese (33), and 

unfortunately, obesity rates are continuing to rise (34).  Along with the alarming rise in obesity 

rates is the incidence of obesity related cardiometabolic complications including insulin resistance, 

dyslipidemia, hypertension as well as chronic systemic inflammation (85, 97).  Although modest 

weight loss (5-10% of initial body weight) has been found to reduce cardiometabolic disease risk 

(59), even this very modest weight loss can be very difficult to both achieve and sustain (23).  

Alternatively, physical activity/exercise has been highlighted as an important therapeutic tool for 

reducing cardiometabolic disease risk among overweight and obese adults (1).  While regular 

exercise has been identified as a very important factor in delaying and/or preventing 

cardiometabolic disease risk, it is surprising that the factors underlying the health improvements 

associated with regular exercise are still not well understood, particularly in overweight and obese 

adults.  

 

Although a physically active lifestyle is commonly associated with a lower incidence of 

cardiometabolic diseases (45-47, 64), it is often the exercise-induced improvement in VO2max 

(i.e., maximal oxygen consumption) that is credited for the reduced disease risk.  However, 

endurance training has been found to improve measures of insulin resistance, dyslipidemia, and 

blood pressure in overweight and obese individuals in the absence of improved VO2max  (26, 38, 

92).  Additionally, in PROJECT #1 we found that average minutes of daily moderate-to-vigorous 

physical activity, rather than VO2max, was significantly associated with improved insulin 

resistance, suggesting that regular physical activity rather than improved  VO2max helps mediate 

the improvement in cardiometabolic health.  Moreover, the effects of exercise on cardiometabolic 

risk factors (e.g. insulin resistance, hypertension) may be very transient, dissipating after only a 

few days (or less) without exercise (40, 57, 71, 72, 104).  Additionally, evidence also exists to 

suggest that a single session of exercise may improve insulin resistance, as well as reduce blood 

lipids and blood pressure in people who do not exercise regularly (16, 22, 71, 75, 100).  Therefore, 
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although regular exercise is clearly an important contributor to long-term health and disease 

prevention, it remains unclear how much of these health benefits stem from the acute effects of 

the most recent session(s) of exercise, and how much can be attributed to physiologic adaptations 

accrued as a result of habitual exercise. 

 

Obesity is now often characterized as a chronic state of low-grade inflammation, which is linked 

to increased cardiometabolic disease risk, including insulin resistance (8, 90, 102).  Adipose tissue 

is a main source of pro-inflammatory cytokine production in overweight and obese adults.  

Although the regulation and release of pro-inflammatory cytokines from adipose tissue is not 

completely understood, much of the adipose-derived cytokine production in obesity may actually 

be produced in macrophages that infiltrate adipose tissue (49).  Regardless of the source (i.e., 

adipocytes vs. macrophage) obese adults are often found to have elevated plasma concentrations 

of many pro-inflammatory cytokines (e.g., interleukin-6 (IL-6), monocyte chemoattractant 

protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β)) (55, 73, 

80, 88).  As described above, exercise can reduce cardiometabolic disease risk but the influence of 

a regular exercise routine and acute exercise on markers of systemic inflammation within 

overweight adults is unclear.  A better understanding of the inflammatory response to habitual and 

acute exercise in overweight and obese adults could have important implications for designing 

lifestyle interventions aimed at reducing cardiometabolic disease risk. 

 

The overall aims of this study were to compare markers of cardiometabolic disease risk in 

overweight adults who exercise regularly with a well-matched cohort of overweight adults who do 

not exercise, and to assess the metabolic impact of a single session of exercise in these groups. In 

general, we hypothesized that the protective effects of regular exercise on cardiometabolic disease 

risk factors would stem largely from the most recent session(s) of exercise.  Along these lines, we 

hypothesized that when overweight adults who exercise regularly were required to abstain from 

exercise for three days, insulin sensitivity, blood pressure, fasting blood lipids, and markers of 

systemic inflammation would be similar when compared with a well-matched cohort of habitually 

sedentary overweight adults.  Additionally, we hypothesized that a single session of exercise would 

induce similar improvements in cardiometablic risk factors measured the next day in both the 

regular exercisers and the habitual non-exercisers.  
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Methods 

Subjects A total of 28 overweight-to-obese (body mass index [BMI]: 27-34 kg/m2) men (n=11) 

and women (n=17) participated in this study.  Subjects were divided into 2 cohorts based on their 

self-reported habitual exercise.  Sixteen subjects (male/female: 4/8) were classified as “Exercisers” 

(EX; >2.5 h of planned endurance-type exercise/week; male/female: 7/9), while 12 subjects were 

“Non-exercisers” (Non-EX; no planned exercise).  Inclusion criteria included no history of 

metabolic or cardiovascular disease and weight stable (i.e., ± 2 kg for ≥ 6 months).  Participants 

were not taking any medications (with the exception of oral contraceptives).  Female participants 

were scheduled during the follicular phase of their menstrual cycle for the experimental trial.  

Written informed consent was obtained from all subjects prior to participation.  All procedures 

were approved by the University of Michigan Institutional Review Board.  

 

Preliminary testing 

Participants completed a physical activity questionnaire (see APPENDIX 2) in order to classify 

them as either EX (≥2.5h of moderate-to-vigorous exercise/week for >6months) or Non-EX (no 

planned exercise).  Importantly, individuals who reported performing planned exercise between 

≥30min/wk but <2.5h/wk were excluded from the study.  Within one month of the experimental 

protocol, participants completed a sub-maximal exercise test to predict VO2max (as a marker of 

cardiorespiratory fitness) (30).  We also measured each subject’s body composition using 

hydrostatic weighing techinique (17).  

 

All subjects participated in a two-day experimental trial performed on consecutive days (Figure 4-

1).  In order to assess the persistent effects of a regular exercise on our major outcome measures, 

subjects in the EX group abstained from their normal exercise routine exactly 3 days before Day 

1 of the experimental trial, and then abstained from their exercise program until after the 

experiment was complete.  The day before the experimental trial (Day 0), all participants wore a 

pedometer (New Lifestyles, Lee’s Summit, MO) and were instructed to remain relatively sedentary 

by completing <5000 steps per day (94).  Participants also wore an ambulatory blood pressure 

monitor (A&D Company, Tokyo, Japan) – to assess blood pressure every 30 minutes between 

2pm-10pm during the afternoon/evening before the experiment.  A standardized meal (30% of 

total daily energy requirements; ~750kcals) eaten at 1800h and a standardized snack (~10% of 
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daily energy requirements) eaten at 2100h were provided to participants and they consumed only 

water for the remainder of Day 0.   

 

Subjects returned to the laboratory at 0700h the next morning after an overnight fast (Day 1).  After 

resting quietly for 30 minutes, a resting blood pressure measurement was obtained (A&D 

Company, Tokyo, Japan).  We then placed an intravenous (IV) catheter in an arm vein and 

collected a baseline blood sample to determine plasma substrate and hormone concentrations (i.e. 

glucose and insulin), blood lipid profile (i.e., plasma concentrations of HDL-C, LDL-C, total 

cholesterol, triglycerides, fatty acids), and plasma markers of systemic inflammation (i.e., TNF-α, 

IL-1β, IL-6, and MCP-1).  After the baseline blood sample was withdrawn we performed a two-

hour oral glucose tolerance test (OGTT) with a 75g glucose load (Glucose Tolerance Test 

Beverage, Fisher Scientific).  Blood samples were collected every 15 minutes for the duration of 

the test.  After the OGTT, the IV was removed and participants were provided a standardized 

breakfast (see “Study diets” section below) and rested quietly.  At noon, participants performed a 

session of exercise on a treadmill for 1 hour at a moderate intensity equal to 70% of their age-

predicted heart rate max (HRmax).  After completing the exercise session, subjects were provided 

a standardized lunch, eaten in the laboratory.  They were also provided another standardized meal 

and a snack to be eaten at home at 1800h and 2100h, respectively. Identical to the afternoon of 

Day 0, participants again wore a pedometer and ambulatory blood pressure monitor.  Subjects 

returned to the laboratory at 0700h the next morning (Day 2) after an overnight fast – at which 

time we measured their resting blood pressure, collected a baseline blood sample and performed 

another 2 h OGTT to determine the responses the day after a single session of exercise in both 

cohorts.   

 

Study diets 

Importantly, diets were designed to maintain "energy balance" (i.e.; energy intake = energy 

expenditure) to avoid the confounding influence of a negative energy balance on insulin sensitivity 

(5).  In the evening of Day 0 (i.e., the evening before the experiment), the total energy content of 

the standardized dinner and snack were ~30% and ~10% of estimated daily energy expenditure, 

which was assessed using calculations from Cunningham, et al., (20).  Because the exercise session 

on Day 1 increased daily energy expenditure, we calculated Day 1 energy expenditure for each 
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participant as follows: ([(VO2 during exercise) x (5kcal/liter of O2 consumed) x 60min + [(1.5 x 

(370+(21.6*FFM))) x (1380min)]), and energy intake on Day 1 was provided to match this 

calculated energy expenditure. On Day 1, breakfast (including the OGTT), lunch, and dinner each 

contained ~30% of participants estimated daily energy expenditure.  The evening snack contained 

~10% of participants estimated daily energy expenditure.  After the evening snack on Day 0 and 

Day 1, subjects did not eat anything until completion of the OGTT the next day.  The macronutrient 

composition of meals and snacks was: 55% carbohydrate, 30% fat, and 15% protein, which 

represents the macronutrient content of a “typical” western diet (9). 

 

Analytical procedures 

Plasma substrate and hormone concentrations  

Blood samples were collected in chilled EDTA tubes, centrifuged (1,600 g for 20 min. at 4°C) 

within 30 min of collection, and then stored at -80°C until analysis.  Plasma glucose (glucose 

oxidase assay; Thermo Fisher Scientific, Waltham, MO), fatty acid (NEFA-HR assay kit; WAKO 

Life Sciences, Inc., Richmond, VA), triglyceride (Triglyceride Reagent; Sigma Adrich, St. Loius, 

MO), total- and high-density lipoprotein (HDL; Cholesterol E and HDL-Cholesterol E; WAKO 

Life Sciences, Inc.) concentration were measured with commercially available colorimetric assay 

kits. Plasma insulin concentration was measured using a commercially available 

radioimmunoassay (RIA) kit (Human insulin RIA kit; EMD Millipore, Billerica, MA). Plasma 

markers of systemic inflammation (e.g. TNF-α, IL-1β, IL-6, and MCP-1) were measured using 

commercially available Multiplex magnetic bead kits (EMD Millipore) and the Luminex L200 

instrument (Luminex, Austin, TX).  Data from the Multiplex bead kits were quantified using 

xPONENT software (Luminex).  All assay kits were used per manufacturer instructions.   

 

Calculations 

Index of whole body insulin sensitivity: Plasma glucose and insulin concentrations measured 

immediately before and during the OGTT were used to assess insulin sensitivity using the Matsuda 

Composite Index (69).  The Matsuda Composite Index has been found to be a reasonably accurate 

marker for insulin sensitivity when compared with the hyperinsulinemic-euglycemic clamp (69).   
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𝑀𝑎𝑡𝑠𝑢𝑑𝑎 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝐼𝑛𝑑𝑒𝑥 

= 10000/√[(fasting insulin x fasting glucose)x (2h glucose x 2h insulin) 

 

We also calculated whole-body insulin resistance using the Homeostatic Model Assessment of 

Insulin resistance (HOMA-IR), which provided a supplementary index of insulin action in our 

subjects (105).   

 

𝐻𝑂𝑀𝐴 − 𝐼𝑅 = (𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑝𝑙𝑎𝑠𝑚𝑎 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑥 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑝𝑙𝑎𝑠𝑚𝑎 𝑖𝑛𝑠𝑢𝑙𝑖𝑛)/22.5) 

 

Low density lipoprotein cholesterol concentration (LDL-C): Plasma LDL-C was calculated from 

measurements of plasma concentrations of total cholesterol (Total-C), HDL-C, and triglyceride 

 

[LDL-C] = ([Total-C] – [HDL-C] – [Triglyceride])/5 

 

Percent body fat: Body volume and density were assessed by hydrostatic weighing technique 

and the Siri equation was used to determine body fat percentage (17). 

 

Statistical analysis   

Student’s t-tests were used to compare baseline characteristics between participants in our EX and 

Non-EX cohorts.  A two-way ANOVA with one factor repeating (group x day) with Tukey post-

hoc analysis was used to assess significant differences in insulin sensitivity, blood pressure, 

markers of systemic inflammation, and plasma lipid concentrations between cohorts and in 

response to the single session of exercise. ISI was not normally distributed and was therefore log 

transformed prior to statistical analysis (untransformed data are presented).  A P-value of ≤ 0.05 

was considered statistically significant.  
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Results 

Subject characteristics and intensity during the experimental exercise session 

As designed, subjects in our EX and Non-EX cohorts were very well matched for body weight, 

BMI, and body composition (Table 4-1), but there was a great disparity in the planned exercise 

between the groups.  While our Non-EX subjects reported no planned exercise our EX group 

averaged >32 MET-hours per week of planned exercise (Table 1).  In conjunction with their greater 

habitual exercise, VO2max in EX was 36% greater than Non-EX (P<0.05; Table 4-1).   The 

exercise session on Day 1 of the study was performed at the same relative intensity in the EX and 

Non-EX subjects (i.e., same %HRmax and same %VO2max; Table 4-2). However, because of the 

difference in VO2max between the groups, the absolute exercise intensity in EX tended to be 

greater than Non-EX, as noted by a trend for a higher absolute VO2 during exercise (Table 4-2) 

and total energy expended during exercise (468 ± 42 vs. 384 ± 35 kcals for EX and Non-EX, 

respectively), but differences between groups did not reach statistical significance (P=0.15). 

 

Insulin Sensitivity Index 

Insulin sensitivity in our subjects appeared to be influenced by their habitual physical activity 

behavior.  Despite similar body weight and adiposity, Insulin Sensitivity Index (ISI) was 

significantly higher in EX than Non-EX (Figure 4-2).  Importantly, the EX participants abstained 

from exercise for 3 days in order to washout the effects of their most recent session of exercise. 

The calculation of HOMA-IR supported the notion that insulin sensitivity was higher in our EX 

vs Non-EX subjects (HOMA-IR: 3.4 ± 0.3 vs. 4.5 ± 0.5, respectively; P=0.05).  Importantly, the 

single session of exercise performed in the afternoon of Day 1 of the experiment increased ISI the 

next morning in Non-EX, but not EX (Figure 4-2). As a result of this increase in ISI only in the 

Non-EX group, there was no longer a difference in ISI between EX and Non-EX the day after the 

single session of exercise (Day 2).     

