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Abstract 

	
  

Silicon(Si) accounts for more than ~ 90 % of solar cell market due to its advantages 

of  earth abundance, good reliability, performance, and a wealth of Si materials 

processing knowledge.  However, as the photovoltaic industry matures, there have been 

more demands on lowering the cost of solar cells, which is mainly dominated by the cost 

of starting materials. Currently two major approaches are pursued to reduce the cost of 

Si- based solar cells per watt: the adoption of low-cost silicon such as metallurgical-grade 

(MG) Si or upgraded metallurgical-grade (UMG) Si, and reducing the usage of Si by 

producing ultrathin solar modules. UMG-Si is generally obtained by special heat 

treatment of MG- Si and is a much cost–efficient material compared to the solar-grade Si. 

However, UMG-Si contains high level of various metal impurities and defects which 

leads to diminished diffusion length and poor performance.  Therefore, in order to 

achieve efficient photo-generated charge collection from a p-n junction made from low 

quality Si, the thickness of the solar cell should be within the diffusion length, 

particularly less than ~ 20 µm for the application of UMG-Si. Si thickness in this range 

does not allow sufficient light absorption and thus, designing of the structure of ultrathin 

solar cells to have optically thick active layer, so that the light absorbance can be 

improved, becomes very important. 

Strategies to enhance optical absorbance in the solar cells include dielectric-anti 

reflection coating, surface texturing and exploitation of surface plasmon resonance. 



 xvii 

Among them, the surface plasmon resonance, which is the collective oscillation of 

conduction electrons stimulated by incident light at the interface between a metallic (Ag, 

Au, Pt) nanostructure and a dielectric, has been an emerging method for achieving the 

light trapping in ultrathin Si solar cells.  

This thesis presents ultrathin Si solar cells generated from UMG-Si wafers 

incorporating combinations of nanostructures that enable use of surface plasmon 

resonance, light scattering feature, and anti-reflection layers. Detailed studies of electrical 

and optical properties of the resulting solar cells provide useful design considerations for 

future MG-Si based and any classes of solar cell systems. 
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Chapter 1  

Introduction 

	
  

1.1 Low cost Si for Solar Cells 
	
  

 Solar Energy Utilization 1.1.1
	
  

Exploitation of clean renewable energy resources has attracted great interest due to 

limited supply of fossil fuels and efforts to reduce greenhouse gas emission. Among 

various renewable energy resources, solar energy is considered the most promising 

source as it provides 1017W of energy to the earth. This is more energy in one hour 

striking the earth than all of the energy currently consumed by humans in an entire year. 

However, currently less than 0.1% of the worldwide energy usage is being covered by 

solar energy due to the high cost of solar electricity (0.25 ~ 0.5 $/kWh) compared to the 

fossil based electricity [1, 2]. To harness the solar energy as our primary source, sunlight 

should be captured, converted, and stored in a cost-effective way. A Solar Cell is a device 

that enables capturing and converting the solar energy and has been extensively studied 

since 1950s [3]. The cost of electricity generated from solar cells need to be further 

reduced than current level for widespread adoption of solar energy and researches in this 

field are aimed at reducing the solar cell’s cost which is mainly governed by the cost 

starting material and processing.  



 2 

 Various materials such as organics [4-8], thin films (CdTe, CIGS, amorphous-Si) 

[9-16], compound semiconductors [17-21] have been studied for solar cell applications. 

Nonetheless, Si remains the dominant choice for solar cell material [22-24]. Advantages 

of Si include its bandgap of 1.1eV, which is close to the optimum level (1.4eV) for 

photovoltaic conversion, earth abundance, excellent reliability, and wealth knowledge 

background in microelectronics based on monocrystalline Si. The theoretical conversion 

efficiency of a single bandgap Si solar cell, so called detailed balance limit [25], is 31% 

and the highest recorded efficiency based on monocrystalline Si solar cells fabricated 

from laboratory have reached ~ 25%, obtained by the PERL cell developed at the 

University of New South Wales [26]. 

Currently, polycrystalline Si wafer (99.99999%) is the most widely used material 

for Si solar cell production [27]. Around 30% of cost of Si-based solar module is the cost 

of polycrystalline Si wafers due to the complexities is purifying Si[28, 29]. Simplifying 

the purification procedures and using low-quality Si can reduce the cost of resulting Si 

solar module. 

 Silicon Preparation for Solar Cells 1.1.2
	
  

Process of producing Si wafers involves extraction, purification, crystallization 

and sawing procedures. In nature, Si is generally found in a form of silica (SiO2) or 

silicates. Extracting Si starts with annealing these sources in electric arc furnaces where 

the temperature reaches higher than 2000°C [30]. The reactions occur in this step are: 

                                    SiO! +   2C   →   Si  + 2CO!                                             (1.1) 

                                SiO!   +   2C  + O!   →   Si  + 2CO!                                       (1.2) 
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The Si obtained in this step is called, metallurgical-grade (MG) Si and the purity level is 

98~99%, which is not suitable for solar cells or other electronics. As the MG-Si 

undergoes more directional solidification (generally twice), metal impurities can be 

significantly reduced. However, some elements with high segregation coefficients, such 

as boron (B), phosphorous (P) and aluminum (Al) cannot be easily removed [31]. 

Moreover, these elements act as dopants in Si and their amount should be reduced or 

controlled so that the electrical properties of the resulting Si can be identified. Having 

MG-Si react with hydrogen chloride (HCl) gas to form volatile chlorosilanes including 

trichlorosilane (SiHCl3), followed by distillation and pyrolysis reduction reaction produce 

fine grain solar-grade polycrystalline Si with much lower dopant impurities [30, 31]. This 

process of purification is called Siemens method.  The possible reactions during the 

process are as follow. 

                                                  Si  +   3HCl   → SiHCl!   +   H!                                       (1.3)                      

                                                2SiHCl!   → Si  +   HCl  + SiCl!                                       (1.4) 

The polycrystalline Si obtained from repeating above process is composed of fine grains 

and grain boundaries whose purity is ~7N. The polycrystalline Si can become 

monocrystalline Si as it goes through crystallization step by employing Czochralski 

method, however this process makes Si expensive and such high quality Si is not 

necessarily required for solar cell production. Moreover, Siemens method of purifying 

MG-Si has been already considered expensive due to the complex process and it also lays 

possibilities of losing chlorinated gases in the atmosphere which can be severe 

environmental problem. 
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  Current solar cell research is turning attention to exploitation of cheaper starting 

materials than polycrystalline Si such as amorphous thin film Si or upgraded 

metallurgical grade Si (UMG-Si) [32-34]. UMG-Si, which requires much simple 

purification process, is generally produced by purifying MG-Si without chlorine but 

annealing and crystallizing with a special temperature treatment during casting of the 

ingots [30]. It costs approximately $10/kg, which makes it almost 5-10 times less 

expensive than polycrystalline Si [35]. The main disadvantage of using UMG-Si for 

solar cells is the high impurity level (~ 5N) of the material which leads to decreased 

minority carrier diffusion length and thus diminished device efficiency.  Hence, in order 

to utilize UMG-Si for solar cells, small physical thickness of the overall device that 

allows shorter pathway from metallurgical p-n junction to the electrode or other 

innovative device designs such as radial p-n junctions [36, 37] are required for efficient 

carrier collection.  

	
  

1.2     Solar Cell Operation Physics 
	
  

 Photocurrent and Quantum Efficiency 1.2.1
	
  

In order to evaluate optical absorbance, reflectance and performance of a solar 

cell, the spectral distribution of incident solar flux should be known. The solar irradiances 

vary due to seasonal and daily variations, the position of the sun with respect to the Earth, 

and the condition of the atmosphere. For convenience, a reference solar spectrum is 

required. The standard terrestrial solar spectrum is defined as the Air Mass 1.5 (AM 1.5) 

spectrum which represents an average atmospheric attenuation due to incident sunlight 
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arriving from varying angles throughout the day.  The AM 1.5 spectrum has an irradiance 

of 853W/m2 for direct or 1000W/m2 for direct and diffuse light. The most widely used 

reference solar cell device simulation is the AM 1.5 spectrum that includes both direct 

and diffuse which is shown in Fig. 1.1 [38]. 

 

Figure 1.1 Spectral distribution of AM 1.5 provided from NREL [38]. 

	
  

Photocurrent from a solar cell results from the net absorbed flux due to the sun. 

Current density measured from a solar cell when light is present without load, is short 

circuit current density. If we assume that each electron has a probability ηc(E) of being 

collected, the short circuit current density (JSC) can be calculated from the below 

equation. 

                                          J!" = q η! E 1− R E a E b! E dE!
!                        (1.5) 

Where a(E) is absorbance, R(E) is reflectance, and bS(E)  is solar photon fluxof a photon 

of energy E. A solar cell’s external quantum efficiency (EQE) at E is the probability that 
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an incident photon of energy E will deliver one electron to the external circuit. To put it 

simply, it is the ratio of number of electrons flowing per second in the external circuit of 

a solar cell to number of photons provided to the solar cell per second of a specific 

energy. In eq. (1.5), the term ηc(E)(1-R(E))a(E)  indicates EQE of a solar cell. Hence, 

combination of the absorption of light, separation and the collection of photogenerated 

carriers in a solar cell are reflected in the EQE. Substituting EQE to eq. (1.5) gives  

                                                 J!" = q EQE E b! E dE!
!                                            (1.6) 

If EQE is 1, which is an ideal case, it means that the cell is absorbing 100% of incident 

photons and the electron-hole pairs generated by the photons are completely being 

collected. There is another quantity called, internal quantum efficiency (IQE), which is a 

ratio of the number of charge carriers collected by a solar cell to the number of absorbed 

photons. In other words, this is the ratio of EQE to absorbance, which informs how well 

the device converts absorbed photons to external current. Hence if IQE is 100%, it 

implies that every absorbed photons result in decoupled electron-hole pairs and that all 

the photo-generated carriers contribute to photocurrent. Both EQE and IQE are useful 

parameters for evaluating the performance of a solar cell.  

  Power Output from a Solar Cell 1.2.2
	
  

Solar cell is simply a diode, which is mainly composed of a p-n junction that 

creates a special asymmetry to decouple light generated electron-hole pairs, and ohmic 

contacts to extract electric power to the outer circuit. Fig. 1.2 (a) illustrates the basic 

structure of a solar cell under illumination. When light with energy greater than the 

bandgap of the solar cell material is absorbed, electron-hole pairs are generated at various 



 7 

locations throughout the cell. The photogenerated carriers on each side of the p-n junction 

diffuse into the depletion region where they are spatially separated and driven through the 

external circuit by the built-in-potential barrier. 

When bias is applied to the cell in the dark, the built in potential barrier is reduced 

and more majority carriers are able to diffuse across the junction, and consequently there 

is now a net current of electrons from n to p and holes from p to n. The current that flows 

through the cell is combination of contributions from the minority carrier diffusion 

current, Jdiff, and the recombination current in the space charge region, Jscr. However, in 

indirect bandgap materials like Si, diffusion lengths are normally longer than the 

depletion width and very little recombination occurs in the depletion region, so Jscr is 

negligible. Jdark can be expressed as, 

J!"#$ ≈    J!"##,!  (e
!"
!!! −   1)                                         (1.7) 

This is the ideal diode equation which is also quoted for the dark current of a solar cell. 

However, in real case, several other factors can affect the diode behavior and the Jdark can 

appear as 

J!"#$   ≈    J!  (e
!"

!"!! −   1)                                          (1.8)  

Where J0 is a constant that depends on the material and m is the ideality factor[39]. In 

ideal case, m=1. In real cells, due to some recombination currents, m can be even 

greatethan 2 [40].  
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Figure 1.2 (a) Schematic of a p-n junction solar cell under illumination. 
Photogenerated carriers diffuse into the depletion region where they are swept into 
the adjacent region by the built-in-potential. (b) Generic current density (J) – 
voltage (red) and power (P) – voltage (blue) characteristics of a solar cell under 
illumination. Power density reaches maximum at Vm close to VOC. The maximum 
poer density Jm  ×	
 Vm is given by the area of the inner rechtangle (yellow). 

	
  

When a load is connected between the terminals of the illuminated cell, the overall 

current density of the cell is given by subtracting the current density that flows in the cell 

when the bias is applied in the dark (dark current) from the integrated short circuit current 

density. Overall current density at bias in ideal case, J (V) is 

J   V =    J!" −    J!  (e
!"
!!! − 1)                                    (1.9) 

As the bias (V) increases, the net current density becomes zero. The voltage when this 

occurs is open circuit voltage (VOC) and from eq (1.9), we get 

V!" =   
!!!
!
ln(!!"

!!
+   1)                                        (1.10) 

The above equation shows that photovoltage is obtained only when the forward bias is 

applied. 
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 The typical J-V characteristic of a solar cell is shown in Fig. 1.2 (b). The solar cell 

generates power when the applied bias lies between 0 and VOC. The power density from a 

solar cell is product of current density and voltage (P = JV). Fill factor (FF) is a 

parameter that tells how close the J-V characteristic of the device is to the ideal diode 

behavior. It is given by 

                                                                FF =    !!!!
!!"!!"

                                                  (1.11) 

Where Jm and Vm are current density and voltage where the power reaches maximum. 

The closer the FF to the maximum, which is unity, the better the device is considered to 

perform. In case of silicon, its maximum value is 0.88. The efficiency (η) of a solar cell is 

defined as a ratio of power at the maximum operating level (JmVm) to the power from the 

sun (Ps), 

                                                                 η =    !!!!
!!

                                             (1.12) 

If we relate the efficiency (η) with JSC, VOC, and FF,  

                                                             η =    !!"!!"!!
!!

                                             (1.13) 

As discussed in 1.2.1, the standard test condition of solar cells is the AM 1.5, an incident 

power density of 1000W/m2, and a temperature of 25⁰C. This condition is often referred 

as 1 Sun [40]. 
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1.3 Flexible Inorganic Devices Generated from Wafers 
	
  

Increase in demand for unusual properties in electronic devices, such as nano-

scale dimensions, flexibility, and transparency, has brought applications of 

unconventional materials such as nanowires [41, 42], thin films [43, 44] and organics[45, 

46] to devices and much progress in fabrication techniques. Although these materials 

have shown some promising results, uncertain reliability, poor performance compared to 

crystalline-based inorganic devices, and difficulties in assembling nanoscale features for 

large areas have been critical drawbacks in device applications. In recent years, various 

electronic devices based on ultrathin monocrystalline inorganic semiconductor (Si, GaAs, 

GaN) elements generated from wafer forms have been introduced by John Rogers’ group 

at UIUC [47-49]. The inorganic semiconductor elements created from innovative means 

of processing of wafers are called “ribbons” and they are integrated into device by lying 

on flexible supporting substrates which enables mechanical bendability to the final device 

[47]. Moreover, since the devices are based on crystalline semiconductors, they show 

comparable performance and reliability to conventional bulk form of devices.  

According to the previous works, the undercut etching which is the key procedure 

to release the ultrathin ribbons from the wafer, has been carried out by wet chemical 

anisotropic etching which is highly dependent on the orientation of the wafer [48]. Thus 

the starting material to produce the ribbons has been constrained to monocrystalline 

wafers which are expensive for solar cell application. However, by implementing proper 

isotropic dry etching, complete undercut can be achieved regardless of the orientation of 

the material. This approach can offer expanded options of starting materials to produce 

ultrathin flexible device including polycrystalline wafers. 
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Figure 1.3 (a) Schematic of a flexible electronic device composed of ribbons, 
electrodes, and polymeric supporting substrate lying on a fabric [48]. (b) An optical 
image of ultrathin flexible microscale Si elements on plasmic [49]. 