 

Markers of Systemic Inflammation 

In the morning of Day 1 of the experiment, fasting plasma concentrations of IL-6, MCP-1, and 

TNF-α were not different between Non-EX and EX (Figure 4-3 A-C).  In contrast, IL-1β tended 

to be higher in Non-EX compared with EX on Day 1, but this did not quite reach statistical 

significance (2.9±0.7 vs. 5.2±1.3, P=0.09, Figure 4-3 D). Interestingly, the improvement in ISI 
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found the morning after acute exercise in our Non-Ex group was significantly correlated with the 

change in plasma IL-1β concentration (P=0.05; Figure 4-4). There was no such relationship 

between the change in ISI and any of the other inflammatory markers measured for either the EX 

or Non-EX subjects. 

 

Blood Pressure and blood lipid profile 

Habitual physical activity did not appear to affect blood pressure in our subjects because both 

resting and ambulatory blood pressures were very similar between EX and Non-EX on Day 1 

(Figure 4-5).  The single session of exercise reduced resting diastolic blood pressure the next 

morning, but this reduction only reached statistical significance in the EX cohort (Figure 4-5 B).  

We also found a trend for ambulatory systolic blood pressure to be reduced following a single 

exercise session in the Non-EX group but this did not reach statistical significance (P=0.10; Figure 

4-5 C). Although regular exercise is often associated with reduced cardiovascular disease risk (28), 

we did not detect differences in blood lipids (i.e., Total-C, HDL-C, LDL-C, triglyceride) between 

our EX and Non-EX groups, and the acute exercise session also did not significantly alter the 

plasma concentration of these blood lipids in either group (Table 4-3). We did observe a very 

slight, yet significant reduction in fasting plasma NEFA concentration the morning after a single 

session of exercise in our EX cohort (Table 4-3). 

 

Discussion 

A physically active lifestyle is widely identified as being an important contributor to improved 

health and disease prevention (47, 106).  However, it is still unclear whether these health benefits 

stem largely from acute responses to the most recent session(s) of exercise or from more persistent 

effects due to physiological adaptations that accrue in response to regular exercise.  Our findings 

indicate that in contrast to our hypothesis, overweight adults who exercise regularly were more 

insulin sensitive than their well-matched sedentary counterparts, even when the acute effects of 

exercise were removed by abstaining from exercise for 3 days.  Therefore, unlike findings from 

studies indicating that the insulin sensitizing effects of exercise training wear off after even a few 

days without exercise (40, 57, 71, 72, 81, 103), we found a persistent effect of regularly performed 

exercise on insulin action in our weight-stable overweight adults.  Interestingly, we also found that 

a single session of relatively moderate-intensity exercise did not further enhance the insulin 
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sensitivity index (ISI) the next morning in these subjects who were already regular exercisers.  In 

contrast, the single exercise session did increase ISI the next morning in our habitually sedentary 

subjects, and this improvement in ISI was associated with a reduction in the systemic pro-

inflammatory factor IL-1β.  This suggests that the insulin sensitizing effect of acute exercise in 

overweight adults who do not regularly engage in exercise, may be mediated in part by a reduction 

in their systemic inflammatory state. 

 

Many studies report that the increase in insulin sensitivity with exercise training is very transient, 

often returning to levels found in non-exercisers after only three days without exercise (40, 57, 71, 

72, 81, 103).  In contrast, we found that ISI was elevated in our group of exercisers compared with 

their well-matched cohort of non-exercisers, even when they did not exercise for a few days. It is 

conceivable that some of this discrepancy between our findings and these previous studies may be 

explained by the possibility that some effects of acute exercise may still persist 3 days after the 

exercise in our habitually active subjects.  However, Oshida al., (81) reported that the acute effects 

of exercise on insulin action were gone 38h after the most recent session of exercise. Perhaps more 

importantly, these earlier studies reporting short-lived improvements after exercise were largely 

performed in lean subjects (40, 57, 71, 72, 81, 103), and the response in overweight adults may be 

different.  In lean humans and animals, the exercise-induced reduction in muscle glycogen is 

associated with the enhanced insulin action found after exercise (12, 31, 84).  For example, in lean 

animals the time course of muscle glycogen resynthesis after exercise tracks very closely with the 

time course of the transient exercise-mediated increase in insulin sensitivity (14).  Alternatively, 

because insulin action is often found to be impaired in overweight/obese adults (10, 11) it seems 

plausible that habitual exercise in overweight adults may induce some longer lasting adaptations 

that may counteract their insulin resistance.  Several studies suggest that an exercise-induced 

increase in oxidative capacity may contribute to an improvement in insulin action by increasing 

oxidative disposal of fatty acids – thereby reducing the accumulation lipid intermediates known to 

impair insulin signaling (56, 82, 98, 99).  But the impact of an increase in oxidative capacity on 

resting fatty acid metabolism and insulin sensitivity is debated (35, 43, 44, 101).  Alternatively, a 

previous study from our lab (89) reported that exercise altered the metabolic fate of the fatty acids 

within skeletal muscle by enhancing storage as neutral lipid rather than accumulation of the other 

lipid intermediates known to impair insulin signaling (42).  Alterations in muscle fatty acid 
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metabolism may be especially relevant in overweight/obese adults, and may extend (and perhaps 

prolong) their exercise-induced improvement in insulin sensitivity beyond the effects of lower 

muscle glycogen concentration.  However, the improvement in insulin resistance with habitual 

exercise in overweight/obese adults may not be isolated to adaptations occurring exclusively in the 

exercising muscles.  For example, hepatic insulin resistance has been found to improve with 

exercise training (58).  Additionally, exercise training in obese adults has been found to increase 

adiponectin (54), an adipose tissue-derive cytokine known to enhance whole body insulin 

sensitivity (66).  Therefore, regularly performed exercise in overweight/obese adults induces 

adaptations in multiple tissues that may contribute to a more persistent improvement in insulin 

sensitivity, even after the exercise-induced reduction in muscle glycogen concentration has been 

replenished.  

 

Consistent with previous reports (22, 71, 75) we found that a single session of exercise was 

sufficient to improve insulin sensitivity the next day in overweight adults who do not exercise 

regularly.  In contrast, we did not observe an improvement in ISI after exercise in regular 

exercisers, and as a result, the difference in ISI between groups was no longer apparent the day 

after exercise.  The mechanisms underlying the improvement in ISI in response to chronic vs. acute 

exercise are likely very different (described in more detail below).  However, the clinical relevance 

of this finding is intriguing because it suggests that when compared with the enhanced insulin 

action stemming from exercising routinely, a similar degree of improved insulin action can be 

achieved immediately, without having to wait for the accrual of adaptations in response to months 

or years of exercise training.  Over time, as an individual adopts a more active lifestyle, the 

mechanisms underlying the exercise-induced improvement in insulin action may change, but the 

clinical outcome remains the same (i.e., improved insulin sensitivity).  However, it is important to 

note that the ISI measured in our group of regularly exercising overweight subjects or after acute 

exercise in our non-exercisers were still less than half of values reported in sedentary lean adults 

(27, 51, 60, 76).  Therefore, while exercise is clearly an important therapeutic tool for reducing 

metabolic disease risk among overweight-to-mildly obese adults, important additional benefits 

may be gained from weight loss or additional exercise.   
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The reason why the single session of exercise did not enhance insulin action in our habitually 

active participants is unclear. Perhaps the exercise stimulus in our study was below some 

“threshold” required to further enhance insulin action the next day in these subjects who exercise 

regularly.  Factors determining the magnitude of an exercise stimulus that may be required to 

improve insulin sensitivity are not clear, but certainly the intensity, duration, and energy expended 

during exercise are likely candidates.  Exercise intensity is a major determinant for the magnitude 

of muscle glycogen used during exercise (87), and as described above, the exercise-induced 

reduction in muscle glycogen concentration is often observed along with the increased insulin 

sensitivity after exercise (108).  Importantly, because habitual exercise training is known to 

markedly reduce the contribution of muscle glycogen use during exercise (50, 87), this may help 

explain the lack of an acute effect of exercise on ISI in our habitually active subjects.  The fact that 

the single exercise session performed in our study provided a considerably lower exercise stimulus 

than what our participants who regularly exercise reported to perform on a regular basis may also 

contribute to our finding that acute exercise did not increase ISI in this regularly exercising  cohort.  

The acute 1h session brisk walking in our study was equal to approximately 4.5 METs, whereas 

on average our active subjects reported participating in an hour of exercise at an intensity equal to 

over 6 METs.  Therefore, an exercise stimulus closer to, or perhaps even greater than, that 

performed regularly may be required to further enhance insulin action in a group of overweight-

to-obese adults who exercise routinely.  This notion is generally consistent with the progressive 

overload principle (41) indicating that a progressive increase in “stress” must be provided to induce 

physiological changes/adaptations.  It is also important to note that because our assessment of 

insulin sensitivity was based on established calculation using plasma glucose and insulin 

concentrations during and OGTT (69) rather than more sensitive measures, like a 

hyperinsulinemic-euglycemic clamp (21), it is possible we were unable to detect a relatively subtle 

improvement in insulin sensitivity the day after an acute session of moderate-intensity exercise in 

our cohort of regular exercisers. 

 

Pro-inflammatory cytokines, including: IL-1β, IL-6, TNF-α, and MCP-1, are associated with 

insulin resistance (78, 90), and plasma concentrations of these cytokines are often found to be 

elevated in overweight and obese adults (55, 67).  Weight-loss is consistently found to lower the 

systemic abundance of many of these pro-inflammatory cytokines in conjunction with 
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improvements in insulin sensitivity (29, 61).  Similarly, when exercise training is accompanied by 

weight loss the improvement in insulin sensitivity has been found to parallel the reduction in 

systemic inflammatory markers (24, 32).  However, the effect of exercise without weight loss is 

less clear.  Although plasma concentrations of most of the systemic inflammatory markers we 

measured were not affected by exercise training or acute exercise in our study, IL-1β tended to be 

lower in our subjects who were habitual exercisers.  Importantly, the exercise-induced 

improvement in ISI we found the day after the acute session of exercise in Non-Ex was related to 

the change in plasma IL-1β concentration.  IL-1β is a pro-inflammatory cytokine primarily 

produced and secreted by monocytes, macrophages, and neutrophils.  IL-1β secretion is elevated 

in obesity, and accumulating evidence implicates IL-1β in the pathogenesis of insulin resistance 

(36, 70, 77, 96).  It has been suggested that IL-1β may impair insulin action in skeletal muscle by 

activating other pro-inflammatory signaling pathways such as the Nuclear factor kappa-B (NF-

κB) pathway (2), which is known to reduce insulin signaling (48).  The effects of exercise on IL-

1β are complex.  A one-year intensive exercise training intervention involving both endurance- 

and resistance-type exercise has been found to lower plasma IL-1β concentration in obese patients, 

independently of changes in weight or body fat (7).  Our finding that the trend for a lower plasma 

IL-1β in our habitual exercisers vs. non-exercising overweight adults did not reach statistical 

significance suggests that perhaps the regular exercise may need to be rather intensive in order to 

see a more robust effect on plasma IL-1β concentration, as suggested by Balducci, et al, (7).  Acute 

exercise also has important effects on IL-1β.  In lean healthy adults, plasma IL-1β concentration 

has been found to increase during a session of exercise in lean, healthy adults – and then return to 

pre-exercise levels soon after exercise (and remains at basal levels in the days after exercise) (91).  

But our finding that acute exercise lowered plasma IL-1β the day after exercise in our group of 

non-exercising overweight subjects suggests the effects of acute exercise in overweight adults who 

already exhibit elevated plasma IL-1β may be different, and this lowering of IL-1β may contribute 

to their exercise-induced improvement in ISI.  This is in agreement with findings from a recent 

study in obese rodents in which a single session of exercise reduced IL-1β mRNA expression in 

adipose tissue (in both adipocyte and stromal vascular fractions), with a resultant decline in plasma 

IL-1β concentration that was accompanied by an enhanced systemic insulin sensitivity (79).  

Therefore, although causality cannot be determined in the current study, our results support the 

growing body of literature highlighting the role of pro-inflammatory cytokines, such as IL-1β, in 
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the pathogenesis of insulin resistance among overweight adults as well as a contributing 

mechanism by which exercise leads to an improvement in whole body insulin sensitivity. 

 

Although exercise training and a higher cardiorespiratory fitness (i.e., VO2max) are both 

commonly linked with reduced risk for cardiovascular disease (47, 62, 63, 106), we found subjects 

blood lipid profile and blood pressure to be similar between our exercisers and non-exercisers.  

While many studies report that exercise training can improve blood lipid profile and lower blood 

pressure (25, 107), others do not (15, 95).  Even in studies that report exercise-induced 

improvement, these changes are often very modest (53, 68).  For example, meta-analysis from 

randomized control trials indicate that on average exercise training lowered LDL-C concentration 

by only 0.16 mmol/L and increased HDL-C by only 0.04 mmol/L (39). Additionally systolic and 

diastolic blood pressure appear to only be reduced by < 5 mmHg with exercise training (53).  More 

consistent improvements in blood lipids and blood pressure are observed in individuals who show 

signs of dyslipidemia and hypertension (13, 18), but these improvements are still rather modest 

(e.g., 2 mg/dL increase in HDL-C and 5-7mmHg reduction in systolic blood pressure (25, 65)).  

Importantly diet-induced weight loss promotes robust and consistent improvements in blood lipids, 

blood pressure and other markers of cardiovascular disease risk (52, 68).  These findings further 

emphasize that exercise without weight loss may not be an optimal therapeutic approach for 

improving blood lipids and blood pressure in overweight adults.  It is possible that many of the 

improvements in cardiovascular risk factors reported in response to regularly performed exercise 

may stem from the most recent session of exercise.  For example, a single session of exercise has 

been consistently found to lower blood pressure (albeit slightly; systolic: 6-10mm Hg, diastolic: 

2-5 mmHg) in just the first few hours after exercise (74, 86, 93).  However, this effect appears to 

be fairly short lived, lasting 4-6 hrs in normotensive individuals (104) and 10-12 hrs post-exercise 

in hypertensive individuals (83).  Acute exercise has also been shown to produce meaningful 

reductions in plasma triglyceride levels, yet this appears to be largely dependent on higher energy 

expenditure associated with prolonged exercise (3, 19).  In contrast, cholesterol levels appear to 

be largely non-responsive to a single session of exercise regardless of exercise intensity or energy 

expenditure (37, 109).  Collectively our findings suggest that neither acute nor regular exercise 

induced robust improvements in these markers of cardiovascular risk among overweight, but 

otherwise, healthy adults.  In combination with previous findings demonstrating little if any 
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improvement in cardiovascular disease risk with physical activity/exercise a more therapeutic 

approach for reducing cardiovascular disease risk among overweight adults may be to promote 

weight loss especially considering that modest reductions in weight are associated with clinically 

relevant improvements in health within this population (59). 

 

Assessing the direct contribution of regular exercise on important clinical outcomes like insulin 

resistance, blood lipids and blood pressure can be very challenging.  For example, because a minor 

reduction in body weight can markedly increase insulin sensitivity (59) if exercise is accompanied 

by even a subtle degree of weight loss this would confound the interpretation of the underlying 

cause for the improvement in insulin resistance.  Along these lines, reports of improvements in 

insulin action resulting from an exercise training program that persisted for over two weeks after 

the last exercise training session (6) may actually be due to participants  slight, yet significant 

weight loss.  Moreover, an acute negative energy balance  (i.e., energy expenditure exceeds energy 

intake) that may result from a more physically active lifestyle can also acutely improve insulin 

sensitivity (4) independently of the effects of an increase in physical activity.  Additionally even 

modest weight loss can have clinically meaningful reductions in plasma lipids and blood pressure 

(59).  Therefore, in these conditions it is often impossible to differentiate the effects of this weight 

loss and/or energy imbalance from the effects of the increased physical activity.  Although our 

cross-sectional study design certainly has limitations, we were very strict about weight stability 

among all of our subjects, and we tightly matched key phenotypic characteristics of our group of 

regular exercisers and non-exercisers (e.g., body weight, body composition, waist circumference), 

which increases confidence regarding the independent effects of regular exercise on ISI and the 

other clinical outcomes that we reported here.  Understanding the independent effects of exercise 

behavior (separate from the effects of weight loss and negative energy balance) on important health 

outcomes is very valuable in the development of lifestyle programs aimed at improving metabolic 

health. 

The overall objective of this study was to help distinguish between the cardiometabolic health 

benefits associated with habitual exercise and those stemming from the most recent session of 

exercise in weight-stable overweight-to-mildly-obese adults.  We found that engaging in a regular 

exercise routine was associated with a persistently elevated insulin sensitivity index in overweight 

adults, but not with a reduction in other key cardiometabolic disease risk factors (i.e., blood lipids 
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or blood pressure).  While the mechanism(s) underlying the persistent effect of regular exercise on 

insulin sensitivity among overweight adults is not clear, alterations in muscle lipid metabolism as 

well as adaptations in tissues other than muscle (i.e., liver and adipose) may be contributing.  In 

response to a single session of moderate-intensity exercise, insulin sensitivity index improved the 

day after exercise in overweight adults who do not normally exercise, but not in those who exercise 

regularly.  As a result the difference in insulin sensitivity between our group of regular exercisers 

and non-exercisers was largely eliminated.  The exercise session lowered plasma IL-1β 

concentration in the habitually sedentary overweight subjects, suggesting a reduction in systemic 

inflammation may contribute to their enhanced insulin action after exercise.  Therefore, while 

habitual exercise is associated with enhanced insulin sensitivity among overweight adults, just one 

session of exercise was enough to increase insulin sensitivity among sedentary overweight adults 

to levels equal to regular exercisers.    
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Table 4-1. Baseline participant characteristics 

  EX Non-EX 

Sex (M/F) (7/9) (4/8) 

Age (y) 26.2 ± 1.3 28.1 ± 1.9 

Body weight (kg) 89.4 ± 2.7 88.4 ± 2.5 

BMI (kg/m2) 30.5 ± 0.8 30.0 ± 0.5 

Body fat (%) 33.5 ± 1.4 36.8 ± 2.0 

Fat mass (kg) 30.2 ± 1.9 32.4 ± 1.8 

Fat free mass (kg) 59.2 ± 1.8 56.0 ± 2.5 

Fasting glucose (mmol/L) 4.3 ± 0.1 4.6 ± 0.1 

Fasting insulin (uU/mL) 17.6 ± 1.5 22.3 ± 2.6 

VO2max (ml/kg/min) 32.9 ± 2.8 24.2 ± 1.7* 

Planned exercise (MET-hours per week) 32.3 ± 2.6 0.0 ± 0.0* 

Values are expressed mean ± SE 

* Significantly different than EX, P < 0.05 
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Table 4-2. Oxygen consumption and heart rate during the exercise session 

  EX Non-EX 

VO2 during exercise (L/min) 1.6 ± 0.2 1.3 ± 0.1 

VO2max (%) 53.5 ± 2.5% 60.3 ± 4.1% 

Heart rate (bpm) 140.1 ± 2.3 138.3 ± 1.8 

Predicted HRmax (%) 72.1 ± 0.9% 71.8 ± 0.7% 

Values are expressed mean ± SE 
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Table 4-3. Fasting plasma substrate, hormone, and lipid profile 

  EX Non-EX 

 Day 1 Day 2 Day 1 Day 2 

Glucose (mmol/L) 4.3 ± 0.1 4.3 ± 0.1 4.6 ± 0.1 4.5 ± 0.1 

Insulin (uU/mL) 17.6 ± 1.5 18.5 ± 1.2 22.3 ± 2.6 19.3 ± 2.7† 

Total-C (mg/dL) 148 ± 9 147 ± 8 153 ± 7 151 ± 6 

LDL-C (mg/dL) 121 ± 10 121 ± 9 122 ± 8 121 ± 6 

HDL-C (mg/dL) 27 ± 2 26 ± 2 31 ± 3 30 ± 3 

Triglyceride (mg/dL) 111 ± 14 118 ± 15 84 ± 10 91 ± 11 

NEFA (µmol/L) 407 ± 36 328 ± 28‡ 418 ± 46 399 ± 42 

Total Choleserol, Total-C; Low-density lipoprotein cholesterol, LDL-C; High-density 

lipoprotein cholesterol, HLD-C.  Values are expressed mean ± SE. † Significant 

difference between Day1 and Day 2 within Non-EX, P<0.05. ‡ Significant difference 

between Day 1 and Day 2 within EX, P < 0.05. 
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Figure 4-1. Timeline of experimental events.   
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CHAPTER 5 

 

Progressive metabolic adaptations to low intensity exercise training in obese adults 

 

Abstract 

The aim of this study was to examine the progressive adaptations that occur after 1 session, 2 

weeks, and 3 months of low-intensity exercise in previously sedentary obese adults.  Ten sedentary 

obese adults (men/women: 3/7; 38±1 kg/m2; 30±3 yrs) completed 5 experimental trials: 1) before 

beginning the exercise program (“PRE”), 2) after a single session of low-intensity exercise (40min 

at 60% HRmax), 3) after 2 weeks (6 days/wk) of this same exercise (“2WKS”), 4) again after 3 

months of training (“3M”), and 5) exactly 3 days after the their last session of the 3 month exercise 

training program (“3d after EX”).  We performed a meal tolerance test 1h after exercise (or without 

prior exercise in “PRE” and “3d after EX”) to calculate the “insulin sensitivity index” (ISI) in the 

few hours after exercise, and we performed a hyperinsulinemic-euglycemic clamp the next 

morning ~16 hr after exercise (or without prior exercise in “PRE” and “3d after EX”). We also 

measured fatty acid oxidation, as well as total and LDL cholesterol. We found a single session of 

exercise did not significantly alter any of our primary outcome measures.  However, by 2WKS ISI 

(2.1±0.2 vs. 2.4±0.2; P=0.02) and hepatic insulin resistance (33±4 vs. 27±2; P=0.03) were 

improved in the few hours after exercise.  ISI did not improve further after 3 months of the exercise 

program.  By 3 months of training, we observed a trend for an improvement in insulin sensitivity 

measured via the clamp the day after exercise, but this did not quite reach statistical significance 

(Glucose Rd/SSI: 2.4±0.3 vs. 2.9±0.3 (mg/min)/[SSI]; P=0.065).  This trend for improved insulin 

sensitivity was no longer apparent 3d after EX.  The exercise training program also increased fatty 

acid oxidation during exercise (8.6±1.3 to 11.8±1.7 µmol/kgFFM/min (P<0.01)) and at rest 

(3.8±0.2 to 4.5±0.3 µmol/kgFFM/min (P=0.02)) by 2WKS, and remained elevated throughout 3 

months of training.   Three months of training also significantly reduced Total-C (184±11 vs. 

163±7 mg/dL) and LDL-C (152±11 vs. 131±9 mg/dL) (both P<0.05). Importantly, all adaptations 

were independent of any change in body mass (108±4 vs. 108±5 kg) or fat mass (52±3 vs. 53±4 
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kg). In summary, although a single 40 min session of exercise performed at 60%HRmax was not 

sufficient to induce any measurable changes in our markers of cardiometabolic health, we did find 

improvements in insulin sensitivity by 2 weeks as well as improvements in blood cholesterol by 3 

months of this mild exercise training program in weight-stable obese adults.  

Keywords: Insulin resistance, glucose tolerance, physical activity 

 

Introduction 

Most current exercise recommendations are designed with the goal to improve cardiorespiratory 

fitness (e.g. maximal oxygen uptake (VO2max)) (1).  However, mounting evidence suggests many 

health benefits of exercise are largely independent of improvements in “fitness” (13, 22, 27).  

Along these lines, in PROJECT #1 of my dissertation we found that daily physical activity was a 

strong and significant predictor of insulin resistance, but VO2max was not.  These findings support 

the notion that a training program specifically designed to increase VO2max may not be optimal 

for improving metabolic health.  Moreover, exercise prescriptions that focus on enhancing 

VO2max may actually be counter-productive because the higher intensity exercise often required 

to improve VO2max has been associated with a greater incidence of injuries and participant 

discomfort leading to poor exercise adherence (23).  In contrast to the relatively high intensity 

exercise required to improve VO2max, profound reductions in cardiometabolic disease risk result 

from engaging in rather low or modest intensity physical activity (42).   

 

Although adaptations to a physically active lifestyle can certainly improve important health 

outcomes, many cardiometabolic health benefits of exercise actually stem from the most recent 

exercise session(s), rather than from adaptations to weeks, months, and even years of exercise (22, 

57, 61, 70, 72).  In PROJECT #2 of my dissertation, although we did find that habitual exercise 

resulted in some persistent improvement in insulin sensitivity, we found a single session of 

moderate intensity exercise improved insulin sensitivity the next day in overweight-to-mildly-

obese adults, which is in line with several previous reports (22, 57, 61).  Our findings from 

PROJECT #2 also suggest that metabolic responses to an exercise session in overweight adults 

who do not exercise regularly are different from those who do exercise regularly.  Therefore, 

adaptations that accrue as a non-exerciser begins to adopt a more physically active lifestyle appear 

to impact the metabolic response to each exercise session.  However, the underlying mechanisms 
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that lead to improvements in health in the early stages of adopting a mild exercise training program 

remain unclear. 

 

An important link between obesity and the development of insulin resistance (and many other 

metabolic diseases) is the overly-abundant mobilization of fatty acids in the circulation – and the 

subsequent delivery and uptake of excessive amounts of fatty acids into insulin-responsive tissues 

like skeletal muscle and liver.  Consequently, this overabundance of fatty acid can result in the 

accumulation of fatty acid by-products in these tissues that can activate pro-inflammatory 

pathways, which in turn can induce insulin resistance (10).  A previous study from our laboratory 

demonstrated that exercise can alter the metabolic fate of fatty acids that enter the muscle cell, 

thereby reducing the accumulation of lipid intermediates (e.g., DAG and ceramide) known to 

impair insulin signaling (74).  However, this earlier study was performed in lean subjects who 

were exposed to an overnight lipid infusion after a session of vigorous exercise (74).  More recent 

findings from our lab indicate that when obese subjects exercised at a relatively low intensity (50% 

VO2max) the changes in muscle lipid metabolism were far less robust, and skeletal muscle pro-

inflammatory stress was not reduced (61).  This recent study (61) only examined the effects of a 

single session of low intensity exercise, and it is possible that at least a few successive sessions of 

exercise at these low intensities may be required to impart a measurable effect on muscle lipid 

metabolism and inflammatory pathway activation.  Additionally, exercise-induced changes in 

inflammatory status within adipose tissue and the systemic circulation may contribute to 

improvements in insulin resistance as well as other cardiometabolic diseases risk factors (34, 62, 

76).  Importantly a better understanding of the progressive adaptations associated with adopting a 

low-intensity exercise training program on fatty acid metabolism, pro-inflammatory pathways, and 

ultimately on insulin resistance, could have important implications for designing lifestyle 

interventions aimed at reducing cardiometabolic disease risk in obese adults.   

 

The overall aim of this study was to examine the progressive adaptations that occur after 1 session, 

2 weeks, and 3 months of adopting a low-intensity exercise program in previously sedentary obese 

adults.  We hypothesized that a single session of mild intensity exercise would not be sufficient to 

improve insulin resistance the next day.  However, we did anticipate insulin resistance would 

improve after 2 weeks of exercise with no further improvement after 12 weeks.  We predicted that 
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reductions in both the accumulation of fatty acid by-products and pro-inflammatory activation 

within muscle would parallel the improvement in insulin action.  Finally, we hypothesize that 

insulin resistance would return to pre-training levels when participants abstain from exercise for 

only three days after training. 

 

Methods 

Subjects 

A total of 10 obese males (n=3) and females (n=7) (body mass index [BMI]: 37 ±1 kg/m2; age: 

30±3 yrs) were recruited to participate in this study.  We performed a detailed health history, 

physical examination, as well as a 12-lead electrocardiogram, and standard blood and urine tests.  

Participants were not taking any medication known to influence the metabolic parameters we were 

measuring.  All subjects were non-smokers, weight stable (i.e., ± 2 kg for ≥ 6 months), sedentary 

(no regularly planned exercise/physical activity), and had no health history of metabolic or 

cardiovascular diseases.  Written, informed consent was obtained from all subjects before initiating 

participation.  All procedures of this study were approved by the University of Michigan 

Institutional Review Board.   

 

Preliminary testing 

At least one week before their first experimental trial, participants completed an incremental test 

to exhaustion on a cycle ergometer to determine VO2peak (a marker of cardiorespiratory fitness) 

and maximum heart rate (HRmax).  The protocol for this test included a 4 minute warm-up followed 

by a progressive increase in intensity each minute until voluntary exhaustion (73).  Body 

composition was also assessed using dual energy X-ray absorptiometry (DEXA; Lunar DPX 

DEXA Scanner). 

 

Experimental protocol for each hospital visit 

All subjects were admitted to the Michigan Clinical Research Unit (MCRU) at the University of 

Michigan Hospital a total of five times for metabolic testing throughout the ~3 month participation 

in the entire study (Figure 5-1).  All metabolic studies were identical (Figure 5-2) with the 

exception that subjects did not exercise during visits #1 and #5. 
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The evening before each trial, subjects ingested a standardized meal at 1900h (one-third of total 

daily caloric requirements; 55% carbohydrate, 30% fat, and 15% protein).  The next morning (Day 

1), subjects were provided a standardized breakfast and lunch to be eaten at 0930h at 1230h, 

respectively (see details of all meals provided during the experiments in “Study Diets” section, 

below). At 1600h subjects exercised for 40 minutes at approximately 60% of their pre-determined 

HRmax (~50% VO2peak) on a cycle ergometer.  In order to quantify energy expenditure during 

exercise, we measured VO2 and VCO2 using a metabolic cart (PhysioDyne Technologies) within 

the first and last 10 minutes of the exercise session.  All metabolic studies were identical with the 

exception that subjects did not exercise during visits #1 and #5.  During the two non-exercise visits 

they remained seated quietly during this time. After the exercise period, subjects were allowed to 

shower and they were be provided meals at 1800h and 2000h and an evening snack at 2200h (see 

details in “Study Diets” section, below). One intravenous catheter (IV) was placed in a hand vein 

for blood sampling, and a second IV was be placed in a forearm vein for infusions that began the 

next morning.  During all visits, a urine pregnancy test was performed on all female subjects when 

they arrived on the first day of the experiment.  Other than the supervised exercise session, all 

subjects remained relatively sedentary in the hospital until completion of the trial the next day.  