	
  

	
  

1.4 Localized Surface Plasmon Resonance 
	
  

Surface plasmon polaritons are electromagnetic excitations propagating at the 

interface between a dielectric and a conductor, usually a metal. These surface waves arise 

by the coupling of the electromagnetic field (light) to oscillations of the conductor’s 

electron plasma. Confinement of these waves to the small sphere (nanoparticle) sphere 

gives rise to resonant electromagnetic behavior and unique properties. The resonant 

behaviors of surface plasmons in metallic nanoparticles with a diameter a << λ, where λ 

is the wave length of light in the surrounding medium is called localized surface plasmon 

resonance (LSPR) [50-53]. 

 Surface Plasmon in a Single Nanoparticle 1.4.1
	
  

When a particle’s diameter size (a) is much smaller than the wavelength, below 

100 nm, and is subjected to an external optical wave, the phase of the oscillating 

electromagnetic field can be considered to be constant over the particle volume. This 
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quasistatic assumption serves well to explain the plasmonic properties in metallic 

nanoparticles [54, 55]. As illustrated in Fig. 1.4 (a), the external light’s wave displaces 

the electrons in the metal with respect to the lattice ions and hence creates buildup of 

polarization charges on the particle surface. Because these charges also attract each other, 

they act as restoring force, oscillating electrons allowing resonance to take place at a 

certain frequency. The quantum of these oscillating electrons is surface plasmon. For a 

small metallic sphere, the dipole moment (p) and the polarizability (α) formed inside its 

volume are given as  

                                         𝐩 =   4πε!ε!a!
!(!)!  !!
!(!)!!!!

                                         (1.14) 

                                             α = 4πa! !(!)!  !!
!(!)!!!!

                                               (1.15) 

where a is the diameter of the particle, εm is the dielectric constant of the medium, and 

ε(ω) is the dielectric function of the sphere. From the above equations, it is apparent that 

the polarizabiliy undergoes resonant enhancement when ε+ 2ε!  is minimum [55]. This 

relationship is called the Fröhlich condition and it reveals large dependence of the 

resonance frequency (ω) on the material of the sphere and the dielectric environment 

(εm). There have been numerous reports regarding tuning the plasmon resonance peaks by 

engineering the surrounding dielectric matrix which also supports this relationship [56-

58]. For example, Ag or Au particles with diameter a <<  λ surrounded by air, have 

resonance peaks at ~ 350 nm and ~ 480 nm respectively [59]. However, these spectral 

positions redshift when the dielectric constant of the environment increases due to the 

buildup of polarization charges on the dielectric side of the interface which screens the 

surface charges on the metal sphere and results in reduction of the restoring force. Fig. 
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1.4 (b) [60] depicts the electric field distribution when a consistent external field pointing 

right is confronting a small metal sphere. The surface charges on the particle builds 

resonantly enhanced field inside the sphere and also produces dipolar field outside the 

sphere. The strong amplification of the electric field intensity 𝐄 !can be 100 to 10,000 

times greater in magnitude than the incident electric field [61-63].   

	
  

 Enhanced Scattering of light from Nanoparticles 1.4.2
	
  

When Fröhlich condition is satisfied, resonantly enhanced polarization α also 

enhances the scattering effect by the metallic nanoparticle and light absorption in the 

nanoparticle. The cross sections for scattering (Csca) and absorption (Cabs) of a sphere of 

volume V and dielectric function ε =    ε! +   iε! are given by[53] 

Figure 1.4 (a) Polarization (electric field pattern) for TM (transverse magnetic) 
modes due to interaction of light with a small sphere. When the particle size is much 
smaller than the wavelength of the light, only dipolar mode exists. (b) The electric 
field (black arrows) from displaced electrons is greatly amplified on opposite sides 
just outside the metallic sphere. Inside the sphere, the electric field is uniform (red 
arrows) and is on the same order of magnitude as the local field just outside the 
sphere [60]. 
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                                                   C!"# =   
!!

!!
𝛼 !                                                (1.16) 

                                                  C!"#   = 𝑘Im 𝛼                                                 (1.17) 

where α is polarizability as in eq (1.15) and k is the wave number. The extinction cross 

section (Cext) of a sphere which is summation of its absorption cross section (Cabs) and 

scattering cross section (Csca) is given as 

                                                  C!"# = 9!
!
ε!
!/!V !!

!!!  !!! !!  !!!
                                    (1.18) 

The extinction cross section equation shows that its magnitude is proportional to the 

volume of the small sphere. For particles of larger dimensions whose diameter is greater 

than 100 nm, point dipole prediction is not justified because of significant phase changes 

of the driving field over the particle volume and hence, rigorous electrodynamic approach 

is required to describe the plasmonic phenomenon. In 1908, Mie developed a theory of 

the scattering and absorption of electromagnetic radiation by a sphere [64] and this Mie 

theory is still applicable. However, we will not cover this part since the diameters of the 

nanoparticles we produced are less than 50 nm and their properties can be explained by 

the point dipole model. 

The light scattering from a small metal sphere in a homogeneous medium is 

symmetric. Fig. 1.5 (a) shows 3-D surface plot of scattering pattern of a point dipole 

located at (0, 0, 0) oscillating in x direction. However when this particle is placed at the 

interface between two dielectrics, light scatters preferentially into the dielectric with 

larger permittivity. Fig. 1.5 (b) [65] shows radiation patterns of a  point dipole oriented 

parallel to the surface in air (black line) and at 20 nm above Si substrate (blue dashed 
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line). In air, the radiation of the dipole is symmetric perpendicular to the surface whereas 

near Si, most of the light is radiated into Si. This is related to high density of optical 

modes within Si compared to air. The result is higher light absorption of underlying 

material from which application of light scattering nanoparticles to the solar cells stems 

[65-71]. 

	
  

Figure 1.5 (a) 3-D surface plot of radiation pattern of a dipole located at (0, 0, 0) 
oscillating in the x direction. (b) Radiation patterns for a point dipole oriented 
parallel to the surface at a distance of 20 nm from a Si substrate (blue dashed line). 
The radiation pattern for the case of free space is shown for reference (black solid 
line) [65]. 

	
  

The geometry of a single metal nanoparticle also is one of the primary factors that 

determines the surface plasmonic resonance and scattering efficiency [61]. Fig. 1.6 (a) 

shows an example of dipolar plasmon line shapes of colloidal Ag particles of different 

shapes. Although the Ag particles in Fig. 1.6 (a)[72] are in similar volume, their different 

shapes result in different charge distribution on the metal surface and consequently the 

scattering peaks which is similar to the resonance peaks, appear at different wavelengths. 

Fig. 1.5 (b) shows scattering efficiency of Ag nanoparticles on Si with various shapes and 



 16 

sizes [59]. The scattering fraction shows that smaller nanoparticles, with their effective 

dipole moment located closer to the semiconductor layer couple a larger fraction of the 

incoming light to the underlying layer. In this study, due to ease of fabrication, nanoscale 

hemisphere on Si structure was employed for inducing plasmonically enhanced scattering. 

	
  

Figure 1.6 (a) Scattering spectra of single Ag nanoparticles of different shapes 
obtained in dark-field configurations [72]. (b) Fraction of light scattered into the 
substrate divided by total scattered power, for different sizes and shapes of Ag 
nanoparticles on Si [59].  

	
  

 Surface Plasmons in Arrays of Nanoparticles 1.4.3
	
  

 In ensembles of metal nanoparticles, additional shifts can occur due to 

electromagnetic interactions between the localized surface plasmons. For small particles 

(diameter << 100 nm), the interactions can be treated as an ensemble of interacting 

dipoles.  Depending on the interparticle spacing d, plasmon peaks can be shifted from the 

case where isolated single particle is present. When the particles are closely spaced, d <<  

λ, near-field interactions with a distance dependence of d-3 dominate [73, 74]. Taking 

account of an array of metal nanoparticles as interacting point dipoles, the direction of the 

resonance shifts for in-phase illumination can be determined by types of polarizations in 
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the nanoparticles. Fig. 1.7 illustrates that the restoring force acting on the oscillating 

electrons is either increased or decreased by charge distributions of neighboring particles 

[55]. The polarization direction in the nanoparticles depends on the polarization of the 

exciting light and either blue-shift of red-shift can occur. 

   

 

 

 

 

 

 

	
  

Besides the polarization of the incident field, interparticle distance also affects the 

shifts in resonance energy. Fig. 1.7 (a) shows arrays of 50 nm size Au nanoparticles with 

varying interparticle distance [73]. The dependence of the spectral position of the 

plasmon resonance on interparticle distance is shown in Fig. 1.7 (b) both for transverse 

and longitudinal polarization [73]. In this system, particle distance in excess of 150 nm is 

sufficient to recover the behavior of isolated particles. 

	
  

 

 

Figure 1.7 Schematic of near-field coupling between metallic nanoparticles for the 
two different polarizations. For the excitation of transverse modes, blue-shift occurs 
whereas the excitation of longitudinal modes, red-shift occurs [55]. 
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a b 
 

There have been great amount of works in investigating properties and 

applications of plasmonic resonances in metal particles, especially in photonic relevant 

applications such as chemical/biological sensing [75-79] , optical waveguides[52, 80-82], 

and surface-enhanced Raman scattering [62, 83, 84] . The pioneering work in the field of 

plasmonic enhancement in light-sensitive device was accomplished by Stuart and Hall 

who demonstrated the enhancements in photocurrent from a photodetector by distributing 

Ag nanoparticles on the surface of the device [85] . 

The field of plasmonics is also gaining huge amount of interests from solar cell 

researchers as exploitation of LSPR can be a new route to improve absorbance and 

performance of solar cells while permitting small physical thicknesses [67, 86-88]. In 

order to make use of LSPR of nanoparticle systems advantageously, nanopatterning 

technique that enables producing metallic nanoscale features is required. 

	
  

Figure 1.8 (a) SEM image of arrays of closely spaced Au nanoparticles and (b) 
dependence of the spectral position of the dipole plasmon resonance on interparticle 
spacing. The dotted lines show a fit to the d-3 of the coupling [73]. 
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1.5 Nanopatterning Techniques 
	
  

Conventional lithography techniques include photolithography and maskless 

scanning-beam based techniques such as electron beam lithography or focused ion beam 

lithography. However the resolution from employing photolithography which is limited 

by diffraction cannot be scaled below ~ 500 nm ranges. Scanning-beam techniques yield 

sub 50 nm scale patterns but require long exposure time and high cost. To overcome 

these drawbacks, numerous unconventional nanopatterning techniques which allow 

fabrication of nanoscale features with periodic sizes and shapes have been developed. In 

this section, nanoimprinting lithography and block copolymer self-assembly which can 

bring high-throughput and low-cost is demonstrated. 

1.5.1 Nanoimprinting 
	
  

Nanoimprinting is a simple process that is basically divided into two steps as shown 

in Fig. 1.9 (a) [89]. The first step is the imprinting step in which a mold with nanopatterns 

on its surface is pressed into a thin resist cast on a substrate with proper pressure, 

temperature, and pressing time. The resultant topography on the resist is an inverse image 

of the original mold as shown in Fig. 1.9 (b) [90] . The second step is the pattern transfer 

where an isotropic dry etching process, such as reactive ion etching is employed to 

remove the residual resist in the compressed area. Since this lithography process does not 

use any energetic beams, the resolution is not limited by the effects of wave diffraction, 

scattering and interference in the resist and therefore ultrahigh resolution can be obtained 

without much difficulty. The mold used in the imprint lithography is generally made by 

using a high-resolution but low- throughput lithography which lays issues of mold 

fabrication costs. 
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1.5.2 Block Copolymer Self Assembly 
	
  

 Block Copolymer is composed of two or more chemically distinct polymer 

blocks, which are covalently bonded together to form a larger, more complex 

macromolecule. Fig. 1.10 (a) depicts a schematic of diblock copolymers containing two 

different blocks, A and B [91]. Diblock copolymers spontaneously self-assemble into 

microphase-separated nanometer-sized domains (10 nm ~ 50 nm) that exhibit ordered 

morphologies due to connectivity constraints and incompatibility between the two blocks 

[92, 93]. Self-assembly of block copolymers have been extensively studied from 1960s 

and applications of this property to obtain block copolymer thin films with various 

morphologies have been proposed from 1995 [94-96].  

 In a given diblock copolymer bulk system, the resulting morphology is strongly 

determined by the composition. As shown in Fig. 1.10 (b) [91], the variety of 

morphologies include spheres (S), cylinders (C), bicontinuous gyroids (G), lamellae (L), 

Figure 1.9 (a) Schematic of nanoimprint process: (1) imprinting to form thickness 
contrast in resist, (2) mold removal, and (3) pattern transfer via reactive ion etching 
(RIE) [89]. (b) SEM images of a nanoimprinting mold (stamp) and replicated 
morphology [90]. 
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and etc. There are three parameters that influence the phase separation of the diblock 

copolymers [91, 93]: (1) the volume fractions of A and B blocks (fA + fB= 1), (2) the total 

degree of polymerization (N = NA + NB), and (3) the Flory–Huggins parameter (χAB), 

which indicates the degree of incompatibility between the A and B blocks. The Flory -

Huggins parameter is related to enthalpic contribution for phase separation. In binary 

phase system the enthalpy change as a result of mixing A and B is 

                                                       ∆H! =   k!T𝑁!𝑓!𝜒!"                                           (1.19) 

The total free energy of mixing A and B is  

                                    ΔG! =   k!T     
!!
!!
ln 𝑓! + !!

!!
ln 𝑓! +   𝑓!𝑓!𝜒!"                      (1.20) 

When the ΔGm is greater than 0, phase separation is thermodynamically stable. The 

theoretical phase diagram shown in Fig. 1.10 (c) [91] reflects the relationships between 

the morphologies and three parameters. The degree of microphase separation of diblock 

copolymers depends on the segregation product, χN, which reflects segregation strength 

of the constituents. The incompatibility between the constituent polymers decreases as 

the temperature of the environment increases or χN decreases. As this condition 

continues, the block copolymer undergoes order-to-disorder transition and finally become 

disordered. 
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The chemical dissimilarities between the constituents of the self-assembled film 

allow selective processing of one block relative to the other [97]. Therefore, one block in 

a blended film can be chosen for specific application [98, 99]. For example, in PS 

(Polystryrene)-b-PMMA (Poly methyl methacrylate) diblock copolymer system, the 

blend can self-assemble into structure of hexagonally arranged PMMA cylinders in PS 

matrix on a substrate as shown in Fig. 1.11(a). The diameter of the cylinders (D) and the 

center to center distance between neighboring cylinders (L) depend on the molecular 

weight of block copolymers (M)  which is given by the following scaling law [100]: 

D, L   ∝ M
!
!                                                    (1.21) 

Therefore variations in both D and L can be achieved by adjusting the molecular weight 

of the block copolymers. As the morphology is subjected to the UV light, PMMA 

degrades whereas PS gets cross linked. And by acetic acid cleaning, the hydrophilic 

Figure 1.10 (a) Typical structure of diblock copolymer containing two types of 
blocks, A and B. (b) Various equilibrium morphologies of AB diblock copolymers in 
bulk. (c) Theoretical phase diagram of AB diblocks predicted by self-consistant 
mean-field theory, depending on the volume fraction (f) of the blocks, and the 
segregation parameter, χN, where χ is the Flory – Huggins segment – segment 
interaction energy and N is the degree of polymerization [88]. 
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PMMA comes off from the substrate while the hydrophobic PS stays and finally forms 

nanopatterned template for further applications [100-102].  