 

Beginning at 0450h the next morning (Day 2), 3 blood samples were taken in 5 min intervals (i.e.; 

0450h, 0455h, and 0500h) from the heated hand vein to obtain “arterialized” blood samples (44), 

for determination of background enrichment of [6,6 d2]glucose, [1-13C]-palmitate, and [1,1,2,3,3 

d5]-glycerol.  A background sample was also used to determine fasting substrate and hormone 

concentrations as well as markers of systemic inflammation.  At 0500h we began a primed, 

constant rate infusion of [6,6 d2]glucose (35 µmol/kg priming dose; 0.41 µmol/kg/min continuous 

infusion) for measurement of hepatic glucose production and whole-body glucose uptake.  We 

also measured resting metabolic rate (and fat oxidation) for 30 min starting at 0630h using a VMax 

Encore metabolic cart (SensorMedics).  At 0700h we obtain a muscle sample (~100 mg) from the 

vastus lateralis. This muscle sample was cleaned with saline, dried, and then aliquots of this sample 

were quickly frozen in liquid nitrogen.  Samples were stored at -80°C until analysis. In addition, 

we also obtained a 100-200mg subcutaneous adipose tissue sample from the abdominal region.  

Similar to the muscle samples, the adipose tissue biopsy was cleaned with saline, dried, and 

aliquots were quickly frozen in liquid nitrogen. Samples were stored at -80°C until analysis.  At 
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0700 we also began a primed, constant-rate infusion of [1,1,2,3,3 d5]-glycerol (1.5 µmol/kg 

priming dose; 0.10 µmol/kg/min continuous infusion).  Then at 0800h we began a constant-rate 

infusion of [1-13C]-palmitate (0.04 µmol/kg/min continuous infusion).  At 0845h, three arterialized 

blood samples were obtained from a heated hand vein in 5 min intervals for determination of 

glycerol rate of appearance (Ra) in plasma [used as an index of whole body lipolysis], fatty acid 

Ra and fatty acid rate of disappearance (Rd) from plasma [fatty acid mobilization and uptake, 

respectively], as well as determination of basal hepatic glucose production via isotope dilution of 

the constant rate infusion of [6,6 d2]glucose.  These blood samples were analyzed for plasma 

concentrations of glucose and insulin.  At 0900h we began a hyperinsulinemic-euglycemic clamp 

to assess peripheral insulin sensitivity, as described previously by Dr Ralph Defronzo’s laboratory 

(58).  Briefly, the clamp was performed using a primed 2h insulin infusion at a rate of 40 

mU/m2/min.  Plasma glucose concentration was monitored every 5 minutes during the clamp study 

using a glucose auto-analyzer (Yellow Springs Instruments), and glucose (D20 dextrose solution) 

was infused at a variable rate to maintain plasma glucose concentration at participants fasting 

blood glucose concentration (~5 mM).  Importantly, this glucose infusion solution was enriched 

with [6,6 d2]glucose (2.5% enriched) to limit changes in glucose tracer enrichment in plasma (40).  

In addition to the small blood samples collected every ~5 minutes to assess plasma glucose 

concentration, we also collect additional plasma samples for assessment of insulin and plasma 

enrichment of [6,6 d2]glucose during the final 20 min of the 2h clamp.  Subjects also received an 

intravenous infusion of potassium (KCl) during the clamp to prevent hypokalemia.  After 

completing the clamp procedure, subjects were provided a meal, and were monitored until plasma 

glucose concentration was stable.  When vital signs are stable, subjects will be discharged from 

the hospital.   

 

Exercise training program 

Subjects completed a 3-month mild-intensity, exercise training program.   They were required to 

exercise 6 days each week for 40 min/day at an intensity eliciting 60% of their HRmax 

(~50%VO2max). 
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Study Diets 

The total energy content of the diet for each hospital stay was estimated to match the energy 

expended.  Energy expenditure on each exercise day while admitted to the hospital was estimated 

as:  {[(VO2 during exercise) x (5kcal/liter of O2 consumed) x 40min] + [597+(26.5 x fat free 

mass)]} (71).  Diets were designed to maintain "energy balance" (i.e.; energy intake = energy 

expenditure) during all trials in order to avoid any confounding influence of a negative energy 

balance on insulin sensitivity (4).  20% of daily energy intake was consumed at 0930h, 1230h, and 

again at 1800h. 30% of total daily energy requirement was provided at 2000h, and 10% of daily 

energy requirement was provided in the evening snack (2200h).  After this snack, subjects did not 

consume anything but water until completion of the clamp procedure the next day.  

 

During the 3-month exercise training program, it was very important to our study design that the 

subjects maintain their body weight.  Subjects were asked to maintain their normal dietary habits, 

they weighed themselves daily and reported their daily body weight to research staff members. We 

also collected a 3 day dietary journal 3 days leading up to Visit #1, after 6 weeks of exercise 

training, and at the end of the 3-month exercise training program.  If body weight changed ±1kg 

during the program, dietary consultation was provided by our research dietitian to help maintain 

their original body weight.  

 

Analytical Procedures  

Plasma substrate and hormone concentrations  

Blood samples were collected in chilled EDTA tubes, centrifuged (1,600 g for 20 min. at 4°C) 

within 30 min of collection, and then stored at -80°C until analysis.  Plasma glucose (glucose 

oxidase assay; Fisher Scientific), fatty acid (NEFA-HR assay kit; WAKO Chemicals USA), 

triacylglyceride (Triacylglyceride reagent; Sigma Adrich), total- and high-density lipoprotein 

(HDL; Cholesterol E and HDL-Cholesterol E; Wako Chemicals USA) concentration were 

measured with commercially available colorimetric assay kits. Plasma insulin concentration was 

measured using a commercially available radioimmunoassay (RIA) kit (Human insulin RIA kit; 

Millipore).  
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Muscle and adipose tissue lysate preparation 

Previously weighed frozen muscle and adipose tissue samples were homogenized in commercially 

available ice cold lysis buffer (Triacylglyceride reagent; Sigma Adrich) supplemented with 

commercially available protease inhibitors (Triacylglyceride reagent; Sigma Adrich) using a 

TissueLyser (Qiagen, Valencia, CA).  Samples were then centrifuged at 1500g for 10 minutes at 

4°C, the upper lipid layer was removed from adipose tissue samples and the supernatant (whole 

cell lysate) collected.  Protein concentration was measured using a commercially available BCA 

protein assay kit (ThermoFisher Scientific, Rockford, IL).  

 

Multiplex analysis 

Skeletal muscle proteins associated with inflammation and insulin resistance (total NFκB, total 

IκBαp, phosphorylated JNK, Aktserine473) were measured using commercially available multiplex 

cell-signaling bead kits (c#:48602, Milliplex MAP Kit, Millipore, Billerica, MA).  Adipose tissue 

and plasma cytokines associated with inflammation (TNF-α , MCP-1, VEGF, IL-6) were measured 

using commercially available multiplex bead kits (c#: HCYTOMAG-60K, Milliplex MAP Kit, 

Millipore, Billerica, MA).  Samples were analyzed using the Luminex L200 instrument (Luminex, 

Austin, TX) and quantifed by xPONENT software (Luminex). 

 

Plasma fatty acid, glycerol, and glucose tracer-tracee ratio (for substrate kinetics calculations)   

The plasma tracer-tracee ratio (TTR) for palmitate, glycerol, and glucose were determined by gas 

chromatography-mass spectrometry (GC/MS) with Mass Selective Detector (Agilent 

Technologies) as previously described (66).  Briefly, starting with 250 µL of plasma and 250 µL 

of internal standard (C17:0), proteins were precipitated from plasma with acetone and lipids 

extracted with hexane.  The hexane fraction was collected and iodomethane was used to convert 

fatty acids to methyl esters (FAMES) that were isolated by solid-phase extraction columns (Sigma 

Aldrich).  Following electron impact ionization, selectively monitoring mass-to-charge ratios of 

ions 74 and 75 were used to determine enrichment of methyl ester palmitate.  Plasma glycerol and 

glucose were isolated from the aqueous portion of the deproteinized sample.  The aqueous fraction 

was dried down and reconstituted in 100 µL of dH20.  A 25 µL aliquot was extracted to create a 

glucose derivative after drying it down, reconstituting it in 2% hydroxylamine in pyridine (50µL) 

followed by a 20 minute incubation at 100°C.  Acetic Anhydride (50 µL) was added to the sample 
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and incubated for 40 minutes at 100°C.  Samples were then diluted in ethyl acetate and stored at -

20°C until GC/MS procedures.  Following electron impact ionization, selectively monitoring 

mass-to-charge ratios of ions 187 and 189 were used to determine enrichment of [6,6 d2] glucose.  

The remaining 75 µL was dried down, reconstituted in pyridine (25 µL) and acetic anhydride (25 

µL), and incubated for 60 minutes at room temperature to create the glycerol derivative.  Following 

electron impact ionization, selectively monitoring mass-to-charge ratios of ions 145 and 148 were 

used to determine enrichment of [1,1,2,3,3 d5]-glycerol.   

 

Intramyocellular glycogen concentration 

Muscle glycogen was determined from measurement of muscle glucose after acid hydrolysis in 

previously weighed and dried muscle samples (65).  Briefly, muscle samples were homogenized 

in dH2O and 2N HCl acid added to neutralize enzymatic activity.  After a 1 hr incubation at 100°C 

samples were neutralized with 1N NaOH to a pH of 6.5-7.5.  Free glucose concentration was 

determined as previously described (65). 

 

Intramyocellular lipid species concentration 

Frozen muscle samples were rapidly homogenized in ice-cold saline and lipids then extracted in a 

single-phase mixture of chloroform-methanol-saline (1:2:0.8) (9) and internal lipid markers for 

IMTG, DAG, and non-esterified fatty acid (NEFA) with fatty acid moieties of odd carbon number 

were added for subsequent purity and recovery determinations (NuChek, Elysian, MN; Avanti 

Polar Lipids, Alabaster, AL). After brief centrifugation, the lower chloroform phase containing 

lipids was transferred to a clean tube and dried under vacuum. 15% ethyl acetate (EtOAc) in 

hexane added to the lipid residue to dissolve diacylglycerol (DAG), triacylglycerol (TAG) and was 

eluted from extraction tube containing 500 mg normal phase silica and was dried down.  Samples 

were again reconstituted in 15% ethyl acetate (EtOAc) in hexane and purified using thin-layer 

chromatography.  Fatty acid methyl esters were generated from purified glycerolipids by alkaline 

methanolysis, a transesterification process as previously described (11), while NEFA 

were converted to methyl esters by a methyl iodide procedure (66).  FAMES were measured by 

gas chromatography and electron-impact mass spectrometry (Agilent 6890A GC and 5973N MSD, 

Palo Alto, CA).  Following electron impact ionization, selectively monitoring mass-to-charge 

ratios of ions 74, 79 and molecular ions) at retention times for individual FAMES, and quantified 
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using FAME standards (NuChek, Elysian, MN). A complete description of the muscle lipid 

analysis can be found in APPENDIX 3.   

 

Western blotting  

Previously weighed frozen muscle samples were homogenized in commercially available ice cold 

lysis buffer (Triacylglyceride reagent; Sigma Adrich) supplemented with commercially available 

protease inhibitors (Triacylglyceride reagent; Sigma Adrich), centrifuged at 1500g for 10 minutes 

at 4°C, and the supernatant (whole cell lysate) collected for protein concentration and western 

blotting analysis.  SDS-page was used to separate 20µg of sample that was transferred to a 

nitrocellulose membrane.  Blots were probed with the following antibodies: pIRS-1 Ser312 (catalog 

#: 2381S; Cell Signaling Technology), Complex-1 (catalog #: 459100; Invitrogen), CPT-1 (catalog 

#: sc20514; Santa Cruz Biotechnology), CD36 (catalog #: sc9154; Santra Cruz Biotechnology), 

GPAT (a gift from RA Colemen), DGAT-1 novus (catalog #: NB110-41487; Novus Biologicals), 

and DGAT-2 (catalog #: sc66859; Santa Cruz Biotechnology).  Nitrocellulose membranes were 

incubated in species specific secondary antibodies, developed with enhanced chemiluminescence 

(Amersham Biosciences), and quantified by densitometry (Alpha Ease FC, Alpha Innotech Corp.).  

Within subject comparisons were prepared on the same blot.   

 

Calculations 

Indices of Insulin Sensitivity: Plasma glucose and insulin concentrations measured before and 

during the meal tolerance test were used to assess whole body insulin sensitivity using the Matsuda 

Composite Index and hepatic insulin resistance as previously described (2).   

  

Matsuda Composite Index = 10000/√[(fasting Insulin x fasting glucose) x (2h Insulin x 2h 

glucose)] 

 

Hepatic Insulin Sensitivity Index = [Glucose AUC0-30] x [Insulin AUC0-30]  

 

Hepatic glucose production (HGP). Basal HGP (before the hyperinsulinemic-euglycemic clamp) 

was calculated using the equation of Steele for steady-state conditions [HGPbasal = Glucose Ra = 
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([d2]-glucose infusion rate)/TTR] (82).  During the hyperinsulinemic-euglycemic clamp, total 

glucose Ra was calculated using the Steele equation (82) from samples collected during the steady-

state period of the clamp (i.e., last 20 min).  HGP during the clamp was calculated as the difference 

between Glucose Ra during the clamp and exogenous glucose infusion rate (GIR) used to maintain 

euglycemia during the steady state period of the clamp (HGPclamp = Glucose Ra – GIR).  

 

Rate of glucose disappearance from plasma (Glucose Rd).  Under basal conditions (before the 

hyperinsulinemic-euglycemic clamp), Glucose Rdbasal = Glucose Rabasal (or HGPbasal), so Glucose 

Rdbasal was also be calculated using the Steele equation for steady state conditions (82).  During 

the clamp, steady-state Glucose Rd was calculated using the Steele equation (82) from samples 

collected during the steady-state period of the clamp (i.e., last 20 min).    

 

Insulin sensitivity. Hepatic insulin sensitivity was calculated as the insulin-induced percent 

suppression of endogenous glucose production.  

 

Hepatic insulin sensitivity = [1-(HGPclamp/HGPbasal)] x 100% 

 

Peripheral insulin sensitivity was calculated as the total rate of glucose uptake during the steady 

state portion of the clamp (Glucose Rdclamp), normalized to the steady-state insulin concentration 

during the clamp (steady-state insulinclamp). 

 

Peripheral insulin sensitivity = Glucose Rdclamp/(steady-state insulinclamp) 

 

Rate of fat oxidation: Whole body fat/triacylglycerol oxidation (g/min) was calculated from VO2 

and VCO2 measurements using the equations of Frayn (29).  Whole body fatty acid oxidation was 

calculated by dividing triacylglycerol oxidation by an estimated molecular weight of 

triacylglycerol (860 g/mol) and multiplying by 3.   

 

Glycerol and fatty acid kinetics. We used the Steele equation for steady-state conditions (82) to 

calculate both glycerol Ra (assessment of whole-body lipolysis) and palmitate Ra (assessment of 

fatty acid mobilization into plasma).  Because our measurements was performed under steady-
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state conditions, palmitate Ra = palmitate Rd, which provides an assessment of systemic fatty acid 

uptake. We also estimated total fatty acid Ra (and Rd) by dividing palmitate Ra (and Rd) by the 

ratio of plasma palmitate to total plasma fatty acid concentration.  Fatty acid and glycerol kinetics 

were only measured in the basal state (i.e., non-insulin stimulated conditions) 

 

Low-density lipoprotein cholesterol (LDL-C). LDL-C was calculated from measurements of 

plasma concentrations of total cholesterol (Total-C),  HDL-C, and triacylglyceride (i.e., [LDL-C] 

= ([Total-C] – [HDL-C] – [Triacylglyceride])/5  (60)) 

 

Statistical analysis 

Linear mixed model with time as a categorical factor was used to determine differences in outcome 

variables compared with measurements made before the exercise program (“PRE”).   

Statistical significance was defined as P ≤ 0.05. 

 

Results 

Compliance, fitness, and body composition responses to exercise training 

Adherence to the prescribed exercise training program was very high.  Subjects completed 99±2% 

of all exercise sessions during the first two weeks and 92±2% of all exercise sessions throughout 

the remaining 10 weeks of the exercise training program (see Appendix 3).   Despite this very high 

compliance, our low-intensity exercise training program did not significantly increase VO2max 

(Table 5-1, P=0.14) and our markers of mitochondrial density in skeletal muscle (i.e., complex-1 

and carnitine palmitoyl transferase-1 [CPT-I]) were also not affected (data not shown).  As 

designed, body weight and fat mass remained very stable throughout the 3-month exercise program 

(Table 5-1).  This successful control of body weight and body composition allows for interpretation 

of these findings to focus specifically on the effects of the mild exercise training program.   

 

Measures of insulin sensitivity 

Meal tolerance test performed in the few hours after exercise. On Day 1 of each experimental trial 

we estimated whole-body insulin sensitivity index (ISI) using the Matsuda composite index during 

a meal tolerance test that began 80 minutes after completion of exercise (or rest during Visit #1 

and #5). A single session of exercise did not affect ISI, but ISI was modestly, yet significantly 
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improved after 2 weeks of the exercise program (Figure 5-3A; P=0.02).  This improvement in 

whole-body ISI at 2 weeks was accompanied by a significant reduction in hepatic insulin resistance 

(Figure 5-3B; P=0.03), as assessed by calculations previously established by Abdul-Ghani, et al., 

(2). ISI did not improve any further after 3 months of the exercise program (Figure 5-3A).   

 

Hyperinsulinemic-euglycemic clamp performed the day after exercise.  To assess more persistent 

effects of exercise on insulin sensitivity (i.e., into the next day), a hyperinsulinemic-euglycemic 

clamp was performed ~16h after exercise.  We found insulin sensitivity to be largely unaffected 

the day after 1 exercise session or even after 2 weeks of exercise (Figure 5-4A).  We did observe 

a trend for an improvement in insulin sensitivity after 3-months of this low-intensity exercise 

training program, but this did not quite reach statistical significance (Glucose Rd/SSI: 2.4±0.3 vs. 

2.9±0.3 (mg/min)/[SSI]; P=0.065). This trend for improved insulin sensitivity at the end of the 3-

month training program disappeared when the subjects abstained from exercise for 3 days (Figure 

5-4). Similar to the trend for improved insulin sensitivity after 3 months of training, GLUT4 

protein abundance also tended (P=0.10) to be elevated at this time, and this trend persisted even 

after the subjects did not exercise for 3 days. (Figure 5-4 C).  Hepatic insulin resistance was 

remarkably stable after 1 session, 2 weeks, and 3 months of training (Figure 5-4B). 

 

Skeletal muscle inflammation and markers of insulin signaling  

In agreement with our finding that the exercise program did not robustly improve insulin action, 

markers of pro-inflammatory signaling in skeletal muscle, NFκB, IκBα, and pJNK were also 

unchanged after 1 session, 2 weeks or 3 months of the exercise training program (Table 5-2). 

Similarly, we did not find any changes in the phosphorylation state of AktSer473 or IRS-1Ser312  

(Table 5-3), which have been identified as being crude markers of insulin signaling in non-insulin 

stimulated tissue (17, 53)  

 

Skeletal muscle glycogen and lipid content 

Muscle glycogen concentration did not change significantly throughout the 3 month training 

period (Figure 5-5A).  Similarly, neither IMTG nor intramyocellular DAG content were 

significantly affected the day after 1 session, 2 weeks, and even after 3 months of this mild exercise 

training program (Figure 5-5 B-C), but there was a considerable degree of variability in these 
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muscle lipid measures.  Abundance of key enzymes involved in IMTG synthesis (i.e., GPAT, 

DGAT1, and DGAT2) were also unchanged during the 3 month exercise training program (Table 

5-4).  

 

Changes in substrate oxidation and fatty acid uptake 

The mild exercise training program did induce some changes in fuel selection both during exercise 

and at rest.  Compared with fat oxidation measured during the very first exercise training session, 

3 months of training significantly increased the mean exercise fatty acid oxidation from 8.6±1.3 

to 11.8±1.7 µmol/kgFFM/min (P<0.01).  Additionally, compared with before starting the training 

program, 2 weeks of exercise training increased resting fatty acid oxidation and it remained 

elevated after 3 months of exercise training (Figure 5-6 A). Accompanying this increase in resting 

fatty acid oxidation, we found a strong trend (P=0.12) for an increase in fatty acid Rd (i.e., fatty 

acid uptake) starting at two weeks of the training program (Figure 5-6 B).  This was also 

accompanied by a significant increase in skeletal muscle abundance of the fatty acid transporter 

FAT/CD36 after 3 months of exercise training (Figure 5-6 C).  However, as noted above, we did 

not find changes in mitochondrial fatty acid transport protein CPT-1 (data not shown). Lipolytic 

rate (i.e., glycerol Ra) and re-esterification remained largely unaffected by the exercise training 

program (Table 5-5). We found a slight increase in fasting plasma fatty acid concentration after 2 

weeks and 3 months of training (Table 5-6), which likely reflected an increase in lipolytic rate 

during exercise during the previous evening.  

 

Blood lipid concentrations 

The exercise program induced a progressive reduction in plasma total cholesterol (Total-C), which 

reached statistical significance after 3 months of training (Table 5-6, P<0.01).  This reduction in 

Total-C was due to a reduction in low-density lipoprotein cholesterol (Table 5-6, P<0.01).   The 

exercise program did not alter fasting triglyceride concentration (Table 5-6).  

 

Markers of adipose tissue and systemic inflammation 

Three months of low-intensity exercise training did not influence markers of adipose tissue 

inflammation including TNF-α, MCP-1, and VEGF (Table 5-7).  Additionally systemic pro-
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inflammatory proteins including IL-6, TNF-α, and MCP-1 did not change throughout the 3 month 

mild exercise training program (Table 5-8).   

 

Discussion 

Epidemiological evidence clearly indicates that even a rather modest increase in regular physical 

activity behavior in formerly sedentary adults can profoundly reduce disease risk and all cause 

mortality (12, 85).  Yet the time course for physiological adaptations, and resultant changes in 

markers of cardiometabolic health during the early stages of adopting a physically active lifestyle 

are not clearly understood.  Our major findings indicate that a single session of low-intensity 

exercise (i.e., the very first exercise training session) was not enough of a stimulus to improve 

insulin sensitivity, but our measures of whole-body insulin sensitivity and hepatic insulin 

resistance were improved after two weeks of the exercise program.  The insulin sensitizing effects 

of exercise were relatively short-lived, as evidenced by improvements in insulin sensitivity when 

measured in the few hours after exercise but not the next morning.  These improvements in insulin 

sensitivity within the few hours after exercise were maintained, but not enhanced further with an 

additional 10 weeks of exercise training.  We also found that 3 months of low-intensity exercise 

training induced clinically meaningful improvements in the blood lipid profile of our obese 

subjects.  Importantly, the beneficial health effects of exercise in this study could not be attributed 

to changes in body weight or body composition because these remained unchanged throughout the 

3-month exercise program.   

 

The precise mechanisms responsible for the improvement in the insulin sensitivity index (ISI) 

measured a few hours after exercise are not clear, but improvement in hepatic insulin resistance 

may be an important contributor to this effect – at least in the short-term.  This is based on our 

observation that enhanced whole-body ISI after two weeks of the exercise program was 

accompanied by an improvement in our assessment of hepatic insulin resistance.  Our finding that 

hepatic insulin resistance improved ~15% after 2 weeks of the exercise program, was similar to 

the improvement found in comparable cohort of obese subjects after 7 days of a more intense 

exercise training program (i.e., 1h of exercise at 85% HRmax for 7 consecutive days) (48).  How 

the cumulative effects of a few sessions of exercise (without weight loss) may alter insulin action 

in the liver remains unclear.  It has been suggested that regular exercise may lower or prevent 
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accumulation of lipid within the liver by suppressing lipogenic potential during the exercise 

session, as well as during the first few hours after exercise (45).  Indeed seven continuous days of 

exercise training has been found to lower hepatic triglyceride content in obese adults with non-

alcoholic fatty liver disease (36).  Because hepatic lipid accumulation can negatively impact 

hepatic insulin action (16, 50, 80), perhaps even just a few days of exercise may be enough to 

induce a subtle, yet physiologically meaningful reduction in lipid accumulation in the liver that 

may translate to an improvement in hepatic insulin sensitivity.  Interestingly, although the 

improvement in whole-body ISI was maintained throughout the next 10 weeks of our exercise 

program, the improvement in hepatic insulin resistance appeared to largely reverse.  The reason 

why the improvement in hepatic insulin resistance may dissipate as the exercise program continued 

is puzzling, but if true, this suggests that the persistent improvement in whole-body ISI after 3 

months was a consequence of a shift from improved hepatic insulin sensitivity in the early stages 

of the exercise program to enhanced peripheral insulin action.   

 

Exercise training is often reported to improve insulin sensitivity in obese adults when measured 

several hours or even a few days after the most recent session of exercise (6, 20, 25, 27, 35, 41, 

84).  Unfortunately, many studies that examine the effects of exercise training on insulin sensitivity 

in obese adults do not strictly control body weight during the exercise program (6, 25, 41), making 

it impossible to differentiate the effects of the exercise training from the potent effects of weight 

loss.  However, some studies designed to prevent changes in body weight during the training 

program have reported a persistent improvement in insulin sensitivity with exercise training 

without weight loss (27, 84), but this finding is not universal (28, 78).  Findings from PROJECT 

#2 of my dissertation support the notion that exercise training in overweight adults may indeed 

induce adaptations resulting in a persistent improvement in insulin sensitivity (see Chapter 4).  In 

contrast, in the present study we did not find a persistent improvement in insulin sensitivity after 

3 months of training, especially when measured 3 days after the most recent session of exercise.  

Perhaps this discrepancy can be explained by the relatively low exercise stimulus used in our 

present study, which may have been insufficient to induce persistent effects on insulin action.  

Interestingly, we did find a strong trend for enhanced insulin sensitivity measured 16 hours after 

the last exercise training session of the 3 month exercise program.  This modest improvement was 

largely driven by 6 out of our 9 participants, and these subjects increased their insulin sensitivity 
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by 15-57%.  We acknowledge that the relatively small sample size likely contributed to our 

inability to detect a significant improvement in insulin sensitivity at 3 months when measured the 

day after the last session of exercise.  However, it is also apparent that the insulin sensitizing effect 

in response to our 3-month mild exercise training program was not tremendously robust, and again, 

this trend was clearly no longer apparent when subjects abstained from exercise for 3 days after 

the 3 month training program. 

 

In contrast to many previous studies (21, 22, 57, 67), including some from our laboratory (61, 73), 

insulin sensitivity in this study was not improved after a single session of exercise (i.e., after the 

first exercise training session).  This finding is also somewhat in contrast to findings from 

PROJECT #2 of my dissertation in which a single exercise session did enhance insulin sensitivity 

the next day in a cohort of sedentary overweight adults.  An explanation for this discrepancy may 

be very similar to our rationale for the lack of robust adaptations to the exercise training program; 

it is likely that the absence of an insulin sensitizing effect of a single session of exercise in the 

present study may have been a consequence of our rather low exercise stimulus.  Therefore, this 

suggests that the exercise “dose” used in this study may have been below some threshold required 

to enhance insulin action, even in people who do not exercise regularly.   Findings from this study, 

together with findings from one of our very recent studies (61) may help us better identify the 

magnitude of an exercise “dose” necessary to induce a persistent improvement in insulin action - 

at least sustained into the next day.  We very recently reported that expending 350 kcals during a 

single 70 minute session of exercise at 50% VO2max improved insulin sensitivity the next morning 

in a very similar obese cohort as in the present study (61).  However, in the current study we found 

that 40 minutes of exercise at 60%HRmax (i.e., equivalent to ~50% VO2max and energy 

expenditure <200kcal) was not sufficient to improve measures of insulin sensitivity the next day.  

Obviously, these findings suggest that a minimum “dose” of mild intensity exercise (i.e., ~50% 

VO2max) is somewhere between 40 to 70 min of exercise.  It may be quite logical to conclude that 

the amount of energy expended during the exercise session would be a key element determining 

the “threshold” for enhancing insulin action, but we cannot rule out the possibility that the duration 

of exercise may be an important factor, independently of the energy expended.  This is based on 

our earlier finding that expending 350 kcals while exercising at 50% VO2max (i.e., ~70 min of 

exercise) significantly enhanced insulin sensitivity the next morning, but expending 350kcals 
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while exercising at 65% VO2max (i.e., ~50 min of exercise) did not (61), suggesting that the 

duration of exercise may influence this effect.  Although perhaps somewhat counter-intuitive, 

these findings are consistent with other studies suggesting that lower intensity but longer duration 

exercise may be better at improving insulin sensitivity and blood glucose control in individuals 

with type 2 diabetes (6, 54).   