	
  

Diblock copolymer self-assembly has been considered new route to obtain 

nanoscale periodic patterned template for various applications[103].  Particularly this 

technique is attractive in the field of semiconductor fabrication due to its potential for 

replacing conventional lithography process allowing smaller dimensions, less number of 

process steps and reduced costs[104-108].   

Figure 1.11 Steps for forming nanoporous template on a substrate via diblock 
copolymer (PS - b - PMMA) self - assembly and selective processing. 
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Chapter 2  

 Properties of Upgraded Metallurgical Grade Silicon (UMG-Si) 

	
  

2.1 Introduction 
	
  

Simple p-i-n diodes were fabricated from both upgraded metallurgical grade Si 

(UMG-Si) and crystalline Si. The behaviors of these diodes at dark and under 

illumination of 1 Sun were investigated. The results were used as references for further 

comparison with the solar cells that will be introduced in the later chapters. Also the 

majority carrier mobility in the UMG-Si was obtained via Hall Effect measurement. The 

properties of UMG-Si acquired from SIMS analysis and Hall mobility revealed some 

problems that we need to overcome for utilizing UMG-Si as a solar cell material. 

	
  

2.2 Diminished Performance in UMG-Si based Diode 
	
  

2.2.1  Preparation and Electrical Measurement of UMG-Si 
based Diode 

	
  

Generally commercial solar cells have properly textured surface, anti-reflection 

layer to maximize the light absorption and point contacts on both sides of p and n (top 

and bottom) to minimize the series resistance in addition to a bulk p-i-n junction. 

However, the reference cells we introduce in this chapter leave out all those features and 

are simply composed of bulk p-i-n junction and Al metallization layer. Therefore these 
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cells are not competing with the commercial Si-based solar cells in terms of the 

performance. The schematic of the structure of the cells under investigation is shown in 

Fig. 2.1. 

The process of making the UMG Si based p-i-n junction cell starts with polishing 

both sides of UMG-Si wafer with chemical mechanical polisher (CMP IPEC 472). Then 

the top and the bottom surfaces were doped with phosphorous and boron respectively 

using solid state target (PH-1000N, BN-1250, Saint Gobain) diffusing into the wafer at 

1000°C under Ar ambient for 15 min (boron) and 20 min (phosphorous) in a tube 

furnace.  Bonding Al wire on the top surface and sputtering Al on the bottom surface of 

the cell formed the front and back ohmic contacts. The crystalline Si based cell was 

fabricated in the same manner. 

 

 

 

 

 

	
  

I-V measurements of the diodes both at dark and under illumination of full 

spectrum of 1000W/m2 (1 sun) at room temperature were conducted using a d. c. source 

meter (Keithley) operated by a custom written LabVIEW and a solar simulator 

(Newport). The input power of light from the solar simulator was calibrated by a 

Figure 2.1 Schematic for the structure of the p-i-n diode (solar cell) generated from 
both UMG-Si and c-Si for comparison. To form ohmic contacts, Al film was coated 
on the backside and Al wire was bonded on the front side to simplify the fabrication 
process. 
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broadband detector (Newport) at the point where the sample’s top surface was placed to 

confirm the 1 sun illumination. I-V scan under dark and illumination were conducted 

between -0.8 V and +0.8 V with 0.01 V increment. The current density was calculated by 

dividing the output current by the area of the cell that was measured. The schematic of 

the set up for testing the solar cell is depicted in Fig. 2.2. 

 

	
  

2.2.2 Performance of UMG-Si based Diode  
	
  

Fig. 2.3 (a) shows the semi log J-V plots of UMG-Si based and crystalline Si 

based cells at dark. Since both cells had Al wire bonded to the front surface for ohmic 

contacts instead of having electrodes directly onto the surface, both cells suffer power 

loss from series resistances as the magnitude of diode ideality factor from both cells 

exceed 2. The diode ideality factor of crystalline Si based cell is 2.2 while that of UMG-

Figure 2.2 Schematic illustration of a simple I-V tester. The solar simulator provides 
light intensity of 1000W/m2 under AM 1.5 condition. 
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Si based cell is 2.8. These values show that more recombination can occur in UMG Si 

cell under illumination.  

The J-V curves of the cells under illumination are shown in Fig. 2.3 (b) and their 

characteristics are in Table 2-1. Although the cells had same structure, due to the material 

properties, UMG-Si based cell exhibits much diminished performance compared to the 

crystalline Si based cell. The energy conversion efficiency of the UMG-Si based cell is 

almost half of the efficiency of the crystalline Si based cell showing 3.77%. 

	
  

Table 2-1 J-V characteristics of UMG-Si based cell and crystalline Si based cell. 

	
  

	
  

	
  

	
  

	
  

	
  

Materials J
SC

 (mA/cm
2
)  V

OC
(V)  FF  η (%)  

c-Si  21.08         0.53 0.66 7.37 

UMG-Si 14.63 0.47  0.77 3.77  

Figure 2.3 Representative J-V curves for bulk UMG-Si based cell (blue) and crystalline 
Si based cell (red) under (a) dark condition and under (b) illumination of simulated AM 
1.5, full spectrum of 1000W/m2. 
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2.3 Majority Carrier Mobility in UMG-Si 
 

Mobility is a principal parameter in characterizing electron and hole transport due 

to drift. Mobility of majority carriers in semiconductor can be measured by using Hall 

Effect and the acquired mobility from this method is called “Hall mobility (µH)”. Hall 

Effect is due to the nature of carriers in conductors. When we consider a semiconductor 

in the presence of magnetic field and supplied with d.c. current in perpendicular direction 

from the direction of the magnetic field, the electrons shown as in Fig. 2.4 (a), the 

semiconductor material experiences force called Lorentz force. Because of this force, the 

electrons in the material are deflected upwards as illustrated in the Fig. 2.4 (a). As a 

consequence, electrons and holes accumulate on the opposite side of the subjected 

material. The separation of charge establishes an electric field which prevents further 

migration of the charges, and so a steady state voltage across the material develops as 

long as the current is supplied. 

 

 

 

 

	
  

 

Figure 2.4 (a) Schematic representation of the measurement of the Hall Effect. (b) 
A simple Van der Pauw test structure used to measure the resistance and mobility 
of a conductor. 
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By measuring the developed voltage which is called Hall voltage (VH), sheet carrier 

density and the mobility of majority carriers in the semiconductor can be calculated from 

the flowing equations. 

                                                n!     =     
!"

!   !!
                                                       (2.1) 

                                                   µμ   =    !!
!!!"

                                                         (2.2) 

where ns is sheet carrier density (= n×d) and Rs is the sheet resistance ( = r/d) of the 

measured semiconductor. For convenience in preparing for the sample, Van der Pauw 

method was used to obtain Hall coefficients. A common geometry for this measurement 

has four electrical contacts at the four corners of a roughly square sample as shown in 

Fig. 2.3 (b). A current is injected through one pair of the contacts, and the voltage is 

measured across another pair of contacts. Two of these measurements can be related by 

equations below which is also known as Van der Pauw equation. 

                                                  e!
!!!
!! +   e!

!!!
!! = 1                                       (2.3) 

where R! =
!!"
!!"

 and R! =
!!"
!!"

 respectively [109].  For the measurement of UMG-Si, the 

sample was cut into a square and the four corners were doped with boron to create ohmic 

contacts for electrical tests. The parameters in this experiment are given as below. 

- Temperature : 300K 

- B = 1240 Gauss 

- Supplied current (I) = 1mA  

- Sample thickness (Z) = 1.72 ×10-2 cm 
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The results of the resistivity measurement and Hall measurements are shown in Table 2-2 

and Table 2-3 respectively. 

Table 2-2 Measured voltage across the four pairs of corners when 1mA was supplied 
to the opposite corners. 

  I24  I34  I12  I13 

V (mV) V13_avg 22.2985 V12_avg 0.23835 V34_avg 0.2382 V24_avg 22.30085 

 

Table 2-3 Measured voltage across the two pairs of corners when 1240 Gauss was 
present in opposite directions and 1mA was supplied to I23 and I14. 

 

The resistivity of the UMG-Si wafer calculated from equation (2.4) by substituting 

measured results in Table 2-2 is 0.8683Ω-cm. 

                                  ρ   =    !!
!"#

!!"  !  !!"  !    !!"  !  !!"
!"

= 0.8683  Ω− cm                    (2.4) 

The carrier type was found p–type. The carrier concentration and the mobility were 

calculated from the below equations by substituting the results in Table 2-3. 

                                n =    !  ×!"!!!"
!
! !!   !   !! !   !!   !   !!

= 1.42  ×10!"  /cm!                   (2.5) 

                                        µμ =    !
!"!

= 50.80  cm!/V ∙ s                                      (2.6) 

 B=+ I23 B =- I23 B=+ I14 B=- I14 

I= + V14 22.0379 V14 22.1048 V23 22.1 V23 22.0383 

I = - V14 -22.036 V14 -22.1027 V23 -22.0995 V23 -22.0383 

V (mV)  V14_avg 0.0334   V23_avg 0.03095  

 Va -0.0669 Vb 0.0667 Vc 0.0617 Vd -0.0621 
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The obtained majority carrier (hole) concentration of UMG-Si is 1.42×1017/cm3 and their 

average mobility is 50.80 cm2/V·s.  In semiconductor, mobility is a measure of ease of 

carrier motion in a crystal. Therefore increase in the motion-impeding collisions within a 

crystal due to the presence of high level of impurity and defects leads to decrease in the 

mobility of carriers [39]. The general hole mobility of p-type crystalline Si wafer is 

around 400 ~ 500 cm2/V·s as in Table 2.4 [110]. However in UMG-Si, the hole mobility 

was measured to be much smaller value of ~ 50 cm2/V·s manifesting its poor material 

quality. 

Table 2-4 Comparison of physical properties of crystalline Si and upgraded 
metallurgical grade (UMG) Si, where n is the carrier concentration (hole) and µ is 
the mobility (hole). The crystalline Si data was taken from previous work [107]. 

Materials type ρ (Ω-cm) n (cm
-3
) µ (cm

2
/V·s)  

c-Si*  p  1  1.46e16 428.08 

UMG-Si  p  0.868  1.42e17  50.80  
 

2.4 Conclusion 
	
  

The examinations of the properties of the UMG-Si and the comparisons with those 

of crystalline Si were carried out. By evaluation of the diode behavior of UMG-Si based 

cells both under dark and light conditions and comparing with the crystalline Si based 

cell, higher deviation from the ideal diode characteristic and diminished photon energy 

conversion were measured from the UMG-Si based cells. 

The Hall Effect measurement of the UMG –Si allowed getting the value of 

majority carrier mobility. The hole mobility in the UMG-Si was measured almost 8 times 
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smaller than the hole mobility in normal p-type crystalline Si due to higher frequency of 

scattering in the material resulting from impurities and defects. 

From the mobility examination and the purity level analysis (SIMS, 5N), it 

becomes obvious that the minority carrier diffusion length in the UMG-Si is much 

smaller than that of crystalline Si. Despite advantage of low cost, UMG-Si is in fact not a 

good candidate for solar cell material. However, in the next chapters, attempts of 

enhancing the efficiency of the solar cell generated from UMG-Si will be introduced. The 

strategies are (1) reducing the physical thickness of the solar cell and (2) incorporating 

nanoscale features for light trapping.  
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Chapter 3  

 Ag Nanoparticles (AgNP) and Si Nanopillar Arrays (SiNA) for 

Light Trapping 

	
  

3.1 Introduction 
	
  

The solar module introduced in this chapter is based on UMG-Si and is composed 

of parallel connected, ultrathin ~17µm thick microcell arrays on flexible supporting 

substrates. The microcell arrays incorporate Ag nanoparticles (AgNP) and Si nanopillar 

arrays (SiNA) [111], which serve to enhance light absorption and increase cell efficiency 

[112].  

The Ag nanoparticles and the Si nanopillar arrays created on the solar cell’s 

surface can significantly increase the light absorption by one or more of the following 

mechanisms:  (1) LSPR at the vicinity of the metallic nanoparticles’ surfaces [50-53], (2) 

scattering of incident light at oblique angles thereby elongating the optical path-length 

[113, 114], (3) substrate-coupled Mie resonances [115], and (4) impedance matching 

caused by a tapered refractive index [114]. 

  In this chapter, methodology of creating Ag nanoparticles and Si nanopilllar 

arrays which served as field enhanceing and light scattering layer, and finally integrating 

these structures to the solar microcell module is demonstrated. The changes in the 
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electrical and optical properties in the microcells caused by the presence of the 

nanostructures are also discussed. 

	
  

3.2 Fabrication of Ag Nanoparticles and Si Nanopillar 
Arrays 

	
  

The schematic of producing Ag nanoparticles and Si nanopillar arrays on Si 

substrate is depicted in Fig. 3.1. The preparation of plasmonic Ag nanoparticles and Si 

nanopillar arrays were performed through block copolymer lithography on Si, Ag 

deposition and lift-off, followed by reactive ion etching (RIE). As discussed in chap. 1.5, 

block copolymers are self-assembling polymeric materials that provide a variety of 

periodic nanoscale morphologies having feature\e sizes ranging from 5nm to 50nm. 

Unlike other nanopatterning techniques such as focused E-beam lithography [116] or 

nanoimprint lithography [117], block copolymer self-assembly provides a high 

throughput patterning process, thereby enabling ease of scalability[97, 100, 101, 103, 

111, 118, 119]. Here, for the block copolymer lithography process, polystyrene-block-

poly methyl methacrylate (PS-b-PMMA) block copolymers were chosen and the self-

assembly yielded perpendicular domains of PMMA cylinders in PS matrix [100-102]. 

The process starts with having the Si surface exposed to UV light which results in 

formation of OH group on the Si surface followed by neutrally treating the microcells 

with a random copolymer brush. A thin film (thickness: 100 nm) of asymmetric block 

copolymers, polystyrene-block-poly(methyl methacylate)s (PS-b-PMMAs) forming 

cylindrical nanostructures (molecular weight: PS/PMMA-140k/60k, PMMA cylinder 

diameter: 34 nm, center to center distance between neighboring cylinders:  64 nm & 
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molecular weight: PS/PMMA-46k/21k, PMMA cylinder diameter: 18 nm, center to 

center distance between neighboring cylinders: 34 nm) were spin-coated onto the surface 

of the module. After high temperature annealing at 190 °C, the substrates were irradiated 

with UV and subsequently rinsed with acetic acid and water to remove PMMA cylinder 

cores and crosslink the PS matrix. The substrate was further treated in oxygen plasma for 

10s for the purpose of removing the remnant cylinder cores. The Ag thin film (5-30 nm) 

was deposited over the PS template. After the deposition process, the remaining PS 

nanoporous template was lifted-off by sonicating in toluene. Through this procedure, Ag 

nanoparticles having uniform size and arrayed following the hexagonal lattice of the 

nanotemplates were formed on the Si surface. Using the remaining Ag nanoparticles as 

an etching mask, the Si layer was etched by RIE (LAM 9400) to produce s dense Si 

nanopillar structure. The Si nanopillars formed still have Ag nanoparticles sitting on the 

top end.  