 

There has been considerable debate about the role of oxidative capacity on the regulation of insulin 

resistance (64, 73, 75, 83).  In particular, much of this debate has centered around the role that 

increased fatty acid oxidation may have on reducing the accumulation of intramyocellular lipids 

known to impair insulin signaling (64, 73, 75, 83).  Several reports have suggested that 

impairments in mitochondrial function and a resultant suppression in fatty acid oxidative capacity 

are important underlying factors for the development of insulin resistance (8, 51, 68).  It has been 

suggested that by increasing oxidative capacity via exercise training, this could relieve the lipid-

induced insulin resistance commonly found in obesity (24, 30, 69).  In contrast, fatty acid oxidation 

is often not found to be low in adults with a moderate degree of obesity (BMI: 30-40kg/m2) (7, 38, 

43), and a high capacity to oxidize fatty acids does not necessarily protect against insulin resistance 

(55, 59, 73).  In support of these latter findings, we found that although fatty acid oxidation was 

augmented by the exercise training program, this was not accompanied by a reduction in 

intramyocellular lipid concentration, and did not coincide with enhanced insulin action measured 

the day after exercise.  Our data also indicate that mild exercise training without weight loss did 

not suppress lipolysis or fatty acid mobilization, which is in agreement with previous reports 

showing that exercise training does not reduce systemic fatty acid availability in weight-stable 

obese adults (37, 39).  Therefore, although the contribution of a low oxidative capacity on muscle 

lipid accumulation and insulin sensitivity remains to be resolved, exercise training (in the absence 

of weight loss) does not appear to relieve the persistent physiologic stress of excessive systemic 

fatty acid overabundance in obese adults. 

 

Systemic and tissue-specific inflammatory stress are considered key factors underlying the 

increased disease risk in obesity (34, 62, 76), and may play particularly important roles in the 

development of insulin resistance (62, 76).  However, whether changes in systemic, adipose tissue, 

and/or skeletal muscle inflammation contribute to the exercise-induced reduction in 



106 
 

cardiometabolic disease risk has not been resolved.  Adipose tissue expansion and the resultant 

elevated fatty acid availability that occur with weight gain and the development of obesity are 

primary contributors to pro-inflammatory macrophage accumulation within adipose tissue (49, 86) 

and release of pro-inflammatory cytokines into the systemic circulation.  In turn, weight loss 

reverses this macrophage infiltration in adipose tissue (49) as well as markedly suppresses the 

abundance of systemic pro-inflammatory cytokines (14, 15, 18).  In animal models, both acute 

exercise (63) and exercise training have been reported to reduce pro-inflammatory macrophage 

infiltration in adipose tissue and lower cytokine expression (47).  However, studies in human 

subjects have reported that neither acute exercise (19, 56, 77) nor exercise training reduced 

concentration of pro-inflammatory cytokines in obese weight-stable adults (3, 18).  Our data 

support findings from Christiansen, et al, (18) in that neither markers of inflammation in the 

systemic circulation (i.e., IL-6, TNF-α, and MCP-1) nor adipose tissue (i.e., TNF-α, MCP-1, and 

VEGF) were reduced by the end of the 3-month exercise program.  These findings suggest that in 

absence of weight loss, low-intensity exercise training, per se, may not affect adipose tissue or 

systemic inflammation.  The influence of exercise on inflammatory pathway activation in skeletal 

muscle is also complex.  A previous study from our lab clearly demonstrated that weight loss 

(without exercise) suppressed markers of inflammatory signaling in skeletal muscle, yet when 

exercise training was added to the weight loss program, skeletal muscle inflammation was not 

reduced any further (73).  Therefore, findings from our present study indicating that mild exercise 

training did not influence skeletal muscle pro-inflammatory stress including NFκB, IκBα, and 

pJNK, are in line with our previous work (73).  Much like our conclusions about systemic and 

adipose tissue inflammation, these findings suggesting that in the absence of weight loss, exercise 

training (at least rather mild exercise training) may not affect some important inflammatory 

pathways in skeletal muscle. 

 

We did find that 3-months of mild exercise training without weight loss improved blood lipid 

profile of our obese participants.  Despite the accelerated interest and development of 

pharmacological treatments for hypercholesterolemia (5, 46), exercise remains a mainstay in the 

therapeutic approach for improving blood lipid profile.  Because higher cardiorespiratory fitness 

(e.g., VO2max) is associated with lower cardiovascular disease risk (52) and higher intensity 

exercise training is often required to induce robust improvements in VO2max (26), vigorous 
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exercise is often recommend for improving cardiovascular disease risk factors, like lowering blood 

lipids.  However, our mild intensity exercise program lowered plasma LDL cholesterol, which 

resulted in a reduction in total cholesterol, without improving VO2max.  How our exercise 

program lowered plasma LDL-C is not clear.  Because triglyceride rich very low-density 

lipoprotein (VLDL) is a precursor for LDL, a reduction in VLDL could lower LDL.  Although we 

did not measure VLDL and we did not see changes in plasma triglyceride concentration, previous 

reports have indicated that exercise training can lower plasma VLDL concentration (79, 81).  

Regardless of the mechanism(s) responsible for lowering LDL-C and Total-C, these changes 

represent clinically relevant adaptations in response to rather mild exercise, even without weight 

loss.  More specifically we found an 11% reduction in Total-C, which associated with a reduction 

in relative risk for all-cause mortality by as much as 13% (32, 33).  We also found that LDL-C 

was reduced by ~21 mg/dl, which is well above estimates suggesting that an 11 mg/dl reduction 

in LDL-C translates to a 9.2% reduction in relative risk for all-cause mortality (31).   

 

The overarching goal of this study was to determine the progressive adaptations associated with 

adopting a mild exercise training program in weight-stable obese adults.  We found that a single 

40 minute session of low-intensity exercise was not sufficient to improve insulin sensitivity or 

reduce other cardiometabolic disease risk factors.  However, improvements in insulin sensitivity 

were apparent after 2 weeks of mild exercise training, but this improvement was very short-lived; 

measurable improvement in the few hours after exercise, but did not extend into the next day.  

Importantly, even a relatively short-lived enhancement of insulin action (for the few hours after 

exercise) may still have profound long-term metabolic health benefits, but to truly reap these 

metabolic benefits the exercise would need to be performed very regularly (i.e., daily).  We also 

found improvements in blood lipid profile after 3 months of exercise training, even in the absence 

of weight loss.  Although the mechanisms responsible for improvements in cardiometabolic health 

in response to a mild exercise intervention are not completely understood, these effects may 

represent a compilation of relatively subtle adaptations in multiple tissues, such as skeletal muscle, 

liver, and adipose tissue.   
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 Table 5-1. Participant characteristics before and after the 3-month exercise training 

program 

 Before After 

Sex (M/F) (3/9) ̶ 

Age (y) 29.5 ± 2.5 ̶ 

Body weight (kg) 108.2 ± 4.3 108.7 ± 4.7 

BMI (kg/m2) 37.6 ± 1.4 38.1 ± 1.5 

Body fat (%) 47.5 ± 2.2 47.7 ± 2.5 

Fat mass (kg) 51.6 ± 3.4 52.0 ± 3.8 

Fat free mass (kg) 56.6 ± 3.0 56.7 ± 3.3 

VO2max (L/min) 1.9 ± 0.1 1.9 ± 0.2 

Values are expressed mean ± SE.  BMI, Body mass index; VO2max, maximal oxygen 

consumption. 
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Table 5-2. Skeletal muscle inflammatory proteins 

  

PRE 

(n=9) 

1EX 

(n=9) 

2WKS 

(n=9) 

3M 

(n=9) 

3d after EX 

(n=8) 

NFκB (AU) 494 ± 60 664 ± 106 475 ± 73 418 ± 132 526 ± 63 

IκBα (AU) 529 ± 120 561 ± 142 502 ± 124 617 ± 227 731 ± 72 

pJNK (AU) 55 ± 13 81 ± 16 51 ± 12 87 ± 25 64 ± 17 

Values are expressed mean ± SE. PRE: before starting the exercise program; 1EX: the day 

after the first exercise training session; 2WKS: the day after the 12th exercise session (2 

weeks of the exercise program); 3M: the day after the last exercise session at 3 months of 

the program; 3d after EX: exactly 3 days after the last exercise session after 3 months of 

the exercise program. NFκB, Neclear Factor Kappa-B; IκBα, inhibitor of NFκB; pJNK, 

phosphorylated c-jun N-terminal kinase. 
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Table 5-3. Basal pAkt s473 and pIRS-1s312 abundance 

  

PRE 

(n=9) 

1EX 

(n=9) 

2WKS 

(n=9) 

3M 

(n=9) 

3d after EX 

(n=8) 

pAkt s473 (AU) 6.1 ± 0.7 6.1 ± 0.5 5.6 ± 0.5 7.3 ± 0.8 7.5 ± 0.7 

pIRS-1 s312 (AU) 1.3 ± 0.0 1.3 ± 0.0 1.3 ± 0.0 1.3 ± 0.0 1.3 ± 0.0 

Values are expressed mean ± SE. PRE: before starting the exercise program; 1EX: the day 

after the first exercise training session; 2WKS: the day after the 12th exercise session (2 weeks 

of the exercise program); 3M: the day after the last exercise session at 3 months of the 

program; 3d after EX: exactly 3 days after the last exercise session after 3 months of the 

exercise program.  pAkt s473, phosphorylation of protein kinase-B serine residue 473; pIRS-1 

s312, phosphorylation of insulin receptor substrate-1 serine residue 312. 
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Table 5-4. Enzymes involved in IMTG synthesis 

  

PRE 

(n=9) 

1EX 

(n=9) 

2WKS 

(n=9) 

3M 

(n=9) 

3d after EX 

(n=8) 

GPAT (AU) 6.1 ± 0.7 6.1 ± 0.5 5.6 ± 0.5 7.3 ± 0.8 7.5 ± 0.7 

DGAT1 (AU) 9.3 ± 1.1 9.4 ± 0.6 11.1 ± 0.6 10.0 ± 0.5 9.3 ± 1.0 

DGAT2 (AU) 2.2 ± 0.1 2.2 ± 0.1 2.3 ± 0.1 2.3 ±0.1 2.3 ± 0.1 

Values are expressed mean ± SE. PRE: before starting the exercise program; 1EX: the 

day after the first exercise training session; 2WKS: the day after the 12th exercise session 

(2 weeks of the exercise program); 3M: the day after the last exercise session at 3 months 

of the program; 3d after EX: exactly 3 days after the last exercise session after 3 months 

of the exercise program.  GPAT, glycerol-3-phosphate; DGAT1 diglyceride 

acyltransferase 1; DGAT2 diglyceride acyltransferase 2. 
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Table 5-5. Glycerol Ra and re-esterification 

 

PRE 

(n=9) 

1EX 

(n=9) 

2WKS 

(n=9) 

3M 

(n=9) 

3d after EX 

(n=8) 

Glycerol Ra (µmol/min) 340 ± 49 302 ± 33 354 ± 49 361 ± 47 323 ± 37 

Glycerol Re-esterification (%) 49 ± 4% 50 ± 3% 49 ± 3% 52 ± 6% 48 ± 4% 

Values are expressed mean ± SE. PRE: before starting the exercise program; 1EX: the day after 

the first exercise training session; 2WKS: the day after the 12th exercise session (2 weeks of the 

exercise program); 3M: the day after the last exercise session at 3 months of the program; 3d 

after EX: exactly 3 days after the last exercise session after 3 months of the exercise program. 
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Table 5-6. Plasma substrate, hormone, and lipid concentrations 

  

PRE 

(n=10) 

1EX 

(n=10) 

2WKS 

(n=10) 

3M 

(n=9) 

3d after EX 

(n=8) 

Glucose mmol/L 4.8 ± 0.1 4.6 ± 0.1 4.5 ± 0.2 4.6 ± 0.1 4.6 ± 0.1 

Insulin uU/mL 27.1 ± 1.4 29.4 ± 1.5 29.4 ± 1.3 27.1 ± 2.3 26.2 ± 2.8 

Triglyceride mg/dL 110.9 ± 20.9 115.8 ± 19.3 116.8 ± 24.6 122.3 ± 28.4 114.8 ± 22.1 

Total-C mg/dL 184.0 ± 10.5 174.4 ± 9.6 176.2 ± 8.7 174.8 ± 8.3 163.1 ± 6.6* 

LDL-C mg/dL 152.3 ± 11.0 142.7 ± 10.0 144.3 ± 10.0 142.1 ± 11.2 131.3 ± 9.1* 

HDL-C mg/dL 31.7 ± 2.8 31.7 ± 2.9 31.9 ± 2.7 32.5 ± 3.6 31.5 ± 3.9 

NEFA µmol/mL 0.39 ± 0.03 0.36 ± 0.03 0.48 ± 0.04* 0.50 ± 0.05* 0.38 ± 0.04 

Values are expressed mean ± SE. PRE: before starting the exercise program; 1EX: the day after 

the first exercise training session; 2WKS: the day after the 12th exercise session (2 weeks of the 

exercise program); 3M: the day after the last exercise session at 3 months of the program; 3d 

after EX: exactly 3 days after the last exercise session after 3 months of the exercise program.  

* Significantly different than PRE, P < 0.05.  Total-C, total cholesterol; LDL-C, low-density 

lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; NEFA, non-esterified 

fatty acid. 
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Table 5-7. Adipose inflammatory proteins 

  

PRE 

(n=9) 

1EX 

(n=9) 

2WKS 

(n=9) 

3M 

(n=9) 

3d after EX 

(n=8) 

TNF-α (pg/µg protein) 0.06 ± 0.02 0.05 ± 0.01 0.09 ± 0.05 0.05 ± 0.01 0.05 ± 0.01 

MCP-1 (pg/µg protein) 1.6 ± 0.4 1.2 ± 0.2 1.5 ± 0.2 1.3 ± 0.1 1.7 ± 0.4 

VEGF (pg/µg protein) 7.6 ± 1.3 7.3 ± 1.4 6.0 ± 0.7 5.7 ± 0.8 7.7 ± 1.5 

Values are expressed mean ± SE.  PRE: before starting the exercise program; 1EX: the day after 

the first exercise training session; 2WKS: the day after the 12th exercise session (2 weeks of the 

exercise program); 3M: the day after the last exercise session at 3 months of the program; 3d after 

EX: exactly 3 days after the last exercise session after 3 months of the exercise program.  TNF-α, 

tumor necrosis factor-alpha; MCP-1, monocyte chemoattractant protein-1, VEGF, vascular 

endothelial growth factor. 
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Table 5-8. Plasma inflammatory proteins 

  

PRE 

(n=9) 

1EX 

(n=9) 

2WKS 

(n=9) 

3M 

(n=9) 

3d after EX 

(n=8) 

IL-6 (pg/mL) 5.1 ± 1.6 4.7 ± 2.2 4.6 ± 2.1 5.0 ± 1.7 4.3 ± 1.9 

TNF-α (pg/mL) 6.5 ± 0.8 6.7 ± 1.0 6.8 ± 0.8 6.9 ± 1.0 5.9 ± 0.8 

MCP-1 (pg/mL) 202.4 ± 27.3 178.1 ± 23.0 187.8 ± 21.1 187.3 ± 21.5 163.0 ± 11.5 

Values are expressed mean ± SE. PRE: before starting the exercise program; 1EX: the day after 

the first exercise training session; 2WKS: the day after the 12th exercise session (2 weeks of the 

exercise program); 3M: the day after the last exercise session at 3 months of the program; 3d 

after EX: exactly 3 days after the last exercise session after 3 months of the exercise program.  