	
  	
  	
  	
  	
  	
  	
  	
  

 The UMG-Si solar cell now has the structure of Ag nanoparicle/Si nanopillar 

arrays on the surface. The diameters of the Ag nanoparticles were either 18 nm or 34 nm, 

depending on the molecular weight. The SEM image of Ag nanoparticles with 18 nm and 

Figure 3.1 Schematic illustration of creating Ag nanoparticles and Ag 
nanoparticle/Si nanopillar Arrays on Si substrate employing block copolymer 
lithography. 
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34 nm-diameters on Si are shown in Fig. 3.2 (a) and (b). In Fig 3.2 (a), defects of the 

pattern along domain boundaries are observed. Inside each domain, the pattern shows 

almost perfect periodicity as shown in the inset of Fig. 3.2 (a).  

 

	
  

Figure  3.2 SEM images of (a and b) Ag nanoparticles (D = 18 nm, D = 34nm, t = 30 
nm) prepared by block copolymer lithography on top of Si surface. The Ag fill 
fraction of 18 nm size nanoparticles is 24.4% and that of 34 nm size nanoparticles is 
24.6%. (c) Tilted SEM image of Ag nanoparticle/Si nanopillar arrays prepared by 
reactive ion etching (RIE). The prepared Ag nanoparticles (D = 34 nm, t = 30 nm) 
were used as a mask for Si etching. 
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 After formation of the nanopillars via RIE, the diameter of nanoparticles sitting 

on the nanopillars decreased slightly (to ~23nm) and this can be confirmed from the SEM 

image of Ag nanoparticle/Si nanopillar arrays shown in Fig. 3.2 (c). The height of the Si 

nanopillars was approximately 120 nm and the sidewalls of the prepared nanopillars were 

slightly tapered due to the RIE process. 

	
  

3.3 Evaluation of Optical and Electrical Enhancements 
	
  

3.3.1 External Quantum Efficiency (EQE) Measurements 
	
  

Quantum efficiency measurements were obtained with an Oriel 150 W Xe arc 

lamp (Newport) and a quarter-turn single-grating monochromator (Newport). Sample 

measurements were recorded with chopped illumination (15 Hz), and a quartz beam 

splitter was used to simultaneously record the light output intensity with a separate Si 

photodiode (Newport) to adjust for fluctuations in lamp intensity. The potential of the 

working photoelectrode was set to 0 V relative to the solution potential, and the absolute 

photocurrents were measured by a digital PAR 273 potentiostat. The output current signal 

was connected to a Stanford Instruments SR830 lock-in amplifier, and the output signals 

from the lock-in amplifier and the reference Si photo-diode were fed into a computer 

controlled by custom-written LabVIEW software. 

3.3.2 Optical Studies of Ag nanoparticles and Si Nanopillars 
	
  

For a detailed evaluation of the effects of Ag nanoparticles and Si nanopillar 

arrays, different diameters (18 nm a d 34 nm) of Ag nanoparticles and Ag nanoparticle/Si 

nanopillar arrays were prepared on 180µm thick bulk UMG-Si solar cells as introduced in 
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chap 2.2.1. Fig. 3.3 (a) shows the optical images of the five cells that were examined : (1) 

as-doped UMG-Si, (2) Ag nanoparticles (D, 18 nm; t, 30 nm) on UMG-Si, (3) Ag 

nanoparticles/ Si nanopillar arrays prepared with 18 nm Ag nanopariticles on UMG-Si, 

(4) Ag nanoparticles (D, 34 nm; t, 30 nm) on UMG-Si, and (5) Ag nanoparticles/Si 

nanopillar arrays prepared with 34 nm Ag nanoparticles on UMG-Si. The optical images 

of the prepared cells clearly show that the color of the cells gets darker with the presence 

of the Ag nanoparticles and Ag nanoparticles/Si nanopillar arrays and this implies that 

the reflectance is increasing as the nanostructures are added to the surface. For 

quantitative analysis, reflectances of these samples were measured between wavelengths 

of 300 nm – 950 nm. As illustrated in Fig. 3.3 (b) and (c), reflectance comes in two 

varieties, specular and diffusion. Specular reflectance is generated by a light ray incident 

on a smooth surface. In this case, the light ray’s incidence is equal to the angle of 

reflection. Diffuse reflectance is generated by a light ray incident on a rough surface. The 

incident light ray gives rise to multiple reflection angles. Most materials present both 

specular and diffusion reflectance. Therefore the summation of these two reflectances, 

which is the total reflectance (total = specular + diffuse), should be obtained for accurate 

result. The diffusion reflectance and specular reflectance of the five cells are shown in 

Fig. 3.3 (b) and (c) respectively and the summation of them, which is the total 

reflectance, is shown in Fig. 3.3 (d). 
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Figure 3.3 (a) Optical images, (b) diffuse reflectance, (c) specular reflectance and (d) 
total reflectance curves for the as-doped UMG-Si (black), Ag nanoparticles (D = 18 
nm, t = 30 nm) on UMG-Si (magneta), Ag nanoparticle/Si nanopillar arrays 
prepared with 18 nm Ag nanoparticles on UMG-Si (blue), Ag nanoparticles (D = 34 
nm, t = 30nm) on UMG-Si (green), and Ag nanoparticle/Si nanopillar arrays 
prepared with 34nm Ag nanoparticles on UMG-Si (red). 
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 The absorbances of the cells were calculated by assuming that the transmittance 

through 180 µm thick Si for wavelengths shorter than 950 nm is negligible since the 

thickness was thick enough not to allow the light to transmit. Therefore, the absorbance 

was obtained by simply subtracting the total reflectance from unity (α (E) = 1 – R (E) – Г 

(E), Г (E) ≈ 0). Fig. 3.4 (a) shows the calculated absorbance curves for the five cells. 

Both the 18 nm and 34 nm Ag nanoparticles increased absorbance of UMG-Si in the 

short wavelength region (~ 450 nm) and this is more clearly shown in the plot of 

absorbance difference with respect to the bare cell in Fig. 3.4 (b).  As the size of Ag 

nanoparticles becomes larger (D = 18 nm → D = 34 nm) absorbance enhancement 

becomes more pronounced. This trend is consistent with the theoretical predictions 

regarding plasmonically enhanced scattering of metal nanoparticle discussed in chapter 

1.4 [51, 73, 79, 120]. Metal particle with diameter less than 100 nm can meet point dipole 

prediction. According to the eq. (1.16), the scattering cross section of a single spherical 

metal nanoparticle is proportional to the volume of the nanoparticle. 

                                           𝐶!"# =   
!!

!!
𝛼 ! =    !!

!
𝑘!𝑎! !!!!

!!!!!

!
                                    (1.16) 

Since Ag nanoparticles on the UMG-Si have diameter of 18 nm and 34 nm, their 

plasmonic behavior can be described by the point dipole model and Fröhlich condition. 

The reason for higher absorbing intensity in 34 nm size particle relative to the 18 nm size 

particle is due to greater extinction cross section in larger particle [68]. According to 

point dipole prediction, the resonance of an Ag sphere in air occurs at wavelength of 350 

~ 400nm. However our cells exhibit maximum absorption at the wavelength of ~ 450 nm. 

These shifts can be described by change in the nanoparticles’ dielectric environment and 
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the interparticle coupling [73, 74, 120]. In our cells, the Ag nanoparticles are placed at 

the interface between Si substrate and air which can enhance scattering into Si and shift 

the resonance peaks toward the longer wavelength region. Also as discussed in chapter 

1.4, additional resonance shift can occur in ensemble of nanoparticles when the 

interparticle spacing, d is less than 100 nm.  The UMG-Si cell that with18 nm size Ag 

nanoparticles, had interparticle spacing of 18 nm whereas the cell with 34 nm size Ag 

nanoparticles had interparticle spacing of 30 nm. Since the near-field interaction strength 

shows d-3 dependence, we can infer that strong interparticle interaction took place in our 

cells and also affected the absorption intensity. Although both cells with 18 nm and 34 

nm size nanoparticles have Ag fill fractions between 24 - 25%, due to unique properties 

of LSPR, variations in size and the spacing of the particles resulted in different optical 

responses. 

 

Figure 3.4 (a) Absorbance spectra of as-doped UMG-Si (black), Ag nanoparticles (D 
= 18 nm, t = 30 nm) on UMG-Si (magneta), Ag nanoparticle/Si nanopillar arrays 
prepared with 18 nm Ag nanoparticles on UMG-Si (blue), Ag nanoparticles (D = 34 
nm, t = 30 nm) on UMG-Si (green), and Ag nanoparticle/Si nanopillar arrays 
prepared with 34 nm Ag nanoparticles on UMG-Si (red). (b) Absorbance difference 
with respect to the bare cell for 18 nm Ag nanoparticles and the 34 nm Ag 
nanoparticles cells. As the size of Ag nanoparticles increases the absorbance 
intensity became more pronounced. 
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 Unlike the LSPR effect, Si nanopillar arrays increase the absorbance across the 

entire wavelength spectrum. Especially the Ag nanoparticles/ Si nanopillar arrays 

prepared with 34nm diameter Ag nanoparticles on a UMG-Si cell showed excellent 

absorbtance of greater than 90% between wavelengths of 300 – 950 nm. This is attributed 

to the texturing effects caused by forming Si nanopillars on the cell’s surface. The 

nanopillars scatters light within the entire wavelengths of the light and increase their path 

length in the cell, which leads to enhanced absorption over a broad range of wavelength, 

from the visible to IR.  

3.3.3 Electrical Studies of Solar Cells with Ag Nanoparticles 
and Si Nanopillar Arrays 

	
  

 External quantum efficiency (EQE) measurements of the UMG-Si cells presented 

in the previous chapter were carried out in the visible and near IR (300 ~ 1100 nm of λ) 

and the plotted curves are in Fig. 3.5 (a). The EQE of the five cells showed enhancements 

in similar fashion as the absorbance enhancements. For example, at a wavelength ~ 700 

nm, the bare doped UMG-Si cells exhibits ~ 42% quantum efficiency, whereas the EQE 

of the Ag nanoparticle/Si nanopillar arrays cell prepared with 34nm Ag nanoparticles 

reaches ~ 81%. The enhanced EQE in cells with larger Ag nanoparticles and with both 

Ag nanoparticle and Si nanopillar arrays is due to enhanced absorption as the EQE is 

proportional to the absorbance.  
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 The general trend shown in EQE plots is that EQE approaches to 0 both at short 

wavelength regions (350 ~ 400 nm) and at long wavelength regions (~ 1100 nm) even 

though the absorbance spectra shows that the cell is absorbing light throughout the entire 

spectrum. The absorption loss shown here is due to the intrinsic nature of Si. Light with 

Figure 3.5 (a) External quantum efficiency, (b) internal quantum efficiency, and (c) 
J-V curves of the as doped UMG-Si (black), Ag nanoparticles (D = 18 nm, t = 30 nm) 
on UMG-Si (magenta), Ag nanoparticles/Si nanopillar arrays prepared with 18nm 
Ag nanoparticles on UMG-Si (blue), Ag nanoparticles (D = 34 nm, t = 30 nm) on 
UMG-Si (green), and Ag nanoparticles/Si nanopillar arrays prepared with 34 nm Ag 
nanoparticles on 180 µm thick UMG-Si (red). (d) Comparison of JSC acquired from 
quantum efficiency measurement and J-V measurement. 
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short wavelength is normally absorbed at the front surface of the Si where the 

recombination occurs most frequently due to the dangling bonds of Si. On the other hand, 

light with long wavelength is absorbed at the rear surface of the Si and therefore suffers 

from rear surface recombination. Also carriers created near the rear of the solar cells 

mostly fails to traverse the thickness of the cell when the material has short diffusion 

length. These trends are often showed in Si-based solar cells. 

 Since external quantum efficiency and the absorbance of the five cells were 

obtained, internal quantum efficiency that excludes the absorption contribution in the 

external quantum efficiency quantity was achieved. The internal quantum efficiency 

curves are plotted in Fig. 3.5 (b). The five curves are showing little variations as the cells 

are based on the same material (UMG-Si) and doped under the same condition. This 

clarifies that the probability of delivering photogenerated carrier to the outer circuit from 

absorbed photon is similar in all five cells.  

 Table 3-1 J-V characteristics of doped UMG-Si, Ag nanoparticles (18 nm) on UMG-
Si, Ag nanoparticle/Si nanopillar arrays prepared with 18 nm Ag nanoparticles on 
UMG-Si, Ag nanoparticles (34 nm) on UMG-Si, and Ag nanoparticle/Si nanopillar 
arrays prepared with 34 nm Ag nanoparticles. 

 

Cells  J
SC

 (mA/cm
2
) V

OC
(V) FF η (%) 

Doped UMG-Si  14.63 0.47 0.55 3.78 

AgNP, 18 nm  17.94 0.47 0.55 4.64 

AgNP/SiNA, 18 nm  23.79 0.49 0.55 6.41 

AgNP, 34 nm  21.28 0.49 0.54 5.63 

AgNP/SiNA, 34 nm  29.98 0.49 0.55 8.08 
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 The J-V curves of the cells under illumination of 1 sun are shown in Fig. 3.5 (c) 

and the detailed characteristics are in Table 3-1. The cells with larger EQE yield greater 

Jsc and increasing efficiencies of the cells are concomitant with this. Voc (~ 0.48V) and FF 

(~ 0.55) is similar for all of the cells. Jsc can be calculated from the EQE with using eq. 

(1.6), which is 

                                                 J!" = q EQE   E b! E dE!
!                                         (1.6) 

where bS(E) is the photon flux density of the solar spectrum at AM 1.5 and 1 sun. The 

calculated JSC by substituting the EQE measurement results and the AM 1.5 solar 

spectrum (downloaded from NREL) to the above equation, shows good agreement with 

the experimentally derived Jsc from J-V measurement. The comparisons are plotted in 

Fig. 3.5 (d). The good agreement between the calculated value and experimentally 

obtained values of Jsc clearly shows that the solar simulator (Newport) used for cell 

testing is providing illuminating condition that is almost same as standard 1 sun 

condition. The JSC data showed that the structure of Ag nanoparticle/Si nanopillar array 

prepared from 34 nm Ag nanoparticles increased JSC of UMG-Si cell from 14.63 to 29.98 

mA/cm2 and η from 3.78 to 8.08%. This is enhancement greater than 100%. So far, from 

various analyses, it has been clarified that optimized surface design for maximum light 

absorption among the evaluated UMG-Si based cells is the Ag nanoparticle/Si nanopillar 

arrays generated from 34 nm size Ag nanoparticles. 

 

 



 46 

3.3.4 Analysis of Individual Effects of Ag Nanoparticles and 
Si Nanopillar Arrays 

	
  

 From previous chapters, the structure of Ag Nanoparticle/Si nanopillar arrays was 

found to be more effective for the light absorption than the structure of Ag nanoparticles 

alone. However, apart from the surface structure that contains both Ag nanoparticles and 

Si nanopillars, the sole effect of Si nanopillars on UMG-Si has not been clarified yet. In 

order to identify the individual contributions of Ag nanoparicles and Si nanopillars on the 

UMG-Si cell’s efficiency, UMG-Si cell with Si nanopillar only was examined. The cell 

was prepared by acid etching the UMG-Si cell with Ag nanoparticle/Si nanopillar arrays 

(cell 5 from chapter 3.3.2) so that the Ag nanoparticles can be removed. Energy 

dispersive spectroscopy (EDS) analysis was carried out before and after the process of 

Ag nanoparticle removal to ensure Ag content. The EDS result is shown in Fig. 3.6 (a). J-

V measurements of the cell with Ag nanoparticle/Si nanopillar array and the cell with Si 

nanopillars under illumination were carried out and the details are in Fig. 3.6 (b), (c) and 

Table 3-2. After removing the Ag nanoparticles and leaving Si nanopillars only, the cell’s 

efficiency dropped by 0.9%.  