IL-6, Interleukin-6; TNF-α, tumor necrosis factor-alpha; MCP-1, monocyte chemoattractant 

protein-1.   
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Figure 5-1. Timeline of metabolic studies throughout the 12-14 week participation period. 

  



117 
 

 

Figure 5-2. Timeline of metabolic tests during each visit.  RMR, resting metabolic rate. 
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CHAPTER 6 

 

OVERALL DISCUSSION 

 

A physically active lifestyle is clearly linked with enhanced cardiometabolic health, yet it is very 

surprising that there are still many unresolved questions about how physical activity/exercise 

improves important health outcomes.  For example, although exercise does not need to be 

particularly vigorous in order to reduce cardiometabolic disease risk, it remains unclear how 

relatively mild exercise induces important health benefits, even when the exercise stimulus is 

below the level often found to be required to induce adaptations classically associated with 

improved VO2max.  The physiological adaptations stemming from a moderate increase in habitual 

physical activity behavior and the time course for these adaptations that occur in the early stages 

of adopting a more physically active lifestyle have not been clearly characterized.  Additionally, 

beneficial metabolic responses in the few to several hours after each exercise session suggests that 

the transient acute response to exercise might be even more important than adaptations accrued 

from weeks, months or even years of exercise.  However, a clear dissociation between the 

contributions of transient acute responses to exercise and the more chronic adaptations accrued 

from a habitual exercise routine on the exercise-induced reduction of cardiometabolic risk factors 

has not been fully discerned.  Collectively my dissertation projects were designed to distinguish 

between the health benefits derived from acute exercise compared to habitual physical 

activity/exercise in overweight and obese adults, as well as examined the time course of some key 

metabolic adaptations that occur as a consequence of an increase in habitual physical activity. 

 

Together the three projects of my dissertation enhanced our understanding of health benefits and 

underlying mechanisms resulting from acute and habitual physical activity/exercise.  Important 

findings from my dissertation studies include: 1) in a large population study, I established that the 

degree of physical activity was significantly associated with lower insulin resistance, but VO2max 

was not (PROJECT #1), 2) affirmed that key health benefits can be derived from exercise 
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independently from of any improvement in VO2max (PROJECT #1 and PROJECT #3), 3) 

demonstrated that reductions in systemic pro-inflammatory stress after a single session of exercise 

may contribute to the exercise-induced improvements in insulin sensitivity (PROJECT #2), 4) 

discovered that a single session of exercise at 50%VO2max for 40 min may be below a “threshold” 

for exercise stimulus required to induce a persistent improvement in insulin sensitivity into the 

next day in obese adults (PROJECT #3), and 5)  3 months of a low-intensity exercise training 

without weight loss did not alter markers of pro-inflammatory stress or induce persistent 

improvements in insulin sensitivity among overweight and obese adults.  In the discussion that 

follows, I will focus primarily on the collective and integrative implications of these findings. 

 

A key tenet of my dissertation centered on the important health benefits stemming from a single 

session of exercise.  Given the well-established impact that acute exercise has on key health 

outcomes, (like insulin resistance) and that many of the health benefits of exercise training “wear 

off” after even a few days without exercise, it seems logical to develop exercise prescriptions that 

focus on optimizing the acute responses to EACH exercise session.  However, practical issues like 

“how much” of an exercise stimulus is required for improvement and does this exercise 

requirement change as the individual adapts to a routine exercise regimen, remain unresolved.  In 

PROJECT #2, I found that a single session of moderate-intensity exercise (~60% VO2max for 1 

h) was sufficient to improve insulin sensitivity the next day in overweight/obese sedentary 

subjects.  In contrast, in PROJECT #3, when a similar cohort of sedentary obese subjects were 

exposed to a lower exercise stimulus (50% VO2max for 40 min) insulin sensitivity was not 

improved the next day.  It may be important to acknowledge that the methods used to assess insulin 

sensitivity the day after exercise were different in these two studies.  But the hyperinsulinemic-

euglcemic clamp was used in PROJECT #3 (i.e., the “gold standard” for assessing insulin 

sensitivity), and this relatively sensitive method still did not detect improvement in insulin action 

the day after the mild exercise session.  The findings here suggest that the exercise “dose” of about 

40 min of exercise at 50%VO2max used in PROJECT #3 may be below a minimum threshold 

necessary to enhance insulin sensitivity into the next day in this population of obese sedentary 

adults.  In another very recent study from our lab (1), we found that a single 70 minute session of 

exercise at 50% VO2max improved insulin sensitivity the next morning, again, using the clamp 

procedure, in a very similar obese cohort as in the present study.  Together these findings suggest 
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that a minimum “dose” of mild intensity exercise (i.e., ~50% VO2max) is somewhere between 40 

to 70 min of exercise.  It is certainly tempting to propose follow-up exercise “dose-response” 

studies in an attempt to more precisely identify the dose of exercise necessary to induce a persistent 

improvement in insulin sensitivity (at least into the next day).  However, because multiple 

components contribute to defining an exercise “dose” (e.g., intensity, duration, mode, energy 

expenditure), and other complexities such as meal timing and content, as well as inter-individual 

variability will greatly complicate matters, trying to achieve high precision would be very 

challenging. 

 

Unlike the insulin sensitizing effects of acute exercise in overweight subjects who do not normally 

exercise, in PROJECT #2 I also found that a single session of moderate exercise did not increase 

insulin sensitivity the next day in overweight adults who already exercise regularly.  The 

underlying reason for this is not clear, but may be related to less muscle glycogen used during 

exercise after training, which in turn may attenuate the exercise-induced enhancement of insulin 

sensitivity.  Other training adaptations (e.g., changes in blood flow regulation to the active muscle, 

increased mitochondrial density) that result is a lower metabolic stress during the exercise session 

may also contribute to this phenomenon.  From a practical perspective, this quite simply suggests 

that as a person advances in an exercise program, the exercise stimulus may need to increase 

progressively in order to reap some/much/all of the health benefits of the acute exercise session.  

This has important clinical implications, and it may be beneficial for exercise/lifestyle 

prescriptions to incorporate a recommendation to progressively increase exercise intensity. 

 

Although the improvement in VO2max that often accompanies long-term moderate-to-vigorous 

exercise training is commonly credited for improvements in health, it is not clear that the 

physiologic adaptations in skeletal muscle (i.e., increased mitochondrial and capillary density) 

contributing to the improvement in VO2max are necessary for the reduction in disease risk factors 

often found with exercise training.  In PROJECT#1, I used what is arguably the most 

comprehensive health assessment database on the U.S. population, and found average daily 

minutes of moderate-to-vigorous physical activity was significantly associated with lower insulin 

resistance, but VO2max was not.  Although probing large data-sets, like NHANES, to address 

important questions and explore compelling relationships is interesting and impactful, there are 
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obviously several limitations associated with analysis of these large data sets (e.g., heterogeneous 

population, no control of the subjects activity and diet before testing, the outcome measures are 

greatly limited).  My findings in PROJECT#1 provided the impetus and foundation for PROJECT 

#2, in which I recruited a homogeneous population of overweight-to-mildly obese adults to be 

better able to strictly control their diet and physical activity, and this approach also enabled me to 

assess their cardiometabolic risk factors more comprehensibly.  In this study, I found that regular 

exercisers did exhibit higher insulin sensitivity compared with a well-matched cohort of non-

exercisers, even when the exerciser abstained from their regular exercise routine for 3 days, which 

was in contrast with my original hypothesis.  Because our group of regular exercisers in PROJECT 

#2 also had higher VO2max than the non-exercisers, I could not distinguish between the metabolic 

benefits due to the elevated VO2max compared with other adaptations stemming from exercising 

regularly.  Importantly, in PROJECT #3 significant improvements in both insulin sensitivity and 

blood cholesterol were found with 3-months of a mild-intensity exercise program without 

improving VO2max.  Together these studies support our working hypotheses that exercise induced 

improvements in health may be largely independent of specific physiologic adaptations 

responsible for improvedVO2max.   

 

The physiological consequences of obesity that lead to reduced cardiometabolic health are 

complex.  However, available evidence suggests that excessive abundance of fatty acids, 

accumulation of deleterious lipid species (i.e., DAG and ceramide) and increased pro-

inflammatory stress within skeletal muscle may be mediators of reduced health and in particular 

insulin sensitivity among obese adults.  Therefore, a working hypothesis of our laboratory is that 

exercise may improve insulin sensitivity in obese adults in part through altering the metabolic fate 

of fatty acids that enter the muscle cell, thereby reducing pro-inflammatory stress within skeletal 

muscle.  This hypothesis is largely based on previous findings from our laboratory by Dr. Schenk 

and Dr. Newsom who examined the effects of acute exercise on skeletal muscle lipid partitioning 

and pro-inflammatory stress.  For example, Dr. Schenk found that compared with remaining 

sedentary, a single session of vigorous exercise protected against lipid induced insulin resistance 

in lean adults.  Importantly this was accompanied by an increase in accumulation of neutral lipid 

stores (IMTG) and reduced accumulation of negative lipid species (i.e., DAG and ceramide) as 

well as skeletal muscle pro-inflammatory stress.  Additionally, Dr. Newsom found that a single 
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session of low-intensity exercise increased insulin sensitivity in obese adults with only modest 

changes in muscle lipid accumulation and no change in pro-inflammatory stress.  While these 

earlier projects focused exclusively on the important metabolic effects of acute exercise, the 

projects of my dissertation expanded on these findings by examining the effects of cumulative 

sessions of exercise and exercise training (in addition to acute exercise responses) on insulin 

sensitivity, skeletal muscle lipid-partitioning and pro-inflammatory stress.  My projects also extend 

on previous work in our lab by peering into the potential effects of exercise on adipose tissue 

inflammation and cytokine production.  Accumulating evidence suggests that adipose tissue and 

systemic pro-inflammatory stress contribute to insulin resistance among obese adults.  However, 

it is not clear that improvements in insulin sensitivity following exercise training are mediated by 

reductions in adipose tissue or systemic pro-inflammatory stress especially among weight stable 

overweight and obese adults.  In PROJECT #2, I found that increased insulin sensitivity following 

a single session of moderate intensity exercise was significantly associated with reductions in pro-

inflammatory cytokine IL-1.  Although we cannot assume a cause-and-effect relationship with 

these findings, these results support growing evidence indicating that exercise training induced 

reductions in systemic pro-inflammatory stress may contribute to exercise induced improvements 

in insulin sensitivity.  Conversely in PROJECT #3 neither an acute session of low-intensity 

exercise nor low-intensity exercise training relieved markers of adipose tissue, systemic, or 

skeletal muscle pro-inflammatory stress.  Additionally we did not see changes in accumulation of 

IMTG or DAG within skeletal muscle.  As noted above, it is possible that the exercise stimulus in 

PROJECT #3 may not have been sufficient to induce these changes.   

 

A better understanding of the cardiometabolic health benefits associated with acute and habitual 

exercise training has certainly been gained from the results of these dissertation projects.  However, 

questions still remain.  Due to the cross-sectional study design of PROJECT #1 we cannot 

determine causality between the inverse relationship in habitual physical activity level and insulin 

resistance.  It is possible that the persistent effect of regular exercise training on insulin sensitivity 

observed in PROJECT #2 was, at least in part, due to the physiologic adaptations associated with 

enhanced VO2max.  However in PROJECT #3, clinically relevant improvements in indices of 

insulin sensitivity and blood cholesterol were apparent after just two weeks and three months, 

respectively of a mild exercise training program that did not result in a significant increase in 
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VO2max.  Therefore, although significant improvements in key health outcome measures were 

observed with exercise training in the absence of improved VO2max, it cannot definitively be 

determined whether enhanced insulin sensitivity following exercise training is independent of 

physiologic adaptations leading to increased VO2max.  Finally although reductions in pro-

inflammatory cytokine IL-1 was associated with enhanced insulin sensitivity in PROJECT #2, it 

is not clear that this relationship is casual, and/or if other inflammatory markers and pathways may 

be impacted more profoundly by exercise and exercise training. 

 

In summary my dissertation projects support our current understanding that important 

improvements in metabolic health can be derived from a single session of exercise in 

overweight/obese adults given a “sufficient” exercise stimulus.  These studies also support the 

notion that exercise induced reductions in pro-inflammatory stress may be a key mediators in 

exercise induced improvements in insulin sensitivity.  Notably these studies assert the importance 

of regular exercise in combating the physiologic consequences of obesity.  Importantly I have 

shown that persistent improvements in insulin sensitivity and blood cholesterol can be derived 

from regular exercise in overweight/obese adults.  Finally, these studies confirm that clinically 

meaningful improvements in health can be achieved in the absence of increase in VO2max.  

Together, these findings can help inform the development of more effective exercise/lifestyle 

strategies with the objective of reducing cardiometabolic risk factors in overweight and obese 

adults. 
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APPENDIX 1 

Additional Analyses for PROJECT #1 (Chapter 3): 

Multiple linear regression analysis examining the independent associations of physical 

activity and cardiorespiratory fitness on some key cardiorespiratory disease risk factors 

In my dissertation proposal, I indicated that I would examine the independent associations of 

objectively measured physical activity and cardiorespiratory fitness on insulin sensitivity as well 

as other measures of metabolic and cardiovascular health (i.e., mean arterial pressure, plasma 

cholesterol, and c-reactive protein (CRP).  In Chapter 3 of my dissertation, I have provided the 

manuscript from this study that was very recently accepted for publication (5).  In the process of 

revising this manuscript for publication we were asked to simplify the scope of the project and 

only focus on the independent associations between physical activity and cardiorespiratory fitness 

and insulin sensitivity.  As a result, findings for the other outcome measures I proposed were not 

include in the manuscript (and do not appear in Chapter 3 of my dissertation).  I have included 

these data here.  

 

Methods summary 

Additional multiple linear regressions were performed with mean arterial pressure (Model 1), total 

cholesterol (Model 2), and log c-reactive protein (Model 3) as the dependent variable.  C-reactive 

protein was transformed using the log function to correct for the skewed distribution.  Minutes of 

MVPA and VO2max were the primary predictor variables. Appropriate confounding variables 

including: adiposity, sex, and age were also included in our complete model. 

 

Results 

The cohort of participants used for this analysis was identical to those used in Chapter 3 and 

participant characteristics were previously presented (Chapter 3, Table 3-1).  In our complete 

models for mean arterial pressure (MAP; Model 1), total cholesterol (Total-C; Model 2), and log 

c-reactive protein (log CRP; Model 3), that included predicting (cardiorespiratory fitness and 
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MVPA) confounding variables (body fat percentage, age and sex), neither cardiorespiratory fitness 

nor MVPA were significantly correlated with MAP, Total-C, or log CRP. Our analysis did not 

show any evidence of moderation when stratified by sex (data not shown). 