 Through this investigation, we estimate that Ag nanoparticles sitting on top of Si 

nanopillars on cell 5 contributed a 0.9% increase in the overall efficiency, while the Si 

nanopillar arrays contributed a 3.4% increase in the overall efficiency of the solar cells. 

Although, the Si nanopillars were created by etching into Si from 34nm size Ag 

nanoparticles the diameter of Ag nanoparticles shrunk down to 23 nm after the process of 

reactive ion etching. As a result, due to decreased particle volume, the LSPR effect 

declined compared to the cell with 34 nm size Ag nanoparticles.  
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To conclude, it became clear that the Si nanopillar arrays are more effective than 

Ag nanoparticles in improving the absorbance of light on the UMG-Si solar cell. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6 (a) Energy dispersive spectroscopy (EDS) and (b) J-V curves of UMG-Si 
cells before (blue) and after (red) Ag nanoparticle removal. (c) Efficiency 
enhancement of UMG-Si cells caused by Ag nanoparticles and Ag nanoparticle/Si 
nanopillar arrays. 
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Table 3-2 J-V Characteristics of UMG-Si solar cell with Ag nanoparticle/Si 
nanopillar arrays structure before and after Ag removal. 

	
  

	
  

3.3.5 Optical Modeling of Ag Nanoparicles and Si 
Nanopillar Arrays on Si 

	
  

 To further elucidate the optical effects of Ag nanoparticles and Si nanopillar 

arrays on the efficiencies of the solar cells, optical modeling of Ag nanoparticles on Si 

and Ag nanoparticles/Si nanopillar arrays on Si were conducted. The commercial Finite 

Difference Time Domain (FDTD) method provided from Lumerical was used to carry out 

the modeling. Generally FDTD simulations are being used to solve Maxwell’s equations 

in complex geometries. Under the simulated light, which is plane source of 

electromagnetic wave, in the given structure, the power absorption per unit volume (Pabs) 

can be calculated from the divergence of the Poynting vector (P) with the following 

equation. 

                                       P!"# =   −0.5  real  (∇   ∙ P)                                          (3.1) 

Here, the Poynting vector (P) represents the directional energy flux density (in W/m2) of 

an electromagnetic field. It is defined as cross product of electric field and magnetic field. 

                                                              P =   E  ×  H                                                      (3.2) 

Cells  J
SC

 (mA/cm
2
) V

OC
(V) FF η (%) 

Before AgNP etching 29.98 0.49 0.55 8.08 

After AgNP etching 27.70 0.48 0.54 7.18 
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By substituting the eq. (3.2) to eq. (3.1), the normalized power absorption (Pabs) of 

underlying Si becomes  

                                        P!"# x,ω = −0.5ω E  (x,ω) !Im  (ε!" ω )                         (3.3) 

Above equation shows that electric field intensity calculation should be obtained prior to 

calculating the normalize power absorption in Si. For the simulation of electric field 

intensity and the power absorption on the surface within the structure, the material 

properties of Ag was taken from the material database of Johnson and Christy [121], and 

that of Si was taken from the material database of Palik [122].  

  

Figure 3.7 The simulated structures of Ag nanoparticles (a, b, and c) and Ag 
nanoparticle/Si nanopillar arrays (d, e, and f) on Si substrate. The perspective 
views (a and d),  x-y plane views ( b and e), and x-z plane views (c and f) are also 
shown. The diameter and height of the Ag nanoparticles (a, b, and c) on the top of 
Si were 34 nm and 30 nm, while the diameter of Ag nanoparticles on Ag 
nanoparticles/Si nanopillars (d, e, and f) were 23 nm and 18 nm. The heights of Si 
nanopillars were 120 nm. 



 50 

 The dimensions and the layout of the structures were set to be the same with the 

actual device (diameter = 34 nm, t = 30 nm, h = 120 nm). The dimensions of the 

rectangular Si substrate were set to be 300 nm by 300 nm with a thickness of 10 µm. The 

incident light is propagating along z-axis and is polarized along the x-axis. The light 

source was placed in the center of the structures, 100 nm above the Si substrate, with the 

wavelength ranging from 400 nm to 1100 nm. Fig. 3.7 shows the simulated structure in 

the Lumerical. 

 Fig. 3.8 and Fig. 3.9 shows the calculated electric field intensity maps and 

normalized power absorption maps under an incident light of wavelength λ =700 nm 

where the maximum external quantum efficiency was observed, for the x-y plane and x-z 

plane. The FDTD calculations clearly show light trapping at the interface of the Ag 

nanoparticles and Si. Perhaps more interestingly, the data also show that the electric field 

intensity and power absorption significantly increase at the immediate surface of the Si 

nanopillars in Ag nanoparticles/Si nanopillar array system.  The optical modeling results 

that demonstrate more pronounced light trapping effect in Ag nanoparticle/Si nanopillar 

array agree with the experimental results as well.  
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Figure 3.8 Electrical field intensity maps ( 𝐄 𝟐) calculated by FDTD model under 
an incident light of 700 nm for x-y plane (a, b, and c) and x-z plane (d, e, and f) of 
bare Si (a, d) and Ag nanoparticles on Si (b, e) and Ag nanoparticle/Si nanopillars 
on Si (c, f). Note that incident light is propagating along z-axis and is polarized 
along x-axis. 

Figure 3.9 The simulated power absorption per unit volume of (a) bare, (b) Ag 
nanoparticle, and (c) Ag nanoparticle/ Si nanopillar array on Si under incident light 
of 700nm for x-z plane. The power absorption calculations show the absorption 
enhancement effect at the Si substrate in the presence of Ag nanoparticle and Ag 
nanoparticle/Si nanopillar array structures. 
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3.4 Solar Microcells from an UMG-Si Wafer 
	
  

3.4.1 Creating Solar Microcells 
	
  

In chapter 2, the issue of diminished performance of the bulk form of UMG-Si 

based cell due to the poor material quality was raised. Here, ultrathin (~ 17 µm thick) 

solar microcells were produced from bulk UMG-Si wafer to reduce the thickness of the 

cells so that the carrier collection can occur more easily. The schematic of overall process 

of fabricating the ultrathin solar microcells from the UMG-Si wafer is illustrated in Fig. 

3.9. Most of the process steps adapted from the monocrystalline Si microcell process 

developed by the Roger’s research group [123, 124]. The process starts with polishing a 

p-type UMG-Si wafer in chemical mechanical polisher (CMP IPEC 472). Then, a 3µm 

thick layer of photoresist (SPR 220-3.0, Shipley) was spin-coated on the wafer and baked 

for 90s at 115°C. The lateral dimensions (8 µm ⅹ 650 µm) and the layout of the 

microcells were defined by 365 nm UV exposure (Karl Suss MA6 mask aligner) and 

developing in AZ300 MIF. Next, inductively coupled plasma reactive-ion etching (ICP-

DRIE, STS Pegasus) formed ~ 25 µm deep trenches in the exposed regions, and the 

photoresist was stripped (Baker PRS 2000). The cross-section view of Si trenches formed 

at this step is shown in Fig. 3.11 (a). For the selective area doping of the microcells, 500 

nm of SiO2 deposited with plasma-enhanced chemical vapor (PECVD) deposition at 

200°C, was patterned by photolithography, BHF etching, and photoresist stripping, to 

serve as a doping mask. Solid-state targets of boron (BN-1250, Saint Gobain) and 

phosphorous (PH-1000N, Saint Gobain) were used as doping sources and were diffused 

into the wafer at 1000°C under Ar ambient for 15 min (boron) and 20 min (phosphorous) 
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in a tube furnace. The remaining dopant and oxide film were cleaned in diluted HF 

solution (HF:H2O = 1:1) for 1 min. Then layers of SiO2(100 nm)/Si3N4(300 nm) were 

coated in PECVD system at 200°C followed by angled deposition of Ni, 30⁰	
  tilted with 

respect to the wafer, in an ebeam evaporator to cover the sidewalls and the top surface of 

the microbars. The wafer was then, etched in ICP-RIE to remove SiO2/Si3N4 on the 

surface of the trenches to expose Si that is not covered with Ni. The wafer was diced in 

the dicing saw (ADT 7100 Dicing saw) and the diced pieces were finally ready for the 

undercut etching. To obtain the complete undercut, we employed XeF2 (Xactix, 3mT, 40s 

per cycle, 8cycles) dry etching method, which is independent of the crystal orientation. 

The top-down view of the microbars tethered to the wafer is shown in Fig. 3.11 (b) and 

the cross-section views of the partially undercut etched microbars are shown in Fig. 3.11 

(c). The XeF2 etching finally provided the freestanding microbars (Fig. 3.11 (d)).The 

thickness of the freestanding microbars were approximately 20µm. The Ni layer was 

removed in etching solution (HCl/H2O2/H2O=1:1:5). The pieces were again, doped with 

boron by spin coating spin- on-dopant (Filmtronics) followed by annealing at 1000°C for 

1min in rapid thermal annealing to create back-surface field on the bottoms of the cells. 

Finally SiO2/Si3N4 layers were removed in HF solution (HF/H2O =1:1) and the microbars 

were ready for transferring printing. 
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Figure 3.10 Schematic illustration of the steps of producing of ultrathin UMG-Si solar 
microcells and the process of integrating them into the completed module. 
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3.4.2 Transfer Printing and Finishing the Solar Microcell 
Module 

	
  

The freestanding microcells got released and transferred on to a polymeric 

substrate that enables the final module to have properties of flexibility and 

semitransparency. The process starts with making elastomeric printing stamps which 

were prepared by mixing PDMS prepolymer and cross-linking agent (Sylgard 184, Dow 

Figure 3.11 (a) Cross-sectional SEM image of the trenches formed from STS DRIE to 
create microcells.  (b) Top-down and (c) cross-section view of the microcells after 
subjected to 4 cycles of XeF2 etching. The thin Ni and the SiO2/Si3N4 layers 
underneath, protecting the sidewalls and the top surface of the microcells served as 
etching mask under XeF2 ambient. (d) The freestanding microcells tethered to the 
wafer after 8 cycles of XeF2 etching which offered complete undercut. 
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Corning Corp.) at the volume ratio of 10:1 and curing at 80°C for 2h. The stamps were 

placed against the donor pieces and were applied with sufficient stress, then peeled off 

quickly to release the microcells from the donor substrate and ink them onto the surface 

of the PDMS stamp. Fig. 3.12 (b) and Fig. 3.12 (c) show the solar microcells tethered to 

the donor piece ready for retrieval. Receiving substrates were prepared by cleaning a 

glass slide with UV/O3 for 10 min and spin coating with a photo-curable polymer 

(NOA61, Norland Products Inc.). The PDMS stamp inked with microcells was placed 

against this substrate and the whole system was cured in UV light for ~15 min. Then the 

PDMS stamp was peeled off leaving the microcells embedded in a NOA matrix. Fig. 3.12 

(d) shows the aligned microcells printed on the NOA matrix by PDMS stamping. 

Interconnects on the microcells-inked NOA substrate, were made by Cr/Au (30/400 nm) 

sputtering followed by spin coating photoresist (AZ 5214, Shipley) for photolithography. 

The exposed metal layers were removed in Au etchant Type TFA and CR-14 Cr etchant 

to define the electrodes and the remaining photoresist was stripped in acetone to finish 

the device. The schematic of the final ultrathin solar microcells is depicted in Fig. 3.12 

(a) and the optical image of the device wrapping a glass tube is shown in Fig. 3.12 (e). As 

shown in Fig. 3.11 (b), each microcell is 9 µm wide, 650 µm long and ~ 17 µm thick. The 

green colored region and the purple colored region in Fig. 3.12 (a) were doped with 

boron and phosphorous respectively. The completed microcell module exhibited 

excellent mechanical flexibility and semitransparency. 
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Figure 3.12 (a) Schematic illustration of the prepared microcell module. (b and c) 
Tilted SEM images of suspended microcell arrays prepared with isotropic XeF2 
etching and supported by two narrow anchors. (d) SEM image of the microcell 
arrays retrieved from the substrate and transferred on a polymer substrate (NOA 
61). (e) An optical image of a complete module consisting of ultrathin microcells 
interconnected by metal (Cr/Au, 30/400 nm) lines. 
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3.4.3 Electrical Characteristics of the Solar Microcells 
	
  

The J-V measurements of the ultrathin microcells both at dark and under 

illumination of full spectrum of 1000W/m2 at room temperature were carried out. In order 

to examine the difference in the electrical properties arising from reduction of thickness 

of solar cells, a 180 µm-thick bulk p-i-n planar junction UMG-Si solar cell that was 

presented in chapter 2 was used as a reference cell. Fig. 3.13 (a) shows the J-V 

characteristics of both ultrathin and bulk solar cells under J-V scan between -0.5 V and + 

0.7 V in the presence of the light. The detailed parameters of these solar cells are in the 

Table 3-3. Note that the current density of the microcell module was calculated using the 

active area of microcells (area of UMG-Si elements) rather than the total surface area. 

As discussed in the previous chapter (2.2), the UMG-Si contains high level of 

impurities (5N) and thus has relatively short minority carrier diffusion length, which 

plays detrimental role in collections of photogenerated carriers. The ultrathin microcells 

can bring enhanced carrier collection and make the cell act more like an ideal diode by 

offering shorter carrier collection pathway from the junction to the electrode.  The diode 

ideality factors (n) of microcell and bulk cell as shown in Fig. 3.12 (b), were obtained 

from the slopes of the linear regions in the forward bias semilog plots. This value for the 

180µm-thick bulk UMG-Si cell is 2.9, whereas that of each microcell is 2.1 The lower 

value implies improved performance and compares favorably to monocrystalline Si 

microcells ( n=1.85)[123]. 

The J-V characteristics under illumination of the two solar cells also manifests 

that shorter pathway increases the short circuit current density (JSC) and efficiency (η).  

Thinning the thickness of the cell enhanced JSC from 14.63mA/cm2 to 19.55mA/cm2. 
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However, the open circuit voltage (VOC) of the microcells exhibit diminished value from 

that of the bulk cells. This is due to the difference in the backside field of the each device. 

The backside field which is achieved by doping boron on the bottom surface of the cells 

was not formed sufficient for the microcells because the doping solid source was facing 

opposite side of the targeting surface when the doping process took place whereas for the 

bulk reference cell, the solid source was facing directly targeting surface during the 

doping. This caused difference in the doping level of cells on the backside and resulted in 

reduced back bias in the microcells.  

	
  

Table 3-3 J-V characteristics of the 180 µm thick bulk UMG-Si solar cell and the 
prepared ultrathin microcell module. 

Microcells  J
SC

 (mA/cm
2
)  V

OC
(V)  FF  η (%)  

Doped UMG-Si  14.63  0.47  0.55  3.77  

Ribbon MC  19.55 0.40  0.60 4.69  

Figure 3.13 Representative J-V curves for the 180 µm thick UMG-Si cell (blue) and 
the prepared microcell module (red) under (a) dark condition and (b) under 
illumination of 1000W/m2. 
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Degradation of hydrogenated amorphous-Si (α-Si:H) thin film solar cells during 

long term exposure of light is a well-known phenomenon and this is called as “Staebler-

Wronski effect”[125-128].  Although our microcells have small thickness compared to 

the conventional bulk cells, because they are generated from multicrystalline wafer, we 

predicted that the microcells would show good stability in terms of performance over 

time. In order to verify this, we measured the J-V of newly made microcells and 3 month 

old microcells and compared their performances under 1 sun illumination. Fig. 3.14 

shows the measured J-V curves and the detailed characteristics are in Table 3-4. The 

differences that can be found from the JSC and η values are negligible and therefore these 

results demonstrate robust device performance of the ultrathin solar microcells 

 

 

 

 

 

 

 

 

 

Figure 3.14 J-V curves of as prepared microcell module (blue) and 3 month old 
microcell module (red). The prepared microcell module has good sustainability 
over 3 months. 
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Table 3-4 J-V characteristics of as prepared microcell module and 3 month old 
microcell module. 

 

3.4.4 Optical Characteristics of the Solar Microcells 
	
  

To achieve high efficiency from Si solar cell, it is important for Si to absorb 

incoming light as much as possible. The amount of light absorbed depends on the optical 

path length and absorption coefficient. The attenuated light intensity in a material can be 

expressed as a function of the penetrating depth of light (d), which is as below. 

                                                              I   d =    I!e!!!                                                 (3.4) 

In eq. (3.4), α indicates the absorption coefficient that is a property of a material that 

defines the amount of light that is absorbed by it. The inverse of absorption coefficient, α-

1, is the average distance traveled by a photon before it gets absorbed and this value is 

called as absorption depth. The solar cell material should be thicker than the absorption 

depth α-1 (E) in order to absorb the photon of energy E. In case of Si in which the 

absorbed photon energy ranges between 400 nm and 1100 nm, the thickness should be 

around 130 µm to absorb sufficient photons without transmitting.  

The small physical thickness of our microcells (~ 17 µm) can be a major hurdle of 

achieving good light absorption. By using commercial software (Essential Macleod), the 

absorbance of both bulk Si (180 µm) and ultrathin Si (17 µm) were calculated and their 

plots are shown in Fig. 3.15. Although reducing the Si thickness improved the carrier 

Microcells  J
SC

 (mA/cm
2
) V

OC
(V) FF η (%) 

As-prepared MC module 19.55 0.40 0.60 4.69 

3 month old MC module 19.47 0.39 0.60 4.56 
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collections, it aggravated the absorbance especially at longer wavelength (from ~750 

nm).  

 

 

 

 

	
  

	
  

	
  

	
  

	
  

3.5 Ag Nanoparticles and Si Nanopillar Arrays on Solar 
Microcells 

	
  

So far, we discovered remarkable absorption enhancements in Si by incorporating 

Ag nanoparticles or Ag nanoparticle/Si nanopillar arrays on the surface. Throughout the 

investigation of electrical and optical properties of bulk UMG-Si solar cell with various 

features, we chose 34 nm for the diameter of Ag nanoparticles and Ag nanoparticle/Si 

nanopillar arrays structures on the solar microcells since 34 nm Ag nanoparticle showed 

superior performance to 18 nm Ag nanoparticles. As described in chap. 3.2, same 

procedures were carried out on the microcells. The schematic of preparation of Ag 

nanopartilces and Ag nanoparticle/Si nanopillar arrays are shown in Fig. 3.16. 

Figure 3.15 Calculated absorbance spectrum of 180 µm thick Si (blue) and 17 µm 
thick Si significantly decreased in the long wavelength region. This calculation was 
executed using the Essential Macleod software (ver. 9.4). 
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During the process of block copolymer lithography, we discovered that the PS-b-

PMMA self-assembled film was selectively formed on the Si surface. This was 

confirmed from the SEM images in Fig. 3.16 (a) which was taken after PMMA removal 

showing nanopatterned PS template on Si microcells whereas no patterned structure on 

NOA 61 surface. This can be explained by the absence of –OH group on the surface of 

NOA 61 which is critical for obtaining self-assembled morphologies from block 

copolymers. However, this characteristic turned out to be beneficial for our microcell 

device, since this made it possible to have NOA 61 transparent and clean after formation 

of Ag nanoparticles. Fig. 3.16 (b) shows the optical image of the final microcells that 

have Ag nanoparticle/ Si nanopillar arrays on the microcells’ surface showing excellent 

flexibility and semitransparency. 

 

 

Figure 3.16 Schematic illustration of the preparation of periodic and uniform Ag 
nanoparticles and Ag nanoparticle/Si nanopillar arrays on microcells. 
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 The J-V measurements were conducted under illumination of 1000W/m2 for three 

different solar microcells: (1) a bare microcell with no Ag nanoparticles, (2) Ag 

nanoparticles on a microcell, and (3) Ag nanoparticles/ Si nanopillar array on a microcell. 

The J-V curves of these cells are shown in Fig. 3.17 and their detailed characteristics are 

in Table 3-5.  

 The JSC of the bare, Ag nanoparticle, and Ag nanoparticle/Si nanopillar array 

microcells were measured to be 19.55mA/cm2, 24.32mA/cm2, and 31.77mA/cm2, 

respectively and their measured efficiencies (η) were 4.69%, 5.93%, and 8.08%, 

respectively. The VOC and FF did not exhibit noticeable changes showing values of ~ 

0.4V and ~ 0.6, respectively. The current density (JSC) exhibited constant increment as 

the nanostructures were added to the microcells and this implies that Ag nanoparticles 

and Ag nanoparticle/ Si nanopillar arrays are contributing to absorption enhancements.  

Figure 3.17 (a) SEM images of the as-prepared PS template on a polymer substrate 
(NOA 61) and Si. The block copolymer (PS-b-PMMA) thin film was selectively self-
assembled on the Si surface. (b) An optical image of a microcell module with Ag 
nanoparticle/Si nanopillar arrays structure. Both block copolymer lithography and 
reactive ion etching (RIE) did not affect the flexibility and the semitransparency of 
the microcell module. 
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Table 3-5 J-V characteristics of bare microcell module, Ag nanoparticles on 
microcell module, and Ag nanoparticle/Si nanopillar arrays on microcell module. 

Microcells  J
SC

 (mA/cm
2
)  V

OC
(V)  FF  η (%)  

bare MC module 19.55  0.40  0.60  4.69  

AgNP on MC  24.32  0.40  0.61  5.93  

AgNP/SiNA on MC  31.77  0.41  0.62  8.08  
	
  

	
  

3.6 Conclusion 
	
  

 In this chapter, the fabrication method of creating nanostructures that can induce 

both plasmonic effect and anti-reflection and incorporation of the structures to the 

microcells were demonstrated. Implementing PS-b-PMMA self-assembly enabled 

obtaining metallic nanoparticles with diameters of 18nm and 34nm and further etching 

allowed forming Si nanopillars in addition to the nanoparticles. The detailed studies of 

Figure 3.18 Representative J-V curves of the bare microcell module (green), Ag 
nanoparticles on microcell module (blue), and Ag nanoparticle/Si nanopillar arrays 
on microcell module (red). The microcells were 17 µm thick. 
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optical and electrical properties of bulk UMG-Si solar cells with various dimensions of 

Ag nanoparticle/ Si nanopillar array further elucidated the effects of the incorporation of 

the nanostructures on the overall solar cell performance. 

 From the investigation of the properties of UMG-Si, which was presented in 

chapter 2, it was predicted that the minority carrier diffusion length in UMG-Si is much 

shorter than that of crystalline Si. General approach to achieve moderate carrier 

collection from utilization of low quality material is to reduce the thickness of the solar 

cell so that the carriers can reach the electrode from the metallurgical p-n junction before 

the recombination can take place. We followed this strategy by producing 17 µm thick 

solar microcells from UMG-Si wafer. 

 Our solar microcells possess unique properties such as good mechanical 

flexibility and semitransparency that cannot be achieved from conventional fabrication 

techniques. Moreover J-V characteristic and diode ideality factor evaluations made it 

clear that 17 µm thicknesses of microcells enhance the collection of photogenerated 

carriers compared to the bulk (180 µm – thick) cells. However, optical calculation of Si in 

this thickness revealed light absorption loss at the long wavelength region. 

 After integration of Ag nanoparticles and Ag nanoparticles/Si nanopillar arrays, 

the low-cost UMG-Si based 17 µm thick solar microcell module exhibit enhanced 

performance. These nanostructures significantly increased light absorption in Si by 

plasmonic, antireflection, and light trapping effects induced by Ag nanoparticles and Si 

nanopillar arrays. The resulting solar microcell module yielded η > 8% efficiency. 
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 Further enhancement in efficiency may be possible with surface passivation and 

backside reflection. The results reported here may provide useful design considerations 

for the future work in Metallurgical Grade (MG)-Si and other classes of solar cell 

systems. 
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Chapter 4  

 Multiple –Plasmonic Layers for Extreme Light Trapping 

	
  

4.1 Introduction 
	
  

 In this work LSPR from multiple layers of metallic nanoparticles together with 

dielectric anti-reflection coating were implemented to increase the absorption of UMG-

Si. In this chapter, the methodology of creating multiple plasmonic layers[87] (either 

double or quadruple plasmonic metallic nanoparticles layers) on the surface of UMG-Si 

solar cells using block copolymer lithography is introduced. Detailed studies on the 

electrical and optical properties of the developed solar cells elucidate the light trapping 

contributions of each individual layer and finally optimized structure that maximizes the 

light absorption and conversion efficiency was selected for application to the ultrathin 

UMG-Si cell. 

 The main challenge in developing solar cells utilizing thin Si film is poor 

absorption [112, 123]. Here, ultrathin (~12 µm thick) UMG-Si based solar cells that 

exhibit good bendability was prepared and investigation of its electrical and optical 

properties revealed severe optical loss. We equipped this solar cell with the optimized 

light trapping multiple-plasmonic layers and finally achieved ~11% conversion 

efficiency.  
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4.2 Fabrication of Multiple-Plasmonic Layers on UMG-Si 
	
  

The overall experimental procedures of producing multiple-plasmonic layers on 

the bulk/ultrathin UMG-Si are depicted in the Fig. 4.1. The double side polished 

upgraded metallurgical grade (UMG) Si (thickness: 180µm for bulk solar cell/ 12µm for 

ultrathin solar cell) substrate was doped with boron at the bottom and phosphorous on 

top. A random copolymer PS-b-PMMA brush neutrally treated the top surface of doped 

UMG-Si. A thin film (100 nm) of asymmetric block copolymers, polystyrene-block-poly 

(methyl methacylate) (PS-b-PMMA) forming cylindrical nanostructures (molecular 

weight: PS/PMMA-46k/21k, PMMA cylinder diameter: 18 nm, center to center distance 

between neighboring cylinders: 34 nm) were spin-coated onto the wafer surface. After 

annealing at 190 °C, the substrates were irradiated with UV and subsequently rinsed with 

acetic acid and water to remove PMMA cylinder cores and crosslink the PS matrix. 

Using the PS nanotemplate as an etching mask, the UMG-Si substrate was etched in by 

RIE (SF6/C4F8) to produce nanoporous structures, and the remaining PS nanoporous 

template was removed by oxygen plasma. This process duplicated the hexagonal 

arrangement of the block copolymer template and produces a highly dense and uniform 

nanoporous array on the surface of UMG-Si solar cells.  The top-down and tilted views of 

the nanoporous UMG-Si is shown in Fig. 4.2 (a) and (b). The tilted view in Fig. 4.2 (b) 

shows that the mean depths of the naopores are ~ 20 nm. 

For producing plasmonic nanoparticles, a metallic (either Ag or Au) thin film (t = 

5 nm) was deposited over the nanoporous UMG-Si substrate, and the substrate was 

subsequently annealed on a hot plate (100°C, 10 min). This caused the deposited metal 

thin film to get wet and form nanoparticles both within the nanopores as well as outside 
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the nanopores, respectively. The metal nanoparticles have mean diameters of 16 nm and 

18 nm inside and outside the nanopores respectively. These two plasmonic layers 

together constituted the bottom “double plasmonic layer” on the UMG-Si solar cell. The 

top-down views of nanoporous UMG-Si covered with metal film and after annealing are 

shown in Fig. 4.2 (c) and (d). The spin-on-glass (SOG) solution was spin coated on the 

double plasmonic layer and annealed for 1 hour at 400 °C. This layer is for the enhanced 

anti-reflection[129, 130] and served as a substrate for the deposition of two additional 

plasmonic layers. The top two plasmonic layers were fabricated on SOG film using the 

same procedure as was used earlier to fabricate the bottom two plasmonic layers. The 

final structure incorporates the bottom double plasmonic layers, the SOG, and the top 

double plasmonic layers which we call “quadaruple plasmonic layer” structure. The final 

structure is depicted in Fig. 4.3. 
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Figure 4.1 Schematic illustration of the steps of producing quadruple plasmonic layer 
on ultrathin UMG-Si based solar cells. 
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Figure 4.2 SEM images of (a) top and (b) tilted view of the nanoporous UMG-Si 
patterned with block copolymer lithography. SEM images of nanoporous UMG-Si 
after depositing 5nm of Ag film (c) before and (d) after annealing. 

Figure 4.3 Schematic illustration of the structure of quadruple plasmonic layers 
on UMG-Si solar cells. The total accumulated structure of “bottom double 
plasmonic layer/ spin-on-glass/top double plasmonic layer” worked as a 
quadruple plasmonic layer. 
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4.3 Investigation of Constituents Comprising the 
Quadruple Plasmonic Layer 

	
  

4.3.1  Electrical Studies of Solar Cells with Multiple-
Plasmonic Layers 

	
  

 In order to have better understanding in the contribution of each constituent 

within the fabricated solar cells, the evaluations on the device performance on five 

different structures on 180 µm thick UMG-Si based solar cells were carried out: (1) A 

bare UMG-Si solar cell without any features, (2) a nanoporous UMG-Si solar cell, (3) an 

UMG-Si solar cell with Ag based double plasmonic layer, (4) an UMG-Si solar cell with 

Ag based double plasmonic layer, along with a top coating of SOG, and (5) an UMG-Si 

solar cell with quadruple plasmonic layer. The thickness of the SOG and the deposited 

Ag film were 100nm and 5nm respectively.  

 J-V measurements of the five different solar cells were conducted and the curves 

are plotted in Fig. 4.4 (a). The detailed J-V characteristics are in Table. 4-1. The J-V 

curves show that JSC consistently increases as the plasmonic layers are added to the 

surface of the UMG-Si solar cell. For example, JSC of bare UMG-Si cell was measured to 

be 13.67mA/cm2, whereas the JSC of the UMG-Si cell with quadruple layer was 

34.23mA/cm2. These measurements manifest that JSC is greatly increased by the presence 

of the bottom double plasmonic layer, SOG, and the top double plasmonic layer. This 

increase of the short circuit current is attributed to the absorbance enhancement caused by 

the light trapping effects of each plasmonic layer, and the anti-reflection properties of 

SOG film [131]. 
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 The use of the plasmonic light trapping layers and anti-reflection layer influences 

VOC (open circuit voltage) and FF (fill factor) as well. Surface recombination of carriers 

results in a decrease of VOC and FF especially in thin film materials [40, 132, 133]. The 

front surface of the cell corresponds to the highest carrier generation region in the solar 

cell since most of the incident light is absorbed there. Decreasing surface recombination 

is typically achieved by reducing the number of dangling bonds at the front surface using 

a surface passivation layer.  Fig. 4.4 (b) shows the VOC and FF for the same five cells as 

Fig. 4.4 (a). The data clearly shows that the surface passivation using SOG enhances both 

the VOC and FF. Overall, due to the absorption enhancement and surface passivation 

effect, the 180 µm thick UMG-Si cell with the quadruple plasmonic layer exhibited a 

very high efficiency of 11.5 %. 