 

Discussion 

In this additional analysis we found that neither cardiorespiratory fitness nor MVPA were 

significantly associated with MAP, Total-C, or CRP.  These findings were in line with our 

observation in PROJECT #2 that blood pressure, blood lipids, and markers of systemic 

inflammation were similar between sedentary and regular exercising overweight but otherwise 

healthy (i.e., no signs of hypertension or dyslipidemia) adults.  Conversely in PROJECT #3 we 

found that adapting a mild exercise training program resulted in significant reductions in Total-C 

driven by a reduction in low-density lipoprotein cholesterol (LDL-C) among previously sedentary 

but obese adults.  Although participants in PROJECT #3 were also otherwise healthy they did 

show less than “ideal” LDL-C.  As previously discussed, reductions in markers of cardiometabolic 

disease risk following exercise training are typically quite modest in the absence of weight loss (3, 

4) but slightly more robust in individuals with additional increased risk due to diagnosed 

dyslipidemia and/or hypertension (1, 2).  Importantly this regression analysis was limited to 

healthy adults between the ages of 18-45 with no history of diabetes (or taking medication to treat 

diabetes), cardiovascular or renal disease, stroke or emphysema.  Therefore, in line with findings 

from PROJECT #2 and PROJECT #3 the fact that we did not detect a significant association 

between either of our predictor (e.g., cardiorespiratory fitness and MVPA) and outcome variables 

(e.g., MAP, Total-C, and CRP) may be reflective of cohort of healthy participants used in this 

analysis.   
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Appendix 1 Table A. Linear regression models predicting mean arterial pressure, 

cholesterol, and c-reactive protein 

Beta 

(P-value) 

Model 1 

(MAP) 

Model 2 

(Total-C) 

Model 3 

(log CRP) 

Physical Activity (30 min of MVPAa) -1.0395 4.4493 -0.1549 

(0.201) (0.292) (0.075) 

Estimated VO2 Maxb (ml/kg/min) -0.1099 -0.2438 -0.0063 

(0.142) (0.363) (0.499) 

Body Fat  (%) 0.1952 0.9230 0.0892 

(0.013) (0.046) (<0.001) 

Age (yrs.) 0.3465 1.2211 -0.0026 

(<0.001) (<0.001) (0.767) 

Sex Male = 1; Female = 0 -8.418 -10.1801 -0.6608 

(<0.001) (0.025) (0.001) 

Adjusted r 2 0.238 0.140 0.257 

For all models n=402.  a moderate-to-vigorous physical activity b maximal oxygen consumption 
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APPENDIX 2 

Physical Activity Questionnaire 

 

Subject ID:     Date:   Protocol:  

How often do you 

participate in the 

following activities? 

Exercise Frequncy during the week 

None 

Minutes Hours 

<15  15-30 30-45 45-60 1-1.5 2 to 3 4 to 6 7 to 10 More than 11 

Walking                     

Jogging                     

Running                     

Biking                     

Stationary Bike                     

Swimming                     

Tennis, raquetball                     

Basketball                     

Dancing                     

Rock Climbing                     

Hiking                     

Gymnastics                     

Gardening, house work                     

Skiing, skating                     

Martial arts                     

Weight Lifting                     

Football                     

Soccer                     

Aerobics                     

Rowing                     

Yoga, pilates                     

Eliptical                     

Other:                     

Please Describe other activity here                 
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APPENDIX 3 

 

Skeletal muscle lipid analysis 

 

Skeletal Muscle Diacylglycerol and Triacylglycerol: Purification by Solid Phase Extraction, Thin 

Layer Chromatography, Gas Chromatography & Mass Spectrometry 

 

A. Preparation of Total Muscle Lipid Extract1 

 

1) Pre-weighed frozen muscle (~30 mg) rapidly homogenized in a ground-glass 

homogenizer (room temp) containing: 

a) 0.5 ml chlororform (CHCl3) + butylhydroxytoluene (BHT)2 (10 µg/ml) + internal 

lipid standards3 

b) 1.0 ml methanol (MeOH) 

c) 0.4 ml 0.9% NaCl (saline) 

 

2) Homogenate transferred to 16x125 mm extraction tube using a Pasteur pipet; save 

pipet 

 

3) Homogenizer rinsed twice with 1.9 ml volumes of the solvent mix [CHCl3 + BHT] + 

MeOH + saline (1:2:0.8); rinses added to extraction tube with saved pipet 

 

4) Capped tube vortexed gently 1.5h at room temp → lipids extracted into ~5.7 ml of a 

single phase solvent mix 

 

B. Isolation of the Lipid Phase 

  

1) After room temp incubation, the following added in this sequence (with vortexing): 

1st:  1.5 ml [CHCl3 + BHT] 

2nd:  1.5 ml saline 

 

Notes:  CHCl3 addition before saline improves yield
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CHCl3:MeOH:saline ratio changes to 1:1:0.9, forming a two-phase system 

with lipid-containing CHCl3 as the lower phase (3.0 ml) 

 

2) Tube centrifuged at ~2,300 x g for 10 min at room temp to sharpen interface 

 

3) Upper phase + precipitated protein at interface removed by aspiration 

 

4) Lipid phase transferred to clean tube and dried in speed-vac w/o heat 

 

Note: avoid excessive drying time; tube in moving rotor warms after solvent 

evaporates, even under partial vacuum and without heating the chamber 

 

C. Lipid Application to Bulk Silica  

 

1) 3.0 ml of 15% ethyl acetate (EtOAc) in hexane added to the lipid residue to dissolve 

diacylglycerol (DAG), triacylglycerol (TAG) and other lipids of progressively lower 

polarity; tube vortexed 30 sec 

 

Notes: monoacylglycerol (MAG) is minimally soluble in 15% EtOAc/hexane, 

and phospholipid (PL) is very poorly soluble 

some MAG and PL will remain bound to the glass surface of the tube 

 

2) Solution transferred to extraction tube containing 500 mg normal phase silica4; tube 

vortexed and dried 

 

D. Extraction and Removal of Cholesteryl Esters 

 

1) 5.0 ml of 0.25% EtOAc/hexane added and tube vortexed 2 min 

 

2) Tube centrifuged to compact silica; supernatant containing cholesteryl esters (CE) 

removed 

 

3) Silica rinsed with another 5.0 ml volume of 0.25% EtOAc/hexane as above 
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E. Extraction of an Enriched [DAG+TAG] Fraction 

 

1) Steps in section D again performed, except using 15% EtOAc/hexane to extract 

mainly DAG and TAG 

 

2) Supernatants (10 ml) combined, dried and stored at -20°C 

 

Note:  MAG and PL that transfer (see section C) are largely retained in the silica 

during this [DAG+TAG] extraction 

 

F. Purification of DAG and TAG by Thin Layer Chromatography (TLC)5 

 

1) Plate Preparation: 

a) 19-channel, normal phase TLC plates with preadsorbent sample streaking area6 

heated at 130°C for 30 min in GC oven to remove residual water vapor 

b) Plates cooled to room temp, then run in MeOH in TLC chamber until solvent 

front reaches top of plates 

c) Plates air-dried in fume hood and stored in an air-tight container with desiccant 

until sample application 

 

2) Sample Application: 

a) [DAG+TAG] residue reconstituted in 35 µl 15% EtOAc/hexane; the entire 

recoverable volume was streaked in a channel loading area 

b) Second  35 µl vol added to sample tube, and this streaked in a second channel 

adjacent to the first 

c) Mix of the internal standard lipids streaked in separate channels 

d) Streaks air-dried thoroughly by placing plate atop GC oven (warm surface) 

 

3) TLC Run: 

a) TLC chamber equilibrated with solvent mixture for 1h 

solvent mix = hexane + diethyl ether + glacial acetic acid (70:30:1) 

b) After chamber equilibration, solvent depth adjusted to ~3 mm 

c) Plates placed in chamber rack, and rack then inserted into chamber to start run 

d) TLC ended when solvent front reached 1.5 cm from plate tops by removing rack 

from chamber 

e) Plates thoroughly air-dried in fume hood, then carefully wrapped in aluminum foil 

and stored in a freezer bag at -20°C until lipid recovery step 

 

G. Lipid Recovery, Alkaline Methanolysis and GCMSD: done first with TLC channels 

having lipid standards only → information used for muscle lipid quantification 
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1) Internal Lipid Standard Recovery: 

a) In a standard channel, fifteen 1 cm-silica segments collected above the loading 

area; upper 2.5 cm of the loading area (streak zone) also obtained; scraping done 

with a vacuum-assisted collection device 

b) Silica samples transferred to 16x100 mm extraction tubes and stored at -20°C 

 

2) Alkaline Methanolysis7 of Internal Standards: 

a) 1.0 ml 15% EtOAc/hexane added to silica; tube vortexed 30 sec and centrifuged; 

50 µl supernatant transferred to a 12x75 mm tube and dried 

b) 250 µl 0.6N sodium hydroxide (NaOH) in MeOH added to dried residue; tube 

vortexed and incubated at room temp for 30 min 

 

Note: during this incubation fatty acids convert from glyceryl or 

cholesteryl esters to methyl esters 

 

c) Reaction stopped by addition of 500 µl 1.0M sodium acetate (NaOAc) buffer, 

pH4.75 

d) FAMES extracted into 1 ml hexane; tube vortexed after hexane addition and then 

centrifuged; hexane w/FAMES (upper phase) transferred to clean tube and dried 

 

3) Gas Chromatography & Electron-Impact Mass Spectrometry8: 

a) FAME residue dissolved in 50 µl heptane and transferred to analyzer vial insert 

b) 1 or 2 µl injected into GCMS; selected ions monitored (typically ions 74, 79 and 

molecular) at retention times for individual FAMES 

c) Channel location and purity of DAG, TAG and other lipid standards determined 

 

4) Muscle DAG and TAG Recovery and Processing: 

a) Internal std-determined channel sections (~2.5 cm) for muscle DAG or TAG 

collected as above; same sections pooled from the two channels used per sample 

b) Alkaline methanolysis performed as above, except the entire DAG sample used; 

0.25 ml (from 1 ml) of the TAG sample used 

c) GCMSD as above 

 

H. Basic Calculations 

 

1) FAME ion peak area values corrected for background using assay blanks: 

a) Blank 1 = w/o muscle, w/ internal stds → for endogenous FA corrections 

b) Blank 2 = w/o muscle, w/o internal stds → for internal std corrections 
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2) Conversion of ion peak areas  to “picomoles injected” for each FA species measured, 

using individual FAME standard curves 

 

3) Conversion of “pmol FA injected” to “nmol lipid-derived FA / sample” by dividing 

the pmol value by the fractional recovery of the internal std-derived FAME 

(C15:0ME for DAG, C17:1ME for TAG), and then dividing by 1000 (pmol to nmol) 

 

4) Calculation of nmol DAG (or TAG) / mg muscle wet weight = summed nmol DAG 

(or TAG)-derived fatty acids / 2 (or 3) / mg wet wt 

 

5) Calculation of FA profile for DAG or TAG = nmol each FA / sum x 100 

 

Superscript 

1. Lipid extraction adapted from: 

a) Bligh EG and WJ Dyer.  A rapid method of total lipid extraction and purification.  

Can J Biochem Physiol 8: 911-917, 1959. (primary reference) 

b) Tepper AD and WJ Van Blitterswijk.  Ceramide mass analysis by normal-phase high-

performance liquid chromatography.  Methods Enzymol 312: 16-22, 2000. 

(secondary reference) 

 

2. BHT (Sigma) = 3,5-Di-tert-butyl-4-hydroxytoluene 

Acts as an anti-oxidant; protects  unsaturated lipids from oxidative rancidification 

 

3. Internal lipid standards added to homogenizer in 0.5 ml CHCl3: 

a) Cholesteryl tridecanoate (Nu-Chek) [C13:0]-CE  10.0 nmol 

b) Dipentadecanoin (Nu-Chek)  [C15:0]2-DAG  10.0 nmol 

c) Heptadecanoic acid (Nu-Chek)  [C17:0]-NEFA 20.0 nmol 

d) Triheptadecenoin (Nu-Chek)  [C17:1]3-TAG  16.0 nmol 

e) Monononadecanoin (Nu-Chek)  [C19:0]-MAG  12.0 nmol 

f) Dinonadecenoin (Nu-Chek)  [C19:1]2-DAG 20.0 nmol 

g) 1,2-Diheneicosanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids) 

[C21:0]2-PC  16.0 nmol 

h) Tritricosanoin (Nu-Chek)   [C23:0]3-TAG  2.0 nmol 

 

4. Silica = Supelclean LC-SI (Supelco) 
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5. TLC adapted from: 

Kaluzny MA, Duncan LA, Merritt MV and DE Eppse.  Rapid separation of lipid classes 

in high yield and purity using bonded phase columns.  J Lipid Res 26: 135-140, 1985. 

 

6. Whatman Linear-K Preadsorbent TLC plate, 60A pore diameter 

 

7. Alkaline methanolysis adapted from: 

Bodennec J, Brichon G, Zwingelstein G and J Portoukalian.  Purification of sphingolipid 

classes by solid-phase extraction with aminopropyl and weak cation exchanger columns.  

Methods Enzymol 312: 101-114, 2000. 

 

8. GCMSD equipment and major method aspects: 

a) Agilent 6890A gas chromatograph w/autoanalyzer tray and injector tower 

b) Agilent 5973N mass spectrometer 

c) Restek FAMEWAX GC column, 30 meter, 0.25 mm ID, 0.25 µm film thickness, 

crossbonded polyethylene glycol film 

d) Helium carrier gas, 1.0 ml/min 

e) Pulsed splitless injection (generally 1 µl) 

f) Initial oven temp = 130°C, hold 1 min 

Ramp = 10°C/min 

Final temp = 240°C, hold 10 min 
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APPENDIX 4 

 

Exercise adherence data 

 

 1EX 2WKS 3M 

Subject 

ID 

Exercise 

Intensity 

(%HR 

max) 

Compliance 

Exercise 

Intensity 

(%HR 

max) 

Compliance 

Exercise 

Intensity 

(%HR 

max) 

Weeks of 

Training 

before Visit 

#4 

PA1 62.0% 100.0% 61.0% 95.8% 66.5% 12 

PA2 61.0% 100.0% 61.1% 100.0% 61.9% 12 

PA3 62.0% 91.7% 63.7% 77.8% 62.0% 12 

PA4 63.0% 83.3% 60.6% 90.5% 59.9% 14 

PA8 61.0% 108.3% 61.0% 98.5% 60.5% 11 

PA9 66.0% 100.0% 61.1% 93.6% 60.5% 13 

PA11 63.0% 100.0% 62.1% 94.4% 61.6% 12 

PA12 62.0% 100.0% 62.5% 87.8% 59.8% 14 

PA13 62.0% 108.3% 61.0% 86.8% 60.4% 13 

PA15 63.6% 100.0% 61.5%    

       

Average 62.6% 99.2% 61.5% 91.7% 61.5% 12.56 

SD 1.5% 7.3% 1.0% 6.9% 2.0% 1.01 

SE 0.5% 2.3% 0.3% 2.3% 0.7% 0.34 

 

 

 

 