 

Figure 4.4(a) J-V curves for bare UMG-Si (black), nanoporous UMG-Si (blue), Ag 
based double plasmonic layer on UMG-Si (green), and UMG-Si with Ag based 
quadruple plasmonic layer. (b) Absorbance spectrums for bare UMG-Si (black), 
double plasmonic layer on UMG-Si (green), and Ag based quadruple plasmonic 
layer on UMG-Si.  
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Table 4-1 J-V characteristics of bare UMG-Si, porous UMG-Si, Ag based double 
plasmonic layer (Ag-DPL) on UMG-Si, SOG on Ag based double plasmonic layer, 
and Ag based quadruple plasmonic layer (Ag-QPL) on UMG-Si. 

 

4.3.2 Optical Studies of Multiple-Plasmonic Layers 
	
  

 To better elucidate the effects of the individual plasmonic layers on the 

absorbance of the five solar cells, the reflectances (R) as a function of wavelength in the 

range 300 nm < λ < 950 nm for the bare UMG-Si cell, UMG-Si cell with the double 

plasmonic layer, and the UMG-Si cell with the quadruple plasmonic layer were 

investigated. Fig. 4.2 (a) shows the calculated absorbance of the three cells. The 

absorbances were calculated by subtracting the measured reflectance from unity 

assuming that 180 µm thickness is enough to allow no transmission losses (α (E) = 1 – R 

(E)). The double plasmonic layer dramatically enhanced the absorbance of UMG-Si cell 

for all wavelengths greater than 400 nm. In chapter 2, it was demonstrated that point 

dipole prediction and Fröhlich condition could be applied for a small metal particles (a 

<< λ). According to Fröhlich condition, the resonance enhancement of polarization 

occurs when ε  (ω)+ 2ε!  is minimum (≈ 0) and particularly for single Ag sphere in air, 

this occurs at ~ 400 nm.  In chapter 3.3.2, we demonstrated that in case of arrays of Ag 

Solar cells  J
SC

 (mA/cm
2
) V

OC
 (V) FF η (%) 

Bare UMG-Silicon 13.67 0.49 0.58 3.88 

Porous UMG-Silicon 15.61 0.49 0.58 4.43 

Ag-DPL on UMG-Silicon 21.53 0.52 0.60 6.89 

SOG on Ag-DPL 28.27 0.53 0.63 9.48 

Ag-QPL on UMG-Silicon 34.23 0.53 0.63 11.50 
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hemispheres on Si substrate, the resonance peak appears at ~ 450 nm due to scattering 

into Si and interactions between local electromagnetic modes. However in double 

plasmonic structure that is composed of 1st plasmonic layer that is embedded in Si and 2nd 

plasmonic layer that is on Si surface, have larger proportion of Si in the surrounding 

medium . Therefore, the wavelength that gives rise to plasmonic resonance undergoes 

further red-shift. Absorbance difference with respect to the bare Si was plotted in Fig. 4.5 

(b) so that absorption in Si can be eliminated. The plot clearly shows the resonance peak 

at the longer wavelength (at 600 nm) than ~ 450 nm which is consistent with the 

theoretical prediction [56-58]. In contrast to the Ag double plasmonic layer, quadruple 

plasmonic layer has an additional SOG anti-reflective layer, and a top Ag based double 

plasmonic layer. The absorbance of the quadruple plasmonic layer reached ~ 98% across 

the entire wavelength spectrum, making the cell nearly a perfect light absorber. 

Figure 4.5 (a) Absorbance spectrums for bare UMG-Si (black), double plasmonic 
layer on UMG-Si (green), and Ag based quadruple plasmonic layer on UMG-Si. (b) 
Absorbance difference with respect to the bare cell for double plasmonic layer on 
UMG-Si.  
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4.3.3 Optical Modeling of Multiple-Plasmonic Layers on Si 
	
  

 To further elucidate the absorbance enhancement effects of multiple plasmonic 

layers on Si, the electromagnetic field intensities and the power absorption profiles for 

bare Si, the double plasmonic layer on Si, and the quadruple plasmonic layer on Si were 

calculated using FDTD method (Lumerical Solution, Inc). The designed structures’ 

details for the calculations are the same as the actual structure in the experiments and 

they are depicted in Fig. 4.6.  

 
Figure 4.6 (a) Perspectvie view, (b) x-y plane view, (c) x-z plane view, and (d) y-z 
plane view of the simulated structure of quadruple plasmonic layer on Si 
substrate. The lateral profile of nanoporous Si and nanoporous SiO2 substrate was 
set to be hemi-ellipse (D = 20nm, depth = 20nm). The bottom Ag/Au particles of 
double plasmonic layer were placed on the center of the pore, and the shape of 
them were set to be sphere (D = 16nm). The top Ag nanoparticles of double 
plasmonic layer were placed on the center from the three adjacent pores, and the 
shapes of them were set to be hemi-ellipse (D = 18nm, height = 15nm).  
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 The calculated electric fields maps are displayed in Fig. 4.7 (a), (b), and (c) and 

they clearly show the strong light trapping at the interface between the Ag nanoparticles 

and Si. The calculated total power absorption maps in Si are displayed in Fig. 4.7 (d), (e), 

and (f). The power absorption maps also show similar trend as the electric field maps, 

showing remarkable enhancements with the presence of both the Ag based double 

plasmonic layers and the quadruple plasmonic layer.  

 

 

Figure 4.7 Electric field intensity profiles and power absorption profiles calculated 
by Lumerical under an incident light of 600nm for x-z plane of (a and d) bare Si, (b 
and e) Ag based double plasmonic layer on Si, and (c and f) Ag based quadruple 
plasmonic layer on Si.  
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4.3.4 Light Trapping Effect of Ag Nanoparticles at Different 
Locations 

	
  

 FDTD modeling of each constituent of the bottom double plasmonic layer, which 

are Ag nanoparticles buried in Si nanopores (first layer) and Ag nanoparticles sitting on 

the surface of the Si ( second layer),  were carried out in order to better understand each 

layer’s contributions to the absorption enhancements. Fig. 4.8 (a) shows the simulated 

structures, (b and c) show the calculated field intensity map and (d and f) show the power 

absorption map of each plasmonic layer that comprises the bottom double plasmonic 

layer. 

 LSPRs are non-propagating waves that are confined to the interface between 

metal and the surrounding dielectric[50, 54, 55]. Therefore magnitude of interfacial area 

becomes a key factor that determines the intensity of plasmonic interaction.  The Ag 

nanoparticles from the first plasmonic layer are buried within UMG-Si which allows for a 

larger interfacial area with between the nanoparticle and Si compared to the Ag 

nanoparticles from the second plasmonic layer that are sitting on the surface of Si. It is 

the larger interfacial area with Si in the first plasmonic layer that resulted in more 

significant light trapping. Hence, from this optical modeling we can conclude that placing 

the Ag nanoparticles inside Si is more effective for light trapping. 
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4.3.5 Optimization of Thickness of SOG Layer and 
Dimensions of Ag Nanoparticles 

	
  

 To maximize the light concentration and absorption due to the quadruple 

plasmonic layer, the three-dimensional placement of plasmonic nanoparticles and the 

surface passivation layer are critical. Fig. 4.9 (a) shows the J-V curves of the Ag based 

quadruple plasmonic solar cells as a function of SOG thickness and the detailed J-V 

characteristics are in Table 4-2. The thickness of SOG was varied from 0 nm, which is 

the cell where the double plasmonic layer was placed directly on the UMG-Si solar cell, 

to 200 nm. The JSC showed enhancements as the thickness of the SOG increased and 

Figure 4.8 (a and b) electric field intensity profiles and (c and d) power absorption 
profiles calculated by FDTD method under a incident light of 700nm for x-z plane 
of (a and c) first Ag based plasmonic layer of double plasmonic layer on Si and (b 
and d) second Ag based plasmonic layer of double plasmonic layer on Si. 
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reached maximum when SOG was 100 nm. This observation shows good agreement with 

the previous works regarding optimized single-layer anti-reflective coating of SiO2 for Si 

solar cells [129]. 

 Fig. 4.9 (b) represents the J-V curves for Ag based quadruple plasmonic solar 

cells as a function of Ag thin film thickness. Since 100 nm of SOG was found to be the 

optimum, all of the cells’ SOG thicknesses were fixed as 100 nm. The solar cell with 0 

nm of Ag film indicates nanoporous UMG-Si solar cell with SOG on the top. As the Ag 

film’s thickness increases, JSC showed significant enhancements and reached maximum 

value of 34.23mA/cm2 when the Ag film was 5nm thick. However, JSC decreased with the 

further increase of Ag thickness and 15nm of Ag thin film finally yielded 7.09mA/cm2, 

which is much lower than the bare UMG-Si solar cell. This trend is likely because with 

increasing the Ag film’s thickness, it becomes more difficult to dewet the deposited Ag 

film. As a consequence, thick Ag film fails to form periodically placed Ag nanoparticles 

and remains as Ag thin film. The optical behavior of metal thin film is completely 

different from that of metal nanoparticles [54]. Thin metal films on semiconductor 

normally reflect light and hence prevent the underlying material from absorbing light. It 

is also possible for coherent electron oscillations to take place in metallic thin films, 

however this requires help of prism coupling [134, 135] or surface grating [136] if light is 

to be used to generate surface plasmons due to mismatch between momentum of surface 

plasmon mode and that of free-space photon of the same frequency [54, 55, 137]. The 

metal film with nanoscale gratings can be utilized as light trapping feature when placed at 

the backside of a solar cell by developing propagating surface plasmon mode at the 

interface between metal film and the absorbing semiconductor. 



 82 

The J-V characteristic of 15 nm thick Ag film coated nanoporous UMG-Si cell implies 

the structure on the surface is nearly a thin Ag film and as a result, JSC and the device 

performance declined. 

 
	
  

	
  

Table 4-2 J-V characteristics of Ag based quadruple plasmonic layer (Ag-QPL) on 
UMG-Si as a function of spin-on-glass (SOG) thickness. 

SOG thickness  J
SC

 (mA/cm
2
) V

OC 
(V) FF η (%) 

0 nm (Ag-DPL on UMG-Si) 21.53 0.52 0.61 6.89 

60 nm 30.50 0.53 0.62 10.16 

100 nm 34.23 0.53 0.63 11.50 

160 nm 28.31 0.53 0.65 9.77 

200 nm 20.98 0.53 0.66 7.39 
 

 

 

Figure 4.9 (a) J-V curves of the Ag based quadruple plasmonic layer on 180µm thick 
UMG-Si solar cell as a function of spin-on-glass (SOG) thickness. (b) J-V curves for 
the Ag based quadruple plasmonic layer on 180 µm thick UMG-Si solar cell as a 
function deposited Ag film thickness. 
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Table 4-3 J-V characteristics of Ag based quadruple plasmonic layer on UMG-Si as 
a function of deposited Ag thickness. 

Ag thickness  J
SC

 (mA/cm
2
) V

OC 
(V) FF η (%) 

0 nm (porous UMG-Si) 15.61 0.50 0.58 4.55 

3 nm 24.80 0.53 0.63 8.29 

5 nm 34.23 0.53 0.63 11.50 

10 nm 23.73 0.53 0.63 7.98 

15 nm 7.09 0.47 0.64 2.15 
	
  

4.4 Light Trapping Effects and Anti-Reflective Effects 
from Quadruple Plasmonic Layer 

	
  

 Absorption enhancement in the quadruple plasmonic layer involves both light 

trapping effects of Ag nanoparticles and anti-reflection effects of the SOG film. To 

further differentiate these two mechanisms, four different solar cells were fabricated and 

examined: (1) A bare UMG-Si cell, (2) a UMG-Si cell with a SOG layer, (3) a UMG-Si 

cell with a SOG layer, covered with top Ag based double plasmonic layer, and (4) a 

UMG-Si cell with bottom Ag based double plasmonic layer covered with SOG layer. Fig. 

4.10 (a) shows the schematic of four prepared UMG-Si solar cells. 

 Fig. 4.10 (b) and (c) show the J-V curves and the efficiency measurements of the 

four prepared solar cells and the detailed characteristics are in Table 4-4. By comparing 

the performance of each cell, it became clear that good surface passivation from SOG 

was achieved since VOC and FF of the cells with SOG layer showed enhanced values. 

Further, the addition of SOG film resulted in absorbance enhancements of UMG-Si 

leading to increase in JSC up to 19.17mA/cm2. The enhanced JSC brought 2.4% of 

efficiency increase. The addition of top Ag based double plasmonic layer (cell 3) and the 
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bottom plasomonic layer (cell 4) increased the JSC of the cells to 25.05mA/cm2 and 

28.28mA/cm2, respectively. The changes in VOC (~ 0.53V) and FF (~ 0.63) among the 

three cells with SOG film were negligible. Therefore the top and the bottom Ag based 

double plasmonic layer increased the absolute efficiency of the cells by ~ 2.1% and ~ 

3.2% respectively. The total efficiency improvements caused by the bottom Ag based 

double plasmonic layer (3.2%), SOG (2.4%), and the top Ag based double plasmonic 

layer (2.1%)  add up to essentially the overall efficiency enhancement caused by the 

quadruple plasmonic layer on UMG-Si (7.5%). 

 

 

  

 

	
  

 

  

Figure 4.10 (a) Schematic illustration of bare UMG-Si, spin-on-glass (SOG) on 
UMG-Si, top Ag based double plasmonic layer on SOG film, and bottom Ag based 
double plasmonic layer under SOG film. (b) J-Vcurves and (c) efficiency plots for 
each sample.  
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Table 4-4 J-V characteristics of bare UMG-Si, spin-on-glass (SOG)) on UMG-Si, top 
Ag based double plasmonic layer (Ag-DPL) on UMG-Si, and bottom Ag based 
double plasmonic layer (Ag-DPL) on UMG-Si. 

 

 The trend that was shown from the J-V measurements, also agrees with the 

calculated electric field intensity and power absorption profiles of SiO2 on Si, top Ag 

based double plasmonic layer on Si, and bottom Ag based double plasmonic layer on Si. 

Fig. 4.11 shows the FDTD calculations of these cells. The larger increase in the 

magnitude of JSC caused by the bottom double plasmonic layer compared to the top 

double plasmonic layer can be explained by the difference in their respective dielectric 

environments. The bottom Ag based double plasmonic layer is surrounded by higher 

refractive index materials, Si (refractive index, n ~ 3.5) and SiO2 (n ~ 1.5), which 

prevents significant dispersion of trapped light. In comparison, the top Ag based double 

plasmonic layer is surrounded by Air (n ~ 1) and SiO2. When the metallic nanoparticle is 

placed close to the interface between two dielectrics, light scatters preferentially into the 

dielectric with the larger permittivity. Therefore, the bottom double plasmonic layer 

which is in touch with Si, contributes more to the light absorption than the top double 

plasmonic layer.  

Solar cells  J
SC

 (mA/cm
2
)  V

OC 
(V)  FF  η (%)  

Bare UMG-Silicon 13.67 0.49 0.58 3.88 

SOG on UMG-Silicon 19.17 0.53 0.62 6.32 

Top Ag-DPL 25.07 0.53 0.63 8.42 

Bottom Ag-DPL 28.28 0.53 0.63 9.49 
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4.5 Comparison of Ag Nanoparticles and Au Nanoparticles 
	
  

 Besides Ag, other metallic nanoparticles can also be used to fabricate effective 

plasmonic light trapping layers. Gold (Au) nanoparticles have been previously considered 

as a good material for the application of plasmonics [69, 120, 138]. We compared the 

effects of utilizing Ag and Au nanoparticle layers within quadruple plasmonic layer on 

the overall efficiency of the UMG-Si solar cells. The first cell (denoted as the Au/Ag cell) 

has a bottom double plasmonic layer composed of Au nanoparticles, a SOG layer, and a 

Figure 4.11 Calculated electric field intensity profiles under an incident light of 600 
nm for (a) SiO2 (100 nm) on Si, (b) top Ag based double plasmonic layer on Si, and 
(c) bottom Ag based double plasmonic layer on Si. Calculated power absorption 
profiles for (d) SiO2 (100 nm) on Si, (e) top Ag based double plasmonic layer on Si, 
and (f) bottom Ag based double plasmonic layer on Si. 
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top double plasmonic layer composed of Ag nanoparticles. Fig. 4.12 depicts the cross-

section of the first cell.  The second cell (denoted as the Ag/Ag cell) has same quadruple 

plasmonic layer, which has been presented throughout this chapter that has both the 

bottom and the top double plasmonic layers composed of Ag nanoparticles. 

  

 

 

	
  

	
  

 Fig. 4.13 (a) and (b) show the J-V curves, FF, and overall efficiency plots for two 

UMG-Si cells with different quadruple plasmonic layers. According to Fröhlich condition 

and experimental reports [59, 79], the resonance of Au nanoparticles in air occurs at ~ 

510 nm which is longer wavelength regime compared to Ag nanoparticles (400 ~ 450 

nm) due to less electron density in Au relative to Ag which results in weaker restoring 

force inside the nanoparticle. Therefore we have used Ag nanoparticles for the top double 

plasmonic layers for both cells because so that the top plasmonic layer can trap the short 

wavelength light.  

 

Figure 4.12 Schematic of the cross-section of the quadruple plasmonic layer 
comprising bottom double plasmonic layers generated from Au nanoparticles, SOG 
layer, and top double plasmonic layers generated from Ag nanoparticles. 
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Table 4-5 J-V characteristics of bare UMG-Si, Au/Ag quadruple plasmonic layer on 
UMG-Si and Ag/Ag quadruple plasdmonic layer on UMG-Si solar cells. 

Solar cells J
SC

 (mA/cm
2
) V

OC 
(V) FF η (%) 

Bare UMG-Silicon 13.67 0.49 0.58 3.88 

Au/Ag QPL 24.82 0.53 0.66 8.61 

Ag/Ag QPL 34.23 0.53 0.63 11.50 

     
	
  

Table 4-5 shows the detailed J-V characteristics of Au/Ag cell and Ag/Ag cell. The JSC 

for Au/Ag cell and the Ag/Ag cell were measured to be 24.82mA/cm2 and 

34.23mAg/cm2 respectively. The FF for both cells showed small variation and were 

measured to be 0.66 and 0.63 respectively. Although Au/Ag cell showed slightly higher 

value for the FF (probably due to the anti-oxidation properties of Au), the Ag/Ag cell had 

a higher value for the JSC due to significantly higher light trapping. The calculated electric 

field intensity maps for the Au/Ag cell and the Ag/Ag cell shown in Fig. 4.11 (a) and (b) 

Figure 4.13 (a) J-V curves as well as (b) fill factor (FF) and efficiency plots of bare 
UMG-Si, Au/Ag quadruple plasmonic layers and Ag/Ag quadruple plasmonic 
layer. 
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respectively and they clearly show the difference in light trapping intensities between the 

Ag and Au nanoparticles. The power absorption profiles also support this hypothesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Calculated electric field intensity profiles under incident light of 400nm 
for x-z plane of (a) Au/Ag quadruple plasmonic layer and (b) Ag/Ag quadruple 
plasmonic layer on Si. Calculated power absorption profiles under an incident light 
of 400 nm (c and d) and 600 nm (e and f) for x-z plane of Au/Ag quadruple 
plasmonic layer (c and e) and Ag/Ag quadruple plasmonic layer on Si.White dotted 
lines show surfaces of Silicon (near 0 nm) and spin on glass (near 100 nm). 
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4.6 Ultrathin Solar Cells based on UMG-Si 
	
  

4.6.1 Fabrication of Ultrathin UMG-Si Solar Cells 
	
  

The bulk UMG-Si wafer was lapped and polished using chemical mechanical 

polisher to reduce the thickness down to 12 µm. Then the wafer was doped with 

phosphorous and boron on the topside and the backside respectively using solid source 

targets (PH-1000N, BN-1250, Saint Gobain) to make p-i-n junction. The diffusion doping 

was conducted at 1000⁰C in Ar ambient for 20 minutes. To make contact on the boron-

doped side, thin layer of Al was sputtered on the backside of the wafer. The wafer was 

cut and pasted to Ti/Au coated polyamide film for easy handling.  

   Fig. 4.15 (a) shows the prepared 12 µm thick UMG-Si piece which is bendable up 

to 10 mm of bending radius without fracture due to the small thickness. The completed 

ultrathin UMG-Si solar cell for measurement is shown in Fig. 4.15 (b). 

 

Figure 4.15(a) Optical image of a 12 µm thick UMG-Si. Due to the small thickness, 
the UMG-Si solar cell was bendable up to ~ 10 mm of bending radius. (b) The 
ultrathin UMG-Si was processed by attaching the sample on a polymide (125 µm) 
/Ti (20 nm)/Au (200 nm) substrate for easy handling and measurement. 
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4.6.2 Electrical and Optical Characteristics of Ultrathin 
UMG-Si Solar Cells 

	
  

The J-V measurements of both ultrathin (12µm) and bulk (180µm) solar cells 

generated from UMG-Si were carried out under illumination of 1 sun. J-V measurement 

results of 17µm thick solar microcells presented in Chapter 3.4.1 exhibited that short 

carrier collection pathway improves the conversion efficiency (η) which is concomitant 

with the increase in the photocurrent (Jsc). Fig. 4.16 (a) shows the J-V curves of the 

ultrathin solar cell and the bulk solar cell and their detailed J-V characteristics are in 

Table. 4-6. In case of 12 µm thick UMG-Si solar cell, the short circuit current density 

(JSC) was measured to be smaller (9.53mA/cm2) compared to that of bulk (180µm) UMG-

Si solar cell even though much shorter carrier collection pathway was provided. Due to 

the significant decline in the photocurrent in the ultrathin solar cell, other related 

parameters such as open circuit voltage (VOC), fill factor (FF), and finally efficiency (η) 

decreased as well.  

 For further investigation of optical property in the 12µm Si, optical absorptance 

calculations of Si in 12µm and in 180µm thicknesses were carried out using the Essential 

Macleod. The calculation shown in Fig. 4.16 (b) manifests serious optical loss in the 

12µm Si as its absorptance drops sharply from wavelength of 600nm. In this case, loss of 

photogenerated carriers outweighs enhanced photogenerated carrier collection and that 

results in diminished overall performance of the device. 
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Table 4-6 J-V characteristics of a 12 µm thick bare UMG-Si solar cell and a 180 µm 
thick bare UMG-Si solar cell. 

Solar cells J
SC

 (mA/cm
2
) V

OC
(V) FF η (%) 

12 µm thick UMG-Si 9.53  0.46  0.59  2.59  

180 µm thick UMG-Si 13.67 0.49 0.58 3.88 
 

4.7 Quadruple Plasmonic Layer on Ultrathin UMG-Si 
Solar Cells 

Throughout the experiments of fabricating bulk (180µm thick) UMG-Si solar 

cells with various light trapping features and investigating their electrical and optical 

properties, we found out the optimum material and surface design that maximizes the 

light trapping. Our ultimate goal is to integrate these nanostructures to the ultrathin (12 

µm thick) UMG-Si solar cell. Therefore, by employing all the conditions that were 

Figure 4.16 (a) Calculated absorbance spectrum of the 180 µm thick Si (blue) and 
the 12 µm thick Si (red). The absorbance of the 12 µm Si decreased significantly in 
the long wavelength region. (b) J-V curves of the 180 µm thick UMG-Si solar cell 
(blue) and the 12 µm thick UMG-Si solar cell (red) under light (1000W/m2). 
Compared to the JSC of the 180 µm thick UMG-Si solar cell, the JSC of the 12 µm 
thick UMG-Si solar cell was decreased by 30% due to the low absorbance at the long 
wavelength region. 
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discovered so far, we produced ultrathin UMG-Si solar cell with quadruple plasmonic 

layer. The quadruple plasmonic layer has a bottom double plasmonic layer composed of 

Ag nanoparticles, a SOG layer (100 nm thick), and a top double plasmonic layer 

composed of Ag nanoparticles. The optical image of ultrathin UMG-Si solar cell without 

and with quadruple plasmonic layer is shown in Fig. 4.17 (a) and (b) respectively. 

Compared to the bare ultrathin UMG-Si substrate, the presence of Ag based quadruple 

plasmonic layer greatly decreases the reflection of light from the sample surface. As a 

consequence, the color of the cell becomes significantly darker after the incorporation of 

the quadruple plasmonic layer.  

	
  

Fig. 4.18 shows the J-V measurements for a 12 µm thick bare UMG-Si cell, as 

well as same type of cell coated with the quadruple plasmonic layer under 1000W/m2 of 

light in room temperature. JSC for the UMG-Si cell without and with the quadruple 

plasmonic layer were measured to be 9.53mA/cm2 and 31.16mA/cm2 respectively. The 

corresponding solar cell conversion efficiencies were measured to be 2.59% and 10.73% 

Figure 4.17 Optical images of ultrathin (12 µm) UMG-Si solar cells (a) without and 
(b) with the Ag based quadruple plasmonic layers on the surface.  
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respectively. The results show that incorporating quadruple plasmonic layer increased the 

efficiency of the ultrathin UMG-Si solar cell by greater than 400%. 

 

 

 

 

 

 

	
  

Table 4-7 J-V characteristics of the 12 µm thick bare UMG-Si and the Ag based 
quadruple plasmonic layer (Ag-QPL) on UMG-Si. 

Solar cells  J
SC

 (mA/cm
2
)  V

OC
 (V)  FF  η (%)  

Bare UMG-Silicon  9.53  0.46  0.59  2.59  

Ag-QPL on UMG-Silicon  31.16 0.53  0.65 10.73  
 

 

 

Figure 4.18 Representative J-V curves of 12 µm thick UMG-Si solar cells without 
(blue) and with (red) Ag based quadruple plasmonic layer under light (1000 W/m2). 
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4.8 Conclusion 

The results of this work illustrate that multiple-plasmonic layers composed of 

double or quadruple metallic plasmonic nanoparticle layers can be used to fabricate 

ultrathin Si solar cells with nearly perfect light absorption. Our quadruple plasmonic 

layers where fabricated on ultrathin (12 µm), low-cost UMG-Si substrates, and exhibit 

significantly enhanced JSC, VOC, and FF over bulk cells, resulting in overall solar cell 

efficiencies almost ~ 11%. The developed cells are flexible, use relatively impure and 

small amount of Si, thereby potentially addressing both the material and installation costs 

for Si based solar cells. 

Systematic studies on the optical and electrical properties of the quadruple 

plasmonic layers elucidate the light trapping effects of each individual component within 

the developed module. FDTD calculations help explain the mechanisms behind the 

enhanced absorption caused by each double plasmonic layer and the SOG. The results of 

this work may provide useful design direction for the future work on UMG-Si based solar 

cells.  
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Chapter 5  

 Conclusion 

	
  

5.1 Nanostructures for Light Trapping 
	
  

The properties of surface plasmons in nanoscale metallic features has been 

explored extensively as the synthetic techniques that enables numerous ways of realizing 

nanostructures with well-controllable composition, size, and shape have developed. 

Various nanofabrication techniques showing excellent yields are currently available and 

we obtained metallic nanoparticles with diameters smaller than 100 nm by means of 

block copolymer self-assembly which allows inexpensive and simple process. The major 

interest of LSPRs in metallic nanoparticles on dielectric substrates lies in potential to 

confine light to the metal/dielectric interface which in turn generates intense local 

electromagnetic fields. Therefore LSPR can provide substantial photocurrent 

enhancement when applied to weak light absorbing solar cells.  

We introduced various nanostructures generated from metallic nanoparticles that 

can significantly improve the light absorption of ultrathin Si. They are mainly divided 

into two categories: (1) Ag nanoparticle/ Si nanopillar array and (2) Quadruple plasmonic 

layers.  
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(1) Ag nanoparticle/ Si nanopillar arrays  

The structure of Ag nanoparticle/ Si nanopillar arrays on ultrathin Si was proven to 

enhance the light absorption and conversion efficiency of the solar cell by greater than 

~170%. The mechanism of absorption enhancement arising from the presence of the 

structures is combinations of LSPR at Ag nanoparicles and scattering of light at Si 

nanopillars. Separate ananlysis of Ag nanoparticles and Si nanopillar revealed that 

increase in the efficiency mostly stems from the contribution of Si nanopillars. 

(2) Quadruple plasmonic layers 

There have been huge amount of research on distribution of metallic nanoparticles 

on dielectric substrates. The quadruple plasmonic layer is an evolved plasmonic structure 

for maximizing light absorption from LSPR.  The ultrathin Si solar cell incorporating 

quadruple plasmonic layer resulted in increase in the conversion efficiency by ~400%. 

The mechanism of absorption enhancement stems from LSPR at four layers of Ag 

nanoparticles placed inside and outside Si and from anti-reflection from thin SiO2 layer. 

Studying each component comprising the quadruple plasmonic layer revealed that higher 

than 90% of absorbance throughout the entire spectrum can be achieved by using this 

structure. 

5.2 Outlook 
	
  

The nanostructures presented here can provide absorption improvements to 

various classes of solar cells that suffer optical loss from material properties besides thin 

Si. By using different combinations of block copolymers, it is possible to manipulate 

shapes and dimensions of the nanostructures. Moreover placing light trapping 
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nanostructures at different locations other than the front surface such as at the rear surface 

or in the bulk can also lead to optical absorption enhancement in semiconductors. 

Exploitation of proper nanoscale characterization techniques together with optical 

simulation tools enables researchers to find optimized designs for solar cells composed of 

various materials and further investigations in this field can offer useful insights to solar 

cell developments. 

Plasmon resonance at noble metal/dielectric interface also amplifies signals 

derived from techniques that rely on light. Therefore besides solar cells, there are 

numerous technological applications that can take advantage of surface plasmons at 

metallic nanoparticles such as Raman scattering [62, 139, 140], sensing [77-79], and etc. 

Further advancements in nanofabrication process and characterization techniques are 

expected to enable integration of photonic signals with electronics and make this become 

industrialized [137].  
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